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Abstract

New tunnels are continually constructed beneath the surface of large and developed cities due
to the lack of surface space. These new tunnels will undoubtedly interact with existing surface
and subsurface assets, such as building foundations, pipelines and other buried structures.
There will be a two-way interaction whereby the tunnel construction affects the existing
structure by inducing displacements in the underlying soil, and the structure influences
tunnelling induced displacements via its weight and stiffness. The design of tunnels should
include the consideration of this soil–structure interaction to avoid significant damage or
failure to the existing structures due to the effect of the newly constructed tunnel.

The research presented in this thesis focuses on tunnel–building interaction, and more
specifically on buildings with shallow foundations. Previously, numerical methods have been
used to study specific scenarios or to obtain design charts for use by geotechnical engineers.
The proposed design charts have various limitations. For instance, they are suggested for
specific types of soils, the 3D nature of buildings is disregarded to a great extent, and most
importantly, several main parameters that influence the behaviour of a building when affected
by tunnelling have not been accurately considered. In this research, the 3D behaviour of
buildings is investigated with a focus on the main parameters that affect the deformation of a
building in reality. These parameters are determined based on mathematical relationships
of the stiffness of a structural member. Furthermore, computationally efficient methods are
proposed to estimate building bending stiffness that can be readily used by engineers.

The focus of this work is the effect of tunnelling on concrete framed buildings. The
research deals with three main areas: [i] the estimation of the bending stiffness of a building’s
superstructure and foundation, [ii] the analysis of tunnel–soil–building interaction using
realistic ground displacements achieved from the field or experimental studies, and [iii] the
behaviour of a 3D building (weightless and weighted) in a soil–building system during the
construction of a tunnel. Finite element analysis (ABAQUS 3D) is used to investigate these
problems.

In research area [i], the building superstructure and the foundation are treated separately.
Approaches are proposed in which the building response to tunnelling is related to the bending



viii

of a beam and empirical-type relationships are developed to predict building bending stiffness.
These approaches are somewhat unconventional, but it is shown that they capture the real
3D response of buildings and foundations to tunnelling induced ground displacements more
accurately than previously proposed methods. The approaches are relevant to scenarios where
the building is perpendicular to the tunnel axis. Additionally, two cases of tunnel–building
relative position are considered: (1) a case where a tunnel is constructed outside the building
plan area (i.e. the tunnel axis and the nearest edge of the building to the tunnel do not overlap
by more than half of the tunnel cross-section), which is called the ‘cantilever approach,’ and
(2) a scenario where the tunnel is located under the building centreline, which is called the
‘fixed–ended approach.’ It should be noted that a detailed understanding of how structural
elements of a building contribute to the stiffness of the entire building system is missing in
the literature.

The results of research area [i] show that the contribution of the building storeys to the
global building bending stiffness is not uniform; the lower storeys have a larger contribution
than the upper ones. Furthermore, buildings are mainly represented by 2D beams or frames
in the current methods of building stiffness estimation. The proposed methods of this
thesis (cantilever and fixed–ended methods) present accurate estimations of the true bending
stiffness of 3D buildings subjected to tunnelling induced ground movements. In addition, the
length of the building subjected to deflections, the length that is not affected by deformations,
and the cross sectional flexural rigidity play the main role in the estimation of bending
stiffness. These parameters are strongly interconnected, and should be considered together in
the analysis of tunnel–building interaction. The results of this research show that the bending
stiffness of a building decreases dramatically as the length affected by ground displacements
increases. In contrast, the length of the building that is unaffected provides resistance to the
building against rotation, which in turn increases the bending stiffness. This is because the
unaffected length determines the boundary condition of the building, which is an important
parameter in determining the bending stiffness.

Research area [ii] aims to provide a method to overcome issues arising when using
numerical analyses to investigate tunnelling and its impact on structures, since ground
displacements predicted with conventional numerical methods are generally wider and
shallower than those observed in practice. A two-stage numerical technique is proposed to
estimate the effect of building stiffness on ground displacements due to tunnelling. In the
first stage, greenfield (no existence of structures) soil displacements are applied to the soil
model and the nodal reaction forces are recorded. In the second stage, the effect of tunnelling
on a structure is evaluated by applying the recorded nodal reactions to an undeformed mesh.
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Results show that by using this technique, the role of the soil constitutive model is removed
from the process of evaluating tunnelling induced ground displacements; it is only used in the
evaluation of the soil–structure interaction. A realistic prediction of the structural stiffness
effect can therefore be achieved due to the application of realistic ground displacements.

For research area [iii], the response of weightless and weighted 3D buildings to tunnelling
in a global soil–building system is considered. For the weightless case, the degree of stiffness
contribution of the foundation and the superstructure to the bending resistance of the building
is investigated. Buildings in the literature are assumed to act as a single entity when affected
by tunnelling. Results of this research show that the effect of the foundation stiffness has
the most significant contribution to the global building resistance to soil deformations while
the contribution of the superstructure stiffness is less significant. Using insights from these
results as well as those of research area [i], an equivalent beam method is proposed to model
3D buildings as 2D beams in plane strain analyses. The equivalent beam considers the
effect of parameters influencing bending stiffness of a member, and the non-uniformity of
stiffness contribution of building storeys to the global building bending stiffness. For the
weighted buildings, a study is presented about the approach used to design a building, and
the assumptions made in the analysis and design stages prior to the construction of a tunnel.
The design parameters most affected by the tunnel construction are determined and examined
numerically. It is explained that there is a strong relationship between the weight and bending
stiffness of a building.





Table of contents

List of figures xvii

List of tables xxvii

List of Symbols xxix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Original Contributions of Research . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Buildings and Foundation 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Superstructure Members . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Analysis and design of structural members . . . . . . . . . . . . . 8
2.2.2 Slabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Building Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Shallow foundations . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Modulus of subgrade reaction . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Shallow foundation design methods . . . . . . . . . . . . . . . . . 18
2.3.4 Piled foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Stiffness of Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



xii Table of contents

3 Tunnelling and Tunnel-Soil-Building Interaction 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Tunnel Excavation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Tunnel Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Volume loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Greenfield Ground Displacements due to Tunnelling . . . . . . . . . . . . 31

3.6.1 Empirical relations . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Closed–form analytical relations . . . . . . . . . . . . . . . . . . . 36
3.6.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.5 Features of empirical, analytical and numerical methods . . . . . . 44
3.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Tunnelling Effects on Buildings . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.1 A review of tunnel–soil–building interaction . . . . . . . . . . . . 48
3.7.2 Estimating building damage . . . . . . . . . . . . . . . . . . . . . 60
3.7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Finite Element Analysis 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 An Introduction to ABAQUS . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 General Procedures to Create a Model in ABAQUS/CAE . . . . . . . . . . 77
4.6 Meshing and Elements in ABAQUS . . . . . . . . . . . . . . . . . . . . . 80

4.6.1 Shear locking and hourglassing . . . . . . . . . . . . . . . . . . . 82
4.7 Constitutive Models and ABAQUS Material Properties . . . . . . . . . . . 83
4.8 Tunnel Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Soil–Building Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Cantilever and Fixed–ended Approaches for Estimating Building Bending Stiff-
ness 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Terminology and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 A cantilever Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Table of contents xiii

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 Stage 1: cantilever beam analysis of single floor . . . . . . . . . . . 94
5.4.3 Stage 2: evaluation of floor boundary condition . . . . . . . . . . . 100
5.4.4 Stage 3: effect of adding storeys . . . . . . . . . . . . . . . . . . . 104
5.4.5 Numerical verification of stages 1 to 3 . . . . . . . . . . . . . . . . 107
5.4.6 Stage 4: effect of adding y-bays in direction of tunnel . . . . . . . . 109
5.4.7 Stage 5: considering multiple x-bays affected by ground displacements111
5.4.8 Comparison with other methods . . . . . . . . . . . . . . . . . . . 114

5.5 A fixed–Ended Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.2 Stage 1: fixed–ended beam analysis for influenced floors . . . . . . 120
5.5.3 Stage 2: evaluation of floor boundary condition . . . . . . . . . . . 127
5.5.4 Stage 3: effect of adding storeys . . . . . . . . . . . . . . . . . . . 129
5.5.5 Numerical verification of stages 1 to 3 . . . . . . . . . . . . . . . . 132
5.5.6 Stage 4: effect of adding y-bays in direction of tunnel . . . . . . . . 133
5.5.7 Stage 5: considering multiple x-bays affected by ground displacements134
5.5.8 Comparison with other methods . . . . . . . . . . . . . . . . . . . 136

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Bending Stiffness Estimation of Raft Foundations 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Model Description and Material Properties . . . . . . . . . . . . . . . . . . 145
6.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5 Cantilever Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5.1 Effect of soil and concrete elastic modulus on foundation boundary 148
6.5.2 Effect of L f ,ld on foundation boundary . . . . . . . . . . . . . . . 149
6.5.3 Effect of L f ,sp on foundation boundary . . . . . . . . . . . . . . . 152
6.5.4 Verification example . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6 Fixed-Ended Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.6.1 Effect of soil and concrete elastic moduli on foundation boundary . 158
6.6.2 Effect of L f ,ld on foundation boundary . . . . . . . . . . . . . . . 158
6.6.3 Effect of L f ,sp on foundation boundary . . . . . . . . . . . . . . . 161
6.6.4 Verification example . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



xiv Table of contents

7 Mixed Empirical-Numerical Method for Investigating Tunnelling Effects on
Structures 167
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Mixed Empirical-Numerical Approach (mixed E–N) . . . . . . . . . . . . 168
7.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3.1 Conventional numerical Model . . . . . . . . . . . . . . . . . . . . 172
7.3.2 Mixed E–N model . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Mixed E–N Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.1 Greenfield input . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.2 Applying displacements and equivalent nodal forces to the soil model 177
7.4.3 Effect of top and base layer thickness . . . . . . . . . . . . . . . . 177
7.4.4 Effect of nodes and nodal force components on each other . . . . . 178
7.4.5 Interaction effects of horizontal and vertical displacements . . . . . 182

7.5 Comparison of Mixed E–N with Numerical Results . . . . . . . . . . . . . 186
7.5.1 Bending modification factors for e/Lbldg = 0 . . . . . . . . . . . . 186
7.5.2 Bending modification factors for e/Lbldg > 0 . . . . . . . . . . . . 191
7.5.3 Axial modification factors . . . . . . . . . . . . . . . . . . . . . . 193

7.6 Effect of Volume Loss on the Tunnel–Building Interaction . . . . . . . . . 195
7.7 Effect of Soil Relative Density on the Tunnel–Building Interaction . . . . . 199
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Effect of Concrete Framed Buildings on Tunnelling Induced Ground Move-
ments 205
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.2 Stiffness Effect of Weightless Buildings . . . . . . . . . . . . . . . . . . . 206

8.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.2.2 Effect of foundation and superstructure stiffness on ground displace-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2.3 Comparison of 3D buildings and equivalent beams . . . . . . . . . 215

8.3 Effect of Building Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.3.1 Building analysis and design . . . . . . . . . . . . . . . . . . . . . 219
8.3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.3.3 Effect of tunnel volume loss and tunnel location on tunnel-building

interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.3.4 Effect of building length in the displaced and undisplaced soil zones 231



Table of contents xv

8.4 Proposing a 2D Equivalent Method to Estimate Building Bending Stiffness 234
8.4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.4.2 Effect of building storeys on the global building behaviour . . . . . 235
8.4.3 Effect of relative building–soil elastic modulus on the global building

behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.4.4 An equivalent beam method . . . . . . . . . . . . . . . . . . . . . 238

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9 Conclusions and Recommendations for Further Research 249
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.1.1 Estimation of superstructure stiffness . . . . . . . . . . . . . . . . 250
9.1.2 Estimation of foundation stiffness . . . . . . . . . . . . . . . . . . 251
9.1.3 Mixed empirical–numerical method . . . . . . . . . . . . . . . . . 252
9.1.4 Building effects on ground displacements . . . . . . . . . . . . . . 254

9.2 Recommendations for further research . . . . . . . . . . . . . . . . . . . . 255

References 259

Appendix A Cantilever approach: practical example 275

Appendix B Fixed–ended approach: practical example 279





List of figures

2.1 Illustration of a 3D framed building . . . . . . . . . . . . . . . . . . . . . 8
2.2 Values of FK (in Equation 2.3) for different types of beams under maximum

deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Single footing: (a) typical pad footing, (b) uniform soil pressure, (c) non-

uniform soil pressure, and (d) non-linear real soil pressure . . . . . . . . . 15
2.4 Typical types of (a) strap, (b) combined and (c) mat footings . . . . . . . . 16
2.5 Soil pressure distribution under (a) rigid and (b) flexible footings . . . . . . 19
2.6 Foundation types: (a) Winkler, (b) two-parameter and (c) Pasternak’s models 21

3.1 Ground displacements created by tunnelling (after Attewell et al., 1986) . . 26
3.2 (a) Idealised cross-section of a typical tunnel, (b) tunnel heading (after Mair

and Taylor, 1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Main components of ground movements associated with shield tunnelling

(Mair and Taylor, 1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 (a) Typical soil and tunnel volume losses (after Franza, 2016), (b) distribution

of tunnel volume loss in clays (Loganathan and Poulos, 1998) and sands
(Zhou, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Gaussian settlement trough . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Ground loss and ovalisation mechanism by Verruijt and Booker (1996),

(Marshall, 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Transverse geometry of the interaction problem and deflection ratio parameters 50
3.8 Main features of the experimental test of a masonry façade (Giardina et al.,

2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 (a) Building alignment angle, (b) tunnel–building relative position (Kappen

et al., 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Suggested definitions of foundation deformations (Burland, 1995) . . . . . 61



xviii List of figures

3.11 Relationship of damage to angular distortion and horizontal strains for
Lb/hb = 1, (Boscardin and Cording, 1989) . . . . . . . . . . . . . . . . . . 63

3.12 Design chart developed by Burland (1995) for Lb/hb = 1 . . . . . . . . . . 64

4.1 Elements and nodes in FE method . . . . . . . . . . . . . . . . . . . . . . 75
4.2 (a) Parts, and (b) assembly in ABAQUS/CAE . . . . . . . . . . . . . . . . 78
4.3 A generic model of tunnel–soil–building interaction problem . . . . . . . . 79
4.4 Finite element shapes and node numbers . . . . . . . . . . . . . . . . . . . 80
4.5 Shear locking of an element (after Sun, 2006) . . . . . . . . . . . . . . . . 82
4.6 Occurrence of hourglassing (after Sun, 2006) . . . . . . . . . . . . . . . . 83
4.7 Tunnel simulation using displacement control method . . . . . . . . . . . . 86

5.1 (a) Isometric view of framed building, (b) 2D view of building and tunnel,
and (c) cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 (a) Typical floor subjected to displacements, (b) conveying displacement
effects through columns to beams, (c) typical numerical model of a single
storey, single y-bay building, (d) single y-bay, multi x-bay and multi storey
building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Flow chart of the analysis stages of the cantilever approach . . . . . . . . . 96
5.4 Ratio of the analytical (Kb,b,an) to numerical (Kb,b,num) bending stiffness of

beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 (a) Ratio of analytical to numerical floor bending stiffness for different

Lsl/Bsl values, (b) effect of 2I f b/Isl on floor bending stiffness . . . . . . . . 98
5.6 (a) Effective beam width (be f f ) in edge or interior beams, (b) beam and slab

parts for the calculation of the moment of inertia of floor cross section . . . 99
5.7 Comparison of Kb, f l,cant,an, f ix/Kb, f l,cant,num, f ix and Cb f ,cant for different val-

ues of Lsl/Bsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.8 (a) Effect of supporting floors on the end fixity of the loaded floor, (b)

the ratio of Kb, f l,cant,single panel/Kb, f l,cant,num, f ix, (c) comparison of proposed
Cbc,cant values (Equation 5.4) with numerical results . . . . . . . . . . . . . 102

5.9 Change of displacements and forces with storey number for an 11 storey
building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.10 (a) Effect of x-bays on CKus,cant of uppermost floor, and (b) change of
CKus,cant with storey number for a 7-storey building. . . . . . . . . . . . . . 107

5.11 Relationship between CKus,cant and Cc f ,cant for a 6-storey building with vary-
ing column stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



List of figures xix

5.12 Comparison between αKus,cant values obtained from curve fitting of numeri-
cal results, and proposed values calculated by Equation 5.8 . . . . . . . . . 108

5.13 Bending stiffness of single y-bay, multi-storey (up to 11 storeys) buildings:
proposed method (Kb, f l,cant,eq,ms,1y) versus numerical results (Kb, f l,cant,num,ms,1y)109

5.14 (a) Comparison of CKus,cant between numerical and the proposed methods,
(b) comparison of bending stiffness values of the superstructure between the
numerical and the proposed methods . . . . . . . . . . . . . . . . . . . . . 110

5.15 (a) Comparison between numerical and proposed values of CKus,cant con-
sidering buildings with different numbers of y-bays, (b) comparison of the
numerical bending stiffness of multi y-bay buildings with their equivalent
calculated values based on stages 1 to 4 . . . . . . . . . . . . . . . . . . . 110

5.16 Soil and building zones affected by tunnelling induced ground displacements 112
5.17 A cantilever beam subjected to multiple loads . . . . . . . . . . . . . . . . 112
5.18 (a) Reduction of building bending stiffness with number of panels located in

displaced zone, (b) comparison between numerical and proposed values of
CK,reduct,cant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.19 Comparison of EIbldg between the proposed method and approaches sug-
gested by Lambe (1973) and Goh and Mair (2014) . . . . . . . . . . . . . 115

5.20 Comparison of Ccol and CKus,cant between the proposed method, the approach
suggested by Goh and Mair (2014) and numerically predicted values for (a)
an 11 storey, and (b) a 6 storey building . . . . . . . . . . . . . . . . . . . 116

5.21 (a) Comparison of a 3D building bending stiffness using different methods,
(b) comparing computed building bending stiffness using different methods
with the numerically achieved bending stiffness for buildings of multiple
y-bays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.22 (a) Isometric view of framed building, (b) 2D view of building and tunnel,
and (c) fixed–ended beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.23 (a) Typical floor subjected to displacements, (b) conveying displacement
effects through columns to beams, (c) typical numerical model of a single
storey, single y-bay building, (d) single y-bay, multi x-bay and multi storey
building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.24 Flow chart of the methodology of the fixed–ended approach . . . . . . . . 122
5.25 (a) Ratio of analytical to numerical floor bending stiffness for different

Lsl/Bsl values, (b) effect of 2I f b/Isl on floor bending stiffness . . . . . . . . 124



xx List of figures

5.26 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix and Cb f 1, f end for different
values of Lsl/Bsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.27 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix with Cb f , f end and Cb f 1, f end

for Lsl/Bsl = 1.2 and 24I f b/Isl = 58.5 . . . . . . . . . . . . . . . . . . . . 126
5.28 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix with Cb f , f end and Cb f 1, f end

for blb/Bsl = 0.0667: (a) 24I f b/Isl = 44.44, (b) Lsl/Bsl = 1.0 . . . . . . . . 126
5.29 (a) Effect of supporting floors on the end fixity of the loaded floors, (b)

comparison of proposed Cbc, f end values (Equation 5.17) with numerical results128
5.30 Relationship between CKus, f end and Cc f , f end for buildings of varying column

stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.31 (a) Comparison between αKus, f end values obtained from curve fitting of

numerical results, and proposed values calculated by Equation 5.21, (b)
CKus, f end values: proposed method (CKus, f end) versus numerical results
(CKus, f end,num) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.32 Bending stiffness of single y-bay, multi-storey (up to 9 storeys) buildings:
proposed method (Kb, f l, f end,eq,ms,1y) versus numerical results (Kb, f l, f end,num,ms,1y)132

5.33 (a) Comparison of CKus, f end between numerical and the proposed methods,
(b) comparison of bending stiffness values of the superstructure between the
numerical and the proposed methods . . . . . . . . . . . . . . . . . . . . . 133

5.34 (a) Comparison between numerical and proposed values of CKus, f end con-
sidering buildings with different numbers of y-bays, (b) comparison of the
numerical bending stiffness of multi y-bay buildings with their equivalent
calculated values based on stages 1 to 4 . . . . . . . . . . . . . . . . . . . 134

5.35 Soil and building zones affected by tunnelling induced ground displacements 135
5.36 A fixed–ended beam subjected to multiple loads . . . . . . . . . . . . . . . 135
5.37 (a) Reduction of building bending stiffness with the number of panels located

in the displaced zone, (b) comparison between numerical and proposed
values of CK,reduct, f end . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.38 (a) Comparison of EIbldg between the proposed method and approaches
suggested by Lambe (1973) and Goh and Mair (2014), (b) comparison
between Ccol and CKus, f end of the numerical and proposed methods . . . . . 137

5.39 (a) Comparison of 3D building bending stiffness (fixed–ended approach)
using different methods, (b) comparing computed building bending stiffness
using different methods with the numerically achieved bending stiffness for
buildings of multiple y-bays . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of figures xxi

6.1 View of tunnel–soil–foundation problem for a foundation with (a) cantilever
behaviour, (b) fixed–ended behaviour, (c) numerical model of the cantilever
behaviour, and (d) numerical model of the fixed–ended behaviour . . . . . 143

6.2 A typical beam subjected to a linear load: (a) cantilever, (b) fixed–ended . . 144
6.3 Replacing the removed soil by applying (a) lateral pressure, (b) symmetric

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Numerical bending stiffness of a foundation with lateral pressure and roller

(symmetric) boundaries for (a) cantilever and (b) fixed–ended approaches . 147
6.5 Effect of (a) soil and (b) concrete elastic modulus on the foundation boundary

condition (Kb, f nd,cant,an, f ix/Kb, f nd,cant,num) for t f = 0.5 m and L f ,sp = 15 m . 149
6.6 Effect of L f ,ld on the foundation boundary condition for different values of

(a) soil elastic modulus and (b) foundation thickness . . . . . . . . . . . . . 150
6.7 (a) Effect of t f /L f ,ld on the foundation boundary for t f = 0.5 m, (b) relation-

ship between α f nd,ld,cant and Ec/(Es ×103) . . . . . . . . . . . . . . . . . 151
6.8 Comparison between the numerical and calculated values of (a) α f nd,ld,cant

(Equation 6.2) and (b) Cbc, f nd,ld,cant (Equation 6.1) . . . . . . . . . . . . . 152
6.9 Effect of L f ,sp on the boundary condition for (a) variable Es, and (b) variable t f 153
6.10 (a) Weight of the coefficient Cbc, f nd,ld,cant in Kb, f nd,cant,an, f ix/Kb, f nd,cant,num,

(b) numerical values of L f ,sp,cant,max and the fitted values (Equation 6.3), (c)
effect of L f ,sp,cant,max/L f ,sp on the foundation boundary condition, (d) effect
of Ec/(Es ×103) on α f nd,sp,cant . . . . . . . . . . . . . . . . . . . . . . . . 154

6.11 Comparison between Kb, f nd,cant,eq and Kb, f nd,cant,num . . . . . . . . . . . . 156
6.12 Verification of the effect of (a) Ec/(Es ×103) for L f ,ld = 10 m, (b) L f ,ld for

Ec/(Es×103)= 0.667, (c) L f ,sp for L f ,ld = 10 m and Ec/(Es×103)= 0.667,
(d) t f for L f ,ld = 10 m and Ec/(Es × 103) = 0.667 on the estimation of
Cbc, f nd,cant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.13 Effect of (a) soil and (b) concrete elastic modulus on the foundation boundary
condition (Kb, f nd, f end,an, f ix/Kb, f nd, f end,num) . . . . . . . . . . . . . . . . . 159

6.14 The effect of L f ,ld on the foundation boundary condition in the fixed–ended
approach for different values of (a) soil elastic modulus and (b) foundation
thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.15 (a) Effect of t f /L f ,ld on the foundation boundary, (b) relationship between
α f nd,ld, f end and Ec/Es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.16 Comparison between numerical and computed values of Cbc, f nd,ld, f end (Equa-
tion 6.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xxii List of figures

6.17 Effect of L f ,sp on Kb, f nd, f end,an, f ix/Kb, f nd, f end,num for different values of (a)
Ec/(Es ×103), and (b) t f . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.18 (a) Weight of the coefficient Cbc, f nd,ld, f end in Kb, f nd, f end,an, f ix/Kb, f nd, f end,num,
(b) numerical values of L f ,sp, f end,max and the fitted values (Equation 6.10),
(c) effect of t2

f /(L f ,spL f ,ld) on the foundation boundary condition . . . . . . 163
6.19 Comparison between Kb, f nd, f end,eq and Kb, f nd, f end,num . . . . . . . . . . . . 164
6.20 Verification of the effect of (a) Ec/(Es × 103) for L f ,ld = 20 m, (b) L f ,ld

for L f ,sp = 12.5 and Ec/(Es ×103) = 0.667, (c) L f ,sp for L f ,ld = 25 m and
Ec/(Es×103) = 0.667, (d) t f for L f ,sp = 12.5 m and Ec/(Es×103) = 0.667
on the estimation of Cbc, f nd, f end . . . . . . . . . . . . . . . . . . . . . . . 165

7.1 (a) ‘Conventional’ numerical model and (b) mixed E-N method . . . . . . . 170
7.2 Mixed E–N model with base layer . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Illustration of numerical model showing dimensions, depths and locations of

the tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4 Tunnelling induced greenfield ground displacements for Ct/Dt = 2.4: (a)

vertical, (b) horizontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Effect of base layer thickness on soil-building interaction: Vlt = 1.76% . . . 179
7.6 (a) Horizontal and vertical nodal reaction forces, and (b) equilibrium of the

vertical nodal forces to create the originally applied displacements . . . . . 179
7.7 Effect of vertical and horizontal components of nodal forces on each other at

different depths for Vlt = 1.76% . . . . . . . . . . . . . . . . . . . . . . . 181
7.8 Horizontal force distribution at different depths for Vlt = 1.76% . . . . . . 182
7.9 Effect of Poisson’s ratio on the interaction between vertical and horizontal

displacement components at the ground surface for Vlt = 1.76% (the horizon-
tal forces are reduced to half of their original values for the cases of νs = 0
and 0.40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.10 Interaction between horizontal and vertical displacements for e/Lbldg = 0 . 184
7.11 Effect of applying ground displacement components separately to a model:

(a) and (b) ground displacements in the presence of a building; (c) and (d)
horizontal strains created in the building. Tunnel volume loss = 1.76% . . . 185

7.12 Comparison of bending modification factors between conventional numerical
and mixed E–N methods for Vls,sur f = 1.55% and 2.77% for Ct/Dt =2.4 and
4.4, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of figures xxiii

7.13 Tunnelling induced surface greenfield movements predicted by conventional
numerical and mixed E −N methods . . . . . . . . . . . . . . . . . . . . . 188

7.14 Comparison of (a) sagging and (b) hogging deflection ratios obtained from
conventional numerical and mixed E–N analyses for Ct/Dt = 2.4 and Vls,sur f =

1.55% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.15 Effect of a 1 m building on vertical ground surface displacements in the

mixed E–N methods for Ct/Dt = 2.4 and 4.4 . . . . . . . . . . . . . . . . 191
7.16 Effect of building length on ground displacements due to tunnelling for

Ct/Dt = 2.4: (a) mixed E −N and (b) conventional numerical analyses . . . 192
7.17 Comparison of axial modification factors between conventional numerical

and mixed E–N methods for Ct/Dt = 2.4 (Vls,sur f = 1.55%) and Ct/Dt = 4.4
(Vls,sur f = 2.77%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.18 Bending modification factors obtained from conventional numerical and
mixed E–N modelling for different values of surface volume loss for Ct/Dt =

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.19 Surface settlement curves for different surface volume losses predicted by

(a) mixed E–N and (b) numerical simulations . . . . . . . . . . . . . . . . 197
7.20 Axial modification factors obtained from conventional numerical and mixed

E–N modelling for different values of greenfield surface volume loss . . . . 198
7.21 Comparison of greenfield (a) vertical and (b) horizontal surface displace-

ments for soil relative densities of 90% and 30%, Ct/Dt = 2.40 and Vlt = 1.76%201
7.22 Comparison of vertical surface displacements for a soil with a relative density

of 30%, Ct/Dt = 2.4 and in the presence of a building with 1 m height . . . 201
7.23 (a)–(b) Bending and (c)–(d) axial modification factors computed for soils

with relative densities of 90% and 30% . . . . . . . . . . . . . . . . . . . . 203

8.1 Tunnel – soil – building model . . . . . . . . . . . . . . . . . . . . . . . . 207
8.2 Effect of a 5-storey building on tunnelling induced ground displacements for

e/Lbldg = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3 The effect of building foundations and number of storeys on maximum

ground settlements for e/Lbldg = 0 . . . . . . . . . . . . . . . . . . . . . . 209
8.4 (a) The effect of building length on ground displacements (5-storey building),

and (b) effect of number of storeys for different building lengths (t f = 0.60 m)
for e/Lbldg = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



xxiv List of figures

8.5 (a) Effect of the foundation and the superstructure of a weightless building on
ground displacements due to tunnelling, (b) effect of buildings with different
lengths on ground displacements, (c) effect of number of storeys for different
building lengths, and (d) the rotation of the buildings relative to the slope of
the greenfield settlement curve for e/Lbldg = 0.5 and t f = 0.30 m . . . . . . 211

8.6 (a) Effect of the foundation and the superstructure of a weightless building on
ground displacements due to tunnelling, (b) effect of buildings with different
lengths on ground displacements, (c) effect of number of storeys for different
building lengths, and (d) the rotation of the buildings relative to the slope of
the greenfield settlement curve for e/Lbldg ≥ 0.75 and t f = 0.30 m . . . . . 213

8.7 (a) Ground displacements from 3D building model and equivalent beams,
and (b) effect of number of storeys on maximum settlement for 3D building
model and equivalent beams (building length = 67 m) for e/Lbldg = 0 . . . 216

8.8 Effect of length of a stiff building on ground displacements for e/Lbldg = 0 217
8.9 (a) Ground displacements from 3D building model and equivalent beams, and

(b) effect of number of storeys on maximum settlement for the 3D building
model and the equivalent beams for a 5 storey building with Lbldg = 67 m
and e/Lbldg = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.10 (a) Building load – soil pressure equilibrium on foundations, (b) tunnel–
building interaction problem . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.11 (a), (b), (c) Effect of building weight and bending stiffness on ground dis-
placements due to tunnelling for Vls,sur f = 1.55% and a rough building–soil
interface; (d), (e), (f) degree of effect of building weight on the maximum
ground displacement under the building . . . . . . . . . . . . . . . . . . . 224

8.12 (a), (b), (c) Effect of building weight and bending stiffness on ground dis-
placements due to tunnelling for Vls,sur f = 1.55%, live load of 10 kPa, and a
rough and frictionless building–soil interface; (d), (e), (f) degree of effect of
building weight on the maximum ground displacement under the building
for a frictionless and a rough building–soil interface . . . . . . . . . . . . . 228

8.13 (a), (b) Degree of column load redistribution for the 5 kPa live load case and
variable Vls,sur f ; (c), (d) degree of column load redistribution for a volume
loss of 1.55%, and live load cases of 5 and 10 kPa . . . . . . . . . . . . . . 230

8.14 Interior row of bottom columns . . . . . . . . . . . . . . . . . . . . . . . . 231



List of figures xxv

8.15 (a), (b), (c) Effect of building existence on ground surface displacements
for variable e/Lbldg, a live load case of 10 kPa and a greenfield surface
volume loss of 1.55%, (d) the degree of building effect on maximum soil
displacements under the building, (e) building rotation when the tunnel is
not located under the building plan area . . . . . . . . . . . . . . . . . . . 232

8.16 (a) Effect of a 3D building (model 1) on ground displacements due to tun-
nelling, (b) effect of number of storeys on the maximum settlement for
e/Lbldg = 0 and Es = 35 MPa . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.17 (a) Effect of a 3D building (model 1) on ground displacements due to tun-
nelling, (b) effect of number of storeys on the maximum settlement for
e/Lbldg = 0.5 and Es = 35 MPa . . . . . . . . . . . . . . . . . . . . . . . . 237

8.18 (a) Effect of a 3D building on ground displacements due to tunnelling,
(b) effect of number of storeys on the maximum settlement for variable
Ec/(Es ×103), e/Lbldg = 0 and Lbldg = 67 m . . . . . . . . . . . . . . . . 238

8.19 Comparison of the predicted building effect on (a), (b), (c) ground displace-
ments, and (d), (e), (f), (g) the maximum ground settlement between a 3D
building and its equivalent beam for e/Lbldg = 0 . . . . . . . . . . . . . . . 241

8.20 Comparison of the predicted building effect (a), (b), (c) on ground displace-
ments, and (d) on the maximum ground settlement between a modelled
3D building and an equivalent beam for a 5 storey building (model 1) with
e/Lbldg = 0 and variable ratios of building–soil elastic moduli . . . . . . . 242

8.21 Comparison of the predicted building effect between a 3D building and an
equivalent beam on ground displacements due to tunnelling for the building
of model 2 (Table 8.2) with e/Lbldg = 0 . . . . . . . . . . . . . . . . . . . 244

8.22 Comparison of the predicted building effect between a 3D building and
an equivalent beam on ground displacements for the building of model 2
(Table 8.2) with variable tunnel location and building length . . . . . . . . 245

8.23 (a) Comparison between the stiffness effect of 3D building and 2D equivalent
beam on maximum ground displacements under the building, (b) comparison
of building rotation between 3D buildings and 2D equivalent beams. . . . . 246





List of tables

3.1 The adopted coefficients for semi–analytical approach . . . . . . . . . . . . 68
3.2 Centrifuge scaling laws (Taylor, 1995a) . . . . . . . . . . . . . . . . . . . 69
3.3 Classification of visible damage to walls (Burland et al., 1976) . . . . . . . 70
3.4 Building damage categories (Boscardin and Cording, 1989) . . . . . . . . . 71
3.5 Critical Cracking Strain Data (Boone, 1996) . . . . . . . . . . . . . . . . . 71

5.1 Range of sizes of structural parts considered in stage 1 analyses . . . . . . . 94
5.2 Range of sizes of structural parts considered in stage 2 analyses . . . . . . . 101
5.3 Sizes of structural parts (1 to 11 storey building) considered in 2D and 3D

comparative analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 Range of sizes of structural parts considered in stage 1 analyses . . . . . . . 123
5.5 Range of sizes of structural parts considered in stage 2 analyses . . . . . . . 127
5.6 Sizes of structural parts (1 to 7 storey building) considered in 2D and 3D

comparative analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1 Building properties for conventional numerical and mixed E–N simulations 172
7.2 Mixed E–N analyses: tunnel and surface soil volume losses . . . . . . . . . 174
7.3 Achieved volume losses at different depths by different prediction methods

of ground displacements due to tunnelling . . . . . . . . . . . . . . . . . . 176

8.1 Building properties for the approaches of Potts and Addenbrooke (1997) and
Lambe (1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.2 Sizes of structural parts considered in 3D weightless building analyses . . . 235

A.1 Calculation of the total Building Stiffness . . . . . . . . . . . . . . . . . . 277

B.1 Calculation of the total Building Stiffness . . . . . . . . . . . . . . . . . . 282





List of Symbols

Roman Symbols

α∗ relative axial stiffness

α∗
mod modified relative axial stiffness

αKus a coefficient to calculate CKus

αvor,nvor modified Gaussian parameters
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Chapter 1

Introduction

1.1 Background

The increase of population in developed countries has resulted in the utilisation of the surface
land within cities by a great extent. In addition to the horizontal expansion of urban areas,
many high-rise buildings are constructed that require raft foundations. Population increase
has also led to the rise of traffic volume and additional quantities of water and waste water.
In order to reduce surface traffic volume and to accommodate infrastructure development
needs, tunnels have been constructed beneath structures.

All engineering structures must interact with the ground in some way. When the stress
conditions in the underlying soil change due to the construction of underground structures,
or when the system is subjected to external forces such as earthquakes, the response and
behaviour of both the soil and the structure will be interconnected. This interrelationship
between the structure and the ground is termed soil structure interaction.

Tunnelling in the ground produces soil stress relief in its vicinity due to the tendency of
the soil to move towards the tunnel cavity. This in turn creates ground displacements that
can influence surface and subsurface structures such as buildings, water tanks, roads, and
buried pipelines. Among the surface structures, there are high-rise concrete framed buildings
supported by raft foundations. These high-rise buildings in developed cities are usually
constructed in clusters or very close to each other due to the lack of space. The foundations
of these buildings as well as the superstructures may experience damage since the new tunnel
has to pass beneath them.

The interaction between a newly constructed tunnel and an existing building is due to
the induced ground movements resulting from the tendency of the soil to move towards the
tunnel. This movement of the soil is also affected by the existence of the structure which
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makes the interaction a two-way relationship (Potts and Addenbrooke, 1997). The following
section explains the specific interaction problem considered in this research.

1.2 Problem Statement

The issue of the interaction between newly constructed tunnels and existing structures is
continuously growing and becoming more essential. It has attracted the attention of many
researchers, and numerous papers have been published utilising different experimental,
analytical and numerical methods (Franzius et al., 2006; Giardina et al., 2015; Goh and Mair,
2014; Potts and Addenbrooke, 1997). It can be said that this interaction is a complicated
problem and several complex parameters are involved in the analysis process.

The main parameters of the tunnel–building interaction are ground displacements and
the building configuration. With regard to the ground displacements, both the displacement
values and the settlement trough width have a significant effect on the interaction. Regarding
the building, the type of the building, its stiffness, its weight and its location with respect to
the tunnel are crucial. Some analysis methods estimate greenfield displacements induced by
tunnelling and then apply the estimated values to the structures; it is assumed that the structure
is flexible enough to follow the greenfield movements (Rankin, 1988). Other methods include
the effect of the building, treating it as a beam or a frame (Giardina et al., 2015; Potts and
Addenbrooke, 1997). Some researchers have included detailed structural models in their
analyses (Mirhabibi and Soroush, 2013; Mroueh and Shahrour, 2003), however, the behaviour
of the building is still not clear in the soil–structure system.

The ambiguity of the building behaviour in the soil-structure system is mainly related to
the stiffness of the building and the relation between its stiffness and its weight. The stiffness
of the building is estimated based on a simple beam or a frame; the 3D nature of the structure
is not taken into account. Moreover, the role of the building stiffness in the soil–structure
interaction is not investigated based on the parameters influencing the stiffness of a member;
for instance, the length of a building located in the soil area that is influenced by tunnelling,
the part located in the unaffected soil zone, and the boundary condition of the building in
the soil–building system are not adequately included. Apart from this, the whole building
is considered as a single entity, and the role of the foundation and individual storeys in the
global building system is not taken into consideration.

It is worth noting that previously, numerical methods have been used to study specific
scenarios or to obtain design charts for use by geotechnical engineers. The proposed design
charts are subjected to the above limitations. In this research, the 3D behaviour of buildings
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is examined in detail with a focus on the main parameters that affect the deformation of a
building in reality. These parameters are specified based on mathematical equations of the
deflection of a structural member. Furthermore, computationally efficient approaches are
suggested to estimate building bending stiffness. The suggested methods can be readily used
by engineers. It should be mentioned that these approaches are somewhat unconventional,
but it is shown that they accurately capture the real 3D response of buildings and foundations
to tunnelling induced ground displacements. Based on comparisons of the proposed methods
with the currently available approaches to estimate building bending stiffness, it is also
illustrated that the proposed approaches lead to more accurate estimation of building stiffness
than previously proposed methods.

1.3 Scope of Research

The aim of this research is to determine, using finite element analyses, the realistic behaviour
of 3D concrete framed buildings in the global soil–building system when a new tunnel is
constructed. The determination of the realistic building behaviour considers the role of the
building stiffness, weight, and relative position in a tunnel–building interaction problem.
The research also aims to develop a method to quantify the bending stiffness of a global
3D concrete framed building in a soil–building domain depending on the properties of soil,
building and relative tunnel–building position.

The objectives of the project can be summarised as below:

1. Development of methods to quantify the bending stiffness of the building superstructure
and foundation

2. Development of an equivalent beam method to represent a 3D building by a 2D beam
in the numerical analyses

3. Development of a mixed empirical–numerical method to quantify the effect of building
stiffness on tunnelling induced ground movements

4. Investigation of the contribution of foundation and superstructure stiffness to the global
building stiffness during the construction of a new tunnel

5. Study of the relation between the stiffness and weight of a building when subjected to
tunnelling
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1.4 Original Contributions of Research

The original contributions presented within this thesis are briefly presented here.
The role of building stiffness in tunnel–soil–building interaction has been shown to be

influential in the literature; however the effect of building stiffness has not been investigated
based on all the influential parameters. The investigations of building response to tunnelling
in this work consider the main influential parameters that determine building stiffness. These
parameters are obtained from mathematical expressions of beam deflections.

In the existing methods to estimate the stiffness of buildings or which represent buildings
as an equivalent beam, it is assumed that the whole building behaves together as a single body
without consideration of the contribution of different structural parts to the global building
behaviour. The results presented in this thesis, which are related to concrete framed buildings
with raft foundations, show that the foundation has the main contribution to the global
building resistance against deformations; the role of the superstructure is less significant.
Furthermore, the stiffness contribution of building storeys to the global building stiffness
decreases with the increase of their distance from the foundation.

The majority of previous work aimed to utilise numerical methods to investigate specific
scenarios or to propose design charts. Their limitations include disregarding the 3D nature of
buildings, focusing on specific soil types, and overlooking some parameters that affect the
response of buildings to tunnelling. This work presents methods to estimate the true bending
behaviour of 3D buildings (foundation and superstructure); the mentioned limitations are
eliminated in the proposed methods.

The relation between the stiffness and the weight of a building is not clear in the litera-
ture. There are methods that neglect the effect of building stiffness in the tunnel–building
interaction problem, while there are others that significantly overestimate the stiffness effect.
The outcomes presented within this thesis show that the weight and the stiffness of a building
are greatly interconnected. The stiffness comes from the design stage of the building which
depends on the outcomes of the analysis stage in which the loads applied to the building
are calculated. Therefore, considering both the weight and the real stiffness of buildings is
necessary to predict the true building behaviour in tunnel–soil–building interaction analyses.

The thesis also presents an efficient mixed empirical–numerical method to estimate
building effects on ground displacements due to tunnelling. The method allows the estimation
of the building effect on the soil layer above the tunnel crown in an elastic analysis. Any
form of greenfield displacement profile can be used as an input to the method, including both
vertical and horizontal displacements, which can be applied either together or separately.
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The method overcomes several issues related to the use of conventional numerical analysis
methods, which generally give unrealistically wide settlement troughs and large horizontal
displacements.

1.5 Thesis Structure

The thesis is organised as follows:
Chapter 1 is an introduction to the thesis, containing: a succinct description of tunnelling
effects on buildings, the problem definition, aims and objectives, and the thesis layout.
Chapter 2 presents a brief review of buildings, building structural members, and foundations.
Chapter 3 contains a review of tunnels, tunnelling techniques, numerical simulation of
tunnels, methods of predicting ground movements due to tunnelling, and tunnel–soil–building
interaction.
Chapter 4 explains the finite element software ABAQUS (used in this research), the type of
elements chosen for the analyses of this work, and general material properties.
Chapter 5 proposes two methods to estimate the bending stiffness of a building’s superstruc-
ture depending on the location of the tunnel in relation to the building: a cantilever method
for the case where the tunnel is located outside the building plan area, and a fixed–ended
case where the tunnel is located under the building centreline.
Chapter 6 uses the methods developed in Chapter 5 (a cantilever and a fixed–ended method)
to estimate the bending stiffness of a raft foundation depending on the location of the tunnel
in relation to the foundation.
Chapter 7 proposes a mixed empirical–numerical method to numerically analyse tunnel–
building interaction and to quantify the effect of building stiffness on ground displacements.
Chapter 8 presents the effects of framed buildings on tunnelling induced ground movements.
The chapter contains the investigation of the effect of a weightless building on ground
movements, the study of the effect of building weight on ground displacements, and the
development of an equivalent beam method to represent a 3D building in a soil–building
domain.
Chapter 9 contains the conclusions and recommendations for further research.

Since this research is related to both tunnelling and buildings, Chapters 2 and 3 present a
review about buildings, tunnelling, and tunnelling effects on structures. It should be noted
that Chapter 2 contains a detailed discussion of the deflection of a beam explaining the
parameters that have the main role in the beam deflection. This is because, in this research,
the concept of the beam deflection is the basis of investigating the behaviour of a 3D building
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affected by tunnelling. After explaining the use of ABAQUS and the material properties
used in this thesis in Chapter 4, the superstructure of buildings is studied numerically in
Chapter 5 based on the definition of the beam bending stiffness given in Chapter 2. The
behaviour of the building is related to the deflection of a cantilever beam when the tunnel
is not located under the building, and to a fixed–ended beam when the tunnel is under the
building centreline. These two approaches (cantilever and fixed–ended) are also used in
Chapter 6 to investigate the deformation of raft foundations when influenced by tunnelling.
In Chapters 5 and 6, the tunnel is not simulated directly. The effect of tunnelling induced
ground movements are replaced by forces applied to the structure.

Chapter 7 shows that the conventional numerical analysis of tunnelling results in wide and
shallow settlement troughs. Since this shallowness does not agree with field measurements
and experimental data, a mixed empirical–numerical method is proposed to estimate tunnel–
building interaction, which overcomes the problems arising from conventional numerical
analyses of tunnelling. The proposed mixed empirical–numerical method is then used
in a section of Chapter 8 to investigate the 3D behaviour of buildings in a global soil–
building system. Chapter 8 also includes the investigation of the effect of building weight
on tunnel–building interaction using a conventional numerical method since the proposed
mixed empirical–numerical method is only related to elastic analyses. It is worth noting
that the main parameters that influence the deformation of a building during tunnelling are
also investigated in Chapter 8 in a global soil–building system. Finally, the conclusions and
recommendations for further research are presented in Chapter 9.



Chapter 2

Buildings and Foundation

2.1 Introduction

The main focus of this chapter is on reinforced concrete buildings since they are the structures
relevant to the scope of this research. Reinforced concrete is a widely used construction ma-
terial for buildings, bridges, dams and other types of structures. The properties of reinforced
concrete depend on the properties of the constituent materials (concrete components, steel,
admixtures) as well as the construction techniques (Li, 2011). A reinforced concrete framed
building is made of reinforced concrete and generally consists of beams, slabs, columns,
and a foundation. In some systems such as flat plates or flat slabs, beams are not included.
These members are connected rigidly to each other by casting them monolithically such
that they act as one unit. In between columns, partition walls are placed which are mainly
non-structural elements in a framed building. Figure 2.1 displays a typical framed building
showing the structural members of slabs, beams, columns and the foundation.

The behaviour of a building depends on the behaviour of its interconnected structural
parts. For this reason, understanding structural parts is necessary to understand the global
building behaviour. This chapter briefly presents general information about the structural
behaviour of buildings relevant to the purpose of this research. The definition and the function
of the superstructure members are first presented in which the analysis and design processes
of the structural members are also discussed. Since buildings have been modelled as beams
to a great extent in soil-structure interaction problems, and bending stiffness has been an
essential parameter in quantifying soil-structure interaction, specific attention is given to
the bending behaviour of beams to understand the actual parameters relevant to stiffness.
This information supports some of the analyses in Chapters 5 and 6 about building stiffness
estimation methods.
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Fig. 2.1 Illustration of a 3D framed building

This section is then followed by an explanation about building foundations. Note that
this research only focuses on the behaviour of raft foundations; different types of building
foundations are briefly defined to provide some context. Modulus of subgrade reaction
and shallow foundation design methods are briefly discussed. The modulus of subgrade
reaction is not directly relevant to the scope of this research but its explanation may help in
understanding the global behaviour of raft foundations and how they are dealt with practically.
This section is relevant to the work presented in Chapters 6 and 8.

This chapter also presents a brief explanation about the stiffness of buildings, which is an
important concept throughout the thesis.

2.2 Superstructure Members

Generally, the superstructure structural members include slabs, beams, columns and walls.
The following sections present a brief explanation about the analysis and design stages of
structural members, and an introduction to the main structural parts of a building.

2.2.1 Analysis and design of structural members

Prior to the construction of any building, structural members go through two vitally important
stages: analysis and design. Detailed procedures and methods of these two stages can be
found in reinforced concrete analysis and design books (e.g. Arya, 2009), and building
construction codes (e.g. ACI-Building-Code, 2011). In the analysis process, the possible
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loads, moments and torques that may be imposed to the building are calculated. Based
on these calculated loads, the building is analysed to determine the induced shear forces
as well as bending and torsional moments in the structural parts. This can be done using
different analysis methods, such as finite element analyses. In this stage, preliminary values
of material and geometrical properties of each building part may need to be assumed. After
that, the design stage starts which depends on the determined internal forces of the building
structural members computed in the analysis stage. A section is given to each structural
member and the required dimensions and material properties in addition to the amount of
steel reinforcement are calculated based on the applied forces.

Strength and stiffness are two essential parameters for every structural member. The
stages of analysis and design are vitally important to understand how strength and stiffness of
a member work together with the applied loads. To achieve appropriate strength and stiffness,
the building should be analysed and designed based on limit states (Arya, 2009). When a
building or a building member is not able to perform its intended function, it is assumed that
it has reached a limit state (Wight and MacGregor, 2009). There are two categories of limit
states: ultimate and serviceability (Arya, 2009). In the ultimate limit state, the building or its
members should not experience failure when subjected to design loads (shear force, bending
and torsional moments). Prevention of the loss of equilibrium, avoidance of the rupture of
structural members and progressive collapse should be satisfied in the ultimate limit state
(Wight and MacGregor, 2009). In the serviceability limit state, the structure should not lose
its functionality because of vibration, excessive deflection or the occurrence of wide cracks
(Bhatt et al., 2006).

The strength and stiffness given to a member during the design stage is based on the
applied loads. It is worth noting that the investigation of a member’s stiffness without
considering applied loads may not represent reality unless the applied load on that member is
negligible compared to its stiffness. Furthermore, it should be noted that understanding the
stages of analysis and design of each building is crucial when assessing the potential damage
caused by a newly constructed tunnel.

2.2.2 Slabs

Slabs are flat and horizontal structural elements that have small thickness in comparison to
their spans. They form floors, roofs, stair cases and foundations in buildings and usually
carry uniformly distributed loads perpendicular to the slab plane (Arya, 2009; Bhatt et al.,
2006).
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Structural slabs supported at two sides or having a length-to-width ratio of greater than or
equal to 2 (or smaller than 0.5) act as beams and are called one-way slabs. Slabs supported on
all sides or having length-to-width ratios smaller than 2 act as plates and are called two-way
slabs. Bending in one-way slabs happens in one direction perpendicular to the supported
edges whereas it occurs in both directions in two-way slabs (McCormac and Brown, 2014).

2.2.3 Beams

Beams are flexural structural members that have small cross sections compared with their
spans and are supported at one or both ends. They withstand external loads generally acting
at right angles to their longitudinal axis. The applied external loads create internal shear
forces and bending or torsional moments in the beam (Ghoneim and El-Mihilmy, 2008).

Bending moments are created in a beam by the applied vertical loads that do not have
eccentricity with respect to the beam longitudinal centreline. When a load with an eccentricity
is applied to the beam, torsional moments in addition to bending moments are created. This
happens in a building when the slabs on both sides of the beam are of different spans, if
it is a curved beam, or an edge beam where there is a slab only on one side of the beam
(McCormac and Brown, 2014).

From a geotechnical perspective, when analysing soil-structure interaction problems,
buildings have often been represented as beams (Franzius et al., 2006; Pickhaver et al., 2010;
Potts and Addenbrooke, 1997). In the majority of the cases where buildings were modelled as
beams, the weight of the structure was excluded from the analysis and the focus was mainly
on the bending and axial stiffness of the building (mostly the bending stiffness). However,
building stiffness has not been estimated based on all relevant parameters. Therefore, a
detailed explanation of beam bending stiffness is presented in this section with a discussion
about all the parameters that have an effect on bending stiffness.

By definition, stiffness is the resistance of a member against deformation, or it is the
structure’s ability to resist changes in shape (Beer et al., 2012; Gere and Goodno, 2009; Young
and Budynas, 2002). Bending stiffness is the resistance of a structure or a structural member
against bending deformation, axial stiffness is the resistance against axial deformation, and
torsional stiffness is the resistance against twisting. Practically, stiffness is the reaction force
required to create a unit displacement along a direction while all other displacements are
constrained. This can be rephrased as the ratio of the load applied to a member to the created
deformation in that member, as expressed by Equation 2.1 (Baumgart, 2000).
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K =
P
∆

(2.1)

where K is the stiffness, P is the force applied to a member and ∆ is the deflection produced
by the applied force.

Mathematically, bending stiffness of a beam loaded with a simple force can be derived
from its deflection equation, i.e. Equation 2.2, where y is the deflection, x is the distance along
the beam, d2y

dx2 is the curvature, M(x) is the moment at any point along the member, and EI is
the flexural rigidity of the beam cross section. The essential parameters on which the stiffness
of a beam depend are the material elastic modulus, E, the cross sectional moment of inertia,
I, and the applied moment, M, to the beam, which is based on the applied force, P, beam
length, L and the boundary condition. The equation of the elastic curve and the maximum
deflection of simple beams can be found in various books of mechanics of materials. The
analytical equation of a beam’s bending stiffness can be expressed by Equation 2.3.

d2y
dx2 =

M(x)
EI

(2.2)

Kb = FK × EI
L3 (2.3)

where Kb is the bending stiffness, and FK is a factor that depends on the boundary condition
of the beam and the applied force. This form of equation is based on concentrated forces, P,
or equivalent total forces when having distributed loads, w = P

L for a rectangular distributed
load and w = 2P

L for a triangular distributed load. In addition, ∆ represents the maximum
value of the deflection along the beam. Figure 2.2 displays the value of FK for several types
of beams.

The product of material elastic modulus and cross sectional moment of inertia, EI, is
called flexural rigidity of a cross section. This parameter has a proportional effect on the
bending stiffness of a beam. The effect of EI is opposite to that of the length since the length
is inversely proportional and raised to the power 3, hence it has a considerable effect on the
value of bending stiffness. For the same flexural rigidity, a beam with a short span has a
considerably greater bending stiffness than a beam with a long span.

In addition, the boundary condition of the beam plays an important role in the resistance
of that member against deformation. A simply supported beam, as shown in Figure 2.2a,
has a significantly smaller bending stiffness than that of a beam with a fixed boundary at
both ends, as shown in Figure 2.2c. As the beam boundaries approach a fixed condition, the
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Fig. 2.2 Values of FK (in Equation 2.3) for different types of beams under maximum deflection



2.2 Superstructure Members 13

rotation of the beam (at the supports) becomes more restricted, which in turn leads to the
reduction of the deflection and the increase of bending stiffness. A beam with a high value
of flexural rigidity and a short span that is allowed to rotate at its boundaries will have a
small bending stiffness (which will depend on the degree of the rotation allowance by the
boundaries).

Another important parameter of the beam bending stiffness is the type of the applied
force. The equation for moment in a beam depends on the boundary conditions and the
applied forces. For similar boundary conditions, bending stiffness increases as the load
type approaches a uniform distribution. For instance, a beam fixed at both ends and loaded
with a concentrated force at the middle, as shown in Figure 2.2c, has a smaller bending
stiffness than that of the same beam loaded with a triangular shaped distributed force, as
shown in Figure 2.2h. When the beam is subjected to a uniformly distributed load, as shown
in Figure 2.2d, the bending stiffness will become greater than that of the other mentioned
cases.

2.2.4 Columns

Columns are generally vertical members mainly designed to resist axial compressive forces,
but which are sometimes also subjected to bending moments (Hibbeler, 2012). Columns
support the floors and the roof, and transfer their weight to the subsoil. Columns are essential
members in a framed building, and many structural failures have been related to the failure
of columns (Ghoneim and El-Mihilmy, 2008).

Columns are designed either as short or long (slender) columns. Compressive behaviour
is dominant in short columns which makes them axially strong. As the column length
increases, bending deformations are produced due to the creation of secondary moments. If
these secondary moments are of significant magnitude that decrease the axial capacity of the
column, the column is categorised as a long or a slender member (McCormac and Brown,
2014; Wight and MacGregor, 2009). The load capacity of a column is inversely proportional
to the slenderness ratio. The slenderness ratio is a function of the column dimensions (the
height and the cross sectional geometry), radius of gyration and the end restraint conditions
(Arya, 2009; Ghoneim and El-Mihilmy, 2008).

Axial stiffness is an essential parameter in columns because they are mainly subjected to
axial forces. The axial stiffness is (Gere, 2004):

Ka =
(EA)col

Lcol
(2.4)
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where Ka is the axial stiffness, (EA)col is the axial rigidity of the column, A is the cross
sectional area and Lcol is the column length.

2.3 Building Foundations

Generally, a foundation is defined as the part of a structure which carries the superstructure
and transfers the structural load to the underlying soil. The foundation should be designed
to avoid over-stressing the soil which can cause damage to the structure due to excessive
settlement or soil shear failure (Das, 2010). There are various kinds of foundations divided
into two main groups: shallow and deep foundations, with different design methods. A brief
explanation of foundation types and design methods are presented in the following sections.

