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Experiments have shown that a liquid droplet on an inclined plane can be made to move
uphill by sufficiently strong, vertical oscillations (Brunet, Eggers, and Deegan, Phys. Rev.
Lett. 99, 2007). In this paper, we study a two-dimensional, inviscid, irrotational model
of this flow, with the velocity of the contact lines a function of contact angle. We use
asymptotic analysis to show that for forcing of sufficiently small amplitude, the motion
of the droplet can be separated into an odd and an even mode, and that the weakly
nonlinear interaction between these modes determines whether the droplet climbs up or
slides down the plane, consistent with earlier work in the limit of small contact angles
(Benilov and Billingham, J. Fluid Mech. 674, 2011). In this weakly nonlinear limit,
we find that as the static contact angle approaches π (the non-wetting limit), the rise
velocity of the droplet (specifically the velocity of the droplet averaged over one period
of the motion) becomes a highly oscillatory function of static contact angle due to a high
frequency mode that is excited by the forcing. We also solve the full nonlinear moving
boundary problem numerically using a boundary integral method. We use this to study
the effect of contact angle hysteresis, which we find can increase the rise velocity of the
droplet, provided that it is not so large as to completely fix the contact lines. We also
study a time-dependent modification of the contact line law in an attempt to reproduce
the unsteady contact line dynamics observed in experiments, where the apparent contact
angle is not a single-valued function of contact line velocity. After adding lag into the
contact line model, we find that the rise velocity of the droplet is significantly affected,
and that larger rise velocities are possible.
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1. Introduction

The dynamics of a droplet on an inclined plane driven by strong, vertical, sinusoidal
oscillations have received much attention since the behaviour of this system was first
studied experimentally by Brunet et al. (2007, 2009). Not only are the dynamics sur-
prising (under the right circumstances, the droplet can climb uphill), but the flow is
unsteady, nonlinear and, as we shall see, mainly controlled by the dynamics of the three
phase contact line at the boundary between liquid, air and the solid plane beneath the
droplet. The unsteady dynamics of contact lines, particularly in the presence of contact
angle hysteresis, remains poorly understood, and the experimental data of Brunet et al.
(2007, 2009), subsequently extended by Sartori et al. (2015) to a wider range of fluids,
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provide a test bed for theories of unsteady contact line motion, which is important in, for
example, coating processes, Weinstein & Ruschak (2004), inket printing, Derby (2010)
and digital microfluidics, Fair (2007).

The usual approach to modelling unsteady flows with contact lines (see for example,
Hocking (1987), Billingham (2002)) is to assume that the contact line velocity is a single
valued function of the apparent contact angle, which can either be deduced from more
fundamental fluid mechanical considerations, for example, Marsh et al. (1993), Eggers &
Stone (2004), or measured experimentally in a steady flow, for example, Tanner (1979),
DussanV. (1979). Although we choose to use this approach in our initial analysis, the
assumption that an unsteady flow is slow enough that the moving contact lines are quasi-
steady is a strong one. There has been some theoretical progress on the effect of local
flows on unsteady contact lines, particularly inertial effects, for example, Cox (1998),
Sui & Spelt (2013), but experimental results are often hard to explain theoretically, for
example, Ting & Perlin (1995), Jiang et al. (2004) and, of course, Brunet et al. (2007,
2009).

There have been several attempts to model and understand the experimental results
of Brunet et al. (2007, 2009), using a wide range of assumptions and approximations.
John & Thiele (2010) used the thin film equation to model a viscous-dominated droplet
with small contact angles, and found that a ratcheting mechanism, which acts through
changes in the shape of the droplet, can cause it to climb. Benilov (2010) studied a
two-dimensional, quasi-static droplet (inertia and viscous stresses negligible compared to
surface tension forces). His main result was that the droplet can be made to climb uphill
if the acceleration of the plate is a combination of deep, narrow troughs and low, wide
peaks, which was demonstrated analytically for small contact angles and numerically for
the general case. However, the acceleration applied to the plate by Brunet et al. (2007)
was sinusoidal. Benilov (2011) extended this approach to a three-dimensional droplet
with small contact angles, which he found could climb uphill under the influence of a
sinusoidal oscillation. In Benilov & Cummins (2013), this model was studied for arbitrary
contact angles, and it was found that, as the static contact angle increases, the droplet
begins to climb uphill at lower forcing amplitudes. However, when the magnitude of the
contact angles reaches a critical size, dependent on the contact line law, the frequencies
at which the droplet can climb are bounded above. In all of these models, no contact
angle hysteresis was included. Bradshaw & Billingham (2016) extended the model of
Benilov (2011) to large amplitude oscillations, which allowed them to examine the effect
of contact angle hysteresis. They found that under some circumstances hysteresis can
cause the droplet to climb faster, and also that the footprint of the droplet is qualitatively
similar to that observed in experiments if the hysteresis interval is large enough.

