Sex differences in the role of phospholipase A₂-dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs.

Abdulla A Ahmad, Michael D Randall and Richard E Roberts

Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.

Abdulla A Ahmad: PhD student, Faculty of Medicine & Health Sciences

Richard E Roberts: PhD, Lecturer in Pharmacology, Faculty of Medicine & Health Sciences

Michael D Randall: PhD, Professor of Pharmacology, Faculty of Medicine & Health Sciences

Corresponding author: Michael D Randall,

Room E21, The University of Nottingham,

Medical School

Nottingham

NG7 2UH

UK

Fax number: 0115 82 30142

Telephone number: 0115 82 30185

Email: michael.randall@nottingham.ac.uk

Total word count: 6351
Key Points:

- The fat surrounding blood vessels (perivascular adipose tissue or PVAT) releases vasoactive compounds that regulate vascular smooth muscle tone.

- There are sex differences in the regulation of vascular tone. However, to date, no study has investigated whether there are sex differences in the regulation of blood vessel tone by PVAT.

- This study has identified that the cyclooxygenase products thromboxane and PGF$_{2\alpha}$ are released from coronary artery PVAT from pigs. Thromboxane appears to mediate the PVAT-induced contraction in arteries from females, whereas PGF$_{2\alpha}$ appears to mediate the contraction in arteries from males.

- These sex differences in the role of these prostanoids in the PVAT-induced contraction can be explained by a greater release of thromboxane from PVAT from female animals and greater sensitivity to PGF$_{2\alpha}$ in the porcine coronary artery from males.
Abstract

Previous studies have demonstrated that perivascular adipose tissue (PVAT) causes vasoconstriction. In this present study, we determined the role of cyclooxygenase-derived prostanoids in this contractile response and determined whether there were any sex differences in the regulation of vascular tone by PVAT. Contractions in isolated segments of coronary arteries were determined using isolated tissue baths and isometric tension recording. Segments were initially cleaned of PVAT, which was then re-added to the tissue bath and changes in tone measured over 1 hour. Levels of PGF$_{2\alpha}$ and thromboxane B$_2$ (TXB$_2$) were quantified by ELISA and PGF$_{2\alpha}$ (FP) and thromboxane A$_2$ (TP) receptor expression determined by Western blotting. In arteries from both male and female pigs, re-addition of PVAT caused a contraction, which was partially inhibited by the cyclooxygenase inhibitors indomethacin and flurbiprofen. The FP receptor antagonist AL8810 attenuated the PVAT-induced contraction in arteries from males, whereas the TP receptor antagonist GR32191B inhibited the PVAT-induced contraction in arteries from females. Although there was no difference in PGF$_{2\alpha}$ levels in PVAT between females and males, PGF$_{2\alpha}$ produced a larger contraction in arteries from males, correlating with a higher FP receptor expression. In contrast, release of TXB$_2$ from PVAT from females was greater than from males, but there was no difference in the contraction by the TXA$_2$ agonist U46619, or TP receptor expression in arteries from different sexes. These findings demonstrate clear sex differences in PVAT function in which PGF$_{2\alpha}$ and TXA$_2$ antagonists can inhibit the PVAT-induced vasoconstriction in male and female PCAs, respectively.

Abbreviations

COX, cyclooxygenase; FP, PGF$_{2\alpha}$ receptor; MLC, myosin light chain; PCA, porcine coronary artery; PGF$_{2\alpha}$, prostaglandin F$_{2\alpha}$; PLA$_2$, phospholipase A$_2$; PVAT, perivascular adipose tissue; TP, TXA$_2$ receptor; TXA$_2$, thromboxane A$_2$.
Introduction

