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Abstract 

Glycans are a diverse group of biological macromolecules that are made up of 

polysaccharides and glycoconjugates, such as glycoproteins and glycopeptides. 

The different types of glycans results in a multitude of structures, properties and 

functions. This investigation looks at the different hydrodynamic properties of 

several glycans including viscosity, sedimentation coefficient and molecular 

weight. These parameters are determined using techniques such as viscometry 

and Analytical Ultracentrifugation (AUC). 

A foundation on the principles of the techniques involved in hydrodynamic 

characterisation was provided through the use of ovalbumin, a glycoprotein that 

has been extensively studied. The study gave a basic understanding in Analytical 

Ultracentrifugation. 

Using the knowledge obtained from that investigation a study into possible 

reasons why the ‘last-resort’ glycopeptide antibiotic, vancomycin, is not commonly 

administered orally due to poor absorption within the gut. The study examined at 

the interactions of vancomycin with common macromolecules found with the 

gastro-intestinal tract, such as mucin, and trying to explain reasons how these 

interactions could inhibit the absorption of vancomycin. 

Finally investigations into two different species derived β-glucans, that have been 

shown to have medically benefiting properties, were characterised. The used of 

different hydrodynamic techniques yielded results that generally supported the 

accepted hydrodynamic properties of β-glucans, however there were results that 

challenged these understandings as well.  

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments 

 

I would like to thank my supervisors Professor Stephen Harding and Dr. Gary 

Adams for guidance and supervision throughout the project, as well as Dr Richard 

Gillis for his understanding and assistance in analysing the data. I also thank the 

rest of the NCMH group for their support. 

Special thanks go to my family who have supported me in so many ways 

throughout my degree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 

 

List of Figures ...................................................................................... viii 

List of Tables .......................................................................................... xi 

Abbreviations ....................................................................................... xiii 

1 Introduction ...................................................................................... 1 

1.1 Overview ....................................................................................... 1 

1.2 Investigation Aims .......................................................................... 4 

2 Methods ............................................................................................. 6 

2.1 Density and Viscosity ...................................................................... 6 

2.1.1 Density Theory .......................................................................... 6 

2.1.2 Density Measurements ............................................................... 7 

2.1.3 Viscosity Theory ........................................................................ 7 

2.1.4 Viscosity Measurements ........................................................... 10 

2.2 Concentration Determination .......................................................... 11 

2.2.1 UV Spectrophotometry ............................................................. 11 

2.2.2 Refractometry ......................................................................... 12 

2.3 Analytical Ultracentrifugation .......................................................... 13 

2.3.1 Theory ................................................................................... 13 

2.3.2 Apparatus .............................................................................. 18 

3 Hydrodynamic Analysis of an Ovalbumin preparation ...................... 20 

3.1 Introduction ................................................................................. 20 

3.1.1 Aim of Investigation ................................................................ 21 

3.2 Materials and Methods ................................................................... 22 

3.2.1 Materials ................................................................................ 22 

3.2.2 Ovalbumin sample preparation and concentration determination ... 22 

3.2.3 Density and Viscosity Measurements.......................................... 22 

3.2.4 Sedimentation Velocity............................................................. 23 

3.2.5 Sedimentation equilibrium ........................................................ 23 



vi 
 

3.3 Results and Discussion .................................................................. 24 

3.3.1 Concentration measurements ................................................... 24 

3.3.2 Density and Viscometry ............................................................ 26 

3.3.3 Sedimentation Velocity............................................................. 28 

3.3.4 Sedimentation Equilibrium ........................................................ 30 

3.3.5 Shape Determination ............................................................... 32 

3.4 Conclusion ................................................................................... 34 

4 Evidence of Vancomycin dimerisation and interactions with mucin . 35 

4.1 Introduction ................................................................................. 35 

4.2 Materials and Methods ................................................................... 39 

4.2.1 Materials ................................................................................ 39 

4.2.2 Sample Preparations ................................................................ 39 

4.2.3 Vancomycin v̄ and concentration determination ........................... 39 

4.2.4 Viscosity Measurements ........................................................... 41 

4.2.5 Sedimentation Equilibrium of vancomycin ................................... 42 

4.2.6 Vancomycin and mucin sample preparation ................................ 42 

4.2.7 Sedimentation Velocity............................................................. 43 

4.3 Results and Discussion .................................................................. 44 

4.3.1 Concentration measurements ................................................... 44 

4.3.2 Viscosity measurements ........................................................... 45 

4.3.3 Sedimentation Equilibrium ........................................................ 48 

4.3.4 Determining the Association and Dissociation constants ............... 51 

4.3.5 Vancomycin and mucin interaction SV analysis ............................ 53 

4.4 Conclusion ................................................................................... 58 

5 Hydrodynamic characterisation of β-glucans ................................... 59 

5.1 Introduction ................................................................................. 59 

5.1.1 Aim of investigation ................................................................. 61 

5.2 Materials and Methods ................................................................... 62 

5.2.1 Materials ................................................................................ 62 



vii 
 

5.2.2 Mushroom (M.P) β-glucan sample preparation ............................ 62 

5.2.3 Oat β-glucan sample preparation ............................................... 63 

5.2.4 Density and Viscosity measurements ......................................... 63 

5.2.5 Mushroom and Oat β-glucan SV analysis .................................... 64 

5.2.6 Mushroom and Oat β-glucan SE analysis .................................... 65 

5.3 Results and Discussion .................................................................. 66 

5.3.1 Mushroom β-glucan ................................................................. 66 

5.3.2 Oat β-glucan ........................................................................... 73 

5.4 Conclusion ................................................................................... 79 

6 Concluding Remarks ........................................................................ 80 

6.1 Ovalbumin ................................................................................... 80 

6.2 Vancomycin ................................................................................. 81 

6.2.1 Future work ............................................................................ 81 

6.3 Mushroom and oat β-glucan ........................................................... 83 

6.3.1 Future work ............................................................................ 83 

7 References ...................................................................................... 84 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

Figure 2.1: Huggins and Kraemer extraction for intrinsic viscosity. Reduced 

viscosity (●) and inherent viscosity (▲) vs concentration for irradiated (10kGy) 

guar in phosphate chloride buffer (pH 6.8, I = 0.10). The 'common' intercept gives 

[η], the slopes KH [η]2 and KK [η]2 (from Jumel, 1994). .................................. 8 

 

Figure 2.2: Illustration of Solomon-Ciuta plot. Huggins (black), Kraemer (red) and 

Solomon-Ciuta (green) extrapolations for λ870 intrinsic viscosity plot (from Jumel, 

1994). .................................................................................................... 10 

 

Figure 2.3: Depictions of Ostwald viscometer. (a) A - the top of the measuring 

well, B - the bottom of the measuring well, C - U-tube reservoir. (b) Physical 

depiction of U-tube viscometer (from Poggio et al., 2015) ............................. 11 

 

Figure 3.1: Main structural template of the N-linked glycans attached to 

ovalbumin, (GlcNAc = N-acetylglucosamine). Obtained from Kiely et al. (1976).

 ............................................................................................................. 20 

 

Figure 3.2: Extrapolation to zero concentration of reduced and inherent viscosities 

of ovalbumin at 20.0°C. The y-intercept is the intrinsic viscosity value [η]. ..... 27 

 

Figure 3.3: Sedimentation velocity analysis for ovalbumin concentration series. 

Top: ls-g*(s) analysis. Bottom: c(s) analysis. .............................................. 28 

 

Figure 3.4: Molar mass analysis for 0.5 mg/mL ovalbumin from SEDFIT-MSTAR: 

(a) log of concentration in the cell vs the square radial displacment, (b) M* 

analysis vs radius, (c) point average molecular weight vs local concentration c(r) 

in the ultracentrifuge cell, (d) point average apparent molecular weight vs radial 

position in the cell. ................................................................................... 30 

 

Figure 3.5: Prolate models of ovalbumin with axial ratios. (A) Shape obtained from 

Harding (1981) study. (B) Shape determined from results of this investigation.

 ............................................................................................................. 33 

 

 



ix 
 

Figure 4.1: Structure of vancomycin with numbered residues, see above. The 

disaccharide subunit is bound to residue 4 (purple) (Loll et al., 1998). ........... 36 

 

Figure 4.2:  Structure of vancomycin with the different atomic environment 

highlighted. The number of each given atom is also indicated (top right). ....... 40 

 

Figure 4.3:  Intrinsic viscosity determination of vancomycin through the 

extrapolation of the reduced and inherent viscosities to zero concentration, at 

20.0°C. ................................................................................................... 47 

 

Figure 4.4: Changes of weight average molar mass of vancomycin with 

concentration. M* values (closed signals) and hinge point values (open symbols. 

Squares: HEPES alone. Circles: HEPES + NaCl. Up triangles: HEPES + NaCl + 

glycerol. Down triangles: Water + 0.9% NaCl. ............................................. 49 

 

Figure 4.5: Sedimentation equilibrium plots (Mw,app(r) vs c(r)) of each 

concentration (A-D) overlaid for each solvent condition. (red) 10mg/mL, (orange) 

5mg/mL, (green) 2.5 mg/mL, (blue) 1.25 mg/mL and (purple) 0.6 mg/mL. .... 50 

 

Figure 4.6: Y(c) plots of each solvent conditions at concentrations of 0.60, 1.25 & 

2.50 mg/mL: (a) HEPES alone, (b) HEPES + NaCl, (c) HEPES + NaCl + glycerol, 

and (d) 0.9% NaCl. The slopes of each plot yield the k2 values. ..................... 52 

 

Figure 4.7: Sedimentation velocity ls-g*(s) distributions of (Top) 12.5 mg/mL 

vancomycin and 2.0 mg/mL PGM (x3 repeats) 3000 rpm, (Bottom) 2.0 mg/mL 

PGM alone 30,000 rpm. ............................................................................ 54 

 

Figure 4.8: SV (3000 rpm) distribution of vancomycin + PGM at different 

concentrations of vancomycin (normalised); 12.5mg/mL (red) (dotted red line, 

previous study), 1.25 mg/mL (green) and 0.125 mg/mL (blue). .................... 55 

 

Figure 4.9: SV (30,000 rpm) distribution of vancomycin + PGM at different 

concentrations of vancomycin (normalised); 12.5mg/mL (red), 1.25 mg/mL 

(green), 0.125 mg/mL (blue) and PGM alone (black). ................................... 56 



x 
 

Figure 5.1: Structure of β-glucans derived from mushroom and oat species. (A) 

Mushroom β,1-3 backbone with β,1-6 branch point, (B) oat β,1-3 and β,1-4 linked 

backbone. (A) Laroche & Michaud (2007) and (B) Pillai et al. (2005). ............. 60 

 

Figure 5.2: SEDFIT SV analysis of M.P β-glucan concentration series, at a rotor 

speed of 50,000rpm. (Top) ls-g*(s) plot and (Bottom) c(s) analysis. .............. 67 

 

Figure 5.3: Molar mass analysis for 0.5mg/mL M.P β-glucan from SEDFIT-MSTAR: 

(A) Distribution of data along the radius of the cell, (B) log of concentration in the 

cell vs the square of the radial displacement, (C) M* analysis vs radius, (D) point 

average molecular weight. ........................................................................ 69 

 

Figure 5.4: Prolate models of M.P β-glucans using different hydrations; (A) 0.0, 

(B) 0.3, (C) 1.0 & (D) 2.0 g water/ g of β-glucan. ........................................ 72 

 

Figure 5.5: ηred (black) and ηinh (red) data points of a single concentration of each 

oat β-glucan sample, with the resulting Solomon-Ciuta (green) values. The data 

points show the majority of values lie in range of 450 – 1000 mL/g. .............. 75 

 

Figure 5.6: Sedimentation velocity ls-g*(s) analysis of all six NOFIMA β-glucan 

samples (S7-S12), at a rotor speed of 45,000rpm. ....................................... 76 

 

Figure 5.7: Molar mass analysis of oat β-glucan Sample 7 (1.5 mg/mL). (A) c(r) 

vs r, (B) lnc(r) vs r2, (C) M* vs r & (D) Mw,app(r) vs c(r). Hinge point Mw is shown 

with dotted line. ....................................................................................... 77 

 

 

 

 

 

 

 

 



xi 
 

List of Tables 

Table 3.2: Density measurements for varying concentrations of ovalbumin in PBS 

at 20.0°C ................................................................................................ 26 

 

Table 3.4: Summary of weight average Mw results for 0.5 and 1.0 mg/mL 

ovalbumin samples, centrifuged at 20,000rpm............................................. 32 

 

Table 4.1: Determination of actual concentration from density measurements for 

10.0 & 5.0 mg/mL vancomycin solutions at 20.0°C. ..................................... 44 

 

Table 4.2: Density measurements at 20.0°C for each nominal dilution with the 

density correction (ρ/ρ0) and actual concentration calculated......................... 45 

 

Table 4.3: Average flow times at 20.0°C for each concentration along with the 

subsequent relative, reduced and inherent viscosities. .................................. 46 

 

Table 4.4: Molar mass estimations of vancomycin in the presence of all buffer 

conditions, showing the M* and hinge point evaluations of Mw. ...................... 48 

 

Table 4. 5: k2, K2 & Kd values for each buffer concentration. .......................... 52 

 

Table 5.1: Relative, reduced, inherent viscosities and intrinsic viscosity of M.P 

mushroom β-glucans (20.0°C). .................................................................. 66 

 

Table 5.2: Summary of weight averages of M.P β-glucans using M* and hinge 

point analysis, along with the polydispersity of the samples. ......................... 70 

 

Table 5.3: M.P β-glucan concentration comparison between enzyme digestion and 

refractometry determination (after dialysis). ............................................... 73 

 

Table 5.4: Reduced and inherent viscosities of all six oat β-glucan samples, along 

with the Solomon-Ciuta intrinsic viscosity values (Temp= 20.0°C). ................ 74 

 

file:///Z:/MRes%20Disertation/write%20up%20final.docx%23_Toc493758896


xii 
 

Table 5.5: The results of all six samples with M* and hinge point molecular weight 

estimations for all Mw,app, along with the respective polydispersity indices. Shown 

also is their respective s and Solomon-Ciuta [η] values................................. 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

Abbreviations 

AUC Analytical Ultracentrifugation 

c(s), g(s)  distribution of sedimentation coefficient function 

Da, kDa, MDa Daltons, kilo Daltons, Mega Daltons 

dn/dc refractive index increment (mL/g) 

ɳr , ɳsp relative, specific viscosity 

ɳred , ɳinh , [ ɳ ] reduced, inherent, intrinsic viscosity (mL/g) 

k2 association constant (mL/g) 

K2 molar association constant (mL mol-1 or L mol-1) 

KD Dissociation constant (μM) 

L path length (cm) 

M molar concentration (mol/L, mol/mL) 

M.P Macrolepiota procera 

Mw,app apparent weight average molar mass (Daltons, g/mol) 

PBS phosphate buffered saline 

PGM porcine gastric mucin 

ρ , ρ0 solution , solvent density (g/mL) 

rpm revolutions per minute 

s sedimentation coefficient (seconds, s / Svedbergs, S) 

s20, w sedimentation coefficient, corrected to solvent conditions 

(viscosity and density of water at 20°C) Sedimentation 

coefficient corrected for non-ideality 

S Svedberg unit = 1 x 10-13 s 

v̄ partial specific volume (mL/g) 

  



1 

 

1 Introduction 

 

1.1 Overview 

Glycans are a diverse and complex group of biological macromolecules, composed 

of polysaccharides, oligosaccharides and glycoconjugates such as glycoproteins 

(Harding et al., 2017). The work presented throughout this MRes shows the 

hydrodynamic characterisation of four different types of glycans. 1) ovalbumin 

(glycoprotein), 2) vancomycin (glycopeptide) and 3) two β-glucans 

(polysaccharides) derived from oat and mushroom species. The aim of the study 

is to determine their intrinsic properties such as viscosity, molecular weight and 

sedimentation coefficients using hydrodynamic techniques.  

This study is concerned with the hydrodynamic characterisation of macromolecular 

glycans, where hydrodynamics can be defined as the study of a macromolecule’s 

movement through or with a solvent, which may be water or another aqueous 

medium (e.g. buffer solution). Although low in resolution compared to other 

techniques such as crystallography, hydrodynamics yields information regarding 

the general shape, structure and molecular weight of macromolecules in what for 

many is their natural environment (Harding, 1995). In order to look at the 

hydrodynamic properties of different macromolecular glycans several methods will 

be adopted for this investigation. The main methods adopted include viscometry, 

density measurement and Analytical Ultracentrifugation (AUC) as well as other 

methods.  

The main characterising instrument used in this investigation was AUC, consisting 

of two methods: sedimentation velocity (SV) and sedimentation equilibrium (SE).  