2.3.1 Shallow foundations

Foundations that support structures at a shallow depth below the surface are called shallow
foundations. There are different views about the definition of shallow foundations. Some
authors have defined a shallow foundation as one having a depth equal to or less than its width
(Bowles, 1997; Kimmerling, 2002) while others have defined it as having an embedment
depth of less than or equal to 3 to 4 times its width (Das, 2010). Shallow foundations include
spread footings, strap footings, combined footings and raft foundations (Murthy, 2007). Each
type of shallow foundation is briefly explained below.

A spread footing is simply an enlargement of the base of a column or a wall to distribute
the structural load over a wider area (Das, 2010; Murthy, 2007). A spread footing may
support a single column (single or pad footing) or a wall (strip footing), and can be square,
rectangular or circular. Figure 2.3a is an example of a pad footing.

Spread footings are mainly designed for downward compressive forces, P, which are
distributed over a soil area and create a bearing pressure at the bottom of the foundation. The
force tends to be applied to the centroid of the footing in order to obtain a more uniform
pressure (Figure 2.3b) and an even settlement at the base of the foundation (Coduto, 2001).
For a footing subjected to an eccentric force in which the applied force does not act at the
foundation centroid, the pressure at the base of the footing will not be uniform, as shown in
Figure 2.3c, and the allowable ground bearing pressure will be a function of the eccentricity.

It can be said that in reality, the soil pressure beneath a footing is not uniform; it is
dependent on the footing rigidity and the underlying soil (Bowles, 1997). For example, when
the footing rests on a loose sand, the grains close to the edges will displace laterally while the
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Fig. 2.3 Single footing: (a) typical pad footing, (b) uniform soil pressure, (c) non-uniform
soil pressure, and (d) non-linear real soil pressure

soil under the footing centre is approximately confined. This produces a larger soil pressure
under the middle of the footing compared to the edges, as shown in Figure 2.3d.

A strap (cantilever) footing is a rigid beam that connects an eccentrically loaded column
footing to an interior column footing, as shown in Figure 2.4a. A strap footing can be an
alternative for a combined footing if the allowable bearing capacity of the soil is great and the
span between the columns is large (Das, 2010). The function of a strap footing is to transfer
the moment created by the eccentricity in a footing to another interior footing in a way that a
uniform soil pressure is obtained at the base of both footings (Bowles, 1997).

A combined footing is a type of foundation that supports two or more neighbouring
columns on the same line, as shown in Figure 2.4b. Combined footings are used when
columns cannot be placed at the centroids of spread footings due to the unavailability of an
authorised land, or when the spread footings are so large that they are significantly close to
each other. When the permitted land is not available for the expansion of a spread footing,
eccentricity will happen which leads to a non-uniform soil pressure (Bowles, 1997; Das,
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Fig. 2.4 Typical types of (a) strap, (b) combined and (c) mat footings

2010; Murthy, 2007). For the design of combined footings, rigid, flexible or numerical design
methods can be used which are explained later in Section 2.3.3.

A mat foundation is a large footing that supports several columns in different rows,
as shown in Figure 2.4c. Mat foundations are used when columns are subjected to such
great loads that they need significantly large spread footings, when the soil conditions are
considerably poor, or when the foundation is below the ground water level to provide a
waterproof barrier (Bowles, 1997; Coduto, 2001).

There are different types of mat foundations including those with uniform thickness, flat
plates thickened under the columns and flat plates with pedestals. In addition, mat foundations
may be supported by piles in highly compressive soils to reduce building settlement. These
foundations are called piled mats and they are a combination of shallow and deep foundations
(Bowles, 1997; Coduto, 2001; Das, 2010). Mat foundations can be designed by rigid, flexible
or numerical methods (Section 2.3.3).

2.3.2 Modulus of subgrade reaction

Modulus of subgrade reaction can be defined as the relationship between the applied pressure
to a soil and the created deflection, expressed by the Winkler Equation (Equation 2.5) (Bowles,
1997). It is worth mentioning that ks in Equation 2.5 is assumed to be independent of the
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value of qs, and has a uniform value at every point on the soil surface under the foundation
(Murthy, 2007).

ks =
qs

δs
(2.5)

where ks is the modulus of subgrade reaction, qs is the soil pressure (or the subgrade reaction)
and δs is the soil deflection.

The modulus of subgrade reaction can be estimated either experimentally or empirically.
Amongst the experimental methods, the plate load test is a popular method which was
proposed by Terzaghi (1955) to estimate the modulus of subgrade reaction based on a
305 mm square rigid plate placed on a soil medium. The test is performed by applying a
specific load on the plate and measuring the soil deflection at each load increment to obtain
the stress-deflection curve. The value of the modulus of subgrade reaction of the plate can be
converted to that of the real foundation using Equations 2.6 and 2.7 for square and rectangular
foundations, respectively.

ks,sq = ks,p ×
(

B f +bp

2B f

)2

(2.6)

ks,rec = ks,p ×
1+ B f

L f

1.5
(2.7)

where ks,sq and ks,rec are moduli of subgrade reaction of square and rectangular foundations,
respectively, ks,p is the modulus of subgrade reaction of the plate, B f and L f are the width
and the length of the foundation, respectively, and bp = 0.305 m is the width of the test plate.

The modulus of subgrade reaction is significantly affected by the size, shape and embed-
ded depth of the plate. Das (2010) stated that square plates are occasionally used nowadays.
Instead, a circular plate of 25 mm thickness with a diameter from 150 mm to 762 mm is
used. Bowles (1997) explained that achieving a reasonable value of ks with a big plate is
very difficult due to the requirement of a large reaction force. In addition, for even small
plates of about 450 mm to 750 mm diameter, ks is difficult to be defined since the plate will
not be stiff enough to behave rigidly. Furthermore, the assumptions of: (1) the soil in the
influenced zone below the test plate is comparable to the soil layers in deeper zones below
the foundation, and (2) relying on the short term settlement while clayey soils have long term
(consolidation) settlement make the results more unreliable (Coduto, 2001; Murthy, 2007).
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In addition to the mentioned method, the consolidation test (for an elastic soil acting as a
spring), California Bearing Ratio (CBR) and Triaxial tests can also be used to estimate the
modulus of subgrade reaction (Dutta and Roy, 2002; Huang, 2004; Naeini et al., 2014).

Different empirical methods for the estimation of the soil subgrade reaction have been
proposed in the literature. After Winkler (1867) proposed Equation 2.5 to estimate the
modulus of subgrade reaction, Biot (1937) elucidated that foundations are rarely dealt with
based on the modulus of the subgrade reaction, ks, achieved from stress-deflection curves.
Instead, it should be investigated based on the two elastic parameters of Young’s modulus,
Es, and the Poisson’s ratio, νs. For the soil-foundation interaction problem, he analysed
two models of Winkler and elastic continuum in order to evaluate ks based on the elastic
parameters of Es and νs. Vesic (1961) analysed two similar models to Biot (1937) and
defined a correlation for estimating the value of ks by equating the maximum deflection of
the analysed beam in both models.

Vlasov and Leont’ev (1966) proposed a two parameter model to eliminate the Winkler
problem of having a uniform load on the foundation. Their estimation of the modulus of
subgrade reaction was dependent on an elastic medium where the horizontal stresses were
negligible. Bowles (1997) stated that since the value of Es may not be easily available, other
approximations can be done for the calculation of ks. This is because the stiffness of the
foundation is significantly higher than that of the soil and some reasonable approximations
to the value of ks will not have a considerable effect on the foundation bending moment and
the calculated soil pressure.

2.3.3 Shallow foundation design methods

There are different design methods for combined and mat foundations: rigid, flexible and
numerical methods. Each method is briefly explained below.

In rigid foundation design methods, it is assumed that the foundation is so rigid that it
can span any underlying soil non-uniformities. Additionally, the foundation base pressure is
presumed to be uniform or linearly variable, as shown in Figure 2.5a. It is worth mentioning
that differential settlements are very small in rigid foundations but the induced bending
moment and shear forces are high (Gupta, 1997).

This design method is easy to apply and hand calculations can be used without the aid
of computer programs. However, there are some drawbacks related to this method. For
instance, there are several approximations in the method: columns should be in a uniform
pattern and the mat should be very rigid (Bowles, 1997; Ghoneim and El-Mihilmy, 2008).
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Fig. 2.5 Soil pressure distribution under (a) rigid and (b) flexible footings

The assumptions of infinite rigidity of the footing and uniform or linear variation of the soil
pressure under the footing lead to unreliable computations of shear, moment and deformations
in the mat foundation. In reality, the soil pressure is larger under the columns and smaller in
the other zones, as shown in Figure 2.5b (Coduto, 2001).

The flexible foundation design methods assume that the soil consists of an infinite
number of elastic springs. This is sometimes called the Winkler foundation as it is the
classical Winkler solution (Bowles, 1997). The elastic constant of the springs is the elastic
property of the soil which is called the coefficient or modulus of subgrade reaction, ks. This
method deals with both beams and plates on elastic foundations. Beam theory is used for
foundations having one way deformations, while plate theory is used for foundations with a
two-way response.

In the approach of beams on an elastic foundation, it is assumed that a beam is supported
by an elastic foundation along its complete length. When the beam is subjected to an
external load, the reaction forces of the foundation will be proportional at every section to
the deflection of the beam at that section. Based on these conditions, the soil reaction per
unit length of the beam can be expressed by ksyb, where yb is the deflection of the beam
(Timoshenko, 1940). In the case of having a plate on an elastic foundation, the deformations
along the width of the footing should also be considered. A plate or a slab can be defined as
a structure expanding in two dimensions. They can be rectangular or circular in shape. Rao
(2011) presented three cases (based on the ratio of the foundation length, L f , to width, B f )
to be considered in the analysis of a footing. If L f /B f > 5, the footing behaves as a beam.
If L f /B f < 3, the footing acts as a plate. If 3 < L f /B f < 5, the footing can be analysed as
either a plate or a beam. Timoshenko and Woinowsky-Krieger (1959) outlined three types of
plate analysis: thin plates with small deflections, thin plates with large deflections, and thick
plates. Thin plates can be analysed as 2D problems while thick plates should be analysed as
a 3D problem.

The classical solution of a Winkler foundation assumes that the closely spaced springs of
the foundation are completely independent of each other and there is no continuity in the
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foundation due to the lack of interaction between the springs, as shown in Figure 2.6a. Based
on this, if a beam is subjected to an external load distributed over a specific length, the soil
beyond the loaded zone will not be influenced (Rao, 2011). However, this approach has been
broadly used in practical cases and has shown good agreement with real measurements for
cases where there is a beam with an infinite length, such as railway tracks (Selvadurai, 1979;
Timoshenko, 1940).

The basic differential equation of the Winkler’s solution is expressed by Equation 2.8
(Bowles, 1997).

(EI) f ·
d4yb

dx4 = qapp =−ksB f yb (2.8)

where (EI) f is the flexural rigidity of the foundation cross section.
In addition, an essential parameter, λL f (Equation 2.9), is introduced during the solution

of Equation 2.8 which can be used to decide whether a foundation should be analysed as
rigid or flexible. Bowles (1997) proposed that the foundation is better to be analysed by the
flexible approach if λL f > π , and by the rigid approach if λL f <

π

4 where bending of the
foundation is not considerably influenced by ks. Furthermore, ACI-Committee-336 (2002)
suggested that for a continuous footing, the rigid method can be used if the average of two
adjacent spans in a continuous strip is less than 1.75/λ , and the adjacent loads and column
spacings are not different from each other by more than 20%.

λ = 4

√
ksB f

4(EI) f
OR λL f =

4

√
ksB f L4

f

4(EI) f
(2.9)

Researchers have proposed methods to add some interaction between the springs of the
Winkler’s foundation. Some researchers proposed two-parameter solutions to solve beams on
elastic foundations. For example, Filonenko–Borodich (Rao, 2011) connected the tops of the
springs by an elastic membrane subjected to a tension force to add shear interaction among
adjacent points in the foundation, as shown in Figure 2.6b. Hetenyi (1946) and Hetenyi
(1950) added an interaction among the independent springs by connecting their top ends with
a beam in the 2D case and a plate in the 3D case (Figure 2.6b), with the assumption that
the beam or plate is only subjected to bending deformations. Pasternak (1954) introduced
shear interaction between the springs by adding a beam or a plate comprising incompressible
vertical elements deforming only by transverse shear. Furthermore, Pasternak suggested
another foundation model consisting of two spring layers connected by a shear layer, as
shown in Figure 2.6c (Rao, 2011).
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Fig. 2.6 Foundation types: (a) Winkler, (b) two-parameter and (c) Pasternak’s models

The aforementioned two parameter models were based on adding shear interaction be-
tween the independent springs of a Winkler foundation. On the other hand, other researchers
proposed two parameter foundation models based on the theory of an elastic-continuum.
Reissner (1958) solved partial-differential equations of compatibility, constitutive relations
and equilibrium to develop a simplified approach for the description of soil behaviour. His
solution was based on two assumptions: the in-plane stresses are negligible throughout the
foundation, and horizontal displacements at the upper and lower foundation surfaces are zero.
The simplified method of Reissner (1958) was later extended by Horvath (1983) to consider
the linear variation of Es with depth.

Foundations can also be analysed using numerical methods. Since an analytical solution
is not always achievable for all types of footings, numerical analyses become appropri-
ate. There are analytical solutions for only a few cases of thick plates (Timoshenko and
Woinowsky-Krieger, 1959). Furthermore, apart from circular plates subjected to axisymmet-
ric external loading, the derivation of analytical solutions is not always possible for the other
plate cases (Wang et al., 2005).

2.3.4 Piled foundations

Piles are structural members generally categorised as deep foundations. Their function is the
conveyance of structural loads to lower soil layers (Bowles, 1997). Piles are mainly designed
for axial loads, though they may be subjected to other types of forces such as uplift or lateral
loads.
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Piles can be classified in different ways. A classification method is based on the material
type of the pile, such as timber, concrete, steel and composite (Prakash and Sharma, 1990).
Another categorisation relates to the type of interaction between the soil and the pile, such
as large displacement piles (solid sections), small displacement piles (rolled steel sections,
bottom-opened tubes, hollow sections), and replacement piles created by drilling or other
excavation methods (British-Standard, 1986; Tomlinson, 1994). Piles can also be categorised
based on the way loads are transferred to the soil. This class includes end-bearing piles
which transfer load through soft and weak soil layers to their ends which rest on a stiff/strong
soil stratum, friction piles which transmit load to different layers of soil through the shear
resistance along the shaft, and combined piles that are combinations between end-bearing
and friction piles (Prakash and Sharma, 1990).

2.4 Stiffness of Buildings

In structural engineering, the stiffness of structural members are generally very significant.
For the flexural members (i.e. beams and slabs), the bending stiffness should be sufficient to
keep the deflection within an allowable range, even if the member has enough capacity to
resist the applied forces. Excessive deflections can cause damage to nonstructural elements
like partitions, doors and windows (Wight and MacGregor, 2009). It is worth mentioning
that sufficient lateral stiffness should be provided to tall buildings to guarantee the safety of
the building in both ultimate and serviceability limit states. Sudden collapse of the building
should also be prevented in the ultimate limit state. Furthermore, nonstructural components
like elevators and doors should work properly in addition to preventing load redistribution
to non-bearing partitions (Smith and Coull, 1991). It should be mentioned that this type of
stiffness (lateral) is not considered in the work of this thesis.

In soil–structure interaction, the focus is mainly on the bending stiffness of the build-
ing. Sometimes, axial stiffness of buildings is also considered however its importance is
significantly less than that of the bending stiffness (Mair, 2013). The proposed methods in
geotechnics to deal with the axial and bending stiffness of a building are presented later in
Chapter 3.

2.5 Summary

This chapter briefly presented the type and function of the superstructure members in addition
to the analysis and design stages of structural members which are important to comprehend
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the global building behaviour. It is worth noting that the bending behaviour of beams was
discussed in detail since the estimation of building stiffness in soil-structure problems is
largely related to the behaviour of beams. A short explanation of foundation types and their
design methods was also provided.





Chapter 3

Tunnelling and Tunnel-Soil-Building
Interaction

3.1 Introduction

This chapter provides a review of tunnels and some consequences that arise from tunnelling.
It covers the topics of tunnelling, tunnelling induced ground movements and their effects on
existing buildings.

3.2 Tunnels

Tunnels are constructed for various reasons. Some essential factors include steep grades in
mountainous areas, wide rivers, and developed cities with a lack of surface space. Tunnelling
in urban areas poses many challenges because of the potential to adversely affect existing
subsurface and surface structures (Kolymbas, 2005).

Over-excavation of soil and stress relief during tunnelling are possible causes that may
lead to soil failure if sufficient support is not provided during the tunnelling process. In urban
areas, the possibility of soil collapse is generally eliminated. The main focus is on controlling
ground movements resulting from tunnelling. Analyses in this research consider the effect
of tunnelling induced ground movements on existing structures, but a brief explanation of
tunnel stability is also presented in Section 3.4 to outline how stability problems are generally
treated.

Tunnelling in an area where there are no surface and subsurface structures is referred
to as greenfield tunnelling. Figure 3.1 shows a general description of surface greenfield
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Fig. 3.1 Ground displacements created by tunnelling (after Attewell et al., 1986)

displacements due to tunnelling. It should be noted that tunnel construction is a 3D problem;
however, engineers usually simplify it by considering 2D cross sections equivalent to trans-
verse and longitudinal settlement troughs defined with respect to the axes of the tunnel (x-
and y-directions, respectively in Figure 3.1) (Marshall, 2009).

3.3 Tunnel Excavation Techniques

Generally, a tunnel is first excavated for a specific length, then a support for the opening
is provided and later, the excavated earth is removed. These steps can be performed using
several tunnelling methods classified under two categories: the conventional (incremental)
method and the continuous (TBM) method (mechanised) (Kolymbas, 2005). The selection of
the excavation system depends on several parameters. In addition to financial and technical
factors, the soil type, ground morphology, geology, hydrology and hydrogeology, soil physical
and mechanical properties, its homogeneity, stress conditions and the section geometry play
an important role in choosing the appropriate tunnelling technique (Lunardi, 2008).

Tunnel excavation by the conventional method includes blasting and mechanical excava-
tion. More excavation choices are available with the mechanised methods, such as full face
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rock cutters (TBM), shielded with single or double shield, simple shields, blade shields, com-
pressed air shields, mixshields and earth pressure balanced (EPB) (Lunardi, 2008). Shields
are steel tubes usually having circular cross sections (Kolymbas, 2005). Additionally, they
can have either open or closed faces. Open face shields are used to excavate self-supporting
soils; the tunnel face is not supported during excavation. For unstable ground conditions, the
closed shield method is utilised which provides support for the tunnel face during excavation
(Augarde, 1997). Support of the tunnel face can be provided by different methods, including
slurry shields, earth pressure balance (EPB), and mix-shield multi-purpose (Lunardi, 2008).
Nowadays, the utilisation of TBM for the tunnel construction is popular amongst geotechnical
engineers since it leads to a significant reduction of the soil disturbance due to tunnelling
which in turn provides more safety for existing buildings (Mroueh and Shahrour, 2008).

The tunnelling process produces different types of ground deformations. The soil around
the tunnel face tends to move towards the tunnel opening due to stress relief. Radial relaxation
of the soil surrounding the tunnel can also lead to ground deformations (Selby, 1999). In
addition, the outer diameter of the lining is normally smaller than the outer diameter of
the shield which creates a gap between the excavated soil and the lining, increasing the
possibility of the creation of surface settlements. This gap should be filled with a material
like mortar (Kolymbas, 2005). Other causes of ground settlements include soil over-cutting,
lining deflection and soil consolidation (Mair and Taylor, 1997).

3.4 Tunnel Stability

An important point to be considered in tunnelling is the tunnel stability during construction.
The stability becomes more essential when some tunnel areas are uncovered and need to
be protected by lining. Figure 3.2a demonstrates an idealised cross section of a typical
tunnel, and Figure 3.2b displays the tunnel heading. There are several factors affecting
the stability of tunnels, such as the tunnel size, the progress rate of the excavation, the
unsupported excavation length (Lexc, Figure 3.2b), the cover to diameter ratio of the tunnel
(Ct/Dt , Figure 3.2b), the type of the soil, the existence of water pressure, the construction
method and permeability of the soil (Mair and Taylor, 1997).

Tunnel stability can be evaluated based on undrained or drained conditions. Broms
and Bennermark (1967) stated that the short–term stability of tunnels in clays was mostly
controlled by the undrained shear strength, cu. They proposed the concept of stability ratio,
Ntun, to evaluate the undrained stability of a tunnel:
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Fig. 3.2 (a) Idealised cross-section of a typical tunnel, (b) tunnel heading (after Mair and
Taylor, 1997)

Ntun =
γszt

cu
(3.1)

where γs is the soil unit weight, zt is the depth from the ground surface to the tunnel axis,
and cu is the undrained shear strength of soil before excavation. In order to include the
effect of internal tunnel pressure and surcharge, Broms and Bennermark (1967) expressed
the equation of undrained tunnel stability ratio as:

Ntun =
σsur + γszt −σT

cu
(3.2)

where σsur is the surface surcharge weight and σT is the support pressure of the tunnel.
High values of stability ratio lead to low stability of the tunnel. According to the stability

equation, soils with low undrained shear strength, low tunnel support pressure and/or large
surcharge weights need more attention as they result in large values of stability ratio. Based
on laboratory tests and field observations, Broms and Bennermark (1967) found that the
failure stability ratio, Ntun,c, was 6.0 (from Equation 3.2), which was also confirmed by Peck
(1969). Based on centrifuge test results, Mair (1979) and Kimura and Mair (1981) presented
some influential factors affecting Ntun,c, such as the unsupported length of excavation (Lexc,
Figure 3.2) and cover to diameter ratio of the tunnel (Ct/Dt , Figure 3.2). Kimura and Mair
(1981) defined a load factor, LF , as the ratio of the tunnel stability to the failure stability:

LF =
Ntun

Ntun,c
(3.3)

Failure happens when the load factor is equal to one.
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Fig. 3.3 Main components of ground movements associated with shield tunnelling (Mair and
Taylor, 1997)

With regard to drained stability, Atkinson and Potts (1977) suggested an equation to
estimate the collapse pressure of tunnels in granular soils. Their derivation was based on
kinematic upper and lower bound plasticity solutions assuming perfectly plastic behaviour.
Using a lower bound solution with the assumptions of no surcharge load and a non-weightless
soil, they provided equations to obtain the required pressure to maintain tunnel stability (σT ).
They also presented equations for the case of a weightless soil having a surcharge weight
(σsur).

3.5 Volume loss

During the construction of a tunnel, the soil in the surrounding area tends to move towards the
tunnel cavity. This soil movement creates a ground loss. Different reasons for the occurrence
of the ground loss are mentioned in the literature. Mair and Taylor (1997) listed 5 main
reasons for the occurrence of ground movements due to shield tunnelling, 4 of which are
shown in Figure 3.3. The sources are (1) face loss due to stress relief, (2) over-excavation
of the tunnel cross section due to machine yawing which leads to radial soil movements,
(3) the existence of a gap between the shield tail and the lining which leads to radial soil
movements, (4) lining deflection due to ground load development, and (5) the occurrence of
soil consolidation due to the change in pore water pressure.

The term volume loss or ground loss is used to quantify the amount of extra-excavation
of the tunnel cross section. In undrained clays (short term), the displaced soil volume is
assumed constant; the amount of ground loss that occurs at the tunnel (Vlt) is the same as that
occurs in the soil (Vls). However, the value of Vlt is different from that of Vls in sands due to
the occurrence of contraction or dilation of the soil during tunnelling (Marshall et al., 2012;
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Fig. 3.4 (a) Typical soil and tunnel volume losses (after Franza, 2016), (b) distribution of
tunnel volume loss in clays (Loganathan and Poulos, 1998) and sands (Zhou, 2014)

Vorster et al., 2005). Figure 3.4a shows the tunnel and soil ground losses. In plane-strain
conditions, the soil volume loss (Vls) is the ratio of the area of the settlement trough (Vs, soil
volume per unit length) to the original tunnel area (At):

Vls =
Vs

At
(%) (3.4)

The tunnel volume loss (Vlt) is the ratio of the volume of the over-excavated soil per unit
length (∆V ) to the original tunnel area:

Vlt =
∆V
At

(%) (3.5)

In numerical and analytical solutions for tunnelling induced ground movements, different
scenarios have been used to distribute Vlt over the tunnel cross section. Early researchers
assumed a uniform contraction of the tunnel to produce ground displacements (Sagaseta,
1987). Some researchers only depended on the produced ground loss at the soil surface, dis-
regarding the deformation shape of the tunnel (Franzius et al., 2006; Potts and Addenbrooke,
1997). These modelling methods did not simulate the actual distribution of the tunnel volume
loss. Centrifuge modelling showed that there were little induced ground displacements at
the tunnel invert (Mair, 1979). Loganathan and Poulos (1998) explained that in clays, the
tunnel contracts according to an approximately oval shape shown in Figure 3.4b. Loganathan
et al. (2001) confirmed that the shape of the tunnel face was elliptical and the lateral ground
displacement into the tunnel opening was not uniform. They demonstrated that a downward
movement of soil occurred at the sides of the tunnel as a result of the weight of soil at the
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tunnel crown. This led to the reduction of upward soil displacements below the tunnel. This
type of volume loss distribution was also used by other researchers in the field of numerical
analyses (Cheng et al., 2007). With regard to sands, centrifuge experiments have shown
that the ground loss is mainly concentrated at the tunnel crown, as shown in Figure 3.4b
(Marshall, 2009; Zhou, 2014).

Mair and Taylor (1997) reviewed the settlement data provided in the literature for bored
tunnelling, and presented the following approximate estimates of volume losses in different
situations:

1. In stiff clays such as London clay, the magnitude of volume loss was generally between
1% and 2% when open face tunnelling was used.

2. Sprayed concrete lined (SCL) tunnelling in stiff clays generally resulted in volume
losses between 0.5% and 1.5%.

3. Earth pressure balance (EPB) or slurry shields provided a high degree of settlement
control, leading to volume losses of 0.5% in sands and 1% to 2% in soft clays

3.6 Greenfield Ground Displacements due to Tunnelling

An accurate prediction of ground movements due to tunnelling is crucial to assess the effects
of tunnelling on structures. Different methods have been proposed to estimate tunnelling
induced ground displacements. The methods consist of empirical and analytical relations,
experimental tests, and numerical analyses. Explanation of different prediction methods is
presented in the following sections.

Empirical relations are popular with engineers to predict tunnelling induced ground
movements. Section 3.6.1 presents available empirical methods and also explains terms used
in the field of tunnelling induced ground displacements. Chapter 7 of this thesis adopts a semi-
analytical method fitted to centrifuge data to create ground displacements. Sections 3.6.2 and
3.6.4 present a review of the analytical and experimental methods, respectively, to predict
ground deformations. Additionally, numerical methods, which are used in Chapters 7 and 8,
are explained in Section 3.6.3. A discussion of some features of the mentioned methods for
estimating ground displacements is also presented within this chapter.
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Fig. 3.5 Gaussian settlement trough

3.6.1 Empirical relations

Transverse vertical settlements

Peck (1969) and Schmidt (1969) were the first to propose the Gaussian distribution curve
described by Equation 3.6 to approximate the transverse ground settlement due to tunnelling.
Figure 3.5 shows a typical settlement trough described by a normal (Gaussian) distribution
curve. The Gaussian equation does not have any theoretical basis; the suitability of the curve
to predict settlements has been supported by case studies, centrifuge modelling and numerical
analyses (Farrell, 2010). Loganathan and Poulos (1998) stated that the main reasons for the
utilisation of the Gaussian curve are its simplicity and good ability to fit to settlement profiles
created by tunnelling.

Sv(x) = Sv,max · exp
(
− x2

2i2

)
(3.6)

where Sv(x) is the vertical settlement, Sv,max is the maximum ground settlement occurring
at the tunnel centreline, x is the horizontal offset from the tunnel centreline, and i is the
horizontal distance from the tunnel centreline to the inflexion point of the surface settlement
trough. The volume of the surface settlement trough per unit length, Vs, is determined by
integrating Equation 3.6. Additionally, the first derivative of Equation 3.6 gives the slope of
the Gaussian curve, and the second derivative gives the curvature (Marshall, 2009).

Celestino et al. (2000) noticed that the Gaussian curve did not fit the ground settlement
when having large volume losses. They stated that the displacement results given by Gaussian
curve were lower than the real displacement values. To achieve a better fit, they proposed a
three parameter relationship by utilising yield-density curves. Furthermore, Jacobsz et al.
(2004) found that settlement troughs achieved from centrifuge tests were narrower than
Gaussian settlement troughs.
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Vorster et al. (2005) suggested a modified description of the Gaussian curve (Equation 3.7)
and added a parameter, αvor, to make sure that parameter i remains as the distance to the
inflexion point. The addition of αvor allows the inflection point to vary in the vertical
direction. The surface volume of the modified Gaussian curve is obtained from the integration
of Equation 3.7 (Marshall, 2009).

Sv(x) =
nvor

(nvor −1)+ exp(αvor(
x
i )

2)
·Sv,max (3.7)

nvor = eαvor
2αvor −1
2αvor +1

+1 (3.8)

where nvor is the shape function parameter that controls the profile width.

Transverse horizontal displacements

It should be mentioned that tunnelling induced vertical movements are of larger magnitude
than horizontal and generally pose more potential for damage to structures (Marshall, 2009).
However, it is observed from specific cases that horizontal movements may cause an increase
to the damage level of structures (Franza, 2016).

O’reilly and New (1982) presented a relationship (Equation 3.9) to estimate horizontal
ground displacements related to the construction of tunnels in undrained clay. They assumed
that the volume loss was constant, the direction of the soil displacement vectors was towards
a point on the axis of the tunnel and the trough width did not change with depth.

Sh(x) =
x

zt − z
·Sv(x) (3.9)

where Sh(x) is horizontal ground displacements.
Attewell and Yeates (1984) provided an equation to estimate horizontal displacements

based on the assumption of displacement vectors pointing to the tunnel axis in cohesive
soils, and orienting towards a point below the tunnel axis in granular soils. Based on the
assumption of displacement vectors directing towards the centreline of the tunnel, Taylor
(1995b) also suggested an equation to compute horizontal displacements. Grant and Taylor
(2000) reported that the equation proposed by Taylor (1995b) resulted in predictions that
agreed with centrifuge test results in clay.
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Longitudinal ground settlements

The 3D deformation field shown in Figure 3.1 is formed by the longitudinal and the transverse
troughs together. Attewell and Woodman (1982) explained that a cumulative probability
function can be assigned to the transverse settlement trough along the tunnel centreline in
order to obtain ground settlements in the longitudinal direction. They assumed that the
vertical settlement above the tunnel head reaches 50% of the maximum ground settlement.
The proposed relationships to describe longitudinal displacements using Gaussian equation
are expressed by:

Sv(x,y) =
Sv,max

2
exp
(
−(x− xt)

2

2i2

)(
erf
[
(y− yi)√

2i

]
− erf

[
(y− y f )√

2i

])
(3.10)

Sl(x,y) =
i ·Sv,max√

2πzt
exp
(
−(x− xt)

2

2i2

)(
exp
[
−(y− yi)

2

2i2

]
− exp

[
−
(y− y f )

2

2i2

])
(3.11)

where Sv(x,y) and Sl(x,y) are the vertical and longitudinal ground displacements, and erf is
the error function given by Equation 3.12.

erf(z) =
2
π

∫ z

0
e−t2

dt (3.12)

Variation of trough width

As explained before, the trough width is usually described by i which is the distance of
the inflection point on the transverse settlement curve to the tunnel centreline, as shown
in Figure 3.5. Researchers proposed different equations to estimate i. Based on centrifuge
data for dry sands, Atkinson and Potts (1977) proposed an equation to relate i to the tunnel
diameter (Dt) and the soil cover above the tunnel crown (Ct). Clough and Schmidt (1981)
and Mair et al. (1982) connected the trough width to two parameters of tunnel diameter
and depth in order to estimate i in soft clays. Additionally, depending on 19 case studies of
tunnelling in clay, O’reilly and New (1982) plotted i against zt and obtained a linear relation
to calculate i. It is worth noting that O’reilly and New (1982) introduced the trough width
parameter, Kt , to estimate i as: i = Ktzt . They stated that Kt could change between 0.4 and 0.7
for stiff and soft clay, and Kt = 0.5 was convenient for most design purposes. Additionally,
they suggested a value of 0.2–0.3 for sands above the water table. Mair and Taylor (1997)
recommended a value of Kt = 0.5 for clays and 0.25–0.45 for coarse grained soils.



3.6 Greenfield Ground Displacements due to Tunnelling 35

Mair et al. (1993) reported that the subsurface settlement due to tunnelling can be
described by the Gaussian curve in the same way as the surface settlement. The subsurface
settlement trough becomes progressively narrow with depth. Jacobsz (2002) and Farrell
(2010) also agreed with that the trough width generally becomes linearly narrower with
depth. To take into account the narrowness of the trough width with depth, Mair et al. (1993)
suggested calculating i as: i = Kt(zt − z). They also proposed an equation to estimate Kt

based on reviewing field data and centrifuge test results for clay. It should be noted that Mair
et al. (1993) disregarded the effect of the tunnel size in their work. This led to erroneous
prediction of deformations close to the tunnel (Marshall, 2009). The effect of the tunnel size
on the settlement trough width was considered by Moh et al. (1996). Sugiyama et al. (1999)
also took into account the tunnel size as well as the cover to diameter ratio (Ct/Dt) in their
proposed equations to estimate i.

Heath and West (1996) explained that although the Gaussian distribution curve is a good
tool for the surface settlement prediction, it has limitations for the prediction of subsurface
displacements due to the lack of a connection between the settlement trough width and the
depth below the ground level. They stated that the binomial distribution can be used for
the subsurface settlement prediction since its trough width has a connection with a source.
If the volume loss and the trough width of the surface are known, the use of the binomial
distribution allows the estimation of ground displacements at any level. Other researchers
also proposed relationships to estimate the trough width parameter, such as Jacobsz (2002)
(based on data from his centrifuge tests in sand) and Osman et al. (2006).

Apart from the effect of tunnel depth and diameter, the ground volume loss also seems
to have an effect on the variation of i. Hergarden et al. (1996) showed that the increase of
volume loss from 1% to 10% in their centrifuge tests led to a decrease in the trough width.
Grant and Taylor (2000) drew a different conclusion and illustrated that the change of volume
loss from 2% to 20% did not have an effect on the predicted trough width. Centrifuge test
results of Jacobsz (2002) and Vorster (2005) supported the finding of Hergarden et al. (1996)
and observed a reduction of trough width with an increase in the volume loss.

Marshall et al. (2012) investigated parameters that had effects on the settlement trough in
sands. They used data from centrifuge tests, and the focus of their work was on studying the
effect of geometric and tunnelling-related parameters on the shape of the settlement trough.
They explained that the key parameters (tunnelling and geometric) influencing the shape
of the settlement trough were the relative depth (zt − z), the cover-to-diameter ratio (Ct/Dt)
and the tunnel volume loss (Vlt). Marshall et al. (2012) also illustrated that the decrease of
the settlement trough width in sands was faster than that in clays due to the occurrence of
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Fig. 3.6 Ground loss and ovalisation mechanism by Verruijt and Booker (1996), (Marshall,
2009)

chimney-like displacement mechanism in sands. Furthermore, the volume loss was found to
have an influence on the trough width in sand. The results showed that higher volume loss
values produced smaller trough width and greater settlements.

3.6.2 Closed–form analytical relations

By assuming linear elastic behaviour, an approximate solution for undrained soil deforma-
tions due to ground loss was suggested by Sagaseta (1987). The soil was assumed to be
incompressible (νs = 0.5), isotropic and homogeneous. Verruijt and Booker (1996) expanded
the proposed method of Sagaseta (1987) by including the influence of ovalisation mechanism
and considering compressible soils with Poisson’s ratio of less than 0.5. The deformations
and the ovalisation mechanism are illustrated in Figure 3.6.

For the cause of neutralising the surface shear stresses, an image solution was added
at a location achieved by reflecting the considered point about the ground surface. The
displacement descriptions for both components of Sh(x) and Sv(x) for the singular points and
their images are as follows.
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where z1 = z− zt , z2 = z+ zt , k1 = νs/(1− νs), rt is the tunnel radius, ε and δ are two
parameters demonstrating the tunnel surface relative movement; ε is for the case of the
uniform radial displacement, and δ is for the ovalisation case. The solution of the Boussinesq
problem was finally added to the suggested solution in order to cancel out the normal stresses
and to neutralise the stress distribution (Equations 3.15 and 3.16).
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where m1 = 1/(1−2νs).
Loganathan and Poulos (1998) explained that in addition to obtaining unrealistic settle-

ment values in granular soils, the empirical methods had essential limitations, such as the
unsuitability of these methods for various construction techniques and ground conditions,
and the lack of information they could give about horizontal and subsurface movements.
Furthermore, they found that the method proposed by Verruijt and Booker (1996) resulted
in a wider settlement trough and larger horizontal displacements than the observed values.
For this reason, Loganathan and Poulos (1998) proposed a closed form solution to predict
ground deformations by introducing the gap parameter presented by Lee et al. (1992) into
the solution of Verruijt and Booker (1996). They considered tunnelling methods and tunnel
configuration to define an equivalent undrained ground loss, ε0. Additionally, Gonzalez and
Sagaseta (2001) added a compressibility parameter, α , to the elastic solution of Verruijt and
Booker (1996) to take into consideration the effect of soil dilation.



38 Tunnelling and Tunnel-Soil-Building Interaction

Bobet (2001) expanded the elastic solution of Einstein and Schwartz (1979) to predict
ground deformations of a shallow tunnel in a saturated ground. The soil was assumed
homogeneous and isotropic, and the tunnel boundary deformed uniformly without considering
the ovalization of the tunnel. Osman et al. (2006) proposed an analytical approach to predict
soil movements due to tunnelling in undrained soils. The deformation mechanism of the
proposed method followed the Gaussian distribution approach and vertical ground surface
movements were represented by the Gaussian curve, but the soil outside the boundaries of
the deformation mechanism was considered to be rigid. Based on kinematic approach, Puzrin
et al. (2012) proposed an approximate solution for the estimation of tunnelling induced
ground deformations for undrained anisotropic elastic soil.

Franza and Marshall (2015a) introduced a new definition to the compressibility parameter,
α , used in the solution of Gonzalez and Sagaseta (2001) by giving a physical meaning to the
volume loss due to tunnelling. Using data from two centrifuge tests of Ct/Dt = 1.3 and 2.4,
they assumed that the analytical surface volume loss is equal to experimental surface volume
loss (Vls,exp =Vls,an).

Franza and Marshall (2015b) proposed a semi–analytical solution to predict vertical and
horizontal displacements created by tunnelling in sand. The suggested formula was a modifi-
cation of the elastic solution proposed by Verruijt and Booker (1996) for incompressible soils.
The method took into account the change of ground volume loss with depth due to contraction
and dilation of sands when affected by tunnelling. Based on the results of a centrifuge test
in dense sand for a cover to diameter ratio (Ct/Dt) of 2.4, they introduced a parameter, ζ

(Equation 3.19), to consider the volume loss change in sandy soils. The semi-analytical
solution for horizontal (Sh) and vertical (Sv) displacements proposed by Franza and Marshall
(2015b) is given by:
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where ε =Vlt/(2×100) is the tunnel convergence parameter, Vlt is the tunnel volume loss
expressed in percentage, and ζ is the corrective term whose coefficients, ci, depend linearly
on Vlt .

These equations illustrate the effects of tunnel volume loss on soil deformation patterns.
However, the coefficients of ζ in Franza and Marshall (2015b) were calibrated on the
outcomes of a single centrifuge test (obtained from Marshall et al. 2012). Therefore, the
solution has limited applicability.

The semi-analytical approach presented in Franza and Marshall (2015b) was extended
in this research based on a wider set of centrifuge data, including the effects of cover to
diameter ratio, Ct/Dt , and soil relative density, Id . The extended form of the method is used
in Chapter 7 to predict tunnelling induced ground movements in the numerical simulations
used to propose a method to estimate tunnelling effects on buildings. It should be mentioned
that the expansion of the method was done by the authors of Franza and Marshall (2015b).
The detail of the modified method is given below.

Because the ground movement distribution may be narrower or wider than the elastic
deformation pattern, depending on Ct/Dt and Id , the expression for the corrective term ζ was
modified with two additional coefficients (c5 and c6) to allow for more adaptable curve-fitting.
Furthermore, to improve the curve-fitting of horizontal movements, two different corrective
terms, ζv and ζh, displayed in Equation 3.20, were implemented in the vertical and horizontal
directions, respectively. The adopted coefficients are listed in Table 3.1.
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CA = ma,i ×Vlt +qa,i

CB = mb,i ×Vlt +qb,i

ci = mi ×Vlt +qi

(3.21)

CAx = max,i ×Vlt +qax,i

CBx = mbx,i ×Vlt +qbx,i

cix = mix ×Vlt +qix

(3.22)

3.6.3 Numerical methods

As tunnelling has a great effect on the ground and nearby structures, a good and a detailed
analysis is necessary to fully understand the influences induced by the tunnel construction on
both the soil and structures. Li and Zhu (2007) explained that a good prediction of ground
displacements due to tunnelling can be obtained using numerical analyses since various
factors influencing ground movements can be investigated in detail. Furthermore, special
cases of tunnelling and ground type can be modelled using numerical methods (Vafaeian and
Mirmiran, 2003).

The majority of researchers have dealt with tunnelling as a 2D problem while it is a 3D
problem and is time-dependent (Eberhardt, 2001; Finno and Clough, 1985). The reason for
the wide utilisation of 2D modelling is the simplicity of plane–strain simulations compared
to 3D, saving time and storage, and requiring less cost (Potts et al., 2001). Yeo et al. (2009)
reported that two dimensional analysis of tunnelling does not adequately consider what
happens in the vicinity of the tunnel head. Dasari et al. (1996) investigated tunnelling
problems with both 2D and 3D analyses and concluded that optimum conditions due to
tunnelling could not be achieved by the utilisation of 2D analyses. Gioda and Swoboda
(1999) stated that 3D analysis could predict surface settlements due to tunnelling in a more
accurate way than 2D analyses. This is because non-uniform distribution of the stress across
the tunnel and the deformation influence of the excavation face were better accounted for in
3D modelling. Yahya and Abdullah (2014) cited that the patterns of stress and displacements
are significantly different between 2D and 3D numerical modelling. Reaching a plane strain
condition in tunnelling needs a specific distance from the tunnel head which is based on the
amount of induced plasticity in the vicinity of the tunnel head.

Swoboda (1979) suggested the progressive softening method for modelling NATM
tunnelling as a 2D problem. The stiffness of the soil within the tunnel heading is reduced
according to a reduction factor, β , to create ground loss and allow the surrounding soil to



3.6 Greenfield Ground Displacements due to Tunnelling 41

move towards the tunnel. The lining is activated when the reduction of the soil stiffness
reaches the desired point.

Panet and Guenot (1982) proposed the convergence–confinement, or simply λ method
for 2D tunnel numerical simulations. A force vector which is equivalent to the in situ soil
stresses is applied to the tunnel boundary, then these forces are reduced by a reduction factor,
λ , to create the soil ground loss. When the reduced tunnel pressure reaches the desired point,
the lining is introduced.

Rowe et al. (1983) proposed the gap method to simulate tunnels as a 2D problem. In
this method, a gap is predefined in the finite element mesh assumed to be the total ground
loss created by tunnelling. The invert of the tunnel is rested on the underlying soil and a
gap is prescribed at the crown. The final shape of the tunnel is defined by a lining. The
tunnel boundary is allowed to displace until the void is closed and the soil reaches the lining
position, then the lining is activated.

Addenbrooke et al. (1997) described the volume loss control method to simulate 2D
tunnel construction. In this method, a volume loss is prescribed and tunnel excavation is
modelled over a number of steps. Similar to the convergence–confinement method, the in situ
stresses within the tunnel boundary are applied in reverse direction to the tunnel perimeter,
and then reduced incrementally until the prescribed volume loss is obtained. This is done by
calculating the soil volume moving into the tunnel, and dividing it by the original volume of
the tunnel per unit length (cross-sectional area). The volume loss control method can also be
applied in the 3D simulation of the tunnel construction (Franzius, 2003).

Katzenbach and Breth (1981) described a step by step method to model 3D tunnelling.
The tunnel construction is simulated by removing the face elements consecutively and then,
installing the lining step by step behind the tunnel face. There is a distance between the
tunnel face and the installed lining which is called the excavation length.

In addition to different modelling techniques, the numerical simulation of the tunnel
construction can be either force control or displacement control modelling. Force control
modelling is a method of analysis which is performed by applying forces to the element
nodes (Abdullah and Taha, 2013). In this method, free deformation is allowed to happen
in the desired elements by releasing the equilibrium conditions of the specified elements
(Eng, 2003). This method solves a non-linear equation system in order to estimate the nodal
displacement vector depending on a known load vector (Zheng et al., 2005). On the other
hand, displacement control modelling is a method of analysis in which displacements are
applied to the element nodes. In this method, the application of displacements develops
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stresses in the elements which consecutively leads to the creation of nodal forces (Borst et al.,
2012).

It can be said that the choice of either methods, force or displacement control, depends
on the situation being analysed. For example, force control modelling must be used to deal
with creep problems, whereas in most of the other problems, displacement control modelling
is a better choice (Borst et al., 2012). Regarding soil deformations due to tunnelling, Cheng
et al. (2004) stated that the force control method resulted in a wide surface settlement with
far field ground displacements. They also explained that displacement control modelling
could overcome the problems occurring during simulations using force control modelling,
i.e. the prediction of unrealistic profiles of surface and subsurface settlements.

Several authors in the literature followed the mentioned proposed numerical approaches to
model the tunnel construction. Azevedo et al. (2002) perform a 2D elasoplastic finite element
analysis of tunnelling process in residual soils using an approach similar to convergence–
confinement method. Mroueh and Shahrour (2008) also used the convergence–confinement
method to propose a simplified technique for the excavation of tunnels in a 3D finite element
analysis using two release parameters: αdec to account for the partial stress release, and
Ldec to consider the length of the unlined zone of the tunnel. Galli et al. (2004) and Yeo
et al. (2009) used the 3D step-by-step method to model the tunnel construction and lining
installation. Cheng et al. (2007) used a displacement control method to simulate tunnel
construction. They assumed that the tunnel volume loss was not distributed uniformly around
the tunnel; the maximum settlement occurred at the tunnel crown while no movements
occurred at the invert. The direction of the tunnel boundary displacements was controlled by
a variable called β . β specified the location of the convergence point and moved between the
original tunnel centre (β = 1.0 for deep tunnels) and the invert (β = 0 for shallow tunnels).

Shafiqu et al. (2008) used the elastoplastic-viscoplastic bounding surface model to analyse
shield tunnelling process using a method similar to the gap approach. The analysis was
done in four stages. In the first stage, outward elliptically distributed radial pressure was
incrementally applied to the tunnel perimeter to cause heaving to the ground (created by
the movement of the shield). The second stage included the simulation of the influence of
tail void closure in which the pressure on the tunnel boundary was unloaded. The inward
movement of the node at the tunnel crown was an indicator to know if the displacement
amount reached the theoretical magnitude of the tail gap. When they were equal, the gap was
assumed closed and in the third stage, the installation of lining started by activating lining
elements. After that, the remained excavation forces from unrelieved soil stresses within the
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tunnel elements were incrementally applied. The final stage consisted of the dissipation of
remained excess pore water pressure.

Giardina et al. (2015) modelled tunnelling numerically to reproduce the centrifuge
experimental set up. They used the convergence–confinement method and applied a pressure
to the tunnel boundary to maintain the system in equilibrium before the start of the tunnel
construction. Then the applied pressure was gradually reduced to zero. After that, they
applied an inward pressure to the tunnel perimeter to reproduce the volume losses created in
the centrifuge tests.

3.6.4 Experimental methods

Besides having numerous analytical and numerical methods with powerful computer pack-
ages, researchers prefer to verify their results and support their new ideas by experimental
methods. Furthermore, non-linearity in soil is a complicated behaviour and is related to its
stress history in addition to its current situation. The degree of this complexity increases to a
greater extent when soil interaction with structures is also included. The limitations of the
previously mentioned methods will require the examination of physical soil models.

The ideal solution to predict the soil’s behaviour is to deal with full-scale samples or
to monitor the real behaviour of the soil during the construction process. This choice is
very restrained and difficult to be performed due to several obstacles. Marshall (2009) listed
some of the barriers like high cost of site monitoring, limited number of available projects
to monitor, uncertainty in the quality of the achieved data, difficulties in controlling site
conditions and obtaining a non-representative picture of soil and structure behaviour because
of the results being from limited locations.

An optimal solution can be chosen instead of the ideal one which is testing small-scale
samples. In this choice, the real sample is scaled to a small sample in a way that the particles
can interact well with each other and the sample mass behaves in a close way to the real
non-scaled mass in terms of strength and stiffness. To perform the optimal solution, the
centrifuge testing machine is used which consists of the centrifuge strong box made of steel,
the model tunnel made of a hollow brass cylinder sealed entirely within a latex membrane, a
system to control the tunnel volume, the soil, and different devices to measure displacements.

When a sample is scaled down by a factor, N, stress conditions will also be reduced by
N times leading to erroneous results of the small-scale sample. In order to overcome such a
problem, the acceleration of the model is increased using a centrifuge so that the gravity (g) is
boosted N times (Ng). Nevertheless, Taylor (1995a) and Farrell (2010) outlined some issues
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with centrifuge modelling. For instance, there are considerable scaling errors in centrifuge
due to the non-uniformity of the acceleration field, and it is difficult to represent sufficient
prototype detail in a small-scale model.

The principle of centrifuge is that after the dimensions of a sample are reduced by a factor,
N, the sample will undergo an acceleration which is N times larger than the earth’s gravity, g

(Marshall, 2009). The model is rotated on the beam centrifuge at an angular velocity, ω , with
a centrifugal acceleration of a = ω2r about the rotation axis, where r is the distance from
the centrifuge rotation point to the point of interest (Farrell, 2010). The scale factor, N, is
computed by Equation 3.23.

N =
ω2r

g
(3.23)

Some scaling rules for centrifuge modelling were presented by Taylor (1995a), as shown
in Table 3.2.

The distance between soil depths inside the model and the centrifuge rotation centre is
not constant. This produces non-linear stress variations throughout the model and results
in an underestimation of stresses in the upper section of the model, and an overestimation
of stresses close to the bottom. To decrease these errors, an effective radius, Re, can be
computed using Equation 3.24 (Taylor, 1995a). The effective radius is measured from the
central axis of the model to one–third depth. This shows the place where the exact stress
agreement between the model and the prototype is obtained, which is at two-thirds model
depth.

Re = Rt +
hm

3
(3.24)

where Rt is the radius to the top of the model and hm is the height of the model.

3.6.5 Features of empirical, analytical and numerical methods

The simplicity of empirical methods is an advantage of the method. They have few parameters
which make the calculation of displacements easy, and they can give an approximation of
ground displacements for comparison with other methods and obtaining a general idea
about displacement patterns. However, there are various drawbacks of the method. Maraš-
Dragojević (2012) explained that empirical methods are good when the parameters are
achieved from well–known tunnelling conditions, or when settlement data of a completed
tunnel is available. Azevedo et al. (2002) explained that significant assumptions should be
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made when using empirical methods which need good experience in tunnel construction.
Celestino et al. (2000) reported that in some cases, building damage obtained from Gaussian
settlements was significantly lower than that of the measured cases. They also stated that
the linear increase of the maximum building distortion with the maximum settlement does
not reflect the reality. Based on physical evidence, the increase of distortions is significantly
faster than that of the maximum settlement. Fattah et al. (2012) clarified that empirical
methods have limited applicability to various soil types. Dasari et al. (1996) explained
that empirical methods are limited to specific types of soil and are not able to model the
interaction between the soil and the tunnel lining. Furthermore, horizontal displacements are
not predicted directly in empirical methods (Yahya and Abdullah, 2014).

Analytical and closed-form methods can address more parameters than empirical methods.
Nevertheless, there are still several assumptions and simplifications in the currently available
analytical solutions that prevent their use for complex geometric ground conditions (Fattah
et al., 2012). Additionally, there are limited number of available solutions, and also applied
to specific soil conditions (Yahya and Abdullah, 2014).

Numerical analyses are powerful tools to investigate different parameters in predicting
ground displacements due to tunnelling, however there are some drawbacks of the method.
Mair (1993) stated that the surface settlement trough predicted by finite element analysis was
very wide and shallow compared to settlements obtained from field and empirical methods.
This wideness/shallowness of the settlement trough predicted numerically was also mentioned
by other authors, such as Augarde (1997); Franzius et al. (2005, 2006); Jurecic et al. (2013);
Mair et al. (1982). Moreover, an in–depth understanding of the method is required to avoid
misleading results, and sometimes it is difficult to validate the obtained results (Yahya and
Abdullah, 2014).

The lateral earth pressure coefficient (K0) has an important role in the numerical predic-
tion of ground displacements due to tunnelling. Möller (2006) stated that ground surface
displacements and structural forces induced in linings are considerably affected by the value
of K0. Based on the finite element simulations performed by different researchers, ground
displacements predicted numerically adopting high values of K0 result in significantly wide
and shallow settlement troughs (Franzius et al., 2005). Addenbrooke et al. (1997) and Potts
and Addenbrooke (1997) did a suite of 2D numerical analyses of tunnelling with K0 = 1.5.
They reported that the numerically predicted ground settlements were too wide and shallow.
Zymnis et al. (2013) cited that it was possible for the maximum ground settlement not
to occur above the tunnel centreline when using high values of K0. Addenbrooke (1996)
simulated tunnelling in London Clay with two values of K0: 0.5 and 1.5. He explained that
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displacement results from K0 = 0.5 led to deeper and narrower settlement trough, and are also
closer to the field data. Gunn (1993) simulated tunnelling in London clay using K0 = 1. He
compared the numerical results of ground displacements due to tunnelling with the Gaussian
fit and found that the numerical displacements were significantly wider. Möller (2006) said
that this wideness could have been due to the use of elastic soil models. In addition, he
modelled different values of K0 = 0.5, 1.0, 1.25, 1.5 and 2.0, and observed an overwhelming
impact of K0 value on the maximum ground settlement. For K0 = 0.5, a settlement of 23 mm
was observed. This value decreased with the increase of K0 until reached 3 mm for K0 =

1.25. After that, the increase of K0 caused heave to the ground.
Some researchers stated that the poor prediction of ground displacements by numerical

methods could be due to analysing the tunnelling process as a 2D problem. Lee and Ng
(2002) stated that the three dimensional analyses of tunnelling improved the shape of the
surface settlement curve compared to the 2D analyses. However, it was explained by Guedes
and Pereira (2000) that for K0 values of 0.5 and 1, both 2D and 3D numerical analyses
of tunnel construction gave very similar settlement shapes. In a comparison of numerical
simulations to measurements made for Mrazovke Exploratory Gallery in Prague, Dolezalová
(2002) explained that among different K0 values used in her analyses (0.5, 1 and 2), only
the results of K0 = 0.5 were in agreement to the shape of the surface settlement trough.
Furthermore, she observed no difference between the results of 2D and 3D simulations of
the tunnel construction. Franzius et al. (2005) also reported that there was no significant
difference between the results of 2D and 3D numerical analyses.

The material model and use of isotropic properties have also been investigated numer-
ically by different researchers. It can be said that the most influential factor causing the
wideness/shallowness of the settlement trough is the soil constitutive model used in the
numerical analysis. Developing a constitutive model for soil is complicated as its behaviour
is non-linear and can exhibit anisotropy and time-dependency during loading (Ti et al., 2009).
It should be mentioned that sophisticated soil material models have been developed that
better-predict tunnelling induced ground movements in specific cases, but soil parameters
that are not conventionally measured have to be obtained for these models. This adds a
degree of difficulty to the analyses since some of these parameters are difficult or impossible
to determine using standard tests (Oettl et al., 1998). With the aid of 2D finite element
analyses, Oettl et al. (1998) investigated the prediction of tunnelling induced ground move-
ments using different constitutive models, namely: linear elastic relations, Mohr-Coulomb,
Drucker–Prager (compressive and tensile) and an elastic–plastic cap model. They clarified
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that it was difficult to achieve similar settlement results to the field data. However, the cap
model predicted ground displacements better than the other material models.

Gunn (1993) and Addenbrooke et al. (1997) reported that there was not a significant
improvement of the displacement prediction results in their numerical analyses by modelling
soil anisotropy. Franzius et al. (2005) modelled tunnel construction in London Clay with
including soil anisotropy. They stated that for realistic values of soil parameters, the inclusion
of soil anisotropy did not improve the settlement profile. Although, a different conclusion
was drawn by Simpson et al. (1996) in which soil anisotropy showed an effect on improving
the prediction of surface settlements for overconsolidated clays. Wongsaroj et al. (2007)
also mentioned that considering soil stiffness anisotropy showed an effect on the long–term
ground response for a soil with a high value of K0.

