A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules

Wu, Jinshun and Zhang, Xingxing and Shen, Jingchun and Wu, Yupeng and Connelly, Karen and Yang, Tong and Tang, Llewellyn and Xiao, Manxuan and Wei, Yixuan and Jiang, Ke and Chen, Chao and Xu, Peng and Wang, Hong (2016) A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules. Renewable and Sustainable Energy Reviews, 75 . pp. 839-854. ISSN 13640321

[img] PDF - Repository staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB)

Abstract

Thermal absorbers and their integration methods are critical to solar photovoltaic/thermal (PV/T) modules. These two elements directly influence the cooling effort of PV layers and as a result, the related electrical/thermal/overall efficiency. This paper conducts a critical review on the essential thermal absorbers and their integration methods for the currently-available PV modules for the purpose of producing the combined PV/T modules. A brief overview of different PV/T technologies is initially summarized, including aspects of their structure, efficiencies, thermal governing expressions and their applications. Seven different types of thermal absorbers and four corresponding integration methods are subsequently discussed and summarized in terms of their advantages/disadvantages and the associated application for various PV/T modules. Compared to traditional thermal absorbers, such as sheet-and-tube structure, rectangular tunnel with or without fins/grooves and flat-plate tube, these four types, i.e. micro-channel heat pipe array/heat mat, extruded heat exchanger, roll-bond heat exchanger and cotton wick structure, are promising due to the significant enhancement in terms of efficiency, structure, weight, and cost etc. The appropriate or suitable integration method varies in different cases, i.e. the ethylene-vinyl acetate (EVA) based lamination method seems the best option for integration of PV layer with thermal absorber when compared with other conventional methods, such as direct contact, thermal adhesive and mechanical fixing. Finally, suggestions for further research topics are proposed from five aspects. The overall research results would provide useful information for the assistance of further development of solar PV/T modules with high feasibility for widespread application in energy supply even at district or city-level in the near future.

Item Type: Article
Keywords: Solar; PV/T; Thermal absorber; Integration method
Schools/Departments: University of Nottingham Ningbo China > Faculty of Science and Engineering > Department of Mechanical, Materials and Manufacturing Engineering
University of Nottingham, UK > Faculty of Engineering > Department of Architecture and Built Environment
Identification Number: 10.1016/j.rser.2016.11.063
Depositing User: LIN, Zhiren
Date Deposited: 03 Nov 2017 11:48
Last Modified: 04 Nov 2017 07:23
URI: http://eprints.nottingham.ac.uk/id/eprint/47704

Actions (Archive Staff Only)

Edit View Edit View