 

Sedimentation velocity is a method whereby a high rotor speed is applied in order 

to sediment any macromolecules present within a given system. Optical systems 

within the AUC track the rate of sedimentation (concentrations as a function of 

radius and time). The sedimentation data was analysed using the powerful 

algorithm SEDFIT(15b) which provides a platform for the analysis of sedimentation 

data against the Lamm equation (Lamm, 1929). The result of this analysis is that 

the distribution data is fitted to the best model that resolves the equation, this 

allows the sedimentation coefficient distribution and weight average sedimentation 

coefficient, s, for the given macromolecule to be obtained (Schuck, 2000). The 
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sedimentation coefficient can then be used to estimate the shapes of regular 

shaped macromolecules (such as globular proteins), using for example the ELLIPS 

suite of modelling algorithms (Harding et al., 1997b), or for more complex 

macromolecules the HYDRO suite of bead modelling algorithms (Garcia de la Torre 

& Harding, 2013). For flexible linear structures the HYDFIT set of algorithms are 

useful (Ortega & Garcia de la Torre, 2007)  

 

Sedimentation equilibrium (SE) is a method which involves the use of lower rotor 

speeds in order to reach an equilibrium point whereby the rate of sedimentation is 

matched by diffusion of the macromolecules. The lack of a net force in either 

direction results in no net movement of the distribution of macromolecules within 

the cell. The stationary state removes factors friction dependent factors including 

the shape of the macromolecule and is only dependant on the molar mass of the 

macromolecule (see, for example, Cole et al., 2008). The data obtained from the 

AUC is analysed using SEDFIT-MSTARv.1 which is an implementation of the MSTAR 

algorithm (Creeth & Harding, 1982) on the SEDFIT(15.b) platform and provides 

the weight average molar mass of the macromolecules (Schuck et al., 2014). 

In addition to AUC, other methods applied in this investigation include viscosity 

and density measurements, both of these hydrodynamic parameters are used 

within AUC analysis.  

The work in this dissertation investigates the hydrodynamic characterisation of 

three different glycans.  

Glycoproteins are a common glycoconjugate macromolecule found in nature. They 

are protein molecules with polysaccharides attached to the amino acid backbone. 

The attachment of polysaccharides to the protein occur during or post translation, 

and are sometimes required for the correct folding of the protein (Spiro, 2002).  

 

Ovalbumin is a glycoprotein that is the main constituent protein found in egg 

whites, it has a molecular weight of approximately 45,000 Daltons, of which the 

glycans make up approximately 4% by weight. The attachment of the glycans are 

made using N-linked glycosidic bonds to mainly asparagine residues on the 

ovalbumin molecule (An et al., 2003). Ovalbumin is a member of the serine 

proteinase inhibitor (SERPIN) family which includes enzymes such as antitrypsin 

(Carrell et al., 1985). Although a member of the SERPIN superfamily ovalbumin 

does not show any inhibitory activity towards serine proteases, this suggests that 
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its function is still not fully understood (Huntington et al., 2001). The lack of 

understanding in the function of ovalbumin is compensated by the well-defined 

structure and hydrodynamic properties of the protein macromolecule (Nisbet et 

al., 1981). Chapter 3 looks at obtaining a general understanding of different 

hydrodynamic analysis techniques through the characterisation of a preparation of 

ovalbumin. The investigation will determine some of the hydrodynamic properties 

of ovalbumin such as viscosity, density and sedimentation coefficients, using 

process including viscometry and analytical ultracentrifugation amongst other.  

Another related class of glycans are the glycopeptides. These are similar to 

glycoproteins however they are formed from only a few amino acids to which are 

attached oligosaccharides or in some cases polysaccharides (Hojo et al., 2007). 

Glycopeptides are used for a number of applications within nature, one of which is 

as antibiotics. The antibiotic properties of certain glycopeptides are of interest, 

especially with the emergence of antibiotic resistance within bacteria (Hiramatsu, 

2001). One such antibiotic glycopeptide of interest at the moment is vancomycin, 

this is a ‘last resort’ antibiotic used against gram-positive bacteria such as 

Staphylococcus aureus (MRSA) (Small et al., 1990). Vancomycin is a small 

glycopeptide with a molecular weight of 1449 Daltons, it is composed of several 

modified amino acids and a disaccharide of vancosamine-glucose (Jia et al., 2013). 

Vancomycin works through binding to the D-alanyl-D-alanine residues of 

peptidoglycan found in the gram-positive bacteria’s cell walls. The binding to the 

peptidoglycan inhibits cell wall growth and eventually leads to lysis of the bacteria 

cell. The binding of dimeric vancomycin to these residues has long been known, 

this investigation however looks at the characterisation of dimeric vancomycin in 

the absence of their ligand. 

The preferred administration method of vancomycin for patients is intravenously. 

Oral administration of vancomycin is less preferred as vancomycin is poorly 

absorbed within the intestine so has to be taken more frequently. This poor 

absorption has been known for a long time and common practice is to administer 

3 or 4 doses daily, if oral administration is necessary, however oral vancomycin 

often results in indigestion (Lucas et al., 1987 & Fekety et al., 1989). The reasons 

why vancomycin is poorly absorbed by the intestine are not fully understood. This 

study also investigates if vancomycin interacts with gastric mucin, a large 

glycoprotein and main component of the gastrointestinal tract (Kararli, 1995). The 

investigation will evaluate if any interaction with mucin could contribute to the 

poor absorption of vancomycin.  
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Chapter 5 involves the investigation of a class of the most common glycans found 

within nature, polysaccharides. These are long chain polymers composed of 

monosaccharide subunits. Polysaccharides normally have high molecular weights, 

high polydispersity and generally have less defined shapes and structures 

compared to proteins (Harding et al., 2017). The investigation involves a specific 

class of polysaccharide, β-glucan, derived from oat and wild mushroom species. 

These macromolecular glycans are of interest not only in foods but also in the field 

of health sciences as they have been shown, especially oat derived β-glucans, to 

aide in reducing cholesterol levels within the body (Ho et al., 2016).  

The basic structure of β-glucans are the same in all species. They are long chain 

polymers composed of D-glucose monomers. Although the monosaccharide 

subunits are the same between species, the glycosidic bonds that link them differ 

between species. Fungal β-glucans are often short chained polysaccharides linked 

through β,1-3-glycosidic bonds with β,1-6 branching, they tend to be low in 

molecular weight (Han et al., (2008) & Wasser, (2002)). Oat β-glucans tend to 

have high molecular weights resulting in them being structurally larger. In 

comparison to mushroom β-glucans, they form β,1-3 and β-1,4 glycosidic bonds 

(Brennan et al., 2005). The different glycosidic linkages found within the β-glucans 

result in different shapes and structures being adopted by both types. The 

differences in shape, combined with the different molecular weights, give varying 

hydrodynamic properties such as viscosity and sedimentation coefficients for each 

species.  The determination of the each β-glucans hydrodynamic properties are 

explored in Chapter 5 and compared.  

 

1.2 Investigation Aims  

 

The overall aim of this investigation is to use different hydrodynamic analysis 

methods to characterise several different types of glycans using methods including 

AUC and viscosity.  

 The aim of Chapter 3 is to understand how hydrodynamics and in particular 

AUC can assay for the purity/heterogeneity of a preparation of a 

glycoprotein - ovalbumin - with a low degree of glycosylation.  

 Chapter 4 aims to utilise and build on the hydrodynamic methods used in 

Chapter 3 to analyse the glycopeptide vancomycin. The investigations aims 
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to characterise the dimerisation of vancomycin and obtain a dissociation 

constant, as well as investigate the possible interaction with mucin. 

 Chapter 5 looks at the differences in the hydrodynamic properties of 

polysaccharides (i.e. glycans with 100% glycosylation) namely the relatively 

low molecular weight mushroom β-glucans and the relatively high molecular 

weight oat β-glucans. The investigation uses viscometry and AUC to 

determine viscosity, molecular weight and conformation. 
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2 Methods  

 

2.1 Density and Viscosity 

 

2.1.1  Density Theory 

Solution density measurements can be used in order to find several different 

parameters of a given macromolecule, including amongst others, the partial 

specific volume ( v̄ ) and the concentration of a sample. By measuring density we 

can also convert kinematic viscosities into dynamic (density corrected) viscosities 

(see Harding, 1997)  

The density of a macromolecular solution can affect its behaviour in a solution, 

such as viscosity behaviour as shown in equation (2.3). 

The density of a macromolecular solution can be used to find its partial specific 

volume. This is the reciprocal of the anhydrous density of the macromolecule. 

Proteins and polysaccharides have a v̄ value approximately 0.73 and 0.60 mL/g 

respectively (Hunter, 1966). In general polysaccharides are more dense than 

proteins therefore resulting in a lower partial specific volume. Equation (2.1) shows 

the relationship between density and partial specific volume (Kratky et al., 1973).  

 

(2.1) 

 

Where (ρ) is the density of the macromolecular solution, (ρ0) is the solvent density 

and c is the concentration of the sample (g/mL). Rearranging Equation (2.1) 

enable the concentration of a solution to calculate if the v̄ is known.  

 

(2.2) 

 

 

v̄ = 
1

ρ0

 × (1-
ρ - ρ0

c
 ) 

 

c = 
ρ - ρ0

1 - v̄ ρ0
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2.1.2  Density Measurements 

Density measurements were made using an Anton Paar DMA5000 oscillating 

capillary meter.  Samples were purged after entry into the density meter 

(approximately 2mL) ensuring no air bubbles were present within the capillary. 

The samples were left to equilibrate to 20.00°C whereupon the density 

measurements were recorded to seven significant figures. 

 

2.1.3  Viscosity Theory 

Viscosity is a measure of a solutions resistance to flow, such that a more viscous 

material (e.g. honey) flows more slowly than a less viscous material (e.g. water). 

The intrinsic viscosity [η] relates to the viscosity of a macromolecule in solution. 

It is a measure of the shape and size of the macromolecule and is derived through 

the flow times of solutions using the relative viscosity (ηr): 

 

(2.3) 

 

where η and η0 are the dynamic viscosity of the solution and solvent, t and t0 are 

the flowtimes of the solution and solvent and ρ and ρ0 are the solution and solvent 

densities respectively. The density correction is important for solution 

concentrations >5mg/mLs.  

From the relative viscosity the reduced viscosity (ηred) can be determined using 

the concentration of the solution (c):  

(2.4) 

 

In conjunction with the reduced viscosity, the inherent viscosity (ηinh) is another 

method for determining the intrinsic viscosity using the natural logarithm of the 

relative viscosity: 

 

(2.5) 

 

 

ηr = 
η

η0
= (

t

t0
 × 

ρ

ρ0
) 

 

ηred = 
(ηr − 1)

c
 

ηinh = 
ln(ηr)

c
 



8 

 

Both the reduced and inherent viscosities are dependent on concentration as a 

result of non-ideality. This can occur through different mechanisms including 

charge interaction and size exclusion. In order to eliminate the effect of non-

ideality the reduced and inherent viscosity are plotted against concentration, with 

extrapolations of both data sets to zero concentration. Upon approaching zero 

concentration non-ideality is reduced to almost zero as the possible interactions 

between macromolecules are reduced as to almost be negligible. Therefore the 

value of the reduced and inherent viscosities at zero concentration is termed as 

the intrinsic viscosity [η]. 

Both the reduced and inherent viscosities extrapolated to ideal conditions (c=0) 

should produce the same intrinsic viscosity value, Figure 2.1 illustrates this. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Huggins and Kraemer extraction for intrinsic viscosity. 

Reduced viscosity (●) and inherent viscosity (▲) vs concentration for 

irradiated (10kGy) guar in phosphate chloride buffer (pH 6.8, I = 0.10). 

The 'common' intercept gives [η], the slopes KH [η]2 and KK [η]2 (from 

Jumel, 1994). 
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(2.6) 

 

From the plot of the reduced and inherent viscosities, Figure 2.1, two parameters 

can be determined the Huggins and Kraemer constants KH and KK respectively 

(Sakai, 1968). Equations (2.7 & 2.8) show the relationship between the reduced 

viscosity and Huggins constant and between the inherent viscosity and the 

Kraemer constant, respectively (see Harding, 1997). 

  

(2.7)  

 

(2.8) 

 

A combination of the Huggins and Kraemer equations is the Solomon-Ciuta 

equation (2.9).  

 

(2.9) 

 

which allows an approximate estimation of [η] if only a single concentration has 

been measured. When plotted against concentration as in Figure 2.1, a linear line 

that lies between the reduced and inherent viscosity extrapolations occurs. Figure 

2.2 illustrate this. 

 

 

 

 

 

 

lim
c→0

( ηred )= lim
c→0

( ηinh )=[η] 

 

 

ηred=[η](1+[η].KH.c)         ,         KH= (
slope

[η2]
) 

 

 ηinh=[η](1 − [η].KK.c)         ,         KK= - (
slope

[η2]
) 

 

[η] = (
1

c
) × [ 2(ηr -1) - 2ln(ηr)] 

1
2 
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Figure 2.2: Illustration of Solomon-Ciuta plot. Huggins (black), Kraemer 

(red) and Solomon-Ciuta (green) extrapolations for λ870 intrinsic 

viscosity plot (from Jumel, 1994). 

2.1.4  Viscosity Measurements 

As stated in 2.1.3 the flow times of macromolecular solutions need to be measured 

in order to determine the intrinsic viscosity through parameters such as the 

relative viscosity (see, Harding, 1997). 

To accurately measure the flow times of the samples they were placed into a glass 

Ostwald U-tube viscometer (Figure 2.3). A number of variables can affect the 

viscosity of a solution the biggest being temperature, therefore in order to 

eliminate this possibility the U-tube was placed into a water bath regulated by a 

Grant GD120 heater pump at (20.00+ 0.05)°C. The samples were then injected 

into the reservoir of the U-tube (approximately 2mL) and left to adjust to the water 

bath temperature.  

In order to measure the flow times the U-tube was connected to a Schott-Gerӓte 

AVS 400 pump and timing unit. The samples were pumped through the capillary 

of the U-tube to the top of the measuring well. The samples were then allowed to 

flow back through the capillary under the force of gravity alone. The time taken 
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for the meniscus to move from the top of the well to the bottom was recorded by 

the optics of the AVS 400 (refer to Figure 2.3 (a)).  

 

    

 

 

 

 

 

 

 

 

 

Figure 2.3: Depictions of Ostwald viscometer. (a) A the top of the 

measuring well, B the bottom of the measuring well, C U-tube reservoir. 

(b) Physical depiction of U-tube viscometer (from Poggio et al., 2015) 

Using the flow times, and subsequent corresponding density measurements, the 

relative viscosity can be determined through Equation (2.1). 

 

2.2  Concentration Determination 
 

2.2.1   UV Spectrophotometry 

Concentration is critical in determining many parameters of a macromolecule, 

therefore it is essential to accurately measure this parameter. UV 

spectrophotometry is a method which determines the concentration of a solution 

through the Beer-Lambert law, Equation (2.10); 

 

    (2.10) 

 

A = ε280nm . L . c        ,          c = 
A

ε280nm . L 
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Where A is the absorbance of the solution, ε280nm is the extinction coefficient of the 

macromolecule at 280nm (L mol-1 cm-1), L is the path length (cm) and c is the 

concentration of the solution (g/mL).   

The Beer-Lambert law is useful for determining the concentration of 

macromolecule solutions which have a chromophore within their structure. 

Chromophores absorb UV light, it is the absorption (change in light intensity) of 

the UV light that the spectrophotometer detects. The change in light intensity is 

directly proportional to the concentration of the solution. 

Although the Beer-Lambert law can be applied to macromolecules such as proteins, 

it is not possible to use this technique on polysaccharides as they do not contain a 

chromophore within their structure.  

Measurements of the UV absorption were performed using a Varian Cary-50 Probe 

UV-Vis Spectrophotometer. Samples were placed into a 1mL reduced volume 

quartz cuvette and placed into the spectrophotometer. Measurements were made 

using a wavelength of 280nm. This was chosen as the chromophores in proteins 

are aromatic groups found on phenylalanine, tryptophan and tyrosine amino acids 

and absorb UV light at this wavelength. 

2.2.2   Refractometry 

Refractometry is another method which can measure the concentration of a 

macromolecule solution by using a refractometer. This method can be applied to 

most macromolecule solutions as it does not rely on the presence of 

chromophores. For this purpose it is the predominant method for determining the 

concentration of polysaccharide solutions.  

Refractometry works on the principle that all macromolecular solutions bend the 

direction light at different amounts. For a given wavelength this depends in the 

concentration and the refractive index (dn/dc). The bending of light is affected by 

the refractive index of the molecule as well as the concentration of the solution, 

the higher the concentration the greater the bending of the light. Using this 

principle the concentration of a solution can be made using Equation (2.11). 

 

(2.11) 

 

Concentration = Brix(%)× (
(
dn
dc

) molecule

0.15
) × 10 (mg/mL)  
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Where Brix (%) is the percentage measure and 0.15 is the dn/dc of sucrose in 

mL/g (used as a standard). 

Measurements were made using an ATAGO DD-7 differential refractometer. The 

apparatus was zeroed by purging approximately 3mL of the solvent through the 

refractometer. Once blanked, solution measurements were made in the same way, 

Brix (%) were recorded for each measurement. 

