Soil seal development under simulated rainfall: structural, physical and hydrological dynamics

Armenise, Elena and Simmons, Robert W. and Ahn, Sujung and Garbout, Amin and Doen, Stefan H. and Mooney, Sacha J. and Sturrock, Craig and Ritz, Karl (2017) Soil seal development under simulated rainfall: structural, physical and hydrological dynamics. Journal of Hydrology . ISSN 1879-2707 (In Press)

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (555kB) | Preview

Abstract

This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 minutes). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 - 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24 - 0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 minutes rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.

Item Type: Article
Keywords: Soil structural seal; Seal/crust thickness quantification; Xray Computed Tomography (CT); Unsaturated hydraulic conductivity (Kun); Soil water repellency; Simulated rainfall
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Biosciences
Identification Number: 10.1016/j.jhydrol.2017.10.073
Depositing User: Eprints, Support
Date Deposited: 14 Nov 2017 13:36
Last Modified: 15 Nov 2017 01:47
URI: http://eprints.nottingham.ac.uk/id/eprint/48094

Actions (Archive Staff Only)

Edit View Edit View