In Benilov & Billingham (2011), the effect of fluid inertia, which it is hard to argue is
negligible in the experiments, was included by using the two-dimensional inviscid shallow
water equations along with a variety of contact line laws, including hysteresis. It was
found that, in this limit, the motion of the droplet under the action of small amplitude
forcing in the absence of hysteresis is due to the interaction between an odd (swaying)
and an even (spreading) mode. The dynamics for larger amplitude forcing also exhibit a
combination of swaying and spreading motions. When hysteresis is present, it was found
that the frequency at which the droplet climbs uphill fastest shifts towards the resonant
frequency of the droplet with pinned contact lines, and that the greatest rise velocity
(with rise velocity, Vr, defined to be the velocity of the midpoint of the base of the
droplet averaged over one period of the motion) increases in the presence of moderate
hysteresis, a phenomenon that we will examine in more detail below. Both Borcia et al.
(2014) and Sartori et al. (2015) used a two-dimensional phase field method to include
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Figure 1. The geometry of the droplet and the Cartesian coordinate system.

the effect of viscous stresses, solving the full Navier-Stokes equations, with the motion
of the contact lines controlled by the fluid-wall interaction model. Their results were
qualitatively similar to those of Benilov & Billingham (2011). This numerical method
does not give much control over the model for the contact line dynamics, and cannot
simulate the effect of contact angle hysteresis.

In this paper, we will extend the analysis of Benilov & Billingham (2011), which
assumed that the two contact angles of a two-dimensional droplet are small, to arbitrary
contact angles. We retain the assumption that the flow is inviscid and irrotational. In
Section 2 we further discuss the assumptions that we have made and derive the governing
equations for the flow. In Section 3 we study the case of small amplitude forcing and show
that the rise velocity of the droplet is controlled by the weakly nonlinear interaction of odd
and even linear modes of oscillation, consistent with the results of Benilov & Billingham
(2011) for the case of small contact angles. In Section 4 we outline our numerical solution
method for the fully nonlinear free boundary problem, and discuss how the parameters
affect the behaviour of the droplet. We also study a simple model for the motion of the
contact line that includes a finite lag, and leads to contact line behaviour closer to that
observed in experiments.

2. Governing Equations

As discussed in Section 1, our starting point will be the model for an inviscid,
irrotational flow described in Benilov & Billingham (2011), but we will not make the small
contact angle/shallow water approximation. The Cartesian (x, y)−coordinate system is
shown in Figure 1. The inviscid fluid in the droplet has constant density ρ and its interface
with the surrounding air has surface tension coefficient σ. The fluid lies on a substrate
inclined at angle α to the horizontal that is oscillating vertically and sinusoidally with
amplitude a0 and frequency ω. The frame of reference is fixed in the substrate, so that
the applied acceleration appears as a body force in the governing equations. In terms of
a velocity potential, φ(x, y, t), the boundary value problem that we must solve is

∇2φ = 0, (2.1)
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in the domain D(t) occupied by the fluid, with free boundary x ≡ (x, y) = X(s, t) ≡
(X(s, t), Y (s, t)), where s is arc length measured along the free surface, with s = 0 at the
contact line with smaller x and s = L(t), the total arclength, at the other contact line.
The dynamic boundary condition is

∂φ

∂t
+

1

2
|∇φ|2 − σκ

ρ
+ a(t) (X sinα+ Y cosα) = 0 on x = X(s, t), (2.2)

where κ is the curvature of the free surface and a(t) = g + a0 sinωt is the effective
body force due to gravity and the oscillation of the substrate. The kinematic boundary
condition is

n · dX

dt
=
∂φ

∂n
on x = X(s, t), (2.3)

where n is the outward unit normal. The impermeability of the substrate gives the
boundary condition

∂φ

∂y
= 0 on y = 0 for x−(t) 6 x 6 x+(t).

The two contact lines are at x = x±(t). We will assume that the velocity of a contact
line with contact angle θ measured through the fluid is a single-valued function v(θ), as
discussed above, where

v(θ) < 0 for θ < θR,
v(θ) = 0 for θA > θ > θR,
v(θ) > 0 for θ > θA.

(2.4)

Here θA is the advancing contact angle and θR the receding contact angle. The boundary
conditions at the contact lines are therefore

∂φ

∂s
= v(θ−) cos θ−,

dx−
dt

= v(θ−) at s = 0, (2.5)

∂φ

∂s
= v(θ+) cos θ+,

dx+
dt

= v(θ+) at s = L, (2.6)

with the contact angles given by

tan θ− =
∂Y/∂s

∂X/∂s

∣∣∣∣
s=0

, tan θ+ = − ∂Y/∂s

∂X/∂s

∣∣∣∣
s=L

.

In order to simplify our analysis, we write the problem in a moving frame of reference
with origin at the midpoint of the footprint of the droplet. The velocity of this frame is

Vs(t) =
1

2

(
dx+
dt

+
dx−
dt

)
,

and we define new variables

x = xn +
1

2
(x+ + x−), φ = φn + Vsxn, D(t) =

1

2
(x+ − x−).

