Prediction of broad-spectrum pathogen attachment to coating materials for biomedical devices

Mikulskis, Paulius and Hook, Andrew and Dundas, Adam and Irvine, Derek J. and Sanni, Olutoba and Anderson, Daniel and Langer, Robert and Alexander, Morgan R. and Williams, Paul and Winkler, David A. (2017) Prediction of broad-spectrum pathogen attachment to coating materials for biomedical devices. ACS Applied Materials and Interfaces, 10 (1). pp. 139-149. ISSN 1944-8252

[img] PDF (Prediction of Broad-spectrum Pathogen Attachment to Coating Materials for Biomedical Devices) - Repository staff only until 1 December 2018. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB)

Abstract

Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of medical devices that are used to manage chronic health conditions and improve quality of life increases. The resistance of pathogens to multiple antibiotics is also increasing, adding an additional layer of complexity to the problems of employing safe and effective medical procedures. One approach to reducing the rate of infections associated with implanted and indwelling medical devices is the use of polymers that resist the formation of bacterial biofilms. To significantly accelerate the discovery of such materials, we show how state of the art machine learning methods can generate quantitative predictions for the attachment of multiple pathogens to a large library of polymers in a single model for the first time. Such models facilitate design of polymers with very low pathogen attachment across different bacterial species that will be candidate materials for implantable or indwelling medical devices such as urinary catheters, cochlear implants and pacemakers.

Item Type: Article
Keywords: medical devices; broad spectrum; antimicrobial surfaces; machine learning; polymer arrays
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Pharmacy
Identification Number: 10.1021/acsami.7b14197
Depositing User: Mikulskis, Paulius
Date Deposited: 11 Dec 2017 11:40
Last Modified: 11 Jan 2018 17:14
URI: http://eprints.nottingham.ac.uk/id/eprint/48614

Actions (Archive Staff Only)

Edit View Edit View