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Highlights

— Service network optimisation plays a key role in sustainable transportation.

— A novel k-node neighbourhood function is proposed that can handle constraints more efficiently.

— The proposed neighbourhood has better reachability than all previous neighbourhood functions.

— A hybrid large neighbourhood search algorithm based on k-node neighbourhood produces very com-
petitive results.

— The proposed k-node neighbourhood function can be used for different SNDP variants.
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Abstract The Service Network Design Problem (SNDP) is generally considered as a fundamental prob-
lem in transportation logistics and involves the determination of an efficient transportation network and
corresponding schedules. The problem is extremely challenging due to the complexity of the constraints
and the scale of real-world applications. Therefore, efficient solution methods for this problem are one of
the most important research issues in this field. However, current research has mainly focused on various
sophisticated high-level search strategies in the form of different local search metaheuristics and their hy-
brids. Little attention has been paid to novel neighbourhood structures which also play a crucial role in
the performance of the algorithm. In this research, we propose a new efficient neighbourhood structure
that uses the SNDP constraints to its advantage and more importantly appears to have better reachability
than the current ones. The effectiveness of this new neighbourhood is evaluated in a basic Tabu Search
(TS) metaheuristic and a basic Guided Local Search (GLS) method. Experimental results based on a set of
well-known benchmark instances show that the new neighbourhood performs better than the previous arc-
flipping neighbourhood. The performance of the TS metaheuristic based on the proposed neighbourhood is
further enhanced through fast neighbourhood search heuristics and hybridisation with other approaches.

Keywords Logistics - Transportation Network - Service Network Design - Metaheuristics.. Large
Neighbourhood Search
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1 Introduction

E-commerce and online shopping have rapidly transformed the formats of businesses in recent years. Online
shopping companies like Amazon. com and China-based Taobao.com have seen sighificant growth in sales
in recent years. While most companies are keen to leverage new business opportunities such as online
shopping, many of them also encounter new issues, such as providing, high” quality delivery of billions
of products. Hence the problem of logistics has received increasing attention from both industry and the
research communities.

Freight transportation has great potential for further improvement in efficiency and service level in the
era of big data and cloud computing. The Service Network Design Problem (SNDP) is widely considered as
the core problem of freight transportation planning for\less=than truck load transport and express deliveries
where consolidation is necessary to improve the efficiency. It involves the determination of a cost-effective
transportation network and the services which it\will provide, while satisfying the constraints related to
geographically and temporally diverse demands, network availability, assets capacity, etc. The SNDP is
strongly NP-Hard (Ghamlouche et al, 2003) and hence it is impractical to optimally solve the problem of
realistic sizes. In fact, the SNDP is generally of/large-scale, due to the size of potential network. This is
particularly the case when the formulation is based on a time-space network in which each node and each
arc has a copy in each period of‘the scheduling horizon (see Figure 1).

Various heuristic and metaheuristic approaches have been applied to this problem and substantial
progress has been made (Crainiciet al, 2000; Ghamlouche et al, 2003, 2004; Pedersen et al, 2009; Hoff
et al, 2010; Andersen et al;;2011;Bai et al, 2012; Minh et al, 2013; Chouman and Crainic, 2014). How-
ever, almost all of thése research studies have focused on various intelligent high-level strategies for better
trade-offs between search explorations and exploitations. Here, we consider high-level strategies as domain-
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Fig. 1 An example of a time-space network with 3 nodes and 7 periods.

independent heuristic approaches that do not take specific advantage of a problem’s underlying low-level
solution structure. Examples of high-level strategies for more efficient search include the tabu-assisted
guided local search by Bai et al (2012) and the hybrid tabu search with path-relinking.method by Minh
et al (2013). Analysis of the problem solution structure and its constraints is very dimited. As"indicated
in Kendall et al (2016), a lot of optimization research studies merely borrow different metaphors without
much deep insights on algorithmic or problem properties. These approaches do not satisfy real-world re-
quirements either in terms of solution quality delivered or in computational4ime required. This is because
the SNDP contains some difficult constraints and a flow distribution sub-problem, generally referred to as
the Capacitated Multicommodity Min-Cost Flow (CMMCF) problem, which can be very expensive to solve
if it is called many times within an iterative metaheuristic approach. This motivates us to develop more ef-
ficient metaheuristics for this important and challenging sub-problem. Therefore, unlike the above papers
which focus on high-level strategies, in this paper, we propose and study a new larger neighbourhood that
exploits the special structure of the SNDP constraints and has,much. better reachability due to the implicit
constraint handling. The experiments on two basic metaheuristi¢ approaches and a hybrid algorithm show
that the new neighbourhood is very effective and could be,used to'develop more efficient algorithms for the
SNDP.

The remainder of the paper is structured as follows®Section 2 provides a brief introduction to the SNDP
and an overview of the research in freight service network design. Section 3 presents the arc-node based
mathematical formulation for SNDP. Section 4 discusses the neighbourhood structure used in the previous
studies. Section 5 describes the proposed-k-node neighbourhood operator whose performance is evaluated
in Section 6 through a basic Tabu Search (TS) /method and a basic Guided Local Search (GLS) method.
Section 7 describes a hybrid algorithm based/on the k-node neighbourhood. Section 8 concludes the paper.

2 Literature Review

This section provides abrief overview of the previous research into SNDP which is closely related to classic
network flow problems (Ahuja et al, 1993). Comprehensive reviews can be found in Crainic (2000); Crainic
and Kim (2007); Wieberneit (2008).

Early work in thisfield includes Crainic and Rousseau (1986); Powell (1986); Crainic and Roy (1988).
Crainic et al (1998) applied a TS metaheuristic to the container allocation/positioning problem. Crainic
et al (2000)uinvestigated a hybrid approach for capacitated multicommodity network design (CMND),
combining:a. TS method with pivot-like neighbourhood functions and column generation. Ghamlouche et al
(2003)(continued the work and proposed a more efficient cycle-based neighbourhood function for CMND.
Experiments with a simple TS framework demonstrated the superiority of the method to the earlier pivot-
like neighbourhood functions in Crainic et al (2000). This approach was later enhanced by adopting a
path-relinking mechanism (Ghamlouche et al, 2004).

Barnhart et al (2002) addressed a real-life air cargo express delivery SNDP. The problem instances are
characterised by their large sizes and the addition of further complex constraints to those in the general
SNDP model. A tree formulation was introduced and the problem was solved heuristically using a method
based on column generation. Armacost et al (2002) introduced a new mathematical model based on an
innovative concept called the composite variable, which has a better Linear Programming bound than other
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models. A column generation method using this new model was able to solve the problem successfully
within a reasonable computational time, taking advantage of the specific problem details. However, it may
be difficult to generalise their model to other freight transportation applications, especially when there are
several classes of services being planned simultaneously. Pedersen et al (2009) studied more generic SNDP
in which a set of asset balance constraints was added to model the requirements that the number of incom-
ing vehicles at each node must equal to the outgoing vehicles in order to maintain the continuity of freight
services over time. A multi-start metaheuristic, based on TS, was developed and shown to outperform a
commercially available MIP solver when computational time was limited to one hour per instance. Ander-
sen et al (2009) compared the node-arc based formulation, the path-based formulation and a cycle-based
formulation for SNDPs. Computational results on a set of small randomly generated instances indicated
that the cycle-based formulation gave significantly stronger bounds and hence may allow for much faster
solution methods of problems. More recent work by Bai et al (2012) attempted to further reduce the'.com-
putational time and investigated a Guided Local Search (GLS) based hybrid approach. The computational
study showed that GLS was able to obtain better solutions than Tabu Search (TS) but with less than two
thirds of the computational time. However, GLS in that study was based on an arc-flipping neighbourhood
which sometimes leads to poor solutions.