Instead of solving for the positions of the contact lines directly, we now need to determine
D, the half-width of the droplet, and Vs. We also define dimensionless variables using

xn = D0x̂, y = D0ŷ, φn =
D2

0

T
φ̂, t = T t̂ V =

D0

T
V̂ ,

a = a0â, κ =
1

D0
κ̂, D = D0D̂, s = D0ŝ, L = D0L̂,

(2.7)
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Parameter Symbol Typical Value Units

Volume V 5× 10−9 m3

Contact Angle θ0 1.08 rad
Density ρ 1190 kg m−3

Kinematic Viscosity ν 3.1× 10−5 m2 s−1

Surface Tension σ 0.066 kg s−2

Acceleration a0 174 m s−2

Frequency f ≡ 2πω 50.77 s−1

Slope α π/4 rad

Table 1. Typical values for the parameters taken from Brunet et al. (2007).

where D0 is a representative lengthscale of the droplet and the timescale is

T =

√
ρD3

0

σθ0
,

where θ0 is the static contact angle or, in the presence of contact angle hysteresis, θ0 =
1
2 (θA + θR) . This is the timescale on which surface tension balances inertia. In addition,

the body force becomes â = sin ω̂t̂ + εĝ. These scalings give rise to the dimensionless
parameters

ε =
ρa0D

2
0 sinα

σθ0
, γ =

θ0
tanα

, (2.8)

which are the dimensionless amplitude of the applied oscillation and the slope of the free
surface relative to the slope of the substrate. In addition, we have

ω̂ = Tω, ĝ =
g

εa0
, (2.9)

which are the dimensionless frequency of the oscillations and a scaled ratio of the
gravitational acceleration to the applied acceleration. Table 1 shows some typical values
of the physical parameters appropriate for the experiments of Brunet et al. (2007). We
will assume that a droplet with a volume of 5µl has a lengthscale D0 ≈ 2 mm, which is
the cube root of the volume and also the approximate capillary length. This leads to

ε ≈ 8.1, γ ≈ 1.08, ω̂ ≈ 1.30, ĝ ≈ 2.75× 10−2, θ0 ≈ 1.08. (2.10)

In addition, we find that the Reynolds number, using ωD0 as the velocity scale, is

Re =
ωD2

0

ν
≈ 41.2,

which gives us reasonable grounds for neglecting viscous stresses. Note that the effect
of viscosity on the contact line dynamics is not neglected; it is modelled through the
function v(θ), and that the assumption of two-dimensionality is likely to have a more
significant effect on our results than the neglect of the oscillating boundary layer on the
solid surface.

The final, dimensionless set of equations that we will study is, dropping hats for
notational convenience,

∇2φ = 0 in D(t), (2.11)
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subject to

∂φ

∂t
+

1

2
|∇φ|2 +

dVs
dt

x− 1

θ0
κ+ εa

(
X +

γ

θ0
Y

)
= 0 on x = X(s, t), (2.12)

n · dx

dt
=
∂φ

∂n
on x = X(s, t) (2.13)

∂φ

∂y
= 0 on y = 0, (2.14)

dD

dt
= v(θ−) + Vs, y = 0,

∂φ

∂s
= −dD

dt
cos θ− at s = 0, (2.15)

dD

dt
= v(θ+)− Vs, y = 0,

∂φ

∂s
=

dD

dt
cos θ+ at s = L. (2.16)

These equations must be solved for the position of the free surface, X(s, t), the velocity
potential, φ(x, y, t), the half-width D(t) and the velocity of the midpoint of the base of
the drop, Vs(t), which we refer to as the velocity of the drop.

3. Asymptotic solution for small amplitude forcing (ε� 1)

In this Section we will solve (2.11) to (2.16) in the limit of small forcing (ε� 1). The
structure of this weakly nonlinear solution is the same as that described in Benilov
& Billingham (2011), with the leading order solution steady, the O(ε) correction a
combination of odd and even modes, and the leading order rise velocity of the droplet
of O(ε2), fixed by considering an integral of the full problem. We are unable to study
contact angle hysteresis using this approach, since the contact line remains pinned in the
limit ε → 0 if θA > θR. We therefore take θA = θR ≡ θ0 and Taylor expand the contact
line law close to equilibrium as

v(θ±) = v′
(
θ±
θ0
− 1

)
+

1

2
v′′
(
θ±
θ0
− 1

)2

+ ..., (3.1)

where v′, v′′ are dimensionless constants, equivalent to the constants of the same name
in Benilov & Billingham (2011).

At leading order as ε→ 0 the droplet is at rest in equilibrium, with its free surface an
arc of a circle. This means that the analysis is more straightforward in a polar coordinate
system (r, θ), with this free surface centred at the origin at leading order, as shown in
Figure 2. Note that our choice of dimensionless parameters gives a droplet footprint of
unit equilibrium half-width. The free surface of the droplet is now given by r = R(θ, t).
We expand each unknown in powers of ε, for example, R = R0 + εR1 +O(ε2) as ε→ 0.

The leading order solution, which represents the droplet in the absence of any external
forces, is

φ0 = − sin θ0
θ0

t, R0 =
1

sin θ0
, V0 = 0. (3.2)

We proceed by seeking a time-harmonic solution at O(ε) and therefore define

φ1 = <
{
φ̃eiωt

}
, V1 = <

{
Ṽ eiωt

}
, R1 = =

{
R̃eiωt

}
, D1 = =

{
D̃eiωt

}
. (3.3)

This leads to a linear boundary value problem set in the domain D0 occupied by the
droplet at leading order,

∇2φ̃ = 0 in D0, (3.4)
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Figure 2. The leading order position of the free surface in the polar coordinate system used in
the asymptotic analysis when ε� 1.

subject to

ωφ̃+ ωṼ
cos θ

sin θ0
+

sin2 θ0
θ0

(
∂2R̃

∂θ2
+ R̃

)

=
1

sin θ0

[
cos θ +

γ

θ0
(sin θ − cos θ0)

]
on r = R0,

(3.5)

ωR̃ =
∂φ̃

∂r
on r = R0, (3.6)

R̃ = sin θ0D̃,
∂φ̃

∂θ
= ∓ cot θ0ωD̃ at θ =

π

2
∓ θ0, (3.7)

v′
sin θ0
θ0

∂R̃

∂θ
− iṼ ±

(
v′

sin θ0
θ0

cos θ0 − iω
)
D̃ = 0 at θ =

π

2
∓ θ0. (3.8)

In the limit θ0 → 0, (3.4) to (3.8) reduce to (3.26) to (3.31) in Benilov & Billingham
(2011).

