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Abstract

Conjugate heat transfer between fluid-saturated porous media and solid walls is an

important issue in many disciplines. For traditional numerical techniques, it is still a

great challenge to treat conjugate problems, especially with complicated interfaces.

In the present work, a new numerical approach, based on the lattice Boltzmann

(LB) method, is proposed to address such challenge. In the present approach no ex-

plicit special treatment on coupled interfaces between fluid-saturated porous media

and solid walls is required. Moreover, no additional source term, which exists in the

available LB models, is required. It can guarantee that the simplicity, accuracy and

stability of the present model are better than those models. The accuracy and re-
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liability of the present approach are validated by three nontrivial benchmark tests.

The excellent agreement with previous published data demonstrates its feasibility

and simplicity for modelling conjugate heat transfer with complicated interfaces be-

tween fluid-saturated porous media and solid walls. The present work takes a single-

relaxation-time model for example to address conjugate heat transfer problems and

its multiple-relaxation-time counterpart can be established straightforwardly in the

same way.

Key words: Lattice Boltzmann method; conjugate heat transfer; porous media

1 Introduction

Conjugate heat transfer between fluid-saturated porous media and solid walls

is an important issue in many disciplines, such as environment and building

engineering, energy engineering and biomedical engineering, since in many

applications of these disciplines fluid-saturated porous media and solid walls

co-exist[1–3]. At the beginning, conjugate heat transfer problems were solved

by some (semi)empirical criteria as then no other available tool [4]. With

the rapid development of computer science, modern conjugate heat transfer

models, based on strictly mathematical descriptions, have been established to

replace the (semi)empirical analogies [5]. Originally, conjugate heat transfer

was numerically treated as a coupling type of the Dirichlet and Neumann

boundary conditions [6]. By such treatment, a compatibility condition should

be paid high attention to. Later, it was found a Robin boundary condition
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treatment may be more useful for some conjugate heat transfer situations [7].

The accuracy and stability of these numerical treatments have been compared

recently [8]. One of the keys to affect the accuracy of conjugate heat trans-

fer modelling is the quality of the mesh [9]. However, it was found that even

unstructured grids could not meet a extremely complex interface, such as an

automobile engine compartment. To address this challenge, many advanced

modern techniques, including immersed boundary method [10] and fictitious-

domain method [11], are introduced for conjugate heat transfer simulation.

So far, numerical simulation has achieved great success in many advanced

engineering applications, such as simulating conjugate heat transfer of contin-

uously moving surfaces [12], of compound material [13] and of turbulent forced

convection in channels [14]. A comprehensive latest review on this topic has

been presented by Dorfman and Renner [5]. Nowadays the fine structures of

conjugate heat transfer between fluid-saturated porous media and solid walls

also can be predicted exactly with the aid of solving the conjugate heat transfer

models numerically. The available literature on numerically modelling conju-

gate heat transfer between fluid-saturated porous media and solid walls may

fall into two categories: (1) solid walls embedded in fluid-saturated porous

media and (2) fluid-saturated porous media bounded by solid walls. The in-

dustrial background of the former category is heat transfer enhancement of a

fin [15,16], while the latter is a popularly adopted research prototype for solar

collectors, energy storage systems filled by phase-change materials and so on

[17–19]. A latest review on this topic was presented in Ref.[3]. For engineering
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research, usually fluid-saturated porous media are modelled at the REV (rep-

resentative elementary volume) scale (e.g. Refs. [15–19]), due to the balance

between necessary macroscopic information and computational cost [20].

Although solving conjugate heat transfer problems numerically is a great

breakthrough in thermal science and engineering, it is still a great challenge

for the current state-of-art numerical techniques to address conjugate heat

transfer problems with complicated interfaces [3,9]. The difficulty stems from

the fact that, for the conventional numerical approaches, specific treatments

are required to guarantee the continuity of temperature profile and heat flux

across the interfaces between fluid-saturated porous media and solid walls

[2,3,15–19].