Other methods of approaching SNDP have included ant colony and a branch,and:price'method. Barcos
et al (2010) investigated an ant colony optimization approach to address a/simplifiedyvariant of freight
SNDP. The algorithm was able to obtain solutions better than those adopted in the real-world within a
reasonable computational time. Andersen et al (2011) studied a branch”and pricesmethod for the SNDP.
Although the proposed algorithm was able to find solutions of higher quality than the previous methods,
the 10-hour computational time required by the algorithm poses a great echallenge for practical applications.

Variants of SDNP have also been studied. Hoff et al (2010) investigated a variable neighbourhood
search based metaheuristic approach for the service network design'with stochastic demand, a problem
sharing similar structure to SNDP. However, the neighbourhood functions used in their approach are mainly
based on path oriented operators which, like the arc-flipping operator, have limitations in dealing with asset
balance constraints. Alumur et al (2012) studied a heuristic,approach for the simultaneous optimisation of
hub locations and the service network. A multi-period stpply chain network design problem was studied
in Carle et al (2012) and an agent-based metaheuristic was proposed based on the idea of asynchronous
cooperation between agents. Nickel et al (2012).studied a stochastic supply network design problem with
financial decisions and risk management for which the authors only managed to solve small instances.
Heuristic approaches appear to be thesmost promising methods for these types of problems. Yaghini et al
(2012) proposed a simulated annealing metaheuristic for the CMND problem without asset-balance con-
straints. The approach utilised aneighbeurhood structure based on the pivoting rules of the Simplex method
in order to speed up the search. A multiobjective evolutionary algorithm was proposed for this same prob-
lem in Kleeman et al (2012)."-However, these metaheuristics do not necessarily perform well on SNDP due
to the presence of the asSet-balance constraints. Bai et al (2014) studied a stochastic service network design
problem with rerouting: In Baiset al (2015), a service network design formulation was used to obtain the
lower bound of a multi-shift full truckload transportation problem.

It can be seen that the-aforementioned research mainly focused on either new models to better capture
the complexities. of the real-world freight transportation problems or new generic strategies to search the
solution space more-€fficiently. However, limited research has been done to investigate new neighbourhood
functions to tackle the difficult constraints and expensive flow distribution sub-problems. The goal of this
paper is to-address this gap by studying a new neighbourhood structures for SNDP. The effectiveness of the
new structure is evaluated in two basic metaheuristic approaches (TS and GLS) and a hybrid method for a
set of .well-known SNDP benchmark instances.

3 The Freight SNDP Problem and Model

The SNDP is an important tactical/operational freight transportation planning problem. It is of particular
interest for less-than truck load transportation and express delivery services, where consolidation of deliv-
eries is widely adopted in order to maximise the utilisation of freight resources (Crainic, 2000). The SNDP
involves the search for optimal or near-optimal service characteristics, including the selection of routes
and the vehicle types for each route, the service frequency and the delivery timetables, the flow distribu-
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Table 1 List of notation used in the SNDP model

Notation Meaning

N The set of nodes.

o The set of arcs in the network.

4 = (N,o) | A directed graph with nodes ./ and arcs <7

(i,j)e o The arc from node i to j.

ujj The capacity of arc (i, ).

fij The fixed cost of arc (i, j).

H The set of commodities.

o(k) The origin (source) of commodity k € 7.

s(k) The sink (destination) of commodity k.

d* The flow demand of commodity k.

cffj The variable cost for shipping a unit of commodity & on the arc (i, j).

xfj The amount of flow of commodity & on the arc (i, j).

Vij The network design variables. y;; = 1 if arc (i, ) is open and 0 if it is closed.

X The vector of all flow decision variables, i.e. X =< xgo, o ,x{-‘j, >

y The vector of all design variables, i.e. y =< ygo, -+, Yij;--- >,

N T(i) The set of outward neighbouring nodes of node i.

N (i) The set of incoming neighbouring nodes of node i.

bk The outward flow of commodity k. b¥ = d* if i = o(k), b¥ = —d* if i = s(k) and O other-
wise.

2(x,y),z(s) The objective of SNDP model, which represents the sum of the fixed cost and the variable
cost for given solution vectors x and y, or expressed in terms of a potential solution:s.

g(s), g(x,y) The objective function which is actually solved, including a penalty for infeasibility, ex-
pressed in terms of a potential solution s or the decision variable component vectors x and
y of 5.

tion paths for each commodity, the consolidation policies, and the.dle.vehicle re-positioning, so that legal,
social and technical requirements are met (Wieberneit, 2008).

The SNDP differs from the Capacitated Multicommodity;Network'Design (CMND) problem, a well-
known NP-Hard problem, in that it has an additional source ‘of’complexity due to the required balance
constraint for freight assets in order to ensure that vehicle routes\are contiguous and that vehicles are in the
correct positions after each planning cycle.

The problem of concern in this paper can be formulated in several ways. We used a node-arc based
model described in Pedersen et al (2009) and also present it here for completeness. The list of notation
used in the model is given in Table 1.

Let 4 = (A4, 47) denote a directedsgraph with nodes .4" and arcs .27. Let (i, j) denote the arc from
node i to node j. Let % be the set of‘commoditi€s. For each commodity k € ¢, let o(k) and s(k) denote
its origin and destination nodes, respectively. Let y;; be boolean decision variables, where y;; = 1 if arc (i, j)
is used in the final design and 0.if'it is not used. Let x’fj denote the flow of commodity k on arc (i, j). Let u;;
and f;; be the capacity and fixed costtespectively, for arc (i, j). Finally, let cf.‘j denote the variable cost of
moving one unit of commodity k along arc (i, j). The SNDP can then be formulated as follows:

minimise
wxy)= Y fivit Y, Y, o M
(i,j)ed keX (i,j)eo
subject to
Xf«‘j <uwjyij Vi, j) e @
ket
> - X =bi, Vie N VkeH ©)
jEN (i) jeEN (i)
2 Vji z yij:() Vie N (4)
jeN (i) JEN (i)

where xf?j >0 and y;; € {0, 1} are the decision variables. The network capacity constraint (2) ensures that
the maximum capacity of arc (i, j) is not violated. The flow conservation constraint (3) ensures that the
entire flow of each commodity is delivered to its destination, where .4 " (i) denotes the set of outward
neighbours of node i and .4~ (i) the set of inward neighbours. b¥ is the outward flow of commodity k for

node i, so we set bf = d* if i = o(k), b¥ = —d* if i = s(k), and b* = 0 otherwise. Constraint (4) is the
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asset-balance constraint, which is missing from the standard CMND formulation, as discussed in section
2 and which ensures the balance of transportation assets (i.e. vehicles) at the end of each planning period.
For a given design variable vector y =< ¥g, ...,¥;j,... >, the problem becomes one of finding the
optimal flow distribution variables. Constraint (4) is no longer relevant and the flow must be zero on all
closed arcs, so only open arcs have to be considered in the model. Let .27 denote the set of open arcs in
the design vector ¥ and .4 be the set of nodes in <7, then flow distribution variables (xffj) for all open arcs

(i, j) € &) can be obtained by solving the following CMMCF problem, where x{»‘j >0V(i,j) € o, keK:

minimise
x)=Y 3 (&)
ke (i, jyeat
subject to
i <wip V(i j)ed (6)
ket
S oxi— Y =0, vieN Vkex ©)
JENT(i) JEN (i)

Constraint (6) ensures the total flow on each open arc in .7 is no more than its’capacity. Constraint (7) is
same as the constraint (3) which is the flow conservation constraint.

4 A Revisit of Previous Heuristic Approaches

In the previous efforts (Pedersen et al, 2009; Bai et al, 2012), néighbourhood search functions were primar-
ily based on single arc state-flipping (otherwise referred to as arc\adding/dropping) with the flow distribu-
tion handled separately either heuristically (based on a résidual graph) or optimally by solving the corre-
sponding CMMCEF problem using an LP solver. Interested readers are referred to Pedersen et al (2009) for
more details of this neighbourhood structure.

