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Abstract

In the context of Artificial Intelligence research, Evolutionary Algorithms and Ma-

chine Learning (EML) techniques play a fundamental role for optimising Information

Retrieval (IR). However, numerous research studies did not consider the limitation of us-

ing EML at the beginning of establishing the IR systems, while other research studies

compared EML techniques by only presenting overall final results without analysing im-

portant experimental settings such as the training or evolving run-times against IR effec-

tiveness obtained. Furthermore, most papers describing research on EML techniques in

IR domain did not consider the memory size requirements for applying such techniques.

This thesis seeks to address some research gaps of applying EML techniques to IR sys-

tems. It also proposes to apply (1+1)-Evolutionary Strategy ((1+1)-ES) with and without

gradient step-size to achieve improvements in IR systems. The thesis starts by identifying

the limitation of applying EML techniques at the beginning of the IR system. This lim-

itation is that all IR test collections are only partially judged to only some user queries.

This means that the majority of documents in the IR test collections have no relevance

labels for any of the user queries. These relevance labels are used to check the quality

of the evolved solution in each evolving iteration of the EML techniques. Thus, this the-

sis introduces a mathematical approach instead of the EML technique in the early stage

of establishing the IR system. It also shows the impact of the pre-processing procedure

in this mathematical approach. The heuristic limitations in the IR processes such as in

pre-processing procedure inspires the demands of EML technique to optimise IR systems

after gathering the relevance labels. This thesis proposes a (1+1)-Evolutionary Gradient



iv

Strategy ((1+1)-EGS) to evolve Global Term Weights (GTW) in IR documents. The GTW

is a value assigned to each index term to indicate the topic of the documents. It has the dis-

crimination value of the term to discriminate between documents in the same collection.

The (1+1)-EGS technique is used by two methods for fully and partially evolved pro-

cedures. In the two methods, partially evolved method outperformed the mathematical

model (Term Frequency-Average Term Occurrence (TF-ATO)), the probabilistic model

(Okapi-BM25) and the fully evolved method. The evaluation metrics for these exper-

iments were the Mean Average Precision (MAP), the Average Precision (AP) and the

Normalized Discounted Cumulative Gain (NDCG).

Another important process in IR is the supervised Learning to Rank (LTR) of the fully

judged datasets after gathering the relevance labels from user interaction. The relevance

labels indicate that every document is either relevant or irrelevant in a certain degree to

a user query. LTR is one of the current problems in IR that attracts the attention from

researchers. The LTR problem is mainly about ranking the retrieved documents in search

engines, question answering and product recommendation systems. There are a num-

ber of LTR approaches from the areas of EML. Most approaches have the limitation of

being too slow or not being very effective or presenting too large a problem size. This

thesis investigates a new application of a (1+1)-Evolutionary Strategy with three initial-

isation techniques hence resulting in three algorithm variations (ES-Rank, IESR-Rank

and IESVM-Rank), to tackle the LTR problem. Experimental results from comparing

the proposed method to fourteen EML techniques from the literature, show that IESR-

Rank achieves the overall best performance. Ten datasets; which are MSLR-WEB10K

dataset, LETOR 4 datasets, LETOR 3 datasets; and five performance metrics, Mean Av-

erage Precision (MAP), Root Mean Square Error (RMSE), Precision (P@10), Reciprocal

Rank (RR@10), Normalised Discounted Cumulative Gain (NDCG@10) at top-10 query-

document pairs retrieved, were used in the experiments. Finally, this thesis presents the

benefits of using ES-Rank to optimise online click model that simulate user click interac-

tions. Generally, the contribution of this thesis is an effective and efficient EML method

for tackling various processes within IR. The thesis advances the understanding of how

EML techniques can be applied to improve IR systems.
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Chapter 1

Introduction

In many contexts, such as textual documents on the web, data changes rapidly over time.

Hence, there is a growing need to develop effective methods of automated Information

Retrieval (IR) systems that provide reasonable results and meet users needs. An IR

system is an information system used to store items of information that need to be

processed, indexed, searched, retrieved and disseminated according to various users’

needs. Most IR systems store collections of text documents acting as a data repository.

Previous studies of IR research employed Mathematical Models (MM), Probabilistic

learning Models (PM), Language learning Models (LM), Evolutionary and Machine

Learning models (EML) to store and then rank the retrieved documents. Various

Term-Weighting Scheme (TWS) methods have been used in these models. The TWS is

a mathematical or probabilistic or Boolean equation used to assign real numbers to each

significant word in IR system documents. This real value denotes the importance of the

word within the document to allow efficient document retrieval.

The ability to rank the retrieved documents with respect to their relevance according

to the user query is an important requirement in the domain of IR research. The historical

user interaction data with the IR system can be used as a method to measure the relevance

degree for each clicked and browsed document. However, the historical user interaction

data suffers from many problematic issues, such as random user decisions, unfamiliarity

with the system, education level and user intelligence (Lorigo et al., 2006; Al-Maskari

1
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and Sanderson, 2011). The relevance judgements are values that indicate the relevance

degrees of the user queries to specific documents in the IR test collection. These

values are extracted from the historical user interaction data with the IR system. The

relevance judgements of the documents are limited and expensive to have fully judged

test collections at the start of the IR system. Thus, standardised test collections have

been produced to simulate actual IR test collections. In these collections, the relevance

judgement value represents the degree of relevance of each document relative to user

query.

Traditionally, the process of ranking retrieved documents was based on learning

document or query representations using probabilistic and EML techniques. These

techniques are based on Term Vector Model (TVM) representation. The TVM approach

represents each document and query as a vector of term-weights. Recent evidence

suggests that the use of only one term-weighting model is not sufficient for effective

IR systems (Qin et al., 2010; Qin and Liu, 2016; Liu, 2011; Liu et al., 2007; Hofmann,

2013; Schuth, 2016). Thus, recent IR research has investigated data features for learning,

to develop rank models based on combinations of MM, PM and LM term-weighting

models. As a consequence, recent test collections contain more than one of the MM,

PM and LM term-weighting models as feature vector representations. This feature

representation is called Feature Vector Model (FVM).

Finally, recent research provides fully judged collections of documents that simulate

those available from existing search engines. This type of fully judged test collection

is usually obtained some time (maybe several years) after establishing the IR system

(or search engine), also following the gathering of historical user data interactions and

reducing the noise from user behaviours. These collections can then be used in supervised

Learning to Rank (LTR) models, applying various EML techniques.

Several attempts have been made to evolve document representations but without fully

considering the limitations of EML techniques. These limitations are as follows:

1. IR test collections are only partially judged at the beginning of IR system. This
October 30, 2017
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because the lack of existing user interaction data with the IR system;

2. The memory usage of some EML techniques in IR is typically large when consid-

ering all the training documents; some techniques instead do not consider all the

training documents in each learning iteration which can affect effectiveness; and

3. The computational runtime for most EML applications is typically large and in-

creases substantially according to the size of the test collection.

1.1 Research Motivation

As mentioned above, ranking retrieved documents with respect to their relevance to the

user query is an important issue in an IR system. A huge amount of time and effort

is spent searching for relevant documents, if the IR system cannot efficiently rank the

retrieved documents. This inspires the need for developing EML approaches to improve

the performance of IR systems.

A considerable amount of research has been published regarding the use of EML

techniques to improve the performance of IR systems. However, the problem size

for Evolutionary Computation (EC) techniques in the IR literature research has yet

to be addressed (Cummins and O’Riordan, 2006; Oren, 2002; Escalante et al., 2015).

Thus, this particular limitation can hinder the application of these techniques to large

test collections. This is because using the whole test collection will usually slow

down significantly the evolutionary process of EC techniques in TVM approaches. EC

techniques have been used to evolve all the document or the query representations of the

test collections.

On the other hand, the increase in the problem size of the technique increases

the computational evolving runtime (Nopiah et al., 2010). According to (Escalante

et al., 2015), the computational runtime problem for evolving TWS, using a subset of

20-Newsgroup collection (Rennie, 2015), with population-based Genetic Programming

(GP) was 18 hours. The other GP approaches (Cummins and O’Riordan, 2006; Oren,
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2002) were applied to very small collections using either a cluster of computers or taking

long computational runtimes. However, evolving the term weights of the document

representations and evolving TWS using EC have resulted in better IR effectiveness in

terms of Mean Average Precision (MAP) (Cummins, 2008; Cordon et al., 2003).

Another limitation of EML approaches for IR relates to the relevance judgement

values collected from user interactions with IR systems. These values cannot be gathered

in the early stages of system development when building the IR systems for large test

collections. The relevance judgement requires sufficient historical user interactions with

the test collection to maximise the IR system’s effectiveness. Thus, there is a need for a

new perspective when applying the mathematical models and EML in the early stage of

IR systems which have partially relevance judged values or do not have any. In this thesis,

Chapters 5 and 6 cover this new perspective on applying EML techniques for TVM with

well-known partially judged test collections. The mathematical model is proposed as a

starting point for document representations to construct an IR system without the need to

have the user feedback at the beginning. Then, Chapter 6 proposes a new methodology

for evolving document representation in partially judged test collection stage considering

the problem size and the limitation of existing the relevance judgement values.

As more time passes using the IR system, the test collection gradually becomes a fully

or nearly fully judged collection, with comprehensive user relevance feedback. Thus,

research trends can make use of the new challenge of test collection representation after

the fully judged relevance feedback became available from users. In this representation,

each document is represented as a vector of features that include numerous of TWS,

document reputation and business importance features on the web. In this thesis this

representation is referred to as Feature Vector Model (FVM) or Bag-of-Features (BoF).

