Real-Time Magnitude Characterization of Large Earthquakes Using the Predominant Period Derived From 1 Hz GPS Data

Panos A. Psimoulis1, Nicolas Houlié2,3, and Yannik Behr4,5

1Nottingham Geospatial Institute, University of Nottingham, Nottingham, UK, 2Mathematical Physical Geodesy, Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland, 3Seismology and Geodynamics, Institute of Geophysics, ETH Zurich, Zurich, Switzerland, 4Swiss Seismological Service, ETH Zurich, Zurich, Switzerland, 5Now at GNS Science, Wairakei, New Zealand

Abstract Earthquake early warning (EEW) systems’ performance is driven by the trade-off between the need for a rapid alert and the accuracy of each solution. A challenge for many EEW systems has been the magnitude saturation for large events ($M_W > 7$) and the resulting underestimation of seismic moment magnitude. In this study, we test the performance of high-rate (1 Hz) GPS, based on seven seismic events, to evaluate whether long-period ground motions can be measured well enough to infer reliably earthquake predominant periods. We show that high-rate GPS data allow the computation of a GPS-based predominant period (τ_p) to estimate lower bounds for the magnitude of earthquakes and distinguish between large ($M_W > 7$) and great ($M_W > 8$) events and thus extend the capability of EEW systems for larger events. It has also identified the impact of the different values of the smoothing factor α on the τ_p results and how the sampling rate and the computation process differentiate τ_p from the commonly used τ_g.

1. Introduction

Seismic earthquake early warning (EEW) systems contribute toward protecting population and critical infrastructures by issuing warnings up to tens of seconds before strong shaking arrives. Real-time EEW systems have been implemented and demonstrated to have good performance for events of magnitude $M_W < 7.0$ (Allen, 2013; Allen & Kanamori, 2003; Böse et al., 2012; Espinosa-Aranda et al., 2011; Zollo et al., 2013). In order to estimate the final magnitudes of events, various strategies were based on characterizing the maximum predominant period (i.e., τ_p; Nakamura, 1988) and the dominant period (τ_d; Kanamori, 2005), or the displacement amplitude (i.e., P_d; Crowell et al., 2013; Hoshiba & Iwakiri, 2011; Rydelek & Horiuchi, 2006; Wu & Zhao, 2006). However, for large events ($M_W > 7.0$), underestimation of magnitudes has been observed, likely due to the saturation of the τ_p as the smoothing factor α (i.e., $\alpha = 0.99$) masks the low-frequency contribution (Hoshiba et al., 2011; Hoshiba & Iwakiri, 2011). The most prominent example of such discrepancy has been observed during the development of the 2011 $M_w8.1$ Tohoku-oki event for which the seismic warning system initially estimated the magnitude to be $M_W \sim 7.2$ and the final estimation not exceeding $M_W8.1$ (Hoshiba et al., 2011; Hoshiba & Iwakiri, 2011; Wright et al., 2012).