However, one drawback of this neighbourhood is the inability to maintain solution feasibility in terms
of asset-balance constraints. For a feasible solution satisfying the asset-balance constraints, flipping the
state of a single arc will typically generate an.infeasible solution (i.e. violating constraint (4)). Let us take a
simple network in Figure 2 as an example. In the current configuration (Figure 2.(a)), the network consists
of 8 open arcs (and 4 closed arcs) andis asset-balanced since, for each node, the number of incoming arcs
equals to the number of outgoing“arcs. Using the neighbourhood function in Pedersen et al (2009); Bai
et al (2012), one could generate 12 neighbouring solutions. Unfortunately none of them is feasible due to
asset balance constraint violatiens. For example, opening arc (1,5) will lead to vehicle imbalance at both
nodes 1 and 5. Similarly,€losing arcA2,1) will lead to asset-balance constraint violations at nodes 1 and 2.
In Pedersen et al (2009); Bai.et al (2012), this constraint violation issue was addressed by using a special
feasibility-recoveryprocedure at the end of each local search phase. Although effective in finding a feasible
solution, the method'may suffer from performance issues when the feasibility-recovery procedure leads to
a large increas€ in'costs, and hence inferior solutions.

Another major drawback of the arc-flipping neighbourhood function is the reachability in the search
space. Observations’from experimental tests in Bai et al (2012) show that considerable number of neigh-
bourhood moves are rejected during the search and local search methods (both TS and GLS) tend to get
stuck at localroptima. It appears that this neighbourhood function struggles to reach certain regions of the
search space regardless of the number of iterations permitted. This observation explains why the “multiple
starts”used in Pedersen et al (2009) and Bai et al (2012) is effective. In fact, this can be illustrated by the
network in Figure 2. Assume that the network shown in Figure 2.(b) is a better feasible solution than Fig-
ure 2.(a). Moving from the solution in Figure 2.(a) to the solution depicted in Figure 2.(b) requires closing
two arcs 4—3 and 3—2 and opening arc 4—2. Since only one arc can be modified at each neighbourhood
move (excluding arcs that are modified during the flow redistribution procedure), in theory it is possible to
move to the neighbouring solution in Figure 2.(b) through 3 successive operators. In practice the success
rate of such a move could be extremely low since the first two moves will result in asset imbalance at all
three nodes involved and the penalty for this constraint violations can prevent the intermediate solutions
from being accepted. In addition, if the flow redistribution during any of these three moves is infeasible,
the search will not reach the solution depicted in Figure 2.(b) from Figure 2.(a). This explains why the
multi-start was required in the previously proposed algorithms.
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open arc —  closed arc----» open arc —  closed arc----»

(a) Current solution (b) A neighbouring solution

Fig. 2 An illustration of the reachability issue of the arc-flipping neighbourhood. The status of the thicker arcs are,changed
during the neighbourhood move.

Fig. 3 An illustration of the paired route-flipping neighbourhood. Selid\lines are open arcs and dashed ones are closed arcs.

5 The Proposed x-node Neighbourhood

In this section, we describe the proposedinew:neighbourhood which was originated from the idea of paired-
route-flipping. The main purpose is tofmaintain the feasibility of the solution during the search by changing
the status of two carefully selected.routes. Each route is a sequence of arcs representing vehicle moves over
time. We describe this idea in the following’subsection.

5.1 The paired route-flipping

Instead of flipping’an atc, we identify a set of arc-flipping operations with automatic feasibility satisfac-
tion in terms of/the asset-balance constraint. Figure 3 illustrates this arc-flipping operator. The solid lines
represent open arcs and/dotted arcs denote closed arcs. The paired-route-flipping operator involves simul-
taneously /changing the statuses of two routes which share the same source and destination nodes. In this
particular example, suppose that the algorithm decides to close a route 1—2—3. If we can find one of its
paired route that also starts at node 1 and finishes at node 3 but with different statuses (i.e. route is closed),
the asset balance constraint can be satisfied by simply opening the paired route (i.e. the dotted route).
Although this neighbourhood operator can guarantee satisfaction of asset-balance constraints, identifying
such a pair of routes is not trivial. On the contrary, it is much easier to focus on nodes rather than arcs,
leading to our k-node neighbourhood structure which we describe in the next subsection.

5.2 The x-node neighbourhood operator

In this neighbourhood, a subset of k nodes out of all the nodes are selected and arcs incident upon these
nodes are considered for changes. Note that in order to prevent evaluating a candidate solution many times,
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open arc —» closed arc----»

(a) k=2 b)yx=3 c)k=4

Fig. 4 An illustration of x-node operator when k = 2, 3, and 4

we require that the change of arcs should involve exactly k nodes rather than a subset of them. We'focus on
the small and medium sized neighbourhoods. Large neighbourhoods (e.g. Kk > 4) are not considered since
it is impractical to evaluate them within a realistic time limit.

Figure 4 illustrates the x-node operator when k = 2, 3 and 4, respectively. It is not difficult to see that
when k = 2, a feasible neighbour may exist only if both arcs connecting the two nodes have a same status
(i.e. either both closed or both open). If one of them is open and the otheris closed;no feasible neighbouring
solution exists.

When k = 3, the maximum number of arcs between these nodes is 6. For a feasible current solution s,
we denote design variables for arcs ag,ay,...,as as yo,y1, ..., yss respectively. Including the current solution
s, the maximum number of neighbouring solutions for a 3-node_operator will be 2° = 64. However, not
every neighbouring solution will be feasible in terms of asset-balance constraint (4). For any neighbouring
solution s, to satisfy asset-balance constraint, the following constraints should be respected, each of which
corresponds to one of the three nodes under consideration:;We’denote the corresponding design variables
in s’ for arcs ag,ai,...,as as yp, ¥}, ..., ys, respectively.

Yo+y2 —y1 =3 =0+ — Y] — ¥ ®)
Yy =0 —Ys = Y| + ¥ — Yo — ¥ ©)
V3 BYs Y2 —ya = Y3+ Y5 =) — V4 (10)

Condition (8) is obtained from the asset balance constraint for node 0. The left side term is the difference
between the number of©utgeing and incoming arcs connecting node 0 and the other two nodes in solution
s, while the right side‘tétm stands for the same difference for node 0 in its neighbouring solution s’. In order
to make sure node O'stays asset-balanced after neighourhood moves in s’, the left side term should be made
equal to the right side. That is, any neighbourhood moves should not change the difference between the
number of outgoeing ares and incoming arcs for node 0. The same requirements applies to node 1 and node
2, leading to conditions (9) and (10), respectively.

Note that any of the two conditions will be sufficient to ensure feasibility since the third condition can
be obtainedifrom the other two conditions. For example, condition (10) can be obtained by simply adding
(8).and (9) on both sides correspondingly. In theory, the total possible number of neighbouring solutions
of 5i8.2"W— 1 where 7 is the number of directed arcs inter-connecting the x nodes. Hence when x = 3,
M=06, and 2" — 1 = 63. However, since y{,}, ...,y take binary values only, these conditions will exclude
lots ‘of neighbouring networks that are infeasible. For example, if the left side of condition (8) equals 2
(meaning yo = y» = 1,y; = y3 = 0), none of the 63 neighbours will be feasible because of this condition.
If the left side of condition (8) equals 1, i.e. yj 4+, — ¥} — 5 = 1, including the original network there will
be 4 possible feasible neighbouring solutions for this condition. They are: (1,0,0,0), (0,0,1,0), (1,0,1,1),
(1,1,1,0). Due to variables y} and y5, more solutions are expected if both condition (8) and condition (9) are
considered. Nevertheless, the number of asset-balanced neighbouring solutions for s will be significantly
smaller than 63.