The research field using this representation is referred to as supervised LTR. This field

typically uses EML techniques. This is because the use of an IR system by one TWS

without including the business importance and web page reputation of the document is

not sufficient for effective IR system on the web (such as in Search engines).
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Another motivation for research work in this thesis is the need for comparing

computational efficiency of the various EML techniques proposed in the literature for

LTR. Most comparisons to date, present only the accuracy for EML techniques without

mentioning the corresponding computational training runtimes. Moreover, some studies

comparing EML techniques did not reveal the experimental settings used to produce the

reported experimental results. In other words, numerous researchers have considered

the accuracy values when comparing EML techniques but they have not reported on

the computational runtime for the proposed approach. Additionally, this thesis is the

first to investigate the LTR problem using an adaptive Evolutionary Strategy (ES). The

adaptive EC techniques have outperformed non-adaptive EC techniques (such as GP and

Differential Evolution) in many Combinatorial Optimisation Problems, which was an

additional motivation for this research. The ES-Rank algorithm proposed in this thesis

is much faster than those for most of the population-based EML techniques in the LTR

problem, as it requires the lowest memory size. In the FVM approach, some of the

EML techniques also experienced the same issues and limitations as those in the TVM

approach. These issues are related to the computational runtime and the effect of the

problem size on the performance of the EML technique. This causes some alternative

EML techniques do not consider the entire training instances (documents) in each

learning iteration to overcome these issues. Unfortunately, the accuracy values of the

ranking model by these techniques are not effective compared to methods that consider

all training instances (documents) in each learning iteration. The computational runtime

required to have an effective approach increases exponentially with increases in the size

of the input data, when the technique considers all training documents in each learning

iteration. A further limitation when handling large data-set is the memory size. These

issues have not been investigated in previous research published in the existing literature.

1.2 Thesis Statement and Scope

This thesis hypothesis is that evolutionary and machine learning (EML) techniques

can improve the accuracy of IR systems using the historical user interaction data. In
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particular, it suggests that the proposed (1+1)-Evolutionary Strategy with/without gradi-

ent mutation step-size will have the lowest memory size and the lowest computational

runtime requirements when improving IR systems, if compared with the other EML

techniques reported in the literature. Furthermore, we hypothesise that the use of static

collection characteristics when performing term-weighting functions has a negative effect

on the accuracy of a TVM IR system. Moreover, that relevance judgement values or

historical user interactions are vital for determining the use of evolutionary and machine

learning or the use of mathematical term-weighting functions. We also illustrate the

importance of the initialisation procedure in ES technique in LTR problem. Finally,

we illustrate that the ES technique can improve the accuracy of the user interaction

simulation (Dependent Click Ranking Model). This click model is a well-known click

model related to an online LTR package (Loret) and this thesis compared its performance

with ES-Rank performance.

The current study of this thesis examines the use of evolutionary and machine learning

techniques in an offline LTR evaluation. It means that the explicit relevance judgement

labels existing in the standardised test collections are used to evaluate the quality of the

solutions produced by EML techniques. However, the current online LTR evaluation re-

search uses the same explicit relevance judgement values to produce user click models

first and then evaluate the quality of LTR technique based on click models which simu-

late user clicks (Schuth, 2016; Hofmann, 2013). This means that the online LTR research

in the literature uses click models to simulate online user interaction and then evaluate

the EML by the explicit relevance judgement labels. This is because the cost and time

demands of real online user interaction evaluation are daunting. Moreover, real user rel-

evance judgement assessment is biased by the user familiarity with the IR system and

user education levels, as mentioned in the literature (Lorigo et al., 2006; Al-Maskari and

Sanderson, 2011; Kharitonov, 2016). In addition to the time consuming for having in-

teractive user interaction during the training time is significant. Thus, the test collections

used in this thesis are standardised collections created by TREC, Microsoft IR research

teams and well-known IR researchers (Liu et al., 2007; Qin et al., 2010; TREC, 2016a;

Voorhees, 2000; Soboroff, 2007; Tonon et al., 2015; Urbano, 2016; Cleverdon, 1960;
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Sanderson, 2010; Hersh et al., 1994). The relevance judgement values of these collec-

tions are collected by trained and expert human annotators in the test collection topic

domains and validated by multiple IR systems. These test collections are also used in

online LTR research in the literature due to the limitations of having online non-biased

relevance judgement labels (Schuth, 2016; Hofmann, 2013). These test collections in-

clude many types of user relevance judgements, provided by expert users from Microsoft

and the National Institute of Standards and Technology (Liu et al., 2007; Qin et al., 2010;

TREC, 2016a; Voorhees, 2000; Soboroff, 2007; Tonon et al., 2015; Urbano, 2016). In

addition, the test collections used in this thesis have been created, validated and tested

over several years before dissemination for IR researchers (Liu et al., 2007; Qin et al.,

2010; TREC, 2016a; Voorhees, 2000; Soboroff, 2007; Tonon et al., 2015; Urbano, 2016;

Cleverdon, 1960; Sanderson, 2010; Hersh et al., 1994). Chapter 3 discuss the details of

creating these test collections. Moreover, the cognitive level variation issues for creating

the datasets (test collections) relevance judgement values is out of the thesis scope.

1.3 Research Questions

The research questions identified in this research are as follows:

1. What are the limitations of applying EML techniques on IR systems for TVM rep-

resentation (Bag-of-Words)? This question is addressed in Chapters 5 and 6.

2. Why there is a need for mathematical (non-learning) term-weighting schemes in IR

systems? This question is addressed in Chapters 3 and 5.

3. What is the importance of relevance judgement and relevance labels in evolutionary

and machine learning approaches? This question is addressed in Chapters 3, 4, 5

and 6.

4. What is the limitation in respect of static collection characteristics for different IR

weighting functions on TVMs? How will this parameter affect dynamic variation

in test collection? These questions are addressed in Chapter 5.
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5. What is the impact of the pre-processing procedure (stop-word removal) in term-

weighting functions? This question is addressed in Chapter 5.

6. What is the importance of EML approaches in IR to overcome the impact of pre-

processing (stop-word removal and stemming) to enhance effectiveness? This ques-

tion is addressed in Chapters 4 and 6.

7. What are the limitations of applying EML techniques on IR systems for FVM rep-

resentation (Bag-of-Features)? This question is addressed in Chapters 4 and 7.

8. How can the adaptive (1+1)-evolutionary technique be used to improve the IR sys-

tem with the lowest problem size and the lowest computational time? This question

is addressed in Chapters 6 and 7.

9. What is the importance of the initialisation procedure in the (1+1)-ES technique?

This question is addressed in Chapter 7.

10. Can the (1+1)-ES technique improve the user click ranking model? This question

is addressed in Chapter 8.

1.4 Thesis Contributions

The research presented in this thesis contributes to understanding the application of evo-

lutionary and machine learning techniques in the IR research field by:

1. An analysis of commonly used test collections, provides an argument in favour

of using heuristic (non-learning) TWS instead of TWS and term weights evolved

via EC techniques at the beginning of establishing IR system (Section 3.1.3). We

believe that this analysis also supports the argument that more appropriate test test

collections, instead of general IR test test collections, should be considered when

using EC techniques to evolve TWS or term weights. This analysis is related to

research questions 1, 2 and 3.

2. A new non-learning (mathematical) TWS is proposed termed the Term Frequency

With Average Term Occurrence (TF-ATO), with a Discriminative Approach (DA)
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for removing less significant weights from the documents. A study is conducted to

compare the performance of TF-ATO to the widely used TF-IDF approach, using

various types of test collections such as sampled, pooled (Soboroff, 2007) and those

from real IR systems (Hersh et al., 1994). Our experimental results show that the

proposed TF-ATO gives higher effectiveness in both cases of static and dynamic test

collections. This TWS can be used at the early IR stage to gather the user interaction

feedback data. This mathematical TWS is related to the research questions 1, 2 and

4.

3. Using various test collections, we study the impact of our DA and the stop-words

removal process for IR system effectiveness and performance when using the pro-

posed TF-ATO and when using the TF-IDF. We find that these two processes have

a positive effect on both TF-ATO and TF-IDF for improving the IR performance

and effectiveness. This study is related to the research question 5.

4. A new method has been proposed to evolve better representations of documents

in the collection for the trained queries with less computer memory usage. This is

accomplished by evolving the Global Term Weights (GTWs) of the collection rather

than evolving document representations for the whole collection as is typically done

in other EC approaches in the literature. Hence, the main contribution of Chapter

6 is the development of a (1+1)-Evolutionary Gradient Strategy ((1+1)-EGS) with

Adaptive Ziggurat Random Gaussian Mutation (Kuo and Zulvia, 2015; Doornik,

2005; Loshchilov, 2014) to evolve GTWs. The proposed methodology reduces the

problem size, from evolving (N ×M) document representation vectors to evolving

(1×M) vector, whereN is the number of documents in the collection and M is the

number of index terms in the collection. This method also considers the limitation

of the relevance judgement of the partially judged test collections in EC techniques.

This method is concluded from the research questions 1, 2, 3, 6 and 8.

5. An Evolutionary Strategy (ES) technique has been proposed to tackle the LTR prob-

lem. The proposed method is called ES-Rank and consists on evolving a vector of

weights where each weight represents a desirable feature. The mutation step-size

in ES-Rank has been tuned based on preliminary experimentation. Details of the
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proposed method are presented in Section 7.2. In order to assess the performance of

ES-Rank, Mean Average Precision (MAP), Root Mean Square Error (RMSE), Nor-

malised Discounted Cumulative Gain (NDCG@10), Reciprocal Ranking (RR@10)

and Precision (P@10) at top-10 query-document pairs retrieved (Liu, 2011; Li,

2014) are used and comparison is carried out against fourteen state-of-the-art LTR

approaches from the literature. Experimental results in Chapter 7 show that ES-

Rank performs very well when compared to those other methods in terms of MAP,

RMSE, RR@10, NDCG@10 and P@10. Furthermore, most of the other meth-

ods consumed very long computation time while ES-Rank was much faster. For

example, some of the other methods consumed more than 9 hours on each MSLR-

WEB10K dataset fold (Qin et al., 2010) while ES-Rank consumed only around 30

minutes on each fold. Another feature of ES-Rank is that it has small memory re-

quirements according to the problem size (2XM dimensions where M represents

the number of features in the training dataset). This technique is produced after

addressing the limitation identified from the research question 7 and 8.

6. The importance of initialisation procedure in ES-Rank to tackle the LTR problem

is investigated. The initialisation procedure in ES-Rank has been tuned based on

Linear Regression and Support Vector Machine ranking model to produce IESR-

Rank and IESVM-Rank methods. In order to assess the performance of IESR-

Rank and IESVM-Rank, MAP, RMSE, NDCG@10, RR@10 and P@10 at top-

10 query-document pairs retrieved (Liu, 2011; Li, 2014) are used and comparison

is carried out against fourteen state-of-the-art LTR approaches from the literature.