Perivascular adipose tissue (PVAT) is positioned around blood vessels and is regarded as being distinct from the adventitia, in spite of an absence of a barrier between them. Compelling evidence in recent years has led to the view that PVAT is in fact an active secretory tissue which releases several bioactive signalling molecules, collectively termed adipokines, which are important in the control of vascular tone in both health and diseases (Fortuno et al., 2003; Havel, 2004; Thalmann & Meier, 2007; Yamawaki et al., 2010). Several studies have suggested a vasorelaxant or, at least, anticontractile effect of various fat depots in the body, proposing a role for TNF-α, H2S, NO, adiponectin and other adipocyte-derived relaxant factors (ADRFs) (Gao et al., 2007; Fang et al., 2009; Lynch et al., 2013; Virdis et al., 2015). On the other hand, other studies have reported opposing effects of PVAT on vascular tone. Gao et al. (2006) proposed that PVAT could augment vasoconstriction induced by perivascular nerve stimulation of the rat superior mesenteric artery. They reported that superoxide production from NAD(P)H oxidase (Gao et al., 2006) and angiotensin II (Lu et al., 2010) are involved in PVAT-mediated potentiation of perivascular nerve stimulation-elicited contraction. Prostanoids are cyclooxygenase metabolites of arachidonic acid (AA) that exert diverse physiological and pathological effects in different systems, including relaxation and contraction of vascular smooth muscle (VSM) (Wright et al., 2001). According to their selectivity for the natural prostanoids, prostaglandins (PG) PGI2, PGD2, PGE2, PGF2 and thromboxane A2 (TXA2), there are five main types of prostanoids receptors IP, DP, EP, FP and TP, respectively. Of these receptors, TP, and FP have the ability to mediate vasoconstriction, IP and DP generally mediate vasorelaxation while depending on receptor subtype, EP has the ability to induce both contraction (EP1 and EP3) and relaxation (EP2 and EP4) (Coleman et al., 1994). Prostanoids released from PVAT have been shown to regulate vascular tone. For example, PGE2 and PGI2 released from PVAT surrounding human saphenous vein attenuates noradrenaline-induced contraction (Ozen et al., 2013). Similarly, prostacyclin released from mouse carotid artery PVAT exerts vasorelaxant effects and protects against endothelial dysfunction (Chang et al., 2012). In contrast, another study showed that aortic PVAT from mice is capable of releasing a cyclooxygenase (COX)-derived
adipocyte derived contracting factor (ADCF) that becomes functionally of greater
activity in obesity (Meyer et al., 2013), although the identity of this COX metabolite is
unknown.

Extensive epidemiological data have revealed the existence of a prominent sexual
dimorphism in the incidences of primary vascular diseases that involve excessive
vasoconstriction. Thus, among the strongest independent risk factors for coronary artery
disease is male sex and a male to female ratio of approximately 2:1 is consistently
observed (Netteship et al., 2009). In contrast, migraine headache (Bartelink et al.,
1993) and Raynaud’s Disease (Voulgari et al., 2000) all occur in premenopausal women
at rates as much as fourfold higher than in men. Furthermore, a previous study has
indicated that oestrogen could upregulate the expression of COX-2 and thromboxane
synthase in both endothelium and vascular smooth muscle, and upregulate the
expression of TP receptors in smooth muscle of female rat aorta, leading to enhanced
vasoconstrictor prostanoid function (Li et al., 2008). However, to date, no study has
determined whether there are sex differences in the regulation of vascular tone by
PVAT.

In the porcine coronary artery, PVAT induces a contraction and enhances agonist and
electrical field-stimulated contractile responses (Owen et al., 2013). However, the
contractile agents involved in these responses are unknown. PVAT is a potential
therapeutic target for controlling coronary artery tone. Therefore, in this present study,
we determined whether cyclooxygenase-derived vasoconstrictor prostanoids play a role
in PVAT-induced contractile responses and investigated whether there are sex
differences in the response of the coronary artery to PVAT.
Methods

Preparing of rings of porcine coronary arteries

Hearts from male and female pigs (large white hybrid pigs, 4-6 months old, weighing ~50kg) were obtained from a local abattoir and transported back to the laboratory in ice-cold modified Krebs’-Henseleit solution (118 mM NaCl, 4.8 mM KCl, 1.1 mM MgSO₄, 25 mM NaHCO₃, 1.2 mM KH₂PO₄, 12 mM D-glucose, 1.25 mM CaCl₂). The anterior proximal part of the coronary artery was then dissected and placed in Krebs’-Henseleit solution pre-gassed with 5% CO₂ and 95% O₂. PVAT was carefully removed and maintained in Krebs’-Henseleit solution until further use. Thereafter, coronary arteries were cut into rings of approximately 5mm in length and suspended in a multichannel 5 ml organ bath setup. Each bath was filled with 5 ml of Krebs’-Henseleit solution and maintained at 37°C and constantly gassed with carbogen (95% O₂, 5% CO₂). Tension was measured and recorded using isometric force transducers connected to a Powerlab data acquisition system (ADInstruments) via an amplifier.