3.6.6 Summary

This section presented the literature relating to the prediction of tunnelling induced ground
movements. Different prediction methods were explained, and some features of the empirical,
analytical and numerical methods were shown. This research mainly uses numerical analyses
to predict tunnelling induced ground movements. During the review of the literature, the
wide and shallow settlement trough predicted numerically was recognised as the main issue
related to the numerical prediction of ground displacements due to tunnelling. Chapter 7
proposes an elastic method to solve the problem of the shallowness of the settlement trough.
The semi-analytical method that is used to predict ground movements due to tunnelling in
some simulations of Chapter 7 was also explained in Section 3.6.2.

3.7 Tunnelling Effects on Buildings

As explained in the previous sections, when a tunnel is constructed, a zone of soil will be
affected by tunnelling and ground displacements will be induced. Similarly, when a structure
is built on or under the ground, a zone of soil will be affected due to the weight and the
stiffness of the structure. When these two influence zones intersect, tunnel–soil–building
interaction will occur. The behaviour of this zone will be different from the scenario where
the tunnel or the structure is not present (Bloodworth, 2002).

Some researchers have assumed that surface structures have no effect on ground displace-
ments due to tunnelling, i.e. structures were considered to follow greenfield deformations
(Bloodworth, 2002; Franzius, 2003). However, research has shown that there is an effect of
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building stiffness and self-weight on tunnelling induced ground movements (Franzius, 2003;
Mair and Taylor, 1997; Potts and Addenbrooke, 1997). Mair and Taylor (1997) provided
data from several cases to show that building stiffness caused a significant reduction in the
measured deflection ratio and horizontal strains induced in buildings compared to greenfield
ground movements. Based on case studies, Franzius (2003) reported that building stiffness
could significantly reduce building deformation.

Potts (2003) stated that investigating tunnelling effects on structures using conventional
analysis methods (closed form and simple methods of analysis) is very difficult or may be
impossible, while it can be modelled in a numerical analysis relatively easily.

In the following section, an extensive review of numerical investigations of tunnel–
building interaction is presented. The assessment of building damage caused by tunnelling is
not the aim of this research, but an explanation of building damage estimation is presented in
order to provide some context to why evaluating tunnelling effects on structures is important.

3.7.1 A review of tunnel–soil–building interaction

Several studies have considered the interaction between a newly constructed tunnel and
existing buildings. Numerical analyses have been used as a tool to investigate this interaction.
Furthermore, different methods to model the soil, building and the interaction between them
have been proposed. Buildings have been modelled as 2D beams, 2D frames, 3D shells
(elastic equivalent 3D beams without modelling the actual building parts) and 3D buildings
(modelled with actual structural members of foundation, columns, beams and slabs). Some
researchers have considered weightless buildings while others have included the weight of
the building.

Potts and Addenbrooke (1997) used 2D finite element (FE) analyses to investigate the
tunnel–building interaction. The purpose of their work was to quantify the modification of
the ground surface movements due to the effect of a structure’s bending and axial stiffness
in London Clay. They considered several influential parameters of both the soil and the
structure, such as material elastic modulus, building length and cross sectional moment
of inertia. The soil was modelled as a non–linear elastic, perfectly plastic material with
Mohr–Coulomb failure criterion, and the building as an equivalent weightless elastic beam.

Using results from their 2D numerical analyses, Potts and Addenbrooke (1997) proposed
a method to estimate a structure’s effect on tunnelling induced ground displacements. The
method was based on the relative stiffness of a building compared to the underlying soil,
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known as the ‘relative stiffness approach’. They proposed two relationships (Equations 3.25
and 3.26) to estimate the relative bending and axial stiffness of the soil and the structure.

ρ
∗ =

EbIb

Es
(
Lbldg/2

)4 (3.25)

α
∗ =

EbAb

Es(Lbldg/2)
(3.26)

where ρ∗ is the relative bending stiffness, α∗ is the relative axial stiffness, Eb and Es are
the elastic moduli of the equivalent beam and the soil, respectively, Ib is the cross sectional
moment of inertia of the equivalent beam, Ab is the cross-sectional area, and Lbldg is the
length of the building perpendicular to the tunnel direction. For their plane strain problem,
α∗ is dimensionless but ρ∗ has dimensions of m−1.

Potts and Addenbrooke (1997) calculated the moment of inertia of the structure from
that of each slab by employing the parallel axis theorem, with the centreline located at the
mid-height of the building (as shown by Equation 3.27). The footing was represented as
a slab having the same dimensions and properties of the other building slabs. This means
that a building of m storeys has m+1 slabs. An equivalent beam was then used to represent
the building, which was designed such that it had a similar bending or axial stiffness as the
building. Building damage parameters were proposed, referred to as the sagging and hogging
deflection ratios (DRsag, DRhog), and compressive and tensile horizontal strains induced in
the building (εhc and εht), as shown in Figure 3.7. Subscripts bldg and g f refer to building

and green f ield, respectively. The inflection point, i, of the settlement trough separates the
zones of sagging and hogging. Strains were obtained directly from the output of the FE
analyses at the neutral axis of the beam in order to eliminate bending effects.

Ibldg =
m+1

∑
i=1

(
Isl,i +Asl,i · ȳ2

sl,i
)

(3.27)

where Asl is the cross sectional area of slabs and ȳsl,i is the distance from the neutral axis of
the ith slab to the neutral axis of the building.

Potts and Addenbrooke (1997) suggested the following modification factors to relate
the deflection ratios (Equation 3.28) and maximum horizontal strains (Equation 3.29) to the
corresponding finite element greenfield situations.

MDRsag =
DRsag,bldg

DRsag,g f
; MDRhog =

DRhog,bldg

DRhog,g f
(3.28)
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Fig. 3.7 Transverse geometry of the interaction problem and deflection ratio parameters

Mεhc =
εhc,bldg

εhc,g f
; Mεht =

εht,bldg

εht,g f
(3.29)

where εh is maximum horizontal strains and the subscripts c and t denote compressive
and tensile, respectively. The greenfield values are related to that portion of the greenfield
settlement curve lying beneath the building.

Potts and Addenbrooke (1997) showed a significant reduction of ground surface dis-
placements due to the influence of building bending stiffness. Moreover, they proposed
design curves to consider bending and axial stiffness of the building in the analysis of tunnel
building interaction.

Selby (1999) modelled one and two storey masonry-walled buildings influenced by
tunnelling induced ground movements using 2D plane strain, linear elastic analyses. The
buildings consisted of reinforced concrete ground-bearing slabs, cavity brickwork walls and
light-weight steel sheeted roofs. He applied tunnelling induced ground surface movements to
a finite element numerical model using Gaussian equations to estimate tunnelling effects on
structures. His numerical results showed considerable modifications to the ground surface
displacements due to the stiffness effect of the existing weightless structures.
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Burd et al. (2000) simulated the soil and the building using 3D finite element analyses.
The building was masonry and only its façades were created in the numerical model. The
roof and the floors were not created; they assumed that the weight and the stiffness of a
masonry building mainly comes from the façades. They mentioned that the portion of the
building located in the sagging zone of the displaced soil area seemed to show more stiffness
than that located in the hogging area. Therefore, the degree of damage to the building was
higher in the hogging zone. This behaviour of the building in the sagging area was also
explained by Burland and Wroth (1974). Burd et al. (2000) showed that the weight of
the building increased surface ground displacements, and the building stiffness tended to
decrease differential settlements. Similarly, Liu et al. (2000) investigated tunnelling effects
on masonry buildings using 2D finite element analyses and drew conclusions similar to those
of Burd et al. (2000). Liu et al. (2000) changed the relative position of the building and the
tunnel, and varied the weight of the building in their analyses. They stated that the building
weight played an important role in controlling the settlement occurring under the building.
Furthermore, they concluded that for a specific building weight, the stiffness changed the
settlement trough under the building, and the increase of the stiffness resulted in the increase
of trough flatness. In addition, considerable tilt occurred to the building when it was located
in the hogging area, whereas when the building located partially above the tunnel, it increased
ground settlements under the corner close to the tunnel.

Miliziano et al. (2002) performed 2D analyses to study the effect of tunnelling on masonry
buildings. To take into consideration the spacing between the structural members of the
houses, they assigned a reduced equivalent stiffness to the masonry in their 2D models. Their
results showed that the increase of building stiffness or the decrease of soil stiffness led to a
reduction in the building deformations.

Mroueh and Shahrour (2003) modelled a 3D concrete framed building consisting of
beams and columns to quantify the tunnel–building interaction. The building centreline
coincided with the centreline of the tunnel. They suggested that the weight of buildings should
be included in the numerical analysis of tunnel–building interaction because neglecting it
would reduce the induced plasticity close to the building foundation and around the tunnel.
They also explained that the stiffness of the building needed to be accounted for in the
analysis; neglecting the structural stiffness led to considerable overestimation of internal
forces induced in the structural members.

Franzius et al. (2004) analysed 2D elastic beams modelled previously by Potts and
Addenbrooke (1997) and included the effect of building weight. They showed that the
inclusion of the weight did not have a significant effect on the results compared with the case
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of weightless buildings. It is worth mentioning that the calculation method of the equivalent
building stiffness using the approach of Potts and Addenbrooke (1997) leads to a significant
overestimation of the equivalent beam stiffness (Mirhabibi and Soroush, 2013; Potts and
Addenbrooke, 1997). The application of a realistic building load to an equivalent beam with a
considerably high bending stiffness will not have a significant impact on the analysis results.

Franzius et al. (2006) extended the relationships proposed by Potts and Addenbrooke
(1997) to 3D to include the effect of the building width as well as more directly consider
the effect of tunnel depth. Franzius et al. (2006) used the same principles as Potts and
Addenbrooke (1997) for estimating building stiffness, and modelled the building as a 3D
solid body consisting of shell elements. It is worth noting that the building was not modelled
as a realistic structure with structural members. They suggested the following expressions
for calculating bending and axial modification factors:

ρ
∗
mod =

EbIb

EsztL2
bldgBbldg

(3.30)

α
∗
mod =

EbAb

EsLbldgBbldg
(3.31)

where ρ∗
mod is the modified relative bending stiffness, α∗

mod is the modified relative axial
stiffness, zt is the tunnel depth and Bbldg is the building width parallel to the tunnel direction.
It was shown that explicitly including the tunnel depth in the relationship for ρ∗

mod provided a
more realistic representation of bending response (building stiffness relative to soil stiffness
increases with the decrease of the tunnel depth); this was not the case for the axial response
described by α∗

mod . Moreover, the significance of considering the effect of structural stiffness
on ground displacements was also confirmed in the work of Franzius et al. (2006).

Dimmock and Mair (2008) demonstrated the analysis of two- to three–storey masonry
buildings at Moodkee Street and Keetons Estate in London. They obtained data from
references within the low–rise building area and compared with equivalent greenfield data to
find out the effect of building stiffness on tunnelling induced ground movements. Similar
to the findings of Burd et al. (2000), Dimmock and Mair (2008) clarified that the behaviour
of the buildings was nearly flexible in the hogging zone while it was semi–flexible in the
sagging zone. Furthermore, the relative axial stiffness of the buildings was high since the
horizontal strains induced at the base of the façades were insignificant. The authors used the
method of Potts and Addenbrooke (1997) in their analysis, and mentioned that the stiffness
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of the buildings was overestimated. They suggested reducing the estimated stiffness of a
building based on the existence of openings (doors and windows).

Giardina et al. (2009) modelled a tunnel construction in Amsterdam on which there was
a historic building supported by pile foundations. The analysis was two dimensional and
two building locations were considered: inside the sagging zone, and inside the hogging
zone. The authors showed that a building located in the hogging zone would experience
more damage from tunnelling induced ground movements compared to the same building in
the sagging zone. In addition, the amount of openings in the building were found to have an
important role in tunnel–building interaction.

Giardina et al. (2010) performed 3D finite element analyses similar to the modelling of
Giardina et al. (2009). They created building façades using shell elements. The roof and the
floor were not modelled since they were relatively flexible. They confirmed the importance of
3D modelling of tunnel–building interaction to understand the effects of tunnel advancement
on the building. Moreover, the relative tunnel–building distance was also determined as an
influential parameter governing the settlement trough type.

Pickhaver et al. (2010) proposed an equivalent beam method to investigate tunnelling
effects on masonry buildings. The building was modelled as an equivalent beam in 3D finite
element analyses. They used Timoshenko beam theory to develop their proposed equivalent
beam formulation. Furthermore, an equivalent inplane flexural and shear stiffness (denoted by
EI∗in and GA∗, respectively) were given to the equivalent beam. The stiffness was calculated
based on the strip method in which the building façades were divided into horizontal strips to
calculate I∗in, and vertical strips to compute A∗ (some strips were solid and others contained
openings due to windows and doors).

The effective height of each strip, h∗j , was calculated as a j/L j where a j is the strip area
excluding the openings, and L j is the strip length. The equivalent cross sectional moment

of inertia of the strip was calculated as: I j = t j

(
h∗j
)3

/12+ t jh∗j
(
b j
)2, where t j is the wall

thickness and b j is the distance between the centroid of each strip to the neutral axis. The
moment of inertia of the whole façade was then calculated as I∗in = ∑ I j. The area of the
façade to resist shear, A∗, was calculated from the vertical strips as: A∗ = Lbldg ·∑L∗

i /Ai,
where L∗

i is the strip width and Ai is the total area of the strip cross section. For a length to
height ratio of a façade (Lbldg/Hbldg) smaller than 3, they suggested reducing the values of I∗in
and A∗ by a factor, k = (Lbldg/Hbldg)/3, to avoid overestimating the stiffness of the façade.

Pickhaver et al. (2010) stated that a good match of the equivalent beam results with those
of the modelled masonry façades in the sagging zone was obtained, but in the hogging zone,
the masonry façades behaved more flexibly relative to the equivalent beam. This was because
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of the development of cracks at the top of the masonry façades. The crack development was
not considered in the equivalent beam which led to the overestimation of its stiffness in the
hogging area. For this reason, they stated that a reduced stiffness should be used for the
hogging zone in order to obtain better results.

Based on centrifuge experiment data, Farrell (2010) proposed the partitioned approach to
define the relative bending stiffness separately for sagging and hogging zones:

ρ
∗
sag,par =

EIbldg

EsL3
bldg,sagBbldg

(3.32)

ρ
∗
hog,par =

EIbldg

EsL3
bldg,hogBbldg

(3.33)

where ρ∗
sag,par and ρ∗

hog,par are relative bending stiffness for sagging and hogging zones,
respectively; subscript par refers to partitioned.

Son and Cording (2010) numerically investigated the building response to ground dis-
placements due to excavations, and took into account the occurrence of cracks in the building,
the effect of structural type and soil stiffness. They explained that generally, a significant
part of urban areas is constructed with brick–bearing buildings (i.e. bearing walls are con-
structed with bricks) ranging from 50 to 100 years old. Apart from age, the quality of the
construction, the utilisation of older building codes, and repair works may also have affected
the functionality of the existing buildings. They concluded that using elastic analyses for
the building considerably underestimated the building damage. The stiffness of a building
decreased significantly with the occurrence of severe cracks. Therefore, the development
of cracks and postcrack behaviour of the building should be considered in the analysis to
achieve a better prediction of the excavation effects on buildings. Furthermore, for the same
magnitude of induced ground movements, a structure on a soft soil showed a stiffer response
to the excavation compared to the same structure on a stiff soil.

Maleki et al. (2011) used the same modelling method as Franzius et al. (2006) to make a
comparison between 2D and 3D modelling of a building when estimating displacements due
to tunnelling. The outcomes of the 2D and 3D models were stated to be very similar.

Goh and Mair (2011a) investigated deep excavation–masonry building interaction and
modelled the building as an elastic beam with bending and axial stiffness. Similar to Farrell
(2010), they separated the building into sagging and hogging parts based on a case study
on the response of the Singapore Art Museum to excavation-induced displacements. It was
observed that building bending stiffness had an effect on ground displacements. The part of
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Fig. 3.8 Main features of the experimental test of a masonry façade (Giardina et al., 2012)

the building located in the sagging zone of the surface settlement curve behaved semi-rigidly
while the part located in the hogging zone was fully flexible. They suggested Equations 3.34
and 3.35 to estimate the value of relative bending stiffness, ρ , in the sagging and hogging
zones, respectively.

ρsag =
(EI)bldg

Es ·L3
bldg,sag

(3.34)

ρhog =
(EI)bldg

Es ·L3
bldg,hog

(3.35)

Giardina et al. (2012) modelled a building façade experimentally to evaluate the inter-
action between a newly constructed tunnel and existing masonry buildings. They created
a 1/10th scaled façade of a masonry building using scaled bricks and thin joints of mortar.
A vertical load was applied to the façade to reproduce the prototype stress field. The base
of the façade was then connected to a flexible steel profile and a known settlement trough
was applied to the façade. Furthermore, the interaction between the building and the soil was
achieved by introducing a rubber layer between the façade and the steel profile. The insertion
of the rubber layer was used to replicate the stiffness of the interface. The tested model was
then monitored, and dial gauges were used to measure deformations of specific points on the
façade. Figure 3.8 shows their modelled masonry façade.

Giardina et al. (2012) found that the interface between the soil and the building played an
important role in the response of the building, and reduced the applied vertical settlements.
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Stress redistributions also occurred based on the façade–interface relative stiffness. The
influence of doors and windows was also studied which caused stress concentrations at their
corners, and had a significant effect on the development of cracks.

Farrell and Mair (2012) and Farrell et al. (2014) performed centrifuge tests to evaluate
building response to tunnelling considering elastic and non-elastic building behaviour with
different geometry and stiffness. The elastic buildings were represented by aluminium beams
of variable thickness with a rough interface between the soil and the beams. The non-elastic
buildings in which crack development was allowed were created using "micro concrete and
masonry with cement based mortar." Masonry buildings were made using 1/12th scaled
model bricks and mortar. The ductility of the mortar was reduced by adding plaster of Paris.
Another group of masonry buildings were modelled using 1/50th scaled model bricks with an
elastic mortar to obtain a low bending and axial stiffness for the simulated beam.

Farrell and Mair (2012) and Farrell et al. (2014) showed that the interactive relationship
between the soil and the building is remarkably non-linear. There was a significant load
redistribution in the rigid buildings which caused appreciable embedding of the structure
into the soil. Additionally, the induced horizontal strains in the building were negligible,
even for the very flexible beams. The occurrence of the building load redistribution was also
confirmed in the works of Farrell et al. (2012) and Farrell et al. (2014) based on centrifuge
data and the case study of two buildings affected by tunnelling in Italy. Rigid buildings
tended to embed into the soil whereas flexible buildings followed greenfield deformations.

Rampello et al. (2012) studied tunnel–building interaction numerically using 2D and 3D
analyses. The building was modelled as an equivalent solid body embedded into the soil. It
was given an equivalent stiffness and weight. The results showed that there was an increase
in ground settlements due to the weight of the building, and less building distortions due to
the stiffness.

Mair (2013) used the proposed method of Goh and Mair (2011a) to develop design curves
to take into consideration the stiffness effect of a building in tunnel-building interaction
analysis. The proposed design curves were independent of tunnel-building eccentricity
whereas the previously adopted methods varied with eccentricity. Furthermore, the results
showed the creation of very small horizontal strains in the building.

Kappen et al. (2013) studied how the position of a masonry building with respect to the
tunnel axis affects the interaction between them, using 3D finite element analyses. The floors
were not modelled due to having negligible stiffness. The walls were created using shell
elements, and building loads were applied to them. The advancement of the tunnel head was
simulated by simultaneously deactivating soil elements within the tunnel and activating lining
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Fig. 3.9 (a) Building alignment angle, (b) tunnel–building relative position (Kappen et al.,
2013)

elements. The alignment of the building axis with the tunnel axis was examined for angles
from α = 0 to 180° with increments of 22.5° (see Figure 3.9a). Additionally, three building
positions were tested: in the sagging zone, combined (sagging and hogging), and hogging
zones, as shown in Figure 3.9b. They evaluated building damage based on the induced crack
width. It was concluded that for buildings located in the sagging zone, the rotation of the
building axis from 0 to 135° would increase the level of damage to the building, while for
the other two cases, low alignment angles caused larger damage compared to the damage
occurring in the case of high rotation angles.

Mirhabibi and Soroush (2013) assessed the effect of 2D and 3D building modelling
on ground movements due to twin tunnelling. They modelled a concrete framed building
consisting of slabs, beams and columns with and without exterior and interior walls. They
explained that building stiffness did not have a significant effect on tunnel–building interaction
especially for the open-framed building.

Zhang et al. (2014) developed a systematic approach to evaluate the safety of buildings
adjacent to a constructed tunnel. They analysed a concrete framed building with single
footings and explained that the presence of the building could lead to an increase in the soil
surface settlement especially in the vicinity of the building foundation.

Losacco et al. (2014) made an uncoupled evaluation of the tunnelling effects on existing
masonry buildings. In their analysis, they simplified the 3D masonry building to a simple
solid part called the equivalent solid which had the same shape as the building part located
under the ground. Each façade of the building was replaced by an equivalent solid, and the
equivalent properties were calculated from an iterative numerical process based on the 3D
building. At first, a set of 3D analyses of the whole 3D building was simulated. Ground



58 Tunnelling and Tunnel-Soil-Building Interaction

displacements calculated empirically using the Gaussian function were applied to the base of
the buildings. The initial properties of the building were calculated using the strip approach
proposed by Pickhaver et al. (2010). After that, the equivalent solid for each façade was
modelled, the same Gaussian displacements as the 3D building case were applied to the
base of the embedded equivalent solid and its properties changed iteratively until the same
behaviour as that of the 3D building was obtained. Losacco et al. (2014) stated that a
generally good agreement between the results of the whole 3D building with the equivalent
solid model was obtained.

Goh and Mair (2014) modelled the building as a 2D frame consisting of beams and
columns to estimate building response to excavation–induced soil movements. They proposed
a method to estimate bending stiffness of a 2D frame by using the column stiffening factor
(Ccol) proposed by Meyerhof (1953) to increase the flexural rigidity of an entire beam line in
a rigidly connected frame:

Ccol = 1+
L2

sag,hog

L2
bay

(
Kc,LC +Kc,UC

Kc,LC +Kc,UC +Kc,b

)
(3.36)

where Lsag,hog is the length of the beam line in sagging or hogging, Lbay is the span length of
each beam bay, Kc,LC and Kc,UC are the average stiffness (= (EI)col/Lcol) of the lower (LC)
and upper (UC) columns, respectively, Lcol is the column height, and Kc,b = ((EI)b/Lbay) is
the average stiffness of the beam line. The bending stiffness of the frame is then estimated
by EI f rame = ∑((EI)b ∗Ccol)ith f loor

Giardina et al. (2014a) numerically modelled the centrifuge tests performed by Farrell
(2010) in which buildings were represented by aluminium plates resting on dry fine sand.
Their aim was to investigate how the stiffness and the weight of a building interacts when
affected by tunnelling. They used a no–tension interface between the soil and the building,
and explained that a gap formed during tunnel excavation. They concluded that the increase
of weight led to the decrease of the gap between the soil and the building. Additionally,
including the weight in the analyses caused the building to undergo larger deformations
and to try to follow greenfield vertical movements. Furthermore, Giardina et al. (2015)
studied the interaction between tunnel construction in sand and surface structures based on
2D numerical simulations and included centrifuge test results from Farrell (2010). They
concluded that the effect of building stiffness on tunnelling induced deformations depends
on the building weight. They added the effect of building weight to the equations proposed
by Farrell (2010) to estimate relative bending stiffness in the sagging and hogging zones
(Equations 3.32 and 3.33), as shown in Equations 3.37 and 3.38.
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ρ
∗
norm,sag =

ρ∗
sag,par

σ

σ1

(3.37)

ρ
∗
norm,hog =

ρ∗
hog,par

σ

σ1

(3.38)

where ρ∗
norm,sag and ρ∗

norm,hog are normalised relative bending stiffness for sagging and
hogging zones, respectively, σ is the total bearing pressure acting on the foundation, and σ1

is the bearing pressure of each building storey.
Fargnoli et al. (2015) numerically investigated the interaction between existing buildings

and the construction of the new Milan (Italy) metro-line 5. The whole building was modelled
as a 3D building consisting of foundation, beams, columns and floors in some analyses, and
the buried part of the building was modelled in other analyses. Furthermore, the building was
simplified as a 2D plate for further investigations, and the approach of Franzius et al. (2006)
was used to calculate the equivalent building properties. Fargnoli et al. (2015) concluded
that the stiffness and the weight of the building had an effect on the settlement trough. The
weight of the building increased the volume loss and ground settlements. Additionally, the
portion of the structure located above the ground did not show a significant contribution to
the total building stiffness. The results of the models including the entire building and the
buried building part were very similar, indicating that the stiffness effect of the building on
ground displacements mainly came from the foundation. Moreover, they showed that the
simplified plate model of the building using the approach of Franzius et al. (2006) showed a
large stiffness of the plate and led to unrealistic results of predicted ground displacements.

Son (2015) numerically investigated tunnelling effects on buildings in loose and dense
sands, and soft and stiff clays, respectively, using 2D discrete element analyses. Two types
of building were modelled: brick–bearing buildings and brick–infilled framed buildings.
"Tunnel, structure, ground, and construction conditions together" were found to be the most
influential parameters affecting the building response to tunnel construction. It was explained
that buildings constructed on a loose sand or soft clays experienced less damage compared to
those built on a dense sand or stiff clay. In addition, the brick–bearing building underwent
relatively more damage than the brick–infilled building. This was because the building frame
in the brick–infilled structure provided a good confinement to the brick walls and reduced
crack propagation.

Bilotta et al. (2017) investigated the effect of tunnelling under a historic church on Line 6
of the Naples Underground using Plaxis 3D. The building was modelled as a flexible plate
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subjected to a uniformly distributed load. Their numerical modelling included the investi-
gation of different parameters affecting the soil–structure interaction, such as: excavation
span, tunnelling technique and tunnel–building relative distance. The relative tunnel–church
distance was recognised as a critical problem in the stage of the tunnel preliminary design.
Furthermore, they observed a negligible effect of the structural stiffness on the maximum
ground displacement.

3.7.2 Estimating building damage

Ground movements in urban areas can cause significant damage to existing buildings. The
assessment of damage level to surrounding buildings is of great importance when constructing
a new tunnel. Damage risk assessment plays an important role in the planning, design and
construction of new tunnels in urban areas (Mair et al., 1996).

Burland and Wroth (1974) proposed an approach to evaluate the potential damage to
buildings due to settlements. They assumed that the damage to a building is mainly recognised
through the cladding and finishes. Buildings usually lose serviceability before the collapse of
structural members which indicates that the evaluation of finishes and cladding is satisfactory
for the assessment of building damage. They also explained that most building damage
appearing as cracks resulted from induced tensile strains. Since their aim related to visible
damage (not collapse), the concept of critical tensile strain, εt,crit , could be used to indicate
the loss of the tensile strength and visible crack development.

Burland and Wroth (1974) defined some terms related to the deformation of foundations,
as shown in Figure 3.10. Vertical settlement, Sv, is the vertical movement of a point.
Differential settlement, ∆Sv, is the settlement of a point relative to another point. Rotation, θ ,
is the change in gradient of the straight line defined by two reference points embedded in
the structure. Angular strain, α , produces sagging or upward concavity when it is positive
while hogging or downward concavity is described by a negative value. Tilt, ω , is the rigid
body rotation of the whole superstructure or a well-defined part of it. Angular distortion,
β , describes the rotation of the straight line joining two reference points relative to the tilt.
Deflection ratio, ∆/L, is the ratio of relative settlement and the corresponding length, and is
equal to ∆max/LAD in Figure 3.10b.

Burland and Wroth (1974) assumed the building as a uniform, weightless, elastic beam
of unit thickness in order to apply the concept of critical strain to evaluate the development
of initial cracks. They explained that bending and shear cracks are likely to happen together
in a beam, but they are dealt with separately to understand the performance of the beam.
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Fig. 3.10 Suggested definitions of foundation deformations (Burland, 1995)

Bending cracks occur due to the creation of direct tensile strains, and shear cracks develop
due to the induction of diagonal tensile strains. The deflection equation (bending and shear)
of a beam loaded at the centre is given by Timoshenko (1940):

∆b =
PL3

b
(EI)b

(
1+

18(EI)b

L2
bhbGb

)
(3.39)

where ∆b is the beam deflection, Lb is the length, hb is the cross sectional height, and Gb is
the shear modulus.

For a beam having a Poisson’s ratio of νb = 0.3, with its neutral axis located at the
mid–height of the cross section, Equation 3.39 can be re-written in terms of maximum
bending and shear strains, as in Equations 3.40 and 3.41, respectively (Burland and Wroth,
1974).

∆b

Lb
=

(
0.167

Lb

hb
+0.65

hb

Lb

)
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h2
b

)
εst,max (3.41)

where ∆b/Lb is the deflection ratio, εbt,max and εst,max are maximum bending and shear strains.
Since foundations play an important role in restraining deformations, Burland and Wroth
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(1974) stated that it would be more realistic to consider the neutral axis at the lower extreme
fibre of the beam. Then the limiting ∆b/Lb can be written as:

∆b
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(
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Lb

hb
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hb

Lb

)
εbt,max (3.42)

∆b
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L2
b

h2
b

)
εst,max (3.43)

Burland et al. (1976) clarified that the quantification of building damage was very
complicated due to dependence on "subjective criteria." Furthermore, the function of the
building was also important to specify the quantity of damage. An allowable damage for a
specific type of building may be unsatisfactory for another. Based on the visible damage,
Burland et al. (1976) proposed a "five–point classification table" to evaluate the risk of
damage to buildings due to movements. They used the severity measure to categorise the
potential damage to a building; the measure was based on the "ease of repair" as well as
the width of the developed cracks in the building. It started from 1 indicating very slight
damage to 5 signifying severe damage. Negligible damage was also mentioned, but not given
a category in their table. The width of the cracks were chosen depending on the opinion of
engineers who had previously observed building performance and dealt with the reaction of
building occupants. Table 3.3 shows the classifications proposed by Burland et al. (1976).

It is worth noting that Burland et al. (1976) explained that the location of the damaged
part in the building should be taken into consideration. Additionally, crack width is not a
direct measurement of damage; it only represents one aspect of damage.

Boscardin and Cording (1989) made further investigation about the limiting tensile
strains based on case histories, and linked it directly to the building damage categories. The
classification of damage based on Boscardin and Cording (1989) is presented in Table 3.4.

Boscardin and Cording (1989) presented Equation 3.44 to calculate the angular distortion,
β (which is a measure of shear strain), and linked it with the deflection ratio to take into
account the effect of vertical differential settlements on the degree of building damage.
Furthermore, they suggested to calculate the total tensile strain from the greater of the
combination of the maximum bending strain and the average horizontal strain, and the
combination of the maximum diagonal strain and the average of the horizontal strain (the
higher value of εtotal between εtotal = εh + εbt and εtotal = εh + εst). On the other hand,
Geddes (1991) presented a discussion about building response to settlements, and concluded
that horizontal strains calculated based on the approach of Boscardin and Cording (1989)
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Fig. 3.11 Relationship of damage to angular distortion and horizontal strains for Lb/hb = 1,
(Boscardin and Cording, 1989)

were significantly overestimated. In addition to Table 3.4, Boscardin and Cording (1989) also
presented Figure 3.11 to link the building damage to the horizontal strains and the angular
distortion (β ).

β = 3
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)2

 (3.44)

Burland (1995) proposed a three-stage process to evaluate the risk of damage to buildings:
preliminary assessment, second stage assessment and the detailed evaluation.

In the preliminary assessment, the building is assumed to be non–existent, and greenfield
deformations under the virtual building are predicted. If the maximum vertical displacement
does not exceed 10 mm, and the maximum slope is smaller than 1/500, the damage is
considered as negligible and further calculations are not required.

The second stage assessment is performed when the maximum vertical displacement and
the maximum slope exceed the limits mentioned in the preliminary assessment. In this stage,
the building is represented by an equivalent elastic beam subjected to greenfield displace-
ments. It is worth noting that the building is assumed to follow the greenfield displacements;
the effect of weight and stiffness are neglected. The damage is then categorised based on the
available damage classification tables. Burland (1995) mentioned that the actual damage to
the building is usually less than the predicted damage in the second stage assessment.
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Fig. 3.12 Design chart developed by Burland (1995) for Lb/hb = 1

If the damage category obtained in the second stage assessment is greater than or equal
to 3, a detailed evaluation of tunnel–building interaction is required considering the method
of tunnel construction, the type of the structure and the foundation, building orientation and
previous building displacements. Burland (1995) stated that the damage category predicted
in the detailed evaluation was usually lower than the category predicted in the second stage
analysis. This was because of the high level of safety considered in the second stage analysis.

Burland (1995) also presented Figure 3.12 to estimate building damage graphically
without calculating strains. The design chart depends on the percentage of ∆b/Lb and
horizontal strains.

Boone (1996) and Boone (2001) stated that considering a single parameter in the assess-
ment of building damage would disregard the effect of many other important factors. Boone
(1996) suggested including other parameters in the assessment of building damage using
the following procedure. The settlement profile is divided into the sagging and hogging
zones. Based on provided graphs and equations, the value of elongation strain (εel), direct
lateral extension strain (εle), and bending strain (εM) are calculated to estimate the total
tensile strain as: εt,total = εM + εel + εle. Then, shear strain (tan γ) is computed, and the
maximum principal tensile strain (εt p) is taken as 0.5εt,total . The values of εt,total , εt p and
tan(γ) (the approximate shear strain) are compared separately to Table 3.5 to obtain the crack
width. Finally, Table 3.3 is used to evaluate the degree of damage. Note that the term L/H in
Table 3.5 is the length to height ratio of a wall or a building.

Following the work of Burland and Wroth (1974), Finno et al. (2005) suggested the use of
(EI)b/(GbAv) instead of Eb/Gb (where (EI)b was assumed to be the bending stiffness of the
beam and GbAv to be the total shear stiffness) to estimate the building damage based on the
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beam-analogy approach. The building was modelled as a laminate beam in which bending
deformations are restrained by the floors, and shear deformations by walls (both bearing and
in–fill walls between the columns). The damage assessment procedure can be summarised as
follows. Estimate ground movements and locate the influenced structure with respect to the
settlement profile. If necessary, divide the settlement curve into sagging and hogging zones
using the inflection and tangent points, and the end of the building. Calculate the slope for
each deformation mode (m), and compute the rotation of the building as a rigid body (ω) by
calculating the slope of the entire building. Calculate the additional shearing strain in each
deformation mode from γadd = m−ω . Define the properties and geometry of the relevant
sections in the building, and find suitable values of critical strain using Table 3.5. For each
failure mode, calculate the limiting deflection ratio (∆b/Lb) using the computed bending and
shear stiffness of the laminate beam. Finally, compare the deflection ratios obtained from the
estimated settlement profile with the limiting deflection ratio; if the obtained deflection ratios
are greater than the limiting one, the occurrence of cracking is possible.

Based on the state of strain at a point being independent of Lbldg/Hbldg, Ebldg/Gbldg and
the location of the neutral axis, Son and Cording (2005) evaluated building damage using the
crack width criterion. The damage categories were related to the maximum principal strain,
εp, calculated by Equation 3.45.

εp = εlcosθ
2
max +β sinθmaxcosθmax (3.45)

tan(2θmax) = β/εl (3.46)

where β is the angular distortion, εl is the lateral strain and θmax is the direction of crack
formation measured from the vertical plane.

Schuster et al. (2007) introduced a limit state, g(x) (Equation 3.47), calculated based on
the principal strain to evaluate the potential building damage.

g(x) = εp,R − εp,L (3.47)

where εp,R and εp,L are the resisting and loading principal strains. It is worth noting that the
loading principal strain represents the actual principal strain of a building, and the resisting
principal strain represents the limiting principal strain specified depending on the building
damage observations. The case where g(x) < 0 indicates the occurrence of a large and
unacceptable damage to the building. Based on Son and Cording (2005), Schuster et al.
(2007) suggested a limiting principal strain of 1.67×10−3. Schuster et al. (2008) found
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this limiting principal strain to be 1.19×10−3 using a trial–and–error process. In addition,
Schuster et al. (2009) noted that the damage to buildings in the hogging part were generally
greater than in the sagging part. This was also observed by various other researchers (Camós
et al., 2014; Castaldo et al., 2013; Goh and Mair, 2011a).

Using results of physical modelling and numerical analyses, Cording et al. (2010) ex-
plained that the existence of a relatively stiff building modifies greenfield ground displace-
ments, and reduces the structural distortions compared to a scenario where the building
follows greenfield displacements. Additionally, the induced lateral strains decrease signifi-
cantly depending on the type of foundation. Furthermore, shear stiffness of the building led
to a reduction in the angular distortion, β .

Giardina et al. (2014b) proposed two models for the assessment of damage to masonry
buildings using polynomial and piecewise linear functions. The possible damage caused
to a building by tunnelling induced ground movements was related to the main parameters
affecting the building response to displacements. The influential parameters included the
geometry of the building and the existence of openings, the predicted settlement profile and
the properties of the masonry and the soil–building interaction. A 2D finite element analysis
was used to investigate the effect of various parameters, such as geometrical and material
properties, loading, and boundary conditions. The 3D effect of the tunnel head construction
and the torsional response of the building were studied using 3D finite element analyses.

Giardina et al. (2014b) defined a damage function, d, related to the deflection ratio (∆/L),
and a set of parameters collected in an array called x. The final response of the building
was linearly dependent on the selected parameters for the sensitivity study when using the
polynomial function while a "further opportunity to interpret the effect of each parameter
variation on the initiation and progression of damage" was obtained using the piecewise
function. The existence of openings in a building was found to increase the possibility of
building damage to a great extent; it could increase the level of damage up to two categories
based on the currently available methods of building damage assessment.

3.7.3 Summary

This section reviewed the research in the field of tunnel–building interaction. Different
numerical methods have been used to quantify tunnel–structure interaction, and various
modelling techniques were adopted to represent the building in the numerical analyses,
including simple beams, frames and 3D structures. Researchers have shown that the stiffness
and the weight of buildings can have an effect on the tunnel–building interaction.
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Representing buildings as equivalent beams in numerical analyses generally led to an
overestimation of the effect of building stiffness on tunnel–building interaction. The utilisa-
tion of 3D buildings resulted in a significant reduction of the stiffness effect. Furthermore,
Fargnoli et al. (2015) noted that the foundation of the building, compared to the over ground
portion, had the main contribution to the building stiffness.

Despite the amount of work done in this area, the behaviour of the building in the
global tunnel–soil–building system is still not clear. This ambiguity mainly belongs to two
important points that have been overlooked or over-simplified in previous studies: (1) the
individual effect of building structural parts (e.g. foundation and individual storeys) in the
global building system, and (2) the main parameters influencing building behaviour when
affected by tunnelling, such as the boundary condition, the length of the building influenced
by tunnelling, and the effect of the building length not influenced by tunnelling. These points
will be studied in detail in this research.

The section also presented the methods used to assess building damage caused by
tunnelling. It was shown that the deflection ratio and the induced horizontal strains in the
building were important parameters to make building damage assessment. These parameters
are achieved from the analysis of tunnel–building interaction. The subject of building damage
assessment is not included in the aims of this thesis, however, the proposed methods in later
chapters of this thesis can be helpful to estimate the parameters on which building damage
assessment depends.
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Table 3.1 The adopted coefficients for semi–analytical approach

Id 0.3 0.3 0.9 0.9
Ct/Dt 2.4 4.4 2.4 4.4

ma -0.12 -0.02 -0.16 -0.15
qa 2.21 2.18 1.46 1.89
mb 0.11 0.34 0.20 0.03
qb 0 0 0 0
m1 0.13 0 0.11 0
q1 1.07 1.49 1.38 1.11
m2 0.15 0.07 0.14 0.14
q2 -0.73 -0.75 0.05 -0.40
m3 0.27 16.29 1.18 16.75
q3 0 0 0 0
m4 0 0 0 0
q4 0.83 0.90 0.83 0.90
m5 3.33 1.00 11.53 1.00
q5 0 0 0 0
m6 0 0 0 0
q6 0.10 0.10 0.10 0.10

max -0.12 -0.02 -0.16 -0.15
qax 2.21 2.18 1.46 1.89
mbx 0.11 0.16 0.20 0.03
qbx 0 0 0 0
m1x 0 0 0 0.48
q1x 3.89 26.36 7.06 5.01
m2x -0.09 -0.79 -0.03 -0.36
q2x 0.63 4.37 1.40 2.43
m3x 0.27 16.29 1.18 16.75
q3x 0 0 0 0
m4x 0 0 0 0
q4x 0.83 0.90 0.83 0.90
m5x 3.33 1.00 11.53 1.00
q5x 0 0 0 0
m6x 0 0 0 0
q6x 0.10 0.10 0.10 0.10
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Table 3.2 Centrifuge scaling laws (Taylor, 1995a)

Parameter metric unit model scale prototype scale
Gravity m/S2 N 1
Length m 1 N
Area m2 1 N2

Volume m3 1 N3

Weight, Force N = kg ·m/s2 1 N2

Density kg/m3 1 1
Stress and Pressure Pa = N/m2 1 1
Strain − 1 1
Bending stiffness, EI Nm2 1 N4

Axial stiffness, EA N 1 N2
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Table 3.3 Classification of visible damage to walls (Burland et al., 1976)

Category
of damage

Degree of
severity Description of typical damage

Approximate
crack width,
mm

0 Negligible
Negligible and hairline cracks of less than
about 0.1 mm are classed as negligible. < 0.1

1 Very slight

Fine cracks which can easily be treated
during normal decoration. Perhaps iso-
lated slight fracture in building. Cracks in
external brickwork visible on close inspec-
tion.

≤ 1

2 Slight

Cracks easily filled. Redecoration proba-
bly required. Several slight fractures show-
ing inside of building. Cracks are visi-
ble externally and some repainting may
be required externally to ensure weather
tightness. Doors and windows may stick
slightly.

≤ 5

3 Moderate

The cracks require some opening up and
can be patched by a mason. Recurrent
cracks can be masked by suitable lining.
Repainting of external brickwork and pos-
sibly a small amount of brickwork to be
replaced. Doors and windows sticking.
Service pipes may fracture, Weather tight-
ness often impaired.

5 to 15, or
number of
cracks ≥ 3

4 Severe

Extensive repair work involving breaking–
out and replacing sections of walls espe-
cially over doors and windows. Windows
and door frames distorted, floor sloping
noticeably. Walls leaning or bulging no-
ticeably, some loss of bearing in beams.
Service pipes disrupted.

15 to 25, but
also depends
on number of
cracks

5 Very severe

This requires a major repair job involving
partial or complete re-building. Beams
lose bearing, walls lean badly a require
shoring. Windows broken with distortion.
Danger of instability.

Usually ≥ 25,
but depends
on number of
cracks
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Table 3.4 Building damage categories (Boscardin and Cording, 1989)

Category of damage Normal degree of severity Limiting tensile strain
0 negligible 0.000 – 0.050
1 very slight 0.050 – 0.075
2 slight 0.075 – 0.150
3 moderate 0.150 – 0.300

4 to 5 severe to very severe > 0.300

Table 3.5 Critical Cracking Strain Data (Boone, 1996)

Test condition Mode of deformation Critical strain (%)
Brick buildings with L/H > 3 Tensile from flexure 0.050

Full scale frames with brick infill Diagonal–tensile 0.081 – 0.137
Full scale frames with brick infill Shear approximation 0.160 – 0.270

Hollow tile and clinker block, brickwork Shear distortions 0.220 – 0.330
Hollow tile and clinker block, brickwork Diagonal-tensile 0.110 – 0.160

Full scale brick walls with supporting con-
crete beams, 1.2 < L/H < 3.0 Tensile from flexure 0.038 – 0.060

Concrete beams supporting brick walls Tensile from flexure 0.0350
Fiberboard or polywood on wood frame Shear strain 0.600 – 1.660

Gypsum/fiberboard/plaster on wood frame Shear strain 0.370 – 0.700
Structural clay tiles with cement-line Shear strain 0.100
Clay brick with cement-lime mortar Shear strain 0.100 – 0.200

Cement–line mortared concrete blocks Shear strain 0.100
Core samples of brick and mortar Tension 0.001 – 0.010
Full–scale brick walls in field test Tension 0.020 – 0.030

Reevaluation of full-scale wall panel tests Principle tensile 0.020 – 0.030





Chapter 4

Finite Element Analysis

4.1 Introduction

This chapter presents a general explanation about finite element analysis and the finite element
software ABAQUS. The element types and the general procedures to create a model are
briefly described. Material properties used in this research, the tunnel construction technique
and the soil–building interface are also presented.

4.2 Numerical Methods

Numerical methods are techniques used to approximate engineering problems. An engineer-
ing problem can be defined as a mathematical model of a physical condition. A mathematical
model of a physical condition consists of a set of differential equations showing different
aspects of the physical situation in terms of variables (Moaveni, 1999; Reddy, 2006). The
solution of the differential equations of some mathematical models are difficult to obtain
by exact methods. An alternative to an exact method can be a numerical method to obtain
an accurate yet approximate solution (Reddy, 2006). An exact solution of a problem de-
scribes the exact behaviour of a condition at all points while a numerical solution shows an
approximation of a system at different points called nodes (Moaveni, 1999).

A numerical solution of a differential equation may contain initial and boundary condi-
tions. Consider Equation 4.1 which is assumed to be a differential equation.

f
′′
(x) =Cx (4.1)
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If a set of conditions are given to Equation 4.1 at the same value of x (i.e. f (0) =
2, f

′
(0) = 1), the system is called an initial value problem. When the conditions are given at

different values of x (i.e. f (0) = 2, f (1) = 1), the system is called a boundary value problem
(Davis, 1984).

Two common numerical methods that are used to solve differential equations in engineer-
ing are the finite difference and finite element analyses. These two methods are powerful
techniques used in various fields and have a wide range of engineering applications, including
geotechnical engineering. The finite difference is an older numerical method as compared to
the finite element method. It uses a local Taylor expansion to approximate the derivatives of
functions (Peiro and Sherwin, 2005). Furthermore, the finite difference method was the first
numerical method utilised in the field of geomechanics. The method was used before the
appearance of computers to reduce differential equations to a set of linear equations in order
to obtain their solutions by a simple classical method (Bobet, 2010).

Moaveni (1999) explained that the finite difference method has some advantages such
as being easy to understand and apply, and also less time consuming. However, it is most
appropriate for the solution of relatively simple problems. When the geometry becomes com-
plicated or the problem has complex boundary conditions, the solution becomes complicated.
Furthermore, Potts et al. (2001) clarified that the applicability and accuracy of the finite
element and finite difference methods in geotechnics are mostly dependent on the capability
of the constitutive models (explained later in this chapter) to replicate the real behaviour of
soil as well as the appropriateness of the imposed boundary conditions. A brief explanation
of finite element analysis is presented in the following section.

4.3 Finite Element Analysis

The finite element method (FE) is a numerical approach utilised to obtain solutions to a great
variety of engineering problems. The advancement of computers has led to considerable
development of the finite element method (Bull, 1993). Moaveni (1999) presented a brief
history about FE analysis and stated that the starting point of the modern FE method was in
the early 1900s due to the utilisation of discrete equivalent elastic bars by some researchers
to model elastic continua. Based on published papers, Courant (1943) was defined as the
person who first developed the FE method. After Courant, the method was developed to
a greater extent by Boeing in the 1950s when he, and some later investigators, modelled
airplane wings using triangular stress elements. After 1960, the term finite element was made
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Fig. 4.1 Elements and nodes in FE method

popular by Clough, and this method was applied by other researchers to different fields of
engineering.

According to Davies (2011), the utilisation of finite elements as a simple principle belongs
to much older times than the 1900s. Additionally, he stated that the modern FE method was
first used in structural engineering, and Hrennikoff (1941) and McHenry (1943) were the
first who tried to develop the FE method for aircraft structural design.

Nghiem (2009) explained the general theory and principles of FE method. In this
method, a member is modelled as a collection of finite tiny parts known as an element.
Each element has a geometrical shape. The elements are affixed to each other through their
nodes. These nodes have a number of degrees of freedom (DOF) based on the type of the
model. In geotechnics, the degrees of freedom are usually displacements. The solution of the
algorithmic equations in FE analysis leads to the determination of the degrees of freedom.
Figure 4.1 shows typical nodes and elements in FE analysis.

Three principal steps of FE analysis are demonstrated in Roylance (2001): preprocessing,
analysis and postprocessing. In the preprocessing step, a model is constructed for analysis in
a way that its geometry is divided into elements connected at their nodes. The displacement
of some of these nodes is known and the load of the others is predefined. The preparation of
these models may require a significant amount of time. In the analysis step, the data prepared
by the preprocessor is input to the FE code, and then, the code creates linear or nonlinear
system and solves the equations. The system consists of three main parameters in the form
of matrices called displacement, force and stiffness matrices, as in Equation 4.2.

Ki jui j = Fi j (4.2)
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where ui j and Fi j are the nodal displacements and nodal applied forces, respectively, and Ki j

is the stiffness matrix which is based on the type of problem being solved. After analysing
the data and solving the algebraic equations, the postprocessing step starts in which the
results are displayed.

An element in a finite element mesh (Figure 4.1) is treated as a separate part from the
original object (before meshing). Algebraic equations are developed for each independent
finite element, and then, the elements are returned to the original locations of the analysed
object and all developed relationships are then assembled (Reddy, 2006).

There are three fundamental requirements for the solution of any static boundary value
problem: equilibrium, compatibility and material behaviour. The equilibrium of the system
should be satisfied; compatibility is satisfied through "the continuity of the displacement
field in which no gaps or overlaps must occur in the problem domain during the deformation
process;" the material behaviour relates strains to stresses, and is described by the constitutive
equation σ = Dε where σ is stresses, ε is strains and D is the constitutive matrix (Franzius,
2003).

There are different shapes, sizes, number and configurations of finite elements. The
selection of the elements should be made carefully such that the meshed part represents the
original part as closely as possible without adding extra computational effort to solve the
problem. The geometry of the part and the required number of coordinates play an important
role in the selection of the correct element type. One, two and three dimensional elements
can be chosen based on the geometry, material properties and problem field variables. For
example, deformation of a bar under axial loads can be modelled by one-dimensional
elements, deformation of a plate can be simulated using two dimensional elements, and the
advancement of tunnel head construction can be modelled by three-dimensional elements
(Rao, 2004).

4.4 An Introduction to ABAQUS

SIMULIA (2012) is a detailed ABAQUS user’s manual including comprehensive explanation
about the software. The software is FE based and contains five programs: ABAQUS/Standard
which is a general-purpose FE program, ABAQUS/Explicit which is an explicit dynamics
FE program, ABAQUS/CFD which is related to fluid dynamics, ABAQUS/CAE which is
an interactive environment and ABAQUS/Viewer which is a subset of ABAQUS/CAE. The
simulations of this research depend on ABAQUS/Standard (using ABAQUS/CAE).
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ABAQUS is extensively used in the academic field as it allows the creation and modelling
of different types of materials and has the capability to simulate interactions between different
elements and parts. The software offers different types of elements with various ways of
meshing. Different material behaviour can be simulated with various constitutive laws.
Additionally, new constitutive models can be added to the program via user subroutines. For
instance, UMAT allows the addition of user constitutive models to the software, DISP can be
used to define user-defined displacements, and DLOAD is used to introduce a load which is
a function of time or position.

Moreover, the software performs a complete analysis through three stages: pre-processing
or modelling which involves the creation of an input file, processing (FE analysis) which
produces an output visual file, and post-processing in which reports, images and animations
are generated. Furthermore, the program accepts input files (modelling) from CAD software,
and monitoring is available to the processing stage.

In the following sections, various aspects of ABAQUS that are relevant to the modelling
done in this project are discussed. These include: meshing techniques, element types,
material properties, constitutive laws, interface and analysis details. It is worth noting that the
information presented about meshing techniques, element types and interfaces in ABAQUS
is from the ABAQUS user’s manual (SIMULIA, 2012).

4.5 General Procedures to Create a Model in ABAQUS/CAE

Generally, there are 9 steps to create a model, run it and obtain results in ABAQUS/CAE.
Each step is briefly explained below, and if necessary, more detail is provided in relevant
sections.
1. Part
Parts are used to represent the geometry of objects in ABAQUS. The geometry of the object
that is going to be analysed is either created in ABAQUS/CAE using part module, or imported
from other applications. Figure 4.2a shows parts of a model.
2. Property
The property module is used to create a material and define its properties. Sections, in which
the material and the cross sectional geometry (if necessary) are specified, are also defined in
the property module. Each part should be assigned a section.
3. Assembly
Each part that is created in the part module is independent of the other parts in the model, and
may have a different orientation. The assembly module is used to define the final geometry
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Fig. 4.2 (a) Parts, and (b) assembly in ABAQUS/CAE

of the global model by creating instances of a part, and then positioning them relative to
each other. Each instance (i.e. inserted part to the assembly) can be copied as many times as
required. Figure 4.2b shows an assembly of a model.
4. Steps
The step module is used to define the analysis steps of the model. Different steps are available
in the step module, such as: Geostatic step to define geostatic stresses in a geotechnical
analysis; Soils to analyse problems including coupled pore fluid diffusion and stress analysis;
General, static analysis to apply loads to the model. It should be noted that there is a default
(compulsory) initial step to define boundary and initial conditions to the model.
5. Interaction
The interaction module is used to define interaction between different parts of the model.
This module provides different types of constraints (to constrain the degrees of freedom
between parts or regions of a model, such as multi-point constraints, tie, embedded region,
equation), and interactions (e.g. surface-to-surface contact, self-contact) in which interaction
properties (e.g. contact, film condition) are defined. The detail relevant to this research is
given in Section 4.9.
6. Load
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Fig. 4.3 A generic model of tunnel–soil–building interaction problem

The load module is used to to apply loads and to define boundary conditions. Initial conditions
such as geostatic stresses, pore water pressure and saturation degree are also defined in the
load module.
7. Mesh
The mesh module is utilised to mesh the model (either parts or assembly). The module
contains features such as: mesh controls (the technique to mesh the model and specify
element shapes), element types (to assign a particular element type to the model), and seeds
(to specify the size and number of elements in the model). More information about this
module is given in Section 4.6.
8. Job
The job module is used to create a job and to submit it for analysis. If the created model does
not have any errors and is ready for analysis, it will start running to analyse the problem.
9. Visualization
After successfully completion of the job, the results become ready to view in the visualization
module. The visualization module reads the output database generated by ABAQUS/CAE
during the analysis.

Figure 4.3 shows a generic model of the tunnel–soil–building interaction problem con-
sidered in this project. The building and the soil are created as two separate parts. The final
global model is created in assembly, and then an appropriate interface as well as bound-
ary conditions are assigned to the model. The detail of the material properties, boundary
conditions and the soil–building interface are presented in the following sections.



80 Finite Element Analysis

Fig. 4.4 Finite element shapes and node numbers

4.6 Meshing and Elements in ABAQUS

There are four meshing techniques in ABAQUS/CAE, as listed below:

• Free meshing

• Structured meshing

• Sweep meshing

• Bottom-up meshing

In addition, four shapes of elements are offered which are: Hex, Hex-dominated, Tet, and
Wedge. Each element shape can be linear or quadratic. Figure 4.4 shows examples of the
element shapes for linear and quadratic elements.

Free meshing is the most flexible technique which offers meshing without pre-defining
patterns, and is available with Tet elements. Sweep meshing is used to create complicated
meshes. It is available with all element shapes except Tet elements. Structured meshing
technique is used to create structured meshes by predefining meshing regions. This technique
is available with the Hex element shape. The most control over the created mesh can be
obtained using the structured meshing technique. Partitioning the part is a good choice to
obtain a meshable region with the structured technique. The final meshing technique is
bottom-up, which is the most complicated technique and should be used carefully to mesh
highly complex geometries.
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ABAQUS provides a variety of element types for both standard and explicit analyses.
Elements have different characteristics like family (i.e. 3D stress, continuum shell, heat
transfer), number of nodes (Figure 4.4), degree of freedom per node (i.e. displacement,
rotation) and integration (i.e. reduced and full integration). Linear elements have nodes only
at their corners (Figure 4.4a,b,c) while quadratic elements have an extra node at the middle
of each edge (Figure 4.4d,e,f). Elements also have unique names in ABAQUS. For instance,
C3D8R stands for Continuum, 3D, 8-node, reduced integration elements; S4R stands for
Shell, 4-node, reduced integration elements.

Examples of the commonly used element families are truss, beam, shell and solid
continuum elements. Truss elements are used to model one dimensional bars that are
subjected to axial forces (tensile or compressive), for example truss members. Beam elements
are used to model members that have small cross sectional dimensions compared to their
length. The 3D member is approximated to a 1D beam; only the longitudinal centreline
is created and the cross sectional dimensions are assigned to the part via material cross
section properties. These elements accept displacement and rotation degrees of freedom.
Examples include beams and columns. Shell elements are used to model members that have
a small thickness compared to their length and width. The 3D member is approximated as
a 2D member. In conventional shell elements, the length and the width are created, and
the thickness is given to the part via the material cross section properties; continuum shell
elements allow the creation of the 3D part. Examples include slabs and raft foundations.
Solid continuum elements are used to create 3D members, and are suitable for linear and
non-linear analyses including contact and plasticity problems. They only accept displacement
degrees of freedom; they do not allow rotation at the connections.