Similarly when k = 4, the following conditions should be satisfied for candidate solutions to ensure the
asset-balance at each node:



10 Bai et al.

Yo+y2+ya—y1—y3—ys = Yo+ +ya =Y — Y3 — s (I
yi+Ys+Ys—Yo—y1—yo = Vi +Ys+Ys —Yo— V71— o (12)
¥3+Y7+Y10—Y2 — Y6 — Y11 = Y3+ ¥7+ Y10 — Y2 — Y6 — V11 (13)
Y5 +Yo+ Y11 —ya—ys —y10 = Y5 +Yo + Y11 —Yi—Ys —io (14)

Again, only 3 out the above 4 conditions are active and the other one is redundant. For a medium sized
network of 60 nodes, the number of subsets of nodes with cardinality of 4 is Cgo = 487635. For each node
subset, as mentioned above, the maximum possible number of neighbouring solutions of s is 2!> — 1 =
4095. However, the actual number of feasible neighbouring solutions that satisfy the above conditions,is
significantly smaller. The size of the neighbourhood depends on the current solution s. For example, there
will be no feasible neighbours when the left side of the above conditions takes extreme values (<3 or)3)
since it means difference of in-degree and out-degree for all 4 nodes is 3. Any modification offyg,..5y11
will violate at least one of these conditions. The number of feasible neighbours most probably reaches a
maximum when the left side of these conditions take values in the middle of permitted range (i.e. equal to
0). That is:

Yoty +Ya =Y —¥3—y5=0 (15)
Yi+Ys+Ys—Yo— Y1 —yo =0 (16)
Vi+Yr+Yi0—ya—Ys—y1 =0 (17)

Through a binary tree search algorithm, one could solve the above equations and it turns out that
only 121 possible feasible neighbours exist as far as the asset-balancerconstraint is concerned. Despite
this reduction, the size of the neighbourhood in a 60-node network when x = 4 is still more than 59
million (121 x Cgo). Considering the time taken to solve the flow'distribution sub-problem for each of these
candidate solutions in the neighbourhood, it is impracticalto effieiently evaluate neighbourhoods larger than
Kk = 4. Even with k¥ =4, it could still be very slow to have,a complete evaluation of the neighbourhood.
Faster neighbourhood search procedures are required:

5.3 Speeding up the neighbourhood search

In this section, we discuss ways that.could'speed up the neighbourhood search. In the previous neighbour-
hood structure, there may be solutions which,can be discarded directly without ascertaining their objective
values. Firstly, given a solution/ and one of its neighbouring solutions s', if too many arcs are closed in s’
compared to s, there is very little chanee that the flow on these arcs can be redistributed among the remain-
ing network. It is thereforénot'necessary to solve the CMMCEF sub-problem. Similarly if a neighbouring
solution s’ has too many openiarcs than the original solution, it is not necessary to evaluate this solution
either since the fixed cost'would increase dramatically, resulting in a poor solution. These two “extreme”
cases are dealt with by adding cut-set inequalities and a heuristic rule respectively which we now discuss.

Let Ny be the set ofjx nodes selected in the K-node neighbourhood and A be the set of arcs that join
any of two.mnodes\from’ Ni. For a given «k, the maximum number of arcs incident with these x nodes is
P2 = x(x— 1). For each of node i € Ny, we define the following cut-sets S; and T;:

Si= {Ne\IL. T = {M\S)) (18)

Let CapST; = Ycs, reT, UstYse be the aggregated arc capacity from S; to 7; in a candidate solution with
design vector y. Let DemandST; be the total amount of commodity flows that originate from S; and destine
to 7;. Similarly, let CapTS; and DemandT S; be the total available capacity from 7; to S; and total amount
of commodity flows from 7; to S;, respectively. The necessary conditions for the candidate solution with
design variable y to be feasible are:

CapST; > DemandST; Vi€ Ny (19)
CapTS; > DemandTS; Vi€ Ny (20)
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In addition, any modification of arcs related to a node i € N, will likely impact on the flows going
through its neighbouring nodes. Therefore, similar flow cut-set inequalities can be generated for its neigh-
bouring nodes. Let S} = N (i) and T/ = {N\S.},Vi € N,. We have:

CapNST; > DemandNST; Vi€ Ny (21)
CapNTS > DemandNTS; Vi€ Ny (22)

where CapNST; = ¥ ¢ s! zzeT/ ugys is the aggregated arc capacity from S; to 7} for node Vi € Ny in solution
design vector y, and CapNTS$; is the aggregated arc capacity available from 7} to S.. DemandNST; and
DemandNTS;, respectively, are the aggregated commodity flows from S} to 7/ and 7 to S.

Although useful in avoiding unnecessary CMMCEF sub-problem solving, these cut set inequalitiesican
be computationally expensive themselves simply because of the huge number of cuts available. In ‘our
implementation, we set the cardinality of the cut set |S;| < 3 and we only check againstthese inequalities
for candidate solutions which have 3 arcs or more closed compared to the current solution.

In the case of an “excessive”” number of open arcs in s’ compared to s, the following condition is used
to check whether s’ will be evaluated or discarded. Neighbours that do not satisfy this condition will be
discarded.

Zfaxyizg Zfax)’a""wxﬁ (23)

acAy acAy

where fy is the average fixed cost of the arcs in Ay that are inyolved.in-thi§ neighbourhood move. We
discard a neighbouring solution if it contains w more open arcs than the original solution, evaluated in
terms of the average fixed costs. In our implementation we set w.= 2.5z

The number of nodes required for k-node neighbourhioodsis at least 2. For a given input x (> 2),
a neighbouring solution can be generated by making changes to arcs connecting exactly & (2 < h < k)
nodes. Therefore, here neighbourhood x = 3 will contain,neighbouring solutions with changes involved
by all possible node pairs and all possible node triplets.The pseudo-code of the neighbourhood is given in
Algorithm 1.

For every neighbouring design variabléwector y’, the procedure first checks whether asset-balance
constraint is respected by this vector. If not, y.is discarded and the next vector is considered. The asset-
balance constraint is checked in the following way. When h = 2, as discussed in the previous section, y’ is
feasible only if two arcs connecting'the two nodes have a same status (i.e. both open or close). When & =3
or h =4, one can check the assetbalance at'each node using conditions (8)-(10) and (11)-(14), respectively.
When x > 4, as we discussed. in section 5.2, the size of the neighbourhood increases significantly. It is
impractical to evaluate theentire,neighbourhood. Therefore in our experiment, we set k¥ = 4. Note that
when we generate neighbouring solutions for 7 = 3 or & = 4, we should not duplicate neighbours which
have been generated.for.s = 2., That is, the neighbourhood moves for & = 3 should involve all three nodes,
rather than a subsetyof/it. For example, the neighbourhood for node set {1,2,3} should not contain the
neighbourhoodfor nodeset {1,2}, neither for node set {2,3} or {1,3}. In this way, we can ensure the search
starts from smaller néighbourhoods and when we explore larger neighbourhoods, we do not duplicate
solution gvaluations for previously visited solutions.

Once a neighbouring design variable vector y’ satisfies the asset-balance constraint and the net number
of closed arcs.is greater or equal to 3, we check it against the inequality conditions (16)-(21) to filter
infeasible design variable vectors. After this, the CMMCEF procedure is called to find a feasible flow if it
exists. If the corresponding node set NS is in the tabu list and aspiration criterion is not met, this solution
is,discarded. Otherwise, it is compared against the initial solution and best solution so far. If a candidate
solution improves the initial solution, the procedure returns the first-improved solution. Otherwise, it returns
the best solution s* in the current neighbourhood.

6 Performance Evaluation

In this section, we evaluate the performance of the xk-node neighbourhood against two recent metaheuristics
based on the arc-flipping neighbourhood. For purposes of comparison, we chose basic TS and basic GLS
to avoid complications from other factors such as various intensification and diversification mechanisms.
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Algorithm 1 The pseudo-code of the proposed x-node neighbourhood function with TabuList support.
It returns a first-improvement neighbouring solution sx from the current solution s = (x,y) as well as the
corresponding node set NS* which defines the neighbourhood. x is the maximum number of nodes allowed
in the x-node neighbourhood and z(.) is the fitness function.

1: procedure FIRSTDESCENT(s,z(.), k)

2: Initialise the best neighbouring solution sx = {0}, and set z(s%) = oe.