We focus here on the predominant period methodology and identify three reasons for the limited performance of EEW during large earthquakes. First is the overlap of the predominant period with microseismicity. Distant earthquakes and oceanic seismic waves (Rhie & Romanowicz, 2004, 2006; Webb, 2008) generate long-period ground motions that are well detected by EEW systems. This noise, which may include additional site-specific characteristics (McNamara & Buland, 2004), expresses the baseline noise (McNamara et al., 2009), and contributes to limitations of EEW systems in terms of both response time and magnitude determination accuracy. To overcome this issue, τ_p can be also combined with P_d for the magnitude estimation (e.g., ShakeAlert; Böse et al., 2012). Second, processing steps, such as de-trending and high-pass filtering, may remove long-period signals that are necessary to capture the size of large events (Crowell et al., 2013; Melgar et al., 2013, 2015). Third, potentially remaining errors in the acceleration record (i.e., due to microseismicity) will affect the recursive procedure of the τ_p computation (Stiros, 2008). Finally, the use of narrow-width windows, within which τ_p is computed, makes τ_p nonsensitive to long-period signals and therefore may be inappropriate to capture the seismic source spectrum of events of $M_W > 7.0$ (half-durations $dT_{50\%} > 10 \text{ s}$; Meier et al., 2010; Noda et al., 2012), causing underestimation of event magnitude.
In that context, GPS waveforms may be useful to EEW systems for at least two reasons: First, GPS time series, due to their lower sensitivity (i.e., higher noise level) are able to detect only large events and therefore are not able to render the level of microseismic activity (Michel et al., 2017). GPS-based EEW systems could thus be operated continuously even before the detection of \(P \) wave. Second, GPS provides displacement time series; therefore, only differentiation is required to access velocity and acceleration information, preserving the long-period content of the waveforms processed. Weaknesses of GPS measurements, such as multipath effects or cycle slips (Houlié, Dreger, & Kim, 2014), can be limited in applications of dynamic motions, as they can be detected and removed reliably (e.g., cycle slip even in real-time applications; Banville & Langley, 2010; Momoh & Ziebart, 2012; Zhao et al., 2015) or because they have different frequency content than the seismic signal (e.g., multipath; Geng & Bock, 2013; Moore et al., 2014).

Using GPS data recorded during main shocks of magnitudes ranging between \(M_{W} 6 \) and \(M_{W} 9+ \), we demonstrate that it is possible to distinguish between large (\(M_{W} 6–7 \)) and great (\(M_{W} 8+ \)) events using a GPS-based predominant period \((\tau_{p}) \), and to provide accurate lower bounds on the seismic moment magnitude of large events (i.e., \(M_{W} > 8 \)).

2. Materials and Methods

2.1. Geodetic Data

We use GPS (1 Hz) and strong-motion (100 Hz) records of seven different earthquakes that occurred in Japan, Nepal, and the United States (Figure 1; Table S1 in the supporting information). For the two events of Tohoku-oki (\(M_{W} 9+ \) and \(M_{W} 7.9 \) aftershock), two sets of GPS time series are available:

1. Post-processed Precise Point Positioning (PPP, Ge et al., 2008; Psimoulis et al., 2014, 2015) records computed using the Bernese GPS Software 5.2 (Dach et al., 2015) and a priori information (clocks, orbit, etc.) from the Centre for Orbit Determination in Europe (Dach et al., 2009).

2. Real-time RTK mode time series computed using the Real-Time software (RTNet) and clock and orbit corrections from the VERIPOS (Rocken et al., 2011). These data were already used by Wright et al. (2012) to constrain the rupture process.

For the remaining events; \(M_{W} 6.0 \) 2004 Parkfield (Houlié et al., 2014), \(M_{W} 6.0 \) 2014 Napa; \(M_{W} 6.9 \) 2008 Iwate, \(M_{W} 7.8 \) 2015 Nepal, and \(M_{W} 8.3 \) 2003 Tokachi-Oki (Houlié et al., 2011; Kelevitz et al., 2017); we used time series post-processed using the GAMIT 10.4 software (Herring et al., 2015). The processing methodology adopted focuses on modeling the phase residual after estimation of long-term ground motion parameters (Houlié et al., 2011). Such an approach has been proven to be reliable enough to successfully compare GPS time series with both seismograms and synthetic waveforms for periods ranging from 3 to 160 s (Houlié et al., 2011, 2014). Both GPS processing packages (i.e., Bernese and GAMIT) resulted in GPS time series of similar accuracy, without any impact on the \(\tau_{p} \) estimates. However, the Bernese package was used to produce a simulated PPP real-time solution, which could be compared against the RTNet solution.

2.2. Seismic Data

For the Tohoku-oki events, \(\tau_{p} \) was computed using KiK-net (surface sensor) and K-NET acceleration records (Aoi et al., 2011) to compare them with \(\tau_{p} \). We determined the \(P \) wave arrival times either by manually picking when \(P \) arrival was visible or by computing theoretical travel times using the velocity model PREM (Dziewonski & Anderson, 1981) with the TauP algorithm (http://www.seis.sc.edu/taup).