Characterization of Vascular Responses of Porcine Isolated Coronary arteries

The arteries were initially set to 8 g of tension, determined from preliminary studies, and then left to equilibrate for approximately 30-45 minutes. Once a stable baseline was attained, two consecutive responses to 60 mM KCl were obtained for standardization. Relevant test compounds were then added with 60 minutes incubation time. The following test compounds were used: melittin (10µM) to stimulate PLA₂ activity (Koumanov et al., 2003); indomethacin (10µM) (Malinowski et al., 2008) and flurbiprofen (10µM) (Stanley & O’Sullivan, 2014) to determine the role of cyclooxygenase. To study the role of specific prostanoids, GR32191B (3µM) (He & Yang, 1999) and AL8810 (10µM) (Ramos-Alves et al., 2012) were used as antagonists of TP and FP receptors, respectively. Ethanol or DMSO (0.1% v/v) were used as vehicle controls, as appropriate. Of note, there was no obvious difference in the amount of PVAT per unit length of coronary artery between female and male. After incubation of the coronary artery segments with test compounds, 0.3 g PVAT was added to the organ baths and contractile responses measured.
In a separate series of experiments, cumulative concentration-response curves to the TXA$_2$ agonist U46619 (1nM-300nM) or PGF$_{2-\alpha}$ (0.1-100µM) were constructed in coronary artery segments from male and female pigs.

Determination of levels of TXB$_2$ and PGF$_{2-\alpha}$ by ELISA.

Levels of TXB$_2$, a stable metabolite of TXA$_2$, and PGF$_{2-\alpha}$ in PVAT were determined by ELISA. PVAT (0.3g) was homogenised in either 0.1M potassium phosphate buffer [pH 7.4] for TXB$_2$ estimation, or Tris-buffered saline containing 0.1% v/v Tween 20 for PGF$_{2-\alpha}$ estimation, along with protease inhibitor cocktail (Calbiochem) and indomethacin (10µM). The amount of TXB$_2$ and PGF$_{2-\alpha}$ in PVAT samples from male and female animals was analysed by ELISA (ab133022; ab133041), according to the instructions of the manufacturer. TXB$_2$ and PGF$_{2-\alpha}$ were detected colourimetrically using an alkaline phosphatase (AP) conjugated- secondary antibody with para-Nitrophenylphosphate (pNpp) as substrate. Colour intensity produced was determined by reading at 405 nm using a SpectraMAX 340 PC microplate reader (Molecular Devices, 50 Wokingham, Berkshire, UK). The results were expressed as pg µg$^{-1}$ of total protein.

Assessment of the PVAT-released TXB$_2$ by ELISA.

Porcine coronary arterial PVAT from each sex was dissected, weighed and added to an Eppendorf tube containing 1ml pre-gassed Krebs’-Henseleit solution, at 37°C. For consistency with the functional studies, PVAT was incubated for 2½hr with and without melittin (10µM) in order to investigate the effect of activation of PLA$_2$ on the level of TXB$_2$ released from PVAT. The level of TXB$_2$ in the Krebs’-Henseleit solution was then determined using ELISA (as described above) and the data normalized for weight of PVAT.

Estimation of TP and FP receptor expression in coronary arteries by Western immunoblotting.

Western immunoblotting was performed to determine the expression of TP and FP receptors in segments of coronary arteries from female and male pigs. Arteries were finely dissected from the adherent PVAT and connective tissue and homogenized on ice using Tris buffer [pH 7.4] with protease inhibitor cocktail (Calbiochem, VWR
International Ltd, Lutterworth, Leicestershire, UK). After estimation of the protein content of each sample using the Lowry method, 6x Laemmli sample buffer was added to the samples. Samples were subsequently boiled at 100°C for 5 min and centrifuged at 13000×g for 1 min. Stock solutions (20µg per well) were run on 4–20% gradient polyacrylamide gradient gels (Bio-Rad, Hemel Hempstead, Hertfordshire, UK).