Experimental results in Chapter 7 show that the use of machine learning ranking

model as an initialisation procedure has a positive impact on ES-Rank technique.

Furthermore, the initialisation procedure using Linear Regression (LR) machine

learning ranking model has a better positive impact for improving ES-Rank in most

cases than Support Vector Machine (SVM) and zero values initialisation methods.

This study is related to the research question 9.

7. The ES-Rank technique has been used to optimise Click Dependent Model (DCM)

to tackle click ranking models problem. This click model is an extension of Cascade
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Click Model (CCM). These click models are used in online LTR techniques as in

Lerot package (Schuth et al., 2013). At the beginning, online LTR models are pro-

duced by Lerot package using online probabilistic interleave and DCM technique

(Hofmann, 2013; Schuth, 2016). Then, ES-Rank optimises these ranking models.

This study is related to the research question 10.

1.5 Publications

The following submitted/published articles have resulted from the research work de-

scribed in this thesis

1. Osman A. S. Ibrahim and Dario Landa-Silva, A New Weighting Scheme and Dis-

criminative Approach for Information Retrieval in Static and Dynamic test Col-

lections, Proceedings of the 14th UK Workshop on Computational Intelligence

(UKCI2014), Bradford UK, September 2014, doi: 10.1109/UKCI.2014.6930160.

2. Osman A. S. Ibrahim and Dario Landa-Silva, Term Frequency with Average Term

Occurrences for Textual Information Retrieval, Soft Computing Journal, Volume

20, Issue 8, August 2016, doi: 10.1007/s00500-015-1935-7

These first two publications cover the findings and research analysis existing

in Chapter 5 and Section 3.1.3.

3. Osman A. S. Ibrahim and Dario Landa-Silva, (1+1)-Evolutionary Gradient

Strategy to Evolve Global Term Weights in Information Retrieval, Advances

in Computational Intelligence Systems Contributions presented at the 16th UK

Workshop on Computational Intelligence, September 7-9, 2016, Lancaster, UK,

doi: 10.1007/978-3-319-46562-3 25

This publication presents the research outcomes in Chapter 6 which includes

evolving Global Term-Weights (GTW) using (1+1)-Evolutionary Gradient

Strategy.

October 30, 2017



1.6. Thesis Outline 12

4. Osman A. S. Ibrahim and Dario Landa-Silva, ES-Rank: Evolution Strategy Learn-

ing to Rank Approach, ACM Symposium on Applied Computing (SAC 2017), Mar-

rakech, Morocco, April 03-07, 2017, ISBN: 978-1-4503-4486-9/17/04.

5. Osman A. S. Ibrahim and Dario Landa-Silva, An Evolutionary Strategy with

Machine Learning for Learning to Rank in Information Retrieval, Accepted in Soft

Computing Journal

These two publications demonstrate the research findings in Chapter 7 which

illustrates the using of ES to improve LTR problem.

1.6 Thesis Outline

This section summarises the contents of the remaining chapters of this thesis.

1.6.1 Chapter 2

This chapter presents the background material for IR and Evolutionary Strategies (ES).

It begins by detailing the IR architecture and then explains various IR models, such as

Boolean, vector space and language models. Then, the chapter introduces the introductory

material for EML techniques in IR. Finally, the historical development of ES from method

to another is presented in the last section (section 2.3).

1.6.2 Chapter 3

This chapter describes the available methods to create test benchmarks. It introduces the

two available methods for creating the relevance judgement in the partially judged test

collections. Then, the fully judged LETOR Benchmarks are presented. The partially

judged test collections are used for both TVM in learning and mathematical techniques.

They are used in Chapter 6 ((1+1)-Evolutionary Gradient Strategy for evolving global

term weights) as a learning approach, while they are used in Chapter 5 for mathemati-

cal term-weighting schemes and to identify the limitations of EC applications in TVM.
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The fully judged LETOR benchmarks are then used with supervised LTR techniques in

Chapters 7 and 8.

1.6.3 Chapter 4

This chapter presents the relevant literature about EML in TVM and FVM. The chapter

commences with the TVM and introduces the limitations that arise when applying EML

in TVM when evolving term weights. The limitations are summarised in relation to the

accuracy, the problem size and the computational runtime when evolving the whole docu-

ment representations. This is in addition to the relevance judgement limitations that arise

when applying EC or Machine Learning (ML) techniques to a newly established IR sys-

tem. These limitation inspires the need for proposing a new methodology of evolving

the document representations using EML techniques. This chapter also introduces the

various LTR techniques on FVM. In this research domain, the EML techniques are used

to learn the most suitable ranking model weights for the training data and for testing the

performance of the techniques on the test data. The limitations of these techniques relate

to their comparability with each other. This is because the majority of the literature re-

search did not identify the experimental settings nor the training computational runtimes

when making their comparisons. Furthermore, most of the EML techniques deliver high

accuracy with a higher training runtime.

1.6.4 Chapter 5

This chapter presents the benefits of using non-learning term-weight schemes and it pro-

poses a new TWS. TF-ATO is a Term Frequency-Average Term Occurrence weighting

scheme. This TWS is proposed to avoid the limitations of the mathematical models

with dynamic document variation that causes the collection size parameter to vary by

adding/removing a document and consequently causing the need to re-compute the term

weights for large variations in the IR test collection. However, TF-ATO is not sufficiently

effective when compared with EC, Probabilistic and EML weighting functions. This gen-

erates a need for Discriminative Approach (DA) to overcome some of these limitations.

Furthermore, the removal of stopwords as a pre-processing component in IR has an im-
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portant role in TF-ATO performance variation, which should be considered when using

the TF-ATO weighting function. The improved accuracy inspires the need for an EC

approach to improve IR while using TF-ATO as local TWS, as shown in Chapter 6.

1.6.5 Chapter 6

Due to the need to improve TF-ATO, this chapter proposes (1+1)-EGS to improve global

term weight and TF-ATO as a local term weight. The term weight can be divided into two

parts, the Global Term Weight (GTW) and the Local Term Weight (LTW). The GTW is a

value assigned to each index term to indicate the topics of the documents. It has the dis-

crimination value of the term to discriminate between documents in the same collection.

The LTW is a value used to measure the contribution of the index term in the docu-

ment. This approach considers the limitation of previous studies that used EC approaches

for TVM. However, this approach consumed more computational time than probabilistic

learning models and language models but it is less time consuming and less memory de-

manding compared to EC approaches in the previous studies. Furthermore, this chapter

considers the limitations of relevance judgement when using partially judged test collec-

tions.

1.6.6 Chapter 7

This chapter presents an efficient EC application to produce a ranking model in LTR re-

search field based on data feature weights. This ranking model represents the importance

value of each feature in search engine query-document pairs. This approach is faster than

other machine learning approaches. The test benchmarks are LTR benchmarks containing

more than one TWS and other features that indicate the business importance and reputa-

tion of the documents on the web. ES-Rank ((1+1)-ES for Learning to Rank) application

is a supervised learning approach in the LTR problem.

1.6.7 Chapter 8

This chapter shows the capability of ES in LTR domain as a tool to improve user Click

Models to achieve improved accuracy values. The ES-Rank can improve the performance
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of the Dependent Click ranking Model (DCM) in five evaluation fitness metrics. This

approach is called ES-Click. It begins with a learning DCM ranking model and then the

ES-Rank uses the DCM ranking models to evolve better ranking models. In most cases

of IR system evaluation performance, click models replace the interactive user clicks

without bias caused by neither user education level, intelligence nor familiarity with the

IR system.

1.6.8 Chapter 9

The final chapter presents the conclusion from the research findings and the outcomes of

this thesis. It started with answering the research questions presented in this chapter and

then it reviews the research contributions. Finally, it presents a summary of conclusions

of the thesis and presents the future work avenues.
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Chapter 2

Background

This chapter presents a discussion of background knowledge about Information Retrieval

(IR) research field. This discussion begins with presenting the general IR architecture in

sections 2.1 and 2.2. Then, the evolution Strategies background is presented in section

2.3.

2.1 General Information Retrieval Overview

An Information Retrieval (IR) system is an information system that stores, organises and

indexes the data for retrieval of relevant information responding to a user’s query (user

information need) (Salton and McGill, 1986). Generally, an IR system consists of the

following three main components (Baeza-Yates and Ribeiro-Neto, 2011):

• Document Set. It stores the documents and their Information Content Representa-

tions. It is related to the indexer module, which generates a representation for each

document by extracting the document features (terms). A term is a keyword or a set

of keywords in the document.

• Similarity Matching and Ranking Mechanism. It evaluates the degree of simi-

larity to which each document in the test collection satisfies the user information

need. It also ranks the retrieved documents, according to their relevance to the user

query.

• User Query Log. It is a user’s query or set of queries where users can state their
16
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information needs that stored in online IR systems. This component also trans-

forms the users query into its information content by extracting the query’s features

(terms) that correspond to document features.

2.1.1 Information Retrieval Architecture

The implementation of an IR system may be divided into a set of main processes as shown

in Figure 2.1. Some of these processes (dotted lines rectangles) can be implemented

using Machine Learning (ML) or Computational Intelligence (CI) approaches. An

outline of the core processes in IR (solid lines rectangles) is also presented in this figure.

The User Interface module manages the interaction between the user and the IR

system. In this module, the user can request information after Pre-processing and Query

Transformation from the index file. The result of this query is in the form of links or

document numbers referring to documents in the test collection or World Wide Web

(WWW). The Pre-processing module represents the lexical analysis, stop-words removal

and stemming procedures that are applied to the user query and the test collection.

The Indexing module processes the documents in the collection using a term-weighting

scheme (TWS) in order to create the index file. Such index file contains information in

the form of inverted indexes where each term has references to each document in the

collection where that term appears and a weight representing the importance of that term

in the document. Similarly to indexing, the user query undergoes a process of Query

Transformation after pre-processing for building queries of terms and their corresponding

weights for those terms. The Searching module conducts a similarity matching between

the query of terms with their weights and the index file in order to produce a list of

links or document numbers referring to documents in the test collection. In the past,

the Ranking of the matching list depended only on the degree of similarity between the

documents and the user query. Nowadays, this ranking may depend on some additional

criteria such as the host server criteria among others (Liu, 2009).