2.3. Predominant Period Computation

To compute the predominant period \((\tau_{p}) \) of a seismic signal, the accelerograms are integrated once and high-pass filtered (Butterworth filter with a cutoff frequency of 7.5 mHz) in order to minimize linear drifts of the velocity time series. At each time step \(i \), the predominant period \(\tau_{p} \) (Allen & Kanamori, 2003), is computed by the recursive relation:

\[
\tau_{p(i)} = 2\pi \sqrt{\frac{X_{i}^{2}}{D_{i}}}
\]

where \(X_{i} \) and \(D_{i} \) are the smoothed squared ground velocity and acceleration, respectively, at time \(i \), given by the relationships \(X_{i} = a X_{i-1} + x_{i}^{2} \) and \(D_{i} = a D_{i-1} + (\frac{dx}{dt})^{2} \), with \(a \) being a smoothing constant, (Olson & Allen,
2005) taken as \(\alpha = 0.99 \) for 100 Hz sampling rate. The smoothing corresponds to a low-pass filter with a very gentle roll-off and an impulse response of around 10 s. The velocity time series \(x_i \) was used after passing through a 3 Hz second-order one-way low-pass Butterworth filter, a commonly followed approach to reduce the high-frequency content (Allen & Kanamori, 2003; Hoshiba et al., 2011). The \(\tau_{\text{max}} \) corresponds to the maximum value of \(\tau_{p} \) for the first 1 to 5 s (Olson & Allen, 2005) following the arrival of the \(P \) waves at the site (Allen & Kanamori, 2003).

3. Results

3.1. \(\tau_{g} \): Computation and Comparison to \(\tau_{p} \)

For the computation of \(\tau_{g} \), we followed the same recursive relation of \(\tau_{p} \), with the GPS displacement time series being differentiated once and twice to velocity and acceleration, respectively. Using 1 Hz GPS time series and a smoothing factor \(\alpha \) set to 0.99, results in a much longer impulse response and therefore a frequency response that focuses on longer periods than for 100 Hz data. The parameter \(\tau_{g} \) was computed for the Up and 3-D GPS time series (Figure S1). We used the \(\tau_{g} \) of the 3-D GPS time series as the \(\tau_{g} \) of the Up component was more noisy, due to the higher noise level of the Up component relative to the horizontal component. In Figure 2 we present the computed \(\tau_{p} \) of MYG011 strong-motion records and the \(\tau_{g} \) of the GPS 0550 records, which are very closely-spaced (<100 m), for the Tohoku-Oki \(M_{W}9+ \) earthquake. Prior to the \(P \) wave arrival, \(\tau_{p} \) shows high values (e.g., Hoshiba et al., 2011), possibly due to the dominance of microseisms in the signal and the accumulation of errors due to the integration (Stiros, 2008). The parameter \(\tau_{p} \) in contrast, fluctuates around a constant noise level (Figure S1), as GPS is not sensitive enough to record microseisms and because there is no noise amplification with the differentiation procedure. After the \(P \) wave arrival, the impact of the microseisms decays, resulting in low values of \(\tau_{p} \) (i.e., <1 s), while \(\tau_{g} \) increases gradually, and finally fluctuates at a constant noise level due to the integration of the \(P \) wave (Hoshiba et al., 2011).
Figure 2. Time series plots of the (a) Up and 3-D velocity using the GPS site 0550 and the Up component of the velocity for the strong-motion K-NET MYG011 site, with the dotted line indicating the P wave arrival and (b) the r_g value, using the 3-D time series of the GPS site, and r_p value using the strong-motion site data of the Up component. The GPS and strong-motion sites are the closest to the epicenter of the Tohoku-oki $M_{w}9+$ earthquake. For the seismic data, r_p is also computed using the 100 Hz and 1 Hz 3-D component time series. The time series are with respect to the start of the earthquake. The vertical dotted line indicates the 4 s time window after the P wave arrival, with the r_{max} corresponding to the value for $t = 4$ s (α equal to 0.99).

with the maximum value of the 4 s window after the P wave r_{g}^{max}, reaching 3.84 s. However, it should be stated that the 1 Hz GPS data are limited to detect predominant period larger than 2 s due to Nyquist frequency limitation.