Proteins were then transferred onto nitrocellulose membrane (GE Healthcare, Little Chalfont, Buckinghamshire, UK) by Western blotting, and then the membrane blocked with 5% (w/v) non-fat milk in Tris-buffered saline containing 0.1% v/v Tween 20 (TBST) at room temp for 1 h. The blot was then incubated with either rabbit anti-TXA₂ receptor antibody (1:250 dilution; ab188897, Abcam, Cambridge, UK) or rabbit anti-PGF₂α receptor antibody (1:250 dilution; orb185891, Biorbyt, Cambridge, UK) in 5% milk in TBST overnight at 4°C with shaking. An anti-mouse myosin light chain (MLC) antibody was also included as a loading control (1:1000 dilution; Sigma-Aldrich, Poole, Dorset, UK). The following day, the blot was washed in TBST followed by incubation for 1 hour with IRDye 800CW goat anti rabbit (1:10,000) and IRDye 680CW goat anti-mouse (1:10,000) secondary antibodies (IRDye, Licor, Cambridge, UK). Immunoblot was then visualized using an Odyssey system from Licor.

Materials

All drugs were purchased from Sigma-Aldrich except for AL8810 from Santa Cruz Biotechnology and PGF₂α from Cayman Chemicals. Stock solutions of flurbiprofen, PGF₂α and GR32191B were dissolved in dimethyl sulfoxide (DMSO). Stock solution of indomethacin and AL8810 were dissolved in absolute ethanol whereas melittin was dissolved in distilled water. Stock solutions of U46619 were made to 10mM in ethanol. All further dilutions of the stock solutions were made using distilled water.

Statistical analysis

Data are expressed as mean ± S.E., where n = the number of different animals. The concentration-response curves were fitted to a sigmoidal curve with a variable slope using four parameters logistic equation using GraphPad Prism software. The maximum percentage contraction (Rmax) and the negative log of concentration required to produce half the maximal contraction of the induced tone (pEC50) were calculated from the fitted
curves. Data were tested for Normality using a Shapiro-Wilk test. Comparisons between
two groups of data were analysed using 2-tailed, paired or unpaired Student’s t-test, as
appropriate. The effects of enzyme inhibitors and receptor antagonists on the PVAT-
induced contraction over time were analysed using a two-way ANOVA in conjunction
with the Sidak’s *post-hoc test* to assess possible difference at individual concentrations.
A p value <0.05 was considered to be statistically significant. Statistical analysis was
performed by GraphPad Prism (Version 6).
Results

Effects of addition of PVAT on vascular tone of female and male PCAs.

Addition of 0.3 g PVAT caused a time-dependent increase in tone compared to time controls in coronary artery segments from both female and male PCAs (Figure 1). There was inter-individual variation in the size of the contractile response to PVAT therefore adjacent coronary arterial segments from the same animal were always used as controls.

Figure 1: PVAT-induced vasoconstriction. Increase in vascular tone over time following addition of PVAT (0.3g) in female (A) and male (B) porcine coronary arteries. Data are expressed as change in tone per gram weight and are mean ± SEM of 7(A)- 4(B) experiments. (C) Original traces of recording showing the response of female PCA to addition of PVAT. ***P < 0.001, (2-way ANOVA followed by a Sidak’s post-hoc test) versus control values.

Role of prostanoids in PVAT-induced contraction

Addition of the cyclooxygenase inhibitors indomethacin and flurbiprofen (both 10µM) had no effect on basal tone. However, they caused a significant inhibition in the contraction to PVAT compared to control in both sexes (Figure 2). The thromboxane
receptor antagonist GR32191B (3µM) caused a partial reduction in the PVAT-induced contraction in coronary arteries from female animals (Figure 3A), whereas the responses of coronary arteries from male animals to PVAT were unaffected by GR32191B (Figure 3B). As the TP receptor antagonist had no effect on the PVAT contraction in males, we determined the effect of a FP receptor antagonist. In contrast to the effect of TP receptor antagonism, the FP receptor antagonist AL8810 had no significant effect on the PVAT-induced contraction in coronary arteries from female animals, but reduced the contraction in coronary arteries from male animals (Figure 3 C & D).