After outlining the core processes in the implementation of an IR system, we now

focus on the aspect where machine learning and meta-heuristic techniques applied to
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Figure 2.1: Main Processes Involved in the Implementation of an IR System Architecture.

some IR processes exhibit some weakness in our opinion. The Relevance Judgement file

is the file that contains the set of queries for the test collection and their corresponding

relevant documents from the collection. Also, this file sometimes contains the degree of

relevancy of documents for the queries (i.e. some number indicating that the document

is non-relevant, partially or totally relevant). However, all IR test test collections are

partially judged as it is not feasible to have fully judged test collections as mentioned in

(Qin et al., 2010). Since machine learning, meta-heuristic, probabilistic and language

model techniques applied to IR depend on the relevance judgement file, the efficiency of

such techniques for IR is limited. The following sections explain the details of the core

components of the IR system.
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2.1.2 Natural Language Pre-Processing in Information Retrieval

Natural language pre-processing (Baeza-Yates and Ribeiro-Neto, 2011) for classical IR

models is the procedure of text transformation that may utilise the following steps:

1. Each document is tokenised into data elements such as words or group of words or

n-letters (n-grams). Moreover, the digits, punctuation marks and the case of letters

of these data elements are treated to produce lower-case letters of tokens.

2. Stop-words (negative words) are removed. These stop-words have poor discrimina-

tion values that would make poor index terms for similarity matching and retrieval

purposes (Fox, 1989). Examples for the stop-words (common words) are the and

a. These keywords are common in every English document and they do not have

discrimination capability between the documents each other.

3. If the data elements are words it can be stemmed by removing prefixes and suffixes

by using any of stemming algorithm such as Porter Stemmer (Porter, 1997), Lovins

Stemmer (Lovins, 1968) among others.

4. Then the unique data elements (keywords or a group of keywords) are chosen to be

index terms for the IR system.

5. Some IR systems use thesaurus terms and term categorisation for alternative terms

and meanings of keywords or data elements in index terms that may be helpful in

similarity matching between users’ queries and index terms on IR systems (Baeza-

Yates and Ribeiro-Neto, 2011).

This process is one of the important steps that affects the IR system efficiency. Research

work has concluded that inappropriate pre-precessing can affect the text classification

accuracy (Uysal and Gunal, 2014; Makrehchi and Kamel, 2008; Toman et al., 2006;

Toraman et al., 2011). It has also been demonstrated that pre-processing is topic domain

dependent in text classification problem (Uysal and Gunal, 2014).
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Figure 2.2: Indexing Procedure from Assigning Weights (Term Frequency) to Producing
Inverted Index Containing Term List and Postings Lists.

2.1.3 Indexing and Query Transformation

Generally, the index (i.e. an inverted index) for the test collection is a structure that stores,

each term (keyword) that occurred somewhere in the collection combined with its weight

(Yan et al., 2009). The weight value represents the information content or the importance

of the term in the document. As shown in Figure 2.2, the two main components of an

inverted index are the term list and the postings lists. For each term in the test collection,

there is a postings list that contains information about the term’s occurrences or the

term’s weights in the collection (Buettcher et al., 2010). The information found in these

postings lists is used by the system to process search queries. The term list serves as a

look-up data structure on top of the postings lists. For every query term in an incoming

search query, the information retrieval system first needs to locate the term’s postings

list before it can start processing the query. The term list job is to map between terms

and their corresponding posting list locations in the index. In Figure 2.2, the Document

Frequency (DF) is the simplest kind of Global Term Weight (GTW) that represents the

number of documents in which the term occurred. The GTW contribute to identify the
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topic of the documents. DF is the number of documents in which a term is existed, while

the Term Frequency (TF) is the number of repetitions of a term in a document. From

Figure 2.2, after the test collection undergoes the pre-processing procedure, the TF and

DF for each term are calculated. Then, the inverted index is created from term list and

posting list. The term list consists of the index terms and their document frequencies,

while the posting list consists of the term frequencies in each document for each term. A

more detailed discussion about the local and the global term weights will be presented in

chapters 4 and 6.

2.1.4 Matching and Ranking for Information Retrieval

Matching and ranking in IR is the process of searching the IR data resource (IR test

collection) for the matched documents responding to the user query and then ranking

them according to their degree of similarity match and/or their importance. The main

categories of matching and ranking methods are as follows:

1. Exact matching which is the matching between the query and the documents ac-

cording to the terms (keywords) existing in both or not. If the terms exist in both

the query and the document, then the document is more similar to the query hence

matching the query requirement. This category of matching can be done in the stan-

dard Boolean Model. Thus, the Boolean exact matching uses AND and OR Algebra

between the binary term occurrence value (1 if the term exists, 0 if the term does

not exist). The problem with Boolean exact matching is that there is not ranking or

distinguishing between the matched documents that are returned as relevant to the

query, i.e. all are considered ’equally’ relevant which would not be always precise

enough (Greengrass, 2000).

2. Similarity matching, this produces a real numerical value that represents the degree

of similarity between the document and the query. This category can be used in

Vector Space Model (VSM). Examples of the similarity matching functions used in

this category are: Cosine Similarity, Jaccard Similarity Coefficient, Inner Product
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and Dice’s Coefficient (Baeza-Yates and Ribeiro-Neto, 2011).

3. PageRank matching (Page et al., 1998), this measure calculates the importance of

the web-document on the web. This approach is based on assigning a value for the

document based on its relation with other web-pages on the web.

4. Probabilistic relevance matching, this method is based on the probability distribu-

tions of the data. This category considers the probability distribution of the terms

existing in the test collection with respect to the collection relevance judgement.

Example of this category are: Best Match version 25 (BM25), a probabilistic model

(see Section 2.2.3) and Dirichlet Similarity Matching (DSM) on Dirichlet language

model (Zhai and Lafferty, 2004).

5. Learning to rank based on Term Vector Model (TVM) approach is one of the simi-

larity matching methods. An example of this category is the Genetic Programming

approach that is used for evolving similarity matching functions (Fan et al., 2004).

This method is discussed in more details in Chapter 4.

6. Learning to Rank based on Feature Vector Model (FVM) approach is one of the

state-of-the-art research directions in IR (Bollegala et al., 2011). The ranking func-

tion in this methodology is called ranking model. This model will be discussed in

details in the following chapters.

Section 2.2 demonstrate the well-known retrieval models existing in the literature

which based on the matching and ranking procedure.

2.1.5 Relevance Judgement in Information Retrieval

The relevance judgement component of the IR test collection contains the list of relevant

and irrelevant documents. The relevance judgement is identified by monitoring the user

behaviours (interaction) and their corresponding user information needs (queries) on the

IR systems. There are three paradigms for producing the relevance judgements for test

collections.
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The first category is the Cranfield paradigm (Cleverdon, 1960; Sanderson, 2010). In

this category, the test collections were produced by collecting the abstracts of scientific

articles as the document set. The query set was produced by the authors of these scientific

articles. Those authors are asked to assign all relevance values to their queries with

their articles. These values indicate which document is relevant or irrelevant for each

query in the query set. Then, experts in the articles’ topic assess and validate the authors

relevance judgement values. This paradigm is the most accurate method for producing

the relevance judgements as claimed by (Cleverdon, 1960; Sanderson, 2010). However,

this method is very expensive and time consuming for producing relevance judgements

for large test collections.

The second paradigm is produced by TREC (Text REtrieval Conference) and the

National Institute of Standards and Technology (NIST) for large test collections. This

paradigm is called Pooling paradigm (Voorhees, 2000; Soboroff, 2007). The pooling

paradigm starts with crawling the web or specific web domains by queries for collecting

the document set for these queries. Then, multiple term-weighting schemes were used to

retrieve the matched documents for human assessors. Then, the human assessors examine

the relevance degree of the top k (for example top 100 or 1000) documents retrieved

from the document pool retrieved. After-that, TREC conference used the test collection

for TREC conference tracks. Finally, TREC validates the conference outcomes with

multiple IR systems for the test collections using multiple TWS. The limitation of this

method is that the pool of the documents retrieved and the pool depth are biased to the

retrieval strategy used (Sanderson, 2010; Buckley et al., 2007). Recent research identified

that TREC Disk 4 and 5 with Robust 2004 and Crowdsource relevance judgement is the

most reliable pooled collection to compare between the performances of the IR systems

(Tonon et al., 2015; Urbano, 2016).

On the other hand, the learning IR models such as language models, computational

intelligence models and probabilistic models which do not consider the limitation of the

relevance judgement on their supervised and semi-supervised learning approaches as it

will be discussed and investigated later in this thesis (chapters 3 and 5). The reason is that
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the traditional test collections are partially judged for their query set. The pool size and

the number of queries in the query set cause this limitation. In addition, the number of

index terms in the relevance judgement (relevant/irrelevant documents and queries) do not

cover the whole term space of the collection. This inspired the need to the third paradigm

which is fully judged distilled collection benchmarks for supervised and semi-supervised

machine learning approaches (Qin et al., 2010). These benchmarks contain features for

various IR techniques and relevance labels. These labels show the relevance degree of the

document with the query-document pair as a replacement for relevance judgement values.

2.1.6 Information Retrieval System Evaluation

The final step after implementing an IR system is the system evaluation process. There

are several measurements to evaluate IR systems and all of these measurements depend

on the objectives of building the IR system. One of these objectives is the system

performance and the measurements of this objective are related to the computational

runtime and the problem size. The accuracy is the second evaluation metric that has been

widely used. The evaluation metrics related to accuracy depend on the relevance degree

of the retrieved documents responding to the user queries (user information needs). This

type of evaluation is referred to retrieval accuracy evaluation or in other words, system

effectiveness (Baeza-Yates and Ribeiro-Neto, 2011).

The most common metrics for measuring IR system effectiveness are Recall and

Precision. Figure 2.3 illustrates the use of recall and precision as a measurement for IR

effectiveness. There are two types of classical Recall-Precision approaches to measure

the IR system effectiveness: Singular Value Recall-Precision and Interpolated Recall-

Precision (Baeza-Yates and Ribeiro-Neto, 1999; Kwok, 1997; Chang and Hsu., 1999).