To further investigate the difference between r_g and r_p we down-sampled the seismic data to 1 Hz and calculated r_p by following the same procedure (i.e., $\alpha = 0.99$). It is evident that r_p still shows larger variations prior to the P wave arrival; however, the values show lower variation than those for r_g of 100 Hz, due to the reduced influence of microseisms by using lower sampling rate. With the arrival of the P wave, and after the elimination of computation impact (i.e., $t > 30$ s), it shows a similar pattern as the corresponding r_g time series with a relative offset. The latter was also confirmed through cross-correlation analysis (Figure S2). Thus, it appears that the main difference of the performance between r_g and r_p are the length of the impulse response function and the sensitivity to microseisms combined with the amplification of noise due to integration. For EEW based on seismic instruments, the system is required to wait for the arrival of the P wave to start computing a reliable r_g time series. Otherwise, the pre-event (i.e., seismic) noise will contaminate the early part of r_p due to the length of the impulse response. With GPS data we are able to compute predominant periods r_{g}^{max}, as the maximum value of r_g for a time window, continuously, as the procedure of differentiation does not lead to accumulation of error and also GPS is not sensitive to seismic background noise. This removes the dependency on an accurate P wave detection and results overall in a much simpler procedure.

Furthermore, the r_g time series seems to be related with the seismic motion for large earthquakes (Figure S3), reflecting the main waveform of the seismic motion, while the maximum r_p value seems to be related with the maximum peak displacement. However, further investigation, using larger sample of seismic events and GPS sites, is needed to analyze this correlation further as the seismic displacement is also susceptible to local site effects (landslide, etc.).

The r_g for the Up component of GPS time series follows the same pattern as the 3-D time series; however, the noise level of r_g for the Up component is higher than the 3-D component, making r_g less effective (Figures S1 and S4 in the supporting information).

3.2. Smoothing Factor α

To further investigate the influence of the smoothing factor, we also used a smoothing factor of $\alpha_2 = 0.36$ in addition to the previously shown $\alpha_1 = 0.99$. The α_2 applied to 1 Hz data has the same impulse response as the α_1 applied to 100 Hz data, thus including more high-frequency signal relatively to that of α_1 for 1 Hz data.

Figure 3 shows the r_{g}^{max} time series, where each epoch i is the maximum r_{g} value for the 100 s ($i - 99$ to i) and 4 s ($i - 3$ to i) window for the two smoothing factors ($\alpha_1 = 0.99$ and $\alpha_2 = 0.36$, respectively) for the six closest GPS sites of the two Tohoku-oki events ($M_{w}9+$ and $M_{w}7.9$ aftershock). The r_{g}^{max} time series are used to reveal the impact of the smoothing factor on the stability and the sensitivity of the r_g computation. Results shown in Figure 3 indicate that before the P wave arrival, the r_{g}^{max} time series for α_2 are more scattered, defining higher noise level than the r_{g}^{max} time series for α_1, due to the higher-frequency content. For instance, for GPS 0550, the closest GPS site for the Tohoku-oki $M_{w}9+$ earthquake, the standard deviation of the r_{g}^{max} time series are 0.03 and 0.95 for α_1 and α_2, respectively, while the corresponding mean noise levels of r_{g}^{max} are 3.23 and 4.14, respectively. Post P wave arrival, r_g also shows much less variation for α_1 than for α_2 with a clear separation between the $M_{w}9+$ and $M_{w}7.9$ time series.
Such separation is less visible for α_2, as it is more sensitive to high-frequency signal and susceptible to high-frequency measurement noise. However, for both smoothing factors the τ_g seems to differentiate roughly with the earthquake magnitude.