 

2.3   Analytical Ultracentrifugation 

Analytical Ultracentrifugation (AUC) is a quantitative technique for measuring 

solutions of macromolecules. AUC works on the principle that under a centrifugal 

force, molecules with different molecular weights and shapes separate and 

sediment through a solvent at different rates. The rate of sedimentation is largely 

affected by the mass of the macromolecule. The greater the molar mass the faster 

the molecule sediments (Svedberg et al., 1926). As explained in Chapter 2 there 

are 2 types of AUC measurements; sedimentation velocity (SV) and sedimentation 

equilibrium (SE). Each method provides different information of the hydrodynamic 

properties of the macromolecule being analysed. 

 

2.3.1   Theory 

2.3.1.1 Sedimentation Velocity (SV) 

Herein lies a summary of the method taken from (Ralston, 1993) Sedimentation 

velocity involves the application of a large centrifugal force to a macromolecular 

solution over a period of 12 -18 hours. The force is applied through spinning the 

solution at a high rotor speed and the sedimentation is tracked using absorbance 

or Rayleigh interference optics. 

The high rotor speeds allow the macromolecules to sediment. The rate of 

sedimentation, divided by the force applied, is termed the sedimentation 

coefficient (s) of the macromolecule. Sedimentation coefficients are dependent 

upon the size and shape of the macromolecule. Generally, the larger the 

macromolecule the faster it sediments thus a larger sedimentation coefficient 

(Svedberg et al, 1926). The Svedberg equation in Equation 2.12 shows the 

relationship between molar mass and sedimentation coefficient. 
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(2.12) 

 

 

 

where (s) is the sedimentation coefficient, (v) is the boundary terminal velocity, 

(ω) is the angular velocity (radians/second), (r) is the radius from the centre of 

rotation, (M) is the molar mass,( v̄ )is the partial specific volume, (ρ0) is the solvent 

density, (NA) is Avogadro’s number and (f) is the frictional coefficient. 

In monodisperse solutions the rate of sedimentation should be uniform as the 

macromolecules are the same molecular weight. However polydispersed systems 

often show a non-uniform sedimentation profile. This is due to the macromolecules 

having different molecular weights and shapes that result in different 

sedimentation rates. 

In addition to the effects of mono and polydispersity the effects of the solvent on 

the sedimentation of the macromolecules have to be taken into account. The 

solvent will have its own viscosity and density which will affect the sedimentation 

rate of the macromolecule. Therefore in order to overcome this the sedimentation 

coefficient is often corrected to standard solvent conditions, namely the viscosity 

and density of water at 20.0°C. Equation (2.13) shows the correction equation, 

where the subscripts (20,w) denotes the corrected values and (T,b) are the 

experimental values obtained. 

 

(2.13) 

 

Sedimentation velocity data was analysed using the computer programme SEDFIT 

(Schuck, 2000). This aims to fit a model to the data to a ‘best fit’ that yields the 

most accurate sedimentation coefficient. In order to model the data SEDFIT uses 

two algorithms; the least square Gaussian distribution (ls-g*(s)) and continuous 

distribution (c(s)). The two algorithms are based upon the Lamm equation (2.14) 

(Lamm, 1929). The equation is used to fit the data to the best solution to the 

equation which describes the shape of the boundaries formed through 

sedimentation. 

s = 
ν

ω2r
 = 

M(1- v̄ ρ
0
)

NAf
  

s20,w = 
(1- v̄ρ )20,w

(1- v̄ρ )T,B

× 
ηT,B

η20,w
 × s T,b  
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(2.14) 

 

Equation (2.14); D is the diffusion coefficient, c is the concentration, r is the radial 

position and t is the time. 

In order to determine the best model for the data, using either ls-g*(s) or c(s) 

analysis, SEDFIT removes time invariant (TI) and radial invariant (RI) noise. The 

removal of this noise increases the resolution of the data and represents the data 

more accurately (Schuck et al., 1999).  

The least square Gaussian distribution algorithm analyses the raw SV data against 

a number of parameters and models it against s. The modelling of the data does 

not take into account the diffusion of the macromolecules within the solution, this 

means that the model is not fully representative of what is happening during 

sedimentation within the cell. The result of diffusion not being taken into account 

results in the broad peaks on the plot, however even though the peaks are 

relatively broad they give a good indication of the sedimentation coefficient.  

 

The so-called c(s) analysis uses a similar algorithm however it takes into account 

diffusion. The impact of diffusion on very large macromolecules is small and in 

some cases negligible. The greater impact comes when smaller macromolecules 

are in solution (Schuck, 2000). The diffusion coefficient is determined by finding 

the frictional ratio of the macromolecule. The frictional ratio is the frictional 

coefficient of the observed macromolecule to that of a perfect sphere of the same 

molecular weight (Brown et al., 2006). With the addition of diffusion within the 

algorithm more defined peaks are often observed within the c(s) distribution. This 

has benefits in providing more accurate sedimentation coefficients, however it can 

also lead to over-sharpening of some peaks that may not be accurate (Schuck, 

2000). The addition of diffusion within the calculation also results in c(s) 

distributions being able to estimate the weight average molar mass by 

transforming c(s) distributions into c(M) vs M plots. This is applicable for systems 

of low polydispersity (e.g. mixtures of proteins) and where the components have 

similar diffusion coefficients. Continuous distributions we use a different 

programme call the Extended Fujita method (Harding et al., 2011). 

 

dc

dt
= D [(

d
2
c

dr
2

) + 
1

r
. (

dc

dr
)] - sω2. [r (

dc

dr
) +2c]   
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Sedimentation velocity analysis for monodispersed systems, such as proteins, 

yield sharper more defined peaks as there is only one macromolecule species in 

solution, allowing a higher degree of accuracy in the estimation of the 

sedimentation coefficient. However polydispersed systems, such as 

polysaccharides, or heterogeneous preparations of a protein or glycoprotein, 

produce more broad peaks with a lower degree of sharpness as there are multiple 

macromolecules with different molecular weights. This results in an average 

sedimentation coefficient being obtained. In addition the areas under the curves 

for both g(s) and c(s) are related to the concentration of the macromolecules 

within the cell. 

In order to obtain more accurate sedimentation coefficients concentration series 

are prepared, this is to reduce non-ideality factors affecting the sedimentation 

rate. The results are plotted as s (or 1/s) vs concentration with an extrapolation 

to zero concentration as to obtain the actual sedimentation coefficient independent 

of concentration. 

 

2.3.1.2 Sedimentation Equilibrium (SE) 

 

Sedimentation equilibrium experiments involve solutions of macromolecules being 

centrifuged at lower speeds than in SV runs. The balance between sedimentation 

and diffusion, results in no overall net movement of the macromolecules within the 

cell (for example Cole et al., 2008; Schuck et al., 2014). The choice of speed for 

equilibrium runs is of paramount importance. Too high or too low and the 

macromolecules either sediment or diffuse, respectively. Therefore in order to 

ascertain an appropriate equilibrium speed the results of the SV analysis are often 

used, which through s can give an idea of the approximate size. 

Once equilibrium is achieved, the shape of the macromolecule is no longer an 

important factor as there is no longer any net movement of the macromolecule 

within the cell, and no frictional resistance to flow. That shape of the 

macromolecule only affects the time taken to reach equilibrium. Therefore, from 

equilibrium runs the major factor that can be determined is the weight average 

molar mass (Van Holde & Baldwin, 1958). 
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The data gathered from the AUC, using either absorbance or Rayleigh interference 

optics, were analysed using the computer platform SEDFIT-MSTAR.v1. The 

algorithm employs the integral function M* of Creeth and Harding (1982) 

 

(2.15) 

 

where c(r) is the local concentration at radial position r, c(a) is the meniscus 

concentration, and k is the constant depending on the rotor speed, buffer density, 

the temperature and partial specific volume. 

 

The M* function provides a convenient way of estimating the weight average 

molecular weight (Mw) over the whole macromolecular distribution in the cell from 

the identity of M*(r→b) = Mw, where b is the radial position at the bottom of the 

cell. By extrapolating the M* function to r=b we can obtain the Mw. Furthermore 

the SEDFIT-MSTAR algorithm evaluates the local weight average molecular weight 

at individual radial positions r (and hence local concentration c(r)) in the cell. These 

are obtained from the local slopes of the lnc(r) vs r2 curves (Schuck et al., 2014). 

This also provides another method of obtaining the weight average over the whole 

distribution Mw from the "hinge point", the value of Mw(r) when c(r) = the initial 

loading concentration, c. The values obtained for the M* and hinge point weight 

average molar masses should be similar to each other. 

 

As with SV runs the data contains TI and RI noise, which are removed in the same 

way as to increase the resolution of the data. In addition to this distortion of the 

profiles can occur (through e.g. window imperfections at high speeds), in order to 

overcome this a baseline needs to be determined. This involves the recording of 5 

initial scans taken as soon as the equilibrium speed has been attained and over a 

short period of time (~5 minutes) and averaging them, then repeating this process 

once the final equilibrium concentration distribution has been reached. The 

average initial scan is then subtracted from the average final scan, establishing a 

baseline with which SEDFIT-MSTAR works upon.  

 

 

M*(r) = 
(c(r) - c(a))

kc(a).(r2 - a2) + 2k ∫ r [c(r) - c(a).dr]
r

a
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2.3.2   Apparatus 

 

2.3.2.1 Analytical Ultracentrifuges 

Sedimentation velocity and equilibrium experiments were conducted on a Beckman 

Optima XLI ultracentrifuges. The ultracentrifuges contain a vacuum chamber 

where the samples are placed, the use of a vacuum removes air and reduces air 

frictions reducing any temperature increases whilst running. The temperature of 

the chamber is set and maintained to within ±0.1°C. The drive unit within the 

ultracentrifuge has a top speed of 60,000rpm and can be fitted with one of two 

titanium rotors for runs, a 4 hole An-60Ti or 8 hole An-50Ti, which holds 3 or 7 

cells respectively as well as an additional counterbalance cell.  

The Beckman operating software ProteomeLab v6.2 is used to setup the AUC 

methods.  

2.3.2.2 Analytical Cells 

Sedimentation velocity experiments were predominantly carried out using two 

channel 12mm epoxy resin centrepieces and two sapphire windows on either side, 

enclosed within an aluminium case. The windows were placed into the aluminium 

case with plastic gaskets and an aluminium screw top. Sedimentation equilibrium 

experiments used longer aluminium cases that could accommodate a two port 

20mm titanium centrepiece and sapphire windows. The windows were assembled 

in the same manner however an extra protective gasket was placed between the 

window and the titanium centrepiece, protecting the window. 

Both cell types were tightened to a torque of 130lb and then filled. The 12mm cells 

generally had 400μL of sample injected into the left hand port and likewise with 

the buffer in the right side port. The 20mm cells employed the same method but 

used volumes of 150μL. Once filled, the sample injection ports were sealed with 

butyl rubber discs and aluminium screws.  

2.3.2.3 Optical System 

In order to analyse the movement of the macromolecules during centrifugation an 

optical measuring system was used. The system involves the use of a high 

precision monochromator that takes absorbance and Rayleigh interference 

measurements. All measurements were recorded and translated using ProteomLab 

v6.2.  
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As stated in 2.2.1 absorbance measurements are useful for macromolecules with 

chromophores, such as proteins or glycoproteins, as they absorb UV radiation. The 

absorbance optics measure along the path length of the cell, taking approximately 

2 minutes for each cell. The data collected shows the intensity difference 

(absorbance) within the solution as the macromolecules start to sediment. 

Rayleigh Interference measurements involve the use of monochromatic light as 

opposed to UV light as in absorbance. The interference measurements were made 

along the path length of the cell again, however the data is used to produce fringe 

patterns. The fringe patterns were optimised before the samples were spun at high 

speed. Optimisation typically took place at 3000rpm. Once optimised, the rotor 

speed was increased and measurements were taken. The sedimentation of the 

macromolecules produces a boundary within the cell between the sedimenting 

sample and the solvent, the change in boundary position within the cell is 

measured by the interference optics and relates to the sedimentation coefficient 

of the macromolecule. 
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3 Hydrodynamic Analysis of an Ovalbumin preparation 

 

3.1   Introduction 

Egg whites make up approximately 66% of the mass of eggs, it protects the egg 

yolk in early development and as a source of nutrition and protein for developing 

embryos. The main protein within egg white is ovalbumin, a glycoprotein 

constituting around 54% of the dry mass of the egg white (Mine, 1995). The 

function of ovalbumin is not fully understood, however it is thought it acts as a 

storage protein (Huntington et al., 2001) 

Ovalbumin is a glycoprotein with a protein backbone consisting of 385 amino acids 

giving a molecular weight of 42.69 kDa, however the additional carbohydrates 

attached give an overall molecular weight of 44.29 kDa (Nisbet et al., (1981) & 

Tai et al., (1977)). However these values have slight variation between species. 

The protein backbone of ovalbumin is bonded to the glycans through N-glycosidic 

bonds on residues containing amine groups. One such residue is asparagine (Asn) 

292 which has been shown to form such linkages, another possible site that has 

been identified is asparagine 317 (Harvey et al., 2000 & Huntington et al., 2001). 

The composition of the glycans attached to ovalbumin have been shown to contain 

high levels of mannose (Man) and N-acetylglucosamine (GlcNAc) monomers, 

common structures found to be adopted include (Man)5(GlcNAc)2 and 

(Man)6(GlcNAc)2 (Neuberg (1938) and Tai et al. (1977)). Figure 3.1 shows the 

structure of one of the main glycans. The glycosylation of ovalbumin accounts for 

approximately 4% the dry weight of the molecule, therefore the protein is lightly 

glycosylated (Kiely et al. 1976). 

 

 

 

 

 

Figure 3.1: Main structural template of the N-linked glycans attached to 

ovalbumin, (GNAc = N-acetylglucosamine). Obtained from Kiely et al. 

(1976). 
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Although ovalbumin has a low level of glycosylation, the residues that are present 

may have a structural impact on the protein-protein level. N-acetylglucosamine is 

a mainly hydrophobic molecule which can form ‘sticky patches’ that can bind to 

other hydrophobic regions, allowing for the self-associations of macromolecules to 

occur (Ramakrishnan et al. 2012). Through these ‘sticky patches’ it is possible that 

ovalbumin can form weak dimers. A study by Ianeselli et al. (2010) showed that 

ovalbumin can readily form dimers in solutions of either no or very low salt 

concentrations.  

 

3.1.1   Aim of Investigation 

The aim of this part of the study is to use viscosity, sedimentation velocity and 

sedimentation equilibrium measurements to determine the hydrodynamic 

characteristics of a preparation of ovalbumin in terms of its heterogeneity. 
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3.2   Materials and Methods 

 

3.2.1   Materials 

 

A 1L phosphate buffered saline (PBS) solution of pH 7.0 was prepared using 2.923g 

sodium chloride, 1.561g dihydrogen potassium orthophosphate and 4.595g 

sodium dihydrogen dodecahydrate, obtained from Sigma Aldrich, UK.    

Ovalbumin (98% purity) was purchased from Sigma Aldrich, UK. A 15mL 10mg/mL 

stock solution of ovalbumin was prepared using 150mg of ovalbumin and PBS 

buffer.  

 

3.2.2   Ovalbumin sample preparation and concentration determination 

A stock solution of ovalbumin at a nominal concentration of 10mg/mL in PBS buffer 

was prepared. 

The concentrations of the samples was determined using a Cary-50 UV 

spectrophotometer, measuring at a wavelength of 280nm which was zeroed using 

PBS buffer. Prior to each measurement each concentration was diluted by taking 

0.2mL of their respective stock and adding PBS to achieve their respective stock 

volumes, this gave a different dilution factor for each concentration. Diluted 

samples were then placed into reduced 1mL quartz cuvettes and placed into the 

spectrophotometer, readings were taken until 5 relatively close absorbance values 

were achieved.  

Concentrations were determined using Equation 2.10, with an extinction coefficient 

of 660g/ml cm-1, the absorbance value given was then multiplied by the dilution 

factor to give the stock concentration of each dilution.  

3.2.3   Density and Viscosity Measurements 

Density measurements were carried out using the 2mL extract of each 

concentration. Measurements were made using the Anton Paar DMA5000 density 

meter, following the method outlined in (2.1.2). The densities were recorded until 

3 stable readings were obtained and averaged.  

Viscosity measurements were conducted using an Ostwald capillary viscometer, 

using the 2mL extract of each concentration and the PBS buffer. The samples were 
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injected into the U-tube reservoir, 2mL, and placed into the water bath at 20°C. 

The flow times of the samples was recorded by the timing unit outlined in section 

2.1.4. 

3.2.4   Sedimentation Velocity 

Sedimentation velocity analysis was carried out using the Beckman XL-I AUC. To 

reduce the effects of non-ideality a low concentration ovalbumin solution, 

0.5mg/mL, was analysed.  

The samples were loaded into the 12mm aluminium epoxy centrepiece XLI cells, a 

volume of 0.4mL 0.5mg/mL ovalbumin and 0.4mL of PBS buffer was loaded into 

each cell. The cells were inserted into the 4 hole rotor and then into the AUC set 

at 20.0°C. An initial rotor speed of 3000rpm was applied to check that all cells 

were fine and to allow the vacuum to be reached. A rotor speed of 45,000 rpm 

was used with measurements made using Rayleigh interference optics. Scans were 

taken at 2 minute intervals for each sample until 500 scans of each sample were 

acquired. The data was analysed using SEDFIT producing both ls-g*(s) and c(s) 

analysis (refer to section 2.3.1.1). Within the parameters a buffer density of 

1.0032g/mL and a v̄ value of 0.748mL/g were used (Harding, 1981). 