Singular Value Recall-Precision is the way of computing both the recall and correspond-

ing precision for a given user query from the IR system. Interpolated Recall-Precision is

the way of retrieving the documents responding to the user query until reaching a specific

recall value assigned to the IR system, and then measuring the corresponding precision

ratio. In the web-scale IR, there are another metrics such as the precision of the retrieved

list at the first k documents retrieved (P@k) (Li, 2014). In the experimental study of

October 30, 2017



2.1. General Information Retrieval Overview 25

Figure 2.3: Recall and Precision Ratios in IR Systems.

the thesis, Mean Average Precision (MAP), Average Precision (AP), Precision at top-10

document retrieved (P@10), Normalised Discounted Cumulative Gain (NDCG@10),

Reciprocal Rank (RR@10), Error Rate (Err@10) and Root Mean Square Error (RMSE)

were used (Li, 2014; Baeza-Yates and Ribeiro-Neto, 2011; Chai and Draxler, 2014). We

now turn to the explanation of these evaluation measures.

Let d1, d2, ..., dk denote the sorted documents by decreasing order of their similarity

measure function value, where k represents the number of retrieved documents. The

function r(di) gives the relevance value of a document di. It returns 1 if di is relevant,

and 0 otherwise. The Precision of top-k relevant query-document retrieved per query q

(P@k) is defined as follows:

P@k =

∑k
i=1 r(di)

k
(2.1.1)

On the other hand, the Interpolated Average Precision at specific recall point r = r̄

can be calculated as follows:

AvgP = maxr=r̄P (r̄) (2.1.2)

where P (r̄) is the precision at recall point r = r̄ over all queries Q. The AvgP value is

calculated for a point recall value. In this thesis, we calculated the AvgP for nine-point
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recall values as threshold for top k document retrieved. The interpolated mean of the

average precision values for M-point recall values (MAP) can be given by the following

equation:

MAP =

∑M
L=1 AvgP

M
(2.1.3)

For considering the graded relevance levels in the datasets for LTR techniques eval-

uation r(dj) returns graded relevance value (not binary relevance value as in MAP and

Pq@k equations) in equations 2.1.4, 2.1.5 and 2.1.6 for other fitness evaluation metrics.

The Normalized Discounted Cumulative Gain of top-k documents retrieved (NDCG@k)

in equation 2.1.4 can be calculated by:

NDCG@k =
1

IDCG@k
·

k∑
i=1

2r(di) − 1

log2(i+ 1)
(2.1.4)

where IDCG@k is the ideal (maximum) discounted cumulative gain of top-k documents

retrieved. The Discounted Cumulative Gain of top-k documents retrieved (DCG@k) can

be calculated by the following equation:

DCG@k =
k∑
i=1

2r(di) − 1

log2(i+ 1)
(2.1.5)

If all top-k documents retrieved are relevant, the DCG@k will be equal to IDCG@k.

The Reciprocal Rank metric at top-K retrieved query-document pairs (RR@K) is as

follows:

RR@K =
k∑
i=1

1

i

i∏
j=1

(1− r(dj)) ∗ r(dj) (2.1.6)

The Error Rate (Err) is usually used to measure the error of the learning model if it is

used on another benchmark different from the training set. It is the subtraction between

the training evaluation value to the predictive evaluation value, while the Mean Absolute

Error and Root Mean Square Error are calculated by equations 2.1.7 and 2.1.8.
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MAE =
1

n

n∑
i=1

|ERRi| (2.1.7)

RMSE =

√√√√ 1

n

n∑
i=1

(ERRi)2 (2.1.8)

where n is the number of benchmark instances (documents) used for evaluating the IR

system effectiveness. Each evaluation metric has a purpose for measuring the quality of

the proposed ranked model and the retrieved search results by this model. P@K is used

to measure how many relevant documents in the top-K documents. However, this metric

does not consider the graded relevance levels of each retrieved document, but it considers

if the query-document retrieved if the relevant or not. The MAP evaluation metric consid-

ers the average precision on the whole search results rather than top-K query-document

pair retrieved. On the other hand, NDCG@K and RR@K metric take in their calculations

the graded relevance level of each query-document pair into consideration for the top-K

query-document retrieved. The difference between NDCG@K and RR@K is that RR@K

considers the impact of the position for each retrieved query-document pair in the search

list more than NDCG@K metric. Finally, MAE and RMSE calculate the difference be-

tween the relevance labels produced by the ranking model with the query-document pair

features against the ground truth relevance labels. The MAE and RMSE consider the rank-

ing problem as ranking and regression problem. In this thesis, we used MAP, NDCG@10,

P@10, RR@10 and RMSE as fitness evaluation metrics for extensive evaluation and op-

timisation to produce by the proposed techniques.

2.2 Information Retrieval Models

An IR model refers to the way in which the IR system organises, indexes and retrieves

information when responding to user queries. The IR model also specifies the method

used for user query representation. There are five prominent IR model categories: the

first is referred to as Boolean model, the second is known as Vector Space Model (VSM),

the third is called Probabilistic model, the fourth are Language Models (LM) and the fifth

are EML Models (including Evolutionary Computation and Machine Learning Models)
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(Baeza-Yates and Ribeiro-Neto, 2011; Li, 2014; Ibrahim and Landa-Silva, 2017). All

these model categories use the same procedure for document/query pre-processing and

they differ in one or more of the other processes mentioned in section 2.1. They also

differ in the ways of assigning term weights in the indexing process, similarity matching

and retrieving the similar document.

2.2.1 Boolean Model

This was the first Term Vector Model (TVM) representation for IR systems suggested

by researchers (Harter, 1986; Greengrass, 2000). This model is called Boolean model.

Each document/query in this model is represented by a vector of term weights. The

model is based on Boolean Algebra for user query representation and for finding an

exact matching between documents and user queries. The user query may contain logical

(AND, OR, NOT, etc.) operators to combine terms. These terms can be represented by

0 or 1 indicating whether the term appears on each query or not. This model depends on

searching by exact match between documents in IR system data resource and user query.

(Salton, 1988) mentioned some of the conventional disadvantages in this Boolean

model which are summarised as follows:

1. There is no ranking of the retrieved documents according to their relevance to the

user query.

2. There is no obvious way of controlling the size of the retrieved output according to

some threshold of relevance.

3. There is no weighting of search terms that indicates the information content for

every term according to its importance.

Finally, the retrieved search results for the user query is made by an exact Boolean

matching between the user query and documents in the IR test collection. This exact

matching procedure produces some problems for retrieving the accurate search results.
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These problems can be illustrated in the following two types of cases:

1. In response to an OR-query such as (A or B or...or Z), a document containing all

the query terms is not treated any better than a document containing only one term.

2. In response to an AND-query such as (A and B and ... and Z), a document con-

taining all but one query term is treated just as badly as a document containing no

query term at all.

Salton (Salton, 1988) tried to overcome the disadvantages of the standard Boolean

model by assigning weights to index terms in documents and by trying to reformulate

the user query. Salton et al. proposed to extend the Boolean retrieval model to overcome

some of these disadvantages (Salton et al., 1983). They proposed adding weights to

each index term and query term instead of the binary representation. These weights

represent the term’s information content or the term importance in a given document

or a query. As a result, the retrieved documents can be ranked in similarity order by

the similarity matching measure. Salton et al. used a normalised Euclidean distance

between the documents and the queries. They suggested using the p-norm model to

evaluate the degree of documents matching (satisfying) a query. This process is more

in accordance with the way a human judges the matching compared to the traditional

Boolean model. The extended Boolean functions for similarity matching of the p-norm

similarity measures are given by (Greengrass, 2000):

SIMAND(d, (t1, wq1)AND...AND(tn, wqn)) = 1−(

∑n
i=1 ((1− wdi)p · wpqi)∑n

i=1 w
p
qi

)
1
p , (1 <= p <=∞)

(2.2.9)

and
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SIMOR(d, (t1, wq1)OR...OR(tn, wqn)) = 1− (

∑n
i=1 (wpdi · w

p
qi)∑n

i=1w
p
qi

)
1
p , (1 <= p <=∞)

(2.2.10)

where t1, t2, , tn are the query terms and their corresponding weights wq1, wq2, ..., wqn

for a given user query and d is a document in document space with its corresponding

weights wd1, wd2, ..., wdn for the same n number of terms. The p-norm model also defines

similarity functions for the extended Boolean AND and extended Boolean OR of the n

terms and each similarity is computed as a number in the closed interval [0, 1]. When

p =∞ the model becomes as a standard Boolean model and if p = 1 this will reduce the

p-norm to the vector space model with its cosine similarity function (discussed in Section

2.2.2).

There are some other approaches to extend the Boolean model, like (Waller and

Kraft, 1979) and (Paice, 1984) but with no improvement compared to p-norm. There is

also some research on extending the standard Boolean model using Fuzzy theory such

as (Bordogna et al., 1995; Kraft and Buell, 1983; Bookstein, 1980; Bordogna and Pasi,

1993). The state-of-the-art research work related to the Boolean model is reported in

(Pohl et al., 2012, 2010; Smith, 1990; Lee, 1994).

2.2.2 Vector Space Model (VSM)

Vector Space Model (VSM) is a type of TVM representation. In VSM, the document and

the query are represented as vectors in the document space (Baeza-Yates and Ribeiro-

Neto, 2011; Salton et al., 1975). Each dimension in the document space represents the

weights given to the term in the test collection. In other words, the documents in the IR

collection contain text words. After the pre-processing procedure, we obtain index terms

or keywords representing each document. Then, we assign weights for each index term

in the test collection. This weight represents the importance or the information content of
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that index term in a given document. Each document is stored in the following form:

d = (w1, w2, ..., wn)

where d is a document in the test collection, wi is the weight value of term i in the index

terms collection and n is the number of index terms in the index terms collection that

represent the information content of the test collection. The term weight can be assigned

statistically or manually by trained indexer with expertise in the content of the test

collections. When users type their queries as textual data, the IR system automatically

assigns weights for each search keyword to build the query vector.

Term-Weighting Schemes in VSM

A good index term is a term that has a high discrimination value or weight that decreases

the similarity between documents when assigned to the collection (Salton et al., 1975).