Figure 2: Effect of COX inhibition on PVAT-induced vasoconstriction. Contractile response of the PCAs to PVAT (0.3g) in the absence (control) or presence of 10µM indomethacin (A & B) or 10µM flurbiprofen (C & D). Data are expressed as change in tone per gram weight and are mean ± SEM from arteries from 15 female (A & C) and 8 male (B & D) animals. * indicates P < 0.05, *** indicates P < 0.001, **** indicates P < 0.0001, (2-way ANOVA followed by a Sidak’s post-hoc test) versus control values.
Figure 3: Effect of inhibition of TXA \(_2\) and PGF\(_{2\alpha}\) on PVAT-induced vasoconstriction.

Effects of pre-incubation with GR32191B (3µM, 1hr) on the response of porcine coronary arteries to PVAT (0.3g) in female (A) and male (B) pigs. Effects of pre-incubation with AL8810 (10µM, 1hr) on PVAT-induced vasoconstriction in female (C) and male (D) pigs. Data are expressed as change in tone per gram weight and are mean ± S.E.M. of arteries from 5-6 female (A & C) and 6-7 male (B & D) animals. * indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001, two-way ANOVA followed by a Sidak’s post-hoc test versus control values. NS- not significant.

Determination of the level of TXB\(_2\) and PGF\(_{2\alpha}\) in PVAT by ELISA

In order to determine whether the differences in the role of TP and FP receptors in arteries from male and female animals could be due to differences in the content of thromboxane and PGF\(_{2\alpha}\) in the PVAT, levels of the stable thromboxane metabolite TXB\(_2\), and PGF\(_{2\alpha}\) in PVAT were determined by ELISA. Both TXB\(_2\) and PGF\(_{2\alpha}\) were detected in the PVAT from the coronary artery. However, there was no significant difference in the level of TXB\(_2\) or PGF\(_{2\alpha}\) in coronary artery PVAT from female and male animals (Figure 4).
Figure 4: Comparison of the level of TXB$_2$ and PGF$_{2\alpha}$ in PVAT from both sexes.

Comparison of the levels of the TXB$_2$ and PGF$_{2\alpha}$ between PVAT from female and male pigs determined by ELISA. Data are expressed as pg per ml per µg protein concentration and are mean ± S.E.M. of PVAT from 5-7 female and 5-8 male animals (A-B).

Determination of the level of TP and FP receptor expression in PCAs

As there were no differences in the levels of TXB$_2$ or PGF$_{2\alpha}$ in PVAT from male and female animals, we determined whether there were differences in the expression of the receptors on the coronary artery, which might explain the differences in the role of these prostanoids. Western immunoblotting for the TP receptor identified a band at the predicted molecular weight of 40kDa. When expressed as a ratio to myosin light chains, used as a loading control, there was no difference in the level of expression of TP receptor between coronary arteries from male and female animals (Figure 5 A & B). Western immunoblotting also detected a band at 50kDa for the FP receptor. In this case, there was a significantly higher level of expression of the FP receptor in coronary arteries from male animals compared to female animals (Figure 5 D & E).

Assessment of the responsiveness of PCAs to TXA$_2$ and PGF$_{2\alpha}$

As our data indicate differences in the role of TP and FP receptors in the PVAT-induced contractions in coronary arteries from male and female animals, which cannot be explained by differences in the content of thromboxane and PGF$_{2\alpha}$ in the fat, we determined whether there are differences in the contractions in response to TP or FP receptor activation, in the absence of PVAT. There was no difference in the response of
PCAs to the TXA$_2$ mimetic U46619 between female and male pigs (Figure 5C). On the other hand, the contractile responses to PGF$_{2\alpha}$ were significantly greater in arteries from male pigs (Figure. 5F).