3.2.5   Sedimentation equilibrium 

Sedimentation equilibrium was carried out using the Beckman XL-I AUC, three 

20mm titanium centrepiece cells were constructed. The cells were loaded with 0.15 

mL of 0.5 mg/mL ovalbumin and 0.15 mL of PBS buffer. 

The samples were centrifuged at 20,000 rpm over 3 days at 20°C, measurements 

were made using Rayleigh interference optics every 1 hour.  The data was analysed 

using SEDFIT-MSTAR (Schuck et al., 2014), using the average if the final 5 scans 

(refer to section 2.3.1.2).  

A subsequent SE run was performed in the same manner as before, however a 

1.5mg/mL ovalbumin solution was examined. Both runs had the same parameters 

of 1.0032 g/mL for buffer density and a v̄ of 0.748 mL/g. 

 

 

 

 



24 

 

3.3   Results and Discussion 
 

3.3.1   Concentration measurements 

The actual concentrations of the ovalbumin solutions were determined through 

spectrophotometry, using Equation (2.10) and multiplying the result by the 

relevant dilution factor. The extinction coefficient used for ovalbumin was 660 

mL.g-1.cm-1. The values obtained for the actual concentrations were very close to 

the weighed out nominal concentrations, Table 3.1 shows the results and 

calculated actual concentrations of the samples.  
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Figure 3.1: Absorbance readings for ovalbumin solutions and subsequent determination of actual concentrations. 

 

 

 

 Absorbance Readings   

Nominal 

conc 

(g/mL) 

 

 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

Average 

 

DF 

 

Actual conc 

(g/mL) 

 

0.01 

 

0.0871 

 

0.0875 

 

0.0872 

 

0.0880 

 

0.0877 

 

0.0875 

 

75 

 

0.0099 

0.009 0.0915 0.0909 0.0913 0.0911 0.0910 0.0912 65 0.0089 

0.008 0.0921 0.0922 0.0914 0.0919 0.0915 0.0919 55 0.0077 

0.007 0.0916 0.0914 0.0916 0.0913 0.0911 0.0915 45 0.0062 

0.006 0.1034 0.1033 0.1032 0.1031 0.1032 0.1032 35 0.0055 

0.005 0.1279 0.1284 0.1284 0.1282 0.1280 0.1282 25 0.0049 
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3.3.2   Density and Viscometry 

Density measurements were recorded for the ovalbumin concentrations 

and PBS buffer, these were used to calculate the density correction ratio 

(ρ/ρ0) for the determination of the intrinsic viscosity. The densities and 

correction values for each concentration are laid out in Table 3.2. 

Table 3.1: Density measurements for varying concentrations of 

ovalbumin in PBS at 20.0°C 

The flow times of the ovalbumin solutions were used to determine the 

relative, reduced and inherent viscosities using Equations (2.3, 2.4 & 2.5) 

respectfully, refer to Table 3.3 for values.  

Table 3.3: relative, reduced and inherent viscosities of ovalbumin 

in PBS at 20.0°C 

 

Nominal 
concentration 

(g/mL) 

Readings (g/mL)     

1 2 Average  ρ/ρ0 

0.01 1.00576 1.00577 1.00576 1.003457 

0.009 1.00538 1.00541 1.00539 1.003090 

0.008 1.00484 1.00452 1.00468 1.002374 

0.007 1.00467 1.00467 1.00467 1.002363 

0.006 1.00380 1.00390 1.00385 1.001545 

0.005 1.00345 1.00346 1.00345 1.001149 

PBS 1.00326 1.00135 1.00230   

 

Nominal 

concentration 

(g/mL) 

Relative 

viscosity, ηr  

(mL/g) 

Reduced 

viscosity, ηred 

(mL/g) 

Inherent 

viscosity, ηinh 

(mL/g) 

0.01 1.06 6.11 5.93 

0.009 1.05 6.05 5.86 

0.008 1.04 5.76 5.64 

0.006 1.03 5.96 5.87 

0.005 1.02 5.24 5.18 
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Using the reduced and inherent viscosities plotted against actual 

concentration and extrapolated to zero concentration the intrinsic viscosity 

was found to be (5.0± 0.15) mL/g, and Figure 3.2 shows the extrapolation 

determination. According to studies by Koseki et al. (1989) the intrinsic 

viscosity value for (monomeric) ovalbumin is between 4.2 – 4.5 mL/g.  

Figure 3.2: Extrapolation to zero concentration of reduced and 

inherent viscosities of ovalbumin at 20.0°C. The y-intercept is the 

intrinsic viscosity value [η]. 

The larger value obtained through this study can be attributed to 

heterogeneity within the ovalbumin sample, possibly due to the presence 

of some dimers. This is borne out by the sedimentation velocity results. 
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3.3.3   Sedimentation Velocity 

 

The data from the sedimentation velocity run for the ovalbumin was 

analysed using SEDFIT, the results of the run are shown in Figure 3.3. The 

top plot shows the ls-g*(s) against s distribution, the bottom plot shows 

the c(s) against s distribution. 

Figure 3.3: Sedimentation velocity analysis for ovalbumin 

concentration series. Top: ls-g*(s) analysis. Bottom: c(s) analysis. 

The distribution results from the ls-g*(s) plot shows that the ovalbumin 

solutions are predominantly monodispersed, this is indicated through the 

appearance of only 1 main peak at (3.2± 0.3) S. The main peak at 3.2 S 

makes up approximately 92% of the total signal, indicating that the 

macromolecule responsible for the peak makes up ~92% of the solution. 

The sedimentation coefficient obtained from the study is very similar to 

values obtained from Polson et al. (1967), the study showed that 

ovalbumin has a sedimentation coefficient of 3.15 S at 42,000 rpm. This 

value is very similar to the value obtained in this study. However the g(s) 
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vs s and c(s) plots show significant amounts of low molecular weight 

contaminants (s~1.5S) and what appears to be a dimer (s ~ 4.5 S). 

The lower plot of Figure 3.3 shows the c(s) distribution of ovalbumin. As 

stated in 2.3.1.1 c(s) analysis includes diffusion within the algorithm giving 

more defined peaks, when applied to this data the single peak shown by 

the ls-g*(s) analysis shows that it is composed of 3 peaks; Peak 1 (1.5 S), 

Peak 2 (3.2 S) and Peak 3 (4.5 S). Peak 1 at 1.5 S is likely a result of 

undialysed small molecular weight contaminants 

Peak 2 on the distribution is relatively narrow with defined ends yielding 

an s value of approximately 3.2 S. The sedimentation coefficient supports 

the sedimentation coefficient value obtained ls-g*(s) distribution, as well 

as falling within the limits of the study conducted by Polson et al. (1967). 

The s value also indicates that the majority of the material in solution is 

monomeric ovalbumin. 

Peak 3 although small, indicates that there are molecules present with a 

sedimentation coefficient of ~4.5 S. The main explanation for this is that 

some of the ovalbumin has formed dimers, as stated in 3.1 the likely 

occurrence for dimerisation is the bonding of two ‘sticky patches’ on 

ovalbumin monomers. As shown in the study by Ianeselli et al. (2010) at 

low salt concentration ovalbumin can form dimers, from the c(s) 

distribution it is evident that the 0.1M PBS buffer is sufficiently low enough 

to allow low level of dimerisation.  
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3.3.4  Sedimentation Equilibrium  

Sedimentation equilibrium data was analysed using SEDFIT-MSTAR for all 

samples. As stated in 2.3.1.2 a baseline was established in SEDFIT-MSTAR 

by subtracting the first 5 initial scans from the last 5 scans, the baseline 

corrected data was then used to determine the molar mass. Figure 3.4 

shows the 4 plots based upon the SEDFIT-MSTAR algorithm (Schuck et al., 

2014) for one of the 0.5 mg/mL ovalbumin samples; they show ln(c) vs r2, 

M* vs r and MW,app(r) vs r or c(r).  

Figure 3.4: Molar mass analysis for 0.5 mg/mL ovalbumin from 

SEDFIT-MSTAR: (a) log of concentration in the cell vs the square 

radial displacement, (b) M* analysis vs radius, (c) point average 

molecular weight vs local concentration c(r) in the ultracentrifuge 

cell, (d) point average apparent molecular weight vs radial position 

in the cell.  
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The data shown in Figure 3.4 shows not only the molecular weight of the 

ovalbumin but other factors as well. Plot (a) show the natural logarithm of 

the data against the square of the radius. The raw data (black) and the 

fitted data (red) lay directly on top of each other, this is an indication that 

the sample is predominantly monodispersed. There is a small degree of 

noise on the data that suggests other molecules are present.  

 

Plot (b) shows the M* analysis plot. The weight average molar mass over 

the whole distribution is obtained from extrapolating the M* function to 

the cell base (Creeth & Harding, 1982), using the identity M*(r→b) = Mw. 

A value of (44.6±1.5) kDa is obtained.   

 

Plots (c) and (d) show the molecular weight apparent as a function of 

loading concentration and radius, respectfully. Both plots show a similar 

weight of approximately 45kDa, both the raw and fitted data shows a flat 

line indicating the sample is again monodispersed. Similar to the M* plot 

(b), there is noise within the data indicating that there is extra material 

within the sample other than monomeric ovalbumin.  

Using the data from the Mw,app (r) vs r and Mw,app (r) vs c(r) plots the hinge 

point molecular weight can be calculated, for this sample the value was 

calculated to be approximately 45.7kDa. The value obtained is very similar 

to the value obtained from the determination of Mw from the M* plot.  The 

whole distribution Mw values obtained at loading concentrations of 

0.5mg/mL (3 repeats) and 1.0mgmL (repeats) from the M* and hinge 

methods are compared in Table 3.4.  
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Table 3.2: Summary of weight average Mw results for 0.5 and 1.0 

mg/mL ovalbumin samples, centrifuged at 20,000rpm. 

 

The results show that despite the presence of low molecular weight 

contaminants (totally ~8% as evident from the sedimentation velocity 

analysis), the overall weight average molecular weight for ovalbumin is 

close to the sequence value for the molar mass of ovalbumin (44.3kDa) 

 

3.3.5   Shape Determination 

The ELLIPS1 algorithm of Harding et al (2005), Harding and Garcia de la 

Torre (2013) was used in the shape determination.  

The first parameter that needs to be determined is the swollen specific 

volume (vs) this is derived using Equation (3.1). 

 

(3.1) 

 

where v̄ was taken as 0.748 mL/g, ρ0 (solvent density) was 1.0023 and δ 

was the hydration of ovalbumin. The value for the hydration was derived 

from a study by Harding (1981) which used a hydration value of 0.57. 

Using the values of the experiment and Equation (3.1) a vs of 1.32mL/g.  

The determination of the Perrin function were calculated used BIOMOLS2 

(Gillis, private comm.), which required several parameters; v̄, vs, ρ0, the 

frictional ratio (f/f0) determined using the sedimentation coefficient, and 

vs = 
v̄ + δ

ρ0
 

 

 

Sample 

concentration 

(mg/mL) 

 

0.5 

(1) 

 

0.5  

(2) 

 

0.5  

(3) 

 

1.0  

(1) 

 

1.0 

(2) 

 

1.0 

(3) 

 

Mw (kDa) - from 

M* 

 

 

45.2 

 

45.4 

 

45.1 

 

44.1 

 

43.6 

 

43.9 

Mw (kDa) - from 

hinge point 

45.7 45.6 45.5 44.9 44.8 44.7 
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the hydration δ. Using these values and BIOMOLS2 a Perrin value of 1.091 

was obtained. This value was compared to the value obtained by Harding 

(1981) who obtained a slightly lower value of 1.033.  

The Perrin values were then inserted into ELLIPS1 and the axial ratios were 

obtained, Figure 3.4 shows the results of the analysis.  

   

 

Figure 3.5: Prolate models of ovalbumin with axial ratios. (A) 

Shape obtained from Harding (1981) study. (B) Shape determined 

from results of this investigation. 

Figure (3.4, A) shows the structure obtained from Harding (1981) which 

shows a prolate model with an axial ratio of 1.85:1. The shape shown in 

(3.4, B) shows a similar shape in that a prolate structure is indicated by 

the data, however the axial ratio is larger (2.7:1). 

As stated the Perrin function is derived using several parameters including 

the frictional ratio, this is obtained using data including the sedimentation 

coefficient. The result of the investigation showed that ovalbumin had an 

s value of ~3.2 S, whereas the study by Harding (1981) showed a 

sedimentation coefficient value of 3.38 S for ovalbumin. Therefore the 

differences in sedimentation coefficients will yield different frictional ratios 

which will affect the Perrin value, thus leading to different axial ratios.  
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The sedimentation coefficient obtained from this study was shown to have 

been impacted by the presence of partially degraded ovalbumin and 

dimeric ovalbumin, therefore the difference in value to Harding (1981) can 

be attributed to this. Had the sample not contained these contaminants 

the resulting axial ratio would have been closer to the 1.9:1 ratio. 

 

 

3.4 Conclusion 

 

The characterisation of ovalbumin involved the use of viscometry, density 

measurements, sedimentation velocity and sedimentation equilibrium 

measurements in order to determine the hydrodynamic properties of 

ovalbumin.  

The analysis methods showed that ovalbumin had an intrinsic viscosity of 

approximately 4.9mL/g which was higher than previous studies had 

indicated, however this was attributed to the presence of lower and higher 

molecular weight contaminants present. 

The sedimentation velocity g(s) data showed a large average peak at 3.2S, 

however there was an indication of extra material being present. The c(s) 

distribution indicated the main peak again at 3.2 S for monomeric 

ovalbumin, however there were also a peaks at both 1.5 S and 4.5 S which 

were indicative of degraded and dimeric ovalbumin respectively.   

Finally the sedimentation equilibrium data showed that the molecular 

weight of ovalbumin at a concentration of 0.5mg/mL was approximately 

45kDa, which corresponds to the actual molecular weight of ovalbumin.  
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4 Evidence of Vancomycin dimerisation and 

interactions with mucin 

 

4.1   Introduction 

Glycopeptides are a type of glycan with generally lower molecular weights 

that glycoproteins such as ovalbumin, glycopeptide antibiotics against 

serious diseases are like this. In essence, they are similar to glycoproteins 

composed of amino acids with glycans covalently bonded, however they 

are often much smaller; being composed of several amino acids bound 

frequently to oligosaccharide residues (Reynolds, 1989). 

Vancomycin is a antibiotic glycopeptide that is used to treat gram-positive 

bacterial infections, such as methicillin-resistant Staphylococcus aureus 

(MRSA) and Enterococcus species (Small et al., 1990). It is often a ‘last 

resort’ treatment due to the its potency and adverse side effects such as 

loss of hearing and possible kidney failure. The emergence of MRSA has 

led to vancomycin becoming administered more as a treatment. This 

increase in administration has led to the discovery of vancomycin-resistant 

cases (Gardete & Tomasz, 2014).  

Vancomycin is a small glycopeptide with a molecular weight of 1449Da, it 

is a member of the heptapeptide glycopeptide family as it is composed of 

seven modified amino acids joined to the vancosamine-glucose 

disaccharide (Jia et al., 2013). Figure 4.1 shows the structure of 

vancomycin with the seven amino acids highlighted and numbered; (1) N-

methyl-D-leucine, (2 & 6) m-chloro-β-hydroxy-D-tyrosine, (3) asparagine, 

(4) D-phenyl glycine, (5) p-hydroxy-D-phenylglycine and (7) m,m-

dihydroxy-L-phenylglycine. 

The glycan residue of vancomycin, vancosamine-glucose, is attached to 

the main peptide backbone through O-linked glycosidic bonds (Barna & 

Williams, 1984). The O-linkages are different to N-linkages seen in earlier 

in ovalbumin. Here, the oxygen of the glycosidic bond remains and is not 

replaced as for N-linkages.  
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Figure 4.1: Structure of vancomycin with numbered residues, see 

above. The disaccharide subunit is bound to residue 4 (purple) 

(Loll et al., 1998). 

 

The antibiotic mechanism through which vancomycin works is by binding 

to peptidoglycan precursor molecule on bacterial cell walls. This binding 

inhibits further synthesis of peptidoglycan resulting in a weak cell wall that 

can eventually burst as the bacteria grows (Yim et al., 2014).  