The simple term weighting scheme uses the number of term occurrences in a given

document which is called term frequency (tf). However, there is a drawback in this

scheme. It may be that the term gets high weight value in every document at the same

time because the term is repeated in every document and this makes it not a good

discriminator term for documents. (Jones, 2004) proposed another weighting scheme

called Inverse Document Frequency (idf) represented by log (N/n) where N is the total

number of documents in the collection and n is a number of documents to which a term

is assigned.

(Salton and Buckley, 1988) proposed several weighting schemes for automatic text

retrieval; these are shown in Figure 2.4. Salton and Buckley classified a term weighting

scheme according to three main components: term frequency, collection frequency and

normalisation components. One of these combinations is Term Frequency-Inverse Docu-

ment Frequency (TF-IDF). The TF-IDF weighting scheme is now the most well-known

term-weighting scheme in VSM that has been widely used in the literature such as in

(Liu, 2011; Reed et al., 2006a; Greengrass, 2000).
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Figure 2.4: Term Weighting Components By (Salton and Buckley, 1988).

(Lee, 1995) discussed each term weighting component proposed by Salton and

Buckley and experimentally investigated whether cosine normalisation played an

important role in retrieving different sets of documents or not. Lee concluded that cosine

normalisation is a more important factor than maximum normalisation in retrieving

different set of documents. Additionally, Lee studied the properties of different weighting

schemes and showed that the significant improvements are obtained by combining the

results retrieved from different properties of weighting schemes.Prior studies presented

by (Fox and Shaw, 1994) used multiple document representations and multiple query

representations for improving the retrieval effectiveness. (Belkin et al., 1993) achieved

improvement in the effectiveness by using multiple query representations using different

Boolean query formulations. (Harman, 1993) suggested that using multiple retrieval runs

and combining them can be used for improving the retrieval effectiveness.

Lee also classified weighting schemes into three classes according to the term-

weighting component used. These classes are as follows:
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1. Class C: weighting schemes of that class perform cosine normalisation. The ad-

vantage of that class is in retrieving single topic documents being relevant in the

collections with varying document length. However, its disadvantage is the diffi-

culty in retrieving relevant multiple topic documents and longer documents.

2. Class M: weighting schemes of that class perform maximum normalisation but do

not perform cosine normalisation. The advantage of this class is that it may allevi-

ate the problem of cosine normalisation in retrieving relevant documents that have

multiple topics but it cannot normalise documents length. Moreover, it will retrieve

longer documents regardless of their relevance.

3. Class N: this class of weighting schemes does not perform either cosine normali-

sation or maximum normalisation. This class favours longer documents to be re-

trieved instead of short documents and this may have an effect on retrieving relevant

documents corresponding to users’ queries.

(Reed et al., 2006a) studied the relationship between the number of terms in the test

collection and the document frequency distribution, where the document frequency is the

number of documents in which the term occurs in the test collection. They concluded that

there is a major effect on document frequencies by adding new documents to small test

collections. Whereas, there is a minor effect on document frequencies when adding new

documents to large test collections. Their studies led them to name the idf in large test

collection as inverse corpus frequency ICF and they conducted experiments by assigning

term weight scheme as follows:

wij = log(1 + tfij) · log(
N + 1

nj + 1
) (2.2.11)

where tfij is the term frequency of term j in document i and ICF = log( (N+1)
(nj+1)

) since N

is the number of documents in the corpus and nj is the number of documents in which

term j appears in the corpus. Reed et al. (Reed et al., 2006a) conducted their studies

on three test collections: Reuters-21578 (Lewis, 1997), SMART (Salton, 2013) and 20
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Newsgroup (Rennie, 2015). In addition, in their work they used two similarity functions,

Euclidean distance and Cosine similarity.

Similarity Matching Between Document and Query in VSM

Once the document vectors and query vector of term-weight have been computed using a

TWS, the following step is to calculate the similarity matching value between the query

vector and the document vectors in the test collection. Then, the documents are retrieved

in descending order of their similarity values. The highest ranking document will be

the most similar document to the query. The similarity matching procedure simulate the

automatic system measurement for the relevance levels of the documents to the query.

The more accurate similarity matching function is the more of effective IR accuracy ob-

tained. There are five well-known similarity matching functions that are widely used in

VSM. These functions are inner product, cosine similarity, Dice, Jaccard and Euclidean

distance between document/query vectors (Greengrass, 2000; Baeza-Yates and Ribeiro-

Neto, 2011). Several research have been reported about these functions in (Greengrass,

2000). Chapters 5 and 6 uses the most widely used and the most efficient similarity

function in VSM which is the cosine similarity. The cosine similarity function between

document d and query q (Cosine Similarity(d, q)) is defined by:

Cosine Similarity(d, q) =
Σn
i=1Wid · Wiq√

Σn
i=1W

2
id · Σn

i=1W
2
iq

(2.2.12)

In the above equation, n is the number of index terms that exist in the document d and

query q, Wid is the weight of term i in document d and Wiq is the weight of the same term

i in query q.

2.2.3 Probabilistic Models (PM)

Probabilistic models in information retrieval are learning approaches based on the TVM

representation in which each query/document is a vector of term weights. Probabilistic

models are based on the theory of probability with some statistical basis. Cooper et.

al. (Cooper et al., 1992) argued that the probabilistic approach is better than other
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mathematical models such as vector space model approach in getting more relevant

results responding to the same query. However, there are some advantages and disad-

vantages of probabilistic models comparing to other statistical approaches. Greengrass

(Greengrass, 2000) discussed these advantages and disadvantages in a survey. According

to Greengrass and Cooper et. al (Greengrass, 2000; Cooper et al., 1992) the advantages

are as follows:

1. The result of a probabilistic IR approach is near to optimal result regarding its

retrieval effectiveness.

2. It should be less reliant on traditional trial-and-error retrieval experiments as it de-

pends on a theoretical approach for building each model.

3. It has more powerful statistical indicators for predictive and goodness of fit than

traditional effectiveness measures such as recall and precision.

From another point of view, Cooper (Cooper, 1994) identifies various disadvantages

of using probabilistic models:

1. Some researchers prefer the mathematical models because they do not need statis-

tical assumptions eliminating the theoretical burden. They save the time and effort

spent on the statistical analysis on ad hoc experimentation instead of on probability

theory.

2. Probabilistic IR models usually involve some statistical analysis to simplify as-

sumptions in their estimation procedures.

3. Some underlying IR models widely used such as Binary Independence of IR model

can lead to logical inconsistency (Fernandez-Reyes et al., 2015; Cooper, 1991,

1995) since the actual assumptions used in practice are different from the assump-

tions of the theoretical model. Binary or Linked Independence means that each

index term is independent of its value in appearing within document than other

terms on the same document.
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Furthermore, Greengrass (Greengrass, 2000) illustrated some of the well-known prob-

abilistic IR models such as Okapi. The next section presents the Okapi probabilistic

model.

Two-Poisson Probabilistic Model (Okapi-Best Match Model)

Robertson et al. (Robertson and Walker, 1994) proposed a term weighting function based

on Two-Poisson distribution Models. This term weighting function was used in the Okapi

IR system in City London University. It is the most successful term weighting function

in TREC (Text Retrieval Conference) competitions. It has been widely used by the IR

research community (Cummins, 2008; Robertson, Walker, Beaulieu, Gatford and Payne,

1995; Robertson et al., 1994). In TREC, the Okapi function has been used as a weighting

scheme for document representation in TREC collection for query optimisation prob-

lems (Robertson, Walker, Beaulieu, Gatford and Payne, 1995; Robertson et al., 1994).

Furthermore, it has been widely used in other TREC tracks such as in Robertson et al.

(Robertson et al., 1998). Robertson et al. extended the Linked Independence assumption

in their probabilistic model for Eliteness, where the Elite document for index terms is the

document that is mainly about these index terms. In other words, if an index term or a

group of index terms represents the topic of the document, this document is called Elite

document for this or these index terms. More details of the Okapi weighting function can

be described using the the following notations. Let N be the number of documents in the

collection and ni is the number of documents that contain term i. Moreover, Let Rq be

the total number of relevant documents to query q and ri the number of relevant docu-

ments that contain term i. Further, dtfi is the term frequency of term i in the document d

which has length dl. The length of the document means the total number of index terms

frequencies in the document. If the document has the average length of the documents

existing in the document collection, it will be called Avgdl. Using the previous notations,

the Okapi weight for term i in document d can be represented by the following equation:

w =
dtfi

(K1 · dl)/(Avgdl) + dtfi
· w(1), and (2.2.13)
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w(1) = log
(ri + 0.5)/(Rq − ri + 0.5)

(ni − ri + 0.5)/(N − ni −Rq + ri + 0.5)
(2.2.14)

where K1 represents a constant and usually has a value of either 1 or 2 for TREC test

collections. In addition, Okapi weight for term i in the query q has a different equation

represented as follows:

w =
qtfi

K3 + qtfi
(2.2.15)

where qtf is the term frequency of term i in query q and K3 is unknown constant that can

be determined by a trial and error procedure. Furthermore, the phenomena of the strong

variation of the documents in their length than Avgdl with more words is called Verbosity

Hypothesis. This Phenomena affects the performance of Okapi weighting function which

require a correction factor for the term weights. This correction factor is given by the

following equation:

correctionfactor = K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.16)

where K2 is unknown constant and it should be determined by trial and error (its value

in TREC collections is between 0 and 2). Further, ql, dl and Avgdl are the query length,

document length and average document length. Robertson et. al used a new similarity

matching function in their research (Robertson et al., 1998). This similarity matching

function is called Best Match (BM). In their experimental study, three formula for Best

Match have been used. They are called BM1, BM11 and BM15. These matching func-

tions represent the Dot Product similarity function (Greengrass, 2000; Baeza-Yates and

Ribeiro-Neto, 2011) between the document d and query q for a vector of weights (BM15

which is the Dot product plus correction factor). In general, the Dot Product function

used by various similarity matching and ranking functions forms such as Cosine Sim-

ilarity, Inner Product, Euclidean Distance, Language Model (LM) matching functions

(Greengrass, 2000; Baeza-Yates and Ribeiro-Neto, 2011) and Linear Learning to Rank

(Bollegala et al., 2011) functions. The equations of the BM similarity matching functions

are given by:
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BM1(Q,D) =
∑

term i ∈q

log
(ri + 0.5)/(Rq − ri + 0.5)