We will solve (3.4) to (3.8) numerically, but we can first reduce the geometrical
complexity of this boundary value problem by conformally mapping to the upper half
plane using the transformation

w =

(
1 + z − i cot θ0
1− z + i cot θ0

)π/θ0
, (3.9)

where z = x + iy. The base of the droplet is mapped to the positive real axis and the
surface of the droplet to the negative real axis with the contact line at x = −1, y = cot θ0
becoming the origin in the w-plane. It is now straightforward to solve for φ̃ in the upper
half-plane and eliminate it from the problem. This leads to the integral equation

sin3 θ0
θ0

(
∂2R̃

∂θ2
+ R̃

)
− ω2

π

∫ π/2+θ0

π/2−θ0
R̃(θ̂) ln

∣∣∣u(θ)− u(θ̂)
∣∣∣dθ̂ + ωṼ cos θ

= cos θ +
γ

θ0
(sin θ − cos θ0)− ωφ∞ sin θ0,

(3.10)
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for π/2− θ0 6 θ 6 π/2 + θ0, where

u(θ) =

(
eiθ − ieiθ0
ie−iθ0 − eiθ

)π/θ0
,

and φ∞ is a constant determined by the mass conservation condition∫ π/2+θ0

π/2−θ0
R̃(θ̂)dθ̂ = 0. (3.11)

The boundary conditions are

R̃ = D̃ sin θ0,
∂R̃

∂θ
− iθ0Ṽ

v′ sin θ0
±
(

cos θ0 −
iωθ0

v′ sin θ0

)
D̃ = 0, at θ =

π

2
∓ θ0. (3.12)

The solution of this integral equation can be separated into an odd part associated with
Ṽ (a swaying mode) and an even part associated with D̃ (a spreading mode), as was the
case for θ0 � 1 (Benilov & Billingham 2011). We solve (3.10) to (3.12) using a finite
difference discretisation, evaluating the integral using Simpson’s rule, whilst taking care
to subtract out the weak singularities in the integrand where appropriate.

The final part of this asymptotic analysis involves the force balance on the droplet.
In terms of the dimensionless velocity field, u ≡ (u, v) = ∇φ, the x-component of the
momentum equation is

du

dt
+

dVs
dt

= −∂p
∂x
− εa. (3.13)

If we integrate this equation over the droplet and use Reynolds’ transport theorem along
with incompressibility and the boundary conditions, we find that

d

dt

(∫
D
udA+ VsA0

)
=

1

θ0

∫ x+

−x−

nxκdS − εaA0, (3.14)

where A0 is the (constant) area of the droplet and nx is the x-component of the outward
unit normal to the equilibrium free boundary. Averaging over a period of the oscillation
eliminates the term on the left hand side, and the integral on the right hand side can be
evaluated analytically to give

cos θ+ − cos θ− = θ0εāA0, (3.15)

where the overbar represents the time average. Finally, if we rearrange (3.1) and substi-
tute into the left hand side, using the first order asymptotic solutions for D1 and V1, we
are left with

Vr = ε2
[
ω

2v′

(
v′′

v′
− θ0 cot θ0

)
<
(
Ṽ D̃∗

)
− gv′A0

2 sin θ0

]
+O(ε3), (3.16)

the leading order approximation to the rise velocity of the droplet, which is of O(ε2) (a
similar argument is used in Longuet-Higgins (1953, 1983) and Lighthill (1978)). The first
term depends linearly on frequency, ω, nonlinearly on the contact line law through v′ and
v′′, and is driven by the relative phase of the spreading and swaying modes through the

term <
(
Ṽ D̃∗

)
. The second term is the sliding velocity of the droplet in the absence of

the applied acceleration. This is qualitatively the same as (3.44)† in Benilov & Billingham

† Note this corrects a typographical error in (3.44) of Benilov & Billingham (2011)
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(2011), which is recovered from (3.16) in the limit θ0 → 0 as

Vr = ε2
[
ω

2v′

(
v′′

v′
− 1

)
<
(
Ṽ D̃∗

)
− gv′

3

]
, (3.17)

which gives us some confidence in the accuracy of our analysis. We will discuss this linear
solution in Section 4.

4. Numerical solutions of the full problem

In this section we will outline the numerical method that we use to solve the full,
nonlinear free boundary problem, given by (2.11) to (2.16), and discuss what we can
learn about the dynamics of the droplet for a variety of contact line laws. In Bradshaw
(2016), a wide range of models for the moving contact line (choices of v(θ)) is discussed
in detail. In this paper, we will focus on three areas: a linear contact line law; the effect
of contact angle hysteresis; a time-dependent contact line law. Note also that in all of
our numerical results the effect of gravity is small, leading simply to an additional mean
downward velocity and little change to the shape of the free surface. Given that in the
experiments of Brunet et al. (2007) the applied acceleration is an order of magnitude
greater than the acceleration due to gravity, this is entirely reasonable, and we will take
g = 0 below.

