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Abstract

Dendrites form the major components of neurons.

They are complex branching structures that receive

and process thousands of synaptic inputs from other

neurons. It is well known that dendritic morphology

plays an important role in the function of dendrites.

Another important contribution to the response char-

acteristics of a single neuron comes from the intrin-

sic resonant properties of dendritic membrane. In

this paper we combine the effects of dendritic branch-

ing and resonant membrane dynamics by generalising

the “sum-over-trips” approach [Abbott, L.F., Fahri, E.,

Gutmann, S.: The path integral for dendritic trees. Bi-

ological Cybernetics 66, 49–60 (1991)]. To illustrate

how this formalism can shed light on the role of ar-

chitecture and resonances in determining neuronal

output we consider dual recording and reconstruc-

tion data from a rat CA1 hippocampal pyramidal cell.

Specifically we explore the way in which an Ih current

contributes to a voltage overshoot at the soma.

∗e-mail: stephen.coombes@nottingham.ac.uk

1 Introduction

The dendrites of neurons often exhibit elaborate

branching structures, as so wonderfully described in

the book Dendrites [30]. These branching projections

act to transfer electrical activity between synapses and

the soma. Indeed the electrical and branching proper-

ties of dendrites are known to play a critical role in in-

tegrating synaptic inputs and in determining whether

action potentials are generated at either the soma or

other hot spots within the dendritic tree [22, 25]. Much

insight into the contribution of the electrical proper-

ties of dendrites to neuronal function has come from

theoretical work first developed by Rall. In this re-

gard Rall’s work on dendritic modelling is one of the

more obvious success stories in the field of mathe-

matical neuroscience. For a historical perspective on

Rall’s contributions in this area we refer the reader to

the book by Segev et al. [29], and for a review of many

of the mathematical techniques still being used today

we recommend Tuckwell’s book [33]. Although much
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of the more recent work on dendritic modelling has

tended to focus on the dynamics of nonlinear voltage-

gated ion conductances (reviewed in [28]) it is im-

portant to recognise that the passive properties of the

dendritic tree provide the fundamental substrate for

dendritic dynamics, as emphasised in the recent re-

view article of London and Häusser [19]. In fact it

would be fair to extend the statement that passive

electrical properties form the backbone of neuronal

computation to also include the resonant properties

of dendritic membrane. Many neurons exhibit reso-

nances whereby subthreshold oscillatory behaviour is

amplified for inputs at preferential frequencies. One

illustrative example is that of hair cells from the sac-

culi of frogs, which are seismic receptors sensitive in

the frequency range of 10-150 Hz. For these cells the

ionic mechanism underlying resonance is known to

involve both a Ca2+ and a Ca2+-activated K+ current

[11]. From a mathematical perspective Mauro et al.

[23] have shown that a linearisation of such channel

kinetics, about rest, may adequately describe the ob-

served resonant dynamics. In the terminology of elec-

trical engineering the resulting linear system has a

membrane impedance that displays resonant-like be-

haviour due to the additional presence of inductances.

This extends the more usual ‘RC’ circuit description

of passive membrane to the so-called quasi-active or

‘LRC’ case. Further work by Koch and Poggio [16]

showed how the response function for an arbitrary

branched dendritic tree with quasi-active membrane

could be calculated in the Laplace (frequency) do-

main. This approach generalised the original graph-

ical calculus of Butz and Cowan [3], valid for pas-

sive dendritic geometries. Later work by Abbott et

al. [2] showed how to calculate response functions for

passive branched dendritic trees directly in the time-

domain. The machinery to do this borrows heavily

from the path-integral formalism for describing Brow-

nian motion, and was used to give simple diagram-

matic rules for obtaining the Green’s function for a

passive tree [1]. For a discussion of the computational

advantages of this approach see Cao and Abbott [4].

As noted in [2] the path integral approach relies on the

superposition principle and so should also be applica-

ble to quasi-active membranes, since this is described

by linear equations. It is precisely this problem that

we address and solve in this paper. We present our

results in the “sum-over-trips” language of Abbott et

al. [2] and show how their rules for constructing the

Green’s function for a branched tree must be modified

to account for resonant membrane.

In section 2 we briefly review the formalism de-

scribing quasi-active membranes, along the lines de-

scribed in [15]. Next in section 3 we develop a “sum-

over-trips” formalism that can cope with quasi-active

dendritic trees of arbitrary geometry. Not only does

this extend the original work of Abbott et al. [2], it

further allows for the treatment of dendritic sub-units

connected to a soma as well as allowing for differ-

ing cell membrane properties on each dendritic seg-

ment. Using a reconstructed cell and dual recording

data we show, in section 4, that this work is directly

relevant to understanding the dynamics of real neu-

rons. Specifically we treat resonances associated with

Ih and show how they contribute to a voltage over-

shoot at the soma. Finally in section 5 we discuss nat-

ural extensions of the work in this paper.

2 Unbranched resonant dendrite

Here we review the theory of quasi-active membrane

and show how it may be interpreted in the language

of ‘LRC’ circuits, i.e. circuits with a resistor, capacitor

and inductance in parallel. To start with consider a

generic ionic membrane current of the form

I = I(V, w1, . . . wN), (1)

where V is a voltage and the wk are gating variables

that satisfy

τk(V)ẇk = wk,∞(V)−wk, k = 1, . . . , N. (2)

It is traditional to write τk(V) = (αk(V) + βk(V))−1,

where wk,∞(V) = αk(V)τk(V). Now consider varia-

tions around some fixed point

(V, w1, . . . wN) = (Vss, w1,∞(Vss), . . . , wN,∞(Vss)), so

that

δ I =
δV
R

+
N

∑
k=1

∂ I
∂wk

∣∣∣∣
ss

δwk, (3)
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where we introduce the resistance R defined by R−1 =
∂ I/∂V|ss, and the subscript ss denotes that quantities

are evaluated at steady state. Using (2) we can write

the evolution of the perturbations in the gating vari-

able as

(
d
dt

+ αk + βk

)
δwk =

[
dαk

dV
−wk,∞

d(αk + βk)
dV

]
δV.