During the past three decades, the lattice Boltzmann (LB) method has at-

tracted increasing attention due to its some intrinsic advantages, such as

relatively easy treatment of complicated geometry, high parallel computing

efficiency and capturing interaction between different phases at a mesoscopic

level [21]. Until now, the LB method has been widely used to investigate heat

and mass transfer in porous media[22–25]. Especially, as it is a particle-based

numerical solver, the LB method can guarantee, automatically, the continuity

of a certain macroscopic quantity and of its flux across an arbitrary inter-

face within the investigated domain, if the macroscopic quantity and its flux

can be recovered from the zeroth- and first-order moment of the correspond-

ing pseudo-particle distribution function, respectively. As pointed out by our
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recent publication[26], this feature may provide a great advantage over the

traditional numerical methods for conjugate heat transfer research as in the

LB framework one need not explicitly treat the topology of the interface where

the conjugated boundary condition should be strictly satisfied [15–19] . So far

there have been a number of efforts to model conjugate heat transfer between

fluid flows and solid walls by the LB method [27–32]. Recently, the present

authors compared the advantages and disadvantages of the available model-

s and then proposed a new LB conjugate model to remedy their drawbacks

[33]. However, the efforts to extend the LB method for conjugate heat trans-

fer between fluid-saturated porous media and solid walls at the REV scale

are quite sparse. Recently, Gao et al. [34] designed a LB model to simulate

conjugate heat transfer in porous media. In their model, an additional source

term is added into their LB evolving equation to guarantee to recover the

macroscopic energy equation correctly. Unfortunately, their source term in-

cludes temporal difference operation, which will hamper numerical stability,

code simplicity as well as order of accuracy, as discussed in our work [33].

The purpose of the present work is to bridge the above gap since an efficient

REV scale model for conjugate heat transfer between fluid-saturated porous

media and solid walls is very crucial in a lot of practical applications, such as

solidification processes, modern building thermal insulators and cooling hot

intrusions in a geological setting [1,3]. The present work can extend the LB

method to these important areas and accelerate the corresponding research, e-
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specially where complicated interfaces exist. In many popularly used numerical

techniques, such as the finite volume and finite element approaches, a special

treatment is required to guarantee the heat flux to be continuous across the in-

terface between two domains with different thermophysical properties [5]. Such

treatment will become extremely complicated if the topology of the interface

becomes complex, for example irregularly curved interfaces [9]. As stressed in

a recent brief review [9], to simulation conjugate heat transfer problems with

complex interfaces is still a significant challenge even for the mature numerical

techniques. Fortunately, in the LB framework such treatment can be avoid-

ed [33]. Compared with previous models, such as Gao’s LB model[34] and

Chen’s LB model [33] for conjugate problems, there is no additional source

term in the present scheme, which can guarantee that simplicity, accuracy

and stability of the present model are better. The rest of the present paper

is organized as follow. In Section2, the macroscopic governing equations for

conjugate heat transfer between fluid-saturated porous media and solid walls,

at the REV scale, are presented. Then we will show how to establish a simple

numerical approach, based on the LB method, to model such conjugate heat

transfer problems. In the present approach, the complexity to explicitly treat

the interfaces between fluid-saturated porous media and solid walls, which is a

great challenge for the popularly used numerical methods [1–3,15–19], can be

avoided. Numerical validation for the present model is conducted in Section 4,

followed by a conclusion on this work. What should be emphasized is although

in the present work only a single-relaxation-time LB model is presented, its

6



multiple-time-relaxation counterpart can be constructed in the same way, for

example based on the MRT REV scale porous model by Liu et al. [35].

2 Governing equations for conjugate heat transfer between fluid-

saturated porous media and solid walls

The macroscopic governing equation for heat transfer in fluid-saturated porous

media, at the REV scale, reads [1,2,36]:

σ∂tT +∇αTuα = ∇ακm∇αT. (1)

where uα and T are the volume-averaged velocity and temperature of fluid in

the saturated porous media, respectively. The parameter σ = ε+(1−ε)Cs/Cf ,

where ε is the porosity of the porous media, and Cs and Cf are the heat capac-

itance (the product of density and heat capacity) of solid porous matrix and

of saturating fluid, respectively. In addition, κm = λm/Cf is the effective ther-

mal diffusivity of fluid-saturated porous media, where λm is the corresponding

effective thermal conductivity. Bear in mind Eq.(1) is valid only when solid

porous matrix and saturating fluid meet the thermal equilibrium restriction.

