Validating and comparing stroke prognosis scales

ABSTRACT

Objective: To compare the prognostic accuracy of various acute stroke prognostic scales using a large, independent, clinical trials dataset.

Methods: We directly compared 8 stroke prognostic scales, chosen based on focused literature review (Acute Stroke Registry and Analysis of Lausanne [ASTRAL]; iSCORE; iSCORE-revised; pre-admission comorbidities, level of consciousness, age, and neurologic deficit [PLAN]; stroke subtype, Oxfordshire Community Stroke Project, age, and prestroke modified Rankin Scale [mRS] [SOAR]; modified SOAR; Stroke Prognosis Instrument 2 [SPI2]; and Taled Health Risks in Vascular Events [THRIVE]) using individual patient-level data from a clinical trials archive (Virtual International Stroke Trials Archive [VISTA]). We calculated area under receiver operating characteristic curves (AUROC) for each scale against 90-day outcomes of mRS (dichotomized at mRS ≥2), Barthel Index (≥85), and mortality. We performed 2 complementary analyses: the first limited to patients with complete data for all components of all scales (simultaneous) and the second using as many patients as possible for each individual scale (separate). We compared AUROCs and performed sensitivity analyses substituting extreme outcome values for missing data.

Results: In total, 10,777 patients contributed to the analyses. Our simultaneous analyses suggested that ASTRAL had greatest prognostic accuracy for mRS, AUROC 0.78 (95% confidence interval [CI] 0.75–0.82), and SPI2 had poorest AUROC, 0.61 (95% CI 0.57–0.66). Our separate analyses confirmed these results: ASTRAL AUROC 0.79 (95% CI 0.78–0.80 and SPI2 AUROC 0.60 (95% CI 0.59–0.61). On formal comparative testing, there was a significant difference in modified Rankin Scale AUROC between ASTRAL and all other scales. Sensitivity analysis identified no evidence of systematic bias from missing data.

Conclusions: Our comparative analyses confirm differences in the prognostic accuracy of stroke scales. However, even the best performing scale had prognostic accuracy that may not be sufficient as a basis for clinical decision-making.

GLOSSARY

ASTRAL = Acute Stroke Registry and Analysis of Lausanne; AUROC = area under the receiver operating characteristic curve; BI = Barthel Index; iSCORE-r = revised iSCORE; mRS = modified Rankin Scale score; NIHSS = NIH Stroke Scale; OCSP = Oxfordshire Community Stroke Project; PLAN = preadmission comorbidities, level of consciousness, age, and neurologic deficit; ROC = receiver operating characteristic; SOAR = stroke subtype, Oxfordshire Community Stroke Project, age, and prestroke modified Rankin Scale; SOARM = modified stroke subtype, Oxfordshire Community Stroke Project, age, and prestroke modified Rankin Scale; SPI2 = Stroke Prognosis Instrument 2; THRIVE = Taled Health Risks in Vascular Events; VISTA = Virtual International Stroke Trials Archive.

Various tools exist to assist clinicians to quantify risk of good or poor outcome. For example, the ABCD2 score uses clinical features to predict risk of stroke following TIA.1 Although there are criticisms of ABCD2, it is widely used and included in stroke guidelines.2 Numerous scales purport to predict acute stroke outcomes from baseline features.3–5 In general, these prognosis scales have had limited traction and have not been incorporated into routine clinical practice or guidelines.3

*These authors contributed equally to this work.

From the Institute of Cardiovascular and Medical Sciences (T.J.Q., K.R.L.) and Undergraduate Medical School (S.S.), University of Glasgow; Stroke Trials Unit, Division of Clinical Neuroscience (P.M.B.), University of Nottingham; and School of Medicine (P.K.M.), Medical Sciences and Nutrition, University of Aberdeen, UK.

Full list of the VISTA Steering Group is available at Neurology.org.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

© 2017 American Academy of Neurology.
There are various plausible reasons why these scales have not been adopted by the stroke community. Scales may be perceived as too complex to use or may require information that is not routinely available in the acute setting (for example, sophisticated neuroimaging). Often these scales report mortality; however, given the disabling nature of stroke, scales predicting longer-term disability may be more useful.

Before adopting a scale for clinical use, clinicians and policy makers will want to see robust evidence of external validity, i.e., evidence that the scale performs well in cohorts independent of the population used to derive the scale. Attempts to validate scales are emerging but such data remain lacking for many stroke prognosis scales.

Where more than one scale is available, clinicians will want to compare and contrast the properties of the various scales in a common dataset. Again, such analyses are infrequent and we have to rely on indirect comparison across heterogeneous studies.