(4)

We may now write (3) in the form

δ I =
δV
R

+
N

∑
k=1

δ Ik, (5)

where (
rk + Lk

d
dt

)
δ Ik = δV. (6)

Here

r−1
k = τk

∂ I
∂wk

[
dαk

dV
−wk,∞

d(αk + βk)
dV

]∣∣∣∣
ss

, (7)

Lk = τkrk. (8)

Hence, for a small perturbation around the steady

state, the current I responds as though the resistance

R is in parallel with N impedance lines. Each of these

is a resistance rk that is itself in series with an induc-

tance Lk. Such inductive terms account for the oscilla-

tory overshoot commonly seen in response to depolar-

ising current steps or even after the firing of an action

potential. Koch terms this form of equivalent linear

membrane circuit quasi-active to distinguish it from a

truly active (i.e. nonlinear) membrane [15].

Now consider a general current balance equation in

the form

C
dV
dt

= −gL(V −VL)− I + Iinj. (9)

The linearised equations will be

C
dV
dt

= −V
R̃
−

N

∑
k=1

Ik + Iinj,
1

R̃
= gL +

1
R

, (10)

Lk
dIk

dt
= −rk Ik + V. (11)

The steady state voltage satisfies

I(Vss, w1,∞(Vss), . . . , wN,∞(Vss)) + gL(Vss − VL) = Iinj.

Introducing the Laplace transform (with spectral pa-

rameter ω)

f (ω) =
Z ∞

0
dte−ωt f (t), (12)

we find that V(ω) = K(ω)Iinj(ω), where

K(ω) = ∑N
k=1 rk + ωLk

(Cω + R̃−1)(∑N
k=1 rk + ωLk) + 1

. (13)

We identify K(ω) as the impedance of the linearised

system, and note that it is a ratio of two polynomials,

with the denominator of order N + 1, and the numer-

ator of order N (where N is the number of gating vari-

ables). For example, the linearisation of the Hodgkin-

Huxley model generates a bandpass filter with opti-

mal response around 67 Hz (see for example [15]). The

range of validity of the reductive process is limited to

a few millivolts around the resting potential. Later in

section 4 we will use this approach to calculate the

equivalent ‘LRC’ circuit model for a membrane with

a so-called Ih current.

We are now in a position to treat the dynamics of

an infinite unbranched passive dendritic cable model

supplemented by resonant currents of the type just de-

scribed. In section 3 we will show how the response

of a tree can be built up in terms of this solution and

an appropriate set of coefficients determined both by

the geometry of the tree and the resonances on each

segment of the tree. We take as our starting point the

standard cable equation coupled to a set of resonant

currents. Writing V = V(X, t), X ∈R, t≥ 0, as the den-

dritic voltage the resonant cable equation is

∂V
∂t

= −V
τ

+ D
∂2V
∂X2 −

1
C

[
∑

k
Ik − Iinj

]
,

Lk
dIk

dt
= −rk Ik + V. (14)

Here D is the cable diffusion coefficient and τ the

(passive) cell membrane time constant. After Laplace

transforming (14) we obtain the ODE

−VXX + γ2(ω)V

=
Iinj −∑k

Lk Ik(X,t=0)
(rk+ωLk) + CV(X, t = 0)

CD
, (15)

γ2(ω) =
1
D

[
1
τ

+ ω +
1
C ∑

k

1
rk + ωLk

]
, (16)

where V = V(X, ω) and Iinj = Iinj(X, ω). Introducing a

re-scaled space x = γ(ω)X gives

−Vxx + V = A, (17)
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where

A(x, ω) =
1

CDγ2(ω)

[
Iinj(x/γ(ω), ω)

−∑
k

Lk Ik(x/γ(ω), t = 0)
rk + ωLk

+ CV(x/γ(ω), t = 0)
]
. (18)

The Green’s function of the operator (1− dxx) is sim-

ply H∞(x) = e−|x|/2, and we may write the general so-

lution to (17) in the form

V(x, ω) =
Z ∞

0
dyH∞(x− y)A(y, ω). (19)

In original co-ordinates (and considering vanishing

initial data) we have that

V(X, ω) =
Z ∞

0
dYG∞(X− Y, ω)I(Y, ω), (20)

where I(X, ω) = Iinj(X, ω)/C and

G∞(X, ω) =
H∞(γ(ω)X)

Dγ(ω)
=

e−γ(ω)|X|

2Dγ(ω)
. (21)

Performing the inverse Laplace transform gives

V(X, t) =
Z t

0
ds

Z ∞

0
dYG∞(X− Y, t− s)I(Y, s), (22)

where G∞(X, t), is the inverse Laplace transform of

G∞(X, ω). Note that in the limit rk →∞ we recover

the purely passive system (γ2(ω) = (1/τ + ω)/D) with

Green’s function

G∞(X, t) =
e−t/τ

√
4πDt

e−X2/(4Dt)Θ(t). (23)

Here Θ(t) is the Heaviside step function.

Next we will see how to treat a branched network

of connected dendritic segments, each possessing its

own resonant dynamics.