C3D8R solid elements were used throughout this research to model the soil and the
structural parts. The accuracy of the results are checked in different stages by comparing the
results with available data and exact solutions. The reason for choosing this type of element
is that an acceptable accuracy with less time can be obtained. Furthermore, the problem
of shear locking in the elements is eliminated. A very fine mesh is used to obtain accurate
results and to avoid the occurrence of hourglassing in the elements. The problems of shear
locking and hourglassing are discussed in Section 4.6.1.

ABAQUS uses numerical methods for any required integration over the element volume;
for most elements, Gaussian quadrature is used. There are integration points within each
element in which the material response is evaluated (i.e. the primary variables for the function
that should be integrated are solved). This integration can be full or reduced depending on
the number of integration points. For example, the element type C3D20 (continuum 3D, 20
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Fig. 4.5 Shear locking of an element (after Sun, 2006)

nodes) uses 27 integration points while for the reduced integration element (C3D20R), there
are only 8 points. The choice of the integration method should be made carefully to avoid
accuracy problems. For quadratic elements, the reduced integration in ABAQUS/standard
generally leads to more accurate results than the full integration, but for linear elements, the
accuracy depends on the nature of the problem. The required time and cost for the reduced
integration is significantly less than that for the full integration. It should be noted that for
the numerical analyses of this research, the choice of reduced integration was used.

4.6.1 Shear locking and hourglassing

Shear locking and hourglassing are two possible problems that may occur in FE analysis.
They can lead to inaccurate numerical results if they are not taken into consideration before
analysing the engineering problem.

Shear locking occurs when an element becomes overly stiff in bending because of the
existence of several integration points. This problem is mainly caused by fully integrated
elements. Figure 4.5a shows an undeformed element. When it is subjected to bending
moments, it is supposed to deform as in Figure 4.5b in which horizontal dashed lines deform
to curves, and α remains at a right angle. When shear locking occurs due to integration points,
a deformation like that of Figure 4.5c happens in which the horizontal lines remain straight
and the angle α does not remain 90°. This leads to the generation of shear deformations
instead of bending deformations, and erroneous results are computed (Sun, 2006).

Linear elements with reduced integration may experience deformations without creating
strains; this phenomenon is called Hourglassing which involves deformations with a zero-
energy mode. It happens in elements having only one integration point. The element C3D8R
has only one integration point while C3D8 has eight points. This reduction in integration
points is useful in terms of tolerance to shape distortions. Fully integrated elements become
less accurate when undergoing large deformations. However, the occurrence of hourglassing



4.7 Constitutive Models and ABAQUS Material Properties 83

Fig. 4.6 Occurrence of hourglassing (after Sun, 2006)

should be avoided when using reduced integration. Coarse meshing can be a source of
hourglassing. Although ABAQUS has default hourglassing control to reduce this problem,
coarse meshing should still be avoided especially through the thickness of the model (z-
direction in Figure 4.3). Single layer elements through the thickness may cause hourglassing
even in quadratic elements. Figure 4.6 shows the occurrence of hourglassing in an element
due to the applied moments. The element undergoes deformations, but the length of the
centroidal axes does not change leading to zero-strains at the integration point. For the
models of this project, the problem of hourglassing was avoided by having a fine mesh for
each part, especially along the thickness of the model (z-direction in Figure 4.3).

4.7 Constitutive Models and ABAQUS Material Properties

Material models are mathematical expressions used to describe the stress-strain behaviour
of materials. These models are vitally important in numerical analyses; the accuracy of
results mostly depends on the appropriateness of the material model. It is worth noting that
ABAQUS contains several constitutive models related to soil, such as: linear elastic model,
and plastic models of Mohr-Coulomb and Drucker Prager. Other material models can be
added to the program via user subroutines.

It is worth noting that in tunnelling, the elastic parameters are generally more influential
on the response of soil than the strength parameters. This is because the tunnel construction
does not cause significant plasticity to the soil; mainly a small region around the tunnel head
experiences plastic deformations. Several researchers have reported that soil deformations
due to tunnelling are not sufficiently large to cause plastic changes to the soil; a nonlinear
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elastic model can provide a good prediction of tunnelling induced ground displacements
(Cheng et al., 2007; Dasari, 1996; Giardina et al., 2015).

The results of this project mainly relate to the elastic properties. For the sections in
which plastic behaviour is considered for soil, the elastic perfectly plastic model with Mohr-
Coulomb failure criterion is used. It should be noted that the Mohr-Coulomb criterion is a
simple model that has an extensive use in geotechnical engineering. The elastic parameters
in the model are Young’s modulus and Poisson’s ratio. The failure criterion is defined by
friction angle, φ , and cohesion, c; the flow rule is defined by the dilation angle, ψ (Ti et al.,
2009). It can be said that the parameters of the friction angle and cohesion are usually more
easily obtained compared to the properties of other soil material models (Alshkane, 2015).

For most analyses in this thesis, the elastic properties of the soil were: Es = 35 MPa and
νs = 0.25. The value of the elastic modulus was changed in some sections to investigate the
effect of elastic modulus. Furthermore, the soil was assumed to be a fine dry sand similar
to Fraction E Leighton Buzzard silica sand, or simply, fraction E sand (Zhao, 2008). The
Poisson’s ratio of a similar sand was assigned a value of 0.25 in the work of Giardina et al.
(2015). Moreover, values of Poisson’s ratio in different sources range from 0.20 to 0.45
for medium to dense sand (Das, 2010; Gunaratne, 2006). Elastic modulus was assumed to
be constant (throughout the depth) in this research, despite the fact that it increases with
depth in cohesionless sands (Das, 2010). Giardina et al. (2015) used a linear relationship to
increase the soil elastic modulus with depth, with a value of 25 MPa at the surface. Zhao
(2008) presented values of secant Young’s modulus for fraction E sand based on triaxial
test results. The values of the elastic modulus for 0.01% axial strain were between 25 and
105 MPa. Representative values of Es given in Das (2010) range from 10 MPa to 70 MPa
for loose to dense sands. A representative value of 35 MPa was taken in this work to have a
constant elastic modulus.

Regarding the strength parameters of the soil, a friction angle of 35° and a dilation angle
of one third of the friction angle were assigned to the soil. Furthermore, a cohesion of 5 kPa
was used in the analyses to avoid numerical convergence problems. The unit weight of the
sand was 15.9 kN/m3. The chosen value of the friction angle is based on the approximate
values given in the literature for sand. Approximate values range from 30° to 40° from loose
to dense sands (Bowles, 1997; Das, 2010). Additionally, φ = 35° was also used by Elkayam
(2013) in his numerical verification of soil–structure interaction formulation (using FLAC3D)
for a soil composed of sand.

The dilation angle of cohesionless soils is usually small. Vermeer and Borst (1984)
reported that for a very dense sand, the dilation angle reaches 15° while it is just a few
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degrees for a loose sand. A dilation value of one third of the friction angle is 11.6° which is
below the maximum dilation angle proposed by Vermeer and Borst (1984). Vermeer et al.
(2002) also stated that the variation of angle of dilation did not have a significant effect on
the results of their tunnel head stability analysis. Furthermore, a set of simulations were
performed in this research in which the dilation angle of the soil varied from 0 to 23° with
and without a beam of 1 m thickness. It was found that there was no effect of the angle
of dilatation on the results. The details of the modelled soil and building used for this
verification is presented in Chapter 7.

It should be noted that if numerical analyses are performed using the Mohr–Coulomb
failure criterion with an associated plastic flow, the friction and the dilation angles will be
the same. This may lead to an overestimation of volume changes in granular soils when
plastic failure occurs. For this reason, non–associated plastic flow was proposed in which the
dilation angle is smaller than the friction angle (Liu, 2016).

The true cohesion of a dry sand is theoretically zero. As it will be explained in the
later sections in this chapter, numerical simulations of the tunnel construction adopted a
displacement control process. A very small value of cohesion caused some numerical
convergence problems; for this reason, a value of 5 kPa was chosen to eliminate such
problems. It is worth noting that in a set of simulations done in this work, the value of
cohesion was varied from 1 kPa to 5 kPa, but similar to the case of dilation angle, it showed
no effect on the results.

On the other hand, the building was assumed to be a concrete framed building; more detail
of the building geometry is presented in the relevant chapters. The concrete was assigned an
elastic modulus between 20 and 60 GPa with a Poissoin’s ratio of 0.15. The elastic modulus
was changed in some sections to investigate its effect on the soil–structure analysis results. A
value of 20 to 60 GPa for the elastic modulus yields a concrete compressive strength of about
18 to 163 MPa based on the relationship Ec = 4700

√
f ′c for normal concrete, where f

′
c is the

concrete compressive strength for a cylindrical sample (ACI-Building-Code, 2011). For the
majority of the simulations, realistic values of 23 and 30 GPa were used (which lead to a
compressive strength of 24 and 41 MPa, respectively).

Although values of concrete compressive strength greater than or equal to 41 MPa
are high for reinforced concrete buildings constructed in the past, they were chosen to
represent a reasonably stiff building so that a higher estimate of the building effect on
ground displacements due to tunnelling could be obtained. It is worth mentioning that based
on section 5.1.1 of ACI-Building-Code (2011), a concrete with a compressive strength of
less than 17 MPa should not be used in the design and construction of reinforced concrete
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Fig. 4.7 Tunnel simulation using displacement control method

structures, however the minimum recommended value is 21 MPa which approximately gives
an elastic modulus of 21.5 GPa.

4.8 Tunnel Construction

For tunnelling in an elastic-plastic medium, the tunnel excavation was simulated using the
displacement control method described by Cheng et al. (2007) in which the tunnel volume
loss was not distributed uniformly; the maximum displacement occurred at the crown while
there were no displacements at the invert. The direction of the displacement vectors were
oriented towards the centre of the converged tunnel. It should be noted that the tunnel
simulation was included in Chapters 7 and 8. For tunnelling in an elastic medium, Chapter 7
contains the suggestion of a method to simulate tunnelling and to evaluate soil–structure
interaction.

The modelled tunnel had a diameter of 4.65 m. Its depth was variable, and mentioned in
the relevant chapters. The tunnel was excavated instantaneously along its length creating a
plane strain problem in the greenfield situation. The boundaries of the model and the fineness
of the mesh were chosen after analysing different scenarios to eliminate their effects on the
analysis results. The size of the model is given in relevant chapters. As shown in Figure 4.7,
roller boundaries were applied to the soil model. The movement perpendicular to each plane
was fixed, and the other components were free.

Before starting the numerical excavation of the tunnel, initial soil stresses were calculated
and given to the FE program. The total vertical stress of the soil, which was also the total
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effective stress since the soil did not contain water, was calculated from: σs,v = γs × z where
σs,v is the soil vertical stress. The coefficient of lateral earth pressure, K0, was given to the
program to calculate the horizontal insitu stresses from: σs,h = K0 ×σs,v where σs,h is the
horizontal ground stresses. The coefficient of lateral earth pressure was assigned a value of
0.5 which was an assumed value for sands in centrifuge experiments (Elkayam, 2013; Zhou,
2014).

In the first step of the numerical tunnel construction, the nodes of the tunnel boundary
were fixed in all directions (x,y and z) and initial soil stresses were defined, as shown in
Figure 4.7a. The elements within the tunnel were removed prior to the tunnel construction.
In the second step, the nodes around the perimeter of the tunnel were displaced by an amount
calculated based on the predefined tunnel volume loss and assumed deformed shape. A
typical deformed tunnel is shown in Figure 4.7b.

4.9 Soil–Building Interface

ABAQUS offers various types of contacts (interaction and constraints) to model the contact
surface between two deformable bodies that are in touch at one or more points. Modelling the
contact behaviour between two surfaces is complicated and requires care and knowledge of
the user (SIMULIA, 2012). In this work, a tie constraint to model the soil–building interface
was used in the analyses where the building weight was not included, and surface-to-surface
contact was used in the analyses with weighted buildings.

A tie constraint firmly attaches two disconnected surfaces together for the duration of a
simulation, and does not allow any relative slip or separation between them. This type of
constraint is independent of the meshing type of the two bodies; it can be used to tie two
surfaces with dissimilar meshes.

A surface to surface contact has a normal and a tangential response. The chosen normal
behaviour has a hard contact. In the normal behaviour with a hard contact, separation
between the surfaces will not happen unless the contact pressure between them becomes
zero or negative. With regard to the tangential behaviour, it is a rough contact for some
simulations and a frictionless contact for others. The tangential component allows sliding of
surfaces relative to each other, with frictional shear stresses developing.

It is worth noting that none of these interfaces represent reality since separation is not
allowed and relative movement between the surfaces is prevented in some cases. There are
two main reasons for choosing these two interface types. A value of µ between 0 and 1 could
have been used, but it is difficult to know what value best represents reality. Choosing the
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upper and lower limits ensures that the behaviour of the contact interface falls between these
two limits. Second, the foundation of the building is not sufficiently stiff to allow separation
from the soil and to carry the applied building load without the aid of the underlying soil. It
should be mentioned that a detailed explanation of the contacts can be found in SIMULIA
(2012).



Chapter 5

Cantilever and Fixed–ended Approaches
for Estimating Building Bending
Stiffness

5.1 Introduction

Several researchers have investigated the effect of structural stiffness on tunnelling- or
excavation-induced ground movements, such as Potts and Addenbrooke (1997), Franzius
et al. (2006), Dimmock and Mair (2008), Goh and Mair (2014) and Giardina et al. (2015).
The methods used to estimate the stiffness of the building vary. Lambe (1973) algebraically
added the individual flexural rigidity of all floor slabs, (EI)sl , to calculate the whole building
stiffness: (EI)bldg = ∑(EI)sl . Potts and Addenbrooke (1997) and Franzius et al. (2006)
proposed Equations 3.25 and 3.30, respectively, to estimate the relative bending stiffness
of the building with respect to the underlying soil. Melis and Rodriguez Ortiz (2001) used
a similar approach to Lambe (1973) and estimated the bending stiffness of a building by
adding the cross sectional modulus of rigidity of all the floors, walls and the basement
together: Kb,bldg = α(EI)bldg, where (EI)bldg = ∑ [(EI)sl +∑(EI)walls +∑(EI)basement ] and
α is a reduction factor to take into account the effect of openings. More detail about the
previous work on the role of building stiffness in tunnel–building interaction was presented
in Section 3.7.1.

The accurate evaluation of building bending stiffness in tunnel-building interaction analy-
ses is clearly important. However, the real behaviour of three-dimensional (3D) buildings in
response to applied displacements from the ground is disregarded to a great extent. Results
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from the literature relating to numerical analyses of 3D buildings with structural members
provide a good general appreciation of tunnelling effects on buildings, but a detailed under-
standing of how each panel or storey behaves and how they contribute to the stiffness of
the entire building system is still missing. Furthermore, the available methods for building
stiffness estimation are mainly based on representing the building as a 2D beam or frame and
assuming it acts as a single entity, disregarding the effect of the stiffness contribution of each
storey to the global building stiffness. This chapter proposes new methods for estimating the
bending stiffness of 3D concrete framed buildings subjected to tunnelling induced ground
movements. The methods are based on results obtained from rigorous FE analyses that are
able to replicate the real behaviour of structures.

Two cases of tunnel locations are considered in this chapter. The first case (cantilever
approach) considers a tunnel located under the building edge or outside the building plan area.
The second case (fixed–ended approach) considers a tunnel with its centreline coinciding
with the building centreline.

5.2 General Principles

When a tunnel is constructed under a building, the induced ground displacements will cause
deformations to the building. Since the building has a stiffness, it will show a resistance
against deformations. The focus of this research is on the resistance of the building against
bending deformations. If it is assumed that the tunnel is constructed instantaneously along
its length, and the effect of the tunnel head advancement is not considered, the building will
deform only in the direction perpendicular to the tunnel axis. This means that the building
does not deform in the direction parallel to the tunnel axis; this is called one way deformation.

A 2D finite element analysis is sufficient to predict such ground movements if the
existence of the building is disregarded. When the presence of the building is simulated, a
3D finite element model is required since the behaviour of the building is three dimensional
despite having 2D ground displacements. This is because a concrete framed building consists
of different parts: foundation, columns, beams and slabs. This combination of parts does
not produce 2D behaviour because of the varying response of the different parts (i.e. axial,
flexural) and the space between the structural members. Therefore, this problem can be
expressed as a 2D problem globally (considering the global deformation of the soil and the
building), and a 3D problem locally for the building.

In this research, the simple definition of the beam bending stiffness is applied to estimate
the bending stiffness of the building (i.e., Equation 2.3: Kb = FK((EI)b/L3

b), where Kb is
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the beam bending stiffness, (EI)b is the flexural rigidity and Lb is the length). An analogy
is made between the induced deformation of the building and that of a loaded beam. This
analogy is fundamental to the proposed approaches as it allows relationships to be developed
which relate accurate assessments of building deformation obtained from finite element
analyses to those of a simple analytical expression for bending of a beam. All influential
parameters included in Equation 2.3 are taken into consideration. A new definition of the
beam cross section is introduced to calculate the cross sectional moment of inertia, I. Then,
numerical simulations are performed to estimate the correct value of FK (Equation 2.3). The
simple beam–analogy problem is then expanded to cover the effect of the whole building in
all directions.

It is worth noting that in this chapter, the building is treated as an independent entity with
respect to the soil and the foundation; the method solely focuses on determining the bending
stiffness of the building superstructure. A view of the building, including various geometric
parameters, is shown in Figure 5.1a. Furthermore, the analysis considers the interaction
between a newly constructed tunnel and an existing building that runs perpendicular to the
tunnel. The elastic modulus of the structural parts was 30 GPa throughout the analyses of
this chapter. It should also be noted that the element number (meshing) of numerical models
ranged from 150,000 to 700,000 elements.

5.3 Terminology and Assumptions

Within this chapter, the structure is a reinforced concrete framed building. A panel refers to
the combination of a slab, four beams and four columns with a length perpendicular and a
width parallel to the tunnel centreline. The slab of each panel has a clear width of Bsl and a
clear length of Lsl . The maximum size of the tested slabs in a panel was 7×8 m (Bsl ×Lsl)
due to the need for a very fine mesh to achieve accurate results (based on comparison to
analytical solutions). This maximum slab size represents a common panel size in buildings.
Figure 5.1a shows an isometric view of a framed building.

Each storey consists of a group of panels at the same level; the ground-floor is referred to
as the 1st storey (Figure 5.1a). An individual floor in a panel is made up of a slab and two
beams in the direction perpendicular to the tunnel (x-axis in Figure 5.1). The slab and the
beams in a floor are considered as a single entity, rather than separate structural elements, as
shown in Figure 5.2a.

The following assumptions are made in the analysis.

1. The behaviour of all structural members is elastic.
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2. The building is weightless.

3. All joints in the building are rigidly connected.

4. The width of the column cross section (parallel to the tunnel axis) coincides with the
width of the floor beam (bcol = b f b), and its cross sectional height (perpendicular to the
tunnel axis) coincides with the width of the supporting beam (hcol = bsb) (Figure 5.2a).

5. The bay length does not vary along the building length in each direction (e.g. all bays
in x-direction are of the same length, but not necessarily the same length as in the
y-direction). Furthermore, all storeys are the same in terms of dimensions and material
properties.

6. The stiffness of the loaded beam (Figure 5.2b,c) has no effect on the bending stiffness
of the floor, and the stiffness of all partition walls (bearing and non-bearing) has no
effect on the building bending stiffness. This is a common assumption in the structural
design of buildings (Mirhabibi and Soroush, 2013).

7. Tunnelling induced ground displacements are transferred through columns to the
loaded beam, which are then distributed uniformly over the floor cross section (the
slab and two floor beams), Figure 5.2a,b.

5.4 A cantilever Approach

The cantilever method applies to the case where the plan area of the building does not cover
more than half of the cross-section of the tunnel (or lies completely adjacent to the tunnel)
(Figure 5.1b). The analogy is made between the building and a cantilever beam because, in
the case where the tunnel is not located directly under the building and the soil displacements
that occur along the tunnel axis (y-axis in Figure 5.1) are constant, the deformed shape of
the building does not include a sagging zone and coincides well with the hogging shape of
a cantilever beam loaded at its end. The methodology and the results of the analyses are
presented in the following sections.

5.4.1 Methodology

The methodology considers the contribution of the various structural parts to the overall
stiffness of the building using five stages. Stage 1 compares the behaviour of a single floor
in an edge panel (Figure 5.2a) to that of a cantilever beam fixed at one end and loaded at
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Fig. 5.1 (a) Isometric view of framed building, (b) 2D view of building and tunnel, and (c)
cantilever beam
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the other (Figure 5.1c). Stage 2 determines the actual boundary condition of the cantilever
floor (which was assumed to be fixed in stage 1) by adding more bays in the x-direction
(Figure 5.2c). This step determines the value of FK in Equation 2.3. Stage 3 determines the
effect of adding storeys (Figure 5.2d). Stage 4 considers the effect of adding bays in the
y-direction. In stages 1 to 4, the assumption was made that only the first panel of the building
was affected by soil displacements; stage 5 considers the case where multiple x-bays are
affected (i.e. wider settlement trough).

Figure 5.3 demonstrates a flowchart of the methodology stages and coefficients introduced
in each stage.

5.4.2 Stage 1: cantilever beam analysis of single floor

If only the row of edge columns (Figure 5.1a) is subjected to downwards displacement
then edge floors will act as cantilever beams (Figure 5.1c). Equation 2.3 can be used for
calculating the bending stiffness of a cantilever beam using FK = 3. Numerical simulations in
this stage investigate how floors behave when they are fixed at one end and loaded at the other
in order to make a direct comparison with analytical results achieved using Equation 2.3.

Stiffness of beams was obtained numerically with a high degree of accuracy (less than
1% error). Figure 5.4 shows the ratio of analytically computed bending stiffness (Kb,b,an

from Equation 2.3) to the numerically obtained values (Kb,b,num) for two cantilever beams of
different cross sectional dimensions. The figure illustrates that there is an excellent agreement
between bending stiffness results of the analytical equation and the numerical simulation.

An edge floor can be represented by a cantilever beam if the transferred forces or
displacements are distributed uniformly over its cross section, as shaded in Figure 5.2c
(based on assumption 7 in Section 5.3). For this case, the moment of inertia of the floor
cross section (I f l) may be used in Equation 2.3. I f l includes the moment of inertia of both
floor beams and the slab as one rigid body, and is calculated using the parallel axis theorem.
Several numerical simulations were done to consider different dimensions of the structural
parts. The range of the dimensions are presented in Table 5.1, where tsl is the slab thickness,
and b f b, bsb are the cross sectional widths of the floor and supporting beams, respectively.

Table 5.1 Range of sizes of structural parts considered in stage 1 analyses

Parameter Lsl Bsl tsl b f b and bsb h f b and hsb
Range (m) 1 to 8 1 to 7 0.075 to 0.2 0.2 to 0.6 0.2 to 0.75
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Fig. 5.2 (a) Typical floor subjected to displacements, (b) conveying displacement effects
through columns to beams, (c) typical numerical model of a single storey, single y-bay
building, (d) single y-bay, multi x-bay and multi storey building
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Fig. 5.3 Flow chart of the analysis stages of the cantilever approach
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Fig. 5.4 Ratio of the analytical (Kb,b,an) to numerical (Kb,b,num) bending stiffness of beams

In this stage, the supporting beam shown in Figure 5.2c was not modelled. Instead, a fixed
boundary was applied to that end of the floor (at the end of length L f l , excluding bsb). The
applied distributed displacements to the floor cross section are also shown in Figure 5.2a. The
sum of the nodal reaction forces were determined and divided by the applied displacement to
obtain the numerically determined (subscript num) floor bending stiffness (Kb, f l,num, f ix) for a
fixed support (subscript f ix):

Kb, f l,num, f ix =
∑Pnodes

∆applied
(N/m) (5.1)

where ∑Pnodes is the sum of the nodal reaction forces created by the applied displacements,
and ∆applied is the applied displacement. For the cantilever approach presented in this section,
the subscript cant is added to bending stiffness notation: Kb, f l,cant,num, f ix.

Figure 5.5a shows the ratio of floor bending stiffness calculated using Equation 2.3
(Kb, f l,cant,an, f ix), where subscript cant indicates the cantilever approach, and an indicates an
analytically determined value, to that determined from the numerical analysis (Kb, f l,cant,num, f ix)
at different values of Lsl/Bsl . In one set of simulations, the slab width (Bsl) and beam cross
sections were constant and only the length of the slab (Lsl) was changed (variable Lsl). In
the other set, Lsl and beam cross sections were constant and Bsl was varied (variable Bsl).
Figure 5.5a demonstrates that the deflection of the edge floors subjected to displacements
along their exterior edge is very close to that of a cantilever beam when Lsl/Bsl > 1.25
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(difference of less than 10%). Therefore, Equation 2.3 can be used directly to compute its
bending stiffness when Lsl/Bsl > 1.25.

(a) (b)

Fig. 5.5 (a) Ratio of analytical to numerical floor bending stiffness for different Lsl/Bsl values,
(b) effect of 2I f b/Isl on floor bending stiffness

The reason for the slight overestimation of the floor bending stiffness for Lsl/Bsl > 1.25
when using Equation 2.3 is related to the difference in the bending stiffness of the individual
slab and beams in the floor system. In a monolithically cast beam-slab system, the interior
and edge beam cross sections will be T- or L-shaped, as shown in Figure 5.6a (e.g. see
McCormac and Brown, 2014; Wight and MacGregor, 2009). When Bsl is small compared to
Lsl , a significant part of the slab acts as a beam (be f f , as illustrated in Figure 5.6a), which
produces a beam behaviour in the global floor. The size of be f f depends on Lsl . The criteria
of calculating the length of the slab that works with the beam can be found in different
building codes (Bhatt et al., 2006). Furthermore, when Lsl is large, both floor members (the
beams and the slab) are sufficiently flexible to deform together when they are affected by a
load. Therefore, when the beam behaviour is dominant in the floor system, the floor bending
stiffness can be calculated reasonably well using Equation 2.3.

For Lsl/Bsl ≤ 1.25 (i.e. small Lsl or large Bsl), a smaller portion of the slab will act as a
beam (small be f f ) and the remaining portion of the slab will be of considerable size in the
floor system. In such cases, the bending stiffness of individual beams becomes considerably
larger than that of the slab due to having a larger cross sectional height (greater moment of
inertia). For this reason, the force required to displace the slab by a specific amount will be
smaller than for the beams. This means that, regardless of how a uniform displacement is
applied to the cross section of the floor in the numerical analysis, the corresponding forces
will not be uniform over the floor cross-section; the slab will have smaller forces than the
beams. In Equation 2.3, the slab and the beams in the floor system are assumed to show the
same stiffness and deflect by the same amount. Therefore, the summation of Pnodes in the
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Fig. 5.6 (a) Effective beam width (be f f ) in edge or interior beams, (b) beam and slab parts
for the calculation of the moment of inertia of floor cross section

numerical analysis leads to a lower value of bending stiffness of the floor system compared
to that calculated using Equation 2.3.

It is worth mentioning that even for larger values of Lsl , an increase of Bsl still causes the
mentioned problem but the magnitude of Lsl reduces the scale of difference in the bending
stiffness between the numerical and analytical estimations. This is because the effect of Lsl in
the computation of a member’s bending stiffness is dominant (raised to the power 3). Larger
values of Lsl result in smaller values of bending stiffness and, in turn, reduce the role of the
flexural rigidity of the floor which is the main cause of the difference between the numerical
and analytical computation of the bending stiffness.

The ratio of the bending stiffness of floor beams (2Kb, f b) to that of the slab (Kb,sl) in the
floor system also has a considerable effect on the stiffness overestimation of floors with small
lengths (Lsl). Simulations were conducted in which the length and the elastic modulus of
the beams and slabs were kept the same. Therefore, the ratio of bending stiffness of beams
to that of the slab can be taken as the ratio of the moments of inertia: 2I f b/Isl , as plotted in
Figure 5.5b for two specific cases of Lsl/Bsl .

Based on the numerical results of varying Lsl , Bsl and 2I f b/Isl , a coefficient Cb f ,cant

(Equation 5.2) can be used to modify the analytical floor bending stiffness calculated by
Equation 2.3 to reasonably match the numerical model results of the bending stiffness
of a cantilever floor when Lsl/Bsl ≤ 1.25. This coefficient takes into account the ef-
fects of the moment of inertia of the slab and floor beams, and is approximately equal to
Kb, f l,cant,an, f ix/Kb, f l,cant,num, f ix.

Cb f ,cant =

(
6I f b

Isl

) Bsl
20Lsl

≥ 1.0 (5.2)
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Fig. 5.7 Comparison of Kb, f l,cant,an, f ix/Kb, f l,cant,num, f ix and Cb f ,cant for different values of
Lsl/Bsl

where values of I f b and Isl are calculated independently of each other according to the
cross-sectional areas shown in Figure 5.6b. The main factor causing the differences between
numerical and analytical results is the bending stiffness of the beams, which is largely
affected by Lsl . For this reason, in the expression of Cb f ,cant , the term (2I f b/Isl) is factored
by 3 and Lsl by 20. Figure 5.7 illustrates the good fit obtained by using Cb f ,cant (i.e. a good
match with Kb, f l,cant,an, f ix/Kb, f l,cant,num, f ix).

To summarise, the analytically computed bending stiffness of the floor is satisfactory when
Lsl/Bsl > 1.25; otherwise it should be divided by Cb f ,cant to obtain a good approximation of
the numerical bending stiffness of the floor:

Kb, f l,cant,eq, f ix =
Kb, f l,cant,an, f ix

Cb f ,cant
(5.3)

where Kb, f l,cant,eq, f ix is the equivalent bending stiffness of the fixed support floor (subscript
eq denotes an equivalent parameter based on a curve-fitting coefficient C).

5.4.3 Stage 2: evaluation of floor boundary condition

In stage 1, the simulations were performed on fixed-ended floors, however this case does
not reflect the reality of framed buildings. To evaluate the effect of the real degree of end
fixity of the loaded floor, numerical simulations were performed including additional (up to
6) panels in the x-direction. Figure 5.2c shows an illustrative numerical model of a single
storey building with a single bay in the y-direction and multiple bays in the x-direction. The
range of dimensions of the structural parts considered are presented in Table 5.2. It is worth



5.4 A cantilever Approach 101

noting that column cross sectional dimensions depended on the cross sectional dimensions
of the floor and supporting beams (i.e. hcol = bsb and bcol = b f b).

Table 5.2 Range of sizes of structural parts considered in stage 2 analyses

Parameter Lsl Bsl tsl b f b and bsb h f b and hsb Lcol
Range (m) 3.5 to 8 2.5 to 7 0.075 to 0.175 0.15 to 0.4 0.25 to 0.6 1.75 to 4

Six scenarios were analysed; first considering only one x-panel and subsequently adding
panels in the x-direction. The numerical simulations were conducted as follows: a fixed
boundary was applied to the bottom of all columns except the virtual (displaced) columns
(Figure 5.2c). First, only the loaded panel (x0y0 in Figure 5.2c, including the loaded floor,
supporting beam and two columns at x1) was included in the analysis. A specific uniform
displacement was applied to the cross section of the loaded floor and the nodal reaction forces
were determined. The floor bending stiffness was then calculated based on Equation 5.1.
One supporting panel (Figure 5.2c) was then added to the analysis and the same procedure
was repeated to determine the floor bending stiffness of the loaded panel. This process was
repeated until five supporting panels were added to the analysis. Note that in all simulations,
the displacements were only applied to the cross section of the loaded floor.

Adding supporting panels provides an additional degree of end fixity to the loaded floor,
which effectively specifies the value of FK in Equation 2.3 for the loaded panel. The degree
of end fixity here means how the supported end of the floor is constrained. The term is related
to the connection of the loaded floor to the supporting beam and columns. If the connection
does not allow the rotation of the member, the end is perfectly fixed; if some rotation is
allowed, there will be a degree of end fixity which restricts the rotation of the member to
some extent (between a hinge and fixed support).

The addition of a single supporting panel (panel x1y0 in Figure 5.2c) provides significant
resistance against rotation to the supporting beam, and increases the degree of floor end fixity.
The degree of end fixity of a loaded floor (connected to supporting panels) can be related to
the bending stiffness of the fixed support scenario of that floor (from stage 1). It can be defined
as the ratio of the bending stiffness of the loaded floor in a single storey, one y-bay numerical
analysis (Kb, f l,cant,num,1s,1y) to that obtained for a fixed-ended loaded floor (Kb, f l,cant, f ix

from stage 1). Figure 5.8a shows the variation of Kb, f l,cant,num,1s,1y/Kb, f l,cant,num, f ix with the
number of supporting panels for three cases of bsb/hsb. The numerical results show that the
addition of more than one supporting panel has a negligible effect on the change of bending
stiffness.
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Fig. 5.8 (a) Effect of supporting floors on the end fixity of the loaded floor, (b) the ratio
of Kb, f l,cant,single panel/Kb, f l,cant,num, f ix, (c) comparison of proposed Cbc,cant values (Equa-
tion 5.4) with numerical results
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The bending stiffness of the floor for the loaded panel alone (without supporting panels)
depends on the stiffness of the supporting beam and columns (x1y0 and x1y1 in Figure 5.2c).
The ratio of bsb/hsb is also an influential parameter as it has a significant effect on the rotation
of the loaded floor and provides its end fixity. Figure 5.8a illustrates that the bending stiffness
of a single loaded panel is very small compared to the bending stiffness of its fixed-ended
scenario (i.e from stage 1). Furthermore, the ratio of bsb/hsb is not an effective parameter for
the floor bending stiffness when the loaded floor is connected to supporting panels.

Figure 5.8b presents the ratio of the bending stiffness of a floor in a single panel
(without supporting panels), Kb, f l,cant,single panel , to that of a fixed floor, Kb, f l,cant,num, f ix

(Kb, f l,cant,single panel/Kb, f l,cant,num, f ix). It is shown that the bending stiffness of a single
loaded panel could be of moderate value compared to the bending stiffness of its fixed-ended
scenario (i.e. Kb, f l,cant,single panel/Kb, f l,cant,num, f ix ≥ 0.1) when there is a supporting beam
with a considerable width (i.e. beams having bsb/hsb ≥ 1.0). In terms of structural design of
buildings, these ratios of bsb/hsb can be considered unrealistic. This is because beams are
mainly designed to resist shear and bending moments which require greater cross sectional
heights than widths; torsion problems are generally dealt with using reinforcement in the
beam. In addition, there is no torque on the interior beams of equal spans in static load cases.
Furthermore, a building with only a single panel is not realistic. Therefore, the floor bending
stiffness of a single panel (with no supporting panels) was disregarded.

It is worth noting that the foundation rigidity is also an important factor affecting the
bending stiffness of the superstructure but its effect is eliminated by assuming fixed bound-
aries at the bottom of the first storey columns. This assumption is one of the choices of
the base column boundary condition in the structural analysis of framed buildings. Duggal
(2009) explained that when small column bending moments due to lateral loads work in
combination with large axial loads, and large foundations are provided, the boundary of the
base columns can be assumed fixed. Furthermore, McCormac and Brown (2014) stated that
fixed end base columns can be assumed for buildings with gravity loads applied to their
floors or roofs.

The stiffness of the supporting beam, two supporting columns (x1y0 and x1y1 in Fig-
ure 5.2c) and the floor of the first supporting panel (panel x1y0 in Figure 5.2c) have the most
significant effect on the degree of end fixity of the loaded floor. Based on these parameters,
the following modification coefficient Cbc,cant is proposed to estimate the degree of end fixity
of the loaded floor:

Cbc,cant =
Kc,S f l +Kc,sb +2Kc,col

Kc,L f l +Kc,S f l +Kc,sb +2Kc,col
< 1.0 (5.4)
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where Kc,S f l = (EI/L) f l is the stiffness of the supporting floor, Kc,L f l = Kc,S f l is the
stiffness of the loaded floor, Kc,sb = GbJsb/Lsb is the torsional stiffness of the support-
ing beam (subscript sb), Gb = Eb/2(1+ νb) is the shear modulus of the beam material,
Jsb = (bsbhsb/12)× (b2

sb + h2
sb) is the polar moment of inertia, Lsb is the supporting beam

length (equal to the slab width Bsl), Kc,col = (EI)col/Lcol is the column stiffness, and Lcol

is the column height. Note that the Kc terms are stiffness parameters used for calculating
coefficients, with units of Nm (as opposed to beam/building bending stiffness parameters,
Kb, with units of N/m). The coefficient Cbc,cant can be used to evaluate the bending stiffness
of the loaded floor in the first storey of a single y-bay building using:

Kb, f l,cant,eq,1s,1y =Cbc,cant ×Kb, f l,cant,eq, f ix (5.5)

where Kb, f l,cant,eq, f ix is obtained from Equation 5.3. Figure 5.8c compares results of Cbc,cant

using Equation 5.4 with Cbc,cant,num = Kb, f l,cant,num,1s,1y /Kb, f l,cant,num, f ix, an equivalent co-
efficient determined from numerical analyses. The results show that the equivalent values
using Equation 5.4 give a satisfactory match to the numerical results.

5.4.4 Stage 3: effect of adding storeys

Numerical analyses were conducted to evaluate the stiffness effect of adding up to 10 storeys
to the single y-bay building from stage 2, as shown in Figure 5.2d. The sizes of floors,
beams and columns considered were the same as in stage 2 (Table 5.2). The area of applied
displacements is consistent with stage 2, as indicated in Figure 5.2d. For a given number
of x-bays (up to 10), numerical analyses were conducted sequentially by adding additional
storeys. The first storey is used as a reference for which the bending stiffness is compared
when additional storeys are added, thereby illustrating the additional bending stiffness each
storey contributes.

Columns transfer foundation displacements to upper storeys, but they also convey the
stiffness contribution of upper storeys to the foundation. The influence of a storey on the
overall structural response is therefore proportional to the relative stiffness of columns
compared to the connected floors. The ratio of column stiffness to that of the upper floor
can be used as a parameter to quantify this effect. In this way, the column stiffness takes
into account the distance between floors. When the global building system is considered, the
influence of the distance from the foundation to the considered floor is also important. Based
on these two factors, a column-floor stiffening effect coefficient Cc f ,cant is introduced:
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Cc f ,cant,i =
2Kc,col

2Kc,col +Kc,L f l
×
(

Lcol,i

h f l,i

)
(5.6)

where subscript i indicates a measurement for the ith floor, Lcol,i is column height, and h f l,i is
the total height between the ith floor and the foundation, as shown in Figure 5.2d.

The reason for calculating bending stiffness of the loaded floor in the first storey is
because of the building bending behaviour when affected by tunnelling. The first storey
is initially influenced by displacements from the ground, then the structural parts transfer
this effect to the upper storeys. Based on the numerical results, the storey which was in
direct-contact with the first storey (i.e. the 2nd storey) had the greatest effect on the structural
response of the building. This effect decreased gradually for higher storeys. There are
different causes for the reduction of the stiffness contribution of upper storeys to the building
global bending stiffness.

Columns are connected to the foundation and floors at specific locations; the areas
between successive columns deform differently from the areas connected to the columns.
This open space is not able to transfer the foundation deformations to the upper floors. If
floors were continuously connected (e.g. reinforced concrete walls) then the maximum
interaction effect between the foundation and the upper storeys would be achieved. It is for
this reason that in each storey, the stiffness of the columns and of the upper storey has the
dominant role in transferring the stiffness effect of the upper storey to the lower one.

It was found that the contribution of the stiffness of upper storeys to the global building
bending stiffness diminishes after the second storey, as demonstrated in Figure 5.9, where ∆ is
the displacement measured at the top of the cross section of the edge floors, ∆max is the applied
displacement to the loaded floor (1st storey) which is the maximum displacement among the
storeys of the building, P is the created force due to the applied displacements, and Pmax is
the largest induced floor force among the floor forces of the building. To show the reduction
of the stiffness contribution of upper storeys to the global building bending stiffness, the
displacements created at each storey in an 11 storey building, with their corresponding forces,
are plotted in Figure 5.9. It is shown that the trend of the displacements is approximately
constant and most of the displacements from the first storey are transferred to the upper
storeys, while the forces required to produce these displacements decrease remarkably due to
the flexibility of the upper storeys.

Note that for force calculation, floor bending stiffness in each storey was achieved by
taking away bending stiffness of a building with (m− 1) storeys from that of m storeys
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Fig. 5.9 Change of displacements and forces with storey number for an 11 storey building

(Kb,m storeys −Kb,(m−1) storeys). In this way, bending stiffness of each floor was obtained and
multiplied by the produced displacement to get the required force

Another essential factor causing the decreased bending stiffness of the upper storeys is
that as the building height increases, the whole building becomes more flexible to lateral
deflection. This is because the building acts as a cantilever beam constrained at its base
(foundation). This leads to greater deformations at points further from the foundation.

A coefficient CKus,cant,i is defined as the ratio of the increased bending stiffness of the
superstructure due to the addition of the ith upper storey (subscript us) to the bending stiffness
of the first storey. Figure 5.10 illustrates how the addition of x-bays and storeys affects
the value of CKus,cant . The number of x-bays is shown to have an effect on CKus,cant up to
approximately 8 (Figure 5.10a). Figure 5.10b plots the value of CKus,cant obtained for each
storey within a 7-storey building with 3, 6, and 9 x-bays. The data illustrate the decreasing
trend of CKus,cant with storey number as well as the increase of CKus,cant with number of
x-bays.

The numerical analyses indicated that CKus,cant has a logarithmic relationship with Cc f ,cant ,
as illustrated in Figure 5.11 for cases of high, intermediate, and low column stiffness relative
to the loaded floor stiffness (2Kc,col/Kc,L f = 0.905, 0.617, and 0.207, respectively) in a 6
storey building; the data can be reasonably well fitted with the following curve:

CKus,cant,i = log10(Cc f ,cant,i)+αKus,cant ≥ 0.0 (5.7)

where αKus,cant accounts for the effect of the ratio of building length in the x-direction, Lx,bldg,
to the storey height, Lcol . Note that the effect of distance of each storey from the foundation
is included in coefficient Cc f ,cant (Equation 5.6). Figure 5.12 illustrates the relationship
between αKus,cant,num, obtained from the numerical results, and the ratio Lx,bldg/Lcol . The
numerical data in Figure 5.12 was fitted using the following expression:



5.4 A cantilever Approach 107

Fig. 5.10 (a) Effect of x-bays on CKus,cant of uppermost floor, and (b) change of CKus,cant with
storey number for a 7-storey building.

αKus,cant = 1.9
(

Lx,bldg

Lcol

)0.2

(5.8)

The stiffness contribution of each storey is obtained by multiplying CKus,cant,i by its floor
bending stiffness, Kb, f l,cant,eq,i,1y (note that, based on assumption [5] that floor parameters
remain constant across all storeys, Kb, f l,cant,eq,i,1y = Kb, f l,cant,eq,1s,1y, which is calculated
in stage 2 of the analysis). The bending stiffness of the entire multi-storey (subscript ms)
single y-bay building (Kb, f l,cant,eq,ms,1y) is then obtained by summing the individual storey
contributions:

Kb, f l,cant,eq,ms,1y =
m

∑
i=1

(
CKus,cant,i ×Kb, f l,cant,eq,i,1y

)
(5.9)

where m is the total number of storeys. Figure 5.13 compares the bending stiffness of
single y-bay buildings computed using the proposed method (using stages 1 to 3) with their
equivalent numerical results. The figure includes 208 data points including buildings from 1
to 11 storeys.

5.4.5 Numerical verification of stages 1 to 3

To validate stages 1 to 3, a single y-bay, eleven-storey building made of concrete with an
elastic modulus of 30 GPa was numerically modelled in a way that the virtual columns
(Figure 5.2c) which were removed in the previous simulations were added to the model and
the displacements were applied to their bases. Using this technique allows the transfer of
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Fig. 5.11 Relationship between CKus,cant and Cc f ,cant for a 6-storey building with varying
column stiffness

Fig. 5.12 Comparison between αKus,cant values obtained from curve fitting of numerical
results, and proposed values calculated by Equation 5.8
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Fig. 5.13 Bending stiffness of single y-bay, multi-storey (up to 11 storeys) buildings: proposed
method (Kb, f l,cant,eq,ms,1y) versus numerical results (Kb, f l,cant,num,ms,1y)

the displacements through the columns to floors, and eliminates the assumption of applying
uniform displacements to the cross section of the first floor.

Column dimensions were 0.4×0.4×4 m (bcol , hcol and Lcol , respectively), floor and
supporting beam dimensions were 0.4×0.6 m (b f b or bsb, and h f b or hsb, respectively), and
slab dimensions were 7×8×0.175 m (Bsl , Lsl and tsl , respectively).

Figure 5.14a shows the CKus,cant values for the numerical and the proposed methods.
There is generally good agreement between the coefficients. It is shown that there is a small
difference between the coefficients of the numerical and the proposed methods after storey
8. To show the effect of this difference, the ratio of the numerical to empirical bending
stiffness of building storeys is presented in Figure 5.14b, which shows that the ratios of
Kb, f l,cant,eq,ms,1y/Kb, f l,cant,num,ms,1y are close to 1.0 and the stiffness difference between the
two methods is negligible.

5.4.6 Stage 4: effect of adding y-bays in direction of tunnel

This section considers the effect of adding bays in the direction of the tunnel (y-direction)
to the stiffness of the building. Figure 5.15a demonstrates the change of CKus,cant for each
storey of a 5-storey building as the number of y-bays is increased from 1 to 3, based on
the numerical analyses. The value of CKus,cant for the ith floor was calculated from the
numerical results as (K f l,cant,i −K f l,cant,(i−1))/K f l,cant,1. Also included in Figure 5.15a are
values obtained using the proposed method (Equation 5.7) for a single y-bay building.
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Fig. 5.14 (a) Comparison of CKus,cant between numerical and the proposed methods, (b)
comparison of bending stiffness values of the superstructure between the numerical and the
proposed methods

Fig. 5.15 (a) Comparison between numerical and proposed values of CKus,cant considering
buildings with different numbers of y-bays, (b) comparison of the numerical bending stiffness
of multi y-bay buildings with their equivalent calculated values based on stages 1 to 4
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The numerical results show that the addition of each y-bay increases the bending stiffness
of the building superstructure by approximately 60% of the bending stiffness of a single
y-bay building. For this reason, Equation 5.10 is proposed to estimate the bending stiffness
of a multi-storey building with multiple y-bays (subscript my), Kb, f l,cant,eq,ms,my:

Kb, f l,cant,eq,ms,my = (1+0.6(ny −1))×Kb, f l,cant,eq,ms,1y (5.10)

where ny is the number of y-bays. An example calculation of building stiffness using
the proposed method is provided in Appendix A. Figure 5.15b shows the comparison of
the bending stiffness of multi y-bay buildings obtained from the numerical analyses, and
calculated using the proposed method (stages 1 to 4). The buildings range from 2 to 3 y-bays,
and 1 to 7 storeys.

5.4.7 Stage 5: considering multiple x-bays affected by ground displace-
ments

The numerical simulations thus far only considered the case where one edge panel of the
building was subjected to downward displacements (i.e. affected by tunnelling settlements).
When more panels are affected, the bending stiffness of the building will decrease dramat-
ically due to the increased deflected length of the building (bending stiffness is inversely
proportional to the cube of affected length, as in Equation 2.3).

Figure 5.16 shows a tunnel constructed close to a building. If the building is located
entirely inside the displaced soil zone, the bending stiffness of the superstructure will not
have a significant contribution to the global building bending stiffness because the whole
structure is subjected to rotation. This rotation does not allow the building to provide any
resistance against the produced bending deformations. As explained in previous sections,
the resistance of the building against bending deformations is achieved when a part of the
building is located outside the displaced soil zone, providing a degree of end-fixity.

To consider the effect of the influenced length of the building, numerical simulations
were performed to evaluate how bending stiffness of a storey decreases when more panels are
affected by ground displacements. It was assumed that the building behaves like a cantilever
beam subjected to multiple loads, as shown in Figure 5.17. Multi-storey buildings with 1
y-bay and 8 x-bays were numerically simulated. The number of affected panels considered
was 1, 2, 3 and 4; the bases of columns in the unaffected zone were fixed. The displacement
was modelled by applying forces at the locations of the affected columns; the applied forces
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Fig. 5.16 Soil and building zones affected by tunnelling induced ground displacements

Fig. 5.17 A cantilever beam subjected to multiple loads

changed linearly from a maximum value above the tunnel centreline to zero at the columns
in the unaffected zone.

The analytical bending stiffness of a beam subjected to multiple loads is significantly
more complicated than for a single load. A simplified method for approximating bending
stiffness of a building subjected to multiple loads is proposed using the following expression:

Kb,multi load =
P1Lb1 +P2Lb2 + ...+PnLbn

∆b1Lb1 +∆b2Lb2 + ...+∆bnLbn
(5.11)

where P is a concentrated load, ∆b is deflection at the location of P, Lb is the distance from P

to the end of the affected zone (i.e. beginning of the assumed fixity), and subscripts 1,2, ... n

represent the column locations, starting from that nearest to the tunnel. Equation 16 is simply
a weighted representation of bending stiffness considering the multiple locations of the loads
and measured displacements and is used to obtain the general trend of bending stiffness
reduction of a beam subjected to multiple loads in comparison to a beam subjected to a single
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Fig. 5.18 (a) Reduction of building bending stiffness with number of panels located in
displaced zone, (b) comparison between numerical and proposed values of CK,reduct,cant

load. Note that Equation 5.11 is the same as Equation 5.1 when the beam is subjected to a
single force.

A reduction factor, CK,reduct,cant , is defined as the ratio of the bending stiffness of a
building with multiple affected panels to its bending stiffness with one affected panel. This
allows the conversion of the building bending stiffness calculated in Stages 1-4 (based on
one affected panel) to one which considers the actual number of affected panels (based on an
assumed settlement profile).

Figure 5.18a plots results for a single y-bay, 8 x-bay, 1 storey building when the number
of affected panels is increased from one to four and illustrates that there is a dramatic
reduction of the building bending stiffness when two or more panels are affected by ground
displacements. The results also indicate that CK,reduct,cant is insensitive to panel size (Lsl/Bsl).
Figure 5.18b shows results for the same building but with additional storeys added; a slight
increase in the value of CK,reduct,cant is noted for multi-storey buildings. Based on these
numerical results, CK,reduct,cant can be expressed as:

CK,reduct,cant = Fst ×
L3

xbay

L3
in f

(5.12)

where Lxbay is the length of one bay in the x-direction (Figure 5.16), Lin f is the length
of the building located inside the affected zone (Figure 5.16), and Fst =1 and 2 for one-
storey and multi-storey buildings, respectively. The value of Lin f can be calculated as(
Lin f = Lds −LT B

)
≤ Lbldg, where Lds is the length of the displaced zone and LT B is the

horizontal offset of the building edge to the tunnel centreline (see Figure 5.16). For practical
purposes, Lin f should correspond to the location of a building column.
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The final value of the building bending stiffness, Kb,cant,eq,bldg, can be calculated using:

Kb,cant,eq,bldg =CK,reduct,cant ×Kb, f l,cant,eq,ms,my (5.13)

where CK,reduct,cant = 1 if tunnelling settlements only affect the first x-bay or calculated using
Equation 5.12 otherwise.

5.4.8 Comparison with other methods

For comparison against the 2D analysis methods of Lambe (1973) and Goh and Mair (2014),
a 2D based calculation of EI from the method proposed here is used. It is worth noting
that the proposed method is based on 3D buildings where bending stiffness of the whole
building is calculated rather than the cross sectional flexural rigidity. To show an approximate
comparison with the available 2D methods, coefficient CKus,cant is used to consider the
contribution of the EI of each storey to the global EIbldg. The procedure is as follows. The
value of EI f l was calculated for the cross section of each floor. It should be noted that I f l

was calculated using the parallel axis theorem, as explained in Section 5.4.2 (stage 1). The
values of CKus,cant based on the proposed method (stages 1 to 3) were then calculated for
each storey (above the first storey) in the building. Finally, the increase of EI f l of the first
storey due to the effect of EI f l of the upper storeys was computed to obtain the global EIbldg.

For the approach of Lambe (1973), EI of all floor slabs was added together to achieve EI

of the whole building. For Goh and Mair (2014), Equation 3.36 was used to compute the
column stiffening factor (Ccol) assuming L2

sag,hog/L2
bay = 1, indicating that only one bay of

the frame was affected by ground displacements.
With regard to the 3D buildings, the proposed method was compared against the bending

stiffness obtained using the approaches of Potts and Addenbrooke (1997) and Franzius et al.
(2006) as well as results obtained from the numerical analyses conducted as part of this
project (details of the numerical models were presented in stages 1 to 3). For both 2D and
3D cases, the comparison was made for a multi-storey (1 to 11) single y-bay building with
the parameters given in Table 5.3.

Figure 5.19 shows that the approach used by Lambe (1973) results in the lowest values
of EIbldg because it disregards the effect of the interaction between the slabs through their
connecting links. In the Lambe (1973) method, each slab in the building system is subjected
to bending deformations independently, hence the moment of inertia of the building is a
straightforward addition of the moment of inertia of each slab and does not consider the



5.4 A cantilever Approach 115

Fig. 5.19 Comparison of EIbldg between the proposed method and approaches suggested by
Lambe (1973) and Goh and Mair (2014)

effect of the distance between the slabs and the axis about which bending of the building
occurs.

Table 5.3 Sizes of structural parts (1 to 11 storey building) considered in 2D and 3D compar-
ative analyses

Parameter Lsl Bsl tsl b f b and bsb h f b and hsb Lcol
Dimension (m) 8.00 7.00 0.175 0.40 0.60 4.00

The trend of the EIbldg curves of the proposed method and the method of Goh and Mair
(2014) are similar but EIbldg values of the proposed method are greater by approximately
27% (average). EIbldg values and their trends will change for different frame geometries.
For that reason, it is more logical to plot the column stiffening factor (Ccol) and CKus,cant

to indicate their difference in estimating the value of EIbldg. Figure 5.20 displays Ccol of
Goh and Mair (2014) and CKus,cant of the proposed method with the numerically predicted
coefficients for an 11 and 6 storey building. The stiffening factor proposed by Goh and
Mair (2014) is constant and, similar to the approach of Lambe (1973), disregards the effect
of the distance between the desired floor and the axis about which the building bends (i.e.
the foundation level). For an 11 storey building, this leads to an underestimation of EI

contribution of storeys close to the foundation and an overestimation of EI contribution of
higher storeys to the global EIbldg. Figure 5.20a shows that stiffening factors calculated
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Fig. 5.20 Comparison of Ccol and CKus,cant between the proposed method, the approach
suggested by Goh and Mair (2014) and numerically predicted values for (a) an 11 storey, and
(b) a 6 storey building

based on the Goh and Mair (2014) approach were underestimated for storeys 1 to 7 while
they were overestimated for storeys 9 to 11.

If a 6-storey building with less stiff columns is considered, for instance Kc,col = 0.29×
107 Nm and Kc,sb = 2.25×107 Nm, the Goh and Mair (2014) method will lead to a similar
value of EIbldg to the numerical result because column stiffening factors in the Goh and Mair
(2014) method will be reasonably large and constant for all storeys while these factors in the
numerical analysis start from high initial values to low final values, as shown in Figure 5.20b.
If the building were more than 6 storeys, the Goh and Mair (2014) method would start to
overestimate EIbldg because it disregards the reduction of the stiffening factor for the upper
storeys.

On the other hand, the assumed influenced part of the building by tunnelling was only
one bay. In case of having more than one bay affected by tunnelling, the magnitude of
L2

sag,hog/L2
bay in the method of Goh and Mair (2014) would increase and lead to a significant

increase of the magnitude of EIbldg. Furthermore, the value of bending stiffness calculated
using the proposed method, and that obtained from the numerical analysis would reduce
considerably. This would increase the difference between the calculated EIbldg using the
Goh and Mair (2014) method, and that of the proposed and numerical methods.

A comparison of bending stiffness of the mentioned 3D building (Table 5.19) between
the numerical prediction and the method proposed in this chapter, Potts and Addenbrooke
(1997) and Franzius et al. (2006) is presented in Figure 5.21a for five buildings of 2, 4, 6,
8 and 10 storeys. The bending stiffness values of the two latter methods were too large
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Fig. 5.21 (a) Comparison of a 3D building bending stiffness using different methods, (b)
comparing computed building bending stiffness using different methods with the numerically
achieved bending stiffness for buildings of multiple y-bays

to be plotted on a normal axis figure with the two former methods. For this reason, the
y-axis of Figure 5.21a was chosen to be logarithmic. The building bending stiffness was
calculated as (EI)bldg/(Lbldg/2)4 in the Potts and Addenbrooke (1997) approach, and as
(EI)bldg/(BbldgL2

bldg) in the Franzius et al. (2006) method, where Lbldg = 34 m.
It should be noted that the stiffness unit of the Potts and Addenbrooke (1997) method is

N/m2 which is different from that of the other methods. It is not very logical to compare two
properties with different units, however what is presented here is only to give an idea to the
reader about bending stiffness values achieved using different approaches. Furthermore, the
building stiffness calculation proposed by Potts and Addenbrooke (1997) and Franzius et al.
(2006) are not only related to the building but they are parts of relative stiffness equations to
consider the soil-building relative stiffness (Equations 3.25 and 3.30).