3.3. Statistical Significance

To test which questions could be answered in real time using τ_g^{\max} time series, we performed a series of Kolmogorov-Smirnov (KS) tests (Dimer de Oliveira, 2012; Smirnov, 1948). The two-sample KS test evaluates the hypothesis of two samples being generated from the same distribution, by returning the test result $H \in [0,1]$, revealing the truth of the hypothesis and the p value $\in [0,1]$, as the probability expressing the significance level of the test result on the hypothesis (Marsaglia et al., 2003). By applying the two-sample KS tests in two samples of τ_g^{\max} values, which may correspond to two different seismic events or noise, it can be assessed whether τ_g^{\max} can be used to distinguish the two events or each of them from the noise and relate them to M_W. Thus, the aim of the KS tests is to show whether τ_g^{\max} time series can be implemented and track in real-time continuous monitoring system, knowing the noise characteristic of each input time series.

3.3.1. Kolmogorov-Smirnov (KS) Test of Data Versus Noise

We first performed KS tests to check whether distributions of the noise and the data were statistically different (Tables S2 and S3) for both data windows, using the function KS test of R (Marsaglia et al., 2003). For

Figure 3. The τ_g^{\max} time series of the six closest GPS sites for the Tohoku-oki $M_w9.0$ earthquake (blue line) and Tohoku-oki $M_w7.9$ aftershock (red line), with time reference to the P wave arrival, computed by using (a) $\alpha = 0.99$ with 100 s data window and (b) $\alpha = 0.36$ with 4 s data window. The two vertical lines define the 4 s time window after the P wave arrival. (c and d) Zoom on the 30 s around the P wave arrival (10 before and 20 after the P wave arrival). (c and d) Zoom on the 30 s around the P wave arrival (10 before and 20 after the P wave arrival). For relating the τ_g^{\max} time series with M_W, see Figure S7.
\(\alpha = 0.36\), it is not possible to differentiate data from noise for \(M_W < 7.0\), while for \(\alpha = 0.99\), discrimination between data estimates and background noise can be done until \(M_W \sim 6.5\).

3.3.2. KS Test for Pairs of Events

We then tested the \(\tau_g\) distribution for each pair of events by assessing whether these pairs are of the same distribution (Tables S4 and S5) and which set of data belong to larger earthquake (\(M_W\) of A < \(M_W\) of B; Tables S6 and S7). The success is very diverse of various events (Tables S4 and S5). The Tohoku \(M_W 9+\) can be distinguished as the largest of all the events (<10% error). However, Tohoku-oki \(M_W 7.9\) aftershock and Tokachi-Oki \(M_W 8.3\) could not be distinguished (Tables S6 and S7). Nepal \(M_W 7.8\) can be distinguished from all the events of \(M_W > 7.8\) (Tables S6 and S7).

3.3.3. KS Test for Groups of Events

Statistical analysis of \(\tau_g\) estimations shows that for earthquakes of \(M_W < 7.0\), \(\tau_g\) is very close to the noise level (Figures S5 and S6), mainly for \(\alpha = 0.36\), making the estimation of earthquake magnitude less reliable.

Thus, we make three groups of events based on magnitudes: (i) \(M_W < 7.0\), (ii) \(M_W \geq 7.9\) – 8.3, and (iii) \(M_W > 8.5\). To verify this hypothesis, we run a two-sample KS test for which it is possible to determine whether the distributions of \(\tau_g\) values for two different groups of earthquakes are significantly different. Presented in Table S8 are the results for the comparison between groups of earthquakes of different magnitude. From the hypothesis analysis, it was verified that the Nepal earthquake \(M_W 7.8\) can be distinguished from the earthquakes of \(M_W < 7\) (i.e., Iwate, Parkfield, and Napa), while Tohoku-oki \(M_W 9+\) can also be distinguished from the earthquakes of Tokachi-Oki \(M_W 8.3\) and Tohoku-oki \(M_W 7.9\) aftershock, if taken together. Finally, the Tohoku-oki \(M_W 9+\) and Tokachi-Oki \(M_W 8.3\) can be distinguished from the earthquakes of magnitude \(M_W < 8.0\), even

![Figure 4](image-url)
though Tokachi-Oki $M_W 8.3$ could not be distinguished by Tohoku-oki $M_W 7.9$ aftershock. This is due to the distribution of Tohoku-oki $M_W 9+$, which makes Tokachi-Oki $M_W 8.3$ distinguishable from the earthquakes $M_W < 8.0$.