3 Branching

A caricature of a branched dendritic tree with reso-

nant membrane is depicted in Fig. 1. We define a node

as point where branch segments touch (i.e. the ver-

tices of the graph describing the tree). Nodes that do

not have child nodes will be called terminal nodes. A

finite segment of the tree, labelled by i, is described by

the dynamics

∂Vi

∂t
= −Vi

τi
+ Di

∂2Vi

∂X2 −
1
Ci

[
∑

k
Ik,i − Iinj,i

]
,

Lk,i
dIk,i

dt
= −rk,i Ik,i + Vi, 0 ≤ X ≤ Li. (24)

We may then specify the dynamics on a tree by ensur-

ing the appropriate boundary conditions at all nodes

and terminals. These are i) continuity of potential, and

ii) conservation of current. If we choose the coordi-

nates on all of the radiating branches so that the node

is at the point X = 0 then continuity of potential re-

quires that

Vi(0, t) = Vj(0, t), (25)

for all values of i and j corresponding to segments ra-

diating from the node. Conservation of current gives

∑
j

1
r j

∂Vj

∂X

∣∣∣∣
X=0

= 0. (26)

Here r j is the axial resistance on segment j (in Ω/cm),

and the sum is over all j values corresponding to seg-

ments radiating from the node in question. At an

open terminal we impose Vi(Li, t) = 0 and at a closed

end ∂Vi(X, t)/∂X|X=Li = 0. After Laplace transform-

ing (24) and rescaling we have that

−(Vi)xx + Vi = Ai, 0 < x < Li(ω), (27)

where Li(ω) = γi(ω)Li and

γ2
i (ω) =

1
Di

[
1
τi

+ ω +
1
Ci

∑
k

1
rk,i + ωLk,i

]
, (28)

with

Ai(x, ω) =
1

Ci Diγ2
i (ω)

[
Iinj,i(x/γi(ω), ω)

−∑
k

Lk,i Ik,i(x/γi(ω), t = 0)
rk,i + ωLk,i

+ CiVi(x/γi(ω), t = 0)
]
.

(29)

We may write the general solution to (27) in the form

Vi(x, ω) = ∑
j

Z L j(ω)

0
dyHi j(x, y, ω)A j(y, ω), (30)

where Hi j(x, y, ω) satisfies

[1− dxx] Hi j(x, y, ω) = δi jδ(x− y). (31)

In addition Hi j(x, y, ω) must satisfy boundary condi-

tions similar to those given above for Vi, namely

Hk j(0, y, ω) = Hmj(0, y, ω), (32)

∑
i

zi(ω)
∂Hi j(x, y, ω)

∂x

∣∣∣∣
x=0

= 0, zi(ω) =
γi(ω)

ri
. (33)
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Also at an open terminal node we require

Hi j(Li(ω), y, ω) = 0, (34)

and at a closed terminal node

∂Hi j(x, y, ω)
∂x

∣∣∣∣
x=Li(ω)

= 0. (35)

As it stands our discussion, and indeed that in [2],

does not include the coupling of a tree to a soma. For

passive trees one way to treat this is to consider equiv-

alent cylinders connected to an isopotential soma, as

in the work of Evans et al. [8, 9]. To include this impor-

tant special node we also treat the soma as an equipo-

tential surface with a resistance Rs, capacitance Cs and

further include an inductive pathway described by rs

and Ls. The membrane voltage in the soma Vs has to

dendrites

soma

Figure 1: A caricature of a branched dendritic tree

with resonant membrane. Each segment of the tree

has its own resonant dynamics described by an ‘LRC’

circuit. The soma is regarded as a special node of the

graph describing the dendritic tree.

satisfy the following equations

Cs
∂Vs

∂t
= −Vs

Rs
+ ∑

j∈Γ

1
r j

∂Vj

∂X j

∣∣∣∣∣
X j=0

− Is, (36)

Ls
dIs

dt
= −rs Is + Vs, (37)

with Vs(t) = Vj(0, t) and j ∈ Γ, where Γ is the set that

indexes all of the branches attached to the soma. In

this case Hi j(x, y, ω) must satisfy the further boundary

condition

∑
k∈Γ

zk(ω)
∂Hk j(x, y, ω)

∂x

∣∣∣∣
x=0

− γs(ω)Hk j(0, y, ω) = 0,

(38)

where

γs(ω) = Csω +
1
Rs

+
1

rs + ωLs
. (39)

We now seek a solution for Hi j(x, y, ω) in terms

of the known response function H∞ and the labels

(i, j, x, y) and the frequency dependent parameters

γk(ω), where k indexes every segment in the tree. An

infinite series expansion of this type that is consistent

with (31) is

Hi j(x, y, ω) = ∑
trips

Atrip(ω)H∞(Ltrip). (40)

Here Ltrip = Ltrip(i, j, x, y, ω) is the length of a path

along the tree that starts at point x = γi(ω)X on branch

i and ends at the point y = γ j(ω)Y on branch j. Note

that on intermediate branches between branches i and

j, labelled by k say, that distances are measured in

terms of the scaled coordinates γk(ω)X, X ∈ [0,Lk]. We

shall call these frequency dependent path lengths trips

in analogy to the terminology used in the “sum-over-

trips” formalism of Abbott et al. [2]. However, it is

important to stress that in our case these trips depend

upon the set of frequency dependent parameters γi(ω)

that capture the resonant properties of the tree. As in

[2] trips are constructed in accordance with the follow-

ing rules:

1. A trip may start out from γi(ω)X by travelling in

either direction along segment i, but it may sub-

sequently change direction only at a node or a ter-

minal. A trip may pass through the points γi(ω)X

and γ j(ω)Y but must begin at γi(ω)X on segment

i and end at γ j(ω)Y on segment j.

2. When a trip arrives at a node, it may pass

through the node to any other segment radiating

from the node or it may reflect from the node

back along the same segment on which it entered.