(ni − ri + 0.5)/(N − ni −Rq + ri + 0.5)
· qtfi
K3 + qtfi

(2.2.17)

BM11(Q,D) =
∑

term i ∈q

dtfi
K1 + dtfi

· log
(ri + 0.5)/(Rq − ri + 0.5)

(ni − ri + 0.5)/(N − ni −Rq + ri + 0.5)
·

qtfi
K3 + qtfi

+K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.18)

BM15(Q,D) =
∑

term i ∈q

dtfi
(K1 · dl)/(Avgdl) + dtfi

·

log
(ri + 0.5)/(Rq − ri + 0.5)

(ni − ri + 0.5)/(N − ni −Rq + ri + 0.5)
·

qtfi
K3 + qtfi

+

K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.19)

In the case of the absence of relevance judgements in the test collections, these equa-

tions become simpler by assigning zero values for ri and Rq in the above equations. The

above equations after assigning zero values for ri and Rq will be given by:

BM1(Q,D) =
∑

term i ∈q

log
N − ni −+0.5

ni + 0.5
· qtfi
K3 + qtfi

(2.2.20)

BM11(Q,D) =
∑

term i ∈q

dtfi
K1 + dtfi

· log
N − ni −+0.5

ni + 0.5
·

qtfi
K3 + qtfi

+K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.21)
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BM15(Q,D) =
∑

term i ∈q

dtfi
(K1 · dl)/(Avgdl) + dtfi

· log
N − ni −+0.5

ni + 0.5
·

qtfi
K3 + qtfi

+

K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.22)

From BM11 and BM15, Robertson et. al. (Robertson and Zaragoza, 2009; Robertson

et al., 2004) proposed a new similarity matching function called BM25. This function

has been widely used in the literature (Cummins, 2008; Reed et al., 2006a). The BM25

means Best Match version 25 and its equation is given by:

BM25(Q,D) =
∑

term i ∈q

(K1 + 1) · dtfi
K1 · ((1− b) + b · dl

Avgdl
) + dtfi

·

log
(ri + 0.5)/(Rq − ri + 0.5)

(ni − ri + 0.5)/(N − ni −Rq + ri + 0.5)
· qtfi
K3 + qtfi

+

K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.23)

where K1, K2, K3 and b are constants that are usually chosen by a trial and error proce-

dure. The simplest form of BM25 by assigning zero values for Rq and ri is:

BM25(Q,D) =
∑

term i ∈q

(K1 + 1) · dtfi
K1 · ((1− b) + b · dl

Avgdl
) + dtfi

·

log
N − ni −+0.5

ni + 0.5
· qtfi
K3 + qtfi

+

K2 · ql ·
(Avgdl − dl)
(Avgdl + dl)

(2.2.24)

TREC tracks such as TREC-9 (Greengrass, 2000; Robertson and Walker, 2000), have
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determined the default values for K1 and b as 1.2 and 0.7 respectively, while K3 is often

set to either 0 or 1000 andK2 has often set to 0. Okapi-BM25 was the best term-weighting

function by tuning its constants to the suitable values based on the test collection. How-

ever, the need for adjusting the suitable constants will require the prior knowledge for

the relevance judgements of the queries with the test collections regardless of using the

relevance judgement in the BM25 equations. If the constants K1, K2 and K3 have zero

values in Okapi-BM25, the function will be an Inner Product similarity function in VSM

with Inverse Document Frequency (IDF) term-weighting scheme.

2.2.4 Language Models (LM)

The probabilistic model described in the previous section (Section 2.2.3) is based on the

term weight assignment in document indexing. Ponte and Croft (Ponte and Croft, 1998)

discussed the limitations of the probabilistic models. The probabilistic model considers

the elite document for the term in indexing, but it does not consider the distribution of

the terms in user queries. Thus, Ponte and Croft (Ponte and Croft, 1998) proposed the

probabilistic Language Model (LM). The LM is a probabilistic retrieval and indexing

model that considers the distribution of the index terms in the documents and the user

queries. It assumes that a document is a language sample as in speech language models.

Then, LM estimates the probabilities of the term weights in the document. After-that, the

query used to estimate the rank of the retrieved documents based on the query likelihood.

Ponte and Croft model is represented by the following equation:

p̂(Q|Md) =
∏
t∈Q

p̂(t|Md) ·
∏
t∈Q

(1.0− p̂(t|Md)) (2.2.25)

where p̂(Q|Md) is the probability matching function and t represents index terms existing

in the query Q, while p̂(t|Md) is the language weighting function for index term t in

document d. The p̂(t|Md) function has two parts. The first part is for the probability

weight for term t if the term exists in the query and the document d with term frequency

tf(t,d) > 0, while the second probability is for otherwise. The equation for the probability

weight function is as follows:
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p̂(t|Md) =

pml(t, d)(1.0−R̂t,d) · p̂avg(t)R̂t,d if tf(t,d) > 0

cft
cs

otherwise
(2.2.26)

In this equation, pml(t, d) represents the probability of the maximum likelihood of

the term t in the document d, while p̂avg(t) is the average probability of the maximum

likelihood of term t in the test collection. Whereas, R̂(t, d) is the geometric distribution

of term t in the document. The details of these parameters are given in the following

equations. Firstly, the maximum likelihood probability of term t in document d is defined

as:

p̂ml(t|Md) =
tf(t,d)

dld
(2.2.27)

where tf(t,d) represents the term frequency of term t in the document d which has the total

number of tokens dld. The average of the maximum likelihood values for term t in the

collection is given by:

p̂avg(t) =

∑
dt∈d

p̂ml(t|Md)

dft
(2.2.28)

where dft is the document frequency of term t in the collection (i.e. dft is the number

of documents from the test collection in which term t is exist). The equations 2.2.27

and 2.2.28 did not have the discrimination of term t between various documents. This

problem causes the weakness and the risk of distinguishing between retrieved documents.

To eliminate this risk, the probability of matching between the documents and the query

should include the occurrence of the term in the document. Ponte and Croft (Ponte and

Croft, 1998) proposed a geometric distribution to eliminate this risk. Their geometry

distribution is represented by the following equation:

R̂t,d =

(
1.0

(1.0 + f̄t)

)
·
(

f̄t
(1.0 + f̄t)

)tft,d
(2.2.29)

The symbol f̄t in equation 2.2.29 is the mean term frequency of term t in the docu-

ments where term t occurs. The second part of the equation 2.2.26 represents the weight

value of term t in case of the absence of that term in the document. This weight is the

fraction value of total number of term t occurrences in the collection cft divided by the
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collection size cs. Ponte and Croft compared their language model with TF-IDF term-

weighting function using TREC Disk 2 and 3. From the experimental results, their lan-

guage model outperformed slightly the TF-IDF. The largest improvement was obtained

when using TREC Disk 2 and 3 was 21.5% and the lowest improvement was -11.9%.

During the last 30 years, the language models have been improved for long and short doc-

uments and queries. This is because the problem of estimating an accurate matching re-

trieval value based on the existence and non-existence of the index terms in the short/long

documents/queries. These issues are called verbosity and scope. One of the state-of-

the-art language model called SPUD (Smoothed Polya Urn Document) model discussed

these problems (Cummins et al., 2015; Cummins, 2016). Cummins compared his SPUD

language model to Dirichlet-prior smoothing, BM25+, BM25, Jelinek-Mercer smooth-

ing and multi-aspect tf language models (Zhai and Lafferty, 2004; Cummins, 2016).

SPUD outperformed these techniques in terms of MAP and NDCG on TREC Robust-

2004, WT10g and Gov2 collections. The limitation of the language models is the choice

of the appropriate parameters (constants) values in each model to produce better perfor-

mance. Moreover, the verbosity and data sparseness caused by missing existing index

terms in the queries from the documents are the additional limitations to produce accurate

performance using the language models.

2.2.5 Evolutionary and Machine Learning Models (EML)

EML techniques have been widely used in IR (Li, 2014; Cordon et al., 2003; Cummins,

2008). These techniques are based on two different query and document representation

categories in the IR systems. The first representation category is the Term Vector Model

(TVM). The second category is the Feature Vector Model (FVM). In TVM, each document

or query is a vector of term weights. Examples of TVM are VSM and PM models. In

TVM, the EML techniques were used to optimise the document or the query weight rep-

resentation (Cordon et al., 2003; Robertson, Walker, Beaulieu, Gatford and Payne, 1995;

Robertson et al., 1994). On the other hand, the FVM category uses query-document pair

vector of features. These features represent the relation between a query with a document

(Li, 2014; Liu, 2009; Qin et al., 2010). Examples of these features are the TF-IDF, LM,

Okapi, BM25 features. The other features that represent the reputation and the business
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importance of the document on the web. Chapters 4 and 6 discuss the EML on TVM and

FVM models.

2.3 Evolution Strategies Overview

Evolution Strategy (ES) is an adaptive Evolutionary Algorithm (EA) which imitates the

natural evolution principles. The ES technique can be considered as a scalable alterna-

tive to Reinforcement Learning technique with which the optimisation problem converges

to near optimal solutions in less runtime than other evolutionary computation techniques

(Salimans et al., 2017; Beyer and Schwefel, 2002). This technique was developed in

Germany in 1960 and it is widely used in various optimisation applications (Back et al.,

2013; Schwefel, 1965). One of these library packages in data mining is the SHARK li-

brary package (Igel et al., 2008). In the SHARK package, the (1+1)-ES is used. To the

best of our knowledge, the ES-Rank and the (1+1)-Evolutionary Gradient Strategy for op-

timising the ranking model and evolving global term weight presented later in this thesis

are the first approaches for optimising IR Systems in FVM and TVM. The ES technique

will be discussed in more details in Section 2.3.2. The following section presents the EA

in general.