3 for h < 2,k do

4 Generate all possible node sets Nj,, with each set containing /4 distinct nodes.

5 for all NS € N;, do

6: From the current design variable y of s, generate all its neighbours Y by changing
7

8

9

the statuses of arcs that interconnect the nodes in NS.
forally € Y do
if the asset-balance constraint is violated, skip to the next y’. end if

10: if any of inequality constraints (19)-(22) is violated, skip to the next y’. end if

11: if CMMCEF(y’) returns a feasible flow then > If a feasible flow is.found
12: if NS is in TabuList and the aspiration criterion is not met then

13: skip to the next node set NS.

14: else Copy the solution to 5.

15: end if

16: if z(s') < z(s) then > A better solution is found;Teturn to caller
17: return s’ and NS

18: end if

19: if z(s") < z(s%) then

20: sx =5 NSx = NS >Update the best neighbour
21: end if

22: end if

23: end for

24: end for

25: end for

26: return s* and NSx > Return the best neighbouring solution

27: end procedure

6.1 A basic TS with x-node neighbourhood function

We firstly implement a basic TS method with the proposed k-node neighbourhood function (denoted as
TS_x-node) to evaluate its performance- We compare it against the results reported in Pedersen et al (2009)
by a multi-start TS method given and results reported in Bai et al (2012) by a tabu assisted multi-start GLS
method. Both algorithms use the arc-flipping neighbourhood function. More details and discussions about
TS can be found in the,book of Glover and Laguna (1997).

The pseudoscode of TS_k-node algorithm is given in Algorithm 2. The inputs of the algorithm are
a feasible initial\solution s¢, the objective function of the problem z(.), the maximum number of nodes
allowed in”the neighbourhood generation x, and the maximum length of the tabu list TL. Because the
neighbouthood search operates on feasible solutions only, the initial solution was generated by the tabu
assisted GLSsmethod (TA_MGLYS) in Bai et al (2012) which was stopped as soon as a feasible solution
is found, "As, such, the initial solutions used by the TS method in this experiment are much inferior than
the final results reported by TA_MGLS (Bai et al, 2012). In our experiment, we set k = 4 to keep the size
of the neighbourhood relatively small so that it can be evaluated quickly. We used a fixed length tabu list
TabuList which is maintained on the first-in-last-out basis. The maximum length is set to TL = 10 after
some initial tests on a subset of the benchmark instances. Because the proposed x-node neighbourhood is
based on node sets rather than arcs, the tabu list contains the node set which leads to the adoption of the
current solution returned by the procedure FirstDescent (s’,z(.),k). The procedure repeatedly calls the
FirstDescent(.) to search for a first-decent neighbouring solution which is not in the tabu list until the
stopping criterion is met. In this case, the procedure stops when the maximum allowed time is exhausted.
This was set to 2400s minus the amount of time spent in the initial feasible solution generation phase.
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Algorithm 2 A basic TS with k-node neighbourhood

input An initial feasible solution s, the objective function z(.), k, tabu length T'L.
Initialise the TabuList, the current solution s’ = s, and the best solution s, = 5.
while stopping criterion is not met do
s',NS + FIRSTDESCENT(s', z(.), k) > Get the first-descent solution and the node set NS
if z(s") < z(sp) then
sp=s5 > Update the best solution
end if
TabuList. Add(NS) > Add the corresponding node set to the TabuList
if (TabuList.Length > T'L) then
TabuList.RemoveFrist > Maintain the/TabuList
end if
end while
return s;,

Table 2 An initial evaluation of the performance of the proposed k-node neighbourhood in a basic. TS algorithm (TS_k-node)
in comparison with two previous algorithms; TS (Pedersen et al, 2009) and TA_MGLS (Bai.et.al, 2012). TS was used once
only because it was developed into a deterministic algorithm. The best objective values are highlighted in‘bold.

Instance TS TA_MGLS TS_k-node

id feature (1 run) best avg worst best avg worst
c37  C20,230,200,V,.L | 102919 98760 99622 101606 97737 98498 99726
c38  C20,230,200,EL | 150764 | 142113 143867 146823 |\140146- 142770 146343
c39  C20,230,200,V,T | 103371 102137 102833 104424 | 101325 101931 103001
c40  C20,230,200,FT | 149942 | 141802 143839 146141, | 140576 141475 146119
c45  C20,300,200,V,L 82533 79030 79895 80888 78111 80032 81156
c46  C20,300,200,FL | 128757 | 121773 124454 127607 122498 124873 127039
c47  C20,300,200,V,T 78571 77066 78302 80009 77002 78393 79330
c48  C20,300,200,FET | 116338 | 114465 115836 117046 | 114886 115939 117140
c49  C30,520,100,V,.L 55981 55732 55986 56260 55243 55551 55995
¢50  C30,520,100,EL | 104533 | 100290¢ . 102017 ~ 102838 101287 102838 103049
c51  C30,520,100,V,T 54493 54372 54708 54838 53759 54177 54282
c¢52  C30,520,100,ET | 105167 104574 105423 106477 | 103661 105047 106018
c53  C30,520,400,V,.L | 119735 | 116196 = 116915 117888 116363 117638 118824
c54  C30,520,400,EL | 162360 | 154941 . 156008 157630 | 156506 157810 160193
c¢55  C30,520,400,V,T | 120421 118336° 118894 120445 | 118253 119609 120594
c56  C30,520,400,FT | 161978 | 157940 159427 161272 | 158814 160096 160774
c¢57  C30,700,100,V,.L 49429 49385 49457 49482 48826 49210 49370
c58  C30,700,100,FL 63889 62055 62774 63397 62733 62947 63200
c59  C30,700,100,V,T 48202 47519 47728 47937 47407 47477 47602
c60  C30,700,100F T 58204 57571 58046 58447 58015 58015 58015
c61  C30,700,400,V,L | 103932 | 101610 102216 103008 102185 102391 102827
c62  C30,700400,FL | 157043 | 142563 144755 147828 142711 145397 149292
c63  C30,700,400,V.T | 103085 98657 99726 100590 98926 100099 101754
c64  C30,700400,FT | 141917 | 135778 136727 138004 | 135902 137518 139666

Table 2 presents'the computational results by the basic TS with the proposed neighbourhood function
(denoted as TS_k-node) in comparison with two other metaheuristics for this problem; TS (Pedersen et al,
2009) and TAZMGLS (Bai et al, 2012). Since TS in Pedersen et al (2009), tested on a Pentium IV 2.26GHz
PC with 3600 seconds CPU time, was developed into a determinstic algorithm, only one run is required.
Both"TA“MGLS and TS_k-node were run on a PC with 2.0GHz Intel Core 2 CPU, single-threaded and
a2400-second time limit in conjunction with Cplex12 as the linear programming solver. Therefore, both
TS_MGLS and TS_x-node uses much less time than TS in Pedersen et al (2009).

The experiments were based on a set of benchmark instances drawn from Pedersen et al (2009). This
data set consists of 24 instances of different sizes (nodes, arcs, commodities) and distributions of fixed cost,
variable cost and capacity. The first three numbers in the instance name represent the number of nodes, the
number of arcs and number of commodities respectively. ‘F’ indicates that the fixed cost dominates the
cost function while a ‘V’ means dominant variable costs. ‘L’ stands for loose capacity constraints while ‘T’
means capacities are tight. For each instance, 10 independent runs with different random seeds were con-
ducted and their best, mean and worst results are reported. The best results among the three approaches are
highlighted in bold. It can be seen that even with a very basic TS method, the new neighbourhood function
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is able to produce very competitive results. Both the TS method in Pedersen et al (2009) and the tabu as-
sisted multi-start GLS method (TA_MGLYS) in Bai et al (2012) used a multi-start framework to diversify the
search. It can be seen that the proposed neighbourhood evaluated in a basic TS, performed better than the
TS method in Pedersen et al (2009). It also outperformed TA_MGLS for many instances, particularly small
instances. For large instances (e.g. instances with 400 commodities), TS_x-node was slightly inferior to
TA_MGLS. This is probably caused by longer computational time taken by each FirstDescent(.) proce-
dure call for larger sized problems which leads to significant increase in CMMCEF solution time. A possible
improvement for this algorithm is then to develop some faster heuristic flow distribution procedures to
reduce the number of CMMCEF calls.