3. When it reaches a terminal, a trip always reflects

back, reversing its direction.
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Every trip generates a term in (40) with Ltrip given

by summing the lengths of all the steps taken along

the course of the trip. For example the four primary

trips Ltrip(i, j, x, y, ω) on a simple dendritic tree con-

sisting of two segments are γi(ω)(Li − X) + γ j(ω)Y,

γi(ω)(Li + X) + γ j(ω)Y, γi(ω)(Li − X) + γ j(ω)(2L j − Y)

and γi(ω)(Li + X) + γ j(ω)(2L j − Y) respectively. Note

that all longer trips, even in a larger branched net-

work, would consist only of constant additions to

these four basic lengths. Hence, Ltrip(i, j, x, y, ω) is a

linear function of ±x, as required for H∞(Ltrip) to be a

solution to (31).

In appendix A we prove that (40) satisfies the re-

quired boundary conditions if the trip coefficients

Atrip(ω) are chosen according to the following rules:

1. From any starting point Atrip(ω) = 1.

2. For every node at which the trip passes from an

initial segment k to a different segment m (m 6= k)

Atrip(ω) is multiplied by a factor 2pm(ω).

3. For every node at which the trip enters along

segment k and then reflects off the node back

along segment k Atrip(ω) is multiplied by a factor

2pk(ω)− 1.

4. For every closed (open) terminal node Atrip(ω) is

multiplied by a factor +1 (−1).

Here the frequency dependent parameters pk(ω) are

given as

pk(ω) =
zk(ω)

∑m zm(ω)
. (41)

For a node describing the soma this coefficient takes

the modified form

pk(ω) =
zk(ω)

∑m zm(ω) + γs(ω)
. (42)

Thus we arrive at the generalisation of the “sum-

over-trips” formalism that covers arbitrary resonant

dendritic trees. In contrast to the original “sum-over-

trips” formulation these arguments are developed in

Laplace space and it remains to transform back to the

temporal domain. To do this we first write Vi(X, ω) in

the unscaled spatial coordinates as

∑
j

Z L j

0
dYHi j(γi(ω)X, γ j(ω)Y, ω)γ j(ω)A j(γ j(ω)Y, ω).

(43)

Introducing

Gi j(X, Y, ω) = Hi j(γi(ω)X, γ j(ω)Y, ω)/(D jγ j(ω)) we

have that

Vi(X, ω) = ∑
j

Z L j

0
dYGi j(X, Y, ω)[U j(Y, ω) + I j(Y, ω)],

(44)

where Ii(X, ω) = Iinj,i(X, ω)/Ci and

Ui(X, ω) = Vi(X, t = 0)− 1
Ci

∑
k

Lk,i Ik,i(X, t = 0)
rk,i + ωLk,i

. (45)

After taking the inverse Laplace transform of (44) we

obtain

Vi(X, t) = ∑
j

[Z L j

0
dYGi j(X, Y, t)U j(Y, t = 0)

+
Z t

0
ds

Z L j

0
dYGi j(X, Y, t− s)I j(Y, s)

]
. (46)

Hence we identify the inverse Laplace transform of

Gi j(X, Y, w), namely Gi j(X, Y, t), as the Green’s func-

tion of the resonant dendritic tree. Note that we can

build this function using a combination of the “sum-

over-trips” approach and a rescaling according to the

resonant properties of each segment, before finally

taking an inverse Laplace transform. Moreover, this

naturally generalises the original approach of Abbott

et al. [2] not only to resonant dendritic trees, but to

those with different passive cell membrane properties

on each segment (i.e. τi and Di differ across segments).

For the case that γk(ω) = γm(ω) then pk(ω) is inde-

pendent of ω. In this case for the choice pk = 1/2 a

node acts no differently from a point on a single ca-

ble and we see that r−1
k = ∑m 6=k r−1

m . Since the axial re-

sistance rk scales as d−2
k

√
Dk, where dk is the radius

of the kth branch, then we recover Rall’s equivalent

cylinder condition, d3/2
k = ∑m 6=k d3/2

m , as first noted in

[2]. Note that the rules for computing Gi j(X, Y, ω) re-

quire that trips start at X and end at Y. To compute

the function G ji(Y, X, ω) the reverse trips from Y to X

have to be used. If the trips are generated in reverse

order the probability factors associated with crossing
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the nodes will be different. However, a simple calcu-

lation shows that the result of summing over reversed

as opposed to original trips differs only by a constant

factor Diri/(D jr j). This leads to the simple reciprocity

identity

Gi j(X, Y, t) =
Diri

D jr j
G ji(Y, X, t). (47)

In summary the Green’s function for an arbitrary

branched resonant dendritic tree is given by the

Bromwich integral (inverse Laplace transform)

1
2πi

Z c+i∞

c−i∞
dωeωt Hi j(γi(ω)X, γ j(ω)Y, ω)

D jγ j(ω)
. (48)

Here, γi(ω) is given by (28) and Hi j(X, Y) is given

by (40). This last equation expresses Hi j in terms of

an infinite sum of terms involving the fundamental

response function H∞(x) = e−|x|/2 and the length of

a frequency dependent ‘trip’. The trip coefficients

Atrip(ω) are generated according to the rules in Ab-

bott et al. [2], under the replacement of pk by pk(ω)

as given by (41) and (42). For any practical computa-

tional implementation the number of terms in the sum

for Hi j must be truncated. Since contributions of the

individual terms for long trips (fixed ω) are small, this

truncation can be done by introducing a length cut-

off. Numerical inversion of the Laplace transform can

be efficiently performed using fast Fourier transforms.