The terminal end of the peptidoglycan precursor consists of a D-alanyl-D-

alanine (D-Ala-D-Ala) residue, this D-Ala-D-Ala groups forms several 

hydrogen bonds with the vancomycin. The binding of vancomycin to the 

D-Ala-D-Ala results in an inhibition of transpeptidation and 

transglycosylation of the peptidoglycan precursor, reducing the levels of 

cross-linking between the peptidoglycan resulting in weak, less rigid cell 

wall (Nieto & Perkins, (1971a), Binda et al., (2014) & Williams et al., 

(1999). The binding of vancomycin to the D-Ala-D-Ala residues has been 

reported to occur as a dimer, whereby the binding of dimeric vancomycin 

to one residue increases the chance of vancomycin binding to another D-

Ala-D-Ala residue (Loll et al., 1998). However, these studies have looked 

at the dimerisation of vancomycin in the presence of the D-Ala-D-Ala 

peptidoglycan residues or similar structure. The first part of this 
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investigation explored the dimerisation of vancomycin in the absence of a 

possible ligands in several different buffer conditions, including a medical 

buffer. Using SE analysis the dissociation constant of dimeric vancomycin 

was determined. The results were compared to previous studies which 

determined the values in presence of the ligand. SV analysis of vancomycin 

is not possible owing to the low molecular weight of vancomycin. This 

would involve rotor speeds in excess of 50,000rpm which are not practical 

or safe with the equipment available. 

 

The second part of this study investigated the possible interaction of 

vancomycin with gastric mucins (GM). 

As stated, vancomycin is an effective antibiotic that’s use is minimised in 

order to reduce antibiotic resistance and possible harmful side effects. The 

normal administration procedure is to inject a solution of vancomycin at a 

concentration of between 2.5 - 5.0 mg/mL in a 0.9% NaCl solution 

intravenously. The reasoning being to obtain an entry time of the 

vancomycin at approximately 10mg/min (van Hal et al., 2013). This 

method is preferred to oral administration as the absorption of vancomycin 

within the intestine is poor, resulting in administrations of roughly 125mg 

four times a day. It has been reported that adverse side effects such as 

indigestion often occurs (Cataldo et al., 2012). The reason why 

vancomycin is poorly absorbed is not fully understood, therefore tin order 

to overcome this issue orally administered vancomycin must be taken 3 - 

4 times a day at in 500mg doses (Rybak et al., 2009).  

In cases where vancomycin is orally administered vancomycin enters the 

gastrointestinal (GI) tract, where it comes into contact with many different 

macromolecules. The resulting interactions with these macromolecules 

may result in the poor absorption of the vancomycin. One of the most 

common macromolecules that vancomycin is likely to interact with are 

gastric mucins (GM). They are abundant within the GI tract due to the 

lubrication and mucoadhesive properties (Gillis et al., 2013). Gastric 

mucins are large glycoproteins with very high levels of glycosylation, their 

molecular weights range commonly between 500kDa – 20MDa. The protein 

backbone of mucin typically makes up approximately 20% of the molar 

mass while the remainder (~80%) is normally representative of the 

attached glycans (Bansil & Turner, 2006). Due to the high levels of 
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glycosylation mucins adhere to most molecules within the GI tract through 

hydrogen bonds, hydrophobic and hydrophilic interactions (Harding et al., 

1999).  

On this basis this investigation looked at the interaction between gastric 

mucin, specifically porcine gastric mucin (PGM) from pigs as it is similar to 

the human homolog (HGM) and often used as a model for HGM (Kararli, 

1995). Using SV analysis the study will determine whether vancomycin 

interacts with PGM and, if so, what implications this would have on the oral 

administration of vancomycin.  

 

4.1.1.1 Aims of the Investigation 

 

This investigation has two main aims. Firstly to look at the dimerisation of 

vancomycin in the absence of a ligand, and to determine the resulting 

dissociation constant from SE analysis. The second aim is an interaction 

study between vancomycin and PGM to determine if this could be a 

possible reason for the low absorption of vancomycin through oral 

administration. 
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4.2   Materials and Methods 

 

4.2.1   Materials 

Several 1.0L buffers were prepared that consisted of different conditions; 

(A) 10mM HEPES buffer (pH 7.9), (B) 10mM HEPES buffer & 100mM NaCl 

(pH 7.9), (C) 10mM HEPES buffer & 100mM NaCl & 20% glycerol (pH 7.9) 

and (D) 0.9% NaCl in water. The latter buffer condition is the normal 

conditions in which vancomycin is administered, the concentration of 

vancomycin being between 2.5-5.0mg/mL.   

Two samples of vancomycin hydrochloride (powder) were supplied: one 

from Duchefa Biochemie, Haarlem, The Netherlands, the other from Sigma 

Aldrich, UK. They had a purity of 95% and 98%, respectively. The porcine 

gastric mucin type III (PGM) was supplied by Sigma Aldrich, UK. 

 

4.2.2   Sample Preparations 

Samples of vancomycin (Duchefa) were prepared in all four solvent 

conditions (A, B, C & D) to a stock concentration of 10.0 mg/mL, prepared 

by adding 15.0mg of vancomycin to 15.0 mL of each respective buffer 

type. Using each stock solution, a subsequent dilution series was created 

for each buffer condition. The dilutions consisted of concentrations of 5.00, 

2.50, 1.25 and 0.60 mg/mL vancomycin. Once prepared the samples were 

stored at a low temperature within a refrigerator to prolong the stability of 

the vancomycin.   

A separate Sigma vancomycin solution was prepared in 0.9% NaCl to a 

concentration of 50.0 mg/mL. Using the 50.0 mg/mL stock a dilution series 

was produced with concentration of; 40.0, 30.0, 24.0, 20.0, 12.0, 10.0 & 

6.0 mg/mL vancomycin. 

 

4.2.3   Vancomycin v̄ and concentration determination 

The conventional method for determining concentration is to use either 

spectrophotometry or refractometry, however in the case of vancomycin 

this was not possible as neither the extinction coefficient nor refractive 

increment were known. Therefore, in order to determine concentration 
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density measurements were carried out, as explained in section 2.1.1. In 

order to determine the concentration using equation (2.2), the v̄ of 

vancomycin had to be determined.  

The determination of the v̄ for vancomycin was calculated using work 

carried out by Durchschlag and Zipper (1994). This method allows the v̄ 

to be calculated based upon the structure of the molecule, in this case 

vancomycin. The method involves determining the partial molar volume 

(V𝒊), of given atoms or groups of atoms within a certain environment, 

within a given area of the molecule. Figure 4.2 shows the atoms that were 

taken into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:  Structure of vancomycin with the different atomic 

environment highlighted. The number of each given atom is also 

indicated (top right). 

Using the Durchschlag and Zipper V𝒊 values for each atomic environment 

and the number of each atom in each environment, an overall weighted 

average V𝒊 for vancomycin was obtained. The overall V𝒊 was combined 
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with a correction value, calculated based upon the covolume, ring 

formation and ionisation of the vancomycin, to give a correct value. The 

main parameter of importance was the charge of vancomycin at pH 7.9. A 

study by Johnson & Yalkowsky (2006) showed that at pH 7.9 the charge 

on vancomycin was +1. 

Using these values the v̄ of vancomycin could be calculated using Equation 

(4.1).    

 

(4.1) 

 

Where ( v̄ ) is the partial specific volume (mL/g), (V𝒊) is the corrected 

partial molar volume of vancomycin (979.20 mL/mol) and (M) is the molar 

mass of vancomycin (1449.25 g/mol). Using equation (4.1) the v̄ for 

vancomycin was determined to be 0.67 mL/g.  

 

Once the v̄ was determined the concentration of the stock solutions could 

be calulated. For each solvent condition an equal amount of vancomycin 

was weighed out each time, therefore the concentration of one buffer 

(HEPES alone) was calculated as it would be representative of all 

conditions. The method outlined in section 2.1.2 was adopted with three 

density readings taken for both the solvent, the stock and first dilution with 

the results recorded in Table 4.1.  

 

4.2.4   Viscosity Measurements 

Viscosity and density measurements were recorded for each of the 

concentrations derived from the 50.0mg/mL dilution series in 0.9% NaCl. 

Density measurements were carried out in the same way as in 2.1.2 using 

the Anton Paar DMA5000 oscillating capillary meter to determine the 

density correction ratio (ρ/ρ0).   

Viscosity measurements were conducted using the method outlined in 

2.1.4, whereby 2.0 mL of a given concentration was placed into the U-tube 

and placed into the water bath at 20.0°C. The samples were then pumped 

up to the measuring reservoir and allowed to flow back down, with the flow 

times recorded in Table 4.2.  

v̄ = 
v̄𝒊

M
 

 

 



42 

 

4.2.5   Sedimentation Equilibrium of vancomycin 

SE runs were carried out using the Beckman XL-I AUC using 12mm 

aluminium cases and epoxy centrepiece cells. A total of four runs were 

carried out, with each solvent conditions being used per run. 

The samples were loaded into the cells with 0.1mL of sample placed into 

one sector and 0.1mL of buffer placed in the other sector. The cells were 

then placed into the 8 hole Ti rotor and placed into the AUC set at 7.0°C, 

fringe adjustment was made at 3000 rpm after which a rotor speed of 

47,500 rpm was applied. The cells were centrifuged at this speed for three 

days with Rayleigh interference optics taking readings every hour. 

 

4.2.6   Vancomycin and mucin sample preparation 

A stock solution of 10mL PGM at 5.0mg/mL was prepared using 0.9% NaCl. 

The solution was filtered using a Whatman Puradisc 30 cellulose acetate 

syringe filter with a 0.45μm cut off. The sample final concentration was 

then checked using the refractometer, with a dn/dc value of 0.165 mL/g 

being used in the calculations (Jumel et al., 1996). Using the concentration 

determined from the refractometer the stock solution was diluted down to 

4.0 mg/mL. A stock solution of 5mL vancomycin (Sigma Aldrich) with a 

concentration of 25 mg/mL was prepared in a buffer of 0.9% NaCl. Using 

both stock solutions a 1:1 dilution was made by combing equal volumes of 

the vancomycin and PGM together. This resulted in a solution composed 

of vancomycin and PGM at concentrations of 12.5 and 2.0 mg/mL 

respectively.  

In addition to this, a separate study looked at lower concentrations of 

vancomycin being added to PGM. 25.0 mg/mL stock solution was diluted 

10-fold twice, yielding concentrations of 2.50 and 0.25 mg/mL. When 

combined with an equal volume of PGM, final concentrations were 1.25 

and 0.125 mg/mL. 
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4.2.7   Sedimentation Velocity 

SV runs were carried out using the Beckman XL-I AUC, using 12mm 

aluminium epoxy centrepiece cells. Data analysis was carried out using 

SEDFIT(15b), parameter values of 1.0032 g/mL and 0.64 mL/g were used 

for buffer density and v̄ respectively. 

The samples were loaded into the XLI cells. 0.4 mL of the 0.9% NaCl buffer 

was injected into one sector of each cell and 0.4 mL of the sample was 

injected into the other sector. Five cells were used, 3 contained a solution 

of 12.5 mg/mL vancomycin with 2.0 mg/mL PGM, 1 contained 2.0 mg/mL 

mucin alone and the last cell contained just water. The cells were then 

placed into an 8 hole rotor set at 20.0°C, with a speed of 3000 rpm applied 

to adjust the fringes. Measurements were made at a rotor speed of 30,000 

rpm with Rayleigh interference optics for 12 hours, with scans taken every 

two minutes for a total of 500 scans. After the run was finished the cells 

were removed and examined. The examination revealed a thick layer of 

sedimented molecules. Analysis of the results on SEDFIT found that there 

was no sedimenting molecules present in the sample containing both PGM 

and vancomycin. It was hypothesised that these molecules sedimented 

immediately at the high speed. A further experiment was conducted 

whereby the samples were centrifuged at a much lower rotor speed of 

3000 rpm at 20.0°C for 12 hours with Rayleigh interference optics being 

used every 2 minutes.  

An additional SV run was carried out on the 12.5 mg/mL and diluted 

vancomycin solutions (1.25 & 0.125 mg/mL) with PGM added. The samples 

were placed separately into three XLI cells, with a reference sample of 

0.9% NaCl also added. The samples were placed into the XL-I centrifuge 

at a temperature of 20.0°C. A rotor speed of 3000 rpm was applied and 

interference optics took readings every two minutes for five hours. After 

this period the rotor speed was increased to 30,000 rpm for 12 hours, 

again with interference readings every two minutes. The reason for the 

increase was to determine if there was any non-aggregated mucin present. 

 

 



44 

 

4.3 Results and Discussion 

 

4.3.1   Concentration measurements 

The results of the density measurements for the 10 mg/mL stock 

vancomycin and the first dilution (5 mg/mL), showed that the nominal 

concentrations were very close to the actual concentrations (refer to table 

4.1). Using Equation (2.2) and a v̄ value of 0.67 mL/g the concentration 

of the stock solution was calculated to be 9.8 mg/mL and the first dilution 

was 4.9 mg/mL.  

Table 4.1: Determination of actual concentration from density 

measurements for 10.0 & 5.0 mg/mL vancomycin solutions at 

20.0°C. 

The concentrations indicated from the density measurements show that 

actual and nominal values are accurate to one another. The slightly lower 

values from the actual concentration can be attributed to the hydration of 

the sample.  

 

Due to the closeness of the nominal concentration to the actual 

concentration it can be reasonably assumed that the rest of the 

vancomycin buffer conditions have the same concentrations, as they were 

all made using the same weight of vancomycin. The determination of an 

accurate concentration is important for AUC analysis and in the calculation 

of the dissociation constants, as the concentration can have a large impact. 

Nominal 

concentration 
(mg/mL) 

Average Density 

(g/mL) 

Actual 

concentration 
(mg/mL) 

Actual 

concentration 
(g/mL) 

 
10.0 

 
1.002440  

 
9.8 

 
0.0098 

 
5.0 

 
1.000831 

 
4.9 

 
0.0049 

 

solvent 
 

 

0.9992 

 

- 

 

- 
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4.3.2   Viscosity measurements 

Density and viscosity measurements were made for all the vancomycin 

dilutions made from the 50.0 mg/mL 0.9% NaCl "medical" solvent.  

Solution density measurements were made in each case to determine the 

actual concentration and to correct the viscosity values due to the high 

concentration. Table 4.2 shows the density readings and the density 

correction ratio (ρ/ρ0) along with the actual concentration of each dilution 

determined using equation (2.2).  

Table 4.2: Density measurements at 20.0°C for each nominal 

dilution with the density correction (ρ/ρ0) and actual 

concentration calculated. 

The results shown in Table 4.2 show that the nominal concentrations are 

close to actual concentrations, they are within the range of ~3% similar to 

the results shown in 4.3.1. As stated earlier this slight decrease in actual 

concentration can be accounted for through the hydration of the 

vancomycin. The values for ρ/ρ0 are all above 1.0 which indicates that all 

the dilutions have a greater density than the buffer and as a result will 

determine a more accurate intrinsic viscosity value.  

Nominal 

concentration 
(mg/mL) 

Average Density 

(g/mL) 

ρ/ρ0 Actual 

concentration 
(mg/mL) 

 

50 

 

1.02045 

 

1.01582 

 

48.6 

 

40 

 

1.01750 

 

1.01289 

 

39.6 

 
30 

 
1.01417 

 
1.00957 

 
29.4 

 
24 

 
1.01239 

 
1.00780 

 
23.9 

 
20 

 
1.01108 

 
1.00649 

 
19.9 

 
12 

 
1.00847 

 
1.00389 

 
11.9 

 

10 

 

1.00779 

 

1.00322 

 

9.9 

 

6 

 

1.00648 

 

1.00192 

 

5.9 

 
0.9% NaCl 

 
1.00456 

 

 
- 

 
- 
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The viscosity of vancomycin was determined using the flow times of the 

vancomycin dilutions through an Ostwald capillary viscometer. The results 

of the flow times were used to determine the relative viscosity using 

Equation (2.3), the density correction ratios and actual concentrations in 

Table 4.2. Using the relative viscosity the subsequent reduced and inherent 

viscosities were calculated using Equations (2.4 & 2.5) respectively. The 

values for all three viscosities can be seen in Table 4.3 along with the 

average flow times. 

Table 4.3: Average flow times at 20.0°C for each concentration 

along with the subsequent relative, reduced and inherent 

viscosities. 

The results of the reduced and inherent viscosities in Table 4.3 show a 

general decrease as the concentration reduces. Using these values the 

intrinsic viscosity of vancomycin can be determined by plotting the results 

against their respective concentrations, as seen in Figure 4.3.  

Nominal 

concentration 
(g/mL) 

Average flow 

time (s) 

Relative 

viscosity, ηr  

Reduced 

viscosity, ηred 
(mL/g) 

Inherent 

viscosity, ηinh 
(mL/g) 

 

0.050 

 

109.53 

 

1.180 

 

3.709 

 

3.410 

 

0.040 

 

105.61 

 

1.135 

 

3.404 

 

3.193 

 
0.030 

 
102.63 

 
1.099 

 
3.370 

 
3.213 

 
0.024 

 
100.41 

 
1.074 

 
3.064 

 
2.957 

 
0.020 

 
99.41 

 
1.061 

 
3.076 

 
2.985 

 
0.012 

 
97.34 

 
1.037 

 
3.058 

 
3.003 

 

0.010 

 

96.43 

 

1.026 

 

2.651 

 

2.617 

 

0.006 

 

95.52 

 

1.015 

 

2.576 

 

2.557 
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Figure 4.3:  Intrinsic viscosity determination of vancomycin 

through the extrapolation of the reduced and inherent viscosities 

to zero concentration, at 20.0°C. 