Figure 5: Comparison of the expression of TP and FP receptors, and the responsiveness of PCAs to TXA$_2$ and PGF$_{2\alpha}$ in both sexes. A. Western immunoblot showing expression of TP receptor (40 kDa) and MLC (20 kDa) levels in 20 µg of coronary arteries from 6 female and 8 male pigs. B. Bar chart showing expression levels of TP receptor expression as a percentage of MLC expression in coronary arteries from male and female pigs based on the intensities of their bands. C. Log concentration-response curves to the thromboxane receptor agonist U46619 in porcine coronary artery segments from female and male pigs. Data are expressed as change in tone per gram weight and are mean ± S.E.M. of 12 female and 9 male arteries. D. Western immunoblot showing expression of FP receptor (50 kDa) and MLC (20 kDa) levels in 20 µg of coronary arteries from 7 female and 8 male pigs. E. Bar chart showing PGF2-α receptor expression as a percentage of MLC expression in coronary arteries from male and female pigs based on the intensities of their bands. F. Contractile response to serial concentrations of PGF2α
Effect of phospholipase A\(_2\) stimulation on PVAT-induced contractions

Our data indicate that cyclooxygenase produced prostanoids play a role in the PVAT-induced contraction in the porcine coronary artery. In order to support these data further, we investigated the effect of the phospholipase A\(_2\) (PLA\(_2\)) stimulator melittin. Addition of melittin (10\(\mu\)M) at baseline tone produced a transient contraction of the arteries, returning to baseline within 15 minutes. Subsequent addition of PVAT led to a significant enhancement of the PVAT-induced contraction in mellitin-treated vessels compared with that of PVAT alone in coronary artery segments from both sexes (Figure 6). The TP antagonist GR32191B caused complete inhibition of the PVAT-induced contraction in the presence of melittin in arteries from female animals and partial inhibition in arteries from male animals (Figure 6 C & D). Surprisingly, the FP receptor antagonist AL8810 had no effect on the PVAT-induced contractions in arteries from male or female animals (Figure 6 E & F). However, in subsequent experiments, we demonstrated that pre-incubation with melittin results in desensitisation of the FP receptor, but not TP receptor-mediated contraction as addition of U46619 and PGF\(_{2\alpha}\) to the PCA after pre-incubation with melittin resulted in a contractile response to U46619 but not PGF\(_{2\alpha}\) (Figure 7 A & B).
Figure 6: Effect of phospholipase A2 stimulation on PVAT-induced contractions. A & B.
Contractile responses of segments of porcine coronary arteries to fresh PVAT (0.3g) in the absence or presence of melittin (10μM). Data are expressed as change in tone per gram weight and are mean ± SEM from arteries from 5 female (A) and 8 male (B) animals. C & D. Effect of pre-incubation with the TP receptor antagonist GR32191B (3μM) on the PVAT-induced contraction, in the absence or presence of melittin (10μM). Data are expressed as change in tone per gram weight and are means ± S.E.M. of 5 animals. E & F. Effect of pre-incubation with the FP receptor antagonist AL8810 (10μM) on the PVAT-induced contraction, in the absence or presence of melittin (10μM). Data are expressed as change in tone per gram weight and are
means ± S.E.M. of 4 female (E) and 5 male (F) animals. * indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001, two-way ANOVA followed by a Sidak’s post-hoc test.

Figure 7: Original traces of recording showing the vasomotor responses of PCA. A & B. Original traces of recording showing the response of melittin-stimulated female PCA to addition of 0.1µM U46619 and 1µM PGF2-α after PVAT pre-treatment (A and B, respectively). C & D.
Original traces of recording showing the response of PCA to addition of 0.1µM U46619 and 1µM PGF2-α (C and D, respectively).