If not, the governing equations for heat transfer in porous media should be

modified to consider the thermal non-equilibrium effect [37]. For thermal non-

equilibrium cases, besides Eq.(1), meanwhile an additional heat conduction

equation for solid porous matrix should be solved and Gao et al. developed a
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LB model for such cases [37]. The method proposed in the present paper to

deal with conjugate heat transfer between fluid-saturated porous media and

solid wall will not be affected by the alteration of the governing equations for

heat transfer in porous media, so the present method can still work well for

simulating conjugate heat transfer between fluid-saturated porous media and

solid wall considering the thermal non-equilibrium effect if Gao’s LB model

[37] is adopted to replace Guo’s LB model [36] used in this work.

For solid walls, the macroscopic governing equation for temperature field reads

[1–3]:

∂tT = ∇ακs∇αT. (2)

where κs = λs/Cs is the thermal diffusivity of solid walls, where λs and Cs are

the thermal conductivity and heat capacitance of solid walls.

For conjugate heat transfer scenarios, on the interfaces between fluid-saturated

porous media and solid walls, the following restrictions should be satisfied [1–

3]:

T+ = T− (3)

nα[λm∇αT ]+ = nα[λs∇αT ]− (4)

where nα is normal to the interface, and [ ]+ and [ ]− indicate the parame-

ters at each side of the interface. For the popularly used numerical methods,

specific treatments are required to ensure Eqs. (3)-(4) to be held exactly on the

interfaces [2,3,15–19]. Unfortunately, for complicated interfaces, it is a great
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challenge (sometimes impossible) to identify the normal direction nα [9,29].

For example, as shown by the Table I and II in Ref.[29], there is an extremely

complex extrapolation process to identify the normal direction and to evaluate

the thermal flux on an irregular interface.

3 LB model for conjugate heat transfer between fluid-saturated

porous media and solid walls

3.1 LB evolving equation

The LB model for REV scale heat transfer in fluid-saturated porous media,

proposed by Guo et al. [36], has been popularly used in the research area of

porous media. The macroscopic governing equation Eq.(1) can be recovered

from Guo’s model. However, as pointed out in our previous work [26], their LB

model can not satisfy the continuity of heat flux across the interfaces, namely

Eq.(4), since the variation of heat capacitance across the interfaces between

fluid-saturated porous media and solid walls can not be treated in their REV

scale model appropriately. Consequently, conjugate heat transfer is beyond

the capability of Guo’s model.

In order to address this challenge, we construct a new evolving equation which

reads
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gj(xα + eα,jΔt, t+Δt)− gj(xα, t) = −τ−1
T [gj(xα, t)− g

(eq)
j (xα, t)]. (5)

In Eq.(5) τT is the dimensionless relaxation time for temperature field simula-

tion. What should be stressed is that Eq.(5) have no real physics interpretation

but just a numerical solver for macroscopic governing equation of heat transfer

Eq.(1).

The equilibrium distribution in Eq.(5) reads

g
(eq)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (ηC − C0) + ωjTC(C0

C
+ ejαuα

c2s
), j = 0

ωjTC(C0

C
+ ejαuα

c2s
), j �= 0

(6)

where ωj represents the weight coefficients and ej denotes the discrete velocity

direction [36]. The parameter cs satisfies c
2
sδαβ =

∑
j
ωjejαejβ. C0 is a reference

value of heat capacitance and the heat capacitance C satisfies the following

rules

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cf , in porous media

Cs, in solid wall

(7)

Here an explanation should be made for Eq.(7): the governing equation for

temperature field Eq.(1) has been normalized by Cf , so within the porous

media C = Cf , which results from the thermal equilibrium assumption. If

porous media are under a thermal non-equilibrium condition, C will be set
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as the heat capacitance of the saturating fluid or of the solid porous matrix,

respectively.