The plot shows the linear regression of the Huggins and Kraemer plots, 

both of which show a positive slope, to zero concentration. The y-intercept 

for both data series shows an intrinsic viscosity value of (2.6± 0.2) mL/g. 

With regard to both data series in the Figure 4.3, the data points at the 

lower concentrations (6, 10 & 12 g/mL) have a large impact on determining 

the final [η] value. However a limitation of this is that the impact of error, 

through noise, increases at these concentrations effecting the final [η]. 

The data points in Figure 4 for the lower concentrations do not show large 

degrees of variation, meaning that the resulting y-intercept of 2.6 mL/g 

can be taken as reliable for both data series.     

The small [η] value of 2.6 mL/g for vancomycin is to be expected owing to 

its low molecular weight and small size. Low molecular weight globular 

proteins also tend to have low [η] ranging between 2.5-3.5 mL/g (Tanford, 

1961). 
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4.3.3   Sedimentation Equilibrium 

 

Vancomycin sedimentation equilibrium data for all dilutions of each buffer 

condition were analysed using SEDFIT-MSTAR. A baseline was found, data 

noise was removed by subtracting the average of the first 5 scans from 

the average of the last 5 scans (2.3.1.2), this was used to aid in 

determining the concentration at the meniscus for each solution. Similar 

to the results in 3.3.4, the baseline corrected data was used to yield plots 

showing; ln(c) vs r2, M* vs r and MW,app(r) vs c(r) as well as the 

concentration as a function of fringe units against radius. Using the data 

from the M* and Mw,app(r) plots the M* and hinge point molecular weights 

were found, Table 4.4 gives the values of both M* and hinge points 

determination for Mw for each solvent condition. 

 

Table 4.4: Molar mass estimations of vancomycin in the presence 

of all buffer conditions, showing the M* and hinge point 

evaluations of Mw. 

The results of the SEDFIT-MSTAR analysis shown in Table 4.4 show that 

as the vancomycin concentration increases so too does the weight average 

molar mass. 

  

 

HEPES Only 
 

HEPES + NaCl 
 

HEPES + NaCl 

+ Glycerol 
 

Water and NaCl 
 

conc 

(mg/ml) 

M* 

(kDa) 

Hinge 

(kDa) 

M* 

(kDa) 

Hinge 

(kDa) 

M* 

(kDa) 

Hinge 

(kDa) 

M* 

(kDa) 

Hinge 

(kDa) 

 

10 2.90 2.83 3.40 3.34 3.10 3.02 3.50 3.29 

 
 

5 2.70 2.62 2.70 2.54 2.60 2.64 3.00 2.86 

 

 
2.5 2.70 2.85 2.70 2.64 2.80 2.76 2.80 2.68 

 
 

1.25 - - 2.50 2.46 2.10 2.08 2.20 2.20 

 
 

0.6 
 

2.10 
 

2.15 
 

2.50 
 

2.51 
 

1.90 
 

1.90 
 

1.60 
 

1.62 
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The molecular weight of monomeric vancomycin is 1449 Da, therefore 

dimeric vancomycin will have a molecular weight of 2898 Da. The results 

in Table 4.4 show that at higher concentrations the vancomycin is in its 

dimeric form. This is suggested by the weight average molar mass being 

approximately 3000 Da. Although the higher concentrations indicate the 

presence of dimeric vancomycin, a degree of error is attributed to the 

values (±~10%). The error in these values is attributed to the optical 

systems, radial calibration, rotor speed and consistency calibration and 

temperature equilibrium of the AUC, the construction and state of the cells, 

as well as the concentration determination through SEDFIT-MSTAR. In 

addition the low molecular weight of vancomycin contributes to the error 

in these parameters thus leading to a ±10% error. With the error taken 

into account the molecular weights still indicate the presence of dimeric 

vancomycin.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Changes of weight average molar mass of vancomycin 

with concentration. M* values (closed signals) and hinge point 

values (open symbols). Squares: HEPES alone. Circles: HEPES + 

NaCl. Up triangles: HEPES + NaCl + glycerol. Down triangles: Water 

+ 0.9% NaCl. 
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The MW,app(r) vs c(r) distributions for each concentration of a given solvent, 

used to determine the weight average molar masses by M* and hinge point 

analysis shown in Figure 4.4, were combined within Figure 4.5 to give an 

overall concentration distribution. The plot shows the weight average 

molar mass of the local concentration at a given radius, c(r), for each 

buffer condition; (A) 100mM HEPES, (B) 100mMHEPES + 100mM NaCl, (C) 

100mM HEPES + 100mM NaCl + 20% Glycerol and (D) water + 0.9% NaCl. 

Figure 4.5: Sedimentation equilibrium plots (MW,app(r) vs c(r)) of 

each concentration (A-D) overlaid for each solvent condition. (red) 

10mg/mL, (orange) 5mg/mL, (green) 2.5mg/mL, (blue) 

1.25mg/mL and (purple) 0.6mg/mL. 

The distributions shown in Figure 4.5 concur with the results seen in both 

Table 4.4 and Figure 4.4. All four plots show a molecular weight of ~1.5kDa 

at low concentration indicating the presence of monomeric vancomycin, 

however as the concentration increases the molecular weight increases 

and plateaus of at ~3kDa which suggests that the vancomycin is in its 

dimeric form. Both Figures 4.4 and 4.5 show that at a concentration of 

approximately 5mg/mL all of the vancomycin is in its dimeric form.  

The distributions within Figure 4.5 show evidence that the dimerisation of 

vancomycin is reversible. A study by Roark & Yphantis (1969) showed that 
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sedimentation equilibrium profiles, of a given concentration range, of a 

fully reversible system should overlay each other. The profiles in Figure 

4.5 for each buffer condition show this overlaying, thus indicating that the 

dimer formation of vancomycin is fully reversible. Assuming that the 

dimerisation is reversible both the association and dissociation constants 

can be determined. 

 

4.3.4 Determining the Association and Dissociation constants 

As stated above the results shown in Figure 4.5 show that the dimerisation 

of vancomycin is reversible. Using the data the strength of the association 

can be calculated using three parameters are defined; k2 (association 

constant), K2 (molar association constant) and Kd the molar dissociation 

constant (1/K2). 

Using Equation III-66 of Kim et al. (1977), shown in Equation 4.2, the Y(c) 

values as a function of concentration for each of the 4 solvent conditions 

can be determined:  

 

(4.2) 

 

where M1 is the monomer molar mass of vancomycin (1449 Da) and Mw(c) 

is the molar mass determined by SE analysis for each loading 

concentration, c. By subsequently plotting the Y(c) of each buffer 

concentration against their respective concentration, then plotting a linear 

line yields the k2 value. Figure 4.6 shows the Y(c) plots for concentration 

0.6, 1.25 & 2.5 mg/mL as it is at these concentrations where the 

vancomycin is dimerising.  

Y(c)= 
M1(Mw(c)-M1)

((2M1-Mw(c))
2
=k2.c 



52 

 

Using the slope (k2) values the K2 values can be determined by multiplying 

the k2 value by the vancomycin monomer molar mass (1449). The Kd is 

the inverse of this (i.e. 1/K2). Table 4.5 shows the values of each 

parameter. 

 

From the data provided in Table 4.5 it can be seen the Kd values of each 

buffer condition are relatively low, ranging between 30 - 60μM. This is an 

indication that the dimerisation of the vancomycin monomers is relatively 

weak. A study by Linsdell et al., (1996) obtained a Kd value of 250μM, 

which although a larger value (the precise details of the evaluation method 

is not described) than the obtained from this investigation (hence weaker 

interactions) all indicates that there is a weak interaction. In addition to 

this both this investigation and the study by Linsdell showed a similar error 

of ~20% in the Kd values. As both results in each investigation support 

each other it can be said that the dimerisation of vancomycin is a weak 

interaction.  

 

Solvent k2 (mL/g) K2 (M-1) Kd (μM) 

 
10mM HEPES 

 
18400 
±2000 

 

 
27600 
±3000 

 
35 
±5 

10mM HEPES + 100mM 

NaCl 

13100 

±2000 
 

20000 

±3000 

50 

±10 

10mM HEPES + 100mM 
NaCl + 20% Glycerol 

14500 
±3000 

22000 
±4000 

45 
±10 

 
0.9% (w/v) NaCl 

 
14400 
±3000 

 
21000 
±4000 

 
50 

±10 

 

Table 4. 5: k2, K2 & Kd values for each buffer concentration. 
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Figure 4.6: Y(c) plots of each solvent conditions at concentrations 

of 0.60, 1.25 & 2.50 mg/mL: (a) HEPES alone, (b) HEPES + NaCl, 

(c) HEPES + NaCl + glycerol, and (d) 0.9% NaCl. The slopes of each 

plot yield the k2 values. 

 

 

4.3.5 Vancomycin and mucin interaction SV analysis 

The sedimentation velocity data of the interaction studies between 

vancomycin and PGM were analysed using SEDFIT. This work was done in 

conjunction with Hayley Coupe. 

The result of the first SV runs between 12.5 mg/mL and 2.0 mg/mL PGM 

at 3000 rpm and 2.0 mg/mL PGM alone can be seen in Figure 4.7. The 

bottom distribution shows two peaks, a narrow peak at ~2S and a broader 

peak at ~11S after being centrifuged at 30,000 rpm. The narrow 2S peak 

is attributed to lower molecular weight contaminants. The main peak at 

~11S is indicative of the sedimentation coefficient of PGM (Bansil & Turner, 

2006). The peak is broad which reflects polydispersity within the solution 

due to the glycosylation of PGM.  
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Figure 4.7: Sedimentation velocity ls-g*(s) distributions of (Top) 

12.5 mg/mL vancomycin and 2.0 mg/mL PGM (x3 repeats) 

3000rpm, (Bottom) 2.0 mg/mL PGM alone 30,000 rpm. 

The top plot shows the distribution of the SV runs involving the mixtures 

of 12.5 mg/mL vancomycin and 2.0 mg/mL PGM run at 3000 rpm. The 

distribution indicates that the mass aggregation of the PGM has occurred 

as the value has increased from 11 S (monomer) to 1100 S, this suggests 

that vancomycin causes the mass aggregation of PGM. The results also 

show that aggregation occurs at a very fast rate, as using just the first 50 

scans (1.5hrs) yields the same result as the use of all scans (Figure 4.7).  

The formation of the large PGM/vancomycin complex also explains the 

presence of the thick sedimented layer at the bottom of the cells. 

The results of the interaction study clearly showed that vancomycin 

interacts with PGM and causes mass aggregation, however from this data 

it was unclear at what concentration vancomycin stop causing mass 

aggregation of PGM. 

Knowing that 12.5 mg/mL vancomycin causes PGM aggregation two 

additional dilutions were prepared to a concentration of 1.25 mg/mL (10x) 
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and 0.125 mg/mL (100x), both were added to 2.0 mg/mL PGM. As before 

the samples were spun at 3000 rpm for 5 hours, after which the SV data 

was analysed in SEDFIT (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: SV (3000 rpm) distribution of vancomycin + PGM at 

different concentrations of vancomycin (normalised); 12.5mg/mL 

(red) (dotted red line, previous study), 1.25 mg/mL (green) and 

0.125 mg/mL (blue). 

The distribution in Figure 4.8 has been normalised to the 12.5 mg/mL 

vancomycin run. The results clearly show that again the addition of 

12.5mg/mL vancomycin causes mass aggregation of the PGM, with a 

complex with a sedimentation coefficient of ~1200 S forming. By 

integrating this data it can be seen that the peak represents ~90% of the 

data, indicating most of the PGM has aggregated.  The first dilution of 

1.25mg/mL vancomycin shows that there is a dramatic decrease in PGM 

aggregation, as the complex has a lower s ~1000 S. Again integrating the 

data reveals the peak represents ~50% of the data. The distribution of the 

0.125 mg/mL vancomycin suggests minimal aggregation as the peak 

represents only ~12% of the data, suggesting an s of ~800S. It can 
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therefore be seen that as the concentration of vancomycin decreases by 

10 and 100 fold there is a dramatic decrease aggregation. 

In order to support the results seen in Figure 4.8 the sample was left to 

run in the centrifuge at an increased speed (30,000 rpm) for 12 hours, the 

purpose being to see if there was any non-aggregated PGM left within the 

cells. The results of the increased speed can be seen in Figure 4.9.  

Figure 4.9: SV (30,000 rpm) distribution of vancomycin + PGM at 

different concentrations of vancomycin (normalised); 12.5mg/mL 

(red), 1.25 mg/mL (green), 0.125 mg/mL (blue) and PGM alone 

(black). 

The distributions seen in Figure 4.9 support to a large extent the 

conclusions made based on Figure 4.8. From the distribution the 

sedimentation coefficient for PGM alone is shown to be ~11 S, this is the 

same value as indicated in Figure 4.7 (top). The results of the 0.125mg/mL 

vancomycin solution show the same at 30,000 rpm a very similar 

distribution is observed, this would suggest that this concentration results 

in little aggregation with predominantly monomeric PGM present. This is 

corroborated by the data in Figure 4.8, which showed that little to no PGM 

aggregates formed. With regard to the 1.25 mg/mL vancomycin sample 
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the data showed the formation of a single peak with a sedimentation 

coefficient of 11 S. The area under the curve in Figure 4.9 indicates that 

the monomeric PGM is at a much lower concentration, compared to the 

0.125 mg/mL sample, this suggests that more aggregation has occurred 

and supports the data shown in Figure 4.8 (green).  Finally the data of the 

12.5 mg/mL vancomycin shows a flat indicating that no monomeric PGM 

is present within the cell, supporting the claim in Figure 4.8 thus indicating 

that all of the PGM has aggregated.  

Overall the results seen in Figures 4.8 and 4.9 complement each other, 

the data suggests that between 0.125 mg/mL and 1.25 mg/mL 

vancomycin there is a critical concentration that vastly reduces the 

aggregation of PGM. These results are intriguing as vancomycin is orally 

administered four times a day at an average concentration of 125 mgs. 

The results of this study would suggest that at this concentration the 

vancomycin would cause mass aggregation of PGM, and as it is a homolog 

to the human gastric mucin (HGM) it can be assumed the same would 

occur in the human gut. Therefore it can be hypothesised that this mass 

aggregation, due to the high administrative concentrations, could be a 

large contributing factor for the poor absorption of vancomycin within the 

gut. It can also be suggested that the aggregates may also be the cause 

of indigestion, as the mucin not be properly lubricating the gut resulting in 

poor movement of the food within the gut.   
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4.3.6 Conclusion 

In conclusion the hydrodynamic characterisation yielded information 

regarding the viscosity, dimerisation and interactions of vancomycin.  

Viscometry analysis showed that the intrinsic viscosity of vancomycin was 

~2.55mL/g. The low intrinsic viscosity value likely a result of the low 

molecular weight. 

 

Sedimentation equilibrium analysis of vancomycin showed that in solution, 

and without the presence of a ligand, it forms dimers. Using M* and hinge 

point method evaluations for the weight average molar masses Mw and 

plots of the point weight average molar masses (Mw,app(r) vs c(r)) indicate 

that at low concentrations vancomycin is monomeric, however as 

concentrations increase to above 2.5 - 5.0 mg/mL it is apparent that 

vancomycin is dimeric. From the SE analysis the Kd values of the dimeric 

vancomycin were calculated to be between 30-60 μM in all solvent 

condition, indicating that the dimerisation of vancomycin is relatively 

weak.   

 

The interaction study between vancomycin and PGM showed that at a 

relatively low concentration vancomycin causes aggregation of PGM. The 

investigation showed that at high concentrations (12.5 mg/mL) 

vancomycin caused mass aggregation of PGM, with a sedimentation 

coefficient in excess of 1000 S. As the concentration was reduced the 

degree of aggregation also decreased until a concentration of 0.125mg/mL 

produced virtually no aggregates. The results indicate that a critical 

concentration between 1.250 - 0.125 mg/mL causes the formation of 

PGM/vancomycin aggregates. 
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5  Hydrodynamic characterisation of β-glucans 

 

5.1   Introduction 

β-glucans are a class of polysaccharide that are typically found in the cell 

walls of plant cereals, bacteria and fungi. The function of β-glucans within 

the cell wall are not entirely understood however recent studies have 

shown that β-glucans can form hydrogels within the cell wall, which may 

be used as a tethering point for other polysaccharides during cell growth 

(Kiemel et al., 2014).  This investigation looks at two types of cell wall β-

glucans, one sort of low molecular weight derived from a fungus 

(Macrolepiota procera (M.P)) and another of high molecualr weight from 

oat species. The β-glucan content between the two species differ, with oats 

containing approximately ~4% of the dry mass whereas mushrooms tend 

to contain ~8% of the dry mass (Hubner et al, (2010) & Rhee et al (2008)). 

 

Both mushroom and oat β-glucans are of increasing importance at the 

moment due to recent studies showing their impact on several health 

conditions. Mushroom derived β-glucans have been shown to have anti-

tumor properties, such as the reduction of tumours and increasing 

macrophage activity (Wang et al., 2005). Oat β-glucans however have 

been shown to reduce the levels of cholesterol within the blood, through 

binding to the cholesterol within the gut reducing absorption (Daou & 

Zhang, 2012). 