We aimed to validate and compare the accuracy of stroke prognosis scales for predicting death and disability in an independent dataset using patient-level data.
METHODS Data sources. We used the acute section of the Virtual International Stroke Trials Archive (VISTA; vista.gla.ac.uk). VISTA is a not-for-profit, anonymized data repository containing individual patient-level data from completed stroke trials. All included trials were performed under appropriate institutional review board and regulatory approvals, and only fully anonymized data are held by VISTA. Choice of prognostic scales. We selected multi-item scales (more than 2 items) based on focused literature review. The search was not a systematic review; we identified scales according to the following criteria: intended for use in acute stroke; comprises baseline clinical (not neuroimaging) and demographic data; predicts outcome at 30 days (or more) poststroke; published since 2000; published in a leading topic specific journal (table e-1 at Neurology.org).

From the chosen scales, we created a list of variables needed to derive each and requested these data from VISTA. VISTA data are anonymized and it is a condition of use that shared VISTA data are not mapped back to identify the source trial. To ensure our VISTA dataset was truly independent of the datasets used to originally derive the scores, we collated the primary article describing each of our included scales and shared these with the VISTA data management team, who confirmed that the VISTA data were independent (table e-2).

Outcomes. Our primary outcome was 90-day modified Rankin Scale score (mRS). We dichotomized 90-day mRS with poor outcome defined as mRS > 2. Secondary outcomes were 90-day all-cause mortality and 90-day Barthel Index (BI), dichotomized with poor outcome defined as BI ≤ 85.

Data management. We worked with the dataset to maximize available data. Where mortality data were not directly described, we calculated 90-day mortality from day of death or 90-day mRS (taking mRS 6 as death). Where Oxford stroke classification was not available, we derived this based on NIH Stroke Scale (NIHSS) using a validated algorithm. Where Canadian Neurological Scale score data were not reported, we calculated this from NIHSS data. Certain scales included specific clinical features and we derived the presence of these (visual field defects, loss of consciousness, limb paresis, neglect, and aphasia) from NIHSS. Where scales used comorbid disease, we interrogated data on comorbidity for conditions of relevance using both categorized and free text searches.

Statistical analyses. Our primary analyses of interest were based around the discriminative ability of the scales. We generated receiver operating characteristic (ROC) curves for each scale. We calculated the area under the receiver operating characteristic curves (AUROC) with 95% confidence intervals. We created 2 sets of ROC curves. The first included analysis of all scales for those patients who had sufficient data, i.e., we only included patients who had data sufficient to derive a score for all of our chosen scales (simultaneous analyses). For the second analysis, each scale was assessed individually using as many patients as possible (separate analyses). The simultaneous analysis was designed to facilitate valid comparisons; the separate analysis was designed to give a precise assessment of prognostic accuracy using a dataset independent from the derivation dataset.

In addition to ROC analyses, we described individual values for sensitivity and specificity limiting to values corresponding to point of optimal performance on ROC curve for our primary outcome of 90-day mRS. To describe calibration, we performed Hosmer-Lemeshow test of each scale’s performance against primary and secondary outcomes.

Certain variables of interest had missing data at the individual patient level. We performed sensitivity analyses to explore the effect of missing data by replacing missing data with extreme high and low values for each scale.

We performed all discrimination and calibration analyses using SPSS version 22.0 (IBM Corporation, Armonk, NY).

We formally tested the difference in AUROC between scales, accounting for multiplicity of analyses (MedCalc version 16.0, MedCalc Software, Ostend, Belgium), comparing the 6 scales with the highest AUROC using the results of our simultaneous and separate analyses.

RESULTS Patients. We had access to individual patient-level data for 10,789 patients. Twelve patients were excluded as they lacked any relevant data. Figure 1 describes included patients and their outcomes. Table 1 contains baseline characteristics of included patients. We derived Oxfordshire Community Stroke Project (OCSP) data for 7,533 (69.9%) patients based on their baseline NIHSS data. All Canadian Neurological Scale scores were derived from baseline NIHSS.
Included scales. We assessed 8 prognostic scales: Acute Stroke Registry and Analysis of Lausanne (ASTRAL); iSCORE; iSCORE-r (a revised iSCORE); preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN); stroke subtype, OCSP, age, and prestroke mRS (SOAR); SOARm (a modified SOAR); SPI2 (Stroke Prognosis Instrument 2); and THRIVE (Totaled Health Risks in Vascular Events).