In addition, the parameter η satisfies

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ, in porous media

1, in solid wall

(8)

The temperature T is obtained by

T =

∑
j
gj

ηC
. (9)

and the thermal conductivity λ is given by

λ = (τT − 1/2)c2sΔtC0. (10)

where

λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λm, in porous media

λs, in solid wall

(11)

The sub-domain occupied by fluid-saturated porous media and that occu-

pied by solid walls share a common LB evolving equation Eq.(5). As shown

above, in the present model, we need not explicitly treat the interfaces between
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fluid-saturated porous media and solid walls which the traditional numerical

approaches have to face [3,9] (namely, to ensure Eqs. (3)-(4) to be exactly held

on the interfaces by some complicated special numerical treatments).

3.2 Multiscale expansion and recovered macroscopic equations

Equation (5) can be expanded in Taylor series as [21]

Δt(∂t + ejα∇α)gj +
Δt2

2
(∂t + ejα∇α)

2gj +
1

τT
[gj − g

(eq)
j ] = O(Δt3). (12)

Introducing the multiscale expansion ∂t = ε∂t1 + ε2∂t2, ∇α = ε∇α1 and gj =

g
(eq)
j + εg

(1)
j + ε2g

(2)
j + O(ε3), where ε � 1 [36], we can sort Eq. (12) in terms

of ε and ε2 as

(∂t1 + ejα∇α1)g
(eq)
j = − g

(1)
j

ΔtτT
+O(ε). (13)

∂t2g
(eq)
j + (∂t1 + ejα∇α1)[(1− 1

2τT
)g

(1)
j ] = − g

(2)
j

ΔtτT
+O(ε2). (14)

With the symmetry properties of the lattice
∑
j
ωjejα = 0 and

∑
j
ωjejαejβ =

c2sδαβ we can obtain

∑
j

g(eq) = ηCT, (15)

∑
j

ejαg
(eq) = CTuα, (16)

∑
j

ejαejβg
(eq) = C0Tc

2
sδαβ. (17)

With the aid of Eqs.(15)-(17), as well as
∑
j
g
(1)
j =

∑
j
g
(2)
j = 0, the summation
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of Eqs.(13)-(14) over the discrete direction ejα reads

∂t1ηCT +∇α1CTuα = 0 +O(ε), (18)

∂t2ηCT +∇α1[c
2
s(
1

2
− τT )Δt∇α1C0T ] = 0 +O(ε2). (19)

Because C0 is a constant across the whole investigated domain, ∇α1C0T =

C0∇α1T . Accordingly Eq.(19) can be re-written as

∂t2ηCT +∇α1[c
2
s(
1

2
− τT )ΔtC0∇α1T ] = 0 +O(ε2). (20)

Combining Eqs.(18) and (20), we can obtain the final recovered macroscopic

governing equation for temperature field

∂tηCT +∇αCTuα = ∇αλ∇αT +O(ε2). (21)

where λ = c2s(τT − 1
2
)ΔtC0.

Introducing Eqs.(7),(8) and (11), Eq.(21) becomes

∂tσCfT +∇αCfTuα = ∇αλm∇αT (22)

within the fluid-saturated porous media sub-domain and

∂tCsT = ∇αλs∇αT (23)
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within the solid wall sub-domain (for a stationary solid wall uα = 0).

Eqs.(22)-(23) are the conservation form of Eqs.(1)-(2), respectively. As pointed

out by Karani et al. [32] for conjugate heat transfer research the conservation

form of energy equation was better to guarantee the continuity of heat flux

across interfaces. Consequently, the present model can automatically recover

Eq.(1) (temperature governing equation of fluid-saturated porous media) and

Eq.(2) (temperature governing equation of solid walls) exactly. Moreover, as

demonstrated in our previous work [26], since the thermal conductivity λ

depends on a constant C0, rather than C, therefore the continuity of heat flux

across the interfaces between fluid-saturated porous media and solid walls can

be guaranteed automatically in the present framework, without any explicit

conjugate interface treatment that is unavoidable for traditional numerical

techniques [1–3,15–19].