We have checked the validity of this approach by com-

paring code written in both C++ and MATLAB with

brute force simulations performed in NEURON [5] for

a wide range of realistic neuronal geometries. More-

over, in many cases a good approximation is reached

by including only the four shortest trips. In the next

section we present some examples of this approach.

4 Resonances associated with Ih

Many neurons exhibit resonances whereby subthresh-

old oscillatory behaviour is amplified for inputs at

preferential frequencies [13]. A nice example is that

of the subthreshold frequency preference seen in neu-

rons of rat sensorimotor cortex [12]. In response

to suprathreshold inputs, this frequency preference

leads to an increased likelihood of firing for stimu-

lation near the resonant frequency. It is known that

the nonlinear ionic current Ih is partly responsible for

this resonance. Indeed Ih plays a variety of important

roles in many neuronal and nonneuronal cell types

[26], and it is believed that the presence of Ih in den-

drites could have a significant impact on the integra-

tion of subthreshold synaptic activity [21]. As such it

is interesting to apply the framework we have devel-

oped above to the specific case of the Ih current. More-

over, to gain insight into the resonant effects of Ih it is

useful to explore both idealised geometries and more

realistic reconstructed cells.

Here we focus on the Ih model of Magee [21], given

by

Ih = gh(V −Vh) f , (49)

where f is a single gating variable. The details of this

model are given in Appendix B. In Figure 2 we plot

the membrane voltage of an unbranched semi-infinite

resonant dendrite, with a uniformly distributed non-

linear Ih current, in response to a constant current in-

jection of finite duration. Also shown is the plot of the

voltage from the linearised model. The closeness of

the two curves emphasises the usefulness of the quasi-

active membrane description in approximating a fully

nonlinear model of Ih.

4.1 Idealised geometries I

For the membrane with the ‘LRC’ circuit shown in Fig-

ure 1 (with a single inductance) the natural frequency

is given by

ω∗ =
√

CL−Cr
CL

. (50)

For an unbranched infinite resonant dendrite with

a homogeneous distribution of electrical properties

along its length the function G∞(X, ω) given by (21)

will have its maximum at the frequency ω∗ for any X.

In contrast a branched system will not exhibit such a

stimulus location independent property.

To study how branches with differing natural fre-

quencies interact we first consider the case of two

semi-infinite branches (with common passive param-

eters τ , D and C), with natural frequencies ω∗
i =

7
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Figure 2: Membrane voltage of an unbranched semi-

infinite resonant dendrite, at the location of the stim-

ulus (i) and 500 µm away from the point of stimula-

tion (ii), in response to the current injection of ampli-

tude −0.3 nA and duration 400 ms. Passive parame-

ters of the dendrite: τ = 20 ms, D = 50000 µm2/ms

and C = 1 µF/cm2. Dashed lines: the resonant mem-

brane is modelled by the nonlinear Ih current given

by (49). Solid lines: the resonant membrane is mod-

elled by the ‘LRC’ circuit with r = 13500 Ω·cm2 and

L = 1150 H·cm2 (calculated using (7) and (8)).

(
√

CLi − Cri)/(CLi) connected together at X = 0, such

that ω∗
2 > ω∗

1 . The response functions G11(X, Y, ω)

and G12(X, Y, ω) are easily constructed for an applied

stimulus at location Y on branch 1 and branch 2

respectively. The frequencies at which these func-

tions reach their maximum define the resonant fre-

quency of the (admittedly simple) dendritic tree,

and thus satisfy ∂Gi j(X, Y, ω)/∂ω = 0. Note that

the function G12(X, Y, ω) consists of only one term

2p2(ω)H∞(γ1(ω)X + γ2(ω)Y)/(D2γ2(ω)), and the reso-

nant frequency Ω of the tree satisfies

(γ ′1X + γ ′2Y)(r1γ2 + r2γ1) + r1γ
′
2 + r2γ

′
1 = 0, (51)

where γi = γi(Ω) and γ ′i = dγi(Ω)/dω. The resonant

frequency of the tree when the stimulus and response

are taken on the same branch is obtained in a sim-

ilar fashion (though the expression for G11(X, Y, ω)

consists of two terms). In Figure 3 we plot the res-

onant frequency of the tree, Ω, with varying stimu-

lus point Y and fixed response point X. This figure

nicely demonstrates that if the natural frequency of

the branches differ, then the frequency with which the

 3000 0 3000

9

11

13

15

17

= 500 µm

= 250 µm

0

branch 1 branch 2

branch 2branch 1

(Hz)

Figure 3: An idealised dendritic tree with two semi-

infinite resonant branches. Ω is the resonant fre-

quency of the whole tree as recorded at the locations

X = 250 µm and X = 500 µm (on branch 1) as a func-

tion of the stimulus location Y (which can be taken

on either branch). Membrane parameters for each

branch: τ1 = τ2 = 20 ms, D1 = D2 = 50000 µm2/ms,

C1 = C2 = 1 µF/cm2. The resistance and inductance of

branch 1 are r1 = 27000 Ω·cm2 and L1 = 2300 H·cm2 re-

spectively (with natural frequency ω∗
1 = 9.11 Hz). The

resistance and inductance of branch 2 are r2 = 13500

Ω·cm2 and L2 = 1150 H·cm2 respectively (with natural

frequency ω∗
2 = 17.75 Hz). Examples of voltage pro-

files in response to a current step for two cases marked

by (•) are shown in Figure 4.
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whole tree responds depends on the location of the

stimulus. Loosely speaking the response on branch

1 (far from branch 2) has a frequency more like that

of ω∗
1 when the stimulus is nearby, and a frequency

more like that of ω∗
2 when the stimulus is on the other

branch and far away. Figure 4 shows examples of volt-

age responses and Green’s function on branch 1 in re-

sponse to the injected current on branch 2.