6.2 A basic guided local search with new neighbourhood function

We also implemented a basic GLS method with the proposed neighbourhood. The pseudo-code of the algo-
rithm is given in Algorithm 3. GLS is a metaheuristic designed for constraint satisfaction and combinatorial
optimisation problems (Voudouris and Tsang, 2003). The underlining idea is to take advantage of informa-
tion gathered during the search to guide it and enable it to escape local optima. GLS adoepts a'transformed
objective function which includes a penalty to penalise “unattractive” features in a candidate solution. We
denote p, as the current penalty for the presence of a given feature r in the current,solution s, and 7,(s) is an
indicator variable such that /,(s) = 1 if the candidate solution s contains featur¢ r and I(5) = 0 otherwise.
h, is a cost associated with feature r. In this application, we chose all of thelarcs as the GLS features and
their fixed costs as the feature costs, i.e. i, = f, for each arc r € 7. Parameter, A4S a scaling coefficient
between the original objective function z(s) and the aggregated feature penalties. Since A is problem in-
stance dependent and is difficult to tune directly, it was estimated by A = o g(5*)/ X, I,(s*) where s* is the
current best solution and o is a parameter that is less problem-dependent'than A. At each GLS iteration,
the proposed x-node neighbourhood function FirstDescent (.) was.used to find a first-descent solution
except that the TabuList in FirstDescent (.) was set to empty. Therefore, the GLS we tested here is in its
basic version.

Algorithm 3 Pseudo-code for a basic guided local search with new neighbourhood function.

input an initial feasible solution sg, an original objective function z(s), a set of features R, the cost A,
associated with each feature r € R andd@ scaling parameter A.

output an improved solution s’.

1: foreach r € R, set p, :=0

: initialise s < 5o and I,(s), set@(s) =z(s)+ A x X, prL,(s)

: while stopping criterion is siotimet do

s < FIRSTDESCENT(s38(s), k) > Get the first descent solution with regard to g(s)

for all r € R do
util,(s) = If(s) x lﬁ;r
Find r with maximum util,, set p, = p,+ 1

end for

: end while

. returns’«— best solution found according to the original objective function z(s).

R A A ol
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Similar.to the experimental setup in the previous section, the basic GLS metaheuristic started from
a feasible solution sy generated by the TA_MGLS in Bai et al (2012) which stops as soon as a feasible
solution’is found. Similar to TS_k-node, the stopping criterion was 2400 seconds of computational time,
minus the time spent for generating an initial feasible solution and the size of the neighbourhood is set to
Kk = 4. The arcs in the network were chosen to be GLS features R and the fixed cost of each arc is defined as
the corresponding feature cost. The GLS parameter was set to o = 0.05 based on a preliminary experiment
on a number of representative instances.

Table 3 presents the results by GLS with x-node neighbourhood for the same set of benchmark in-
stances, in comparison with a same basic GLS with an arc-flipping neighbourhood operator (denoted as
GLS) and the TA_MGLS in Bai et al (2012). It can be seen that with a same GLS framework, the proposed
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k-node neighbourhood function outperformed the arc-flipping neighbourhood for each of the 24 instances.
Compared with TA_MGLS which is much more sophisticated, GLS_k-node was inferior for most instances
but obtained better results for instance C51 and C57, both of which have a small commodity size. GLS_x-
node is generally competitive when the problem size is small. For large instances, each FirstDescent(.)
call is expensive and hence impedes the search significantly. This is compounded with influence of the
transformed objective function g(s) used in GLS that leads to poor solutions since local optima were not
reached when the computational time is not sufficient. This also explains why TS_xk-node was able to obtain
better solutions than GLS_x-node in general although both of them started from the same initial solutions
and used exactly the same neighbourhood function. Nevertheless, through these two experiments, the new
neighbourhood function has shown its effectiveness by producing very promising results, obtaining the new
best-known results for many instances. This is largely attributed to its better reachability because.of larger
neighbourhood sizes and abilities to maintain feasibility. Contrary to many other neighbourhood operators,
the proposed new neighbourhood operator uses the constraint violations to their advantage by ignoring lots
of infeasible solutions. Compared with the previous neighbourhood function, the superiority of the xk-node
operator was demonstrated by the superior results obtained both by the basic GLS and basie/TS without the
multi-start mechanism which was crucial in a previous hybrid method TA_MGLS in order torprevent the
search from getting stuck at local optima.

Table 3 Computational results by a GLS metaheuristic with k-node neighbourhood (GLS_xk-nede)dn comparison with results
by a basic GLS method with an arc-flipping neighbourhood (GLS) and a multi-start tabusassisted GLS (TA_-MGLS) from Bai
et al (2012). All the algorithms were run on a PC with 2.0GHz Intel Core 2 CPU /single-threaded and a 2400-second time limit
in conjunction with Cplex12 as the linear programming solver. The basic GLS in Bai et'al (2012) was run once only due to
its deterministic nature and failed to find a feasible solution for 4 instances(denoted as inf .). The results by TA-MGLS and
GLS_x-node are based on 10 independent runs. The best results are highlighted inibold.

Instance GLS TA_MGLS GLS_k-node
id feature (1 run) best avg worst best avg worst
c37  C20,230,200,V,L | 100649 98760 99622 101606 98395 98567 98739
c38  C20,230,200,EL | 145872 | 142113 143867 146823 142851 143190 143529
c39  C20,230,200,V,T | 104863 102137 . 102833 104424 | 101861 103010 103405
c40  C20,230,200,ET | 146884 | 141802 143839 146141 145463 147209 148954
c45  C20,300,200,V,.L 80356 79030 79895 80888 79977 80355 80918
c46  C20,300,200,EL | 127356 | 121773 124454 127607 125288 126474 127511
c47  C20,300,200,V,T 79700 77066 78302 80009 77807 79282 80875
c48  C20,300,200,ET | 131878 | 114465 115836 117046 118238 118838 119715
c49  C30,520,100,V,L 56166 55732 55986 56260 56109 56137 56229
c¢50  C30,520,100,EL | 402354, | 100290 102017 102838 101942 103662 105342
c¢51  C30,520,100,V,T inf. 54372 54708 54838 54556 54642 54664
¢52  C30,520,100,ET 1108223, | 104574 105423 106477 105180 106833 107574
c¢53  C30,520,400,V,L | 120828 | 116196 116915 117888 117420 117570 117713
c54  C30,520,400,EL | 162213 | 154941 156008 157630 156480 157925 160347
¢S5 C30,520400,V,T inf. 118336 118894 120445 | 118253 119470 120726
c56  C304520,400,ET | 166721 | 157940 159427 161272 159113 160162 161113
c¢57  C30,700;100,V,.L 49327 49385 49457 49482 49247 49271 49367
c58 /C304700,100;F,L 65270 62055 62774 63397 62776 63503 63952
¢59 7 "€30,700,100,V,T inf. 47519 47728 47937 47704 47738 47810
¢60 ~ C30,700,100,F,T 58927 57571 58046 58447 58408 58408 58408
c61  C30,700,400,V,.L | 103317 | 101610 102216 103008 102210 102356 102648
¢62  C30,700,400,EL | 153204 | 142563 144755 147828 142711 145148 149578
¢637°C30,700,400,V,T inf. 98657 99726 100590 99581 100019 100380
c64  C30,700,400,ET | 143447 | 135778 136727 138004 135902 136795 138844

7 Fast Neighbourhood Search and Hybridisation

In the previous section, we have shown that the proposed neighbourhood showed promising performance
when implemented in two basic metaheuristic approaches. It performs better in a tabu search method for
small instances. However, the proposed neighbourhood suffers from two main issues: firstly, the size of
the neighbourhood is generally very big, therefore a complete neighbourhood evaluation is extremely time
consuming. Secondly, evaluation of each candidate solution in a neighbourhood will require solving a
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CMMCEF sub-problem which again is computationally expensive. In this section, we investigate how the
proposed neighbourhood method can be improved further. We now describe the heuristics that we used
in our experiments to speed up the x-node neighbourhood search, followed by a hybrid metaheuristic to
further enhance the performance of the algorithm.