Determination of the release of TXB$_2$ from PVAT

Although there was no difference in the level of TXB$_2$ in the PVAT from male and female animals, we explored the possibility that there are differences in the release of thromboxane from PVAT. Therefore, we determined the levels of TXB$_2$ in the buffer after incubation with PVAT. In these experiments it was found that the concentration of TXB$_2$ was higher in the buffer after incubation with PVAT from female animals compared to PVAT from male animals (Figure 8A). The level of TXB$_2$ released from PVAT was significantly potentiated after addition of the PLA$_2$ stimulator (melittin) in both females and males (Figure 8 B & C).
Figure 8: Comparison of the release of TXB₂ from PVAT in both sexes. A. Comparison of the levels of TXB₂ in the buffer after incubation with PVAT from female or male pigs for 2.5 hours. Data are expressed as a pg of TXB₂ released per ml per gm of PVAT and are mean ± S.E.M. of 10 female and 9 male PVAT samples. * indicates p<0.05, 2-tailed, unpaired Student’s t-test. B & C. Comparison of the levels of TXB₂ in the buffer after a 2 ½ hours incubation with PVAT with and without melittin (10µM) from female (B) or male (C) pigs. Data are expressed as pg of TXB₂ released per ml per gm of PVAT and are mean ± S.E.M. of 6 female and 7 male PVAT samples. * indicates p<0.05, ** indicates p<0.01, 2-tailed, paired Student’s t-test vs paired controls.
Discussion

The recognition that perivascular adipose tissue is not simply a reservoir for lipid storage but is also a complex endocrine organ, has led to a substantial research effort to establish the mechanistic links between the PVAT and vascular tone regulation. It is becoming increasingly clear that there are differences in the vascular responsiveness in males compared to females (Bubb et al., 2012). For example, we have identified differences in endothelial function between the sexes (Wong et al., 2015). In this present study, we have identified that the PVAT-induced contraction in the porcine coronary artery is mediated, at least in part, through the prostanoids thromboxane and PGF$_{2\alpha}$. Although both prostanoids are present in PVAT, there are sex differences in the vasomotor response of the coronary arteries to PVAT, in that TXA$_2$ and PGF$_{2\alpha}$ antagonists reduced the PVAT-induced vasoconstriction in females and males, respectively.

Re-addition of PVAT to segments of porcine coronary artery produced a contractile response, which is in line with previous studies, indicating that coronary artery PVAT releases adipose-derived contractile factors (ADCFs) (Owen et al., 2013). However, this previous study did not identify the factor causing the contractile response. In this present study, we have demonstrated that the contraction in response to re-addition of PVAT was partially inhibited by cyclooxygenase inhibitors, indicating a role for contractile prostanoids. Furthermore, the contraction was inhibited by prostanoid receptor antagonists, providing further support for prostanoids in the contractile response. Interestingly, the contractile response to coronary artery PVAT from female animals was inhibited by a TP receptor antagonist, whereas the contractile response to coronary artery PVAT from male arteries was inhibited by a FP receptor antagonist. These data suggest sex differences in the prostanoids mediating the contractile response.

The role of a cyclooxygenase product in the PVAT-induced contraction is similar to that seen in mouse aorta, although in that particular study, only thromboxane levels were measured (Meyer et al., 2013). In this present study we have demonstrated the presence of thromboxane in the PVAT from the porcine coronary artery, although there was no difference in the levels of this prostanoid between male and female.
animals. In addition, a concentration-response curve with a TXA$_2$ agonist (U46619) was performed to assess the responsiveness of PCAs to TXA$_2$ in both sexes and showed no difference in the response of coronary rings from different sexes to TXA$_2$. Moreover, Western blot analysis found no difference in TP expression between female and male coronary arteries. These data indicate that the sex differences in the role of thromboxane in the PVAT-induced contraction cannot be attributable to either differences in TP receptor expression or coupling of the receptor to intracellular signalling pathways mediating contraction. We therefore determined whether there are differences in the release of thromboxane from the PVAT by measuring the levels of TXB$_2$ in the buffer. Interestingly, there was a greater amount of TXB$_2$ in the buffer containing PVAT from female animals compared to males, suggesting that, although levels of thromboxane are the same in PVAT from both sexes, a greater amount of thromboxane is actually released from the PVAT in females. Although the exact reason for the difference in release of TXB$_2$ has not been addressed in this study, many reasons could be speculated such as the difference of the expression or function of TXB$_2$ transporters (for example, multidrug resistance protein 4 or other prostaglandin transporters) which act as a prostanoid efflux pumps (Schuster, 2002; Reid et al., 2003; Rius et al., 2005) or differences in the turnover of released TXB$_2$. However, the data explain why the PVAT-induced contraction in coronary arteries from female animals is inhibited by the TP receptor antagonist.