0 200 400 600 800 1000

−30

−20
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0
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(ms)

(mV)

0 100 200
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x 10−4
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0 200 400 600 800 1000
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0 100 200
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4
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12

x 10−5
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Figure 4: Examples of voltage profiles and Green’s

functions on branch 1 at the location X = 250 µm in

response to the current with amplitude −0.3 nA and

duration of 400 ms injected on branch 2. A: Stimulus

location is Y = 0 µm. B: Stimulus location is Y = 500

µm. Other parameters as in Figure 3.

4.2 Idealised geometries II

Here we consider the case of three semi-infinite den-

drites emanating from a central node, as depicted in

Figure 5. As before, the stimulus is applied to either

branch 1 or branch 2. The resonant frequency of the

tree may be constructed in a similar fashion to that

above. For example, the resonant frequency of the

function G12(X, Y, ω) is found by solving

(γ ′1X + γ ′2Y)(r1r3γ2 + r2r3γ1 + r1r2γ3)

+r1r3γ
′
2 + r2r3γ

′
1 + r1r2γ

′
3 = 0. (52)

In Figure 5 we plot the resonant frequency of the tree

as recorded on branch 1 in response to a stimulus (on

branches 1 and 2) as the natural frequency on branch 3

is varied. Figure 5A shows an example where ω∗
1 = ω∗

2 .

If ω∗
3 is below some critical value, then we find that

Ω = ω∗
1 = ω∗

2 . Above this critical value then Ω in-

creases toward ω∗
3 (and more so when the stimulus

point is close to branch 3). Figure 5B shows an ex-

ample when the natural frequencies of branches 1 and

2 differ. If branch 3 is passive or only weakly resonant

(ω∗
3 ∼ 0), then the system behaves much like that of the

previous example (i.e. as a system of just two interact-

ing resonant branches). As ω∗
3 is increased from zero

the resonant frequency, Ω, of the tree (as measured on

branch 1) increases toward ω∗
3 .

4.3 Idealised geometries III

Till now we have considered uniform distributions of

conductances along a dendritic segment. However,

it is now well known that dendritic trees can have

nonuniform membrane conductances (see for exam-

ple [20]). One way to treat spatial dependencies is to

break a single segment into many pieces, each with a

distinct yet uniform parameter set. A piecewise con-

stant approximation to any spatially varying param-

eter can then be naturally implemented on this seg-

mented cable. Using such an approach we now briefly

turn to the observation that the conductance of Ih in-

creases with the distance from the soma in pyramidal

neurons [17, 18].

A spatially varying conductance gh = gh(X) leads

to a spatially varying steady-state and from equations

(7) and (8) to spatially varying forms for the resis-

tance and inductance. Direct numerical simulations

of a long cable with the full nonlinear Ih model (49)

show that the steady state voltage change is less than

1 mV and the steady state change in the gating vari-

able is less than 0.01 for a ten-fold magnification of

gh. Hence, it is reasonable to use the approximation

r−1(X) = Kgh(X) and L(X) = τ r(X) (with the constant

K determined from (7) assuming a space-independent

steady-state), for a piecewise constant function gh(X).

Using a chain of 100 segments (for a dendrite of total

9
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Figure 5: An idealised dendritic tree with three semi-

infinite resonant branches. Here we plot the reso-

nant frequency Ω of the dendritic tree as measured on

branch 1 (at X = 200 µm), whilst varying both the nat-

ural frequency on branch 3 and the point of stimulus

(on either branch 1 or branch 2). Passive membrane

parameters for all three branches as in Figure 3. A:

The resistances and inductances of branches 1 and 2

are the same and equal r = 27000 Ω·cm2 and L = 2300

H·cm2 respectively. B: The resistance and inductance

of branch 1 are r1 = 27000 Ω·cm2 and L1 = 2300 H·cm2

respectively. The resistance and inductance of branch

2 are r2 = 13500 Ω·cm2 and L2 = 1150 H·cm2 respec-

tively. The resistance and inductance of branch 3 vary

(between 67500 Ω·cm2 and 5400 Ω·cm2 for r3 and be-

tween 5750 H·cm2 and 460 H·cm2 for L3) for both A

and B.

length 200 µm) we took a piecewise constant aprox-

imation to the function ḡ(1 + 3X/100) (suggested by

data from [24]), for fixed ḡ = 0.05 mmho cm−2, and

considered the response at the soma (X = 0) to stimuli

at increasing separation from the soma. In contrast to

a spatially uniform conductance the time-to-peak of

the signal at the soma remained approximately con-

stant, whereas in the former case it increased with dis-

tance from the soma. In some sense we can view this

as another example of how to achieve dendritic democ-

racy [10], albeit this time for resonant dendrites.

In this example and the next the function Hi j was

constructed using four primary trips as well as their

extensions generated by adding trips that start and

end at the same point (as discussed in section 3

for the case of two connected segments). Longer

trips generated from the primary trips were com-

pared with the imposed length cutoff and ignored if

Ltrip(i, j, x, y, ω) > 6 for fixed ω. The convergence of

the solution constructed according to the above proce-

dure was validated by introducing increasing length

cutoffs as well as by direct numerical simulations.

4.4 A reconstructed cell

Here we apply our formalism to a real neuronal ge-

ometry. We consider a rat CA1 hippocampal pyrami-

dal cell, visualised with differential interference con-

trast optics using infrared illumination. The geome-

try of this cell was reconstructed (indicating the pres-

ence of 396 branches along with the soma) and saved

in .hoc file format [5]. A diagram of the reconstructed

cell is shown in Figure 6A. Dual simultaneous whole-

cell patch-clamp recordings were made in this cell

and data were acquired at 5 KHz. Before sampling

the data were filtered at 1 kHz with an 8 pole filter.