The moment of inertia of the building in methods proposed by Potts and Addenbrooke
(1997) and Franzius et al. (2006) were calculated using the parallel axis theorem which
resulted in a large overestimation of the real building bending stiffness. In addition, the
boundary condition and the length of the building subjected to ground deformations due
to tunnelling are not taken into consideration in these methods. The bending stiffness for
a considerably long building with a small part affected by ground deformations will be
underestimated while the stiffness of a short building located entirely within the affected
zone will be overestimated. This does not give a good representation of reality since building
bending stiffness should decrease with the increase of its deformed (affected) length, and
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should increase with the increase of the degree of its end fixity due to a better constriction of
the building against rotation.

Figure 5.21b compares the bending stiffness of a range of multi y-bay buildings calculated
by the proposed method of this work (based on stages 1 to 4), and the approaches of Potts
and Addenbrooke (1997) and Franzius et al. (2006). There is a good agreement between the
numerical results and those of the proposed method, while there is a general overestimation
of the building stiffness using the approaches of Potts and Addenbrooke (1997) and Franzius
et al. (2006).

5.5 A fixed–Ended Approach

A fixed–ended method applies to the case where the tunnel is located exactly under the
centreline of the building plan area (Figure 5.22b). The similarity between a building and
a beam is based on the fixed–ended beam analogy. This is because in such cases where
the tunnel is located directly under the building centreline and the soil displacements that
occur along the tunnel axis (y-axis in Figure 5.1) are constant, the building will deform
symmetrically about its centreline. The deformation that occurs at the building centre is
larger than that of its edges, and both sagging and hogging zones will be created in the
deformed shape of the building. This shape of deformation is similar to that of a beam fixed
at its ends and loaded at the midpoint. The methodology and the results of the analyses are
presented in the following subsections. It should be mentioned that the assumptions made in
Section 5.3 are also applied to the fixed–ended approach.

5.5.1 Methodology

The methodology of the fixed–ended approach is similar to that of the cantilever approach
(Section 5.4) to take into account the contribution of the various structural parts to the overall
stiffness of the building using five stages. Stage 1 compares the behaviour of two connected
floors in two middle panels (Figure 5.23a) to that of a beam fixed at both ends and loaded at
the middle (Figure 5.22c). Stage 2 determines the actual boundary condition of the loaded
floors (which was assumed to be fixed in stage 1) by adding more bays in the x-direction
(Figure 5.23c). This step determines the value of FK in Equation 2.3. Stage 3 determines the
effect of adding storeys (Figure 5.23d). Stage 4 considers the effect of adding bays in the
y-direction. Similar to the cantilever approach, in stages 1 to 4, the assumption was made
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Fig. 5.22 (a) Isometric view of framed building, (b) 2D view of building and tunnel, and (c)
fixed–ended beam
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that only the two middle panels of the building were affected by soil displacements; Stage 5
considers the case where multiple x-bays are affected.

Figure 5.24 demonstrates a flowchart of the methodology and coefficients introduced in
each stage.

5.5.2 Stage 1: fixed–ended beam analysis for influenced floors

If only one interior row of columns (the middle row, Figure 5.23c,d) is subjected to downward
displacements, the two floors connected to the affected columns will behave as a beam fixed
at both ends (Figure 5.22c). If the fixed–ended beam shown in Figure 5.22c is subjected
to only one concentrated force at the middle (instead of two closely located concentrated
forces), its bending stiffness can be calculated using Equation 2.3 with FK = 192.

If it is assumed that the loaded beam that connects the two loaded floors in the building
system is a line on which the displacements are applied, the floors will act in the same way
as a fixed-ended beam subjected to a single point load at the middle. Numerical simulations
were conducted in this way to investigate how floors behave when they are fixed at both ends
and loaded at the middle in order to make a direct comparison with analytical results achieved
using Equation 2.3. Since the width of the loaded beam (blb) is relatively small compared to
to the length of the two connected floors, the results obtained based on Equation 2.3 can be
modified to estimate the bending stiffness of the floors subjected to two line loads located at
each edge of the loaded beam.

Initially, the case where the fixed–ended beam is subjected to only one concentrated
load at the middle is modified to estimate the bending stiffness of the loaded floors, then
the more realistic case of Figure 5.22c (a fixed–ended beam subjected to two point loads) is
adjusted. It is worth noting that the following sections completely depend on the case of the
fixed–ended beam shown in Figure 5.22c.

Two interior connected floors can be represented by a fixed–ended beam if the transferred
forces or displacements are distributed uniformly over their cross sections, as shaded in
Figure 5.23c (based on the previously stated assumption [7]). For this case, the moment of
inertia of the floor cross section (I f l) may be used in Equation 2.3. I f l includes the moment
of inertia of both floor beams and the slab as one rigid body, and is calculated using the
parallel axis theorem. Numerical simulations were conducted to consider a range of sizes
of the structural parts, as shown in Table 5.4, where tsl is the slab thickness, and b f b, bsb,
blb are the cross sectional widths of the floor, supporting and loaded beams, respectively.
Additionally, half of the model (Figure 5.23a) was numerically analysed due to symmetry.
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Fig. 5.23 (a) Typical floor subjected to displacements, (b) conveying displacement effects
through columns to beams, (c) typical numerical model of a single storey, single y-bay
building, (d) single y-bay, multi x-bay and multi storey building
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Fig. 5.24 Flow chart of the methodology of the fixed–ended approach
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Table 5.4 Range of sizes of structural parts considered in stage 1 analyses

Parameter Lsl Bsl tsl b f b and bsb = blb h f b and hsb = hlb
Range (m) 1.5 to 9 1.5 to 9 0.1 to 0.2 0.2 to 0.4 0.3 to 0.75

In this stage of analysis, the supporting beam shown in Figure 5.23a,c was not modelled.
Instead, a fixed boundary was applied to the ends of the connected floors (at the end of length
L f l , excluding bsb). The applied distributed displacements to the floor cross sections are also
shown in Figure 5.23a. The sum of the nodal reaction forces were determined and divided
by the applied displacement to obtain the numerically determined bending stiffness using
Equation 5.1.

Fixed-ended beam subjected to one point load

In the case of a fixed–ended beam subjected to one point load at its centre, the symmetric
boundary condition of the floor cross sections (Figure 5.23a) was applied directly to the cross
section of the modelled floor indicating that the width of the loaded beam is zero. For using
the analytical equation of computing bending stiffness (Equation 2.3), the total length of the
deflected floors should be considered which is: L f l,t = L f l,1 +L f l,2 +blb. The length of the
floors are assumed equal (L f l,1 = L f l,2), then L f l,t = 2×L f l +blb where L f l is the length of
one floor and is equal to the length of the slab (L f l = Lsl), and blb = 0.

Figure 5.25a shows the ratio of floor bending stiffness calculated using Equation 2.3
(Kb, f l, f end,an, f ix, where subscript an indicates an analytically determined value, and f end

indicates fixed–ended) to that determined from the numerical analysis (Kb, f l, f end,num, f ix) at
different values of Lsl/Bsl . In one set of simulations, the slab width (Bsl) and beam cross
sections were constant and only the length of the deflected floors (L f l,t , by varying Lsl and/or
blb) was changed (variable L f l,t). In the other set, L f l,t and beam cross sections were constant
and Bsl was varied (variable Bsl). Note that blb = 0 for the group of simulations shown in
Figure 5.25.

Figure 5.25a demonstrates that the bending stiffness of the deflected floors calculated
analytically based on Equation 2.3 is generally overestimated to some extent compared to the
numerically obtained bending stiffness. It is also displayed that the overestimation increases
as the ratio of Lsl/Bsl decreases.

The reason for the overestimation of the floor bending stiffness using Equation 2.3 is
related to the difference in the bending stiffness of the individual slab and beams in the floor
system (2Kb, f b/Kb,sl), and the length of the slab relative to its width (Lsl/Bsl). These factors
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Fig. 5.25 (a) Ratio of analytical to numerical floor bending stiffness for different Lsl/Bsl
values, (b) effect of 2I f b/Isl on floor bending stiffness

are explained in detail in Section 5.4.2. Similar to the cantilever approach, the length and the
elastic modulus of the beams and slabs were kept the same in the simulations. Therefore, the
ratio of bending stiffness of beams to that of the slab was taken as the ratio of the moments
of inertia: 2I f b/Isl , as plotted in Figure 5.25b for two specific cases of Lsl/Bsl .

Based on the numerical results of varying Lsl , Bsl and 2I f b/Isl , a coefficient Cb f 1, f end

(Equation 5.14) can be used to modify the analytical floor bending stiffness calculated by
Equation 2.3 to reasonably match the numerical model results of the bending stiffness of a
fixed–ended floor assuming the width of the loaded beam is zero. This coefficient takes into
account the effect of Lsl , Bsl and the individual moment of inertia of the slab and floor beams,
and is approximately equal to Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix.

Cb f 1, f end =

(
24I f b

Isl

)( Bsl
18Lsl

)
(5.14)

where values of I f b and Isl are calculated independently as explained in Section 5.4.2. The
main factor causing the differences between the numerical and analytical results is the bending
stiffness of the beams, which is largely affected by Lsl . For this reason, in the expression of
Cb f 1, f end , the term (2I f b/Isl) is factored by 12 and Lsl by 18. Figure 5.26 illustrates the good
fit obtained by using Cb f 1, f end (i.e. a good match with Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix).

Fixed-ended beam with two point loads

As mentioned earlier, the width of the loaded beam (blb) is generally small compared to the
total length of both deflected floors (L f l,t), but it may still have some effect on the numerical
estimation of floor bending stiffness. It is assumed that the moment of inertia of the floor and
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Fig. 5.26 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix and Cb f 1, f end for different values
of Lsl/Bsl

the cross section of the beams do not change due to the width of the loaded beam. Therefore,
the part of Equation 5.14 related to the moment of inertia (24I f b/Isl) is kept constant, and the
part related to the dimensions of the floors (Bsl/18Lsl) is modified to take into consideration
the width of the loaded beam (blb) and the nature of the applied load.

When the deflected floors are subjected to two line loads, the deformation of the loaded
floors becomes more restricted compared to the case where the floors were loaded at the
middle. The application of two line loads divide the floors into three parts: two large parts
with lengths of Lsl and a small part with a length of blb. The existence of two line loads
results in a reduction in the difference between bending stiffness values obtained numerically,
and those calculated from Equation 2.3. This reduction is due to the effect of blb/Bsl which
is not captured by Equation 5.14 (coefficient Cb f 1, f end).

Figure 5.27 shows how the ratio of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix varies with the
change of blb/Bsl . To obtain a good fit to the numerical results, the term 18Lsl in Equa-
tion 5.14 should be replaced by 9L f l,t (L f l,t here includes blb), and a term (1− blb/Bsl)
should be added. A new coefficient is introduced, Cb f , f end , which is approximately equal
to Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix for deflected floors subjected to two line loads, and is
expressed by Equation 5.15. Equation 5.15 yields the same values as Cb f 1, f end when blb = 0.
Figure 5.27 also exhibits the values of Cb f 1, f end and Cb f , f end . It is indicated that blb/Bsl has
a significant effect on the results, and this effect is well-captured by Equation 5.15 (Cb f , f end).
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Fig. 5.27 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix with Cb f , f end and Cb f 1, f end for
Lsl/Bsl = 1.2 and 24I f b/Isl = 58.5

Fig. 5.28 Comparison of Kb, f l, f end,an, f ix/Kb, f l, f end,num, f ix with Cb f , f end and Cb f 1, f end for
blb/Bsl = 0.0667: (a) 24I f b/Isl = 44.44, (b) Lsl/Bsl = 1.0

Cb f , f end =

(
24I f b

Isl

)( Bsl
9L f l,t

×(1−blb/Bsl

)
(5.15)

Figures 5.28a and b present a comparison of coefficients Cb f 1, f end and Cb f , f end for
a constant value of blb/Bsl . There is a better agreement of coefficient Cb f , f end with the
numerical values compared to that of coefficient Cb f 1, f end .

To summarise, the coefficient Cb f , f end is used in the calculation of floor bending stiffness
in the rest of the calculations within the fixed–ended approach. The analytically computed
bending stiffness of the floors is divided by Cb f , f end to obtain a good approximation of the
numerical bending stiffness of the floors:

Kb, f l, f end,eq, f ix =
Kb, f l, f end,an, f ix

Cb f , f end
(5.16)
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where Kb, f l, f end,eq, f ix is the equivalent bending stiffness of the fixed support floors (subscript
eq denotes an equivalent parameter based on a curve-fitting coefficient C).

5.5.3 Stage 2: evaluation of floor boundary condition

In stage 1, the analyses were done on deflected floors fixed at their ends, however this case
is not realistic in framed buildings. To estimate the effect of the real degree of end fixity of
the deflected floors, numerical simulations were performed including additional panels (up
to 6 from both boundaries) in the x-direction. Figure 5.23c shows an illustrative numerical
model of a single storey building with a single bay in the y-direction and multiple bays in
the x-direction. The range of dimensions of the structural parts considered are presented in
Table 5.5. It is worth noting that column cross sectional dimensions depended on the cross
sectional dimensions of the floor and supporting beams (i.e. hcol = bsb and bcol = b f b).

Table 5.5 Range of sizes of structural parts considered in stage 2 analyses

Parameter Lsl Bsl tsl b f b and bsb h f b and hsb Lcol
Range (m) 3 to 8 2.5 to 8 0.1 to 0.2 0.2 to 0.4 0.4 to 0.65 2.8 to 4

Six scenarios were analysed; first considering only two deflected x-panels and subse-
quently adding panels in the x-direction from both sides. The numerical simulations were
conducted as follows: a fixed boundary was applied to the bottom of all columns except
the virtual (displaced) columns (Figure 5.23c). First, only the loaded panels (x1y0 and x2y0

in Figure 5.23c, including the loaded floors, supporting beams and columns at x1 and x3)
was included in the analysis. Note that the numerical modelling only considered half of the
model due to symmetry. Similar to the cantilever approach, a specific uniform displacement
was applied to the cross sections of the loaded floors and the nodal reaction forces were
determined. The floor bending stiffness was then calculated based on Equation 5.1. One
supporting panel from each side of the loaded panels in the x-direction (Figure 5.23c) was
then added to the analysis and the same procedure was repeated to determine the floor
bending stiffness of the loaded panels. This process was repeated until five supporting panels
on both sides in the x-direction were added to the analysis. Note that in all simulations, the
displacements were only applied to the cross sections of the loaded floors.

Adding supporting panels provides an additional degree of end fixity to the loaded floors,
which effectively specifies the value of FK in Equation 2.3 for the loaded panels. The
addition of a single supporting panel from each side in the x-direction (panels x0y0 and x3y0



128 Cantilever and Fixed–ended Approaches for Estimating Building Bending Stiffness

Fig. 5.29 (a) Effect of supporting floors on the end fixity of the loaded floors, (b) comparison
of proposed Cbc, f end values (Equation 5.17) with numerical results

in Figure 5.23c) provides significant resistance against rotation to the supporting beams,
and increases the degree of floor end fixity. The degree of end fixity of the loaded floors
(connected to supporting panels) can be related to the bending stiffness of the fixed support
scenario of these floors (from Stage 1). It can be defined as the ratio of the bending stiffness
of the loaded floors in a single storey, one y-bay numerical analysis (Kb, f l, f end,1s,1y) to that
obtained for fixed-ended loaded floors (Kb, f l, f end, f ix from Stage 1). Figure 5.29 shows the
variation of Kb, f l, f end,1s,1y/Kb, f l, f end,num, f ix with the number of supporting panels for three
cases of bsb/hsb. The numerical results show that the addition of more than one supporting
panel has a negligible effect on the change of bending stiffness.

The floor bending stiffness for the loaded panels alone (without supporting panels)
depends on the stiffness of the supporting beams and columns. The ratio of bsb/hsb is also
an influential parameter as it has a significant effect on the rotation of the loaded floor
and provides its end fixity. Figure 5.29a illustrates that the bending stiffness of a single
loaded panel (zero supporting panels) is considerable compared to the bending stiffness of
its fixed-ended scenario (i.e from stage 1), but the case of having only two panels loaded at
their middle columns due to tunnelling is not realistic. Therefore, the case where at least
one supporting panel is available at each side of the one y-bay building is considered for the
fixed–end approach.

The stiffness of the supporting beams, supporting columns (located on x1 and x3 in
Figure 5.23c) and the floor of the first supporting panels from each side (panels x0y0 and
x3y0 in Figure 5.23c) have the most significant effect on the degree of end fixity of the loaded
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floors. Based on these parameters, the following modification coefficient Cbc, f end is proposed
to estimate the degree of end fixity of the loaded floor:

Cbc, f end =
Kc,S f l +Kc,sb +2Kc,col

Kc,L f l +Kc,S f l +Kc,sb +2Kc,col
< 1.0 (5.17)

The parameters are the same as that of Equation 5.4.
The coefficient Cbc, f end can be used to evaluate the bending stiffness of the loaded floors

in the first storey of a single y-bay building using:

Kb, f l, f end,eq,1s,1y =Cbc, f end ×Kb, f l, f end,eq, f ix (5.18)

where Kb, f l, f end,eq, f ix is obtained from Equation 5.16.
Figure 5.29b compares results of Cbc, f end using Equation 5.17 with Cbc, f end,num =

Kb, f l, f end,num,1s,1y/Kb, f l, f end,num, f ix, an equivalent coefficient determined from numerical
analyses. The results show that the equivalent values using Equation 5.17 give a satisfactory
match to the numerical results.

5.5.4 Stage 3: effect of adding storeys

Numerical analyses were conducted to evaluate the stiffness effect of adding up to 10 storeys
to the single y-bay building from stage 2, as shown in Figure 5.23d. The sizes of floors,
beams and columns considered were the same as in stage 2 (Table 5.5). The area of applied
displacements is consistent with stage 2, as indicated in Figure 5.23d. For a given number
of x-bays (up to 10 from each side in the x-direction), numerical analyses were conducted
sequentially by adding additional storeys. The first storey is used as a reference for which
the bending stiffness is compared when additional storeys are added, thereby illustrating the
additional bending stiffness each storey contributes.

Similar to the cantilever approach (Section 5.4.4), a column-floor stiffening effect coeffi-
cient Cc f , f end (Equation 5.19) can be introduced to take into account the role of the columns
in transferring the stiffness contribution of upper storeys to the foundation as well as the
influence of the distance from the foundation to the considered floor. In the fixed–ended
approach, the influence of a storey on the overall structural response is proportional to the
relative stiffness of columns compared to both connected floors.

Cc f ,i =
2Kc,col

2Kc,col +2Kc,L f l
×
(

Lcol,i

h f l,i

)
(5.19)
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Fig. 5.30 Relationship between CKus, f end and Cc f , f end for buildings of varying column
stiffness

where subscript i indicates a measurement for the ith floor, Lcol,i is column height, and h f l,i is
the total height between the ith floor and the foundation, as shown in Figure 5.23d.

A coefficient CKus, f end,i is defined as the ratio of the increased bending stiffness of the
superstructure due to the addition of the ith upper storey (subscript us) to the bending stiffness
of the first storey. Since there is no rotation of the global building due to symmetry about
the deflection line (i.e. loaded columns located on x1 in Figure 5.23c), the number of the
supporting spans in the x-direction does not have an effect on CKus, f end .

The numerical analyses indicated that CKus, f end has a logarithmic relationship with
Cc f , f end , as illustrated in Figure 5.30 for cases of high, intermediate, and low column
stiffness relative to the loaded floor stiffness (2Kc,col/2Kc,L f l = 0.426, 0.105, and 0.031,
respectively) in a 7, 8 and 9 storey building, respectively; the data can be reasonably well
fitted with the following curve:

CKus, f end,i = log10(Cc f , f end,i)+αKus, f end ≥ 0.0 (5.20)

where αKus, f end is a parameter depending on the stiffness of the loaded beam, loaded floors
and columns. Generally, an increase of the value of αKus, f end is obtained with the increase
of stiffness of the beam and/or columns in upper storeys that have the same position as
the loaded beam and columns of the first storey. Figure 5.31a illustrates the relationship
between αKus, f end,num obtained from the curve fitting of the numerical results, and the ratio
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Fig. 5.31 (a) Comparison between αKus, f end values obtained from curve fitting of numerical
results, and proposed values calculated by Equation 5.21, (b) CKus, f end values: proposed
method (CKus, f end) versus numerical results (CKus, f end,num)

[Kc,lb/(Kc,lb +2Kc,L f l)+Kc,col/(Kc,col +Kc,L f l)]. The numerical data in Figure 5.31a was
fitted using the following expression:

αKus, f end =−1.65×
(

Kc,lb

Kc,lb +2Kc,L f l
+

Kc,col

Kc,col +Kc,L f l

)
+2.75 (5.21)

A comparison between the numerical and proposed analysis values of CKus, f end is pre-
sented in Figure 5.31b showing a reasonably good agreement between them.

The stiffness contribution of each storey is obtained by multiplying CKus, f end,i by its floor
bending stiffness, Kb, f l, f end,eq,i,1y (note that, similar to the cantilever approach, based on
assumption [5] that floor parameters remain constant across all storeys, Kb, f l, f end,eq,i,1y =

Kb, f l, f end,eq,1s,1y, which is calculated in stage 2 of the analysis). The bending stiffness of the
entire multi-storey (subscript ms) single y-bay building (Kb, f l, f end,eq,ms,1y) is then obtained
by summing the individual storey contributions:

Kb, f l, f end,eq,ms,1y =
m

∑
i=1

(
CKus, f end,i ×Kb, f l, f end,eq,i,1y

)
(5.22)

Figure 5.32 compares the bending stiffness of single y-bay buildings computed using the
proposed method (from stages 1 to 3) with their equivalent numerical results. The figure
includes 155 data points including buildings of 1 to 9 storeys.
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Fig. 5.32 Bending stiffness of single y-bay, multi-storey (up to 9 storeys) buildings: proposed
method (Kb, f l, f end,eq,ms,1y) versus numerical results (Kb, f l, f end,num,ms,1y)

5.5.5 Numerical verification of stages 1 to 3

To validate the proposed method from stage 1 to stage 3, a single y-bay, six-storey building
made of concrete with an elastic modulus of 30 GPa was numerically modelled in a way that
the virtual columns (Figure 5.23c) which were removed in the previous simulations were
added to the model, and the displacements were applied to their bases. Using this technique
allows the transfer of the displacements through the columns to the floors, and eliminates the
assumption of applying displacements uniformly to the loaded floor cross sections of the first
storey.

Column dimensions were 0.3×0.3×3.2 m (bcol , hcol and Lcol , respectively), floor and
supporting beam dimensions were 0.3×0.5 m (b f b or bsb, and h f b or hsb, respectively), and
slab dimensions were 4×6×0.15 m (Bsl , Lsl and tsl , respectively).

Figure 5.33a shows the CKus, f end values for the numerical and the proposed methods.
There is a generally good agreement between the coefficients except for the coefficient of
the second storey. To show the effect of this difference, the estimated bending stiffness of
the building from one to 6 storeys is demonstrated in Figure 5.33b for the numerical and the
proposed methods. It is indicated that the estimated bending stiffness values are in a good
agreement.
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Fig. 5.33 (a) Comparison of CKus, f end between numerical and the proposed methods, (b)
comparison of bending stiffness values of the superstructure between the numerical and the
proposed methods

5.5.6 Stage 4: effect of adding y-bays in direction of tunnel

This section considers the effect of adding bays in the direction of the tunnel (y-direction) to
the bending stiffness of the building. Figure 5.34a demonstrates the change of CKus, f end for
each storey of a 5-storey building as the number of y-bays is increased from 1 to 3, based
on the numerical analyses. The value of CKus, f end for the ith floor was calculated from the
numerical results as (Kb, f l,i −Kb, f l,(i−1))/Kb, f l,1. Also included in Figure 5.34a are values
obtained using the proposed method (Equation 5.20) for a single y-bay building.

Similar to the cantilever approach, the numerical results show that the addition of each
y-bay increases the bending stiffness of the building superstructure by approximately 60% of
the bending stiffness of a single y-bay building. For this reason, Equation 5.23 is proposed to
estimate the bending stiffness of a multi-storey building with multiple y-bays (subscript my),
Kb, f l, f end,eq,ms,my:

Kb, f l, f end,eq,ms,my = (1+0.6(ny −1))×Kb, f l, f end,eq,ms,1y (5.23)

An example calculation of building stiffness using the proposed method is provided
in Appendix B. Figure 5.34b shows a comparison of the bending stiffness of multi y-bay
buildings obtained from the numerical analyses and those calculated using the proposed
method (stages 1 to 4). The buildings range from 2 to 3 y-bays, and 1 to 7 storeys.
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Fig. 5.34 (a) Comparison between numerical and proposed values of CKus, f end considering
buildings with different numbers of y-bays, (b) comparison of the numerical bending stiffness
of multi y-bay buildings with their equivalent calculated values based on stages 1 to 4

5.5.7 Stage 5: considering multiple x-bays affected by ground displace-
ments

The numerical simulations thus far only considered the case where only two middle panels
of the building were subjected to downward displacements (i.e. affected by tunnelling
settlements). As explained in Section 5.4.7, an increase in the influenced building length
causes a large reduction of the bending stiffness since the length has a cubic effect on the
bending stiffness (Equation 2.3).

Figure 5.35 shows a tunnel constructed under the centreline of a building. If the building
is located entirely inside the displaced soil zone, the bending stiffness of the superstructure
will have a small contribution to the global building bending stiffness because the ends of the
structure are not constrained. Note that the global rotation of the building that occurs in the
case of the cantilever approach does not happen in the case of the fixed–ended approach. The
deflection and rotation of a building in the fixed–ended case is symmetric about the tunnel
axis.

To consider the effect of the influenced length of the building, numerical simulations
were performed to evaluate how bending stiffness of a storey decreases when more panels
are affected by ground displacements. It was assumed that the building behaved like a
fixed–ended beam subjected to multiple loads at the location of the columns, as shown in
Figure 5.36. Multi-storey buildings with 1 y-bay and 16 x-bays were numerically simulated.
Half of the model (8 x-bays) was analysed due to symmetry. The number of affected panels
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Fig. 5.35 Soil and building zones affected by tunnelling induced ground displacements

Fig. 5.36 A fixed–ended beam subjected to multiple loads

considered was 2, 4, 6 and 8; the bases of columns in the unaffected zone were fixed. Similar
to the cantilever approach (Section 5.4.7), the displacement was modelled by applying forces
at the locations of the affected columns; the applied forces changed linearly from a maximum
value above the tunnel centreline to zero at the columns in the unaffected zone.

Expression 5.11 was used to approximate bending stiffness of a building subjected
to multiple loads due to the complexity of an analytical expression. A similar reduction
factor to the cantilever approach, CK,reduct, f end , was introduced to quantify the reduction
of the building bending stiffness due to the effect of multiple panels being affected by
tunnelling. Figure 5.37a plots results for a single y-bay, 16 x-bay, 1 storey building when
the number of affected panels is increased from 2 to 8 and illustrates that there is a dramatic
reduction of the building bending stiffness when more than two panels are affected by
ground displacements. As also observed in the cantilever approach, the results indicate that
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Fig. 5.37 (a) Reduction of building bending stiffness with the number of panels located in
the displaced zone, (b) comparison between numerical and proposed values of CK,reduct, f end

CK,reduct, f end is insensitive to the panel size (Lsl/Bsl). Figure 5.37b shows results for the
same building but with additional storeys added; a slight increase in the value of CK,reduct, f end

is noted for multi-storey buildings. Based on these numerical results, CK,reduct, f end can be
expressed as:

CK,reduct, f end = Fst ×
L3

f l,t

L3
in f

(5.24)

where Fst =1 and 2 for one-storey and multi-storey buildings, respectively. In the fixed–
ended approach, Lin f can be calculated as Lin f = 2Lds if 2Lds ≤ Lbldg, or Lin f = Lbldg if
2Lds > Lbldg, where Lds is the half length of the displaced zone (see Figure 5.35). For
practical purposes, Lin f should correspond to the location of a building column.

The final value of the building bending stiffness, Kb, f end,eq,bldg, can be calculated using:

Kb, f end,eq,bldg =CK,reduct ×Kb, f l,eq,ms,my (5.25)

where CK,reduct, f end = 1 if tunnelling settlements only affect the two middle x-bays or
calculated using Equation 5.24 otherwise.

5.5.8 Comparison with other methods

A 2D and 3D comparison of the proposed method is made with the approaches mentioned
in Section 5.4.8. For the approach of Goh and Mair (2014), it is assumed that the two bays
affected by tunnelling are located in the sagging area (Lsag,hog) to calculate L2

sag,hog/L2
bay.
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Fig. 5.38 (a) Comparison of EIbldg between the proposed method and approaches suggested
by Lambe (1973) and Goh and Mair (2014), (b) comparison between Ccol and CKus, f end of
the numerical and proposed methods

The comparison is made for a multi-storey (1 to 7) two y-bay, 6 x-bay building with the
parameters given in Table 5.6. This building was used for both 2D and 3D comparisons.

Table 5.6 Sizes of structural parts (1 to 7 storey building) considered in 2D and 3D compara-
tive analyses

Parameter Lsl Bsl tsl b f b bsb h f b and hsb Lcol
Dimension (m) 6.00 5.00 0.15 0.40 0.35 0.50 3.00

Figure 5.38a shows that the approach used by Lambe (1973) results in the lowest values
of EIbldg because it disregards the effect of the interaction between slabs through their
connecting links. The values of EIbldg of the proposed method are greater than those of
the Lambe (1973) approach. The difference increases with the increase of building storeys.
The method of Goh and Mair (2014) leads to the largest values of EIbldg among the three
considered methods. The main reason is that two bays are affected by tunnelling which result
in a large value of L2

sag,hog/L2
bay in the method of Goh and Mair (2014). It is worth noting

that if the coefficient CK,reduct, f end is considered for the proposed method (when more than
2 bays are affected by tunnelling), the values of EIbldg calculated based on the proposed
approach of this research will decrease to a an even greater extent.

Figure 5.38b shows the values of Ccol in the Goh and Mair (2014) method and CKus, f end

obtained from numerical results and the proposed method. It is shown that there is a good
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Fig. 5.39 (a) Comparison of 3D building bending stiffness (fixed–ended approach) using dif-
ferent methods, (b) comparing computed building bending stiffness using different methods
with the numerically achieved bending stiffness for buildings of multiple y-bays

agreement between the numerical and the proposed values of CKus, f end while the values of
Ccol from the Goh and Mair (2014) method are significantly higher.

A comparison of bending stiffness of the mentioned 3D building between the numerical
prediction and the method proposed in this work, Potts and Addenbrooke (1997) and Franzius
et al. (2006) is presented in Figure 5.39a. The bending stiffness values of the Franzius et al.
(2006) method were too large to be plotted on a normal axis figure with the other methods.
For this reason, the y-axis of Figure 5.39a was chosen to be logarithmic. It is worth noting
that Lbldg = 38.45 m.

As explained in the cantilever approach, the moment of inertia of the building in the
methods proposed by Potts and Addenbrooke (1997) and Franzius et al. (2006) are largely
overestimated; the term (Lbldg/2)4 in the approach of Potts and Addenbrooke (1997) yielded
a very large value which in turn reduced the bending stiffness of the building to a great extent.
In the method of Franzius et al. (2006), the overestimation of the building cross sectional
moment of inertia resulted in the overestimation of the building bending stiffness. Both
methods of Potts and Addenbrooke (1997) and Franzius et al. (2006) would appear to lead to
unrealistic results; the reasons for this were presented in Section 5.4.8.

Figure 5.39b compares the bending stiffness of a range of multi y-bay buildings calculated
by the proposed method of this work (based on stages 1 to 4), and the approaches of Potts
and Addenbrooke (1997) and Franzius et al. (2006). There is a good agreement between the
numerical results and those of the proposed method.
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5.6 Summary

In this chapter, the bending behaviour of 3D concrete framed buildings was investigated
in detail considering different parameters that affect the bending stiffness of a member.
It should be mentioned that disregarding the 3D nature of buildings and overlooking the
parameters that affect the bending stiffness of a member were limitations of the previous
research. The results of this chapter overcome these limitations. Furthermore, different from
the outcomes of the majority of previous work in which design charts were proposed to
deal with specific scenarios of tunnel–building interaction, the approaches suggested in this
chapter are applicable to a wide range of buildings with different tunnel–building relative
locations.

The analysis started with an analogy between the bending behaviour of a single floor in a
loaded panel and the bending deflection of a fixed-support beam. This analogy was essential
to relate the outcomes of the numerical analyses to the results of beam analytical equations.
Furthermore, the parameters on which bending stiffness of a beam depend, were determined
from the mathematical equations of the beam deflection. After that, the contribution of the
rest of the building superstructure to the bending of the loaded floor was investigated. The
realistic boundary of the loaded floor was determined by considering the effect of the panels
connected to the loaded floor in x-direction (perpendicular to the tunnel axis). The bending
contribution of the upper floors (z-direction) as well as building storeys in the y-direction
(parallel to tunnel axis) was then added to the analysis. Finally, a scenario where multiple
panels in x-direction were influenced by tunnelling was numerically studied.

The analyses of this chapter only considered the superstructure, separately from the
foundation. It was shown that the building does not deform as a singe member to obtain
a uniform effect of ground displacements throughout the building height; the stiffness
contribution of the lower storeys to the global building stiffness was more significant than
that of the upper storeys.

Furthermore, two computationally efficient methods (cantilever and fixed–ended ap-
proaches) were proposed to obtain realistic estimates of the bending stiffness of concrete
framed buildings influenced by tunnelling induced displacements. The cantilever approach
assumes that the tunnel is located adjacent to the building while in the fixed–ended approach,
the tunnel is constructed directly under the building. The methods depend on the actual
parameters of the structural components of the building.

Various assumptions and simplifications were made within the methodology, leading
to limitations of its applicability. The structural components of the building were assumed
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to be linear elastic; in reality cracking will occur and non-linear behaviour (a reduction in
structural stiffness) can be expected (Giardina et al., 2013; Son, 2015; Son and Cording,
2010). The effect of walls, façades and partitions within the building was also not considered
in the analyses of this project. This may have an effect on the bending behaviour of the
building, however the standard methodology applied in structural design of framed buildings
is to omit the effect of walls and partitions (Mirhabibi and Soroush, 2013).



Chapter 6

Bending Stiffness Estimation of Raft
Foundations

6.1 Introduction

This chapter investigates the behaviour of raft foundations numerically and proposes two
methods to estimate the approximate foundation bending stiffness. The proposed methods
depend on the location of the tunnel with respect to the building. Similar to the investigation
of the building superstructure (Chapter 5), a cantilever method is proposed for the case where
the tunnel is not located under the building plan area, and a fixed–ended method for the
case where the tunnel axis coincides with the building centreline. It is worth noting that the
values of foundation bending stiffness estimated in this chapter can be added algebraically
with the bending stiffness of the superstructure calculated based on the methods proposed in
Chapter 5 in order to obtain the final value of the building bending stiffness.

As presented in Section 2.3.3, differential settlement is not allowed under rigid founda-
tions. It is assumed that the stiffness of the foundation is large enough to allow the foundation
to behave as a rigid body and to produce a uniform or linearly varying ground bearing pres-
sure. On the other hand, differential settlements are allowed in flexible foundations, and the
created ground bearing pressure is not linear: it is large under columns and relatively small
in other areas. It should be mentioned that in both types of foundation (rigid and flexible),
the cause of the foundation deformation is the applied building load. In tunnel–building
interaction analysis, several researchers (i.e. Franzius et al., 2006; Potts and Addenbrooke,
1997; Selby, 1999) have modelled the building as weightless and used a rough soil–building
interface assuming that the deflection of the building occurs due to tunnelling induced ground
displacements. This means that the building is attached to the soil and when the tunnel is
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constructed, the induced ground movements will be transferred to the building and cause
building deflections. It can be said that the behaviour of the building under its weight is
disregarded, and the building is forced to follow the deformation of the soil.

As shown in Section 4.7, the recommended minimum elastic modulus of concrete in
ACI-Building-Code (2011) is 21.5 GPa. In the case of raft foundations, even relatively
thin foundations will be sufficiently rigid to modify ground deformations. Therefore, when
ground displacements are created due to the construction of a tunnel, the stiffness and the
weight of the existing buildings will be more influential on the building response than the
shape of the surface settlement trough. This behaviour mainly relates to the rigidity of the
concrete relative to that of the soil. Hence, assuming that the deformations of the building
follow the shape of the ground settlement trough may not be realistic. Note that the role of
building stiffness in redistributing the building load after the construction of the tunnel is
investigated in Chapter 8.

The numerical analyses in this chapter depend on the elastic behaviour of raft foundations
under an applied pressure, which approximately represents the building weight, when a
new tunnel is constructed. In addition, the foundation and the soil are considered as one
global system. Bending stiffness of the global foundation–soil is estimated rather than
dealing with the structural part independently from the underlying soil. General assumptions,
methodology and the detail of the proposed methods to estimate foundation bending stiffness
are presented in the following sections.

6.2 General Assumptions

In this chapter, the soil and the foundation are assumed to be linear elastic. The tunnel is not
modelled since the relative change of applied forces and created deformations does not affect
the stiffness of the member in the linear-elastic range. Furthermore, ground displacements
in the direction of the tunnel are assumed constant; this causes one-directional deformation
(perpendicular to the tunnel axis) to the foundation. The deformation of the foundation is
assumed to be similar to a beam. This assumption may apply to the deflected part of the
foundation but does not represent the undeflected part which is located in the undeformed
(unaffected) soil zone (Figure 6.1a, b). In the unaffected soil zone, the actual behaviour of
the foundation is not similar to a beam; the interaction between the building weight through
columns and the reaction of the underlying soil creates two-directional deformations, similar
to plates.
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Fig. 6.1 View of tunnel–soil–foundation problem for a foundation with (a) cantilever be-
haviour, (b) fixed–ended behaviour, (c) numerical model of the cantilever behaviour, and (d)
numerical model of the fixed–ended behaviour
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Fig. 6.2 A typical beam subjected to a linear load: (a) cantilever, (b) fixed–ended

When a tunnel is constructed under the foundation edge or outside the foundation plan
area, the portion of the foundation located in the deformed soil zone is assumed to deflect
similar to a cantilever beam fixed at one end and loaded linearly along its length, as shown in
Figure 6.2a. The reason for choosing an analogy with a cantilever beam is that, in the case
where the tunnel is not located directly under the foundation, the foundation will deform
in a way that the end that located above the tunnel is subjected to a larger deformation
compared to the far end. The far end, which is not or less affected by tunnelling, provides a
degree of end–fixity to the foundation, resulting in a deformed shape similar to a cantilever
beam. Furthermore, the foundation is not likely to include a sagging zone since the rigidity
of the foundation is significantly larger than that of the soil and the foundation deflection
will not follow the greenfield soil deformation shape. It should be noted that before the
construction of the tunnel, settlements caused by the building weight have already occurred,
and are not taken into consideration in the numerical analyses of this chapter. When a tunnel
is constructed, the soil will move and, in turn, the weight of the building will cause the
building to move and remain in contact with the soil. This gives a generally known trend of
deformations induced in the foundation which is similar to the deflected shape of the beam
shown in Figure 6.2a.

With regard to the case where the tunnel is constructed under the foundation centreline,
the foundation in the deformed soil zone is assumed to deflect similar to a fixed–ended
beam loaded linearly along its length, as shown in Figure 6.2b. The reason for choosing
an analogy with a fixed–ended beam is that, in such cases, the foundation will not undergo
a large unsymmetrical rotation (similar to the cantilever case) because of the symmetrical
deflection around its centreline. Furthermore, the middle zone of the foundation deflects
more than its ends. This deflection shape is similar to that of a beam fixed at its ends and
loaded along its length.

Another assumption is that the foundation is sufficiently rigid to distribute the building
load linearly over the underlying soil after the tunnel is constructed. It can be said that the
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actual rigidity of the foundation is between perfectly rigid and perfectly flexible. It does
not behave as a perfectly rigid body (leading to a uniform distribution of the building load),
and it also does not completely follow ground displacements (to have the same sagging and
hogging zones as the surface settlement trough). A linear distribution of the building weight
(as in Figures 6.2a and b) over the deformed soil zone is an approximate representation of
the foundation behaviour. Foundation deformations in this chapter are modelled by applying
a linearly varying pressure to the foundation in which the maximum pressure is at the tunnel
axis and reduces to zero at the beginning of the undeformed soil zone. More detail about the
foundation loading is provided in Section 6.3.

6.3 Model Description and Material Properties

In the cantilever approach, the soil model was 60 m long and 25 m deep. The problem
was 2D due to having negligible displacements in the direction of the tunnel; therefore, the
width was taken as 1 m. The model size was chosen to eliminate boundary effects on the
analysis results. The total number of meshing elements ranged from 19,110 to 35,100. The
foundation had a thickness of t f and consisted of two parts: a deformed part (or loaded part)
with a length of L f ,ld located in the displaced soil zone, Lds, and a supporting part with a
length of L f ,sp located in the undisplaced soil zone. Figure 6.1a shows the general view of
the tunnel–soil–foundation problem for the cantilever approach including various geometric
parameters. L f ,ld varied from 2.5 m to 22.5 m, L f ,sp from 1 m to 20 m, and t f from 0.3 m to
1 m in the numerical analyses.

In the fixed–ended approach, half of the problem was modelled due to symmetry. The
same dimensions as the cantilever approach were used for the symmetric fixed–ended
models. Figure 6.1b shows the general view of the tunnel–soil–foundation problem for the
fixed–ended approach including various geometric parameters. It is worth noting that the
soil–building interface was rough (tied) in all simulations. Furthermore, the elastic modulus
of the soil was varied from 10 to 100 MPa and that of the concrete from 20 to 60 GPa.

In the numerical simulations, the tunnel and the zone of the displaced soil were not
modelled. Instead, a linear pressure was applied to the deflected part of the foundation (L f ,ld)
to simulate displacements, as shown in Figures 6.1c,d. The removal of the displaced soil was
done for two main reasons. First, the created deformation is proportional to the applied load
in a linear–elastic medium which means that the magnitude of the force is not important.
The linear-elastic behaviour of the soil and the foundation is an assumption of this work.
Second, applying a known linear force to the foundation without considering the underlying
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Fig. 6.3 Replacing the removed soil by applying (a) lateral pressure, (b) symmetric boundary

soil allows relating the numerically estimated foundation bending stiffness to the analytically
computed stiffness using the equation of beam deflection (Equation 2.3), which is an essential
element of this work. It should be noted that the displaced and undisplaced soil zones in
Figures 6.1c,d relate to greenfield evaluations.

The part of the removed soil should be replaced by a boundary condition in the numer-
ical model. This boundary should provide a lateral pressure determined according to the
coefficient of lateral earth pressure (K0), as shown in Figure 6.3a. The parameter K0 is
essential to account for horizontal soil stresses, and it also plays an important role in the
numerical analyses of tunnelling problems (as stated in Section 3.6.5). However, an accurate
estimation of K0 is difficult practically. An approximate alternative of the lateral pressure is
to apply a roller (symmetric) boundary to the model to replace the removed soil, as shown
in Figure 6.3b. In some cases of low values of K0, the application of a symmetric boundary
condition leads to an overestimation of the soil stiffness compared to the real soil situation.

To investigate the effect of the symmetric boundary on the foundation bending stiffness
compared to the case of applying a lateral pressure, two numerical models were simulated for
each case of the cantilever and fixed–ended approaches. The removed soil from the model
was represented by a lateral pressure in one model, and by a symmetric boundary in the
other. For the lateral pressure boundary, soil weight density was 16 kN/m3 and K0 = 0.5.
The length of the footing in the undeformed soil zone was 20 m. The deformed length of the
foundation was varied from 5 m to 20 m in the cantilever approach, and from 10 m to 40 m
in the fixed–ended method. The foundation thickness was t f = 0.5 m.

Figure 6.4 presents the ratio of Kb, f nd,num/Kb, f nd,num, f ix (where Kb, f nd,num is the numer-
ically estimated bending stiffness of the foundation with the actual (soil) boundary, and
Kb, f nd,num, f ix is the numerical bending stiffness with a fixed boundary; f nd denotes founda-
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Fig. 6.4 Numerical bending stiffness of a foundation with lateral pressure and roller (sym-
metric) boundaries for (a) cantilever and (b) fixed–ended approaches

tion). For the mentioned case, Figure 6.4a shows that there is no practical difference between
the results of lateral pressure and symmetric boundaries in the cantilever approach. However,
an overestimation of the foundation bending stiffness is obtained for the symmetric boundary
condition in the fixed–ended approach, as shown in Figure 6.4b.

6.4 Methodology

Equation 2.3 (Kb = FK((EI)b/L3
b), where Kb is the beam bending stiffness, (EI)b is the

flexural rigidity and Lb is the length) is used to compute the analytical bending stiffness of
the foundations with fixed supports; FK = 60/11 for the cantilever case (Figure 6.2a), and
FK = 1920/7 for the fixed–ended case (Figure 6.2b). Furthermore, the term ‘foundation’
in this chapter is used for the global foundation consisting of the footing member and the
underlying soil. When ‘footing member’ is used, it refers to the individual reinforced concrete
part of the foundation without considering the boundary condition (i.e. the soil). The actual
boundary of the foundations is soil (as shown in Figure 6.1), whereas Equation 2.3 considers
a fixed boundary for beams (as in Figures 6.2a,b). This fixed boundary should be modified
to represent the actual soil that works as a support for the footing. Sections 6.5 and 6.6
investigate the modification of the fixed boundary of Equation 2.3 to the actual boundary of
the foundation for both cantilever and fixed–ended cases, respectively, and relate it to the
elastic properties of the soil and the concrete and to the geometry of the footing member.

The investigation of the boundary condition for each approach (cantilever and fixed–
ended) comprises three sections. The first section studies the effect of the elastic modulus
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of the soil and concrete; the second section deals with the effect of the loaded part of
the foundation on the global foundation bending stiffness; the third section investigates
the influence of the supporting part. A method is proposed for each case to approximate
the bending stiffness of the raft foundation. It should be noted that the realistic boundary
condition of the foundation is related to the bending stiffness of the foundation with a fixed
boundary condition (i.e. the foundation boundary condition = Kb, f nd,an, f ix/Kb, f nd,num where
Kb, f nd,an, f ix is the analytical bending stiffness calculated using Equation 2.3). Note the
subscripts cant and f end are added to the notations of the following sections to represent
cantilever and fixed–ended, respectively (e.g. Kb, f nd,cant,an, f ix for the cantilever case and
Kb, f nd, f end,an, f ix for the fixed–ended case).

6.5 Cantilever Approach

This section deals with the cantilever case shown in Figure 6.1a.

6.5.1 Effect of soil and concrete elastic modulus on foundation bound-
ary

Soil and concrete elastic moduli have significant effects on the behaviour of the foundation.
The soil underlying the footing acts as a support to the foundation. Numerical results shown
in Figure 6.5a illustrate that as the soil elastic modulus in the undeformed zone increases, the
numerical bending stiffness of the foundation approaches the analytical stiffness (an increase
of foundation stiffness). In other words, as the undeformed soil elastic modulus increases,
the boundary condition of the foundation approaches the fixed condition.

As explained in Section 2.2.3, the deflection of a member and the rotation allowed by the
boundary condition are the main influential parameters affecting its bending stiffness. The
stiff soil leads to the reduction of the foundation rotation.

Similar to the soil part, the concrete elastic modulus also plays an important role in
determining the behaviour of the foundation, but in an opposite way to the soil. Figure 6.5b
shows that the increase of Ec results in a decrease in the bending stiffness of the foundation
and increases the difference between the analytical and numerical bending stiffness. This
is because the increase of Ec increases the bending stiffness of the footing member (local
stiffness of the concrete part). Because of this, the local deflection of the footing member
decreases, and most of the effect of the applied pressure to the foundation is transferred to
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Fig. 6.5 Effect of (a) soil and (b) concrete elastic modulus on the foundation boundary
condition (Kb, f nd,cant,an, f ix/Kb, f nd,cant,num) for t f = 0.5 m and L f ,sp = 15 m

the foundation boundary, which causes a rotation and reduces the global foundation bending
stiffness.

In light of what was presented in this section, it should be noted that several researchers
(Franzius et al., 2006; Miliziano et al., 2002; Potts and Addenbrooke, 1997) reported that
the decrease of soil stiffness or the increase of building–soil relative stiffness led to the
reduction of building deformations. The results obtained here are in agreement with the
results obtained by these researchers, but there is a terminological difference between them.
Most soil–structure interaction research has considered the soil and the building individually,
and disregarded some influential parameters affecting the bending stiffness of a member.
If only the footing member is considered, the increase of concrete elastic modulus will
increase the local rigidity of the member to resist deflections, but this will cause a large
rotation, which will in turn reduce the global bending stiffness. In a case where the boundary
of a member is perfectly fixed, Equation 2.3 indicates that the increase of material elastic
modulus will increase the member’s bending stiffness, but this is not the case for a foundation
resting on soil. Note that the comparison of the foundation bending stiffness is between the
numerical simulation and its corresponding analytical case. In other words, the focus is on
the difference between the numerical and the corresponding analytical bending stiffness for
the same foundation material and geometrical properties.

6.5.2 Effect of L f ,ld on foundation boundary

Equation 2.3 shows that the bending stiffness of the foundation is a function of L3
f ,ld . Apart

from this, L f ,ld also has an essential effect on the behaviour of the foundation boundary. It
plays an important role on how much deformation effect is transferred to the boundary. For



150 Bending Stiffness Estimation of Raft Foundations

Fig. 6.6 Effect of L f ,ld on the foundation boundary condition for different values of (a) soil
elastic modulus and (b) foundation thickness

the footing member, the bending stiffness decreases as L f ,ld increases, while the fixity of
the boundary condition increases as the length decreases. This is because footing members
with small lengths are very stiff and transfer most of the deformation effects to the boundary
which in turn leads to a large boundary rotation. It should be mentioned that in the numerical
models created to investigate L f ,ld , the supporting part (L f ,sp) was given a large length to
ensure that it did not have any effect on the stiffness results (the effect of L f ,sp is considered
in the next section).

Figure 6.6a shows that there is a significant difference between the analytical and the
numerical bending stiffness of the foundation for small lengths of L f ,ld . As L f ,ld increases,
the difference between the analytical and numerical foundation bending stiffness decreases.
This is because as L f ,ld increases, a smaller effect of the deformation is transferred to the
foundation boundary, and less rotation occurs. It is also indicated in Figure 6.6a that the
reduction of the foundation bending stiffness with L f ,ld is higher in the case of Es = 20 MPa
compared to the case of Es = 80 MPa. This is because the ratio of concrete to soil elastic
modulus is higher, or in other words, the stiffness of the footing member is high relative to
the stiffness of its support (soil).

Figure 6.6b shows the effect of L f ,ld on the foundation boundary for two cases of t f . In
general, an increase of foundation thickness leads to an increased difference between the
analytical and numerical bending stiffness of the foundation. Furthermore, the difference
in the case of the larger t f is more significant. The reason for this is that the increase of
thickness increases the moment of inertia of the footing cross section, which in turn increases
the stiffness of the footing member and causes a larger rotation at the foundation support
(boundary).
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Fig. 6.7 (a) Effect of t f /L f ,ld on the foundation boundary for t f = 0.5 m, (b) relationship
between α f nd,ld,cant and Ec/(Es ×103)

Figure 6.6b also illustrates that L f ,ld and t f have opposite effects on the foundation
bending stiffness. This can give a parameter, t f /L f ,ld , to quantify the effect of L f ,ld on the
boundary of the foundation. Figure 6.7a shows how the ratio Kb, f nd,cant,an, f ix/Kb, f nd,cant,num

is influenced by t f /L f ,ld .
A coefficient, Cbc, f nd,ld,cant , is introduced to be equivalent to Kb, f nd,cant,an, f ix/Kb, f nd,cant,num

to approximately determine the boundary condition of the foundation based on the effect of
the loaded part of the footing. Based on the numerical results, Cbc, f nd,ld,cant can be fitted to
the numerical data using Equation 6.1.

Cbc, f nd,ld,cant = exp
(

α f nd,ld,cant ×
t f

L f ,ld

)
≥ 1.0 (6.1)

where α f nd,ld,cant is a parameter required to calculate Cbc, f nd,ld,cant . Data points of α f nd,ld,cant

achieved from the curve fitting of the numerical results to Equation 6.1 showed that there
was a relation between α f nd,ld,cant and Ec/(Es ×103), as displayed in Figure 6.7b. Based on
the numerical results, Equation 6.2 can be used to fit the data of α f nd,ld,cant .

α f nd,ld,cant = 5×
(

t f +10
t f

)0.4

×
(

Ec

Es ×103

)0.2

(6.2)

Figure 6.8a shows a comparison between values of α f nd,ld,cant computed using Equa-
tion 6.2 and those obtained from curve fitting of the numerical results. Furthermore, a
comparison of the numerical values of Cbc, f nd,ld,cant and computed values using Equation 6.1
is presented in Figure 6.8b. The figures show a good prediction of coefficients α f nd,ld,cant

and Cbc, f nd,ld,cant using Equations 6.2 and 6.1, respectively.
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Fig. 6.8 Comparison between the numerical and calculated values of (a) α f nd,ld,cant (Equa-
tion 6.2) and (b) Cbc, f nd,ld,cant (Equation 6.1)

6.5.3 Effect of L f ,sp on foundation boundary

L f ,sp is part of the boundary in the foundation system and plays an important role in the
determination of the foundation end fixity. This part provides resistance against foundation
rotation, and its increase leads to the increase of the foundation bending stiffness. Figure 6.9a
shows the variation of the ratio Kb, f nd,cant,an, f ix/Kb, f nd,cant,num with L f ,sp. It is displayed that
small values of L f ,sp result in significant differences between the analytical and numerical
bending stiffness. An increase in L f ,sp leads to an increase in the foundation bending stiffness
up to a specific length. After that, the ratio Kb, f nd,cant,an, f ix/Kb, f nd,cant,num becomes constant.
This specific length can be defined as the maximum length of L f ,sp that has influence on the
foundation bending stiffness, and denoted by L f ,sp,cant,max. Figure 6.9b demonstrates how
t f influences the relation between L f ,sp and Kb, f nd,cant,an, f ix/Kb, f nd,cant,num. It also indicates
that the effect of L f ,sp on Kb, f nd,cant,an, f ix/Kb, f nd,cant,num becomes negligible after a specific
length (L f ,sp,cant,max).

The values of Kb, f nd,cant,an, f ix/Kb, f nd,cant,num in Figure 6.9 contain the effect of both: the
deformed (Cbc, f nd,ld,cant) and undeformed foundation parts. If the effect of Cbc, f nd,ld,cant

is removed from Kb, f nd,cant,an, f ix/Kb, f nd,cant,num (by dividing Kb, f nd,cant,an, f ix/Kb, f nd,cant,num

by Cbc, f nd,ld,cant), the remaining portion will be due to the effect of the supporting part. Fig-
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Fig. 6.9 Effect of L f ,sp on the boundary condition for (a) variable Es, and (b) variable t f

ure 6.10a shows the values of Kb, f nd,cant,an, f ix/Kb, f nd,cant,num, Cbc, f nd,ld,cant calculated using
Equation 6.1, and Cbc, f nd,sp,cant,num obtained from taking away the effect of Cbc, f nd,ld,cant

from Kb, f nd,cant,an, f ix/Kb, f nd,cant,num. The figure illustrates that the effect of the founda-
tion supporting part on bending stiffness should be taken into consideration for the length
L f ,sp,cant,max.

Figure 6.10b shows that numerical values of L f ,sp,cant,max are considerably affected by the
foundation thickness. It is worth noting that in addition to the foundation thickness, the ratio
of Ec/(Es ×103) and the length L f ,ld are also influential parameters affecting L f ,sp,cant,max.
The length L f ,sp,cant,max decreases with the increase of L f ,ld or the decrease of Ec/(Es×103).
Equation 6.3 is introduced to estimate an appropriate value of L f ,sp,cant,max based on t f . This
equation gives the upper bound values of L f ,sp,cant,max. The values of L f ,sp,cant,max calculated
using Equation 6.3 are also plotted on Figure 6.10b.

L f ,sp,cant,max = 13.5t f (6.3)

The ratio of L f ,sp,cant,max/L f ,sp can be used as a parameter to quantify the effect of
L f ,sp on the foundation boundary condition. Figure 6.10c demonstrates that the ratio
L f ,sp,cant,max/L f ,sp has an exponential relationship with Kb, f nd,cant,an, f ix/Kb, f nd,cant,num. A
parameter, Cbc, f nd,sp,cant is introduced to approximately determine the boundary condition
of the foundation based on the effect of the supporting part of the footing. Cbc, f nd,sp,cant

was fitted to the numerical data using Equation 6.5. It should be noted that the fitting of
Cbc, f nd,sp,cant was done after the removal of the effect of Cbc, f nd,ld,cant (Equation 6.1) from
Kb, f nd,cant,an, f ix/Kb, f nd,cant,num.
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Fig. 6.10 (a) Weight of the coefficient Cbc, f nd,ld,cant in Kb, f nd,cant,an, f ix/Kb, f nd,cant,num,
(b) numerical values of L f ,sp,cant,max and the fitted values (Equation 6.3), (c) effect of
L f ,sp,cant,max/L f ,sp on the foundation boundary condition, (d) effect of Ec/(Es × 103) on
α f nd,sp,cant
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Cbc, f nd,sp,cant = 0.8× exp
(

α f nd,sp,cant ×
L f ,sp,cant,max

L f ,sp

)
≥ 1.0 (6.4)

Equation 6.4 is applicable for values of L f ,sp ≤ L f ,sp,cant,max. For cases where L f ,sp >

L f ,sp,cant,max, the value of Cbc, f nd,sp,cant = 1.0. Furthermore, it was noted that values of L f ,sp

smaller than 0.15L f ,sp,cant,max caused a dramatic rotation to the foundation, especially for
thick foundations (i.e. t f ≥0.5 m). For this reason, it is recommended to neglect values
of bending stiffness for foundations with a supporting length of L f ,sp < 0.15L f ,sp,cant,max.
Therefore, the length effect of the foundation supporting part is considered for values of L f ,sp

lying between 0.15L f ,sp,cant,max and L f ,sp,cant,max (0.15L f ,sp,cant,max ≤ L f ,sp ≤ L f ,sp,cant,max).
Figure 6.10d shows the effect of Ec/(Es × 103) on α f nd,sp,cant for different values of

t f . It is demonstrated that there is a general increase of α f nd,sp,cant with the increase of
Ec/(Es ×103), and can be expressed by Equation 6.5.