The present study also provides evidence that PGF$_{2\alpha}$ is expressed in the PVAT of the coronary artery and is involved in the PVAT-induced contraction in male pigs as FP receptor antagonism by AL8810 significantly reduced the resultant vasoconstriction. Therefore, like thromboxane, PGF$_{2\alpha}$ has a role as a PVAT-derived contractile agent. Although there was no difference in the level of PGF$_{2\alpha}$ in the PVAT from male and female pigs, PGF$_{2\alpha}$ itself produced a greater contractile response in coronary arteries from male animals compared to females. This corresponds with a greater expression of the FP receptor in coronary arteries from male animals. Therefore, the sensitivity of the PVAT-induced contraction to FP receptor antagonism in coronary arteries from male animals, but not females, could be explained by differences in FP receptor expression.
In order to confirm the role of prostanoids in the PVAT-induced contraction in the coronary artery, we determined the effect of the PLA$_2$ activator melittin. Melittin enhanced the PVAT-induced contraction in coronary arteries from both sexes, which correlates with the role of the PLA$_2$-arachidonic acid- cyclooxygenase pathway. Furthermore, melittin enhanced the production of thromboxane within PVAT and the level of thromboxane released from the PVAT. Antagonism of TP receptors inhibited the contraction to PVAT in coronary arteries from both male and female animals. Interestingly, the FP antagonist no longer inhibited the PVAT-induced contractions in either male or female arteries. However, we found that melittin caused desensitisation of the PGF$_{2\alpha}$ contraction but not the TXA$_2$-induced contraction, as there was no contraction to PGF$_{2\alpha}$ in PCA segments pre-incubated with melittin, whereas the contraction to the thromboxane mimetic U46619 was maintained. This finding which could explain the lack of effect of the FP antagonist under these conditions. We hypothesise that this desensitisation is caused by release of PGF$_{2\alpha}$ from the coronary artery in response to melittin.

A limitation of our study is the potential selectivity of GR32191B for TP receptors over FP receptors. However, our data indicate that the larger inhibition of the PVAT response seen with AL8810 in PCAs from males is likely to be due to greater responsiveness and FP receptor expression in males compared to females. Similarly, the greater effect of GR32191B on PVAT responses in females compared to males appears to be due to greater release of thromboxane.

In conclusion, these data demonstrate that PVAT is able to regulate porcine coronary arterial tone through the release of thromboxane and PGF$_{2\alpha}$. To the best of our knowledge, this is the first study that identifies sex differences in PVAT-induced regulation of vascular tone, where thromboxane antagonist could inhibit the PVAT-dependant vasoconstriction in females while PGF$_{2\alpha}$ antagonist is able to inhibit the contraction of PCAs from males. The variation of role TXA$_2$ and PGF$_{2\alpha}$ in different sexes is further supported by the findings of a greater release of thromboxane from PVAT from female animals and greater expression of FP receptors on the porcine coronary artery from males. It is clear that there are sex differences in the regulation of vascular tone, including the role of endothelium-derived hyperpolarization (EDH).
(Wong et al., 2014). The data presented here enhance our knowledge of the mechanisms underlying these sex differences by demonstrating differences in the adipose-derived contractile factors released from coronary artery PVAT. Adipose tissue, including PVAT, changes under pathological conditions such as obesity. In the porcine coronary artery, obesity enhances the contractile responses of PVAT (Owen et al., 2013). Whether this is due to altered release of prostanoids is unknown. Furthermore, whether the sex difference in the release of prostanoids is maintained under obesity is unknown. Future studies should explore whether these sex differences in PVAT are maintained under pathological conditions.

References

Additional information

Competing Interest:
None.

Author contributions
All authors contributed to the final version of the manuscript. AAA performed the research; AAA, MDR and RER designed the research study; AAA and RER analysed the data; AAA, MDR, and RER revised the article critically for important intellectual content. All authors approved the final version of the manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding
This work was supported by the Iraqi ministry of higher education and scientific research.

Acknowledgements
We sincerely thank Dr Michael Garle for his assistance and valuable comments on this work, and School of Life Sciences, University of Nottingham; the host of this study. We would also like to thank Dunbia Mansfield, Clipstone, Nottinghamshire for the supply of pig tissues.