3.4. The r_g^{max}-M_W Empirical Relationship

To evaluate the relationship between r_g and M_W, we computed r_g^{max} values for (i) noise (before the P wave arrival) and (ii) a 4 s window after the P wave arrival, from the six closest available GPS sites from the epicenter of each seismic event. For both smoothing factors (i.e., $\alpha = 0.36$ and $\alpha = 0.99$), the mean trend of the r_g^{max} increases with M_W, while the noise level of r_g^{max} is rather stable, regardless of the earthquake magnitude (Figures 4a and 4b). However, for $\alpha = 0.36$, the scatter and the mean trend of r_g^{max} values increase more rapidly with the earthquake magnitude, due to the limited impact of the smoothing on the r_g computation (Figure 4b). Furthermore, for $\alpha = 0.36$, the r_g values for earthquakes of $M_W 6.0$ are close to the noise level, as it was also revealed from the r_g-M_W relation. Thus, by applying linear regression, we obtain the following relationship for $\alpha = 0.99$ ($M_W \geq 6$):

$$ r_g = 0.176 M_W + 2.150 \quad (r^2 = 0.98, n = 42 \text{ and } p = 1.84 \times 10^{-5}) $$

(2)

and for $\alpha = 0.36$ ($M_W > 6.5$):

$$ r_g = 3.050 M_W - 16.812 \quad (r^2 = 0.98, n = 30 \text{ and } p = 2.03 \times 10^{-3}) $$

(3)

where r, n, and p are the regression coefficient, the number of the data, and the p value of the regression analysis, respectively. Thus, based on the r_g^{max} estimates and the evaluation of their distribution for the two smoothing factors (Figures S5 and S6), we could recover the earthquake magnitude M_W. Based on the limited number of examined seismic events, the uncertainty of each M_W was computed by using the uncertainty of each estimated r_g and the law of error propagation, resulting that for $\alpha = 0.99$ the uncertainty is ± 0.4 while for $\alpha = 0.36$ reaches up to ± 1. Further investigation by including more seismic events is expected to limit the uncertainty of the M_W-r_g relationship. Also, it seems that increasing the number of GPS leads to a more robust M_W estimation (Figure S8). Finally, the analysis of the statistics (i.e., maximum and standard deviation) of the r_g^{max} values for both smoothing factors revealed their relationship with the earthquake magnitude. The r_g for $\alpha = 0.99$ seems to be more robust and increasing slowly with the magnitude, while the r_g for $\alpha = 0.36$ seems to be more scattered with the latter increasing with the magnitude. However, it would be ideal to correlate the statistical characteristics of the r_g^{max} distribution for both smoothing factors with the earthquake magnitude, to make the magnitude estimation more robust and reliable (Figure S9).

3.5. Real Time Versus Simulated Real Time

To investigate the performance of r_g of real-time GPS time series, we compared the r_g estimates of the simulated real-time PPP solution against the real-time RTK solutions of the Tohoku-oki $M_W 9+$ earthquake. By analyzing the r_g of the six GPS stations closest to the epicenter, we find that both sets of r_g time series have similar patterns and amplitudes (Figures S1 and S4), resulting in consistent estimates of r_g^{max}. The noise level of the RTK r_g^{max} time series is insignificantly higher than the post-processed PPP solution (Figure S4), making the RTK time series sufficient for the reliable estimation of r_g^{max}. Finally, errors in real-time data can be sufficiently resolved, thanks to continuously developing methods (Momoh & Ziebart, 2012).