A pulse current of amplitude −300 pA and duration

400 ms (beginning at 10 ms) was injected at the den-

dritic trunk. Dendritic and somatic recordings in re-

sponse to this current injection are shown in Figure

6B, where the voltages are plotted with respect to rest

(at about −70 mV). The observed oscillatory voltage

overshoot is believed to be associated with an Ih cur-

rent. In the corresponding quasi-active model with a

10



single inductive current pathway (built using the re-

constructed cell data) we take a uniform distribution

of Ih channel conductances. In this case the resistance

r and inductance L of the resonant membrane are the

same for all branches. Dendritic and somatic voltage

responses in the model are shown by the solid lines

in Figure 6B. The parameters r and L were fitted to

the data, rather than assuming a specific model of Ih

and fixing them according to equations (7) and (8). As

can be seen from the close agreement between the-

ory and experiment in Figure 6 the “sum-over-trips”

machinery generates quasi-active filters for realistic

tree structures that can be used to organise and un-

derstand the structure of real dual electrode recording

data.

5 Discussion

We have developed a “sum-over-trips” formalism for

constructing the Green’s function for a branched den-

dritic tree and soma with quasi-active membrane.

This generalises the original work of Abbott et al. [2]

for passive dendrites. Although in this paper we have

focused on the ionic current Ih, we stress here that our

approach can handle any channel kinetics written in

the standard language of dynamic gating variables.

Such a framework for studying (linear) dendritic neu-

ron models obviates the need for the numerical solu-

tion of an underlying set of PDEs. One advantage of

using the Green’s function in comparison to a more

standard compartmental approach is that this func-

tion has to be computed only once for a given den-

dritic structure. Thus changing the stimulation pro-

tocol does not require a whole new numerical simu-

lation, rather just a convolution of the Green’s func-

tion with the new input. In Laplace space at fixed fre-

quency, the computational time will depend on the ge-

ometry of the tree, and issues of algorithmic efficiency

reduce to those discussed in detail by Cao and Abbott

for passive dendrites [4]. Although their approach can

not treat resonant membrane our generalisation nat-

urally does so with the introduction of a frequency

parameter. The remaining computational overhead

A
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-20
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-35
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Figure 6: A: Reconstructed rat CA1 hippocampal

pyramidal cell. B: An example of dendritic (red) and

somatic (blue) dual simultaneous recording (with re-

spect to rest) in response to the current injection at the

dendrite trunk (average from 20 sweeps). A pulse cur-

rent with amplitude−300 pA is applied for a duration

of 400 ms starting from 10 ms. The other two curves

in B are dendritic and somatic voltage responses cal-

culated from the model of the branched cell with res-

onant membrane. The model cell was stimulated at

the dendrite (as shown in A) with the same current

used in experimental recordings. Parameters across

the tree: the specific cytoplasmic resistivity Ra = 100

Ω·cm, C = 1 µF/cm2 and the resistance across a unit

area of pasive membrane Rm = 20000 Ω·cm2. Thus

τ = 20 ms and diffusion coefficients Di vary from

branch to branch. The conductance of Ih is assumed to

be uniform across the cell with the resistance and in-

ductance of resonant membrane r = 24000 Ω·cm2 and

L = 2700 H·cm2 respectively. Note that the voltage

drop across the electrode’s resistance is not fully com-

pensated and the bridge balance is not corrected on

the dendritic recording so that we shift our model re-

sults by an appropriate value of 10 mV.
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is then to perform a single inverse Laplace transform

which can be done efficiently with standard numeri-

cal techniques. Moreover, our framework allows for

a more analytical exploration of the way in which

dendritic segments with differing natural frequencies

contribute to an overall resonance at the level of the

whole tree. It has also proved practical in use with

real neuronal geometries. Indeed there is now a grow-

ing body of reconstructed cell data that can be up-

loaded from databases such as ModelDB1, and used

within the framework we have developed here. Of

course these geometries must be supplemented with

data governing the distribution of active ionic con-

ductances. Alternatively, with access to dual poten-

tial recording data, one may recover the quasi-active

properties of dendritic neurons using the theory and

algorithms developed by Cox and Griffith [6].

Two natural extensions of the work in this paper

suggest themselves; i) to cover tapered dendrites, and

ii) to cover active dendrites. If in the former case the

underlying PDE model of the tapered model is lin-

ear (see [27] for a recent discussion of tapering) then

there may be some hope to extend the “sum-over-

trips” formalism. How to recover quasi-active proper-

ties from tapered dendrites is already known [7]. The

problem of treating truly active dendrites [14] would

seem at face value to be a substantially harder chal-

lenge. However, recent work on the spike-diffuse-

spike model has shown how that a system of point hot-

spots embedded throughout a passive tree can provide

a reasonable caricature of a tree with active conduc-

tances [31, 32]. The solution of this model is expressed

in part using the Green’s function of the tree with-

out hot-spots. Obviously this can be obtained with

the “sum-over-trips” techniques we have described in

this paper. Both of these extensions are topics of cur-

rent research and will be reported upon elsewhere.
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Appendix A

Using an extension of the argument in [1] we prove

here that the the rules for generating the trip coeffi-

cients are consistent with the boundary conditions de-

scribing an arbitrary branched resonant dendritic tree.