α f ,sp,cant = 0.36×
(

Ec

Es ×103

)0.32

(6.5)

A final coefficient for estimating the boundary condition of the foundation can now be
introduced by multiplying Cbc, f nd,ld,cant by Cbc, f nd,sp,cant :

Cbc, f nd,cant =Cbc, f nd,ld,cant ×Cbc, f nd,sp,cant ≥ 1.0 (6.6)

To summarise, the analytically computed bending stiffness of the foundation using
Equation 2.3 is divided by coefficient Cbc, f nd,cant to obtain an equivalent stiffness value of
the numerical results (Kb, f nd,cant,eq):

Kb, f nd,cant,eq =
Kb, f nd,an, f ix

Cbc, f nd,cant
(6.7)

Figure 6.11 presents a comparison of Kb, f nd,cant,num with the equivalent numerical values
of bending stiffness (Kb, f nd,cant,eq) for over 600 cases with variable parameters of L f ,ld , L f ,sp,
t f , Ec and Es. The figure shows that the proposed method predicts the foundation bending
stiffness to a good extent.

6.5.4 Verification example

To make a simple verification of the proposed method, numerical models were simulated to
test the parameters that have an effect on the estimation of the foundation boundary condition.
It is worth noting that the considered numerical models used to verify the proposed method
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Fig. 6.11 Comparison between Kb, f nd,cant,eq and Kb, f nd,cant,num

were not included in the development of the method. However, the considered dimensions
and material properties were within the range of values used for the method development.
The tested parameters in this example were: Ec/Es, L f ,ld , L f ,sp and t f .

Figure 6.12a presents the results of the numerical and proposed values of Cbc, f nd,cant for
different values of Ec/(Es ×103), and two values of t f : 0.4 m and 1.0 m. For t f = 0.4 m,
L f ,sp = 5 m which is close to L f ,sp,cant,max = 5.4 m, while for t f = 1.0 m, L f ,sp = 5 m is
smaller than L f ,sp,cant,max = 13.5 m. In both cases, there is a good agreement between the
numerical and proposed results.

The effect of changing L f ,ld on Cbc, f nd,cant is shown in Figure 6.12b for two values of
t f : 0.4 m and 0.75 m, with values of L f ,sp = 5 m and 15 m, respectively. A good agreement
between the numerical and the proposed values of Cbc, f nd,cant is observed. The effect of L f ,sp

on Cbc, f nd,cant is presented in Figure 6.12c. An excellent agreement between the numerical
and proposed values is obtained.

Figure 6.12d exhibits the effect of foundation thickness on Cbc, f nd,cant . Generally, the
results are in reasonably good agreement. There is a notable difference between the numerical
and the proposed results for t f values greater than about 0.6 m. This difference is larger
in the case of L f ,sp = 5 m. This indicates that for high values of t f , a large rotation of the
foundation occurred which was not well-captured by coefficient Cbc, f nd,cant .
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Fig. 6.12 Verification of the effect of (a) Ec/(Es × 103) for L f ,ld = 10 m, (b) L f ,ld for
Ec/(Es × 103) = 0.667, (c) L f ,sp for L f ,ld = 10 m and Ec/(Es × 103) = 0.667, (d) t f for
L f ,ld = 10 m and Ec/(Es ×103) = 0.667 on the estimation of Cbc, f nd,cant
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6.6 Fixed-Ended Approach

This section deals with the fixed–ended case shown in Figure 6.1b.

6.6.1 Effect of soil and concrete elastic moduli on foundation boundary

As explained in the cantilever approach, the concrete and soil elastic moduli have opposing
effects on the foundation bending stiffness. The increase of the soil elastic modulus leads to
increasing the fixity of the foundation support (boundary), while a high value of concrete
elastic modulus results in the settlement of the foundation and reduces the global foundation
bending stiffness.

Numerical results shown in Figure 6.13a illustrate that the difference between the ana-
lytical (Kb, f nd, f end,an, f ix) and numerical (Kb, f nd, f end,num) bending stiffness of the foundation
reduces with the increase of the soil elastic modulus. Similar to the cantilever approach, this
indicates that the foundation bending stiffness increases and the boundary condition of the
foundation approaches the fixed condition.

The reason for the increase of the foundation bending stiffness due to a high soil elastic
modulus in a fixed–ended situation is that a stiff soil reduces the deflection of the foundation
and the embedding of the foundation ends into the underlying soil. Dissimilar to the cantilever
approach, rotation of the foundation in a fixed–ended case is not significant because of
symmetry.

Figure 6.13b demonstrates the effect of the concrete elastic modulus on the bending
stiffness of the foundation. It is indicated that the difference between the analytical and
numerical bending stiffness of the foundation increases with the increase of Ec. The reason
for this is the same as that presented in the cantilever approach; when the footing member
becomes stiff due to a high value of Ec, most of the effects of the applied pressure to the
foundation will transfer to the boundary which will cause a significant deformation to the
supporting soil.

6.6.2 Effect of L f ,ld on foundation boundary

L f ,ld plays an important role on how much deformation effect is transferred to the boundary.
Considering only the footing member, the increase of L f ,ld results in a cubic decrease of the
foundation bending stiffness, while considering the global foundation, it leads to a significant
reduction of the difference between the analytical and the numerical bending stiffness of the
foundation. This is because footing members with small lengths are very stiff and transfer
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Fig. 6.13 Effect of (a) soil and (b) concrete elastic modulus on the foundation boundary
condition (Kb, f nd, f end,an, f ix/Kb, f nd, f end,num)

most of the deformation effects to the boundary. This in turn leads to a large boundary
deformation. It should be mentioned that in the numerical models created to investigate L f ,ld ,
the supporting part (L f ,sp) was given a large value to ensure that it did not have any effect on
the stiffness results.

Figure 6.14a presents the influence of L f ,ld on the bending stiffness of the foundation
for two different values of Es, and Figure 6.14b demonstrates the effect for two different
values of t f . The data indicate that there is a significant difference between the analytical and
the numerical bending stiffness of the foundation for small lengths of L f ,ld . Furthermore,
Figure 6.14a shows that the reduction of the foundation bending stiffness is higher in the
case of Es = 20 MPa due to having a low stiffness support. On the other hand, Figure 6.14b
demonstrates that there is a general trend that the increase of foundation thickness leads
to increasing the difference between the analytical and numerical bending stiffness of the
foundation, and the difference in the case of the larger t f is more significant. In all these cases,
when the stiffness of the footing member increases, the foundation boundary is subjected to
greater deformation leading to a reduction in the bending stiffness.

The actions of L f ,ld and t f can give a parameter, t f /L f ,ld , to quantify the effect of L f ,ld on
the boundary of the foundation. Figure 6.15a shows how the ratio Kb, f nd, f end,an, f ix/Kb, f nd, f end,num

is influenced by t f /L f ,ld . A coefficient, Cbc, f nd,ld, f end , is introduced to be an equivalent to
Kb, f nd, f end,an, f ix/Kb, f nd, f end,num to approximately determine the boundary condition of the
foundation in a fixed–ended approach based on the effect of the foundation loaded part.
Cbc, f nd,ld, f end was fitted to the numerical data using Equation 6.8.

Cbc, f nd,ld, f end = α f nd,ld, f end × exp
(

25×
t f

L f ,ld

)
≥ 1.0 (6.8)
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Fig. 6.14 The effect of L f ,ld on the foundation boundary condition in the fixed–ended
approach for different values of (a) soil elastic modulus and (b) foundation thickness

Fig. 6.15 (a) Effect of t f /L f ,ld on the foundation boundary, (b) relationship between
α f nd,ld, f end and Ec/Es
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Fig. 6.16 Comparison between numerical and computed values of Cbc, f nd,ld, f end (Equa-
tion 6.8)

where α f nd,ld, f end is a parameter required to estimate Cbc, f nd,ld, f end . Data points of α f nd,ld, f end

achieved from the curve fitting of numerical results to Equation 6.8 showed that there was
a relation between α f nd,ld, f end and Ec/(Es ×103), as displayed in Figure 6.15b. Based on
the numerical results, a relation based on only Ec/(Es ×103) does not fit the data well; an
additional term, 8t f /(t f +L f ,ld) should also be considered. Equation 6.9 can be used to fit
the numerical data of α f nd,ld, f end to a good extent. Figure 6.16 presents a good prediction of
coefficient Cbc, f nd,ld, f end using Equation 6.8.

α f nd,ld, f end = 1.3×
(

Ec

Es ×103

)( 8t f
t f +L f ,ld

)
(6.9)

6.6.3 Effect of L f ,sp on foundation boundary

In the fixed–ended approach, L f ,sp provides resistance against deformation of the foundation
boundary. Figure 6.17a shows the variation of the ratio Kb, f nd, f end,an, f ix/Kb, f nd, f end,num with
L f ,sp. It is shown that an increase in L f ,sp leads to an increase in the foundation bending
stiffness up to a specific length. After that, the ratio Kb, f nd, f end,an, f ix/Kb, f nd, f end,num becomes
constant. Similar to the cantilever approach, this specific length can be defined as the
maximum length of L f ,sp that has influence on the foundation bending stiffness, and is
denoted by L f ,sp, f end,max. Figure 6.17b demonstrates how t f influences the relation between
L f ,sp and Kb, f nd, f end,an, f ix/Kb, f nd, f end,num. It is also indicated that the effect of L f ,sp on
Kb, f nd, f end,an, f ix/Kb, f nd, f end,num becomes negligible after a specific length.
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Fig. 6.17 Effect of L f ,sp on Kb, f nd, f end,an, f ix/Kb, f nd, f end,num for different values of (a)
Ec/(Es ×103), and (b) t f

It should be mentioned that the major effect of the footing member on the boundary con-
dition was considered in Cbc, f nd,ld, f end . Figure 6.18a shows the values of Kb, f nd, f end,an, f ix/

Kb, f nd, f end,num, Cbc, f nd,ld, f end calculated using Equation 6.8, and Cbc, f nd,sp, f end,num obtained
from taking away the effect of Cbc, f nd,ld, f end from Kb, f nd, f end,an, f ix/Kb, f nd, f end,num (by di-
viding the value of Kb, f nd, f end,an, f ix/Kb, f nd, f end,num by Cbc, f nd,ld, f end). The data show that
the coefficient Cbc, f nd,ld, f end (calculated from Equation 6.8) estimates the major portion of
Kb, f nd, f end,an, f ix/Kb, f nd, f end,num, and leaves only a secondary role to the effect of the support-
ing length on the boundary condition. The reason for the secondary role of the supporting
length is that the foundation does not experience rotation due to symmetry.

Figure 6.18b shows that numerical values of L f ,sp, f end,max are affected by the founda-
tion thickness. Similar to the cantilever approach, the thickness of the foundation is not
the only influential parameter affecting L f ,sp, f end,max; Ec/(Es × 103) and L f ,ld also play
an important role. The upper bound of the numerical data points plotted in relation to t f

was used to obtain the approximate value of L f ,sp, f end,max. This was done to eliminate the
complexity of the problem since the effect of the supporting part has a secondary contribution
to Kb, f nd, f end,an, f ix/Kb, f nd, f end,num compared to the contribution of Cbc, f nd,ld, f end . Equa-
tion 6.10 can be used to approximate L f ,sp, f end,max. The calculated values of L f ,sp, f end,max

using Equation 6.10 are also plotted on Figure 6.18b.

L f ,sp, f end,max = 2.25× exp
(
1.25× t f

)
(6.10)

Numerical results shown in Figure 6.18c show that the estimation of the foundation
boundary condition can be related to a parameter, t2

f /(L f ,spL f ,ld), based on an exponential
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Fig. 6.18 (a) Weight of the coefficient Cbc, f nd,ld, f end in Kb, f nd, f end,an, f ix/Kb, f nd, f end,num,
(b) numerical values of L f ,sp, f end,max and the fitted values (Equation 6.10), (c) effect of
t2

f /(L f ,spL f ,ld) on the foundation boundary condition
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Fig. 6.19 Comparison between Kb, f nd, f end,eq and Kb, f nd, f end,num

relationship, as expressed by Equation 6.11. It is worth noting that for values of L f ,sp ≥
L f ,sp, f end,max, the coefficient Cbc, f nd,sp, f end is not considered (i.e. Cbc, f nd,sp, f end = 1.0).

Cbc, f nd,sp, f end = exp

(
4×

t2
f

L f ,sp ×L f ,ld

)
≥ 1.0 (6.11)

A final coefficient for estimating the boundary condition of the foundation in the fixed–
ended approach can now be introduced by multiplying Cbc, f nd,ld, f end by Cbc, f nd,sp, f end:

Cbc, f nd, f end =Cbc, f nd,ld, f end ×Cbc, f nd,sp, f end ≥ 1.0 (6.12)

Finally, the analytically computed bending stiffness of the foundation using Equation 2.3
is divided by coefficient Cbc, f nd, f end to obtained an equivalent stiffness value of the numerical
results (Kb, f nd,cant,eq):

Kb, f nd, f end,eq =
Kb, f nd,an, f ix

Cbc, f nd, f end
(6.13)

Figure 6.19 presents a comparison of Kb, f nd, f end,num with the equivalent numerical values
of bending stiffness (Kb, f nd,cant,eq) for over 600 cases with variable parameters of L f ,ld , L f ,sp,
t f , Ec and Es. The results show that the proposed method predicts the foundation bending
stiffness to a good extent.
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Fig. 6.20 Verification of the effect of (a) Ec/(Es×103) for L f ,ld = 20 m, (b) L f ,ld for L f ,sp =
12.5 and Ec/(Es ×103) = 0.667, (c) L f ,sp for L f ,ld = 25 m and Ec/(Es ×103) = 0.667, (d)
t f for L f ,sp = 12.5 m and Ec/(Es ×103) = 0.667 on the estimation of Cbc, f nd, f end

6.6.4 Verification example

To make a simple verification of the proposed method, numerical models were simulated to
test the parameters that have an effect on the estimation of the foundation boundary condition.
The considered numerical models used to verify the proposed method were not included in
the development of the method, but the dimensions were within the range of values used in
the method development. The tested parameters were: Ec/Es, L f ,ld , L f ,sp and t f .

Figure 6.20a presents the results of the numerical and proposed values of Cbc, f nd, f end for
different values of Ec/(Es ×103), and two values of t f : 0.4 m and 1.0 m. L f ,sp = 4 m was
chosen which was approximately equal to L f ,sp, f end,max = 3.7 m for t f = 0.4 m, while it was
smaller than L f ,sp, f end,max = 7.85 m for t f = 1.0 m. In both cases, there is a reasonably good
agreement between the numerical and proposed results; however, the agreement of the case
where t f = 0.4 m is better than that of t f = 1.0 m.
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The effect of changing L f ,ld on Cbc, f nd, f end is shown in Figure 6.20b for two values of
t f : 0.4 m and 0.8 m. A good agreement between the numerical and the proposed values of
Cbc, f nd, f end is observed. The difference between the numerically obtained and the proposed
values of Cbc, f nd, f end in the case of t f = 0.8 m is greater compared to the case of t f = 0.4 m.
On the other hand, the effect of L f ,sp on Cbc, f nd, f end is presented in Figure 6.20c. There is also
a reasonably good agreement between the numerical and the proposed values. Furthermore,
Figure 6.20d exhibits the effect of the foundation thickness on Cbc, f nd, f end . Generally, the
results are in reasonably good agreement.

6.7 Summary

This chapter investigated the bending behaviour of raft foundations located near newly
constructed tunnels. As will be explained in Chapter 8, raft foundations constitute the
major resistance of the building to bending deformations; therefore, special investigation is
necessary to consider the foundation role in the tunnel–soil–building interaction analysis,
which is disregarded to a great extent in the literature.

Two important zones of the soil were recognised in this chapter: the zone influenced by
tunnelling (displaced zone), and the zone that was not influenced (undisplaced zone). The
displaced soil zone was not modelled in the numerical analyses. Instead, a triangular pressure
was applied to the footing to create deformations. The effects of the soil and concrete elastic
moduli, the foundation length located in the displaced soil zone and that located in the
undisplaced zone, on the bending behaviour of the foundation was also investigated. It was
shown that the soil elastic modulus and the length of the footing in the undisplaced zone had
a proportional effect on the foundation bending stiffness. Additionally, the increase of the
footing length in the displaced zone led to the reduction of foundation rotation.

Furthermore, this chapter presented two methods based on numerical analyses to estimate
the approximate bending stiffness of raft foundations. The methods consider two cases
of tunnel–building relative location: a cantilever method for the case where the building
is located under the edge or outside the building plan area, and a fixed–ended method for
the case where the tunnel is under the building centreline. The footing and the underlying
soil were considered together in the numerical simulations in order to calculate the bending
stiffness of the global foundation.



Chapter 7

Mixed Empirical-Numerical Method for
Investigating Tunnelling Effects on
Structures

7.1 Introduction

The numerical simulation of a tunnel is an effective method for estimating the influence
of tunnelling on buildings, however, as explained in Section 3.6.5, finite element methods
generally predict a wider and shallower greenfield settlement trough than observed in practice.
This issue can be overcome by the use of sophisticated soil constitutive models, although
the input parameters for these models are generally not readily available. A wider/shallower
input of greenfield displacements can affect the results of a soil–structure interaction analysis
in two ways. First, for a given settlement trough shape, a smaller maximum settlement
produces less distortions and therefore less damage to a building. Second, the width of the
settlement trough can alter the response of the building; a building affected along its entire
length will show less resistance to deformation compared to the same building subjected to
ground displacements along part of its length. This feature, which relates to the end-fixity of
the building, can be explained using a beam analogy. A relatively long building extending
further outside the ground displacement zone can be thought of like a beam with a relatively
stiff support that constrains the rotation of the beam (similar to a fixed ended beam), whereas
a shorter building behaves like a beam with a more flexible support that allows a degree of
rotation (similar to a simply supported beam).
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The aim of this chapter is to describe the use of a two-stage mixed empirical-numerical
(E–N) method to estimate the effect of the stiffness of a weightless building on ground
displacements caused by tunnelling. In this method, realistic greenfield ground displacements,
obtained from empirical or analytical relationships, are used as an input in a numerical
analysis in order to determine the nodal reaction forces within the numerical mesh required
to obtain the greenfield displacements (stage 1). The tunnel–building interaction is then
solved in stage 2 by including the building within the model and applying the greenfield
nodal reaction forces to the mesh. The applied numerical analysis adopts simple linear elastic
constitutive soil behaviour; the effects of building weight on the tunnelling-induced response
is therefore not considered in the analysis.

This chapter also includes the use of a conventional numerical analysis to estimate the
tunnel–building interaction effect. The purpose of including the conventional numerical
analysis is to provide results for comparison which might be obtained by a practising engineer
considering this problem, using reasonably standard numerical modelling methods. Results
from the two numerical analyses are compared and the importance of having an accurate input
of greenfield displacements in evaluating structural distortions is demonstrated. Furthermore,
this chapter adopts the methodology of Franzius et al. (2006) (Equations 3.30 and 3.31) for
comparing the results. The method of Goh and Mair (2011b) and Mair (2013), in which
the building is separated into sagging and hogging zones and the relative bending stiffness
is estimated independently for each part, was also available for the comparison. Each
method has its own advantages and limitations, however it was felt that treatment of the
building as a single entity (as in the Franzius et al. (2006) method) was more logical for the
analyses considered in this chapter since the fixity condition of the building ends (which is
misrepresented by splitting the building into parts) plays an important role.

An investigation of the effect of volume loss and soil relative density on the tunnel-
building interaction is also presented in this chapter. It should be mentioned that the proposed
method in this chapter (mixed E–N) was used in Chapter 8 to estimate the effect of 3D
buildings on tunnelling induced ground displacements.

7.2 Mixed Empirical-Numerical Approach (mixed E–N)

To address the issues related to poor prediction of tunnelling induced settlement trough shape
using numerical methods, yet still take advantage of the capabilities of numerical modelling
for soil-structure interaction analysis, several authors have incorporated an empirical or
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analytical greenfield input into a numerical analysis, such as Selby (1999), Klar and Marshall
(2008) and Wang et al. (2011) (see Section 3.7.1 for more detail).

Selby (1999) applied tunnelling induced ground surface movements to a finite element
numerical model using Gaussian equations to estimate tunnelling effects on structures. Klar
and Marshall (2008) applied Gaussian ground movements to all nodes of a finite difference
numerical model in order to estimate tunnelling effects on pipelines. Wang et al. (2011) used
a semi empirical method to investigate tunnelling effects on buried pipelines. The method
of Selby (1999) and Klar and Marshall (2008) incorporated a two-stage analysis in which
displacements are applied to the model in the first stage, and the reaction forces required to
create the prescribed displacements are applied to the model in the second stage, after the
structure is added to the model. In this way, the tunnelling process is not simulated directly
in the numerical model, yet the soil-structure interactions caused by the greenfield input are
simulated. The method of Wang et al. (2011) differs from the work of Klar and Marshall
(2008) in that it was a displacement control modelling throughout the analysis. The soil
boundary was subjected to displacements in both cases of greenfield and with the existence
of the structure (i.e. assuming no effects of the structure on the boundaries). The effects of
the tunnel construction were transferred to the other parts of the soil via the soil material
model.

In the methodology of this chapter, the two-stage analysis approach was adopted. The
method is referred to as the mixed empirical-numerical (mixed E–N) method because an
empirical/semi-analytical relationship was used for the greenfield input. In the first stage of
the analysis, all nodes in the numerical mesh of the soil model are forced to displace according
to the empirical functions (displacement input to the model) and the nodal reaction forces are
recorded. Note that the numerical model in stage 1 includes elements that represent the soil
and the building, however the elements associated with the building are not activated (i.e. a
virtual building exists that does not affect the analysis). This ensures that no changes occur to
the global model in stage 2 in terms of boundaries, dimensions and node numbering. In the
second stage, the model is returned to its original condition and the structure is activated. The
recorded nodal forces are then applied to all nodes of the soil model. Using this approach,
the difference between the greenfield deformations and the deformations obtained when the
structure is added represents the soil-structure interaction effect.

Results are provided from both conventional numerical analyses (Figure 7.1a), in which
the greenfield displacements and soil-structure interactions are evaluated using the numerical
model, as well as the mixed E–N method (Figure 7.1b). The soil depth above the tunnel,
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Fig. 7.1 (a) ‘Conventional’ numerical model and (b) mixed E-N method

denoted by ‘top part’, is used for the mixed E–N analysis; the ‘bottom part’ is excluded from
the mixed E–N modelling.

The analyses presented here follow the procedure set out in Klar and Marshall (2008).
The main difference is that the structure in this chapter is a 3D beam of finite length located
on the surface, whereas for Klar and Marshall (2008) the structure was a buried pipeline of
infinite length (achieved using appropriate boundary conditions). The assumptions inherent
to the Klar and Marshall (2008) approach include: (1) the structure is continuous and always
in contact with the soil, (2) both the soil and the structure are homogeneous linear elastic,
(3) the tunnel is not affected by the existence of the structure, and (4) the soil responds to
loading from the structure as an elastic half-space, disregarding the presence of the tunnel.
In this chapter, analyses were carried out considering both vertical and horizontal ground
movements, thereby including both deflections and axial deformations of surface structures.

A semi-analytical approach similar to that presented in Franza and Marshall (2015b) was
used to obtain the greenfield displacement input. Franza and Marshall (2015b) obtained a
closed-form solution that was able to represent greenfield displacements around a tunnel in
sand based on data obtained from geotechnical centrifuge testing. Their proposed method
provided good accuracy of vertical displacement predictions, however the solutions over-
predicted subsurface horizontal movements. The semi-analytical solution for horizontal (Sh)
and vertical (Sv) greenfield displacements used in this chapter are presented in Section 3.6.2
which is an expanded form of the approach proposed by Franza and Marshall (2015b), and
modified by the same authors to include a wider set of centrifuge data. Note that any input of
greenfield can be incorporated into this analysis methodology.
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Fig. 7.2 Mixed E–N model with base layer

In Klar and Marshall (2008), the base of the mesh was forced to displace according to
the input greenfield displacements even when the equivalent nodal forces were applied in the
second stage of the analysis. This approach requires that the base of the mesh is not affected
by the existence of the included structure (i.e. by the loading due to soil-structure interaction),
which was the case for the Klar and Marshall (2008) analysis. This approach creates issues
for analyses of structures above relatively shallow tunnels. This chapter proposes a method
to address this constraint by using the following technique. As shown in Figure 7.1a, the
targeted part of the soil is located above the tunnel crown. Instead of applying fixities and
imposing greenfield displacements to the base of the model in stage 2 of the analysis, a ‘base
layer’ is added to the bottom of the model (illustrated in Figure 7.2) which has the same
properties as the top (target) layer (or could include other properties in the case of layered
soil analyses) and is fixed in the vertical direction along its bottom. In this way, the soil
responds to soil-structure interaction loading (i.e. reaction forces applied by the structure to
the soil due to structure stiffness and distortions) in a way similar to an elastic half-space.

In stage 1, soil nodes in the target layer of the mesh are moved according to the greenfield
displacements, while movements in the base layer are not imposed; they depend on the
displacements applied to the target layer and the properties of the soil. The equivalent
nodal forces from the target layer are then recorded and, in stage 2, after resetting the mesh
displacements and adding the structure, the nodal forces in the target layer are applied to the
mesh. It will be shown later that the use of the base layer provides an effective method for
evaluating the effect of a structure on the entire depth of the target layer (Figure 7.2).
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7.3 Model Description

7.3.1 Conventional numerical Model

In the conventional numerical analyses, a 4.65 m diameter tunnel was modelled within a soil
domain 43Dt long and 10Dt deep, as illustrated in Figure 7.3; a unit length mesh was used
in the direction of the tunnel axis. Two tunnel depths were considered, with Ct/Dt=2.4 and
4.4, as well as three relative tunnel-building eccentricities, e/Lbldg = 0.0, 0.5 and 0.75. A
60 m long beam (also 1 m wide in direction of tunnel axis) was attached to the soil surface
using a tie constraint (does not allow slip or separation). The total number of elements was
between 60,000 and 110,000. Equations 3.30 and 3.31 were used to evaluate ρ∗

mod and α∗
mod ,

respectively. Five buildings were analysed, as described in Table 7.1. The flexural and axial
rigidity of the buildings, EI and EA, were chosen based on realistic values presented by
Farrell (2010). The properties were selected so that they include low, medium and high
stiffness structures. It is worth noting that the elastic modulus of the concrete was 23 GPa,
and the other material models are given in Section 4.7.

Table 7.1 Building properties for conventional numerical and mixed E–N simulations

Cases Beam thickness, tB (m) EI (kNm2/m) EA (kN/m)
1 0.10 1.9× 103 2.3× 106

2 0.25 3.0× 104 5.8× 106

3 0.50 2.4× 105 1.2× 107

4 1.00 1.9× 106 2.3× 107

5 3.00 5.2× 107 6.9× 107

The tunnel was excavated instantaneously along its length. The displacement controlled
method described by Cheng et al. (2007), where increments of contraction are induced along
the tunnel periphery, was used to simulate the tunnelling process. An oval-shaped pattern was
assumed for the displacements around the tunnel, where maximum settlements occur at the
tunnel crown and no movements occur at the invert, as shown in Figure 7.3. Tunnel boundary
displacements were directed towards the centre of the converged tunnel. This displacement
pattern matches closely to data obtained from centrifuge experiments (Marshall, 2009; Zhou,
2014), and has provided good predictions of ground displacements when compared with the
stress control method (Cheng et al., 2007).

Three cases of volume loss and two cases of soil relative density were considered for
each tunnel/building scenario, as listed in Table 7.2. The chosen values of tunnel volume loss
(Vlt) are based on the available centrifuge test data. In the numerical model, displacements
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Fig. 7.3 Illustration of numerical model showing dimensions, depths and locations of the
tunnel

of the tunnel boundary were increased until the volume loss at the surface in the greenfield
situation matched that of Vls,sur f in Table 7.2. This was done to ensure a fair comparison of
numerical results with those from the mixed E–N since the most important zone is at the
surface where the tunnel-building interaction takes place.

7.3.2 Mixed E–N model

In the mixed E–N analyses, a soil model of the same dimensions as the conventional
numerical model was used. The analyses, summarised in Table 7.2, were based on centrifuge
experiment data. The input of the tunnelling induced greenfield displacements to the mixed
E–N model was obtained using Equations 3.17, 3.18, and 3.20 in Section 3.6.2. The depth
of the target and base layers for both tunnel depth cases (Ct/Dt = 2.4 and 4.4) were 10 m
and 35 m, respectively, except for simulations where the effect of the size of the target/base
layers was investigated. Three tunnel volume losses (Vlt) of 0.96%, 1.76% and 3.94% were
considered; these result in the soil volume losses (Vls,sur f ) at the ground surface shown in
Table 7.2. Two cases of soil relative density were considered: Id= 90% and 30%. The element
types and elastic properties of the soil and the building were the same as the conventional
numerical model. It should be noted that the centrifuge data for the case Id = 90% was from
Marshall et al. (2012) and that of the case Id = 30% was from Franza (2016).
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Table 7.2 Mixed E–N analyses: tunnel and surface soil volume losses

Ct/Dt Id (%) Vlt (%) Vls,sur f (%)
2.4 90% 0.96 0.92%
2.4 90% 1.76 1.55%
2.4 90% 3.94 2.50%
2.4 30% 0.96 2.50%
2.4 30% 1.76 4.12%
2.4 30% 3.94 6.82%
4.4 90% 0.96 1.68%
4.4 90% 1.76 2.77%
4.4 90% 3.94 4.40%
4.4 30% 0.96 2.74%
4.4 30% 1.76 4.85%
4.4 30% 3.94 9.50%

7.4 Mixed E–N Model Results

This section includes the results related to the validation of the mixed E–N method and its
comparison to the results obtained from the conventional numerical analyses. It should be
mentioned that the results presented throughout this section are related to the case Id = 90%.

7.4.1 Greenfield input

In addition to predicting a wide settlement trough, conventional numerical methods are also
not able to replicate the complex distribution of soil volume loss that occurs above a tunnel in
a drained granular soil, where shear strains can lead to contraction or dilation of the soil. The
amount of contraction/dilation of the soil, which depends on its relative density, the depth
of the tunnel, and the magnitude of tunnel volume loss, ultimately leads to a change in the
shape of the settlement trough (Marshall et al., 2012; Zhou et al., 2014). This necessitates
the use of more complex empirical relationships compared to the standard Gaussian curve
generally applied to settlements above tunnels in clay.

Figure 7.4 shows greenfield vertical and horizontal displacements for the conventional
numerical and mixed E–N models for Ct/Dt = 2.4. The centrifuge test data, on which the
semi-analytical expressions (and therefore mixed E–N analyses) are based are also illustrated.
The figure presents data at two depths (z/zt = 0.0 and z/zt = 0.37) and at two values of
surface volume loss (Vls,sur f =1.55% and 2.5%). The vertical displacement data illustrate
the wide/shallow settlement trough obtained using the conventional numerical model. For
horizontal displacements at the surface, the magnitude of maximum horizontal displacement
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Fig. 7.4 Tunnelling induced greenfield ground displacements for Ct/Dt = 2.4: (a) vertical,
(b) horizontal

from the conventional numerical analyses is considerably less than the experimental data,
and occurs much further away from the tunnel. This has an impact on the soil-building
interaction analysis, since the building in the conventional numerical model will be subjected
to ground displacements along a greater length compared to what is expected (assuming
that the centrifuge test data gives a good representation of reality). The semi-analytical
expressions are shown to give a good fit to the centrifuge data, hence the greenfield inputs
for the mixed E–N analyses are a good reflection of what is expected in reality.

For the same value of surface volume loss, the value of maximum settlement and the
trough width are both significantly influential on the degree of effect of ground displacements
on buildings. Therefore, any inaccuracy in the prediction of the maximum settlement or the
trough width will lead to larger inaccuracy in the estimation of the building damage caused by
displacements. In the proposed method of Burland (1995) to evaluate the risk of damage to
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buildings, the assessment of building damage was linked to the maximum ground settlement;
a building is likely to experience damage if the maximum ground settlement exceeds 10 mm.
The importance of using realistic ground movements as input to tunnel–building interaction
analyses was also confirmed by Heath and West (1996).

The input of tunnel volume loss for the centrifuge and the semi-analytical methods was the
same (0.96%, 1.76% and 3.94%), but this was not achievable with the numerical modelling
since the mechanism of predicting ground displacements between the centrifuge experiment
and the numerical simulation was different. For this reason, the surface settlements of the
conventional numerical analysis and the semi-analytical solution were equalised and used
for the purpose of comparison and also for the estimation of building stiffness effect on
tunnelling induced ground movements. Table 7.3 shows values of volume loss at different
depths for the centrifuge experiment, conventional numerical modelling and semi-analytical
(mixed E–N) solution. It is worth mentioning that the tunnel volume loss in the numerical
modelling was calculated after a surface volume loss equal to that of the semi-analytical
solution was predicted.

Table 7.3 Achieved volume losses at different depths by different prediction methods of
ground displacements due to tunnelling

depth
soil volume loss, Vls %

centrifuge semi-analytical numerical
Tunnel 3.94 3.94 1.10

z/zt = 0.37 2.20 2.33 2.50
z/zt = 0.0 2.75 2.50 2.50

Tunnel 1.76 1.76 0.66
z/zt = 0.37 1.60 1.46 1.55
z/zt = 0.0 2.0 1.55 1.55

Tunnel 0.96 0.96 0.40
z/zt = 0.37 1.0 0.87 0.93
z/zt = 0.0 1.25 0.92 0.93

Table 7.3 shows that the value of volume loss in the centrifuge case changes along the
soil depth. This change is also captured by the semi-analytical method while no change in the
volume loss value was obtained along the soil depth in the conventional numerical analysis.
The large volume loss difference between the tunnel and outside the tunnel (contraction) in
the conventional numerical analysis is due to the effect of Poisson’s ratio. For νs = 0.5, the
tunnel and surface volume losses will be the same due to no change in the initial and final
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volume. In addition, there was no induced plastic strains in the soil except in an insignificant
area around the top and sides of the tunnel boundary.

7.4.2 Applying displacements and equivalent nodal forces to the soil
model

The results of different simulations showed that the nodal reaction forces recorded in the
first stage in which displacements were applied to the model, resulted in the same prescribed
displacements when they were applied to the model in the second stage. Vertical and
horizontal displacements of both the applied displacements and the applied nodal reaction
forces for various soil depths were compared to each other, and the displacement curves of
both cases at each depth completely lied on each other without any difference between them.
It should be noted that the comparison of the results was done for the greenfield situation
where there were no structures.

7.4.3 Effect of top and base layer thickness

Three depths of the top layer (2.5 m, 5 m and 10 m) were tested for the building Case 5
(Table 7.1). The results of different depths of the top layer did not show any dissimilarities
and their settlement curves exactly lied on each other. This explains that the depth of the top
layer for a constant model depth does not have an effect on the simulations.

Figure 7.5 shows the effect of base layer thickness on the mixed E–N results for different
building cases (Table 7.1) at a tunnel volume loss of 1.76% and tunnel depths corresponding
to Ct/Dt = 2.4 and 4.4. The thickness of the base layer was varied from 5 to 35 m. Results
based on the approach of Klar and Marshall (2008) in which the base of the model (target
layer thickness = 10 m with no base layer) was assumed to follow greenfield displacements
are also included. Figure 7.5a illustrates that displacements decrease with the increase of
the base layer thickness. The maximum displacements are greatest when there is no base
layer (i.e. the Klar and Marshall (2008) case). The effect of the base layer was constant for
values of thickness greater than 25 m (data coincides with base layer = 25 m line). The larger
displacements for the less thick base layer cases is caused by the effect of the constraint at
the bottom of the base layer, which prevents the reduction of downwards movements near
this boundary. Since the first stage of the analysis is a displacement controlled process in
which all soil nodes in the top part are forced to displace by a certain amount, relatively large
reaction forces are created in the nodes, including the effect of the applied displacements
as well as the bottom boundary. When the structure is added to the analysis in stage 2,



178 Mixed Empirical-Numerical Method for Investigating Tunnelling Effects on Structures

these nodal reactions force the building to displace more compared to the larger base layer
thickness cases due to the extra reaction forces created by the effect of the nearby bottom
boundary.

The stiffness of the building also has an impact on the soil-building interaction. Fig-
ure 7.5b shows that the base layer thickness has little effect when it is greater than 5 m for
the more flexible equivalent beam in building case 2, where the beam thickness tB is 0.25 m.
In the case of a fully flexible building, the base layer effects are negligible. The stiffer the
building, the greater the required thickness of the base layer.

For deeper tunnels, the effect of the bottom boundary on the soil-building interaction
reduces since the influence of the building at the base of the target layer is not as significant.
Figure 7.5c shows three simulations in which the thickness of target layer was either 10 or
20.5 m for a tunnel depth corresponding to Ct/Dt = 4.4 and building case 5 (tB = 3 m). The
mixed E–N analysis with a base layer of 25 m provided the same result for both target layer
thicknesses. The Klar and Marshall (2008) results are shown to match more closely with the
mixed E–N results as the thickness of the top layer is increased.

7.4.4 Effect of nodes and nodal force components on each other

When both vertical and horizontal greenfield displacements are included together in the
tunnel-building interaction, there will be a strong inter-dependence of horizontal and vertical
nodal reaction forces required to produce the specified greenfield displacements. Vertical
nodal reaction forces due to the applied displacements are affected by horizontal reaction
forces on the nodes. Similarly, the horizontal nodal reaction forces are affected by vertical
reaction forces on the nodes. This is because each force component of a node subjected to a
displacement consists of two main parts: a part comes from the material resistance and the
other comes from the effect of other force components in different directions, as illustrated
in Figure 7.6a. Because of this, any significant change in the vertical or horizontal reaction
forces will have a considerable impact on the displacement results.

In addition, the closely located nodes also have a great effect on each other. Some nodal
forces are in the opposite direction to the others in order to achieve equilibrium. For instance,
the displacement applied to node 1 in Figure 7.6b is large and needs a large force of Fv1. This
large value already creates some movement in the adjacent node 2 leading to a smaller force
Fv2 compared to the scenario that Fv1 did not exist. The action of forces Fv1 and Fv2 generates
a displacement at node 3 larger than the required value; therefore, the force on this node must
act in the opposite direction to prevent it from exceeding the applied displacement value.
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Fig. 7.5 Effect of base layer thickness on soil-building interaction: Vlt = 1.76%

Fig. 7.6 (a) Horizontal and vertical nodal reaction forces, and (b) equilibrium of the vertical
nodal forces to create the originally applied displacements



180 Mixed Empirical-Numerical Method for Investigating Tunnelling Effects on Structures

This causes the nodes to behave in a way that the regular pattern of the applied displacements
(i.e. vertically downward for vertical and horizontally towards the tunnel) is not reproduced
for the nodal reaction forces.

To understand the influence of horizontal and vertical force components on each other, a
model was analysed three times. In the first time, both vertical and horizontal displacements
were applied to the model and the nodal reaction forces were achieved. After that, a
simulation was run in which the horizontal component was reduced to half with actual
vertical component, and then, the third simulation was run in which the vertical component
was reduced to half with actual horizontal component. Figure 7.7 exhibits the vertical and
horizontal displacements obtained from these simulations.

As shown in Figures 7.7a and b, when nodal reaction forces are determined from specific
values of applied displacements, a decrease of the horizontal nodal forces for constant values
of vertical forces results in an increase of the vertical displacements. This is because vertical
nodal forces face less resistance due to the lack of the horizontal components. Conversely,
when the vertical components of the nodal forces are reduced to half with constant horizontal
values, vertical displacements will face a great reduction of more than half of their original
values, as shown in Figures 7.7a and b. This is because of the action of horizontal nodal
forces which decreases the effect of the vertical forces.

With regard to the horizontal displacements, the results show that these displacements
increased at the ground surface when the values of horizontal nodal forces were reduced to
half of their original values, as shown in Figure 7.7c. In contrast, horizontal displacements
faced a great reduction when the values of the vertical nodal forces were reduced to half with
constant horizontal forces, as shown in Figure 7.7c. A different trend appears with subsurface
horizontal displacements. As shown in Figure 7.7d, in both cases where the vertical and
horizontal forces were reduced, horizontal displacements underwent a reduction compared to
their applied greenfield displacements but the displacements of the case where horizontal
forces decreased to half, faced a marginally bigger reduction.

It is indicated in Figures 7.7c and d that the nodes close to the surface generally start
to move away from the tunnel, while deeper nodes move towards the tunnel. The reason
for the changes happened to the horizontal displacements is strongly related to the direction
of the forces created at the nodes when the model was subjected to displacements. The
reaction forces of the nodes close to the surface are initially outwards from the tunnel due
to the reaction forces towards the tunnel in the lower soil layers. When vertical forces
decrease, horizontal forces close to the surface push the nodes away from the tunnel to a
greater extent. The opposite action happens at the lower layers as most of the nodal reaction
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Fig. 7.7 Effect of vertical and horizontal components of nodal forces on each other at different
depths for Vlt = 1.76%
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Fig. 7.8 Horizontal force distribution at different depths for Vlt = 1.76%

forces are directed towards the tunnel. Figure 7.8 presents horizontal forces at three depths
of z/zt = 0.0, z/zt = 0.37 and z/zt = 0.62 achieved from the case where both horizontal and
vertical displacements were applied to the model. It is illustrated that horizontal forces at
the lower layers (i.e. z/zt = 0.62) are large and towards the tunnel. These forces decrease
gradually at shallower depths like z/zt = 0.37, and then, they start to change their directions
away from the tunnel.

The effect of each component on the other is due to that the medium is continuum and
Poisson’s ratio transfers the effect of each direction to the other. Figure 7.9 shows the effect
of Poisson’s ratio on the interaction between horizontal and vertical displacements at the
ground surface for a tunnel volume loss of 1.76% after the horizontal forces are reduced to
half of their original values. It is illustrated that the increase of the Poisson’s ratio from 0 to
0.40 results in an increase of the vertical displacements.

Based on the mentioned reasons, when both vertical and horizontal displacements are
applied to a model in the first stage of the analysis, all components of the nodal reaction
forces should be applied to the model in the second stage of analysis. This includes the forces
in the directions of x and y. If a 3D modelling is performed for such a plane strain analysis,
the forces in the z direction should also be applied in the second stage because some reaction
forces in that direction will still be created in the nodes due to the effect of Poisson’s ratio.

7.4.5 Interaction effects of horizontal and vertical displacements

The analyses presented here consider the effect of both vertical and horizontal greenfield
displacements, which may be important in the tunnel-building interaction analysis. For
example, consider the case where the tunnel is located directly beneath the building centreline
as shown in Figure 7.10; vertical displacements drag the building downwards and, at the same
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Fig. 7.9 Effect of Poisson’s ratio on the interaction between vertical and horizontal displace-
ment components at the ground surface for Vlt = 1.76% (the horizontal forces are reduced to
half of their original values for the cases of νs = 0 and 0.40)

time, horizontal displacements pull the portion of the building above the tunnel (at the ground
or foundation level) horizontally towards its centre. The horizontal displacements act to
compress the building horizontally and increase its resistance against bending deformations
(because of the compression applied at the bottom fibre), thereby increasing its resistance to
vertical displacements. In addition, the action of the downwards displacements also creates
horizontal strains in the building. In the case where only vertical or horizontal displacements
are applied to the model, these interactions are neglected.

The interaction between vertical and horizontal displacements of both the soil and the
structure is illustrated in Figures 7.11a and b for two buildings (Cases 3 and 5 from Table 7.1).
These figures show building displacements from analyses where only vertical Sv, only
horizontal Sh, or both Sv and Sh were applied to the models. Interestingly, the application of
both vertical and horizontal soil movements results in a smaller building maximum vertical
displacement compared to the analysis for only Sv; this is consistent with the upwards
building deflections obtained when only Sh was applied (due to the compressive action of
Sh). Also note that for the stiffer Case 5 building the interaction effects between vertical and
horizontal input soil displacements is minimal.

Figures 7.11c and d show the horizontal strains, εh, induced in the building. There is a
significant difference between the case where both displacement components are applied
and when they are applied separately. When the building is flexible (i.e. beam thickness is
small; Figure 7.11c), most of the effect of Sh is transferred to the building and horizontal
strains due to vertical displacements play a minor role, hence the ‘Only Sh’ line matches
closely with the case where both displacements are applied. As bending stiffness of the
building increases (i.e. larger beam thickness; Figure 7.11d), the resistance of the building
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Fig. 7.10 Interaction between horizontal and vertical displacements for e/Lbldg = 0

against deformations (bending and axial) increases. Because axial stiffness is significant,
only a minimal axial effect is transferred from the soil to the building. Tensile horizontal
strains occur at the middle of the beam because of the coupling between beam bending and
soil horizontal ground movements. On the other hand, when Sv and Sh are applied together,
significant compressive horizontal strains are induced due to the action of Sv.

In scenarios where the tunnel is located below the edge or outside the building plan area
(i.e. e/Lbldg ≥ 0.5), analysis results indicated a negligible tendency of horizontal movements
to reduce vertical displacements (i.e. no practical difference was found when both Sh and
Sv were applied and when only Sv was applied to the model). This outcome relates to the
end constraints of the building, which affects its ability to resist deformations. Moreover,
horizontal displacements used within the mixed E–N method (based on centrifuge test data)
have a narrow trough and do not cover a significant proportion of the buildings with e/Lbldg ≥
0.5. Further discussion on this aspect is given later in the chapter.

It is worth noting that when equivalent beams are used instead of actual buildings, there
will be a coupling effect between the cross sectional flexural (EI) and axial (EA) rigidity
of the beam on the axial and bending behaviour. For a specific beam length, a change in
the thickness leads to a change in the bending and axial behaviour of the beam. A larger
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Fig. 7.11 Effect of applying ground displacement components separately to a model: (a) and
(b) ground displacements in the presence of a building; (c) and (d) horizontal strains created
in the building. Tunnel volume loss = 1.76%
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axial effect is transferred to the beam when the axial rigidity decreases. Similarly, the
beam experiences a larger bending effect when flexural rigidity reduces. This change may
alter the behaviour of the beam to some extent due to the occurrence of the coupling effect
between EI and EA. For instance, a decrease in EA induces larger horizontal displacements
in the beam which in turn results in larger compressive stresses that may reduce vertical
displacements. To understand this effect clearly, beams should be analysed for both cases of
having constant EA with variable EI, and constant EI with variable EA, as done by Potts and
Addenbrooke (1997). However, this issue does not have an effect on the comparative results
reported here since this feature is present in both the conventional numerical and mixed E–N
analyses. Furthermore, investigating the impact of using equivalent beams rather than the
actual building is not the focus of this chapter.

In the following sections, unless otherwise stated, results are based on analyses where
both Sh and Sv were applied together to investigate the effect of building stiffness on ground
displacements caused by tunnelling.

7.5 Comparison of Mixed E–N with Numerical Results

Results presented in this section are based on three cases of tunnel location: e/Lbldg = 0, 0.5
and 0.75. Results relate to cases with Ct/Dt = 2.4 with Vls,sur f = 1.55% or Ct/Dt = 4.4 with
Vls,sur f = 2.77%.

7.5.1 Bending modification factors for e/Lbldg = 0

Figure 7.12 presents bending modification factors from conventional numerical and mixed
E–N analyses for e/Lbldg = 0, 0.5 and 0.75 and for two tunnel depths corresponding to
Ct/Dt = 2.4 and 4.4. For the case of e/Lbldg = 0 when Ct/Dt = 2.4, Figure 7.12a shows that
the bending modification factors from the mixed E–N method are generally lower than those
from the conventional numerical analysis. The difference is small for low values of relative
bending stiffness and increases as the relative bending stiffness increases.

The results in Figure 7.12a indicate that ground displacements due to tunnelling have
less of an effect on buildings based on the mixed E–N method compared to the conventional
numerical analyses; i.e. buildings in the mixed E–N method have a greater relative structure-
soil stiffness and are less affected by ground displacements compared to the conventional
numerical analyses. The reason for this relates to the relative position and extent of the
building in relation to the extent of the greenfield settlement trough, which is depicted in
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Fig. 7.12 Comparison of bending modification factors between conventional numerical and
mixed E–N methods for Vls,sur f = 1.55% and 2.77% for Ct/Dt =2.4 and 4.4, respectively
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Fig. 7.13 Tunnelling induced surface greenfield movements predicted by conventional nu-
merical and mixed E −N methods

Figure 7.13a. The building with e/Lbldg = 0 extends a considerable distance past the extent
of the mixed E–N greenfield settlement trough, whereas it is inside the greenfield settlement
trough for the conventional numerical model. The section of the building located outside the
affected soil zone in the mixed E–N analysis provides support to the section of the building
affected by soil displacements (like a fixed end support that prevents rotation at the location
where the building first becomes affected by ground movements), thereby increasing the
building’s resistance to deformation. This feature is not explicitly captured by the relative
stiffness equations proposed by Potts and Addenbrooke (1997) and Franzius et al. (2006).

Figure 7.13b illustrates that greenfield horizontal movements in the conventional nu-
merical analyses are greater over a wider area compared to the mixed E–N analyses (for
e/Lbldg = 0). The effect of the resulting compression applied to the building, which con-
tributes to the resistance of the building against bending, is therefore more pronounced in
the conventional numerical analyses compared to the mixed E–N analyses. The horizontal
displacements outside the building area in the conventional numerical analyses (which do
not exist in the mixed E–N analyses) also increase the building resistance against bending
deformations.
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To demonstrate how horizontal displacements influence the value of bending modification
factors, mixed E–N simulations were performed where only vertical displacements were
included for the case Ct/Dt = 2.4, as shown in Figures 7.12a and c. The data show that
exclusion of horizontal displacements (only Sv) results in larger values of MDR (greater
deformation of the building) compared to the case where both Sh and Sv were applied. The
additional deformation of the building was also demonstrated in Figures 7.11a and b where
excluding Sh effectively removed a component of upwards beam deflection. Note that the
effects of horizontal displacements on building deformations were also reported by Potts
and Addenbrooke (1997) in their numerical analyses and Farrell et al. (2014) based on
geotechnical centrifuge tests.

In the work of Potts and Addenbrooke (1997), the existence of a building with a very
low bending stiffness led to an increase in the vertical ground displacements. The reason for
this was related to the action of horizontal movements which applied a compression to the
building. This action of horizontal movements was restricted by the building axial stiffness
and due to having a very low bending stiffness, an increase of vertical settlements happened.

In the work of Farrell et al. (2014), four buildings were modelled using aluminium plates
of low to high stiffness in the centrifuge. They declared that the existence of the very flexible
buildings resulted in distortions larger than the greenfield values. They related this effect to
the action of horizontal shear stresses at the base of the building which led to an increase of
curvature.

For the case of Ct/Dt = 4.4 and e/Lbldg = 0, the values of MDRsag computed from both
conventional numerical and mixed E–N analyses are very similar, as shown in Figure 7.12b.
This indicates similar building effects on ground displacements despite the slightly narrower
settlement trough in the mixed E–N analyses, as displayed in Figure 7.13c. This is mainly
due to the existence of large horizontal displacements beneath and adjacent to the building
in the conventional numerical analyses (Figure 7.13d), which counteract the reduction of
relative bending stiffness caused by the wider settlement trough.

In terms of MDRhog for e/Lbldg = 0, the mixed E–N analysis outcomes are generally lower
than those from the numerical simulations. The difference is relatively small for the case of
Ct/Dt = 2.4 (Figure 7.12c) but more pronounced for Ct/Dt = 4.4 (Figure 7.12d). This again
illustrates that buildings in the mixed E–N analyses showed greater relative structure-soil
bending stiffness than in the conventional numerical analyses. This is because the narrower
settlement trough in the mixed E–N analyses has a proportionally higher impact (increase)
on the resulting relative stiffness than the effect of the difference in horizontal displacements
between the two analyses for the case of e/Lbldg = 0.
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Fig. 7.14 Comparison of (a) sagging and (b) hogging deflection ratios obtained from conven-
tional numerical and mixed E–N analyses for Ct/Dt = 2.4 and Vls,sur f = 1.55%

The calculation of MDR includes a normalisation against the greenfield displacements,
hence it does not fully demonstrate the effect of the different greenfield settlement trough
inputs within the conventional numerical and mixed E–N analyses. The level of flexural
distortion of the structure estimated by the two methods varies considerably more than
indicated in the MDR data. For instance, Figure 7.14 shows that the deflection ratios, DR, in
the sagging and hogging zones calculated with the mixed E–N analyses are notably higher
than those from the conventional numerical analyses for Ct/Dt = 2.4, especially at low values
of relative bending stiffness. The same observation applies for the case of e/Lbldg = 0.5. The
potential for building damage is proportional to deflection ratio (Mair et al., 1996) rather
than modification factor, hence these results illustrate the importance of correctly estimating
and incorporating greenfield ground displacements within preliminary risk assessments and
numerical analyses.

The use of the normalisation against the greenfield displacements seems to show a greater
degree of building distortions for curves of small curvature. Based on the distortions caused
to the settlements curves, Figure 7.15a shows a significant effect of a 1 m thick beam on
surface displacements when Ct/Dt = 2.4 which is greater than the effect of the same building
when Ct/Dt = 4.4 (Figure 7.15b). However, due to the location of the building on the
settlement curve, the parameter MDRhog shows a smaller degree of displacement effects on
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Fig. 7.15 Effect of a 1 m building on vertical ground surface displacements in the mixed E–N
methods for Ct/Dt = 2.4 and 4.4

the building in the case of Ct/Dt = 4.4. To better imagine the effect of ground displacements
on the building, a simple comparison of the deflection ratios can help. When Ct/Dt = 2.4,
the greenfield deflection ratio was 22.2×10−5. The addition of a 1 m thick beam reduced
this deflection ratio to 8.16×10−5. This gave an MDRhog of 0.368. When Ct/Dt = 4.4, the
greenfield deflection ratio was 5.81×10−5. The addition of a 1 m thick beam reduced this
deflection ratio to 1.66×10−5. This gave an MDRhog of 0.286. The distortions occurred to
the surface settlement curve in Figures 7.15a and b indicate that the building in the case of
Ct/Dt = 2.4 showed a greater stiffness than that of Ct/Dt = 4.4 but this is not shown by the
ρ∗

mod–MDR curves due to the consideration of a ratio between the greenfield situation and its
corresponding case where the building exists.

7.5.2 Bending modification factors for e/Lbldg > 0

For the cases where the tunnel was not located under the building centreline (e/Lbldg = 0.5
and 0.75), it is important to describe the effects of the rotational constraint provided by the
soil outside the tunnel influence area, where settlements are low. Figure 7.16 illustrates how
building length affects results for e/Lbldg = 0.5 and Ct/Dt = 2.4. Two building lengths are
considered: 60 m (where the building extends far outside the greenfield displacement profile),
and 30 m (where most of the building is affected by greenfield displacements).

The portion of the 60 m building outside the displacement zone provides a degree of
constraint to the deformed part of the building, which reduces rotation (i.e. tilting of entire
building) but results in greater distortion (i.e. bending strains) compared to the 30 m building,
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Fig. 7.16 Effect of building length on ground displacements due to tunnelling for Ct/Dt = 2.4:
(a) mixed E −N and (b) conventional numerical analyses

which undergoes significant rotation but little distortion. The resistance of a building to
rotation is important when considering its response to ground displacements; as building
length increases outside the displaced soil zone, so does its ability to resist rotation. Note
that for the symmetric case where e/Lbldg = 0, rotation is not permitted and therefore the
building bending stiffness is relatively high. Currently available methods for evaluating
relative stiffness do not account for the effect of building length in relation to the displaced
soil zone.

On the other hand, Figure 7.16 shows that the modification caused to the ground dis-
placements by the existence of the building is greater in the mixed E–N method than the
conventional numerical analysis. This is also because a larger part of the building in the
mixed E–N method is located outside the displaced zone due to a narrower trough width.

For e/Lbldg = 0.5 and 0.75, Figure 7.12a and b show that values of MDRsag from the
mixed E–N method for Ct/Dt = 2.4 and 4.4 are higher than those from the conventional
numerical analyses. Values of MDRsag indicate stiffer buildings (relative to the soil) in the
conventional numerical analyses because of the action of the large horizontal displacements
in the conventional numerical analyses, which causes a significant increase to the building’s
resistance to bending deformations.