4. Conclusions and Discussion

We have shown that GPS can be used to constrain seismic moment M_V of large earthquakes ($M_W > 7.0$), by computing the predominant seismic period from GPS data (r_g). The capability of GPS in recovering the period more accurately than the amplitude of the recorded motion (Häbelring et al., 2015; Moschas et al., 2014; Psimoulis et al., 2008) and the limited required filtering during the processing of GPS data (i.e., only differentiation) leads to robust and reliable estimation of r_g without the problems of magnitude saturation due to the processing procedure (i.e., integration) of the seismic data and their sensitivity to microseismicity. The GPS r_g estimation was computed by using two smoothing factors α (0.99 and 0.36), corresponding to low-pass filters with long- and short-period impulse responses. Even though, the smoothing factor $\alpha = 0.99$ proved to be more robust for the computation of r_g, still the smoothing factor $\alpha = 0.36$ might be useful as its scatter
seems to depend on the earthquake magnitude. Based on that, we further established τ_p-M_W laws, which can be used to complement τ_p-M_W relationships from seismic data to reliably constrain magnitude of earthquakes > M_W 7.0.

Based on our data a distinction of three groups with earthquake magnitude (i) M_W > 7.0, (ii) M_W > 8.0, and (iii) M_W > 8.5, seems to be possible within the first 4 s of P wave arrivals. To account for rupture complexities, and the associated inability to predict the final magnitude before the end of the rupture, one could also compute a set of evolving empirical relationships based on the amount of available P wave recording (Carranza et al., 2013; Colombelli et al., 2015). The reduced noise and the potential correlation with displacement waveform, etc., make τ_p from GPS a valuable parameter in estimating the magnitude of an earthquake during or right after the rupture. However, this is only a first attempt to evaluate whether GPS records can be used for the computation of the predominant period τ_p and it is necessary to shed further light on the robustness of this method and the potential correlation of displacement waveform with τ_p by using more GPS recordings from large earthquakes.

In conclusion, GPS-based EEW systems could be implemented and support existing seismic data-based EEW systems. The τ_p time series analyses would be routinely conducted estimating the τ_p-values for the short- and long-period smoothing factors and by calculating the corresponding statistical characteristics (e.g., mean and spread) that could provide the existing seismic warning systems with additional information to constrain the size of an earthquake of magnitude M_W > 7. The potential collocation of GPS and strong-motion sensors would lead potentially to even more accurate computation of the velocity through Kalman filtering (Bock et al., 2011) or other existing EEW algorithms (Benedetti et al., 2014) and enhance the performance of τ_p.

Acknowledgments
This study has been supported by Markus Rothacher and Domenico Giardini. The acquisition of GPS data of Japan has been possible due to the Swiss National Science Foundation support (SNF 200021_130061 and SNF 200021_143605). GPS data of Japan were acquired through Geospatial Information Authority of Japan via the Nippon GPS Data Services Company. The KIK-net and K-NET data are provided by the National Research Institute for Earth Science and Disaster Resilience (NIED). The manuscript was benefited by the comments of B. Crowell and two anonymous reviewers.

References
Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzioli, A., & Crespi, M. (2014). Global Navigation Satellite Systems seismology for the terras_english.html (last accessed June 2016). RTNET 1 Hz GEONET data are provided by the Geospatial Information Authority of Japan via the Nippon GPS Data Services Company. The KIK-net and K-NET data are provided by the National Research Institute for Earth Science and Disaster Resilience (NIED). The manuscript was benefited by the comments of B. Crowell and two anonymous reviewers.

References
Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzioli, A., & Crespi, M. (2014). Global Navigation Satellite Systems seismology for the terras_english.html (last accessed June 2016). RTNET 1 Hz GEONET data are provided by the Geospatial Information Authority of Japan via the Nippon GPS Data Services Company. The KIK-net and K-NET data are provided by the National Research Institute for Earth Science and Disaster Resilience (NIED). The manuscript was benefited by the comments of B. Crowell and two anonymous reviewers.