Let x denote the distance away from the node along

the branch k (see Fig. 7). The location of the stimu-

lus y, the segment number j and the variable ω are

all considered to be arbitrary. Suppose that we sum

all the trips starting from the node itself and ending

at point y on branch j. We denote the result of sum-

ming over all trips that initially leave the node along

segment k by Qk j(0, y, ω). The result of all trips that

leave the node along other branches m is denoted by

Qmj(0, y, ω).

Figure 7: Main trips at a node.

Trips that start out from x and move away from

the node are identical to trips that start out from the

node itself along segment k. The only difference is

that the trips in the first case are shorter by the length

x. We denote the sum of such shortened trips by

Qk j(−x, y, ω). The argument −x means that a distance

x has to be subtracted from the length of each trip

summed to compute Q (not that the trips start at the

point −x).
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Trips that start out from x by moving toward the

node and then reflecting back along branch k are also

identical to trips that start out from the node along

branch k except that these are longer by the length x.

In addition, because of the reflection from the node

these trips pick up a factor 2pk(ω)− 1 according to the

“sum-over-trips” rules. Therefore, the contribution to

the solution Hk j(x, y, ω) from those trips is (2pk(ω)−
1)Qk j(x, y, ω).

Finally, we have to take into account trips that start

from x, move toward the node along branch k and

then leave the node by moving out along any of the

radiating branches m, m 6= k. Crossing the node in-

troduces a factor 2pm(ω) and the sum of such trips is

given by 2pm(ω)Qmj(x, y, ω).

The full solution Hk j(x, y, ω) includes the contribu-

tions from all different types of trips we have been dis-

cussing. Thus,

Hk j(x, y, ω) = Qk j(−x, y, ω) + (2pk(ω)− 1)Qk j(x, y, ω)

+ ∑
m 6=k

2pm(ω)Qmj(x, y, ω). (53)

The functions Q in this formula consist of infinite

sums over trips, but we do not need to know what

they are to show that the solution Hk j(x, y, ω) satisfies

the node boundary conditions. At a node point we

have

Hk j(0, y, ω) = ∑
m

2pm(ω)Qmj(0, y, ω). (54)

The sum in the last formula is over all segments radi-

ating from the node including branch k and, thus, it

shows that the solution at the point x = 0 is indepen-

dent of k. Therefore Hk j(x, y, ω) obeys the boundary

condition (32).

To prove the boundary condition (33) we use equa-

tion (53) to find that

∂Hk j(x, y, ω)
∂x

∣∣∣∣
x=0

= ∑
m

2pm(ω)
∂Qmj(x, y, ω)

∂x

∣∣∣∣
x=0

− 2
∂Qk j(x, y, ω)

∂x

∣∣∣∣
x=0

. (55)

Now we multiply this result by pk(ω) and sum over k

to get

∑
k

pk(ω)
∂Hk j(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑
m

2pm(ω)
∂Qmj(x, y, ω)

∂x

∣∣∣∣
x=0

(
∑

k
pk(ω)− 1

)
. (56)

Using the property that ∑k pk(ω) = 1 we have

∑
k

pk(ω)
∂Hk j(x, y, ω)

∂x

∣∣∣∣∣
x=0

= 0. (57)

Since pk(ω) is proportional to zk(ω) the solution

Hk j(x, y, ω) satisfies the boundary condition (33).

A similar derivation can show that the “sum-over-

trips” rules used at the terminals are also correct. If

we consider a terminal point instead of a node point,

pm(ω) = 0 for m 6= k in equation (53) and pk(ω) = 0 for

an open end or pk(ω) = 1 for a closed end boundary

condition at the terminal. Then equations (54) and (57)

indicate that (34) and (35) are obeyed at all open and

closed terminal nodes.

In the presence of the soma we have to check that

the solution Hk j(x, y, ω) satisfies the corresponding

boundary conditions (32) and (38). The proof that the

solution satisfies the boundary condition (32) is iden-

tical to that for a node point. To show that the bound-

ary condition (38) is also satisfied we use the following

properties for Qk j(x, y, ω), namely

∂Qk j(x, y, ω)
∂x

= −Qk j(x, y, ω), (58)

∂Qk j(−x, y, ω)
∂x

= Qk j(x, y, ω). (59)

These properties are a direct consequence of the form

of H∞(x) = e−|x|/2. We then have that

∂Hk j(x, y, ω)
∂x

∣∣∣∣
x=0

= −∑
m

2pm(ω)Qmj(0, y, ω)

+ 2Qk j(0, y, ω). (60)

Note that, as compared to a simple node point, pk(ω)

for a branch radiating from the soma takes the modi-

fied form given by (42). By multiplying equation (60)

by zk(ω) and summing over k we obtain

∑
k

zk(ω)
∂Hk j(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑
m

2zm(ω)Qmj(0, y, ω)
(

1− ∑m zm(ω)
∑m zm(ω) + γs(ω)

)
. (61)
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This gives us

∑
k

zk(ω)
∂Hk j(x, y, ω)

∂x

∣∣∣∣∣
x=0

=

γs(ω)∑
m

2zm(ω)
∑m zm(ω) + γs(ω)

Qmj(0, y, ω). (62)

Using the equality (54) we recover the boundary con-

dition (38).

Appendix B

Here we complete the details of the Ih model given by

(49) as described in [21]. The potential Vh = −16 mV

and the conductance gh = 0.09 mmho cm−2. The func-

tions that appear in the gating dynamics are f∞(V) ≡
w∞(V), α f (V) = w∞(V)/τ f (V) and

β f (V) = (1 − w∞(V))/τ f (V). Here (for temperature

27◦C)

τ f (V) =
exp[0.03326(V + 80)]

0.00446(1 + exp[0.08316(V + 80)])
, (63)

w∞(V) =
1

1 + exp[(V + 92)/8]
. (64)
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