4.1. Numerical solution method

We represent the free surface using straight line elements and solve Laplace’s equation
using the boundary integral method with φ constant on each element (Pozrikidis 2002).
The tangential velocity of the boundary nodes is controlled by virtual springs chosen
to keep the nodal spacing even (Billingham 2002). The curvature and slope of the free
surface are calculated by fitting a circular arc through three adjacent boundary points.
Fully implicit timestepping is used, which is necessary in order to move the contact lines at
the prescribed contact line velocity, v(θ). The resulting nonlinear algebraic equations are
solved at each time step using quasi-Newton iteration, with the solution at the previous
timestep as the initial guess. One further point to note is that the accumulation of small
numerical error leads to a slow change in the area of the droplet, which is a conserved
quantity of the motion. We correct for this by including a time-dependent source term
on the right hand side of Laplace’s equation, whose (small) strength is determined as
part of the soluton at each timestep to keep the area of the droplet constant.

In order to compute periodic solutions, we solve an initial value problem with a time-
dependent forcing that slowly increases to the required value of ε in order to avoid
breakage of the droplet by the initial transient. We then continue timestepping until
the solution has converged to a time-periodic form. Further details of this and all other
aspects of the implementation can be found in Bradshaw (2016).

4.2. Linear contact line law: θA = θR = θ0, v(θ) = v′(θ/θ0 − 1)

A linear contact line law, v(θ) = v′(θ/θ0 − 1), is the simplest possible choice, charac-
terised by the values of v′ and θ0 alone. Whether or not this is a realistic approximation
to the experimentally observed motion of a contact line, by studying it we are able to
gain some insight into what controls the dynamics of the droplet. A point to note however
is that when the amplitude, ε, of the applied acceleration is large enough, as well as the
possibility of the droplet breaking through ejection of a satellite droplet (pinch-off) or
the appearence of a dry patch (touchdown), the contact angle may reach either zero or
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Figure 3. The rise velocity of the droplet as a function of ω for γ = 5, θ0 = 0.05, v′ = 0.5 and
no contact angle hysteresis. The dashed line is the asymptotic solution for ε � 1, whilst the
solid lines, following the direction of the arrow, are for ε = 0.25, 0.5, 0.75 and 1. The results
stop at ω = 8.225 for ε = 0.75 and ω = 6.975 for ε = 1 because one of the contact angles reaches
zero.

π. Whilst the former two cases may be physically realistic, the latter takes the contact
angle well beyond the range where a linear contact line law is likely to be valid.

We begin by studying the behaviour of the droplet with different static contact angles
by varying θ0. We then consider the effect of changing the inclination of the substrate
by varying γ and the mobility of the contact line by varying v′. In each case, we focus
on the rise velocity of the droplet as a function of the forcing frequency and amplitude,
ω and ε.

4.2.1. The effect of varying the static contact angle, θ0

Figure 3 shows how the rise velocity of the droplet varies with the frequency of the
applied acceleration for θ0 = 0.05 and various values of ε. This reproduces the result
presented in Benilov & Billingham (2011) for θ0 � 1, and also shows good agreement
with the asymptotic solution for ε� 1 (for values of ε smaller than 0.25, agreement with
the asymptotic solution becomes progressively closer as ε decreases). As noted in Benilov
& Billingham (2011), the small ε asymptotic solution is in remarkably good agreement
with the numerical solution of the full problem even when ε = 1, with the rise velocity
approximately proportional to ε2. We can see similar results in Figure 4 for a larger
static contact angle, θ0 = 1. Although there is a somewhat larger deviation as ε grows,
the rise velocity remains close to that predicted by the weakly nonlinear asymptotic
solution for ε� 1 and the qualitative behaviour is very similar to that shown in Figure 3
for θ0 = 0.05, with the droplet rising at lower frequencies of forcing, falling at higher
frequencies, and remaining static (in the absence of gravity) as ω →∞. Figure 5 shows
the position of the contact lines as a function of time for the parameter values used in
Figure 4. The rise of the droplet over each cycle of the driving acceleration is clearly
visible. Figure 6 shows how the rise velocity changes as the static contact angle, θ0,
varies from 0.2 to 1.4. The maximum rise velocity shifts to lower frequencies, and the
value of this maximum increases slightly until θ0 ≈ 1, then decreases. At θ0 = π/2, the
rise velocity is zero at all frequencies, consistent with the asymptotic result for ε � 1,
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Figure 4. The rise velocity of the droplet as a function of ω for γ = 5, θ0 = 1, v′ = 0.5 and
no contact angle hysteresis. The dashed line is the asymptotic solution for ε � 1, whilst the
solid lines, following the direction of the arrow, are for ε = 0.25, 0.5, 0.75 and 1 respectively.
The results stop at ω = 3.975 for ε = 0.75 and at ω = 0.55 for ε = 1 because one of the contact
angles reaches zero. In addition, the results for ε = 1 do not start until ω = 0.25 because the
droplet pinches off for frequencies lower that this.
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Figure 5. The position of the contact lines as a function of time for ε = 0.75 with the same
parameters as those used in Figure 4.