4 Numerical validation

In order to validate the present model, three simple but non-trivial benchmark

tests are adopted. The first one is conjugate heat conduction between a strati-

fied saturated porous layer and a solid wall. Analytical solution is available for

this benchmark so it can be used to check the accuracy of the present model.

The second one is conjugate natural convection in a square fluid-saturated

porous cavity investigated in Ref.[2], which is an important research proto-
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λm
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1
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y

Porous Layer

H/2

T

Cf

C
Solid Wall

Fig. 1. Schematic configuration of conjugate heat conduction between a stratified
saturated porous layer and a solid wall.

type for various applications. The last one is conjugate natural convection in

a fluid-saturated porous cavity with a hot triangular thick wall [3], which can

demonstrate the simplicity and effectiveness of the present model for compli-

cated conjugate interfaces. The choice of validation benchmark with simple

configuration can avoid unexpected numerical errors which will hamper the

assessment for a new numerical approach, so for all recent open work of devel-

oping new LB models for conjugate heat transfer simulation and porous media

modelling [22-37], the test cases adopted for numerical validation are charac-

terized by simple configuration. For conjugate natural convection, fluid flow

should be modelled simultaneously. In the present work, the LB model devel-

oped in Ref.[36] is adopted for flow field simulation and the boundary scheme

proposed in our previous work [38] is employed here for flow boundaries.
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4.1 Conjugate heat conduction between a stratified saturated porous layer and

a solid wall

Figure 1 illustrates the schematic configuration of conjugate heat conduction

between a stratified saturated porous layer and a solid wall. The temperature

on the top surface of the porous layer is T2 and that on the bottom surface

of the solid wall is T1. The periodic boundary condition is adopted for the

left and right side of the domain. Here we set T2/T1 = 2, σ = 1, Cs = 1.5Cf

and λm = 3λs. In addition, C0 = (Cf + Cs)/2 and a grid solution 60 × 60

is employed. The corresponding analytic solution of temperature profile reads

[26]

T (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3y
2H

(T2 − T1) + T1, 0 ≤ y ≤ 0.5H.

( y
2H

+ 0.5)(T2 − T1) + T1, 0.5H ≤ y ≤ H.

Figure 2 illustrates the numerical data obtain by the present model, compared

with the analytic solution. The present numerical results agree well with the

analytical solution.

4.2 Conjugate natural convection in a square fluid-saturated porous cavity

Figure 3 illustrates the configuration of conjugate natural convection in a

square fluid-saturated porous cavity, which is the same as that in Ref. [2].

There is a vertical interface between the solid wall and the porous cavity. The
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Fig. 2. Temperature profile of conjugate heat conduction between a stratified satu-
rated porous layer and a solid wall: scatters-analytic solution, solid line-numerical
data.
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0wall
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T =0

adiabatic 0, u=

u=0

, v= 0

0v=

b

y

x

l

0adiabatic

H

porous cavity

Fig. 3. Schematic configuration of conjugate natural convection in a square fluid-sat-
urated porous cavity.

parameters used in the present research are b/H = 0.2, Cs = Cf = 1, σ = 1,

ε = 0.9, the Darcy number Da = 10−3, the Prandtl number Pr = 1, the

Rayleigh number Ra = 105, λm/λf = ε+ (1− ε)× 102 and 0.1 ≤ λs/λf ≤ 10,

where λf is the thermal conductivity of saturating fluid. A grid resolution

100× 100 is employed and C0 = (Cf + Cs)/2.

Figures 4-7 plot the streamlines and isotherms for various λs/λf . The fluid-

saturated porous media becomes cold as λs/λf decreases. When λs/λf =
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(a)
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0.8
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0.7
0.65
0.6
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0.4
0.35
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0.25
0.2
0.15
0.1
0.05

(b)

Fig. 4. (a) streamlines and (b)isotherms for λs/λf = 0.1.

0.1, the solid wall acts as an adiabatic layer so the difference between the

temperature on the interface and that on the cold wall is very small, as shown

by Fig. 8. For a high λs/λf , however, the conjugate wall becomes very much

conductive. As a result, the temperature on the interface increases with λs/λf

(see Fig. 8), which intensifies the flow circulation in the porous cavity (see

Figs. 4-7). Furthermore, it can be observed that with the increase of λs/λf

the isotherms begin to depart from its vertical patter in the porous cavity.