Generally β-glucans have a common backbone structure composed of a 

linear chain of D-glucose monomers joined by β,1-3 glycosidic bonds, 

however between species there are difference such as additional linkages 

and branching (Rahar et al., 2011). The structure of β-glucans derived 

from fungal species predominantly have a backbone formed of β,1-3 linked 

glucose monomers, however there are additional β,1-6 branch points at 

intermittent points (Zhu et al., 2015). In comparison β-glucans derived 

from oat species shows a β,1-3 and β,1-4 linkages, with tri and tetra β,1-

4 subunits forming linked by β,1-3 glycosidic bonds (Cui et al., 2000) . 

Figure 5.1 depicts the structures of the β-glucans derived from both 

mushroom and oat species. 
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β-glucans are characteristically large macromolecules with average 

molecular weights ranging between 20–900kDa depending on the source, 

with oat β-glucans having higher molecular weights (+200 kDa) than 

fungal β-glucans (Roubroeks et al, (2000) & Zhang et al., (2003)). The 

molecular weights of β-glucans can be affected by the extraction methods, 

as this can result in low or higher molecular weight extracts. Typically 

proteolytic enzymes are used to destroy hydrolytic enzymes that would 

degrade β-glucans within the cell wall, therefore extraction using this 

method often yields higher molecular weight β-glucans (Gamel et al., 

2014). Although the sizes (Mw) and linkages differ between species, 

generally β-glucans adopt a similar structure of a random coil (Varum et 

al., 1991). A result of both these aspects, size and conformation, is that 

many β-glucans having low solubilities as well as high viscosities. 

 

Figure 5.1: Structure of β-glucans derived from mushroom and oat 

species. (A) Mushroom β,1-3 backbone with β,1-6 branch point, 

(B) oat β,1-3 and β,1-4 linked backbone. (A) Laroche & Michaud 

(2007) and (B) Pillai et al. (2005). 

The solubility of oat β-glucans they are dependent upon the amount of 

tri/tetra subunits that are present within the β-glucans.  If the β-glucans 

consist of a similar subunit distribution then they are able to for aggregate 

together, thus reducing the solubility of the β-glucan, as they can for 

interactions between each chain. However, if there is not a consistent 

 



61 

 

subunit distribution then uniformity is vastly reduced inhibiting the 

formation of aggregates, thus increasing solubility (Burton et al., 2010). 

Generally the solubility of oat β-glucans in water is good however better 

with salts. The viscosity of oat β-glucans is generally very high, owing to 

the size and solubility. Typical viscosity values for oat β-glucans of an 

average molecular weight (200 kDa) are ~350 mL/g (Lazararidou et al., 

2003). Measurements of viscosity are often used to indicate the molecular 

weight of β-glucans.     

With regard to the solubility and viscosity of mushroom derived β-glucans, 

they are different from their oat counterparts. The solubility of mushroom 

β-glucans are generally poor this if often due to the structure of the 

molecule, however there is not a lot of evidence to show this. As seen in 

Figure 5.1 the β,1-3 backbone is flat linear, it has been suggested that the 

linear chain allows back-back interactions to form between β-glucan 

chains. In addition the branch points have been suggested to interact with 

branch chains on other β-glucans as well, resulting the formation of 

aggregates and thus reducing solubility (Wasser, 2011). Mushroom β-

glucans are virtually insoluble in water however more soluble in alkali 

solution, in addition high mixing temperatures are often applied to increase 

solubility further (Zhu et al., 2015).  

The viscosity of mushroom β-glucans is almost the polar opposite to oat 

β-glucans, in that these β-glucans have much lower intrinsic viscosities 

ranging in the 10’s not 100’s mL/g (Kimura et al., 2006). 

 

5.1.1   Aim of investigation 

The aim of the investigation is to characterise and compare the 

hydrodynamic properties of two different β-glucans obtained from 

mushroom and oat sources. The hydrodynamic characterisation involves: 

 Viscosity measurements to determine if there is a considerable 

difference between each species.  

 SV analysis to determine the sedimentation coefficient and 

heterogeneity of each β-glucan type.  

 SE analysis to estimate the weight average molar mass of the β-

glucan samples. 
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5.2   Materials and Methods 

 

5.2.1   Materials 

A 1L phosphate buffered saline (PBS) solution of pH 7.0 was prepared 

using 2.923g sodium chloride, 1.561g dihydrogen potassium 

orthophosphate and 4.595g sodium dihydrogen dodecahydrate, obtained 

from Sigma Aldrich, UK. A 2L 0.1M sodium nitrate (NaNO3) (Sigma Aldrich, 

UK) dialysis solution was produced. 

Two β-glucans were provided from different sources. The first β-glucan 

were derived from an unknown oat species provided by NOFIMA (Norway), 

they consisted of six samples (7-12) of the same β-glucan. The second β-

glucan can from the mushroom species Macrolepiota procera (M.P), the 

sample was provided by Dr Cleanthes Israilides, NAGREF, Lykovrysi, 

Greece. 

 

5.2.2   Mushroom (M.P) β-glucan sample preparation 

From the powdered sample of the M.P β-glucan a stock solution was 

prepared to a nominal concentration of 7.0 mg/mL in 40mL PBS buffer. 

Owing to the high difficulty of getting β-glucans into solution (Zhu et al., 

2015), the solution was heated to 90°C and left on a gentle stir for 5 hours. 

A large majority of the β-glucan was in solution however not fully, in order 

to remove the insoluble β-glucan material the sample was centrifuged at 

2000 rpm for five minutes to remove the large insoluble material. After 

centrifugation the supernatant was removed with the pellet placed into the 

fridge.  

The concentration of the supernatant was determined using the 

refractometer, with a dn/dc value of 0.146 mL/g (Li et al., 2006), this was 

revealed to be 6.4 mg/mL. Using the supernatant stock solution a dilution 

series was produced consisting of 5.0, 4.0, 3.0, 1.0, 0.5 and 0.3mg/mL β-

glucan in PBS. 
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5.2.3   Oat β-glucan sample preparation 

The samples of β-glucans from NOFIMA were supplied by Dr. S. Ballance 

in a solution of water with 0.02% sodium azide. The samples were said to 

contain possible low molecular weight contaminants, therefore the samples 

were dialysed. Dialysis was carried by placing 100mL of each β-glucan 

sample into a 40mm wide cellulose based dialysis tubing, with a molecular 

weight cut off of 12-14kDa. The samples were placed into 1L of NaNO3 and 

left for 6 hours after which the dialysed NaNO3 (dialysate) was removed 

and kept, an additional 1L of NaNO3 was added to the sample and left 

overnight. Once dialysis was complete the dialysate was removed and 

placed with the previous dialysate. The samples were removed from the 

dialysis tubing and placed into containers.  

 

Concentration estimates of the samples were provided by NOFIMA, 

obtained from enzymatic digestion of the β-glucans. However due to the 

dialysis the concentrations were determined again using the refractometer. 

The measurements were carried out as in 2.2.2, using a dn/dc value of 

0.146 mL/g (Li et al., 2006). The results from the refractometery were 

placed in Table 5.1 along with the enzyme digestion concentrations.  

 

5.2.4   Density and Viscosity measurements 

The density measurements for both β-glucan species were conducted in 

the same manner, using the method outlined in 2.1.2 with the Anton Paar 

DMA5000 density meter.  Density measurements for the mushroom β-

glucan samples were carried out on the higher concentration solutions, 

leaving out the 1.0, 0.5 & 0.3 mg/mL dilutions. The individual samples of 

oat β-glucan from NOFIMA were measured using the same method. 

Viscosity measurements were conducted using the method outlined in 

2.1.4, using an Ostwald U-tube viscometer and the Schott-Gerӓte AVS 400 

timing unit, recording the flow times. The flow time’s mushroom β-glucan 

samples were recorded at a temperature of 20.0°C. Likewise the same 

procedure was carried out for the oat β-glucan samples. The results were 

recorded in Table 5.2 along with the subsequent calculated viscosities.  
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5.2.5   Mushroom and Oat β-glucan SV analysis 

 

SV analysis was carried out using the Beckman XLI-AUC, using 12mm 

aluminium cases containing an epoxy centrepiece. Data analysis of the 

scans was carried out using SEDFIT producing both ls-g*(s) and c(s) 

distributions (refer to 2.3.1.1). 

  

Mushroom β-glucans 

The low concentration β-glucan samples of 1.0, 0.5 & 0.3mg/mL were 

analysed. Each concentration was inserted into one of three cells to a 

volume of 0.4mL, along with 0.4mL of the PBS buffer in the other 

corresponding sector. The cells were inserted into the 4 hole Ti rotor and 

placed into the AUC chamber set at 20.0°C. A rotor speed of 3000 rpm 

was applied to adjust the fringes, after which a speed of 50,000 rpm was 

used, with measurements made using Rayleigh interference optics. Scans 

were taken at 2 minute intervals until 500 scans were acquired. 

For analysis on SEDFIT a solvent density and v̄ of 1.0032 g/mL (measured 

by density meter) and 0.60 mL/g (Woodward et al., 1983) were used, 

respectfully. 

 

Oat β-glucans 

Each sample was loaded into one of six cells to a volume of 0.4mL with 

0.4mL of the dialysate buffer injected into the adjacent corresponding 

sector, a cell containing just water was also prepared. The cells were 

placed into the 8 hole Ti rotor and placed into the AUC, set at 20.0°C. A 

speed of 3000 rpm was applied to optimise the fringes, upon which a speed 

of 45,000 rpm was applied. Measurements were made using Rayleigh 

interference optics at 2 minute intervals until a total of 500 scans were 

acquired. For SEDFIT a v̄ of 0.6 mL/g and solvent density of 1.0039 g/mL 

were used.       
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5.2.6   Mushroom and Oat β-glucan SE analysis 

SE was carried out using the Beckman XLI-AUC, using the 20mm titanium 

centrepieces in aluminium cases. All SE data was analysed using SEDFIT-

MSTAR using the average of the last 5 scans minus the average of first 5 

scans (refer to 2.3.1.2). The parameters used in the SV analysis for both 

β-glucans were used again for SE analysis.  

 

Mushroom β-glucan 

The same three samples used in the SV analysis were used again. Of each 

sample 0.15mL was inserted into one of three cells, in addition 0.15mL of 

PBS buffer was injected into the adjacent sector. The samples were placed 

into the 4 hole Ti role and placed into the AUC, set at 20.0°C. The fringes 

were adjusted at 3000 rpm, with the speed increased 30,000 rpm 

thereafter. The samples were centrifuged for 72 hours, with measurements 

made using Rayleigh interference optics every 1 hour. Five scans were 

taken at the beginning and end of the run in addition.  

Oat β-glucan 

SE analysis of the NOFIMA β-glucans was carried out using the same six 

samples in the SV analysis. A sample volume of 0.15mL was inserted into 

each cell along with an equal volume of the dialysate buffer. The cells were 

loaded into a 8 hole Ti rotor and placed into the AUC, set at 20.0°C. A rotor 

speed of 3000 rpm was applied to adjust the fringes. Using estimated 

molecular weight from the SV analysis a rotor speed of 8000 rpm was 

selected to be applied to the samples. Measurements were made using 

Rayleigh interference optics, taking readings every 1 hour for 85 hours. 

Five scans were taken at the beginning and end of the run in addition. 
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5.3  Results and Discussion 

 

5.3.1   Mushroom β-glucan 

 

5.3.1.1 Mushroom β-glucan viscosity  

 

The flow times of the β-glucan concentrations, along with the density 

measurements, were used to determine the ηred and ηinh viscosities. 

Because of the low flow time increments compared to the solvent only the 

Solomon-Ciuta equation was applied at a single concentration, rather than 

a concentration extrapolation.   

Table 5.1: Relative, reduced, inherent viscosities and intrinsic 

viscosity of M.P mushroom β-glucans (20.0°C). 

A study by Kimura et al. (2006) on β-glucans derived from a yeast like 

fungus (Aureobasidium pullulans), showed that the β,1-3 (β,1-6 branched) 

linked β-glucans had a low intrinsic viscosity value and molecular weight 

(less than 100kDa). The results of the intrinsic viscosity measurements of 

this investigation suggest that a similar structured β-glucan is present 

within the M.P mushroom species. SE analysis examined later also 

supports this claim. 

 

 

  

 

Concentration 

(g/mL) 

ηr  

(mL/g) 

ηred 

 (mL/g) 

ηinh 

 (mL/g) 

[η] 

(mL/g) 

 

0.0064 

 

1.022 

 

3.424 

 

3.387 

 

3.413 

0.0050 1.016 3.176 3.152 3.183 

0.0040 1.012 2.938 2.921 2.988 

0.0030 1.009 2.823 2.811 2.991 

 



67 

 

5.3.1.2   Mushroom β-glucan SV and SE analysis 

 

The SV data for the M.P β-glucans was analysed using SEDFIT, in each 

concentration every second scan of the first 250 scans was analysed. The 

data was used to produce both g(s) and c(s) distributions for each species. 

The SE data analysis involved SEDFIT-MSTAR and the method outlined in 

2.3.1.2. 

5.3.1.2.1 SV analysis 

 

The SV results were used to produce a distribution plot, Figure 5.2, which 

shows the sedimentation coefficient of the M.P β-glucans derived from 

SEDFIT. Figure 5.2 shows two plots; (top) ls-g*(s) analysis and (bottom) 

c(s) analysis.  

Figure 5.2: SEDFIT SV analysis of M.P β-glucan concentration 

series, at a rotor speed of 50,000rpm. (Top) ls-g*(s) plot and 

(Bottom) c(s) analysis. 
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The g(s) distribution (top) indicates that the sedimentation coefficient of 

the β-glucans is approximately 1.4 S, through the integration of the data 

peaks within SEDFIT the same sedimentation coefficients were obtained. 

The results are intriguing as generally as concentration reduces the 

sedimentation coefficient increases, due to the reduction of non-ideality. 

The s values of M.P β-glucans do not show this trend instead showing very 

similar s values as the concentration decreases. In addition the data that 

produces the sedimentation peaks of each concentration constitutes 

approximately 85% of the total signal obtained from the cell, this leads to 

a suggestions that the β-glucans are relatively monodispersed.  

 

The c(s) plots (bottom) show a similar distribution, however 

characteristically of c(s) analysis there is an over sharpening of the peaks. 

This over sharpening has resulted in the formation of 2 peaks from the 1 

peak seen in the g(s) analysis, and in addition has formed some higher 

sedimentation coefficient peaks. The presence of two peaks, in close 

proximity to each other, would suggest that there is actually only one peak 

present. 

 

The low s values indicate that the β-glucans have a low molecular weight, 

using the c(M) algorithm within SEDFIT an estimated molecular weight of 

~10kDa was obtained for each sample. The indication of the same 

molecular weight in each concentration supports the assumption made 

from the g(s) plots that the samples are relatively monodispersed.  
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5.3.1.2.2 SE analysis 

 

SE analysis carried out by SEDFIT-MSTAR, yielded results for each M.P β-

glucan concentration. From the data four plots were found for each 

concentration; c(r) vs r, lnc(r) vs r2, M* vs r and Mw,app c(r) vs c(r). Figure 

5.3 shows the four distributions the 0.5mg/mL β-glucan, similar plots were 

produced for all concentrations. Using the data from SEDFIT-MSTAR for 

each cell the Mw determined from the M* and hinge point analysis 

methods, along with the polydispersity were recorded in Table 5.4. 

Figure 5.3: Molar mass analysis for 0.5mg/mL M.P β-glucan from 

SEDFIT-MSTAR: (A) Distribution of data along the radius of the 

cell, (B) log of concentration in the cell vs the square of the radial 

displacement, (C) M* analysis vs radius, (D) point average 

molecular weight. 

Using Figure 5.3, plot (B) shows the natural logarithm of the data against 

the square of the radius. From the plot it can be seen that the fitted data 

(red) overlays the raw data (black). The overlaying of both data sets, 

coupled with the lack of upwards or downwards bending of the data, 

suggests that there is little polydispersity within the cell. Table 5.2 shows 
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that similar data was obtained for all the concentrations, using the Mz data 

the polydispersity indexes of each concentration were ~1.0. The low 

polydispersity index values indicate that the M.P β-glucan samples are 

predominantly monodispersed, thus supporting the observations from the 

SV distributions.   

 

Plot (C) shows the M* analysis, this yields (from M*(r) extrapolated to the 

cell base) the weight average molar mass over the whole distribution, Mw. 

The data shows that the average molar mass, for this given concentration, 

is approximately 10.2 kDa. Similar M* derived molecular weights Mw were 

obtained for the other concentrations, Table 5.2. Plot (D) shows the local 

point average molecular weights Mw(r) plotted against loading 

concentration in the ultracentrifuge cell, c(r), the distribution supports the 

molecular weight determined from the M* analysis indicating a molecular 

weight of ~10.3 kDa. 

Table 5.2: Summary of weight averages of M.P β-glucans using M* 

and hinge point analysis, along with the polydispersity of the 

samples. 