(3.16). For static contact angles greater than π/2, the dynamics of the droplet start to
show very sensitive dependence on θ0. Figure 7 shows the rise velocity of the droplet as
a function of ω and θ0, calculated from the asymptotic solution when ε � 1. We have
verified as far as possible using numerical solutions of the full problem that the rapid
oscillations shown are calculated correctly. We can explain this unexpectedly sensitive
dependence of the rise velocity on the contact angle by noting that as θ0 → π increasingly
high order harmonic modes of oscillation are excited on the surface of the droplet, as
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Figure 6. The rise velocity of the droplet as a function of ω for ε = 0.1, γ = 5, v′ = 0.5 and no
contact angle hysteresis. θ0 increases in the direction of the arrow, starting at 0.2 and increasing
in multiples of 0.2.

Figure 7. The rise velocity of the droplet, calculated using the asymptotic solution for ε� 1,
for γ = 1, v′ = 0.5.

shown in Figure 8. Although this complex interaction between the modes of oscillation
of the droplet and the substrate is very interesting, it is also strongly dependent on the
two-dimensional nature of our approximation (the fluid is really an oscillating cylinder),
so we will not pursue it further here. However, this result does suggest that the dynamics
of small droplets on oscillating, superhydrophobic surfaces is likely to be very complex,
and worthy of further experimental and theoretical study.

4.2.2. The effect of varying the slope of the substrate, γ−1

Equation (2.12) shows how the parameter γ controls the relative size of the tangential
(x) forcing and normal (y) forcing terms, which control the swaying and spreading modes
respectively. Increasing the parameter ε varies both modes equally, whilst increasing γ
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Figure 8. Snapshots of the shape of the droplet with ε = 0.5, γ = 1, ω = 2, v′ = 0.5 and θ0 = 1,
2.2, 2.5, 2.65, 2.74, 2.8 and 2.84. The filled graphs are numerical solutions of the full problem,
whilst the unfilled graphs are drawn using the asymptotic solution for ε� 1.

increases the amplitude of just the spreading mode. We can see this in the solutions
shown in Figure 9, where the solution for γ = 10 has a larger spreading component than
that for γ = 1. The effect of changing γ on the rise velocity of the droplet is comparable
to that of changing ε, with the rise velocity proportional to γ, as shown in Figure 10.

4.2.3. The effect of varying the mobility of the contact line, v′

Varying v′, the contact line mobility, has a strong effect on the dynamics of the droplet.
Note that, as v′ → 0 the contact line approaches complete pinning, and as v′ → ∞,
the contact angle remains close to constant. Doubling v′ from 0.5 to 1 decreases the
magnitude of the rise velocity, as shown in Figure 11, and a further doubling to 2, as
shown in Figure 12 completely changes the sign, and hence the qualitative nature, of the
rise velocity, although it continues to remain close to the asymptotic solution for ε� 1.
Note also from (3.16) that as v′ → ∞, the rise velocity for ε � 1 is dominated by the
downward component due to gravity (although we have set g = 0 in all our simulations).
There is no net dissipation over a full cycle of the oscillation at a contact line with
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Figure 9. The oscillating droplet plotted at equal time intervals over one period of oscillation.
The parameter values are ε = 0.5, θ0 = 1, ω = 2, v′ = 0.5 with no contact angle hysteresis. The
droplets have γ = 1 for the darker shaded droplet and γ = 10 for the lighter shaded droplet.
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Figure 10. The rise velocity of the droplet as a function of ω for ε = 0.5, θ0 = 1, v′ = 0.5 and
no contact angle hysteresis. The value of γ increases in the direction of the arrow, with γ = 1,
5, 8 and 10. The results stop at ω = 4.125 for γ = 8 and ω = 2.125 for γ = 10 due to one of the
contact angles reaching zero.

constant contact angle since the constant tangential component of the surface tension
force does no net work there.

In order to understand what happens when v′ is small, and the droplet close to pinned,
consider the asymptotic solution for ε � 1 with v′ = 0.05 shown in Figure 13. The rise
velocity is close to zero, except for sharp spikes at a discrete set of frequencies. Since
the contact lines are close to pinned, we would expect that these frequencies are close
to the resonant frequencies of a completely pinned droplet. We can investigate this by
solving (3.4) to (3.8), which control the small amplitude oscillation of the droplet, after
modifying the boundary conditions to those appropriate for pinned contact lines, which
also has Ṽ = D̃ = 0, to give

∇2φ̃ = 0 in D0, (4.1)
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Figure 11. The rise velocity of the droplet as a function of ω for γ = 5, θ0 = 1, v′ = 1 and no
contact angle hysteresis. The dashed line is the asymptotic solution for ε � 1, whilst the solid
lines, following the direction of the arrow, have ε = 0.25, 0.5, 0.75, and 1. The dotted line is the
asymptotic solution for ε� 1 when v′ = 0.5. The results for ε = 1 do not start until ω = 0.375
due to the droplet pinching off and stop at ω = 3.75 due to one of the contact angles reaching
zero.
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Figure 12. The rise velocity of the droplet as a function of ω for γ = 5, θ0 = 1, v′ = 2 and no
contact angle hysteresis. The dashed line is the asymptotic solution for ε � 1, whilst the solid
lines, following the direction of the arrow, have ε = 0.25, 0.5, 0.75, and 1. The dotted line is the
asymptotic solution for ε� 1 when v′ = 0.5. The results for ε = 1 do not start until ω = 0.375
due to the droplet pinching off and stop at ω = 2.75 due to one of the contact angles reaching
zero.