Validation. For our primary outcome, prediction of 90-day mRS, ASTRAL had the largest and SPI2 the smallest AUROC in all analyses (figures 2 and 3). This pattern of results was similar in our separate analyses (table 2). Sensitivity analysis where missing data were imputed with a best and worst case scenario for 90-day mRS (<2 and ≥2) yielded differing AUROC for 4 scales (both iSCORE and both SOAR variants). In each case, the AUROC was less than in the original analyses (tables e-4 and e-5).

On formal significance tested, we observed differences in the AUROC of included scales (table e-8). ASTRAL had significantly higher AUROC than all other scales for 90-day mRS <2 and significantly higher AUROC for BI than most other scales. Differing tests had differing patterns of sensitivity vs specificity at point of optimal performance (table e-9).

Our analysis of calibration suggested that all scales other than THRIVE had good calibration for 90-day mRS. Scales of iSCORE, iSCORE-r, PLAN, and SPI2 demonstrated good calibration for each of our chosen outcomes (table e-10).

DISCUSSION Validation and quantitative comparison can assist in choice of prognostic scale, yet there have been few articles offering such analyses in stroke.3–5 We provide these data for recognized acute stroke prognostic scales, with ASTRAL showing superior prognostic utility and SPI2 the lowest prognostic accuracy.

Our data highlight the value of independent, external validation of prognostic scales. The original ASTRAL study reported an AUROC of 0.85, with subsequent AUROC of 0.90 in a validation study by the ASTRAL team.10 Our data suggest a lower prognostic accuracy (AUROC 0.82 and 0.81); indeed, most of our analyses gave prognostic values that are less than described in the original derivation articles. This pattern of independent analyses reporting less favorable scale properties has been described in other settings.18 Although best practice statements for prognostic research highlight the importance of external validation, it remains true that most prognostic research focuses on model development with relatively limited further validation.18 We have also shown the value of comparative analyses using a common dataset. Indirect comparisons using results from derivation studies may have given the erroneous impression that all scales perform equally well, potentially because of differences in the sampling frames in the original studies. Our formal testing suggests that scales have differing discriminative properties. Strengths of our approach include access to a large dataset of trial quality data from a variety of sources. We explored the possibility of missing data introducing bias through our sensitivity analyses. We offer both comparative and individual scale level analyses differing AUROC for 2 scales (iSCORE-r and SOARm). In each case, the AUROC was less than in the original analyses (tables e-4 and e-5).

For prediction of 90-day BI, ASTRAL had the largest and SPI2 the smallest AUROC in both analyses (figure e-1). Sensitivity analysis yielded differing AUROC for 2 scales (iSCORE-r and SOARm). In each case, the AUROC was less than in the original analyses (tables e-4 and e-5).

For prediction of 90-day mortality, ASTRAL had the largest and SPI2 the smallest AUROC in both analyses (figure e-1). Sensitivity analysis yielded differing AUROC for 2 scales (iSCORE-r and SOARm). In each case, the AUROC was less than in the original analyses (tables e-4 and e-5).

Our analysis of calibration suggested that all scales other than THRIVE had good calibration for 90-day mRS. Scales of iSCORE, iSCORE-r, PLAN, and SPI2 demonstrated good calibration for each of our chosen outcomes (table e-10).
and describe ROC and individual sensitivity, specificity, and calibration values. We hope these data will help clinicians choose whether to use a prognosis scale and which is most appropriate.

There were limitations to our analyses. We maximized data available for analyses by deriving certain input variables; we recognize this may introduce bias. To facilitate analyses, we dichotomized mRS and BI data. Our selected thresholds were in keeping with those commonly used in trials and prognostic work. However, we appreciate that this approach fails to capture the range of functional outcomes that can follow stroke. We limited our analysis to those multi-item scales, described in selected journals that use variables potentially available in VISTA. Thus, we not have included certain prognostic scales. A comprehensive, systematic review could be a future direction for this work. For any analysis that uses trial data there is always a concern regarding generalizability to a real-world population. Patients included in our analysis were younger and less impaired than may be seen in an unselected cohort. We would encourage similar analyses using large-scale observational cohort data.

Our data would support the use of the ASTRAL scale, as this scale had the greatest predictive accuracy and already has published external validation studies. However, choice of prognostic scale, or indeed the decision to use these scales at all, is dependent on many factors in addition to prognostic accuracy. Ease of use at the bedside is an important consideration, particularly in the hyperacute stroke setting. The scale with the fewest included variables was SOAR and this showed moderate predictive accuracy.