7.1 Speeding up the neighbourhood search

Due to the size of the neighbourhood and the relatively large solution time for the full CMMCF sub-
problem, we adopted the following approximate method which solved a reduced network flow problem.
More specifically, in Algorithm 1, line 11, instead of solving the CMMCEF sub-problem exactly to obtain the
optimal flow for y’, we assume that the existing flows of the current solution s are already well distributed
except that the commodity flows through nodes in set NS have to be redistributed since arcs interconnécting
these nodes have changed in the neighbourhood move. Let x be the flow vector before the neighbouthood
move and X’ be the flow vector after the neighbourhood move. Let K, be the set of commodities that have,a
positive flow through one of nodes in NS. Firstly, we set X' = x and then delete from X’ all the'flows of every
commodity in K,. Let A, be the set of open arcs in y with a positive residual capacity, (after/thesremoval
of commodity flows for K,) and rc;; be residual capacity for arc (i, j) € A,. Finally/Tet N, be the set of
nodes joined by any of arcs in A,. The optimal flows for commodities K, are then obtained by ‘solving the
following reduced minimum cost network flow problem.

min z= Y Y € (24)

keKy (i,j)eA,

subject to
> o < rey Y, j)EA, 25)
ket
> oxi— Y di=b, ViENVkeC, (26)
JENT(i) JjeN (i)

Once the reduced network flow problem is solved,'the objective value of s’ can be computed through
partial evaluation since it is easier to calculate the objective difference between s and s'. In addition, in
our implementation, we further speed up the/Search by only sampling 10% of the neighbourhood randomly
when i = 4 (see Algorithm 1) since the size,of this neighbourhood is extremely large. However, for cases
h =2 and h = 3, the entire neighbourhoods areeyaluated.

7.2 Hybridising with other approaches

In this section we describe hew the x-node neighbourhood based tabu search approach can be hybridised
with other approaches’to improve'its performance. More specifically we hybridise it with a variable fixing
heuristic. The proposedihybrid algorithm can be illustrated by Figure 5.

The hybrid algorithm is“divided into four phases, they are MIP_TL, TA_MGLS, TA _k-node, and RMIP.
The first stage (denoted as MIP_TL) is the initialisation stage which adopts a Cplex MIP solver to generate
a feasible Solution by“directly solving the SNDP model (1)-(4) within a given time limit (¢;). TA_-MGLS
is the tabu assisted multi-start guided local search method proposed in Bai et al (2012). TA k-node is the
tabu,_search method we described in the previous section. RMIP is a post optimisation procedure which
solves a reduced MIP problem based on a pool of elite solutions found during the second and the third
phases{ The computational time for these three phases are denoted as #,, 3 and t4, respectively. The search
starts from the first phase and then goes through these phases sequentially. Each stage starts from the best
solution found from the previous stage and tries to improve it, except the final stage RMIP which operates
on a pool of elite solutions found in phase 2 and phase 3. In this application, the maximum size of the elite
solution pool is fixed to 100. Once the pool reaches the maximum size, inferior solutions will be replaced
with better solutions that are not in the elite pool yet. In the initialisation phase, if Cplex fails to generate a
feasible solution, TA_MGLS will start from an initial solution generated by LP_Round, a procedure which
solves the corresponding LP-relaxation of the problem and then rounds the design variables to the nearest
integers. The flow variables are then recomputed by solving the corresponding CMMCEF problem.
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Fig. 5 The diagrammatic illustration of the hybrid algorithm.

The underlining ideas for this hybridisation are: 1) for many problem instances, Cplex MIP solver
can find good quality (in a few cases, optimal)'selutions fairly quickly but often converges very slowly
afterwards. In addition, Cplex MIP tends to fail to produce feasible solutions for instances with a large
number of arcs. 2) The Tabu Assisted Multi-start Guided Local Search (TA_MGLS) (Bai et al, 2012) is
very efficient in finding a good quality feasible solution thanks to the special ability of the guided local
search which exploits the structure of the problem directly. 3) The x-node neighbourhood has much better
reachability than the previous meighbourhood. It can reach some local optima that otherwise cannot be
found. 4) We observed, i our initial experiments, that the network design differences between the best
neighbouring solutions‘found.in stage two and stage three are not significant. Many of them share identical
arc settings. In our hybrid algorithm, a reduced network design problem is modelled by prefixing the values
of these identical.arcs)in the original MIP model. In our experiments, the reduced problem was generally
solvable in 10415 $.for the majority of our tested instances with a few exceptions. We have set a time limit
of 60 s forsthis stage (see Table 4) to ensure the majority of the computational time can be spent on the
k-node neighbourhood search stage

The hybrid algorithm is applied to solve the same instances. The time limits for the four stages are set
to\; = 2400,#, = 600,13 = 4140,#4 = 60 seconds, respectively. Therefore, the total CPU time for each run
of theshybrid algorithm is 7200 seconds. The hybrid algorithm is run 5 times (each with a different random
seed).on a PC with 2.0GHz Intel Core 2 CPU and 8 GB RAM and the best and the mean results are reported.
Table 4 shows the detailed results of the four different stages of the hybrid algorithm and Table 5 compares
the final results by the hybrid algorithm against those by Cplex12.4 MIP solver with 2 hours time limit
(Cplex_2h), and a very recent metaheuristic TS-PR (Minh et al, 2013), which was run on a workstation
with AMD Dual-Core Opteron 2.4GHz CPU and 16GB RAM. Due to data unavailability in the referenced
article, only the best results out of 10 runs by TS-PR are included, each of which takes 7785 seconds CPU
time on average. It can be seen that the proposed hybrid algorithm based on the x-node neighbourhood
performed competitively and has found new best solutions for several instances. It is particularly suitable
as a quick post-optimisation approach for Cplex which appears to suffer slow convergence issues for some
nstances.
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Table 4 The results of the hybrid algorithm from the four stages, MIP_TL, TA_MGLS, TS_k-node, and RMIP. Times permitted
at these stages are 1| = 2400s,1, = 600s,13 = 4140s,14 = 60 seconds, respectively. gap% is the relative gap to the best known
solution.

Instance MIP_TL TA_MGLS TS_x node RMIP Overall

best avg best avg best avg best

c37 obj 98829 98829 98829 97737 98163 97274 97767 97274
gap% 1.6% 1.6% 1.6% 0.5% 0.9% 0.0% 0.5%

c38 obj 140495 | 140495 140495 | 139921 140351 | 139395 139468 139395
gap% 0.8% 0.8% 0.8% 0.4% 0.7% 0.0% 0.1%

c39 obj 100478 | 100478 100478 | 100478 100478 | 100478 100478 100478
gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c40 obj 140171 | 140017 140131 | 138994 139275 | 138994 139174 | 138994
gap% 0.8% 0.7% 0.8% 0.0% 0.2% 0.0% 0.1%

c45 obj 78054 78037 78049 77674 77826 77463 77658 77463
gap% 0.8% 0.7% 0.8% 0.3% 0.5% 0.0% 0.3%

c46 obj 120926 | 119324 120123 | 119259 119706 | 119259 119346 | 119259
gap% 1.4% 0.1% 0.7% 0.0% 0.4% 0.0% 0.1%

c47 obj 76208 76208 76208 76208 76208 76208 76208 | 76208*
gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c48 obj 112449 | 112449 112449 | 111475 112000 | 111475 111475 111475
gap% 0.9% 0.9% 0.9% 0.0% 0.5% 0.0% 0.0%

c49 obj 54683 54683 54683 54683 54683 54683 54683 | 54683*
gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0:0%