subject to

ωφ̃+
sin2 θ0
θ0

(
∂2R̃

∂θ2
+ R̃

)
=

1

sin θ0

(
cos θ +

γ

θ0
(sin θ − cos θ0)

)
at r = R0, (4.2)

ωR̃ =
∂φ̃

∂r
at r = R0, (4.3)
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Figure 13. The asymptotic solution for ε � 1 when γ = 1, θ0 = 1, v′ = 0.05 and no contact
angle hysteresis. The first three resonant frequencies for a pinned droplet are shown as broken
lines.
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Figure 14. Measures of the magnitude of the odd (left) and even (right) modes as a function
of ω for γ = 5, θ0 = 1 and pinned contact lines. Resonant frequencies appear as singularities in
these plots.

and

R̃ = 0,
∂φ̃

∂θ
= 0 at θ = π

2 ∓ θ0. (4.4)

The O(ε) correction to the time-dependent contact angles can be deduced from

θ± = θ0 ± ε sin θ0
∂R̃

∂θ
+O(ε2) at θ =

π

2
∓ θ0. (4.5)

The motion can still be decomposed into even (spreading) and odd (swaying) modes,
which we can quantify by calculating θ+ + θ− and θ+ − θ− respectively. Since pinned
contact lines provide no damping, we expect to find a sequence of resonant frequencies,
and these can indeed clearly be seen in Figure 14. Comparison with Figure 13 shows that
the peaks in the magnitude of the rise velocity of the droplet when v′ is small do indeed
coincide with these resonant frequencies.

For the case of a linear contact line law, we have found that the rise velocity of the
droplet is close to proportional to γε2 even when ε is not small. Results for nonlinear
contact line laws without hysteresis (see Bradshaw (2016) for more details) suggest that
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Figure 15. The rise velocity of the droplet as a function of ω for ε = 0.1, γ = 5, θ0 = 1, v′ = 0.5.
The dashed line is the rise velocity in the absence of contact angle hysteresis, whilst the solid
lines are the results for hysteresis intervals of 0.02, 0.04 and 0.06.

this is mainly due to the linearity of the contact line law. In addition, v′, the mobility
of the contact line, and θ0, the static contact angle, have a strongly nonlinear effect on
the rise velocity. Overall, this suggests that the model that we use for the motion of the
contact line has the most effect on the dynamics of the droplet.

4.3. Hysteresis

Figure 15 shows the effect of various nonzero hysteresis intervals θI ≡ θA − θR, on
the rise velocity of the droplet. The presence of odd resonant frequencies close to ω = 3
and ω = 10 has a strong effect on the rise velocity. The effect of the even mode close to
ω = 6 is less striking. The maximum rise velocity is significantly increased by hysteresis,
but close to ω = 10 the resonance leads to a sliding droplet. We can examine the effect
of hysteresis on the rise velocity in more detail by fixing ω and varying θI , as shown in
Figure 16. The rise velocity increases by a factor of more than two from its value when
θI = 0, but for large enough θI the droplet is completely pinned to the substrate. Note
also that, although it is a priori possible that the rise velocity of the drop is related in a
simple manner to the relative amplitudes of the spreading and swaying modes, in each of
the cases discussed above a close examination of the numerical solutions does not provide
any conclusive evidence for this (see Bradshaw (2016) for a discussion).

4.4. Time dependent contact line law

Figure 17 shows velocities of the leading and trailing contact points measured in the
experiments of Brunet et al. (2007) plotted as a function of measured apparent contact
angle for both a sliding and a climbing droplet. The most striking feature of these graphs
is that the contact line velocity is not a single-valued function of the apparent contact
angle. Similar results can be found in Ting & Perlin (1995) and Jiang et al. (2004).
Although it could be argued that the actual, microscopic contact angle is a single-valued
function of contact line velocity (most likely a constant), and that the behaviour of the
apparent, measured contact angle is influenced by both viscous bending and inertia close
to the contact line, this is does not help us within the traditional modelling framework
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Figure 16. The rise velocity of the droplet as a function of the hysteresis interval for ε = 0.1,
γ = 5, θ0 = 1, ω = 2 and v′ = 0.5.
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Figure 17. The velocity of the leading and trailing contact points as a function of the measured
apparent contact angles, taken from the experiments of Brunet et al. (2007). The left graph is
for a sliding droplet and the right graph is for a climbing droplet. The dashed lines are θ+ and
the solid lines are θ−.

that we have adopted here, where all the physics of the contact line is bundled into a
model that gives contact line velocity as a function of contact angle. This leads us to
propose that it is of interest to investigate the simplest possible time-dependent contact
line law, namely

τ
dV

dt
+ V = v(θ), (4.6)

where V (t) is the velocity of the contact line, v(θ) is a prescribed, single-valued function
of the contact angle θ and τ is the constant timescale over which the contact line velocity
adjusts. The actual velocity of the contact line will lag behind the prescribed velocity,
v(θ). When τ = 0, we recover the standard form of the contact line law. Note that (4.6)
can also be written as

