Scientific synergy between LSST and Euclid

Rhodes, Jason and Nichol, Robert C. and Aubourg, Éric and Bean, Rachel and Boutigny, Dominique and Bremer, Malcolm N. and Capak, Peter and Cardone, Vincenzo and Carry, Benoît and Conselice, Christopher J. and Connolly, Andrew J. and Cuillandre, Jean-Charles and Hatch, N. A. and Helou, George and Hemmati, Shoubaneh and Hildebrandt, Hendrik and Hložek, Renée and Jones, Lynne and Kahn, Steven and Kiessling, Alina and Kitching, Thomas and Lupton, Robert and Mandelbaum, Rachel and Markovic, Katarina and Marshall, Phil and Massey, Richard and Maughan, Ben J. and Melchior, Peter and Mellier, Yannick and Newman, Jeffrey A. and Robertson, Brant and Sauvage, Marc and Schrabback, Tim and Smith, Graham P. and Strauss, Michael A. and Taylor, Andy and Linden, Anja Von Der (2017) Scientific synergy between LSST and Euclid. The Astrophysical Journal Supplement Series, 233 (2). p. 21. ISSN 1538-4365

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview


Euclid and the Large Synoptic Survey Telescope (LSST) are poised to dramatically change the astronomy landscape early in the next decade. The combination of high-cadence, deep, wide-field optical photometry from LSST with high-resolution, wide-field optical photometry, and near-infrared photometry and spectroscopy from Euclid will be powerful for addressing a wide range of astrophysical questions. We explore Euclid/LSST synergy, ignoring the political issues associated with data access to focus on the scientific, technical, and financial benefits of coordination. We focus primarily on dark energy cosmology, but also discuss galaxy evolution, transient objects, solar system science, and galaxy cluster studies. We concentrate on synergies that require coordination in cadence or survey overlap, or would benefit from pixel-level co-processing that is beyond the scope of what is currently planned, rather than scientific programs that could be accomplished only at the catalog level without coordination in data processing or survey strategies. We provide two quantitative examples of scientific synergies: the decrease in photo-z errors (benefiting many science cases) when high-resolution Euclid data are used for LSST photo-z determination, and the resulting increase in weak-lensing signal-to-noise ratio from smaller photo-z errors. We brie fly discuss other areas of coordination, including high-performance computing resources and calibration data. Finally, we address concerns about the loss of independence and potential cross-checks between the two missions and the potential consequences of not collaborating.

Item Type: Article
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Physics and Astronomy
Identification Number: 10.3847/1538-4365/aa96b0
Depositing User: Eprints, Support
Date Deposited: 19 Jan 2018 13:38
Last Modified: 20 Jan 2018 01:58

Actions (Archive Staff Only)

Edit View Edit View