c50 obj 99322 99112 99211 98948 99141 98595 98773 98595
gap% 0.7% 0.5% 0.6% 0.4% 0.6% 0.0% 0.2%

c51 obj 53030 53030 53030 53030 53030 53030 53030 53030
gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0:0%

c52 obj 102512 | 102512 102512 | 101808 102022 |“101576 101798 101576
gap% 0.9% 0.9% 0.9% 0.2% 0.4% 0.0% 0.2%

c53 obj 115452 | 115384 115384 | 115330 115330 | 114891 114962 | 114891
gap% 0.5% 0.4% 0.4% 0.4% 0.4% 0.0% 0.1%

c54 obj 161118 | 155487 155715 | 154668 _ 155033 %, 154336 154837 154336
gap% 4.4% 0.7% 0.9% 0.2% 0:5% 0.0% 0.3%

c55 obj 118441 | 117891 117975 | 117295 117699 | 117141 117527 117141
gap% 1.1% 0.6% 0.7% 0.1% 0.5% 0.0% 0.3%

c56 obj 159863 | 159115 159246 | 157755, 158241 | 157655 158137 157655
gap% 1.4% 0.9% 1.0% 0:1% 0.4% 0.0% 0.3%

c57 obj 48693 48693 48693 48693 48693 48693 48693 | 48693*
gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c58 obj 61732 61647 61710 61494 61601 61433 61434 61433
gap% 0.5% 0.3% 0.5% 0.1% 0.3% 0.0% 0.0%

c59 obj 46751 46750 46751 46750 46751 46750 46750 46750
gap% 0.0% 0:0% 0.0% 0.0% 0.0% 0.0% 0.0%

c60 obj 56269 56269 56269 56252 56252 56207 56241 56207
gap% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1%

c61 obj 2156214 102876 103746 | 101692 102166 | 101316 101641 101316
gap% 1128% 1.5% 2.4% 0.4% 0.8% 0.0% 0.3%

c62 obj 405452 /| 148627 150385 | 145571 146812 | 145185 146447 145185
gap% 179.3% 2.4% 3.6% 0.3% 1.1% 0.0% 0.9%

c63 obj 192725 )f 100041 100808 99330 99750 99133 99604 99133
gap%. 94.4% 0.9% 1.7% 0.2% 0.6% 0.0% 0.5%

c64 obj 137015 | 135873 136407 | 134720 135437 | 134122 134916 | 134122
gap% 2.2% 1.3% 1.7% 0.4% 1.0% 0.0% 0.6%

avg-obj 120679 | 100993 101220 | 100407 100694 | 100221 100460 | 100221
avg gap % 16.9% 0.6% 0.8% 0.2% 0.4% 0.0% 0.2%

*: The optimal solution objective value.

8 Conclusions and Future Work

Service network design is the core problem for freight transportation network planning and optimisation.
The problem is strongly NP-Hard and is particularly challenging due to the complex constraints. Differing
from the previous studies which have focused on more effective generic search strategies, this research
proposed and studied a novel neighbourhood structure that permits simultaneous changes of multiple arcs
incident upon a number of given nodes while maintaining the solution feasibility throughout the search.
The new neighbourhood function, evaluated in the context of two basic metaheuristic approaches, showed
better reachability than the existing arc-flipping neighbourhood functions.
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Table 5 Results of the hybrid algorithm in comparison with Cplex and TS-PR. TS-PR (Minh et al, 2013) was run on a work-
station with AMD Dual-Core Opteron 2.4GHz CPU and 16GB RAM. The results are the best objective values out of 10 runs,
with each run taking 7785 seconds CPU time on average. Both CPlex_2h and our hybrid algorithm was given 7200 seconds
CPU time on a PC with 2.0GHz Intel Core 2 CPU and 8GB RAM. Therefore, TS-PR consumes much more computational time
than both CPlex and our hybrid algorithm. The hybrid algorithm was run five time and both the best, average and the worst
results are reported here. The best performing algorithm for each instance are highlighted in bold and the best results are listed
in the last column.

Instance Cplex_2h TS-PR Hybrid Algorithm best
id feature obj gap% best  gap% best  gap% avg  gap% known
c37  C20,230,200,V,.L 98271 1.0% 97274  0.0% 97274 0.0% 97767 0.5% 97274
c38  C20,230,200,EL | 141398  1.4% | 139395 0.0% | 139395 0.0% 139468 0.1% 139395
c39 C20,230,200,V,T | 100221 0.0% | 100720  0.5% 100478  0.3% 100478  0.3% | 100221%*
c40  C20,230,200,ET | 139278  0.2% | 138962  0.0% 138994  0.0% 139174 0.2% 138962
c45  C20,300,200,V,L 77907  0.6% 77584  0.2% 77463 0.0% 77658 0.3% 77463
c46  C20,300,200,EL | 120926  1.4% | 119987  0.6% | 119259 0.0% 119346 0.1% 119259
c47  C20,300,200,V,T 76208  0.0% 76450  0.3% 76208 0.0% 76208 0:0% 76208*
c48  C20,300,200,F T | 111963  0.4% | 111776  0.3% | 111475 0.0% 111475 0.0% 111475
c49  C30,520,100,V,L 54683  0.0% 54783  0.2% 54683 0.0% 54683 0.0% 54683*
¢50  C30,520,100,FL 99101  0.5% | 100098  1.5% 98595 0.0% 98773 0.2% 98595
c51  C30,520,100,V,T 53023 0.0% 53035  0.0% 53030  0.0% 53030 /.0.0% 53023
c52  C30,520,100,ET | 101599  0.2% | 101412  0.0% 101576  0.2% 101798 . 0.4% 101412
c¢53  C30,520,400,V.L | 114983  0.1% | 115528  0.6% | 114891 0.0% [ 114962 0.1% 114891
c54  C30,520,400,EL | 154295  0.6% | 153409  0.0% 154336  0.6% 154837  0.9% 153409
¢55  C30,520,400,V,T | 116781 0.0% | 117226  0.4% 117141 03% 117527  0.6% 116781
c56  C30,520,400,ET | 158307 1.5% | 155906  0.0% 157655 , 1.l% 158137  1.4% 155906
c57  C30,700,100,V,L 48693  0.0% 48807  0.2% 48693 0.0% 48693 0.0% 48693*
c¢58  C30,700,100,FEL 61448  0.1% 61408  0.0% 61433  0.0% 61434  0.0% 61408
c59  C30,700,100,V,T 46750  0.0% 46812 0.1% 46750 0.0% 46750 0.0% 46750
c60  C30,700,100,E T 56177  0.0% 56237  0.1% 56207 ,.01% 56241  0.1% 56177
c61  C30,700,400,V,L 99493  0.0% | 100583  1.1% 101316  1.8% 101641  2.2% 99493
c62  C30,700,400,EL | 141735 0.5% | 141037 0.0% 145185 2.9% 146447  3.8% 141037
c63  C30,700,400,V,T 97748  0.0% 97875  0.1% 99133  14% 99604  1.9% 97748
c64  C30,700,400,ET | 133387 0.0% | 133686  0.2% 134122 0.6% 134916  1.1% 133387
overall avg | 100182  0.4% | 1000000 0.3% 100221  0.4% 100460  0.6% 99735

* denotes the optimal solution objective.

Due to the scale of the proposed neighbourhoeod size and the computational complexity of the solution
evaluation, various techniques and heuristics have been designed to speed up the evaluation, including
cut/set inequality conditions checKing for candidate solutions with insufficient open arcs, approximate flow
redistributing on a residual network, and partial solution evaluations.

Finally a hybrid algorithm based on the x-node neighbourhood is developed and its results are com-
pared against Cplex MIP solver and a recent metaheuristic method TS-PR. The results by the prosed hybrid
algorithm are very competitive and some of them are the new best solutions. In future, we plan to extend
the proposed new ne€ighbourhood method to stochastic service network design problems which has similar
constraints but much lafger problem sizes and hence is more challenging to solve.
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