The values of MDRhog from the mixed E–N analyses are generally lower than those from
the conventional numerical analyses for e/Lbldg = 0.5, 0.75 and Ct/Dt = 2.4, especially for
higher values of relative bending stiffness, as shown in Figure 7.12c. There is an interesting
transition point observable in Figure 7.12c for the conventional numerical analysis results at
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about ρ∗
mod ≥ 1.1×10−3, where hogging occurs in the entire building length (corresponding

to the point where MDRsag = 0 in Figure 7.12a), resulting in a marked increase of MDRhog .
A different trend of MDRhog is obtained for Ct/Dt = 4.4 (Figure 7.12d), where values from

the mixed E–N analyses are higher than the conventional numerical analyses. Since vertical
greenfield displacements from both methods are similar (see Figure 7.13c), the greater ability
of the conventional numerical analysis buildings to resist hogging zone distortions (i.e. lower
values of MDRhog) must be due to the effect of the larger magnitude and wider profile of the
greenfield horizontal displacements in the conventional numerical analyses.

7.5.3 Axial modification factors

Figure 7.17 presents the axial modification factors from the conventional numerical and
mixed E–N analyses for e/Lbldg = 0, 0.5 and 0.75, and Ct/Dt = 2.4, 4.4. Figures 7.17a
and b present the compressive strain modification factors, Mεhc; Figures 7.17c and d give
the tensile modification factors, Mεht . For e/Lbldg = 0, the data show that the conventional
numerical analysis results for Mεhc are larger than those of the mixed E–N analyses, whereas
Mεht values are smaller (for both Ct/Dt = 2.4 and 4.4). The difference in modification factors
between the conventional numerical and mixed E–N analyses decreases with the increase in
relative axial stiffness factor.

To help understand the different axial responses from the two methods, it is important
to note that the greenfield soil is in compression horizontally within the zone bounded by
the peak values of Sh, and in tension outside this region. As shown in Figure 7.13b and d,
for structures with e/Lbldg = 0, the greenfield displacement profile from the conventional
numerical analysis encompasses the entire building. The effect is that the building is
completely in compression and values of Mεhc are greater for the conventional numerical
analysis than the mixed E–N method (Figure 7.17a, b). In the mixed E–N method, peak
horizontal displacements are closer to the tunnel centreline and the structure is subjected to
both tensile and compressive forces from the soil. This produces values of Mεht (tension)
from the mixed E–N method that are greater than zero for the considered configurations
(Figure 7.17c, d). Franzius et al. (2006) also obtained no tensile strains in the building in
their numerical analyses for the non-eccentric structures.

For the case of e/Lbldg > 0, Figure 7.17 shows that both Mεhc and Mεht from the con-
ventional numerical analyses are larger than those from the mixed E–N analyses for both
Ct/Dt = 2.4 and 4.4. The high values of axial modification factors from the conventional
numerical analyses is mainly related to the effect of the proportion of the building located
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Fig. 7.17 Comparison of axial modification factors between conventional numerical and
mixed E–N methods for Ct/Dt = 2.4 (Vls,sur f = 1.55%) and Ct/Dt = 4.4 (Vls,sur f = 2.77%)



7.6 Effect of Volume Loss on the Tunnel–Building Interaction 195

inside the displaced soil zone, which as a result experiences more axial distortion from hori-
zontal ground displacements than buildings in the mixed E–N analyses where the horizontal
displacement profile is narrower (see Figure 7.13). It should be noted that the influence of
building length on induced horizontal strains in the building was also mentioned by Franzius
et al. (2006). After numerically testing buildings with different lengths, they concluded that
the effect of building length on induced horizontal strains in the building was greater than its
effect on the deflection ratios.

7.6 Effect of Volume Loss on the Tunnel–Building Interac-
tion

The results showed a very small effect of varying volume loss on the bending and axial
modification factors. For the purpose of investigation, the cases of e/Lbldg = 0.0 (where the
building rotation is not allowed) and e/Lbldg = 0.75 (where building rotation is allowed) are
considered for a tunnel depth corresponding to Ct/Dt = 2.4. Estimated values of MDRsag and
MDRhog for e/Lbldg = 0.0, Ct/Dt = 2.4 and three different values of greenfield surface volume
loss are presented in Figure 7.18. It should be mentioned that the comparison between the
results of the conventional numerical and mixed E–N methods is not the aim of this section;
the results of each method for different values of volume loss are discussed independently.

Figures 7.18a and b display bending modification factors of the sagging zone for the mixed
E–N and conventional numerical analyses, respectively, for the case where e/Lbldg = 0.0
(there is no sagging zone in the case e/Lbldg = 0.75). It is shown that the difference between
the results of various greenfield surface volume losses in each analysis case is not considerable.
For ρ∗

mod = 1.11× 10−3 in the mixed E–N results, there is slightly more distortion to the
building with Vls,sur f = 1.55% compared to the other volume loss cases (Figure 7.18a). For
the relatively low stiffness buildings in the conventional numerical case, there is a slight
increase of building distortions due to ground displacements with the increase of the surface
volume loss (Figure 7.18b).

The reason for having a negligible effect of changing volume loss on the modification
factors is that the results of bending and axial modification factors are ratios between the
greenfield situation and its corresponding case where the building is present. The changes
happening in the presence of a building are proportional to those of the greenfield situation.
This can result because the trough width and the inflection points of settlement curves in
each method (conventional numerical and mixed E–N) do not vary significantly with the
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Fig. 7.18 Bending modification factors obtained from conventional numerical and mixed
E–N modelling for different values of surface volume loss for Ct/Dt = 2.4
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Fig. 7.19 Surface settlement curves for different surface volume losses predicted by (a) mixed
E–N and (b) numerical simulations

change of volume loss. Figure 7.19a shows the ground surface settlement for three surface
volume losses (0.92%, 1.55% and 2.50%), and illustrates that there is a negligible difference
between the position of the inflection points of each volume loss case. It also exhibits that
the width of the settlement troughs does not vary considerably. Therefore, the building in
all three cases is similar in terms of the building length located in the displaced soil zone
and the parameters affecting the building rotation, such as the building part located in the
undisplaced soil zone. The small difference between the volume loss cases is due to a small
change in the width of sagging and hogging parts of the settlement curve with the change of
volume loss.

Figures 7.18c and d present the results of bending modification factors of the hogging
zone for the mixed E–N and conventional numerical analyses, respectively, and for both cases
of e/Lbldg = 0.0 and 0.75. For the mixed E–N analysis results (Figure 7.18c), the results of
the hogging zone in the case e/Lbldg = 0.0 are very similar except a slightly less distortion
of the building case of ρ∗

mod = 1.11×10−3 for Vls,sur f = 1.55% compared to the other cases.
With regard to the case e/Lbldg = 0.75, the buildings where Vls,sur f = 0.92% are generally
less distorted by ground displacements compared to the other cases. This is likely due to
the slightly narrower settlement trough when Vls,sur f = 0.92% (Figure 7.19). Regarding the
conventional numerical analysis results (Figure 7.18d), the data show similarities between the
results of different volume loss cases except for the case e/Lbldg = 0.0 and Vls,sur f = 2.50%
in which relatively flexible buildings are more distorted than those of other volume loss cases.
It is worth noting that slightly more distortion also occurred to the relatively flexible buildings
where e/Lbldg = 0.0 and Vls,sur f = 2.50% in the sagging zone (Figure 7.18b). In both cases,
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Fig. 7.20 Axial modification factors obtained from conventional numerical and mixed E–N
modelling for different values of greenfield surface volume loss

the stiff building with ρ∗
mod = 3×10−2 experiences less distortion compared to the building

of the other volume loss cases in the conventional numerical simulations. Furthermore, a
similar trend of having a slightly greater effect of ground displacements on less stiff buildings
and smaller effect on stiff buildings is obtained for the cases of Vls,sur f = 0.92% and 1.55%.
This effect would appear to be due to the plastic behaviour of the soil in the conventional
numerical models. The increase of building bending stiffness reduces the curvature of the
settlement curve in all volume loss cases, but the amount of this reduction is greater for the
settlement curves of larger volume losses.

With regard to the axial modification factors, there is no effect of volume loss change
on Mεhc of the mixed E–N analysis for e/Lbldg = 0 (Figure 7.20a), whereas the building of
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the case Vls,sur f = 2.50% in the conventional numerical simulation results experienced less
axial distortions compared to the other cases, as shown in (Figures 7.20b) for e/Lbldg = 0.
Similarly, there is no effect of the volume loss change on Mεht for both cases of e/Lbldg = 0
and 0.75 in the mixed E–N simulation results (Figure 7.20c). However, the building of the
case Vls,sur f = 2.50% in the conventional numerical simulation results underwent less axial
distortions, as shown in Figure 7.20d for e/Lbldg = 0.75 (there was no induced tensile strains
in the building for the case e/Lbldg = 0).

The reason for having similar results in the elastic mixed E–N analyses is that any change
that happens to the greenfield situation of each analysis case with different surface volume
losses is proportional to that of its corresponding case in the presence of a building. With
regard to the difference between the results of the building in the case Vls,sur f = 2.50% with
that of the other cases in the conventional numerical analyses, it should be mentioned that
larger horizontal strains were created in the building during high volume losses, but the rate of
increase of horizontal strains in the greenfield case was more than that induced in the building.
For instance, in the case of having a beam with 0.50 m thickness, the maximum greenfield
horizontal compressive strain produced from 0.92%, 1.55% and 2.50% surface volume losses
were 2.65×10−4, 4.46×10−4 and 7.64×10−4, respectively, while the maximum compressive
strain induced in the building at each case was 0.63×10−5, 1.03×10−5 and 1.49×10−5,
respectively. The values show that larger strains were induced in the building in the case
of high volume losses, however, the ratio of horizontal compressive strains at each case
gives axial modification factors of 2.38×10−2, 2.31×10−2 and 1.95×10−2 which show an
opposite trend from that of the horizontal strain values induced in the building.

7.7 Effect of Soil Relative Density on the Tunnel–Building
Interaction

A change in the soil relative density leads to a change in the soil behaviour. For a constant
tunnel volume loss, the induced displacements due to tunnelling in a soil with a low relative
density are larger than those in a soil with a high relative density. In addition, the trough
width of the settlement curve is wider in a soil with a low relative density due to creating
higher ground losses. If settlement troughs are normalised by the maximum settlement for
different cases of relative density, the normalised trough of looser soils will be narrower
(Zhou et al., 2014). This large settlement of soils with low relative density is more obvious
for soils with relative densities under 60% (Coelho et al., 2006).
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A low relative density causes contraction to the soil during tunnelling while a high relative
density results in soil dilation. The terms ‘contraction’ and ‘dilation’ are related to the volume
changes that occur in the soil because of shear strains (Poulos, 1971). This behaviour is
due to the interlocking of soil particles during shearing. For a dense soil, particles are not
sufficiently free to move around one another. Therefore, a dilation of the soil occurs when
these particles are subjected to motion. In a loose soil, the existing voids in the soil mass
allow the particles to move sufficiently freely around one another and to fill the gaps between
them which in turn leads to a contraction of the soil (Cox, 2008; Houlsby, 1991).

The investigation of this characteristic of soil (volume change) is difficult using conven-
tional numerical analyses because of the variation of soil volume loss with depth, however,
the mixed E–N method can be used to investigate this aspect, with some limitations. Strength
parameters of the soil, such as friction angle and dilation angle, and cohesion, cannot be
included in the analysis. Furthermore, the elastic modulus of the soil should be estimated
accurately to achieve realistic results.

Figures 7.21a and b show surface vertical and horizontal displacements, respectively,
created in a soil with relative densities of 90% and 30%. As shown in Table 7.2, the achieved
surface volume loss for a tunnel volume loss of 1.76% was 1.55% for Id = 90% and 4.12%
for Id = 30%. It is shown that a larger ground area in the soil of low relative density is
displaced compared to the case of high relative density for the same tunnel volume loss.
This can significantly affect the behaviour of the building. In an elastic analysis, smaller
displacements are applied to the soil in the case of having a high relative density while greater
displacements are applied to the model in the case of low relative density. However, the
magnitude of the nodal reaction forces induced in the case of the higher relative density is
relatively larger than that of the low relative density since the elastic modulus of a loose soil
is smaller than that of a dense soil. In terms of building location relative to the displaced
soil, the building shows a larger bending stiffness when the soil has a high relative density
because less soil beneath the building experiences deformations which in turn, provides a
better support to the building. Apart from the effect of the tunnel–building relative location
and the magnitude of soil elastic modulus, centrifuge tests performed by Farrell et al. (2014)
showed that the increase of volume loss resulted in a gradual decrease of soil stiffness and
an increase in the building relative stiffness. The effects related to the soil elastic modulus
are not shown in this section since the value of the soil elastic modulus was kept constant
throughout the soil depth for all cases of different relative densities.

To visualise the influence of the soil elastic modulus on the tunnel-building interaction, a
comparison was made between two models having the same soil relative density of 30% but
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Fig. 7.21 Comparison of greenfield (a) vertical and (b) horizontal surface displacements for
soil relative densities of 90% and 30%, Ct/Dt = 2.40 and Vlt = 1.76%

Fig. 7.22 Comparison of vertical surface displacements for a soil with a relative density of
30%, Ct/Dt = 2.4 and in the presence of a building with 1 m height

different elastic moduli of 15 MPa and 35 MPa in the presence of a building. Figure 7.22
shows the effect of a model building with 1 m thickness on ground displacements due to
tunnelling for the mentioned soil types with Ct/Dt = 2.4. It is illustrated that the surface
settlement of the soil with a low elastic modulus is considerably reduced by the effect of
the building and there is a negligible distortion to the surface settlement trough width. For
a higher elastic modulus, the effect of the building on ground displacements decreases
significantly in addition to an increase in the settlement trough width. This is due to applying
larger forces from the soil to the building when having greater soil elastic modulus.

For a constant value of Es throughout the soil depth, Figure 7.23a shows the values
of MDRsag for tunnel locations corresponding to e/Lbldg = 0 and 0.5, and Id = 90% and
30%. For e/Lbldg = 0, there is a greater effect of ground displacements on low stiffness
buildings in the sagging zone for the relative density of 90%. Stiffer buildings change this
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trend and are less affected by ground displacements from soils of high relative density. For
e/Lbldg = 0.5, Figure 7.23a illustrates that buildings in the case Id = 90% are affected by
ground displacements to a greater extent than that of the case Id = 30% for all values of
relative bending stiffness.

For the hogging part of the settlement curve, as shown in Figure 7.23b, the effect of
ground displacements on flexible buildings is greater in the case Id = 90% compared to the
case Id = 30% when e/Lbldg = 0. For eccentric cases, buildings of the case Id = 30% are
more distorted than those of the case Id = 90%. In these cases, a considerable part of the
building in the case of Id = 90% is located inside the undisplaced soil zone and provides an
effective support to the building against rotation. This is because the predicted settlement
trough is narrower compared to that of Id = 30%. It should be noted that since the parameter
Es is constant throughout the soil depth, the differences obtained between different cases
of soil relative density are mainly related to the width of the predicted settlement trough,
relative position of the building and the tunnel, and the effect of horizontal displacements.
The effect of these parameters are explained in detail in Section 7.5.

With regard to the axial modification factors, as shown in Figure 7.23c,d, no practical ef-
fect of the soil relative density on the compressive and tensile modification factors is achieved.
The changes that occur in the greenfield situation of different Id cases are proportional to the
changes that occur in their corresponding situations when a building is present.

7.8 Summary

A mixed empirical-numerical (mixed E–N) method was presented in this chapter to predict
the response of buildings to realistic inputs of tunnelling induced ground movements. A
modified semi-analytical method was used to obtain the greenfield displacements, however
any input could be incorporated into the methodology. The input greenfield displacements
were based on centrifuge test data and included both horizontal and vertical displacements.
The mixed E–N method allows the application of horizontal and vertical displacements to the
model either together or separately, thereby allowing a detailed evaluation of the coupling
effect of the two displacements. The proposed mixed E–N method eliminates the role of
material models in predicting ground displacements due to tunnelling. Dissimilar to the
previously proposed methods, the mixed E–N method allows the estimation of the building
effect on the whole layer of soil above the tunnel.

Results obtained from the proposed mixed E–N method were compared against conven-
tional numerical analyses in which the tunnel was simulated, resulting in wider settlement
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Fig. 7.23 (a)–(b) Bending and (c)–(d) axial modification factors computed for soils with
relative densities of 90% and 30%
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troughs and greater horizontal displacements than expected in reality. It was shown that the
action of the unrealistic horizontal displacements in the conventional numerical analyses
increased the resistance of the building against bending deformations quite considerably
in some scenarios. In contrast, the wide settlement trough predicted in the conventional
numerical analysis resulted in the reduction of the building ability to resist bending deforma-
tions. It was shown that the proposed mixed E–N method led to more realistic estimation of
tunnelling effects on structures due to the input of more accurate ground movements, and
predicting a narrower settlement trough.

This chapter also investigated the effect of the change of volume loss and soil relative
density on the tunnel–building interaction. The variation of the volume loss did not have
an effect on the bending and axial modification factors since the changes that occurred in
the greenfield situations were proportional to their corresponding cases in the presence of a
building.

With regard to the effect of relative density, mixed E–N results showed that building
behaviour changed considerably with the change of the relative density. For the same value
of tunnel volume loss, a soil with a low relative density experienced larger settlements and
wider trough widths than a soil with a high relative density. Furthermore, the effect of
ground displacements on the building was dependent on the tunnel–building relative distance,
the geometry of the settlement curve and the extent of the building in the displaced and
undisplaced soil zones.

It is worth noting that the dilation/contradiction that occurs in sands has a significant
effect on the ground displacements induced by tunnelling. Conventional numerical methods
are not sufficiently capable of capturing this property during tunnelling. The proposed mixed
E–N method is an efficient tool to investigate the effect of dilation/contraction of the soil on
the tunnel–building interaction analysis, however an accurate estimation of the soil elastic
modulus is necessary to obtain good results. Moreover, soil strength parameters cannot be
included in the simulations since the method is purely for elastic analysis.



Chapter 8

Effect of Concrete Framed Buildings on
Tunnelling Induced Ground Movements

8.1 Introduction

It was explained in Section 3.7 that in the majority of the literature, buildings have been
considered as a single entity to estimate their bending stiffness, and the individual contribution
of the foundation and the superstructure to the global building stiffness is not considered.
The stiffness contribution of each storey to the global superstructure bending stiffness was
explained in Chapter 5. It was shown that the stiffness contribution of each building storey
changes with its distance from the foundation. In this chapter, the soil and 3D buildings,
consisting of the foundation and the superstructure, are modelled together to investigate how
the foundation and the superstructure of a 3D building behave when subjected to tunnelling
induced ground displacements. The degree of the stiffness contribution of the foundation
and the superstructure to the resistance capacity of the global building in a full soil-structure
domain will be investigated.

This chapter consists of three main sections. The first section deals with the behaviour
of a weightless building (foundation and superstructure) when subjected to tunnelling. The
second section studies the effect of the building weight on ground displacements due to
tunnelling. The third section proposes an equivalent method to replace a 3D weightless
building with a 2D beam in the numerical analyses.

It is worth noting that the conventional numerical analysis is used for the simulations
related to the behaviour of a 3D building (weightless and weighted) in the global soil–
building system (i.e. in Sections 8.2 and 8.3). For the weighted building (Section 8.3),
the conventional numerical analysis is the only option since the strength parameters of the
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soil should be taken into consideration, which is not possible for the elastic mixed E–N
method. The use of the conventional method for the weightless building case in Section 8.2
is because of three reasons. First, a comparison with the weighted analysis of Section 8.3
can be obtained. Second, conventional numrical methods are common techniques used by
geotechnical engineers to analyse tunnel–building interaction. Third, the aim is to focus on
the general behaviour of the 3D building when affected by tunnelling, rather than quantifying
the interaction between the tunnel and the building.

For Section 8.4 in which an equivalent beam method is proposed, the mixed E–N method
(Chapter 7) is used to model tunnelling. This choice is because of the following reasons.
The method quantifies the effect of building stiffness on ground displacements (i.e. the
behaviour of the building is converted to equations). Using the conventional numerical
modelling leads to the prediction of minimum effects of buildings on ground displacements
since a wide settlement trough is predicted, and in the majority of the modelling cases, the
building is located inside the soil zone influenced by tunnelling. The use of the mixed E–N
method shows a stiffer situation of the building due to predicting a narrower settlement
trough. Furthermore, the displaced and undisplaced soil zones as well as the effect of the
building boundary condition are more appreciable in the mixed E–N modelling compared to
the conventional numerical analysis.

8.2 Stiffness Effect of Weightless Buildings

This section examines the effect of the foundation and the superstructure of a weightless
building on tunnelling induced ground displacements. The degree of effect of the foundation
and the superstructure is also investigated to show the stiffness contribution of the building
structural parts to the global building bending stiffness. The effect of the 3D building stiffness
is then compared to its equivalent beam using the approaches of Lambe (1973) and Potts and
Addenbrooke (1997).

8.2.1 Model description

The soil was taken as an elastic perfectly plastic material with properties presented in
Section 4.7. The tunnel was located at a depth to axis level of 15 m, and had a diameter of
Dt = 4.65 m. Three tunnel locations were modelled: a location in which the tunnel and the
building centrelines coincided (e/Lbldg = 0), a location where the tunnel was constructed
under the building edge (e/Lbldg = 0.5), and a case where there was a distance of 16.75 m
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Fig. 8.1 Tunnel – soil – building model

between the tunnel centreline and the building edge (e/Lbldg ≥ 0.75). The tunnel was
excavated instantaneously along its entire length, creating a plane-strain scenario in the x-z
plane; the effect of tunnel advancement in the y direction was not considered. The soil model
was 57Dt long and 11Dt deep, as shown in Figure 8.1. Meshing and the boundary locations
in the model were chosen after testing different scenarios to eliminate their effects on results.
The total number of elements of the model ranged from 201,000 to 346,000.

The building consisted of 3 to 9 bays in the x-direction and two bays in the y-direction,
as shown in Figure 8.1. The reason for choosing a two y-bay building in the numerical
analyses of this section is to have a representative building in terms of stiffness. It should
be noted that the symmetric boundaries, which were applied to the soil in the y-direction,
were not applied to the building. This means that the building was assumed continuous in
the y-direction but as a jointed building (i.e. each two bays were separated from each other
as an independent building). The building material was assigned a modulus of elasticity of
30 GPa. The raft foundation had dimensions of (22.6 to 67)×11.20× (0.30 and 0.60) m
length × width × thickness. Column dimensions were 0.40×0.40 m in cross-section with a
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clear height of 3.80 m. Beam dimensions were 0.40×0.60×7 m in the long direction and
0.40×0.60×5 m in the short direction (cross sectional width × height × clear length). The
slabs were 7×5×0.16 m clear length × clear width × thickness. The building was attached
to the soil using the tie constraint in which the slip or separation of the surfaces was not
allowed.

The model included a first stage to introduce soil insitu stresses and bring the model
to equilibrium. The inner tunnel elements were then removed and tunnel excavation was
simulated using the displacement control method described in Section 7.3.1. Additionally, the
simulations were performed at a tunnel volume loss of 0.62% which produced a greenfield
surface volume loss of 1.55%. For the tunnel-soil-building analyses, the building was
included in the model and the same process of applying displacements to the tunnel boundary
was used (applying the same magnitude of displacements as the greenfield situation at the
tunnel boundary).

8.2.2 Effect of foundation and superstructure stiffness on ground dis-
placements

This section presents numerical results of three tunnel locations: e/Lbldg = 0, 0.5 and ≥ 0.75.
Figure 8.2a compares greenfield displacements to those obtained when including a foundation
of thickness t f = 0.30 m and a 5 storey building (including the foundation) with a length
of 67 m for e/Lbldg = 0. It is worth noting that rotation of the building is negligible when
e/Lbldg = 0 due to symmetry. Results in Figure 8.2a illustrate that the building stiffness has
an effect on surface settlements but that the major effect is due to the foundation stiffness. The
addition of the 5-storey building does show an effect on the displacement profile, however
this is less significant than the effect of the foundation.

The results for a 0.60 m thick foundation are presented in Figure 8.2b, which again illus-
trates that the influence of the foundation bending stiffness on surface ground displacements
is the most significant component. The data show that there is a slightly greater effect of the
0.60 m foundation on ground displacements compared to the effect of the 0.30 m foundation,
while the effect of the superstructure is similar in both cases.

Figure 8.3 displays the degree to which the stiffness of the foundation and the upper
storeys affects ground displacements. The parameter Sv,max refers to the maximum settlement
of the ground surface in the presence of the building, and Sv,max,g f is the maximum greenfield
settlement. The ratio of Sv,max/Sv,max,g f is 1.0 when there is no building. For the foundation
thickness of 0.30 m, Sv,max/Sv,max,g f decreases to 0.95 when the foundation is added (0
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Fig. 8.2 Effect of a 5-storey building on tunnelling induced ground displacements for
e/Lbldg = 0

Fig. 8.3 The effect of building foundations and number of storeys on maximum ground
settlements for e/Lbldg = 0

storeys), then reduces slightly as additional storeys are added, reaching a value of 0.92 when
a 5 storey building is added. The stiffness of the foundation reduces the maximum settlement
by 5%; the 5 storey superstructure reduces this by an additional 3.2%.

Figure 8.3 also shows data for the 0.6 m thick foundation; the foundation reduces the
maximum settlement by approximately 7% and, similar to the 0.30 m thick foundation case,
the addition of the 5 storey superstructure reduces the maximum settlement by a further
3.20%.

These results indicate that there is a considerable difference between the amount of
stiffness contribution of the foundation and that of the superstructure to the bending stiff-
ness of the whole building. Therefore, estimating the stiffness of all storeys equally in a
building without considering their position with respect to the foundation may lead to an
overestimation of the global building stiffness.
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Fig. 8.4 (a) The effect of building length on ground displacements (5-storey building), and
(b) effect of number of storeys for different building lengths (t f = 0.60 m) for e/Lbldg = 0

Figure 8.4a shows the effect of building length on ground displacements, considering
lengths of 67 m, 37.4 m and 22.6 m. The trough width of the surface settlement curves
predicted in the analyses varies slightly, but not to a significant degree. Increasing building
length causes a slightly wider trough width and marginally smaller maximum settlement.
This effect is further discussed in Section 8.2.3. Figure 8.4b shows that there is no practical
difference of the degree of stiffness contribution of the building structural parts for buildings
with different lengths. The foundation of the 22.6 m long building shows a negligibly smaller
effect on ground displacements compared to the other building cases.

When e/Lbldg = 0.5, the building is flexible to rotate. In addition, a small part of the
building may be located in the undisplaced soil zone (the zone which is not influenced
by tunnelling). This means that the degree of building rotation will be reasonably high.
Figure 8.5a shows the effect of the foundation and the superstructure of a 5 storey building
on tunnelling induced ground movements. It is shown that the effect of the building on the
displacements is very small. Furthermore, there is no practical difference between the effect
of the foundation and that of the whole building. The main cause for showing a small bending
stiffness is the rotation that happens to the building. Figure 8.5b demonstrates the effect of a
5 storey building with variable lengths on the tunnelling induced ground displacements. The
difference between the curve of greenfield displacements and that of the other cases with
the existence of a building decreases with the decrease of the building length. Generally, the
trough width of the settlement curve slightly increases due to the presence of a building, and
the maximum ground settlement negligibly increases. The increase of the settlement trough
width becomes imperceptible for lengths Lbldg = 37.4 and 22.6 m.
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Fig. 8.5 (a) Effect of the foundation and the superstructure of a weightless building on
ground displacements due to tunnelling, (b) effect of buildings with different lengths on
ground displacements, (c) effect of number of storeys for different building lengths, and
(d) the rotation of the buildings relative to the slope of the greenfield settlement curve for
e/Lbldg = 0.5 and t f = 0.30 m
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The effect of the existence of a building with different lengths on the maximum ground
displacement is presented in Figure 8.5c. The increase of the maximum ground settlement
due to the presence of a foundation with a length Lbldg = 67 m is 2.9%. This effect increases
gradually with the decrease of the length until it becomes 3.9% for Lbldg = 22.6 m. This
shows that the rotation of the building increases with the decrease of the length. Additionally,
for a specific building length, the existence of building storeys leads to a decrease in the
effect of the building on the maximum ground settlement. For Lbldg = 67 m, the presence of
the foundation and 5 storeys (together) causes an increase of 1.18% to the maximum ground
settlement (which was 2.9% for the presence of only the foundation). For a reasonably
large length, the existence of building storeys increases the resistance of the building against
bending deformations. This effect rate of the building storeys decreases for smaller lengths.
For Lbldg = 22.6 m, the existence of a 5 storey building causes an increase of 3.7% (which
was 3.9% for the presence of only the foundation).

Figure 8.5d presents the rotation of buildings with variable lengths. θbldg in Figure 8.5d
denotes the rotation of the building (difference in vertical coordinates of the building ends
divided by the length), and θg f is the slope of the greenfield settlement curve under the
building. The figure shows that buildings having Lbldg = 67 m and 22.6 m experience a
decrease in their rotation as the number of storeys increases while an opposite trend occurs
with building lengths of Lbldg = 52.2 m and 37.4 m. For the length Lbldg = 67 m, Figure 8.5b
shows that there is a small part of the building located in the undisplaced soil zone. This gives
a small resistance to the building against rotation. The addition of building storeys slightly
increases this resistance and reduces the building rotation, as illustrated in Figure 8.5a. For a
small length of Lbldg = 22.6 m, the majority of the building is located in the sagging zone
of the settlement curve which causes a compression to the building and slightly increases
its resistance against rotation. For intermediate lengths of Lbldg = 52.2 m and 37.4 m, the
building does not have any portion in the undisplaced soil zone, and a significant part is
located in the hogging zone of the settlement curve which pushes the building to rotate. As a
consequence, the rotation of the building increases with the increase of the building storeys
since a larger effect is transferred when the local stiffness of the building member increases
by adding more storeys (building member considers only the building excluding the whole
system of the building–soil).

When e/Lbldg ≥ 0.75, the deformed part of the building is located inside the hogging
zone of the settlement curve. In addition, a larger part of the building is located in the
undisplaced soil zone compared to the case of e/Lbldg = 0.5. This means that the degree
of building rotation will be relatively less than that of the case e/Lbldg = 0.5. Figure 8.6a
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Fig. 8.6 (a) Effect of the foundation and the superstructure of a weightless building on
ground displacements due to tunnelling, (b) effect of buildings with different lengths on
ground displacements, (c) effect of number of storeys for different building lengths, and
(d) the rotation of the buildings relative to the slope of the greenfield settlement curve for
e/Lbldg ≥ 0.75 and t f = 0.30 m



214 Effect of Concrete Framed Buildings on Tunnelling Induced Ground Movements

shows that there is no practical difference between the effect of the foundation and that of a 5
storey building on tunnelling induced ground movements for Lbldg = 67 m. This indicates
that the contribution of the superstructure to the global building bending stiffness is very
small when the building is subjected to rotation. Figure 8.6b demonstrates the effect of
a 5 storey building with variable lengths on the tunnelling induced ground displacements
for the case e/Lbldg ≥ 0.75. Similar to the case e/Lbldg = 0.5, the difference between the
curve of greenfield displacements and that of the other cases with the existence of a building
decreases with the decrease of the building length. Generally, there is a slight increase of
the settlement trough width due to the presence of a building, and the maximum ground
settlement negligibly decreases.

The effect of the existence of a building with different lengths on the maximum ground
displacement for the case of e/Lbldg ≥ 0.75 is presented in Figure 8.6c. It is illustrated that
there is a decrease in the maximum settlement under the building in two ways. There is a
decrease due to the increase of the building length, and there is also a decrease because of the
increase of the building storeys. The decrease of the maximum settlement under the building
due to the increase of the building length is because of adding a degree of constraint to the
building against rotation. Additionally, the decrease due to the increase of the building storeys
is because of increasing the flexural rigidity of the building member. For Lbldg = 67 m,
the presence of the foundation and 5 storeys (together) causes a decrease of 7.7% to the
maximum ground settlement while the foundation alone causes a reduction of 4%. This
degree of effect decreases with the decrease of the building length until reaching 0% and
1.3% for the foundation and a 5 storey building, respectively, for the case Lbldg = 22.6 m.
The effect of a building with a length Lbldg = 67 m is greater than that of Lbldg = 22.6 m by
6.4%. This is because of the building part located in the undisplaced soil zone in the case of
Lbldg = 67 m.

Figure 8.6d presents the rotation of buildings with variable lengths for the case e/Lbldg ≥
0.75. The figure shows that buildings with a large length (i.e. Lbldg = 67 m) experience less
rotation, and slightly decrease the slope of the settlement curve under the building. Their
rotation increases with the decrease of their length until they cause a slight increase to the
slope of the settlement curve under the building (i.e. when Lbldg = 22.6 m). It is worth
noting that the foundation alone in all cases leads to an increase in the slope of the settlement
curve under the building. For large lengths, the increase of the building storeys decreases
the slope of the settlement curve gradually. When there is a small length of the building (i.e.
Lbldg = 22.6 m), the superstructure does not show an effect on the slope of the settlement
curve.
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8.2.3 Comparison of 3D buildings and equivalent beams

To display the difference between the behaviour of a 3D building and an equivalent 2D beam,
the bending stiffness of the modelled building (Section 8.2.1 for t f = 0.30 m) was calculated
based on the approaches proposed by Lambe (1973) and Potts and Addenbrooke (1997). For
the former approach, the values of EI of all slabs and the foundation are added together to
obtain the EI of the whole building. Using a 5-storey building as an example, the analysis is
based on 5 slabs of 0.16 m thickness and a foundation of 0.30 m thickness with a width of
1 m.

For the approach of Potts and Addenbrooke (1997), a five storey building has 6 slabs
of 0.16 m thickness and 4.4 m centre to centre distance between the successive slabs. The
parallel axis theorem is used to calculate the moment of inertia of the 6 slabs with respect to
the building centreline. Table 8.1 shows the calculated values of EI for the building based
on the two approaches as well as the value of Ebeam used in the equivalent beam for a 2-,
4- and 5-storey building. An equivalent beam of 1 m width and 1 m height was used to
model the building (Ibeam was kept constant and Ebeam was varied to achieve the value of EI).
Furthermore, two tunnel locations of e/Lbldg = 0 and e/Lbldg = 0.5 were considered for the
comparison.

Table 8.1 Building properties for the approaches of Potts and Addenbrooke (1997) and Lambe
(1973)

No. of storeys EIbldg(Nm2/m) Ebeam(N/m2/m)

Potts and Addenbrooke
2 1.86×1011 2.23×1012

4 9.3×1011 11.15×1012

5 16.26×1011 19.52×1012

Lambe
2 8.80×107 1.06×109

4 10.85×107 1.3×109

5 11.87×107 1.42×109

Figure 8.7a displays results obtained when adopting the equivalent beam using the
Lambe (1973) and the Potts and Addenbrooke (1997) approaches as well as the results
obtained from the numerical simulation of a 5-storey 3D building with a length of 67 m and
a foundation thickness of 0.30 m when e/Lbldg = 0. The figure shows that the approach of
Potts and Addenbrooke (1997) results in a nearly perfectly rigid building with a significant
effect on ground displacements. The over-estimation of the effect of building stiffness on
ground displacements of this method was also recognised by Potts and Addenbrooke (1997).
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Fig. 8.7 (a) Ground displacements from 3D building model and equivalent beams, and (b)
effect of number of storeys on maximum settlement for 3D building model and equivalent
beams (building length = 67 m) for e/Lbldg = 0

Mirhabibi and Soroush (2013) also showed that the structural effect is highly overestimated
when using the 2D equivalent beam based on Potts and Addenbrooke’s approach compared
to a 3D building. This occurs in part because of the inability of the method to consider
the decrease of stiffness contribution of the upper storeys to the building global stiffness;
the building is considered as a single entity and the use of the parallel axis theorem leads
to a significant increase of the building cross sectional moment of inertia when including
several upper storeys. Figure 8.7b shows that the degree of stiffness effect of the Potts
and Addenbrooke (1997) beam is significantly larger than that of the other methods and
approaches a fully rigid case after the 4th storey. The stiffness of the beam does not allow
deformations, leading to an overall ‘sinking’ of the beam into the soil with an increase in
trough width and reduction in the maximum soil settlement compared to the other cases.

In the Lambe (1973) approach, the interaction between the building storeys is neglected
and the building global stiffness is calculated by adding together the EI of all the slabs and
the foundation. The results in Figure 8.7a show that, for the case considered, the Lambe
method agrees well with the 3D building model, but with a slightly smaller impact of the
building stiffness on ground displacements. The similarity between the results from the
Lambe (1973) approach and the 3D building model is due to the fact that the foundation is the
same in both cases. Figure 8.7b illustrates that the stiffness contribution of the upper storeys
to the building global stiffness in the Lambe (1973) beam is very low; 2 storeys reduce the
maximum settlement by an additional 0.40% compared to the foundation alone, and the
5 storey superstructure reduces the maximum settlement by 1%. The degree of stiffness
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Fig. 8.8 Effect of length of a stiff building on ground displacements for e/Lbldg = 0

contribution of upper storeys in the Lambe (1973) approach is smaller than that of the 3D
building model (1.70% for 2 storeys and 3.20% for 5 storeys).

It is worth noting that the length of the building has an effect on the soil-building
interactions but this effect is not significant for relatively flexible buildings. Figure 8.8 shows
results for the Potts and Addenbrooke (1997) beams with lengths of 67 m and 37.4 m. The
increase in the building length results in an increase of the trough width and a decrease of
the maximum settlement since the response of the building is effectively rigid. Moreover,
the ‘sinking’ of the shorter building into the soil is appreciably greater than that of the
longer building. This widening and shallowing effect was also observed for the 3D building
numerical analysis, however the effect was much less pronounced since the 3D building was
much less stiff.

For e/Lbldg = 0.5, the allowance of the building rotation reduces the effect of the building
on ground displacements significantly. Figure 8.9a shows the numerical results of a 3D
building and equivalent beam methods of Potts and Addenbrooke (1997) and Lambe (1973)
for a tunnel location corresponding to e/Lbldg = 0.5. It is shown that the difference between
the effect of the 3D building and the equivalent beam of Lambe (1973) is negligible. Addi-
tionally, both have insignificant effects on ground settlements. With regard to the equivalent
beam of Potts and Addenbrooke (1997), it is illustrated that the beam underwent a large
rotation but remained rigid.

Figure 8.9b demonstrates the degree of effect of the buildings on the maximum ground
settlement. It is exhibited that both the 3D building and the Lambe (1973) equivalent beam
resulted in an increase of the maximum ground settlement. It is also shown that the Lambe
(1973) beam behaved slightly more flexibly than the 3D building. Furthermore, the increase
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Fig. 8.9 (a) Ground displacements from 3D building model and equivalent beams, and (b)
effect of number of storeys on maximum settlement for the 3D building model and the
equivalent beams for a 5 storey building with Lbldg = 67 m and e/Lbldg = 0.5

of storeys did not show a noticeable effect on the results. On the other side, the equivalent
beam of Potts and Addenbrooke (1997) caused a decrease to the maximum ground settlement.
Furthermore, the increase of the building storeys showed an appreciable effect on the results.

8.3 Effect of Building Weight

Despite the fact that several researchers have considered both the stiffness and the weight of
buildings in their analyses (Section 3.7), there is still not a good understanding of the effect
of building stiffness and weight together on tunnel–building interaction, and the relation
between the stiffness and the weight of a structure when influenced by tunnelling. This
section investigates how the bending stiffness and the weight of a building are interconnected,
and how they, together, contribute to the behaviour of the global building when affected by
tunnelling.

The section starts with an explanation of the stages taken into consideration prior to the
construction of a building to show the assumptions made during the analysis and design stages.
The effects of these design assumptions and the changes that may happen to the building
after the construction of a tunnel are then discussed. The influence of these assumptions are
then numerically examined to predict the behaviour of a 3D weighted building (with actual
structural members) when affected by tunnel excavation.
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8.3.1 Building analysis and design

The possibility of constructing a tunnel in an urban area is very likely not considered in the
design of an existing building. Therefore, the assumptions made during the design stage
of these buildings are vitally important to be considered in the tunnel–building interaction
analysis.

The stages considered prior to building construction are briefly explained in Section 2.2.1
which mainly consist of ‘analysis’ and ‘design’. It was clarified that the analysis stage
included the determination of possible loads, moments and torques that may be imposed to
the building, and the induced shear forces, bending and torsional moments in the structural
parts were calculated. The design stage started after the analysis of the building, and included
the determination of a cross section to each structural member by specifying the required
dimensions and material properties. The achieved stiffness (axial, bending and torsion) of
each member is then obtained from the specified dimensions and material properties given to
them in the design stage. It is worth noting that there are additional (serviceability) checks
required by building construction codes to ensure that the obtained bending stiffness of the
members during the design is sufficient for the applied loads.

In a concrete framed building, the design stage in which cross sectional dimensions of
the members are determined is performed for individual members separately from each other
using different design approaches. For example, slabs are mainly designed as two-way flexu-
ral members in which a double curvature is produced, beams are one-way flexural members
with a single curvature, and columns are mainly designed for compression. Furthermore, in
the case of static vertical loads, beams are considered as slab supports that constrain slab
vertical movement and rotation to a certain degree, columns are beam supports that constrain
beam vertical movement and rotation to a certain degree, and footings are column supports
constraining their vertical movement.

The foundation, which is in direct contact with the soil and is the most important support
in the building system, is supported by the underlying soil and can be designed in different
ways. As explained in Section 2.3.3, a raft foundation can be designed as flexible or rigid.
The flexible footing has some degree of flexibility to allow the occurrence of differential
settlement, while differential settlement is not allowed in the rigid foundation.

The behaviour of the two types of foundations (flexible and rigid) is different, however
they both depend on the same principle of gaining equilibrium with the underlying soil
pressure. The stages of analysis and design are similar to the building structural members
described previously, and bending stiffness of the footing is achieved from the design process
in which the underlying soil has an important role. Figure 8.10a shows a typical footing
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Fig. 8.10 (a) Building load – soil pressure equilibrium on foundations, (b) tunnel–building
interaction problem

subjected to building loads through columns (Pcol). These loads have to reach equilibrium at
some point with the subgrade reaction from the underlying soil, qs (after some settlement
due to the weight of the building). qs depends on the properties of the soil, especially the soil
elastic modulus, Es. Various methods have been proposed by researchers to estimate these
properties (Bowles, 1997; Terzaghi, 1955; Vesic, 1961). It is also shown in Figure 8.10a
that the foundation does not behave as a beam supported at discrete locations that resists
bending moments over unsupported lengths; instead, its whole length is supported by the
underlying soil. Moreover, its function is to distribute the building load over an area of soil to
prevent excessive and differential settlements (Tomlinson and Boorman, 2001), as explained
in Section 2.3.

If a tunnel is constructed close to a building, as shown in Figure 8.10b, changes occur
which impact the assumptions and principles on which the building and the foundation were
designed. Because of the occurrence of stiffness degradation due to the increase of shear
strains in the soil as a consequence of the tunnel volume loss, stress redistribution will happen
under the building foundation, and the subgrade reaction (qs) will decrease in the displaced
soil zone (Lee and Ng, 2005; Mair, 2008; Tatsuoka et al., 1997). The occurrence of this
reduction in qs will disturb the equilibrium between the building loads and the subgrade
reaction. In this situation, the foundation will not be able to resist the forces applied by the
superstructure load and will have to deflect until it regains its equilibrium with the underlying
soil. If the soil settlement is small, the foundation may not suffer damage or failure. When
the soil settlement exceeds an allowable limit, the foundation will crack or fail because it
has not been designed to behave as a beam and to resist the building load without a support
from the soil. It is worth mentioning that most of the buildings affected by tunnelling are
relatively old and have lost a certain amount of strength and stiffness due to previous actions,
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such as repair works (Cording et al., 2008); this may increase the level of disturbance due to
tunnelling (required to reach a state of equilibrium).

By design, the foundation and the building will not have sufficient bending stiffness
to prevent building deformations when a tunnel is constructed beneath it. As defined in
Section 2.2.3, bending stiffness is the resistance of a member against bending deformations.
In a mathematical relationship presented by Equation 2.3, the essential parameters influencing
the bending stiffness of the member are the cross sectional flexural rigidity (EI), the member’s
length (Lb), the applied force and the boundary condition of the member.

When the tunnel passes the building and the effect of the tunnel advancement is elimi-
nated, the deformations that happen to the building become one-way (i.e. in the direction
perpendicular to the tunnel axis). As explained in Section 2.2.3 and also shown in Equa-
tion 2.3, the flexural rigidity of the building, EIbldg, has a proportional effect on the bending
stiffness and reduces deformations. Conversely, building length located in the displaced soil
zone (soil zone 1 in Figure 8.10b) has an inversely proportional effect which reduces the
value of bending stiffness dramatically. In addition, the boundary condition also plays an
important role in the resistance of the building against deformation. The boundary condition
of the building depends on the properties of the soil and the length of the building located in
the undisplaced soil zone (soil zone 2 in Figure 8.10b). In terms of bending stiffness, the role
of the boundary is to specify the capacity of the building (as one global member) to resist the
applied moments, and this depends on how much rotation is allowed by the boundaries.

Given the above knowledge about bending stiffness, a larger length of a building in the
displaced soil zone leads to a lower bending stiffness, while a larger length in the undisplaced
soil zone provides more resistance to the building against deformations. The building shown
in Figure 8.10b experiences a significant rotation since it is not constrained at end 1. If soil
zone 2 (in Figure 8.10b) is not available or is very small, the results of previous chapters
showed that the building bending stiffness did not have an impact on ground displacements.
A degree of boundary condition is introduced with an increase in the length of soil zone 2.
Furthermore, if the part of the building located in the displaced soil zone undergoes cracking
its stiffness will decrease significantly (Son and Cording, 2005, 2010). If the local stiffness
of the building members is very high (i.e. a building with stiff reinforced concrete walls cast
monolithically with the slabs, and acted upon by a relatively small load) or the underlying
soil is very soft, tilting of the building may occur (as also mentioned by Son and Cording,
2010). Additionally, a building with a small length affected by ground displacements, or an
unrealistically stiff building, may separate from the soil during ground settlements due to



222 Effect of Concrete Framed Buildings on Tunnelling Induced Ground Movements

tunnelling. This separation happened in the centrifuge tests performed by Farrell (2010) and
also discussed by Giardina et al. (2015).

This section investigates the possible building design parameters that experience changes
due to tunnelling. Namely, the investigation includes the effects of the creation of plasticity
in the soil, building rotation, building weight, and the lengths located inside the displaced
and undisplaced soil zones.

8.3.2 Model description

Th geometry and parameters of the soil and the building model, building bays, tunnel
simulation and considered locations are the same as presented in Section 8.2.1. Only the
thickness of 0.30 m was considered for the foundation of the building. Furthermore, three
tunnel volumes losses of 0.4%, 0.62% and 1.04% were examined, which produced greenfield
surface volume losses of Vls,sur f = 1%, 1.55% and 2.5%, respectively. Furthermore, the
self weight of the building was applied as body forces with a unit weight of 25 kN/m3,
and the considered live load values were 2.5, 5.0, 7.5 and 10.0 kPa applied to the surface
of the foundation and the slab of each storey. In the following sections, each case of the
considered building weight is referred to by the value of the applied live load. For instance,
an applied live load of 2.5 kPa implies a live load of 2.5 kPa on the slab of each storey and
the foundation, plus the building self weight. A model of the soil and the building is shown
in Figure 8.1.

The interface between the building and the soil was chosen to be a surface to surface
contact which has both normal and tangential response. The detail of the soil–building
interface is given in Section 4.9. For the following sections, the term ‘rough’ interface is
used for the cases where a rough contact was assumed for the tangential behaviour, and
‘frictionless’ interface is used where frictionless behaviour was assumed.

8.3.3 Effect of tunnel volume loss and tunnel location on tunnel-building
interaction

As mentioned earlier, the occurrence of tunnel volume loss results in the degradation of soil
stiffness due to strains (Mair, 2008), which in turn causes a disturbance to the equilibrium
system of the soil pressure – building loads shown in Figure 8.10a. Figures 8.11a,b,c show
the effect of building weight on the tunnelling induced ground movements for three tunnel
locations with a greenfield surface volume loss of Vls,sur f = 1.55%. Four settlement cases
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are considered: the greenfield case, the existence of a weightless 3D building, the existence
of a weighted building with 5.0 kPa and 10.0 kPa live loads.

When a tunnel is constructed under the building centreline (e/Lbldg = 0), bending stiffness
of the weightless building reduces maximum settlement and increases the settlement trough
width, as shown in Figure 8.11a. When the building weight is included, the maximum ground
displacement is close to the greenfield value or slightly larger. The settlement trough under
the building is also broadened. Additionally, the building edges embed into the soil. The
presence of a 5.0 kPa live load gives practically the same maximum value of ground surface
settlement as that of the greenfield situation. The increase of the applied live load to 10.0 kPa
creates plastic zones in the underlying soil and increases ground surface settlements. This
increase of surface displacements is a consequence of the tendency of the building to regain
equilibrium with the underlying soil pressure which was disturbed by the construction of the
new tunnel.

In the presence of the building weight, the bending stiffness of the building seems to
mainly affect the distribution of the building load on the underlying soil rather than reducing
ground displacements, as was also noted by Maleki et al. (2011) and Mroueh and Shahrour
(2003). Additionally, it can be said that the case where the tunnel is constructed under
the building centreline shows the stiffest response of the building since the rotation of the
building does not occur due to symmetry. When the tunnel is located under the building edge
(e/Lbldg = 0.5), the role of bending stiffness decreases significantly due to the occurrence
of building rotation. Figure 8.11b exhibits that even for a weightless building, there is not a
significant influence of building bending stiffness on ground displacements. The inclusion of
the building weight in the analysis leads to an increase in the ground surface settlements in
the sagging zone which are slightly larger than those of the case e/Lbldg = 0. Furthermore,
the trough width also increases, but the amount of increase is less than when the tunnel is
under the building centreline. The main reason for this is the influence of building rotation
when e/Lbldg = 0.5, which decreases the embedding of the building into the soil in the
hogging zone and increases ground settlements (in both sagging and hogging zones) due to
the building weight.

When there is an offset of 16.75 m between the building edge and the tunnel centreline,
and the building is located in a place where it is less affected by tunnelling, the influence of
the building weight and bending stiffness on ground displacements decreases significantly,
as shown in Figure 8.11c. The maximum settlement under the building is not considerably
affected but there is an increase in the width of the settlement trough. Additionally, building
rotation occurs but with a smaller extent than for e/Lbldg = 0.5. This is because a portion
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Fig. 8.11 (a), (b), (c) Effect of building weight and bending stiffness on ground displacements
due to tunnelling for Vls,sur f = 1.55% and a rough building–soil interface; (d), (e), (f) degree
of effect of building weight on the maximum ground displacement under the building
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of the building is located in the undisplaced soil zone (soil zone 2 in Figure 8.10b) which
restricts the rotation of the building.

To show the effect of the weight of a building (for a specific bending stiffness) on the
maximum ground settlement under the building, the maximum ground surface settlement in
the presence of the building is normalised by the maximum greenfield settlement and shown
in Figures 8.11d,e,f for e/Lbldg = 0, 0.5 and 0.75, and for three greenfield surface volume
losses of Vls,sur f = 1%, 1.55% and 2.5%. For all locations of the tunnel, Figures 8.11d,e,f
show the increase of tunnel volume loss leading to the creation of greater plasticity in the
soil and a larger influence of the building on ground displacements. Moreover, the increase
of building weight also results in an increase in the ground displacements. The cases of zero
live loads in Figures 8.11d,e,f are for weightless buildings.

For e/Lbldg = 0, where there is no building rotation, the stiffness of a weightless building
reduces maximum ground displacements to a certain extent. As the building weight is
added, the reduction of maximum ground displacements decreases. The building tends to
reduce ground displacements for low building weights of 2.5 and 5 kPa live load when
Vls,sur f = 1%, and for 2.5 kPa live load when Vls,sur f = 1.55%, as shown in Figure 8.11d.
For all other cases, building weight increases maximum ground displacements relative to
the greenfield values. For a high greenfield surface volume loss of 2.5%, the weight of
the building increases ground displacements even for the lower values of the applied loads.
When e/Lbldg = 0.5, where there is a significant building rotation, there is a slight increase
in the maximum ground displacements by the existence of a weightless building. For the
weighted buildings, the weight for all surface volume losses leads to an increase in maximum
ground displacements, as shown in Figure 8.11e. The occurrence of building rotation causes
the building to show little resistance against deformations. Therefore, there is no effect of the
bending stiffness except to distribute the building load over an area of soil. As the value of
e/Lbldg increases to 0.75, despite having a significant building rotation, a large part of the
building is located inside the undisplaced soil zone, thereby increasing building resistance to
bending deformations. This causes a reduction in the maximum soil displacement under the
building for both cases of weighted and weightless buildings, as shown in Figure 8.11f.

It is interesting that for a weightless building, the increase of tunnel volume loss results
in a reduction of maximum ground displacements, whereas for weighted buildings, an
increase in volume loss results in an increase of maximum ground displacements, as shown
in Figures 8.11d, e, f. This is because as the tunnel volume loss increases, a greater area of
the soil under the building reaches its plastic limit, thereby experiencing more of an effect
from the building. These plastic zones reduce with the decrease of the tunnel volume loss.
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This is the reason that the trend of the effect of a weightless building on maximum ground
displacements is opposite to that of a weighted building. The effect is similar between
a weighted and a weightless building in that maximum ground displacements are more
influenced by the existence of a building when the tunnel volume loss increases. For a
weighted building, the increase of the tunnel volume loss leads to an increase in maximum
ground displacements while for a weightless building, a decrease occurs.

It is worth noting that the reduction of ground displacements in some cases within
Figures 8.11d,e,f is partly due to the utilisation of an interface which does not allow separation
of the building and the soil. The use of a no-tension interface gives a more realistic condition
to the numerical simulations, as suggested by Giardina et al. (2015). Furthermore, using
elastic behaviour for the building also has an effect on the results. Son and Cording (2010)
showed that using an elastic structure in a numerical analysis leads to much stiffer behaviour
of the building compared to a scenario where cracks are allowed to develop in the building.

Using a frictionless interface between the soil and the building, in addition to the previ-
ously used rough interface, will give a better depiction of the building response to tunnelling.
However, as previously discussed, the separation between the two surfaces still does not
happen. When a rough interface is used between the soil and the building, the load of the
building will be well–redistributed over the underlying soil, which in turn may decrease or
increase the effect of the building weight on the ground displacements. This redistribution is
not so effective when using a frictionless interface. For the case of e/Lbldg = 0, a frictionless
interface leads to a slightly larger maximum settlement and a narrower trough width with
less embedding of the building edges into the soil, as shown in Figure 8.12a. Compared to
the rough interface, the frictionless behaviour of the interface does not allow the transfer
of the building load from the portion located in the displaced soil zone where maximum
strains happen, to the building edges. This results in a greater maximum settlement and
smaller settlements under the edges. For the case of e/Lbldg = 0.5, settlement curves of
both interface types are very similar, as shown in Figure 8.12b. The settlement trough of the
frictionless case is slightly narrower than that of the rough case. Different from the case of
e/Lbldg = 0, the maximum settlement of the frictionless case is marginally smaller than that
of the rough case. The reason for this is that a building with a rough interface eliminates the
curvature of the settlement curve (under the building) in the sagging zone and makes it close
to an inclined line while there is a very small curvature when a frictionless interface is used,
and the portion of the settlement curve in the sagging zone will not become an inclined line.
Similar to the case of e/Lbldg = 0, this shows that a building with a frictionless interface
is slightly less stiff compared to the same building with a rough interface. With regard to
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the tunnel location of e/Lbldg = 0.75, there is also a negligible difference between the two
interfaces, as shown in Figure 8.12c. Similar to the other cases, the settlement trough of the
frictionless case is slightly narrower than that of the rough case, but the effect on the ground
maximum settlement under the building is very similar in both cases.

Figures 8.12d,e,f show the degree of building effect on the maximum soil settlement under
the building for different tunnel locations. Figures 8.12d,e illustrate that in the majority of the
considered cases, the existence of a weighted building leads to an increase in the maximum
ground settlement when e/Lbldg = 0 and 0.5. It should be noted that in the simulations of
both interface cases, there is a limited amount of plasticity created in the soil by the existence
of the building. This is because of two main reasons. The first reason is related to the soil.
A linear elastic material with a Mohr–Coulomb failure criterion is used to model the soil,
and this leads to an underestimation of the ground displacements and the creation of soil
plasticity (Ehsan, 2013; Pickles and Henderson, 2005; Ti et al., 2009). Furthermore, it has
been reported by researchers that tunnelling does not tend to cause plastic changes to the soil,
and a nonlinear elastic model can present a good prediction of tunnelling induced ground
displacements (Cheng et al., 2007; Dasari, 1996; Giardina et al., 2015). Indeed, the greenfield
model in this research showed no plastic zones at the soil surface or subsurface except a
small region around the tunnel. The second reason is related to the building. Before the
construction of the tunnel, a region of soil in the vicinity of building column bases reached
plasticity. When the tunnel was constructed, the plastic region formed around the column
bases located approximately above the tunnel axis decreased, especially for the cases of low
applied live loads. This is because building load was transferred from the highly affected
columns above the tunnel, to the less affected columns further away.