 

 

 
Sample 

(mg/mL) 

 
0.3 

 
0.5 

 
1.0 

 
Mw (kDa) from 

M* 

 
10.0 

 
10.1 

 
10.3 

 
Mw (kDa) from 

hinge point 

 
10.1 

 
10.2 

 
10.3 

 
Mz 

 
10.1 

 
10.1 

 

 
10.4 

 
Polydispersity 

 
1.0 

 
1.0 

 
1.0 
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5.3.1.3 Shape estimation 

 

A study by Stahmann et al (1995) regarding single stranded β-glucans 

with β, 1-3, β,1-6 branches have been shown to have a persistence length 

of 300nm. The persistence length is a measure of how rigid a molecule is, 

the greater the value the more rigid a molecule is. Therefore assuming the 

M.P β-glucans are similar in structure they will also have a high rigidity, 

particularly as they are low molecular weight short-chain structures, which 

tend to have limited flexibility compared to larger linear structures in any 

case. Using this information and subsequent data from the SE run an 

estimation of the shape of the M.P β-glucans can be made based on 

ellipsoidal modelling. Using SEDFIT an estimation as to the frictional ratio 

of the β-glucans was shown to be ~1.8 in all three concentrations. Using 

this value along with the s (1.4S), v̄ (0.60 mL/g), molecular weight 

(10kDa) and an array of hydration values the Perrin function can be 

calculated, using BIOMOLS2. Using different hydration values; 0, 0.3, 1.0 

& 2.0g g-1, several Perrin function values were calculated. By using these 

Perrin values and inserting them into ELLIPS1 algorithm of Harding et al 

(2005), an estimation as to the shape of the mushroom β-glucans was 

made (Figure 5.4). 
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Figure 5.4: Prolate models of M.P β-glucans using different 

hydrations; (A) 0.0, (B) 0.3, (C) 1.0 & (D) 2.0 g water/ g of β-

glucan. 

β-glucans have varying degrees of hydration, therefore use a range of 

values it is possible to see the range of possible conformations that the β-

glucans may take on. As can be seen in all plots in Figure 5.4 the shapes 

indicate an extended prolate with axial ratios of; (A) 4:1, (B) 7:1, (C) 13:1 

and (D) 18:1. The lower hydration values are unlikely to be correct as 

polysaccharides often have a hydration greater than 1, therefore the latter 

shapes (C) and (D) are more likely to be representative of the true 

conformation, extended prolates.  
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5.3.2   Oat β-glucan 

 

5.3.2.1 Concentration determination 

 

After dialysing the samples overnight in NaNO3 the concentration of the 

resulting solutions was determined using the refractometer, the results are 

seen in Table 5.3. The concentrations were calculated using Equation 

(2.11), with a dn/dc value of 0.146 mL/g (Li et al., 2006) was used for the 

β-glucans. 

Table 5.3: M.P β-glucan concentration comparison between 

enzyme digestion and refractometry determination (after 

dialysis). 

 

The results show that the original concentrations, determined by enzyme 

digestion, are similar to the concentrations determined (after dialysis) by 

refractometry. For the purpose of this study the concentrations determined 

using the refractometer were used. These values were chosen over the 

enzyme digestion as this method is more reliable due to the possible 

changes in concentration after dialysis. 

 

 
Sample 

 
Enzyme digestion 

concentration (mg/mL) 

 
Dialysed concentration 

(Refractometry) (mg/mL) 

 

7 

 

1.03 

 

1.47 

 
8 

 
1.20 

 
1.47 

 
9 

 
1.15 

 
1.45 

 

10 

 

1.02 

 

1.41 

 
11 

 
1.24 

 
1.45 

 
12 

 
1.21 

 
1.43 
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5.3.2.2 Viscosity measurements 

 

Viscosity measurements were carried out to ultimately estimate the size 

of the β-glucans. 

The flow times of the oat β-glucan samples were vastly different from the 

mushroom β-glucans, the flow times ranged between 150 – 520 seconds. 

The reduced and inherent viscosities, determined from the flow times Table 

5.4, indicate that the size and shape of the β-glucans are large and varied 

between each sample. Although the different viscosities show a wide range 

the Solomon-Ciuta values (an average) indicate that the bulk of the 

viscosities lie within the range of 400 – 1000 mL/g, with sample 9 showing 

a value that is much higher (1600 mL/g). Figure 5.5 shows the results of 

all three viscosities of each sample. 

 

Table 5.4: Reduced and inherent viscosities of all six oat β-glucan 

samples, along with the Solomon-Ciuta intrinsic viscosity values 

(Temp= 20.0°C). 

 

 

 
Sample 

 

 
ηred (mL/g) 

 
ηinh (mL/g) 

Solomon-Ciuta 
[η] (mL/g) 

 
7 

 
590 

 
425 

 
474 

8 852 552 638 

9 3020 1160 1601 

10 1241 717 862 

11 904 578 671 

12 1872 911 1160 
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Although the samples yielded a range values they all indicate that the oat 

β-glucans have high intrinsic viscosities. Previous studies by Doublier et 

al. (1995) and Lazararidou et al. (2003) showed that a preparation of an 

oat β-glucan with an Mw of 250 kDa had an [η] of 383.0 mL/g. Using this 

as a platform, and the viscosities obtained from this investigation, it can 

be assumed that the samples also have high molecular weights. However 

the use of single concentration data points does not give a true 

representation of the actual intrinsic viscosities of the β-glucans, this is 

due to effects such as non-ideality being high. Owing to time constraints 

further analysis was not carried out on the viscosities. Further analysis 

using different concentrations will allow an extrapolation of zero 

concentration, yielding what is likely to be a lower intrinsic viscosity for 

each sample.  

Figure 5.5: ηred (black) and ηinh (red) data points of a single 

concentration of each oat β-glucan sample, with the resulting 

Solomon-Ciuta (green) values. The data points show the majority 

of values lie in range of 450 – 1000 mL/g. 
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In addition the viscosity measurements, are immensely larger than the 

viscosity measurements obtained for the M.P β-glucans. This is to be 

expected as previous studies suggests oat β-glucans have a much larger 

viscosity (Lazararidou et al., 2003). 

 

5.3.2.3 Oat β-glucan SV and SE analysis 

 

5.3.2.3.1 SV analysis 

The results of the viscosity measurements, Table 5.4, suggest that the size 

of the β-glucans is relatively large. Therefore it was expected that the 

sedimentation coefficients of the β-glucans would also be large. Using 

SEDFIT the SV data was analysed, producing both a g(s) and c(s) 

distributions seen in Figure 5.6. 

Figure 5.6: Sedimentation velocity ls-g*(s) analysis of all six 

NOFIMA β-glucan samples (S7-S12), at a rotor speed of 

45,000rpm. 

The distributions show that the sedimentation coefficients are not the same 

for each sample, however using the g(s) distribution the s values all lie 

within a range of 2.6–3.6 S.  

 

The g(s) analysis shows that a single peak for each sample is present, 

which is an indication of a unimodal system similar to the results of the 

M.P β-glucans. However the broadness of the peaks suggest very high 
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polydispersity.  A study by Woodward et al. (1983) showed that β,1-3 & 

β,1-4 linked β-glucans with molecular weights of 160 & 290 kDa had 

sedimentation coefficients of 3.5 & 4.5 S, respectively. The sedimentation 

values in that study are similar to the values obtained by this investigation, 

suggesting that the molecular weights of the oat β-glucans are 

approximately ~200 kDa. In order to confirm this hypothesis the use of SE 

data is required.  

 

5.3.2.3.2 SE analysis 

SE analysis of the oat β-glucans was carried out using SEDFIT-MSTAR, in 

which a baseline and loading concentration at the meniscus was 

determined for each sample. The analysis of the data produced four plots; 

c(r) vs r, lnc(r) vs r2, M* vs r and Mw,app(r) vs c(r). Figure 5.7 shows the 

four plots for Sample 7 (1.47 mg/mL). 

Figure 5.7: Molar mass analysis of oat β-glucan Sample 7 (1.5 

mg/mL). (A) c(r) vs r, (B) lnc(r) vs r2, (C) M* vs r & (D) Mw,app(r) 

vs c(r). Hinge point Mw is shown with dotted line. 
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Because of the relatively high concentrations used (1.5 mg/mL), all the 

values are only apparent values Mw,app, i.e. not corrected for non-ideality. 

These will differ from the true values which would normally be determined 

by extrapolating 1/Mw app vs c to zero concentration (see Harding, 2005). 

This was outside the scope of this MRes study and is the subject of further 

research. Nonetheless Mw,app values are shown for each sample for 

comparison purposes.  

Table 5.5: The results of all six samples with M* and hinge point 

molecular weight estimations for all Mw,app, along with the 

respective polydispersity indices. Shown also is their respective s 

and Solomon-Ciuta [η] values. 

These values are all apparent values obtained at a concentration of 

1.5mg/mL, and are included only for comparative purposes. Full 

extrapolations to zero concentration to correct for non-ideality is the 

subject to Further Work, beyond the scope of this MRes.  

 

  

 

 

 
Sample 

s, (S) Mw,app from M* 
analysis (kDa) 

Mw,app from 
hinge point 

(kDa) 

[η] 
 (mL/g) 

 
7 

 
2.7 

 
230 

 
240 

 
470 

 
8 

 
3.0 

 
350 

 
360 

 
640 

 
9 

 
3.5 

 
600 

 
700 

 
1600 

 
10 

 
3.3 

 
320 

 
330 

 
860 

 
11 

 
2.8 

 
310 

 
320 

 
670 

 
12 

 
3.0 

 
420 

 
400 

 
1160 
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5.4 Conclusion 

 

The investigation found that mushroom β-glucans derived from 

Macrolepiota procera were very low molecular weight with very low 

intrinsic viscosities. The viscosities were indicative of a small 

macromolecule that had both a low molecular weight and a compact 

structure.  

The results of the SV analysis showed a molecule that had a low 

sedimentation coefficient (~1.4S), again indicating a small size with a low 

molecular weight. In corroboration with these results, regarding the small 

size, was the SE analysis which indicated a molecular weight for the 

mushroom β-glucans of approximately 10kDa. Using both the viscosities 

and s values the conformations of the β-glucans were determined.  

The hydrodynamic characterisation of the oat β-glucans showed that these 

molecules were very different. The viscosity measurements showed that 

the oat β-glucans had extremely high viscosities, ranging between 400-

1000mL/g, vastly different from the mushroom β-glucans. The viscosities 

also indicated that the molecular weight and size of these β-glucans was 

much larger than the mushroom β-glucans. 

 

SV analysis showed that the oat β-glucans had a range of sedimentation 

coefficients (2.6-3.6S). These values were considerably larger than the 

mushroom β-glucans again indicating a higher molecular weight. Because 

of the time restrictions on the MRes, only the apparent molecular weights 

at a concentration of 1.5 mg/mL have been shown for comparative 

purposes. Nonetheless they show that oat β-glucans are much larger than 

they mushroom ones.  
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6 Concluding Remarks 

 

6.1 Ovalbumin 

The main aim of this part of the investigation was to learn and execute 

several hydrodynamic characterisation methods, including viscometry, 

density measurements and Analytical Ultracentrifuge techniques. The work 

carried out on ovalbumin, a previously well hydrodynamically 

characterised glycoprotein, allowed these techniques to be established. 

Sedimentation velocity analysis showed that the ovalbumin contained 

significant amounts of lower molecular weight and higher molecular 

materials, although the main component with a sedimentation coefficient 

(s20,w) value of 3.2S was present with a similar s to previously published 

values. However, both the ls-g*(s) and c(s) distributions showed the 

presence of lower and higher molecular weight contaminants. Even though 

the presence of contaminants were confirmed by SV analysis, the  weight 

average molar mass indicated from SE was the same as the actual value 

of 45kDa. 

 

Overall the intrinsic viscosity value of ovalbumin for this preparation was 

slightly higher than previous published values for monodispersed 

ovalbumin solutions, but this is consistent with what we see from 

sedimentation velocity analysis. This is also reflected in the slightly more 

elongated prediction for the shape of the molecule from ELLIPS1.  
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6.2 Vancomycin 

The investigation into vancomycin had two main aims; determine the 

possible dimerisation in the absence of a ligand and determine the 

subsequent Kd value, and to investigate the interactions between 

vancomycin and gastric mucin (PGM). The investigation used methods 

including viscometry, SV and SE. 

The first part of this investigation yielded information regarding the 

intrinsic viscosity of vancomycin, which was found to be ~2.55 mL/g. this 

value indicates a macromolecule with a small size, which is what 

vancomycin is (Mw 1449 Da).  

The main results of the investigation found that between and above a 

concentration range of 2.5 - 5.0 mg/mL vancomycin forms dimers, below 

this range and vancomycin is predominantly monomeric. The investigation 

found that the dimerisation is fully reversible, with subsequent Kd values 

ranging between 30 - 60μM in all buffer conditions.  

The second part of the investigation found that vancomycin causes mass 

aggregation of PGM above a concentration of 1.25 mg/mL. The results 

suggest that above this concentration vancomycin causes over 50% of a 

given PGM to aggregate, with almost all PGM forming aggregates at a 

concentration of 12.5 mg/mL. The results of the investigation suggest that 

the aggregates may be the reason for the poor absorption of vancomycin 

within the gut, therefore future work into this is needed to evaluate this 

conclusion. 

 

6.2.1 Future work 

The investigation into vancomycin yielded several important conclusion, 

the greatest being the aggregation of mucin through the addition of 

vancomycin. 

An immediate continuation of the investigation will be determine what the 

critical concentration of vancomycin is that causes significant aggregation 

of PGM. In addition to this is to see of these effects are observed in other 

buffers.  
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In conjunction to the use of AUC (SV) is the possible use of a disc 

centrifuge (CPS), which can also be used to determine the interaction 

between PGM and vancomycin. CPS will also yield information regarding 

the macromolecular radii of the aggregates which can be used to better 

understand the structure of the complex that forms. This would 

complement the data obtained from the SV analysis.  

An important continuation of this work would be to see if these effects are 

seen in other mucins, e.g. bovine submaxillary mucin (BSM) and human 

gastric mucin (HGM). The aim would be to replicate the results seen with 

PGM and vancomycin, thus supporting the conclusion made from this 

investigation.  

Using the findings of this investigation and future investigations using 

HGM, would be to investigate the binding mechanism between vancomycin 

and mucin using vancomycin analogues. The use of analogues allows 

different areas of the vancomycin molecule to be modified, interactions 

studies would then determine if the modifications are detrimental to the 

formation of aggregates. Thus meaning that area is important in the 

binding between mucin and vancomycin. If the binding area is identified it 

would allow potent vancomycin analogues to be designed that reduces 

mucin aggregation and increase absorption within the GI tract. 

In addition to the use of vancomycin analogues to identify the binding 

mechanism, is an investigation into the use of both positively and 

negatively charged polysaccharides as a drug delivery mechanism. A 

possible investigation could look at the interaction between vancomycin 

and chitosan (positively charged polysaccharide), as chitosan has been 

shown to interact with mucin (Deacon et al., 2000). If chitosan could be 

used to transport vancomycin then it may reduce the formation of 

vancomycin induced aggregates, this may lead to an increased absorption 

of vancomycin.  
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6.3 Mushroom and oat β-glucan 

The investigation in both mushroom and oat β-glucans showed that there 

were considerable differences. Using an array of methods involving 

viscometry, SV, SE and shape determinations, these differences were 

confirmed.  

The investigation showed that mushroom β-glucans have a low intrinsic 

viscosity. Although the actual value obtained from this investigation was 

not obtained, the results suggested that the β-glucans have a low viscosity 

and a resulting molecular weight.  

The SV and SE analysis both supported the claims from the viscosity. The 

sedimentation coefficient was shown to be ~1.4 S, indicative of a small 

molecule. In addition the SE analysis showed that the molecular weight of 

the β-glucans was ~10kDa. The low molecular weight is supportive of 

literature values, however not possible as low as this.  Using the [η], s and 

an array of hydration values, the shape of the β-glucans were determined 

to be extended prolates in all models. 

With regard to the oat β-glucans the intrinsic viscosities were shown to be 

much larger, ranging from 400-1000 mL/g on average. This is immensely 

larger than the intrinsic viscosities of the mushroom β-glucans, however 

literature values suggest that oat β-glucans give rise to viscous solutions. 

The sedimentation coefficients obtained are also consistent with values 

previously found (Woodward et al., 1983). Comparisons of the apparent 

weight average molecular masses (at 1.5 mg/mL) show that all 6 oat β-

glucans have very high molecular weights. 

6.3.1 Future work 

Once the full concentration extrapolations of the apparent weight average 

molecular weights to zero concentration (to eliminate the effects of non-

ideality ) have been performed on the 6 oat β-glucans, full conformation 

analysis using Mark-Houwink analysis can be performed. It will be 

intriguing to see if these molecules conform to a rigid conformation - as 

for the very short mushroom β,1-3, β,1-6 glucans, or (as is more likely) 

are more flexible structures, as seen for other larger β, 1-3, β,1-4 glucans 

from wheat (Li et al., 2006).  
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