Such phenomenon implies the heat transfer mechanism begins changing from

a predominant conduction heat transfer regime to convection heat transfer.

The above observations are consistent with those indicated by Fig. 6 in Ref.[2].

For a quantitative comparison, the local temperature profile along the interface

and the average Nusselt number on the interface are presented by Fig. 8 and

Table 1, respectively, together with the data published in Ref. [2]. There is an

excellent agreement between them.
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Fig. 5. (a) streamlines and (b)isotherms for λs/λf = 1.
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Fig. 6. (a) streamlines and (b)isotherms for λs/λf = 5.
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Fig. 7. (a) streamlines and (b)isotherms for λs/λf = 10.
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Fig. 8. Temperature profile along the interface: squares-data in Ref.[2], dashed
lines-present results.

Table 1
Average Nusselt number on interface.

λs/λf 0.1 1 5 10

Ref. [2] 0.478 3.433 7.710 9.168

present 0.4897 3.5088 7.9936 9.5366

4.3 Conjugate natural convection in a fluid-saturated porous cavity with a

hot triangular thick wall

Figure 10 illustrates the configuration of conjugate natural convection in a

fluid-saturated porous cavity with a hot triangular thick wall, which is the

same as that in Ref. [3]. In this case, there is an inclined interface. For tra-

ditional numerical approaches, a complicated treatment is required for such

interface [3,9]. The parameters used in the present research is Cs = Cf = 1,

σ = 1, ε = 0.99, Da = 10−3, Pr = 1, Ra = 104, λs/λm = 23.8. The size of

the triangular solid wall can change from 0.1 ≤ d/H ≤ 1. A grid resolution

100× 100 is employed and C0 = (Cf + Cs)/2.
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Fig. 9. Schematic configuration of conjugate natural convection in a fluid-saturated
porous cavity with a hot triangular thick wall.

(a)

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

(b)

Fig. 10. (a) streamlines and (b)isotherms for d/H = 0.4.

Figure 10 depicts the streamlines and isotherms in the cavity when d/H = 0.4.

The buoyant force induced by the hot triangular solid wall drives a clockwise

circulation in the porous cavity. As the buoyant force is weak (Da × Ra =

10), the porous cavity is dominated by heat conduction mechanism. These

observations agree well with those illustrated by Fig.4 in Ref. [3].

The average Nusselt number on the inclined interface is listed by Table 2,

compared with the data given by Ref. [3]. One can observe that heat transfer
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Table 2
Average Nusselt number on interface.

d/H = 0.1 d/H = 0.4 d/H = 1

Ref. [3] 0.39 0.97 4.46

present 0.4059 0.9819 4.3919

is enhanced by a larger triangular thick wall. The present prediction agrees

with that in Ref. [3].

5 Conclusion

Conjugate heat transfer between fluid-saturated porous media and solid walls

is commonly found in many practical applications. Unfortunately, for tradi-

tional numerical approaches, it is still a great challenge to model conjugat-

ed problems with complicated interfaces. To remedy such drawback, in the

present work, a new simple approach, with the aid of the intrinsic advantage

of the LB method, is proposed. Its feasibility is validated by three nontrivial

benchmark tests. Compared with the available LB models for conjugate prob-

lems, there is no additional term in the present scheme, which can guarantee

that the simplicity, accuracy and stability of the present model are better than

previous models.

Although in the present study we only take a single-relaxation-time LB mod-

el as an example to show how to address conjugate heat transfer problems

between fluid-saturated porous media and solid walls by a simple way, the ex-

tension to its multiple-relaxation-time counterpart is straightforward. It will
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be considered in our future work as for a single-relaxation-time LB model the

accuracy of numerical results will depend on the chosen relaxation time.

Finally, besides the present work, the available numerical approaches [2,3,34]

for simulating conjugate heat transfer between fluid-saturated porous media

and solid wall all have not been validated by experimental data. Such valida-

tion is desired in the future when appropriate experimental data are available.
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