It is worth noting that the role of the building load in creating soil plasticity is greater than
that of the tunnel volume loss. Figures 8.11d,e and 8.12d,e exhibit that for a low building
load, the effect of a building on ground displacements increases with the increase of tunnel
volume loss. When the building weight increases, the trend of the effect of different tunnel
volume losses approach a single value and their difference reduces. In the case of e/Lbldg = 0
(Figures 8.11d and 8.12d), the trend of effect of all greenfield surface volume losses (1%,
1.55% and 2.5%) approach the same failure point when the building load is increased. In
the case of e/Lbldg = 0.5 (Figures 8.11e and 8.12e), the trend of effect of Vls,sur f = 1% is
different from the trend of the others (Vls,sur f = 1.55% and 2.5%) which approach a single
value. In the presence of the building load, some plasticity is induced in the soil due to the
occurrence of tunnel volume loss. The increase of building weight causes greater plasticity
to the soil and reduces the difference between various tunnel volume loss cases.
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Fig. 8.12 (a), (b), (c) Effect of building weight and bending stiffness on ground displacements
due to tunnelling for Vls,sur f = 1.55%, live load of 10 kPa, and a rough and frictionless
building–soil interface; (d), (e), (f) degree of effect of building weight on the maximum
ground displacement under the building for a frictionless and a rough building–soil interface
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Figures 8.12d,e,f also illustrate that a change in the soil–building interface changes the
building response to tunnelling. It is shown that for a tunnel location of e/Lbldg = 0, a
frictionless interface causes a larger increase to the ground maximum settlement under the
building while for the case where e/Lbldg = 0.5, an opposite trend is created. This is mainly
because of the occurrence of building load redistribution due to tunnelling effects. For the
case of e/Lbldg = 0.75 where a smaller building part is affected by tunnelling, the role of the
soil–building interface decreases and both results lead to similar effects.

Figures 8.13a,b exhibit the degree of increase and decrease of bottom column loads due
to tunnelling for different values of Vls,sur f . The interior row of the bottom columns in the
x–direction (first storey, Figure 8.14) are considered in Figure 8.13. The terms Pcol,in and
Pcol, f i denote initial (before tunnel construction) and final (after tunnel construction) column
loads, respectively. Figure 8.13a shows the degree of column load redistribution for the case
of e/Lbldg = 0 where the building rotation is not allowed. It is illustrated that the load of the
two middle columns (5 and 6) decreased; the load was redistributed over the other columns,
especially the edge ones (columns 1 and 10). Additionally, the increase of tunnel volume loss
for a constant building load resulted in an increase in the degree of load redistribution. For
the case of e/Lbldg = 0.5 where building rotation is allowed, the load of the columns located
directly above the tunnel axis (column 1) decreased to a greater extent than that of the others,
as shown in Figure 8.13b. There was also a slight load decrease of the neighbouring column
(column 2). After that, a small load increase occurred in columns 3, 4, 5 and 6. Interestingly,
there was also a load decrease of the end column (column 10) which was due to the global
rotation of the building; it caused a pulling force to the end columns and reduced their initial
applied loads. Figure 8.13b also clarifies that for a constant building load, the increase of the
tunnel volume loss resulted in an increase in the redistribution of the column loads.

In addition to the effect of tunnel volume loss on the load redistribution of the columns,
the magnitude of the applied loads to the columns also has a significant role. Figures 8.13c,d
show the degree of column load redistribution for two live load cases of 5 and 10 kPa, at a
greenfield surface volume loss of 1.55%. It is displayed that the increase of the building load
leads to a decrease in the load transfer between columns. This shows that the capability of
the building bending stiffness to transfer load between columns is influenced by the applied
load. Bending stiffness with a relatively small applied load is capable of transferring a greater
load between columns.
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Fig. 8.13 (a), (b) Degree of column load redistribution for the 5 kPa live load case and
variable Vls,sur f ; (c), (d) degree of column load redistribution for a volume loss of 1.55%, and
live load cases of 5 and 10 kPa



8.3 Effect of Building Weight 231

Fig. 8.14 Interior row of bottom columns

8.3.4 Effect of building length in the displaced and undisplaced soil
zones

To investigate how building length affects the interaction between a newly constructed tunnel
and an existing building, different numerical models were analysed considering various
building lengths and tunnel locations. Figure 8.15 shows the results of vertical ground
displacements, the degree of building effect on maximum ground displacement under the
building, and building rotation for a live load case of 10 kPa and a greenfield surface volume
loss of 1.55% with different building lengths and tunnel locations.

When e/Lbldg = 0 where no rotation of the building is allowed due to symmetry, Fig-
ure 8.15a displays that the decrease of the building length results in a decrease of the building
effect on ground displacements. It is exhibited that the maximum ground settlement created
by a building with Lbldg = 67 m is greater than that created by a building with Lbldg = 22.6 m.
Furthermore, the trough width of the settlement curve in the case of Lbldg = 67 m is greater
than that of Lbldg = 22.6 m. The reason for this is that the whole building lies in the displaced
soil zone and as the length increases, the building weight will be applied to a wider soil area
and will induce greater plasticity in the soil.

When e/Lbldg = 0.5 and rotation of the building is allowed, the behaviour of the building
is influenced by the variation of its length. Figure 8.15b shows that the effect of a 22.6 m
and a 67 m building on the maximum ground settlement is very similar while the longer
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Fig. 8.15 (a), (b), (c) Effect of building existence on ground surface displacements for variable
e/Lbldg, a live load case of 10 kPa and a greenfield surface volume loss of 1.55%, (d) the
degree of building effect on maximum soil displacements under the building, (e) building
rotation when the tunnel is not located under the building plan area
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building leads to a wider settlement trough. The Figure also shows that the soil in the vicinity
of the end of the building furtherest from the tunnel is affected by the building rotation
when Lbldg = 67 m whereas this effect is negligible for the building of Lbldg = 22.6 m. The
building having Lbldg = 22.6 m is completely located in the displaced soil zone and due to
the occurrence of a large rotation, its bending stiffness does not have a significant effect
on the ground displacements. Building influence in this case is due to its weight which
results in an increase in ground settlements. When Lbldg = 67 m, a part of the building is
located in the undisplaced or less displaced soil zone which provides an amount of bending
resistance to the building. The end rotation of the building (far end from the tunnel) in the
case Lbldg = 67 m is due to the building resistance to bending deformations obtained from
the building part located in the undisplaced soil zone. Similarly, when there is an offset of
16.75 m between the tunnel axis and the building edge, as shown in Figure 8.15c, a building
with Lbldg = 22.6 m has a minimum effect on ground displacements, resulting in a small
increase in the settlement trough width. It is also exhibited that there is a large rotation of the
building. When the length increases to 67 m, a greater modification occurs to the ground
surface settlement and a wider trough is created.

To better illustrate how building length in the displaced and undisplaced soil zones affect
tunnelling induced ground displacements, the degree of building effect on the maximum
ground settlement under the building and the building rotation are plotted in Figures 8.15d,e,
respectively. When Lbldg = 22.6 m for the case of e/Lbldg = 0, Figure 8.15d displays that
there is a small increase of the ground surface maximum settlement due to the existence of
the building. Building effect on the maximum ground settlement increases with increasing
building length until reaching its maximum value when Lbldg = 67 m (based on the cases
considered in this section). This is because, in the considered cases of this section, the
building is always located in the displaced soil zone when e/Lbldg = 0. A larger area of soil
is influenced by the building and greater plasticity is induced.

When e/Lbldg = 0.5, there is not a significant effect of the building length on the maxi-
mum ground settlement under the building. This is because a large rotation of the building
happens and building resistance against bending deformations will be minimum. Figure 8.15d
shows that the effect of the building on maximum ground settlement slightly increases with
length until Lbldg = 37.4 m. After that, there is a minor building influence on the ground
maximum settlement for longer buildings. This confirms that for building lengths of 22.6 m
and 37.4 m, the whole building is located in the displaced soil zone while for longer buildings,
a part of the building is located in the less affected or undisplaced soil zone and produces
some building resistance against rotation. Additionally, the general effect of a building on
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ground maximum settlement when e/Lbldg = 0.5 is greater than that of e/Lbldg = 0 due to
the occurrence of building rotation.

The influence of the building part located in the undisplaced soil zone on ground dis-
placements becomes more obvious when e/Lbldg > 0.5. Figure 8.15d illustrates that the
presence of a building with a small length of 22.6 m approximately follows the greenfield
deformations except slightly increasing the settlement trough width and negligibly decreasing
the maximum ground settlement under the building. The increase of the building length leads
to a fairly considerable reduction of the maximum ground settlement under the building, and
a relatively significant increase of the settlement trough width.

The length of the building in the undisplaced soil zone has an important role in restricting
the rotation of the buildings. Figure 8.15e shows the rotation happening to a building with
different lengths at two tunnel locations corresponding to e/Lbldg = 0.5 and when there is
an offset of 16.75 m between the tunnel axis and the building edge (e/Lbldg > 0.5). It is
shown that a relatively large building rotation occurs when the length is small while building
rotation decreases significantly with the increase of the length.

8.4 Proposing a 2D Equivalent Method to Estimate Build-
ing Bending Stiffness

This section presents a method to calculate the global building bending stiffness by combining
the methods proposed to estimate the bending stiffness of the superstructure (Chapter 5)
and that of the foundation (Chapter 6), then to convert it to a 2D beam. The 2D beam is
given equivalent elastic properties of the 3D building so that the 2D beam can replicate the
behaviour of the 3D building.

In this section, after describing the numerical model, the effect of the building super-
structure and the relative soil–building elastic modulus on ground displacements in a global
soil–building system is investigated using the mixed E–N method. A method is then pro-
posed to replace the 3D building by a 2D equivalent beam in the numerical analysis. The
equivalent method aims to replicate the complex 3D behaviour of buildings when influenced
by tunnelling.

8.4.1 Model description

To investigate the behaviour of the global building in the soil–building system, two buildings
were modelled. The properties of the buildings are presented in Table 8.2. It is worth noting
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that the dimensions of the column cross section depended on the dimensions of the floor and
supporting beam cross sections. The building of model 1 (Table 8.2) consisted of 5 storeys.
The foundation, 2 storeys and 5 storeys were considered in the numerical analyses. The
building of model 2 (Table 8.2) comprised 6 storeys. The foundation, 2, 4 and 6 storeys were
considered in the analyses. In both building models, only one bay in the y-direction was
analysed. It should be mentioned that the model 1 building was a one y-bay building of that
simulated in Section 8.2.1. The reason for using a one y-bay building in this section is to
simplify numerical models since the number of bays is not influential in this section. This is
because the equivalent method presented in this section depends on the methods of Chapter 5
for the estimation of the superstructure bending stiffness, which deals with both single and
multiple y-bay buildings.

With regard to the soil, its elastic modulus was varied from 15 MPa to 60 MPa. The
model dimensions and the considered tunnel locations were the same as those presented
in Section 8.2.1. The depth and the diameter of the tunnel were 13.645 m and 4.65 m,
respectively. The mixed E–N method (Chapter 7) was used to simulate tunnelling. The
simulations were done at a surface volume loss of 1.55%. The required coefficients for the
greenfield input are presented in Table 3.1 for Ct/Dt = 2.4 and Id = 90%. In addition, a tie
constraint, in which slip or separation was not allowed, was sued to attach the building to the
soil. It is worth noting that the model had 65,000 to 115,000 elements.

Table 8.2 Sizes of structural parts considered in 3D weightless building analyses

Parameter Lsl Bsl tsl b f b and bsb h f b and hsb Lcol Lbldg t f
model 1 7 5 0.16 0.4 0.6 3.8 22.6 to 67 0.8
model 2 5.7 4.2 0.15 0.3 0.5 3 18.3 to 42.3 0.5

8.4.2 Effect of building storeys on the global building behaviour

The contribution of foundation and superstructure bending stiffness to the stiffness of the
global building was investigated in Section 8.2 using conventional numerical simulations
in which the tunnel was modelled. It was explained in Chapter 7 that the simulation of the
tunnel and the utilisation of conventional soil material models resulted in predictions of a
wider trough width than reality. This narrowness of the trough width does not lead to realistic
response of the building since, in most cases, the majority of the building length is located
inside the displaced soil zone, and no length or a small part is located in the undisplaced
soil area, which has an effect on the building end fixity. For this reason, the effect of the
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Fig. 8.16 (a) Effect of a 3D building (model 1) on ground displacements due to tunnelling,
(b) effect of number of storeys on the maximum settlement for e/Lbldg = 0 and Es = 35 MPa

superstructure is re-investigated in this section using the mixed E–N method which may
lead to a narrower trough width of the settlement curve. Furthermore, in the investigation of
the superstructure in Chapter 5, the soil and the foundation were excluded in the analyses.
The study presented in this section leads to a better understanding of the behaviour of the
superstructure in a soil–building system.

Figure 8.16a shows the effect of a 5 storey building (model 1) on ground displacements
due to tunnelling for a tunnel location corresponding to e/Lbldg = 0. Similar to the results
of Section 8.2, the major effect of the building on ground displacements was again due to
the foundation. Figure 8.16b presents the degree of effect of the foundation and a 2 and 5
storey building on ground displacements for building lengths of Lbldg = 67 m and 22.6 m.
The degree of effect in both cases is very similar. The existence of the foundation reduced
the maximum ground settlement by about 27%. This degree of effect increases to 34% for a
5 storey building, indicating that the superstructure has an additional effect of 7%.

Figure 8.17a shows the effect of building model 1 on ground displacements for a tunnel
location of e/Lbldg = 0.5. It is illustrated that the effect of the building on ground displace-
ments is small. Figure 8.17b shows the degree of effect of the foundation and a 2 and 5
storey building on ground displacements for different building lengths. It is shown that the
effect of the building on the displacements increases with the increase of building storeys,
especially for buildings with large lengths. The increase of the storey number results in the
increase of the flexural rigidity of the building which in turn increases the building resistance
to bending deformations. When the building has a large length, the degree of the end fixity
increases which, together with the increase of building storeys, leads to the increase of
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Fig. 8.17 (a) Effect of a 3D building (model 1) on ground displacements due to tunnelling, (b)
effect of number of storeys on the maximum settlement for e/Lbldg = 0.5 and Es = 35 MPa

the building bending resistance to a greater extent. For Lbldg = 67 m, the presence of the
foundation reduced the maximum ground settlement by 2.5% while the presence of the whole
building reduced the maximum settlement by 7.4%. For Lbldg = 22.6 m, the existence of the
foundation caused a reduction of 1% to the maximum settlement while the whole building
caused a reduction of 2.6%.

8.4.3 Effect of relative building–soil elastic modulus on the global build-
ing behaviour

The effect of the relative building–soil elastic modulus was investigated in Chapter 6 for the
undisplaced zone of the soil. In this section, the effect of the building–soil elastic modulus is
studied for the global soil–building system.

Figure 8.18a illustrates the effect of a building on ground displacements due to tunnelling
for variable Ec/(Es ×103), e/Lbldg = 0 and Lbldg = 67 m. The effect of the building on the
displacements increases with the increase of Ec/(Es × 103); in another words, the effect
increases with the increase of the building elastic modulus. To avoid confusion with the
conclusions drawn in Chapter 6, it should be noted that in this section, the effect of one
entity (building) on the other entity (soil) in the soil–building system is measured while in
Chapter 6, the bending stiffness of the global foundation (a footing supported by soil) was
estimated. Simply having a large effect of the building on ground displacements does not
mean having a high building bending stiffness. Both the building part and the underlying
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Fig. 8.18 (a) Effect of a 3D building on ground displacements due to tunnelling, (b) effect of
number of storeys on the maximum settlement for variable Ec/(Es ×103), e/Lbldg = 0 and
Lbldg = 67 m

soil are parameters of the building bending stiffness, meaning that they are interconnected
rather than being separate entities. For instance, in an elastic analysis where the weight of
the building is not considered, when the soil is of small stiffness, it will apply small forces to
the building to deflect. In such case, a large effect of the building on ground deformations is
obtained while the bending stiffness of the building is relatively small due to having a low
stiffness support (soil).

Figure 8.18b shows the reduction of the maximum ground displacement due to the
existence of a building for variable values of Ec/(Es ×103), e/Lbldg = 0 and Lbldg = 67 m.
For Ec/(Es ×103) = 2, the foundation caused a reduction of 34% and a 5 storey building
caused a reduction of 46% to the maximum ground settlement. For Ec/(Es × 103) = 0.5,
the maximum ground settlement was reduced by 24% and 30% due to the existence of
the foundation and a 5 storey building, respectively. It is indicated that the effect of the
superstructure on the maximum ground settlement increases with the increase of Ec/(Es ×
103); for the case of Ec/(Es ×103) = 2, the effect of a 5 storey superstructure is 12% while
for the case of Ec/(Es ×103) = 0.5, the superstructure effect becomes 6%.

8.4.4 An equivalent beam method

To obtain the bending stiffness of the global building (Kb,bldg), the bending stiffness of
the superstructure based on the proposed method in Chapter 5 and that of the foundation
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based on the method in Chapter 6 were algebraically added together. In order to represent
the building by a simple 2D beam in the numerical analyses of the tunnel–soil–structure
interaction, an analogy was made between the 3D building and an elastic beam resting on an
elastic foundation (soil), hereafter called an equivalent beam. Similar to Chapters 5 and 6,
a fixed–ended analogy was made for the case e/Lbldg = 0 and a cantilever analogy for the
case e/Lbldg ≥ 0.5. The Poisson’s ratio of the equivalent beam was the same as that of the
building. In a numerical model, the 3D building was analysed and its effect on the surface
settlement curve was determined. The equivalent beam was then modelled in a numerical
analysis and its elastic modulus was changed in a trial and error process until its effect on
surface displacements was approximately equal to that of its corresponding 3D building.

The equivalent beam was assumed to be a 1×1 m elastic beam loaded by a linearly
distributed force (the same as that applied to the foundation in Chapter 6, Figure 6.2). The
initial elastic modulus, Eb, was calculated using Equation 2.3 (Kb = FK((EI)b/L3

b), where
Kb is the beam bending stiffness, (EI)b is the flexural rigidity and Lb is the length) with
FK = 60/11 and FK = 1920/7 for the cantilever and the fixed–ended cases, respectively.
Equation 2.3 is based on a fixed boundary. There are two different coefficients to determine
the boundary condition of the building: Cbc for the superstructure (Chapter 5) and Cbc, f nd for
the foundation (Chapter 6). These two coefficients are determined based on two different load
cases; therefore, none of them independently represents the realistic boundary condition of the
equivalent beam. Furthermore, the portion with which each boundary coefficient contributes
to the equivalent beam boundary is not known since the effect of the foundation on ground
displacements was shown to be greater than that of the superstructure (Section 8.2.2), but this
is not quantified. As the first trial, the coefficient Cbc was divided by Cbc, f nd (Cbc/Cbc, f nd) in
order to approximately determine the end fixity of the equivalent beam in the soil–structure
system. Eb was then calculated from Kb,bldg = (Cbc/Cbc, f nd)× [FK × (EI)b/L3

b], where
Kb,bldg is the algebraic addition of the foundation and superstructure bending stiffness.

It should be noted that in some cases, the whole building may lie in the displaced soil
zone due to the width of the settlement trough. In the methods proposed in Chapters 5 and
6 to estimate the stiffness of the superstructure and the foundation, it was assumed that at
least a small part of the structure was located in the undisplaced soil zone. An assumption
is necessary to be made here to overcome the problem where the whole building is in the
displaced zone since the methods of Chapters 5 and 6 do not work in cases where the length
of the building in the undisplaced soil zone is zero. Furthermore, the method of estimating
the bending stiffness of the superstructure is different from that of the foundation, requiring
different assumptions for considering the length located in the undisplaced zone. For this
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reason, for the case of the superstructure, the influenced length of the building was assumed
to be the length of the whole building disregarding the settlement trough width. For the
case of the foundation, the length of the undeformed (supporting) part was assumed to be
0.15 times the maximum supporting length (L f ,sp = 0.15L f ,sp,max, Equations 6.3 and 6.10
for the cantilever and fixed–ended approaches, respectively). For buildings with large lengths
extending to the undisplaced soil zone, the point where the ground settlement became smaller
than 1 mm was assumed to be the start point of the foundation supporting part (undisplaced
zone).

The trial and error process of the numerical models showed that Cbc/Cbc, f nd alone does
not represent the realistic boundary condition of the beam. For this reason, an extra parameter
was added to account for the effects of Ec/(Es ×103) and the number of building storeys.
The addition of the extra parameter was based on the numerical results of the effects of
building storeys and Ec/(Es ×103) on tunnelling induced ground displacements presented in
Sections 8.4.2 and 8.4.3, respectively. A coefficient, Cbc,b,eq, was introduced to determine
the realistic boundary condition of the equivalent beam based on the numerical results:

Cbc,b,eq =

(
Cbc

Cbc, f nd

)
×
(

2
n0.2

st

)
× exp

(
−0.35× Ec

Es ×103

)
(8.1)

where nst is the number of the building storeys.
The final elastic modulus of the beam is then calculated as:

Eb =
Kb,bldg ×L3

in f

Cbc,b,eq ×FK × Ib
(8.2)

Note that when adding the foundation and superstructure bending stiffness, either the
superstructure bending stiffness should be divided by the building width, or the foundation
stiffness should be multiplied by the building width before the addition of their bending
stiffness is done.

Figures 8.19a,b,c show a comparison between the effect of a 3D building and that of a 2D
equivalent beam on ground displacements due to tunnelling for e/Lbldg = 0 and Lbldg = 67 m.
The building is that of model 1 in Table 8.2. The comparison is made for the foundation and
a 2 and 5 storey building. An excellent agreement between the results of the 3D building and
that of the equivalent beam is achieved.

Figures 8.19d,e,f,g show the degree of effect of the foundation and a 2 and 5 storey
building (3D building and 2D equivalent beam - model 1 in Table 8.2) on the maximum
ground settlement for e/Lbldg = 0 and different building lengths. The Figures show a good
agreement of the results between the 3D building and the equivalent beam analyses.
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Fig. 8.19 Comparison of the predicted building effect on (a), (b), (c) ground displacements,
and (d), (e), (f), (g) the maximum ground settlement between a 3D building and its equivalent
beam for e/Lbldg = 0
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Fig. 8.20 Comparison of the predicted building effect (a), (b), (c) on ground displacements,
and (d) on the maximum ground settlement between a modelled 3D building and an equivalent
beam for a 5 storey building (model 1) with e/Lbldg = 0 and variable ratios of building–soil
elastic moduli
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Figures 8.20a,b,c illustrate that there is a good agreement between the numerical results
of the 3D building and that of the equivalent beam for different values of Ec/(Es × 103).
The agreement is very good for the prediction of the maximum ground settlement, as shown
in Figure 8.20d. Both Figures 8.19 and 8.20 illustrate that generally, the settlement trough
width predicted with the 3D building and the equivalent beam is also in a good agreement.
With regard to the symmetric rotation of the building ends, Figures 8.20a,b,c illustrate that
the equivalent beam experienced slightly more end rotation than that of the 3D building. This
is mainly because the part of the building located in the undisplaced soil zone is smaller than
L f ,sp,max, which is seemingly not well-captured by the equivalent beam, especially for high
values of Ec/(Es ×103).

Figure 8.21 presents the numerical results of the 3D building of model 2 in Table 8.2.
Figures 8.21a,b,c,d show the effect of the building (3D and the equivalent beam) on ground
displacements for e/Lbldg = 0 and Ec/(Es ×103) = 1.0. It is indicated that generally, there
is a good agreement between the results of the 3D building and that of the equivalent beam.
The effect of the building on ground displacements is captured well by the equivalent beam
up to 4 storeys. For the 6 storey building, the symmetric end rotation of the equivalent beam
is more than that of the 3D building, as shown in Figure 8.21d. For a building with a larger
length, such as that of Figure 8.19c, there is negligible difference between the end rotation
of the 3D building and that of the equivalent beam. As the length of the building decreases,
a slight difference between the end rotation of the 3D building and the equivalent beam
occurs. The assumption of having at least 0.15L f ,sp,max in the undisplaced zone to estimate
the bending stiffness of the building may have an influence on the behaviour of the equivalent
beam. The difference of end rotation between the 3D building and the equivalent beam is
also shown in Figures 8.21e,f where the length of the building is Lbldg = 30.3 m and 18.3 m,
respectively. It should also be noted that for the 6 storey buildings shown in Figures 8.21d
and e, it would appear that the equivalent beam generally behaves more flexibly than the 3D
building, and undergoes larger settlements.

As explained previously, when the tunnel is located outside the building plan area, the
building bending stiffness will decrease due to the occurrence of global building rotation.
Numerical results of the 3D building and the equivalent beam for the case e/Lbldg ≥ 0.5 are
presented in Figure 8.22. Generally, there is excellent agreement between the results of the
equivalent beam and the 3D building.

Figures 8.22a,b,c show the numerical results of e/Lbldg = 0.5 for three building lengths
of Lbldg = 42.3 m, 30.3 m and 18.3 m. The building undergoes an appreciable rotation in all
length cases since the length of the foundation supporting part is relatively small. The equiv-
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Fig. 8.21 Comparison of the predicted building effect between a 3D building and an equivalent
beam on ground displacements due to tunnelling for the building of model 2 (Table 8.2) with
e/Lbldg = 0
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Fig. 8.22 Comparison of the predicted building effect between a 3D building and an equivalent
beam on ground displacements for the building of model 2 (Table 8.2) with variable tunnel
location and building length
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Fig. 8.23 (a) Comparison between the stiffness effect of 3D building and 2D equivalent beam
on maximum ground displacements under the building, (b) comparison of building rotation
between 3D buildings and 2D equivalent beams.

alent beam shows good capability to capture the rotation of the building. Figures 8.22d,e,f
show the numerical results for the case where there is an offset of 10.575 m between the
building edge and the tunnel centreline (e/Lbldg ≥ 0.75). In the cases of Lbldg = 42.3 m
and 30.3 m, there is a significant part of the building in the undisplaced soil zone which
provides a good resistance of the building against rotation. Figures 8.22d,e show that there
is no rotation of the building end located in the undisplaced soil zone. For a smaller length
(i.e. Lbldg = 18.3 m), there is a rotation of the building end. In all cases, the results of the
equivalent beam showed good agreement with that of the 3D building.

Figure 8.23a compares the stiffness effect of 3D buildings and 2D equivalent beams on
the maximum ground settlement under the building. Figure 8.23b demonstrates a comparison
between the rotation experienced by 3D buildings and that of the equivalent beams when
affected by tunnelling. The presented data points are from various numerical analyses
including different tunnel locations, building storeys and dimensions. The figure shows good
agreement between the results of both methods.

8.5 Summary

This chapter investigated the effect of 3D global buildings (foundation and superstructure) on
ground displacements due to tunnelling in a soil–building domain. The analyses considered
both weighted and weightless buildings. In the weightless analyses, the effect of the founda-
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tion and individual storeys on the global building behaviour was investigated. The results
showed that the contribution of the foundation stiffness to the global building stiffness was
greater than that of the superstructure. Furthermore, the contribution of building storeys to
the global building bending stiffness decreased with the increase of the storey distance from
the foundation. It should be mentioned that the results of the weightless analyses were used
to propose a method to replace a 3D building by an equivalent beam in an elastic numerical
analysis.

The assumptions made in the analysis and design stages of a building were explained for
the case of weighted buildings. Considering these assumptions in the tunnel–soil–building
interaction is missing to a great extent in the literature. It was demonstrated that prior to
the construction of a new tunnel, the building is in equilibrium with the underlying soil.
Tunnelling causes disturbance to this equilibrium and changes the building behaviour by
imposing rotation and settlement to the building. This leads to the creation of two building
zones: the portion located in the displaced soil zone and that is located in the undisplaced
zone. These changes due to the construction of a new tunnel have negative consequences on
the building. For example, failure can occur due to the crack development in the structural
parts as a result of produced ground deformations, and the load of the building may be
redistributed which can add extra load to some columns.

Results showed that building bending stiffness had an important role in redistributing
the building weight over the underlying soil after the construction of the tunnel. Ground
displacements due to tunnelling generally increased due to the weight of the building;
the increase of the weight or the tunnel volume loss led to a larger increase in ground
displacements. Additionally, it was shown that the portion of the building located in the
undisplaced soil zone reduced building bending deformations. It is worth noting that the
results showed the necessity of considering both the weight and the stiffness of buildings
together in the analyses of tunnel–soil–building interaction.

The aim of this chapter was to show that (1) a building does not act as a single entity (in
a global soil–building domain) when affected by tunnelling, and (2) the assumptions made in
the analysis and design stages of buildings prior to tunnelling should be accurately considered
in the analysis of tunnel–building interaction. The adoption of a rather simple numerical
model (i.e. elastic building, Mohr-Coulomb soil) here was mainly to focus the analysis on
the intended aim. The utilisation of more sophisticated material models considering complex
soil, structure, and soil-structure interaction behaviour would lead to more accurate results.





Chapter 9

Conclusions and Recommendations for
Further Research

Tunnelling has become an inevitable option in crowded urban areas to reduce surface traffic
volume and accommodate required infrastructure. Tunnelling in an area where there are
existing buildings may cause damage to surface and subsurface structures. Therefore,
a detailed analysis of the global tunnel–soil–structure problem is necessary prior to the
construction of a new tunnel.

The research of this thesis focused on the interaction between a newly constructed tunnel
and existing buildings with shallow foundations. This issue has been studied numerically
using different approaches. The focus in previous works was mainly on investigating specific
scenarios or obtaining design charts for geotechnical engineers. This provides a good general
appreciation of tunnelling effects on buildings, but there are still various limitations that
reduce the applicability of these design charts. For example, specific types of soils are
taken into account, and the 3D nature of buildings is not considered well. Furthermore,
several main parameters that influence the deformation of a 3D building when affected by
tunnelling have not been investigated adequately. This thesis studies the 3D behaviour of
buildings considering the main parameters that affect the building bending deformation
based on mathematical relationships of the stiffness of a structural member. Furthermore,
computationally efficient methods are suggested to compute the bending stiffness of 3D
buildings. These methods can be easily used by engineers to quantify the role of building
stiffness in the global interaction problem.

In addition to suggesting simplified methods to estimate building bending stiffness, this
thesis proposes a new method to study the tunnel–building interaction problem using realistic
ground displacement values. This method solves problems related to the prediction of ground
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displacements due to tunnelling, such as the wideness and shallowness of the settlement
trough. Additionally, a detailed analysis of the 3D behaviour of buildings in a global soil–
building system is presented, and the interconnection between the weight and the stiffness of
a building is investigated.

This chapter presents a summary of the outcomes of the various chapters in this thesis,
and suggests recommendations for further research to gain a better understanding of building
behaviour in the tunnel–soil–structure interaction.

9.1 Conclusions

9.1.1 Estimation of superstructure stiffness

Chapter 5 presented two methods for the evaluation of the response of framed buildings
located above newly constructed tunnels. The methods are for two different tunnel locations:
a cantilever approach for the case where the tunnel is constructed outside the building plan
area, and a fixed–ended approach for the case where the tunnel is located under the building
centreline. It should be noted that these methods are to some extent unconventional, but
depending on rigorous finite element analysis results, it is shown that they capture the actual
3D response of buildings and foundations to tunnelling induced ground movements more
accurately than previously proposed methods. The methods are based on an analogy of
building behaviour to that of a cantilever beam in the cantilever approach, and a fixed–ended
beam in the fixed–ended approach. A set of empirical-type equations was developed based
on numerical evaluations of the stiffness of 3D framed buildings obtained using Abaqus
(finite element analyses).

The analytical expression of the relevant beam (cantilever or fixed–ended) was first
adjusted to quantify the bending stiffness of a fixed ended floor in a panel affected by
tunnelling induced settlements. This expression was then further developed to account for
the number of building bays perpendicular to the tunnel (affecting the end-fixity condition),
the number of building storeys, and the number of building bays in the direction of the tunnel
axis (all assuming only one building bay perpendicular to the tunnel was affected). Finally, a
method to account for scenarios where multiple building bays are affected was proposed.

In the literature, there is a lack of a detailed understanding of how structural elements of
a building contribute to the stiffness of the entire building system. Moreover, the 3D nature
of buildings is mainly replaced by 2D beams or frames in the current methods of building
stiffness estimation. Results of this research, which depend on the analyses of 3D buildings,
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demonstrated that the foundation of the building plays a major role in determining its effective
stiffness; the contribution of upper storeys was shown to decrease with storey number. The
factors influencing the stiffness contribution of each storey to the global building bending
stiffness was demonstrated; the ratio of column to floor stiffness was shown to be proportional
to the degree of stiffness contribution. Furthermore, the ratio of the length to height of the
building was also shown to be proportional to the degree of stiffness contribution.

The proposed methods were validated by comparing their results with numerical sim-
ulations of a 3D building. The results showed good agreement of the building bending
stiffness estimated by the proposed methods and the numerical simulations. Furthermore,
results of the proposed methods as well as available 2D and 3D approaches for estimating
building bending stiffness were compared against the outcomes of the numerical analyses.
The proposed methods agree well with the numerical analyses and capture important trends of
the change of building bending stiffness with number of storeys and building fixity condition
that other methods do not. The methods offer the advantage of being very computationally
efficient compared to numerical analysis, yet achieve a good level of accuracy for the wide
range of framed building characteristics considered.

9.1.2 Estimation of foundation stiffness

Chapter 6 proposed two methods to estimate the bending stiffness of a raft foundation for two
cases of tunnel location: a cantilever approach for the case where the tunnel is constructed
outside the building plan area, and a fixed–ended method for the case where the tunnel
is located under the building centreline. For the cantilever approach, it was shown that
tunnelling caused one side of the foundation to experience greater settlements than the
other side. In the fixed–ended case, the raft foundation underwent large deformations at the
middle. The development of the methods depended on the deflection equation of a beam
(Equation 2.3).

In the currently available methods to compute building bending stiffness, buildings are
considered as a single entity and a specific attention is not paid to the foundation, especially
in the case of a raft foundation which is the most influential building part to determine the
response of the building to tunnelling. Numerical results of this work showed that there were
two significant parts in foundations based on their behaviour during tunnelling: a loaded part
which was located in the displaced soil zone and subjected to deformations due to tunnelling
induced ground movements, and a supporting part located in the undisplaced soil zone which
provided support to the loaded part. It was determined that the length of the building subjected
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to deflections, the length that is not affected by deformations, the cross sectional flexural
rigidity of the building and the properties of the soil underlying the undeformed foundation
part are the main parameters to estimate bending stiffness. Furthermore, it was explained that
the soil elastic modulus in the undisplaced soil zone increased the resistance of the foundation
against the rotation and bending deflection. The length of the foundation in the undisplaced
soil zone was also essential to increase the foundation bending stiffness. Based on these
numerical outcomes, the fixed boundary assumed for the beam in the equation of beam
deflection was modified according to the properties of the foundation and the underlying
soil, and linked to the soil and concrete elastic moduli and to the length of the building in the
displaced and undisplaced soil zones.

The numerical results demonstrated that based on the definition of bending stiffness of
a member, the building and the soil should be considered as one global system. Both the
soil and the building member influence the bending stiffness of the global building. Dealing
with the building as a separate part from the soil does not allow a realistic prediction of the
behaviour of the building.

9.1.3 Mixed empirical–numerical method

A mixed empirical-numerical (mixed E–N) method to predict the response of buildings to
realistic inputs of tunnelling induced ground movements was presented in Chapter 7. A
modified semi-analytical method was used to obtain the greenfield displacements, however
any input could be used in the methodology. The input greenfield displacements were based
on centrifuge test data and included both horizontal and vertical displacements. The mixed E–
N method allows the application of horizontal and vertical displacements to the model either
together or separately, thereby allowing a detailed evaluation of the coupling effect of the
two displacements. Results obtained from the proposed mixed E–N method were compared
against conventional numerical analyses in which the tunnel was simulated, resulting in
wider settlement troughs and greater horizontal displacements than expected in reality. It
was shown that the action of the unrealistic horizontal displacements in the conventional
numerical analyses increased the resistance of the building against bending deformations
quite considerably in some scenarios.

With regard to bending modification factors when e/Lbldg = 0, it was shown that buildings
in the mixed E–N analyses were distorted slightly less by ground displacements compared
to buildings in the conventional numerical analyses for the sagging and hogging zones.
Moreover, higher tensile and lower compressive strains were induced in buildings in the
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mixed E–N analyses compared to the conventional numerical simulations. It should be noted
that no tensile strains were produced in the conventional numerical analyses due to the very
wide horizontal displacement profile.

For eccentric buildings, there was no practical difference between the bending modifica-
tion factors of the mixed E–N and conventional numerical analyses in the hogging zone while
modification factors of the sagging zone in the mixed E–N analyses were significantly higher
than those from the conventional numerical analyses. Furthermore, both axial modification
factors (compressive and tensile) computed from the mixed E–N method were lower than
those estimated from the conventional numerical analyses.

Comparison of deflection ratios between the conventional numerical and mixed E–N
methods showed that buildings in the mixed E–N method were distorted by tunnelling
induced ground displacements to a greater extent than buildings in the conventional numerical
analyses. This demonstrated the importance of incorporating accurate inputs of greenfield
ground movements within numerical analyses of tunnel-building interaction.

The effect of volume loss on the modification factors was also investigated in Chapter 7.
It was concluded that there was not a significant effect of changing volume loss value on the
bending and axial modification factors. This was mainly because the position of the inflection
points and the width of the settlement trough did not change considerably by varying the
volume loss.

The influence of soil relative density on the tunnel-building interaction was examined
for two relative densities of Id = 90% and 30%. For a given tunnel volume loss, larger
displacements occur in the soil with low relative density due to the contraction of the soil
during tunnel volume loss. This causes a large soil area to experience settlements. It was
shown that the degree of effect of ground displacements on buildings changed according to
the geometry of the settlement curves, and the displaced and undisplaced soil zones. It is
worth noting that the effect of relative density on the tunnel-building interaction in sands can
not conveniently be investigated using conventional numerical analyses of tunnelling because
of the occurrence of a complex dilation/contraction in sands due to volume loss. The proposed
mixed E–N method is a good tool for this investigation, however, an accurate estimation
of the soil elastic modulus is needed in order to obtain realistic results. Additionally, the
strength parameters of the soil can not be included in the analysis.
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9.1.4 Building effects on ground displacements

Chapter 8 presented the effects of 3D buildings on ground displacements due to tunnelling
in a global soil–building system. Both cases of weightless and weighted buildings were
considered. In addition, an equivalent beam method was proposed to model the building as a
beam in a 2D finite element analysis. The main conclusions are summarised as below.

Weightless buildings

In the numerical simulations of weightless buildings, the stiffness effect of different compo-
nents of concrete framed buildings (foundation and building storeys) on tunnelling induced
ground displacements was investigated. Additionally, the effect of the building length and the
relative tunnel–building location on the behaviour of the building in the tunnel–soil–structure
system was studied.

The numerical results showed that in a building, the effect of foundation stiffness on
ground displacements caused by tunnelling is significantly higher than that of the super-
structure. Furthermore, the stiffness effect of structural members on ground displacements
decreases considerably with the increase of the member distance from the ground. Similar to
the conclusions of Section 9.1.2, higher storeys in a building show less contribution to the
building’s ability to resist soil deformations.

Results showed that representing the building as an equivalent beam using the Potts
and Addenbrooke (1997) method greatly overestimates the stiffness effect of the building
on ground displacements caused by tunnelling. The available methods in the literature to
represent the 3D building by an equivalent beam disregard the stiffness contribution of
different structural members to the global building stiffness.

The results of Chapters 5 and 6 in addition to the numerical results of Chapter 8 for
weightless buildings were used to propose an equivalent beam method to represent the 3D
building in a 2D analysis. Results showed that the proposed equivalent beam method can
replicate the behaviour of the 3D building to a good extent.

Weighted buildings

In the numerical analyses of weighted buildings, the influence of the building weight and
bending stiffness together on the tunnel–building interaction was studied. Moreover, the
assumptions made in the analysis and design of the building prior to the construction of the
tunnel were considered.
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The results indicated that the stiffness and the weight of a building were strongly in-
terconnected. This interconnection comes from the design and the analysis stages of the
building prior to the construction stage. The loads acting on a building are calculated in the
analysis stage of the building, and the geometry of the members and final material properties
are given to the building in the design stage. Bending stiffness of the building is achieved in
the design stage based on the calculated loads in the analysis stage. Furthermore, the general
outcomes of this chapter showed that the occurrence of changes to the assumptions made to
the building in the analysis and design stages, and the parameters on which bending stiffness
of a member depend, are vitally important to be taken into consideration when investigating
a building located close to a newly constructed tunnel.

The construction of a new tunnel close to an existing building causes a disturbance to
the equilibrium state of building loads with the underlying soil pressure. The creation of
plasticity in the soil after the tunnel construction is a reason of the building–soil equilibrium
disturbance, and leads to an increase in ground surface settlements in the presence of a
weighted building. Additionally, the increase of the tunnel volume loss and the applied
building weight results in an increase in the plastic zones created within the soil.

It was also confirmed that the displaced and undisplaced soil zones by tunnelling have a
great role in the tunnel–building interaction problem. The increase of the building length
located in the displaced soil zone resulted in a larger building deformation, and in turn,
caused an increase to the ground surface settlements. In contrast, the building part located in
the undisplaced soil zone provided a support to the building against deformations.

A very influential parameter having an important role in the tunnel–building interaction
is the allowance of the building rotation during the construction of a new tunnel. It was
indicated that the resistance of a building to bending deformations reduced dramatically
when the building was subjected to rotation. This case happens when a tunnel is constructed
outside the plan area of a building. It was also shown that for a tunnel location having an
eccentricity with the building, the length of the building located in the undisplaced soil zone
decreased the flexibility of the building to rotation.

9.2 Recommendations for further research

The outcomes of this research have given a good understanding about the importance of
considering 3D buildings together with the underlying soil in a three dimensional domain
in order to predict a realistic behaviour of the global soil–building system. However, there
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are features that require further investigations to eliminate the assumptions made during the
analyses. The recommendations for further research are outlined in the following points.

• In the proposed methods to estimate the bending stiffness of building parts, the building
was assumed to be elastic and the propagation of cracks was not allowed. It was
explained in the literature that the development of cracks reduces the stiffness of
buildings to a great extent. It would be important to revise the proposed methods using
a building model that allows the development of cracks so that more realistic values of
building bending stiffness are achieved.

• It was assumed in the numerical simulations of 3D buildings that the dimensions of
each structural member (i.e. beams, columns), and the span of building panels in
each direction were the same in all building storeys. Furthermore, the dimensions
of the column cross sections depended on the dimensions of the connected beams.
Considering buildings with different span lengths and variable dimensions of structural
members will result in more general equations to calculate bending stiffness of various
buildings.

• The superstructure and the foundation were treated separately from each other whereas
they are strongly interconnected. The connection of the columns and the foundation
certainly change the bending behaviour of the footing. Analysing the whole building
including the superstructure and the foundation may lead to different results from the
algebraic addition of the superstructure and foundation bending stiffness.

• The building, as an independent member, was three dimensional in the analyses of this
research but the global problem was two dimensional since the effect of the tunnel
head advancement was not considered. In other words, the deflection of the soil
and the building was in one plane (perpendicular to the tunnel axis). Consideration
of the tunnel head advancement will be an essential further work to represent the
tunnel–building interaction problem in numerical analyses closer to the reality.

• In the proposed methods to estimate the bending stiffness of the foundation, the soil
was assumed to behave as a linearly elastic material. Adopting a non-linear elastic
material to represent the soil will lead to more realistic results since linear elasticity
does not capture the degradation of soil properties due to strains when the tunnel is
constructed.
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• In the investigation of analysis and design assumptions made prior to the construction
of a building (before tunnelling), a rather simple numerical model (i.e. elastic build-
ing, Mohr-Coulomb soil, and rough and frictionless interfaces between the soil and
foundation, preventing slip and separation) was intentionally adopted in order to focus
the analysis on the intended aim. More sophisticated analyses considering complex
soil, structure, and soil-structure interaction behaviour would undoubtedly give results
that vary somewhat to those presented here, however the main conclusions would not
deviate from those listed in this research.
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Appendix A

Cantilever approach: practical example

In order to show how this method may be used to estimate bending stiffness of the superstruc-
ture of a building affected by tunnelling, an example is solved and its results are compared
to the numerical prediction of the superstructure bending stiffness. Note that the stiffness
contribution of the upper storeys to the floor of the first storey is considered in this example.

Consider a three y-bay, four x-bay, three-storey building made of concrete with an elastic
modulus of 30 GPa and Poisson’s ratio of 0.15. Column dimensions are 0.3×0.3×3 m
(hcol , bcol and Lcol , respectively), supporting beam dimensions are 0.3×0.5 m (bsb and hsb,
respectively), floor beam dimensions are 0.3×0.5 m (b f b and h f b, respectively), and slab
dimensions are 5×6×0.15 m (Bsl , Lsl(= L f l) and tsl , respectively). Three bays in the x-
direction are affected by tunnelling. The following steps lead to calculating the bending
stiffness of this building.
1. Determine the centroid of the floor cross section

ȳ f l =
2× (0.3×0.5×0.5/2)+5×0.15× (0.5−0.15/2)

2×0.3×0.5+5×0.15
= 0.375 m

2. Determine the floor cross sectional moment of inertia and flexural rigidity

I f l = ∑{2× Ib +2×Ab ·
(
ȳ f l − ȳb

)2
+ Isl +Asl ·

(
ȳ f l − ȳsl

)2}

= 2×0.00313+2×0.00235+0.00141+0.001875 = 0.01424 m4

EI f l = 30×109 ×0.01424 = 42.72×107 Nm2
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3. Calculate the analytical bending stiffness of the floor from Equation 2.3 using EI f l and
FK = 3 for cantilever.

Kb, f l,cant,an, f ix =
3EI f l

L3
f l

=
3×42.72×107

63 = 0.59×107 N/m

4. The ratio of Lsl/Bsl = 1.2 is smaller than 1.25, hence the analytical floor bending stiffness
should be divided by coefficient Cb f ,cant (Equation 5.2) to obtain Kb, f l,cant,eq, f ix (Equa-
tion 5.3).

Cb f ,cant =

(
6I f b

Isl

) Bsl
20Lsl

=

(
6×0.00313

0.00141

) 5
20×6

= 1.114

Kb, f l,cant,eq, f ix =
Kb, f l,cant,an, f ix

Cb f ,cant
=

0.59×107

1.114
= 0.53×107 N/m

5. Convert the bending stiffness of the fixed floor (Kb, f l,cant,eq, f ix) to that of the actual
floor connected to structural parts (Kb, f l,cant,eq,1s,1y, Equation 5.5) using coefficient Cbc,cant

(Equation 5.4)

Gb =
Eb

2(1+νb)
=

30×109

2(1+0.15)
= 13.04×109 GPa

Kc,L f l = Kc,S f l =
EI f l

L f l
=

42.72×107

6
= 7.12×107 Nm

Jsb =
bsbhsb

12
×
(
b2

sb +h2
sb
)
=

0.3×0.5
12

×
(
0.32 +0.52)= 0.00425 m4

Kc,sb =
GbJsb

Lsb
=

13.04×109 ×0.00425
5

= 1.11×107 Nm

Kc,col =
EIcol

Lcol
=

30×109 ×0.3×0.33

12×3
= 0.675×107 Nm

Cbc,cant =
Kc,S f l +Kc,sb +2Kc,col

Kc,L f l +Kc,S f l +Kc,sb +2Kc,col

=
7.12×107 +1.11×107 +2×0.675×107

2×7.12×107 +1.11×107 +2×0.675×107 = 0.574

Kb, f l,cant,eq,1s,1y =Cbc,cant ×Kb, f l,cant,eq, f ix = 0.574×0.53×107

= 0.304×107 N/m
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6. Compute column stiffening factors (Cc f ,cant) based on Equation 5.6

Cc f ,cant,2 =
2Kc,col

2Kc,col +Kc,L f l
×
(

Lcol,2

h f l,2

)
=

2×0.675×107

2×0.675×107 +7.12×107 ×
3

3.5
= 0.137

Cc f ,cant,3 = 0.0683

7. Calculate αKus,cant from Equation 5.8, and then evaluate CKus,cant,i for each upper storey
using Equation 5.7.

Lx,bldg

Lcol
=

4×6+5×0.3
3

= 8.5

αKus,cant = 1.9
(

Lx,bldg

Lcol

)0.2

= 1.9×8.50.2 = 2.914

CKus,cant,2 = log10(Cc f ,cant,2)+αKus,cant = log10(0.137)+2.914 = 2.05

CKus,cant,3 = 1.748

8. The total bending stiffness of the single y-bay building superstructure with one de-
flected panel (Kb, f l,cant,eq,ms,1y) can now be calculated using Equation 5.9. The calculation is
summarised in Table A.1.

Table A.1 Calculation of the total Building Stiffness

Floors Kb, f l,cant,eq,i,1y =
Kb, f l,cant,eq,1s,1y (N/m)

CKus,cant,i Contribution of
each storey (N/m)(
CKus,cant,i ×Kb, f l,cant,eq,i,1y

)
1st 0.304×107 – 0.304×107

2nd 0.304×107 2.050 0.62×107

3rd 0.304×107 1.748 0.53×107

Total 1.454×107

9. There are three bays in the y-direction. The effects of the two extra bays can be added
using Equation 5.10.

Kb, f l,cant,eq,ms,my = (1+0.6(ny −1))×Kb, f l,cant,eq,ms,1y = (1+0.6× (3−1))×1.454×107

= 3.20×107 N/m

The numerical stiffness result of the analysed building is 3.17× 107 N/m. The proposed
result is 3.20×107 N/m. This leads to an overestimation of about 1%.
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10. Calculate coefficient CK,reduct,cant from Equation 5.12, and then compute the final bending
stiffness of the building using Equation 5.13.
Lxbay = 6.3 m (centre to centre)
Lin f = 3×6.3 = 18.9 m

CK,reduct,cant = Fst ×
L3

xbay

L3
in f

= 2× 6.33

18.93 = 0.074

Kb,cant,eq,bldg =CK,reduct,cant ×Kb, f l,cant,eq,ms,my = 0.074×3.20×107 = 0.237×107 N/m
It is worth noting that the numerical analysis of the building yielded a value of CK,reduct,cant =

0.063.



Appendix B

Fixed–ended approach: practical
example

Consider a 2 y-bay, 6 x-bay, seven-storey building made of concrete with an elastic modulus
of 30 GPa and Poisson’s ratio of 0.15. Column dimensions are 0.35×0.4×3 m (hcol , bcol and
Lcol , respectively), supporting beam dimensions are 0.35×0.5 m (bsb and hsb, respectively),
floor beam dimensions are 0.4×0.5 m (b f b and h f b, respectively), and slab dimensions
are 5×6×0.15 m (Bsl , Lsl and tsl , respectively). 4 bays in the x-direction are affected by
tunnelling. The following steps lead to calculating the bending stiffness of this building. Note
that the stiffness contribution of the upper storeys to the floor of the first storey is considered
in this example.
1. Determine the centroid of the floor cross section

ȳ f l =
2× (0.4×0.5×0.5/2)+5×0.15× (0.5−0.15/2)

2×0.4×0.5+5×0.15
= 0.364 m

2. Determine the floor cross sectional moment of inertia and flexural rigidity

I f l = ∑{2× Ib +2×Ab ·
(
ȳ f l − ȳb

)2
+ Isl +Asl ·

(
ȳ f l − ȳsl

)2}

= 2×0.00417+2×0.0026+0.0014+0.0028 = 0.0177 m4

EI f l = 30×109 ×0.0177 = 53.1×107 Nm2
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3. Calculate the analytical bending stiffness of the floor from Equation 2.3 using EI f l ,
L f l,t = 2×Lsl +bsb = 12.35 m and FK = 192 for a fixed–ended beam.

Kb, f l, f end,an, f ix =
192EI f l

L3
f l

=
192×53.1×107

12.353 = 5.412×107 N/m

4. Compute Cb f , f end (Equation 5.15), then divide the analytical floor bending stiffness by
coefficient Cb f , f end to obtain Kb, f l, f end,eq, f ix (Equation 5.16).

Cb f , f end =

(
24I f b

Isl

)( Bsl
9L f l,t

×(1−blb/Bsl)

)
=

(
24×0.00417

0.0014

)( 5
9×12.35×(1−0.35/5))

= 1.196

Kb, f l, f end,eq, f ix =
Kb, f l, f end,an, f ix

Cb f , f end
=

5.412×107

1.196
= 4.525×107 N/m

5. Convert the bending stiffness of the fixed floor (Kb, f l, f end,eq, f ix) to that of the actual
floor connected to structural parts (Kb, f l, f end,eq,1s,1y, Equation 5.18) using coefficient Cbc, f end

(Equation 5.17)

Gb =
Eb

2(1+νb)
=

30×109

2(1+0.15)
= 13.04×109 GPa

Kc,L f l = Kc,S f l =
EI f l

L f l
=

53.1×107

6
= 8.85×107 Nm

Jsb =
bsbhsb

12
×
(
b2

sb +h2
sb
)
=

0.35×0.5
12

×
(
0.352 +0.52)= 0.00543 m4

Kc,sb =
GbJsb

Lsb
=

13.04×109 ×0.00543
5

= 1.42×107 Nm

Kc,col =
EIcol

Lcol
=

30×109 ×0.4×0.353

12×3
= 1.43×107 Nm

Cbc, f end =
Kc,S f l +Kc,sb +2Kc,col

Kc,L f l +Kc,S f l +Kc,sb +2Kc,col
=

8.85×107 +1.42×107 +2×1.43×107

2×8.85×107 +1.42×107 +2×1.43×107 = 0.597

Kb, f l, f end,eq,1s,1y =Cbc, f end ×Kb, f l, f end,eq, f ix = 0.597×4.525×107

= 2.7×107 N/m
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6. Compute column stiffening factors (Cc f , f end) based on Equation 5.19

Cc f , f end,2 =
2Kc,col

2Kc,col +Kc,L f l
×
(

Lcol,2

h f l,2

)
=

2×1.43×107

2×1.43×107 +8.85×107 ×
3

3.5
= 0.12

Cc f , f end,3 = 0.06, Cc f , f end,4 = 0.04, Cc f , f end,5 = 0.03, Cc f , f end,6 = 0.024,

Cc f , f end,7 = 0.02

7. Calculate αKus, f end from Equation 5.21, and then evaluate CKus, f end,i for each upper storey
using Equation 5.20.

Kc,lb =
EIlb

Llb
=

30×109 ×0.35×0.53/12
5

= 2.19×107Nm

Kc,lb

Kc,lb +2Kc,L f l
+

Kc,col

Kc,col +Kc,L f l
=

2.19×107

2.19×107 +2×8.85×107 +
1.43×107

1.43×107 +8.85×107

= 0.25

αKus, f end =−1.65×
(

Kc,lb

Kc,lb +2Kc,L f l
+

Kc,col

Kc,col +Kc,L f l

)
+2.75 =−1.65× .25+2.75

= 2.34

CKus, f end,2 = log10(Cc f , f end,2)+αKus, f end = log10(0.12)+2.34 = 1.42

CKus, f end,3 = 1.11 CKus, f end,4 = 0.94 CKus, f end,5 = 0.81 CKus, f end,6 = 0.72

CKus, f end,7 = 0.64

8. The total bending stiffness of the single y-bay building superstructure with two deflected
panels (Kb, f l, f end,eq,ms,1y) can now be calculated using Equation 5.22. The calculation is
summarised in Table B.1.
9. There are two bays in the y-direction. The effects of the extra bay can be added using
Equation 5.23.

Kb, f l, f end,eq,ms,my = (1+0.6(ny −1))×Kb, f l, f end,eq,ms,1y = (1+0.6× (2−1))×17.93×107

= 28.7×107 N/m

The numerical bending stiffness result of the analysed building is 26.5× 107 N/m. The
proposed result is 28.7×107 N/m. This leads to an overestimation of about 8%.
10. Calculate coefficient CK,reduct, f end from Equation 5.24, and then compute the final
bending stiffness of the building using Equation 5.25.
L f l,t = 12.35 m
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Table B.1 Calculation of the total Building Stiffness

Floors Kb, f l, f end,eq,i,1y =
Kb, f l, f end,eq,1s,1y (N/m)

CKus, f end,i Contribution of
each storey (N/m)(
CKus, f end,i ×Kb, f l, f end,eq,i,1y

)
1st 2.70×107 – 2.70×107

2nd 2.70×107 1.42 3.83×107

3rd 2.70×107 1.11 3.00×107

4th 2.70×107 0.94 2.54×107

5th 2.70×107 0.81 2.19×107

6th 2.70×107 0.72 1.94×107

7th 2.70×107 0.64 1.73×107

Total 17.93×107

Lin f = 4×6+3×0.35 = 25.05 m

CK,reduct, f end = Fst ×
L3

f l,t

L3
in f

= 2× 12.353

25.053 = 0.24

Kb, f end,eq,bldg =CK,reduct, f end ×Kb, f l, f end,eq,ms,my = 0.24×28.7×107 = 6.9×107 N/m
It is worth noting that the numerical analysis of the building yielded a value of CK,reduct =

0.325.
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