V (t) =
1

τ
e−t/τ

∫ t

0

es/τv(θ(s)) ds+ e−t/τV (0). (4.7)

It is straightforward to include (4.6) in the weakly nonlinear analysis for ε � 1
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Figure 18. The rise velocity of the droplet as a function of ω for γ = 1, θ0 = 1, v′ = 1 and
τ = 0.1. The dashed line is the asymptotic solution for ε � 1, whilst the solid lines, following
the direction of the arrow, have ε = 0.25, 0.5, 0.75 and 1. The dotted line is the small amplitude
asymptotic solution for τ = 0.
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Figure 19. The velocity of the contact lines as a function of contact angle for the time dependent
contact line law with τ = 0.1 and v′ = 1. The left graph is for ω = 1 and the right is for ω = 6.
The dashed line is θ+ and the solid line is θ−.

presented in Section 3 and find that

Vr = ε2

[
ω
(
1 + ω2τ2

)
2v′

(
v′′

v′
− θ0 cot θ0

)
<
(
Ṽ D̃∗

)
− gv′A0

2 sin θ0

]
+O(ε3). (4.8)

Some results for an unsteady, linear contact line model are shown in Figure 18. Although
the rise velocity remains close to proportional to ε2, increasing τ strongly affects the rise
velocity, in particular making the maximum rise velocity significantly larger. Figure 19
shows how the contact line velocities vary with contact angle. As expected, this is no
longer a simple, single-valued relationship and takes the form of an ellipse for ε � 1.
Figure 20 shows how the rise velocity varies as τ increases. When τ is not small, the
effect on the rise velocity is dramatic. For the two largest values of τ shown, the graph
terminates at finite ω because one of the contact angles reaches zero. Figure 21 shows
that the inclusion of hysteresis in the unsteady contact line model has an even stronger
effect, even more significant than the effect for the steady contact line law with hysteresis.
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Figure 20. The rise velocity of the droplet as a function of ω for ε = 0.5, γ = 1, θ0 = 1 and
v′ = 1 for the time dependent contact line law. The solid lines, following the direction of the
arrow, have τ = 0, 0.01, 0.1, 0.25, 0.5, 0.75 and 1.
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Figure 21. The rise velocity of the droplet as a function of ω for ε = 0.1, γ = 1, θ0 = 1, τ = 0.1
. The dashed line is the rise velocity when there is no contact angle hysteresis, whilst the solid
lines have a hysteresis interval of 0.02, 0.04 and 0.06.

Figure 22 shows how the behaviour of the contact line velocity as a function of contact
angle is distorted by the presence of hysteresis. Finally, note that, although we have used
a variety of different contact line laws, we have been unable to qualitatively reproduce
the experimentally observed behaviour of the contact lines, although we note that our
results are consistent with a droplet climbing up the plane when ω ≈ 1.

5. Conclusion

In this paper we studied a two-dimensional, inviscid model of the motion of a droplet
on a solid plane that is strongly oscillating in the vertical direction. This is the extension
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Figure 22. The velocity of the contact lines as functions of contact angle for ω = 2, τ = 0.1.
The left graph shows θ+ and the right graph θ−. The hysteresis interval is 0, 0.02, 0.04 and 0.06,
increasing in the direction of the arrow.

to arbitrary static contact angles of the work of Benilov & Billingham (2011). For small
amplitude forcing with a linear contact line law, we were able to find an asymptotic
solution. In all other cases, we solved the free boundary problem numerically, using the
boundary integral method. In each case, we found that the behaviour of the contact
lines dominates the motion of the droplet. By varying the model used for the contact
line velocity as a function of the the apparent contact angle, we were able to study a
wide variety of qualitatively different responses to the external forcing. As was found for
the case of small contact angles, when the forcing is small and there is no contact angle
hysteresis, the motion of the droplet is controlled by the weakly nonlinear interaction of
swaying and spreading modes. For a linear contact line law, the weakly nonlinear form
of the rise velocity remains a remarkably good approximation to the solution when the
forcing parameter, ε, is of O(1). In this case, the contact line mobility, v′, has a strong
effect on the rise velocity. We also studied the effect of contact angle hysteresis, which,
as long as the hysteresis interval is not too large, can increase the rise velocity of the
droplet due to the effect of the resonant modes of a fully pinned droplet.

Since the contact angle velocity is not observed to be a single-valued function of the
apparent contact angle in the experiments of Brunet et al. (2007), we also studied a
simple model for the motion of the contact line that has a memory over a timescale τ .
We found that the rise velocity is significantly increased when τ is nonzero, particularly in
the presence of contact angle hysteresis, and that the contact line velocity is indeed not a
single-valued function of apparent contact angle when using this model in our simulations.
We were however unable to reproduce the qualitative form of this dependence beyond
noting that we obtain closed curves in graphs of contact line velocity as a function
of contact angle. Given the simplicity of our modelling approach, this is perhaps not
surprising. When Benilov (2011) extended his earlier model from two to three dimensions,
he found significant qualitative differences in the behaviour of the system. The obvious
next step in this work is to extend the model studied here from two to three dimensions.
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