We deliberately chose not to have a threshold value that signified “acceptable” accuracy. The value of a prognostic or diagnostic instrument is relative to the context of the assessment and absolute values are unhelpful in determining the utility of a scale in practice. Scales can serve an assistive or decisive function. The appropriateness of basing clinical decisions solely or partly on prognostic scales is a factor of both the accuracy of the scale and the cost of a misclassification. In the acute setting, if the scales are being used to inform decisions regarding lifesaving treatment, it is debatable whether accuracy values perceived as statistically acceptable are also clinically acceptable. For example, with a specificity of around 0.8, 1 in 5 may be wrongly assigned a poor prognosis and treated accordingly.

Potential solutions to improving scale properties include adding the most discriminating factors from other scales to create a new scale or using scales in series. Our analysis of individual sensitivity and specificity scores suggest that some scales favor sensitivity and vice versa. Thus there may be utility in using, for example, a highly sensitive scale followed by a highly specific scale. Such approaches may have value, but will add complexity to assessment and ultimately would represent new scales that require further validation. It may also be useful for future research to focus on a better understanding of the characteristics of

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Separate analyses</th>
<th>Simultaneous analysis</th>
<th>Derivation study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUROC (95% CI)</td>
<td>No. (%)</td>
<td>AUROC (95% CI)</td>
</tr>
<tr>
<td>ASTRAL</td>
<td>0.79 (0.78-0.80)</td>
<td>5344 (49.6)</td>
<td>0.78 (0.75-0.82)</td>
</tr>
<tr>
<td>iSCORE</td>
<td>0.68 (0.67-0.70)</td>
<td>5551 (51.5)</td>
<td>0.66 (0.61-0.70)</td>
</tr>
<tr>
<td>iSCORE-r</td>
<td>0.77 (0.76-0.78)</td>
<td>5551 (51.5)</td>
<td>0.74 (0.70-0.78)</td>
</tr>
<tr>
<td>PLAN</td>
<td>0.76 (0.75-0.77)</td>
<td>5549 (51.5)</td>
<td>0.74 (0.70-0.78)</td>
</tr>
<tr>
<td>SOAR</td>
<td>0.68 (0.66-0.70)</td>
<td>4051 (37.6)</td>
<td>0.66 (0.62-0.71)</td>
</tr>
<tr>
<td>SOARm</td>
<td>0.75 (0.73-0.76)</td>
<td>4051 (37.6)</td>
<td>0.70 (0.66-0.74)</td>
</tr>
<tr>
<td>SPI2</td>
<td>0.60 (0.59-0.61)</td>
<td>10033 (89.1)</td>
<td>0.61 (0.57-0.66)</td>
</tr>
<tr>
<td>THRIVE</td>
<td>0.77 (0.76-0.78)</td>
<td>10033 (89.1)</td>
<td>0.73 (0.69-0.77)</td>
</tr>
</tbody>
</table>

Abbreviations: ASTRAL = Acute Stroke Registry and Analysis of Lausanne; CI = confidence interval; iSCORE-r = revised iSCORE; PLAN = preadmission comorbidities, level of consciousness, age, and neurologic deficit; SOAR = stroke subtype, Oxfordshire Community Stroke Project, age, and prestroke modified Rankin Scale; SOARm = modified stroke subtype, Oxfordshire Community Stroke Project, age, and prestroke modified Rankin Scale; SPI2 = Stroke Prognosis Instrument 2; THRIVE = Total Health Risks in Vascular Events.

AUROC (95% CI) and n (%) of patients in our analyses for 90-day mRS ≥ 2.
*Primary outcomes for derivation studies: 1-year mortality.
†Primary outcomes for derivation studies: 7-day mortality.
‡Primary outcomes for derivation studies: discharge mortality.
§Primary outcomes for derivation studies: stroke or death within 2 years.

International Stroke Trials Archive.
those patients who are most likely to be misclassified by scales. Our work highlights recommendations by groups such as MRC PROGRESS\(^{18}\) that development of future scales include comparison against pre-existing scales and inclusion of systems to allow for independent, external validation of the scale.

There are many scales designed to provide prognostic information following acute stroke. Our comparative analyses suggest that certain scales (e.g., ASTRAL) may have better prognostic accuracy than others, although this accuracy was substantially lower than described in the original derivation articles. Based on our data, even the scales with the best properties may not have sufficient prognostic power to be used as the sole basis for important treatment decisions.

AUTHOR CONTRIBUTIONS
Terence J. Quinn: study concept and design, interpretation of data, acquisition of data, study supervision, critical review of manuscript. Sarjit Singh: data management, analysis and interpretation of data, drafting manuscript. Kennedy R. Lees and Philip M. Bath: input to methods and analyses, critical review of manuscripts. Phyo K. Myint: study concept and design, study supervision, critical review of manuscript.

ACKNOWLEDGMENT
The authors thank Myzoon Ali (University of Glasgow) for assistance with obtaining dataset access.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