2.3.1 Evolutionary Algorithms (EAs)

Algorithm 1: Evolutionary Algorithm Pseudo-Code.
1 Initialisation individual1, ..., individualµ
2 while Stop criterion do
3 for j = 1 to λ do
4 Choose at random ρ parent individuals;
5 recombination→ individualoj ;
6 mutate individualoj ;
7 evaluate individualoj → f(individualoj );
8 end
9 select µ parent individuals from {individualoj}

ρ

j=1
→ {individualj}µj=1;

10 end

EAs belong to the class of heuristic optimisation methods. They are based on bi-

ological assumptions of evolution selection. EAs are based on three main processes
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which are: recombination, mutation and selection. Algorithm 1 shows the general

overview of EAs. The EA has a set of {individual1, ..., individualµ} of parent and a

set {individualo1, ..., individualoµ} of offspring individuals or candidate solutions. These

solutions undergo recombination and mutation changes and then selection process for the

best offspring proposed solutions. Algorithm 1 starts with the initialisation procedure for

the parent candidate solutions as in step 1. Then, steps 2 to 10 show the generation or the

evolving loop to optimise the candidate solutions. Each iteration in the generation loop is

called an evolving iteration and it starts with selecting ρ parent individuals (candidate so-

lutions) to undergo the recombination and mutation to produce a new offspring candidate

solution as in steps 4 to 6 in the algorithm. Then, a fitness function f(.) is used to evaluate

the performance of the offspring as solvers for the problem as in step 7. Following to the

evaluation process, the best offspring individuals are chosen as parent individuals for the

next evolving iteration. These steps are repeated until stop criterion is reached. The stop

criterion can be the number of iteration or a threshold based on the fitness values. Section

2.3.2 presents the details of the recombination, mutation and selection in ES technique.

2.3.2 Evolution Strategies Techniques

The early application of ES technique was (1+1)-ES which consists of two individu-

als. One of them is the parent individual, which produces one offspring individual each

of multiple generations (iterations). Each individual is represented by a pair of float-

valued vectors indi = (X, σ), where i = parent for parent or current individual and

i = offspring for offspring individual. The first float-valued vector X represents the

proposed solution in the search problem space. It is also called the proposed solution

chromosome. Thus, the parent proposed solutions chromosome Xparent is for the par-

ent individual indparent = (Xparent, σ), while the offspring chromosome Xoffspring is for

the offspring individual indoffspring = (Xoffspring, σ). The second float-valued vector σ

represents the standard deviations of random Gaussian numbers that are used in the muta-

tions of the current parent chromosome to produce the new offspring chromosome. This

mutation procedure can be represented by the following equation:

Xoffspring = Xparent + N(0, σ), (2.3.30)
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where N(0, σ) represents a vector of random Gaussian numbers with zero means and

standard deviation equal to σ. Examining the quality of the parent and offspring chro-

mosomes (the evolved solutions) is the next step in each evolving iteration in (1+1)-ES

technique. The function used to check the quality of the proposed solution chromosomes

is called the fitness or the objective function. In IR problem domain, the accuracy and

the similarity matching functions such as Mean Average Precision, Precision, Error Rate,

and Cosine Similarity among others (Baeza-Yates and Ribeiro-Neto, 2011) are used as

the fitness functions for evolutionary and machine learning techniques (Li, 2014; Cordon

et al., 2003; Cummins, 2008). For example, the Cosine Similarity(d, q) fitness function

is defined by:

Cosine Similarity(d, q) =
Σn
i=1Wid · Wiq√

Σn
i=1W

2
id · Σn

i=1W
2
iq

(2.3.31)

In the above equation, Cosine Similarity(d, q) is the similarity function between the

query q and document d vectors, n is the number of index terms that exist in the document

d and query q,Wid is the weight of term i in document d andWiq is the weight of the same

term i in query q. The optimisation target for (1+1)-ES is to find an evolved document

representation for the relevant document d corresponding to its query q. Assuming that

n = 2 in Equation 2.3.31, the document d and the query q have only index terms t1

and t2. The query q vector has weight vector representation as q = (0.25, 0.35). For

the current evolved iteration j in (1+1)-ES, the proposed current evolved representation

(parent chromosome) for d is wparentj1d = 0 and w
parentj
2d = 0.45. If the σ vector in

equation 2.3.30 is σ = (1, 1). Then, the Offspring chromosome of weight representations

after mutation in the current evolving iteration is given by:

w
offspringj
1d = w

parentj
1d + N(0, 1) = 0 + 0.4 = 0.4,

w
offspringj
2d = w

parentj
2d + N(0, 1) = 0.45 − 0.1 = 0.35 (2.3.32)

where N(0,1) is a random Gaussian number with zero mean and 1 as standard deviation.

The cosine similarity functions for the parent and offspring chromosomes are given by:
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Cosine Similarity(dparentj , q) = 0.814,

Cosine Similarity(dOffspringj , q) = 0.9733 (2.3.33)

From Equation 2.3.33, the fitness function value for the offspring chromosome

dOffspringj is higher than the fitness function value for the parent chromosome dparentj .

In other words, if the offspring chromosome which represents the relevant document D is

more similar to the query q than the parent chromosome, the parent chromosome dparentj

is replaced by the offspring chromosome dOffspringj for the next evolving iteration j + 1

in the ES technique. In (1+1)-ES, the standard deviation vector σ = (σ1, σ2, ..., σn)

of the mutation is usually updated in each iteration according to the performance of

the offspring chromosome. Moreover, the success rule differs in each fitness function

in the hope of achieving an increased performance of the search for converging to a

better evolved solution. The first success rule for the corridor model and sphere model

was proposed by Rechenberg (Beyer and Schwefel, 2002). This success rule is called

1/5 success rule. This rule is used to reduce or increase the standard deviation vector

components σ = (σ1, σ2, ..., σn) based on the real value 1/5 for the sphere or corridor

fitness functions using (1+1)-ES.

The multi-membered ES differs from the previous (1+1)-ES in the population size

(the number of individuals) in each iteration (generation) (Beyer and Schwefel, 2002;

Schwefel, 1981). Furthermore, each individual has a random probability to be selected

for mating. Such multi-membered ES also use a recombination procedure which is

similar to crossover in Genetic Algorithms. The most well known multi-membered ES

techniques are: (µ+λ)−ES and (µ, λ)−ES. In the (µ+λ)−ES, the parent individuals

µ are used to create λ offspring individuals in each evolving generation, where λ ≥ 1.

The worst λ individuals are discarded out of all (µ + λ) individuals. Then, the best µ

individuals are used as parent individuals for the next generation. On the other hand,

the (µ, λ) − ES has a different selection procedure. The parent individuals µ are used

to create λ offspring individuals in each evolving generation. Then, parent individuals
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are discarded and the selection of the best µ individuals from the λ offspring are used as

the parent individuals for the next generation. Similar to (1+1)-ES, the fitness functions

are represented as (µ + λ) − ES and (µ, λ) − ES to check the quality of the proposed

evolved solutions. The standard deviations of the mutation parameters are no longer

constant, nor changed by a deterministic rule such as the ”1/5 success rule”. They are

incorporated in the individual evolution process. For creating the offspring individuals

from parent individuals, the ES technique works as follows:

1) The algorithm selects two or more individuals for recombination. Assuming that

the following two individual are selected:

(x1, σ1) = ((x1
1, ..., x

1
n), (σ1

1, ..., σ
1
n)) and

(x2, σ2) = ((x2
1, ..., x

2
n), (σ2

1, ..., σ
2
n)) (2.3.34)

where x1 and x2 are the chromosomes for individuals one and two, while σ1 and σ2 are

the standard deviation step-sizes vectors of the mutations in individuals one and two

respectively. There are two well-known ways of applying the recombination (crossover)

operator:

A) Discrete recombination which produces the new offspring

(x′, σ′) = ((xpop11 , ..., xpopnn ), (σpop11 , ..., σpopnn )), (2.3.35)

where popi = 1 or popi = 2, while i = 1....n. Thus, each component was selected from

individual one or individual two.

B) Intermediate recombination is similar to the uniform crossover in Genetic Algo-

rithm (GA) (Le, 2011). When using the intermediate recombination, the new offspring

becomes:

(x′, σ′) = (((x1
1 + x2

1)/2, ..., (x1
n + x2

n)/2), ((σ1
1 + σ2

1)/2, ..., (σ1
n + σ2

n)/2)). (2.3.36)
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These recombination types can be used to converge the proposed evolved solutions to

the global optimal solutions. They can be applied on each of the two individual pairs or

multiple individuals to produce a new population of offspring individuals.

2) The following procedure is used for mutation of the offspring (x′, σ′) obtained from

the recombination. The mutation is done as follows:

σOffspring = σ′ · eN(0,∆σ′), and

xOffspring = x′ +N(0, σOffspring) (2.3.37)

where ∆σ′ is the variation parameter value in the mutation standard deviation. For con-

trolling the convergence rate, Schwefel proposed an additional controlling parameter

(Beyer and Schwefel, 2002). Assuming that the additional control parameter is θ and

each individual is (x, σ, θ). The mutation Equation 2.3.37 becomes as follows:

σOffspring = σ′ · eN(0,∆σ′),

θOffspring = θ′ +N(0,∆θ′), and

xOffspring = x′ + C(0, σOffspring, θOffspring) (2.3.38)

where C(0, σOffspring, θOffspring) is a vector of Random Gaussian numbers with zero

mean and appropriate probability density. Recently, Hansen proposed the use of the co-

variance matrix adaptation to adapt and to control the convergence rate (Hansen, 2016;

Back et al., 2013). This is called Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES). The historical developments of (1+1)-ES to the the state-of-the-art ES (p-sep-

lmm-CMA-ES) is presented in (Back et al., 2013). However, the problem memory size

and the run-time are issues in CMA-ES. This is because the size of Covariance Matrix and

its calculations in each evolving iteration require more memory and more computational

runtime. Thus, recent research (Back et al., 2013) proposed (1+1)-CMA-ES with various

adaptations to reduce the problem memory size and the computational runtime. Christian
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Igel et al. proved that (1+1)-Cholesky-CMA-ES is more efficient than multi-membered

CMA-ES in some unimodal fitness functions (Ackley, Rastrigin and Griewangk) (Igel

et al., 2006). Recently, Ilya Loshchilov proposed a computationally efficient limited mem-

ory CMA-ES for large scale optimisation technique (LM-CMA-ES) (Loshchilov, 2014).

In this technique, vectors of random weights are used for the adaptation of the mutation

and convergence rate. One of these vectors is a vector of random Ziggurat numbers. The

Ziggurat random numbers are positive random Gaussian numbers within the range be-

tween 0 and 1. This type of random number is also used in (1+1)-Evolutionary Gradient

Strategy for evolving global weight technique 6. The use of Gradient step-size helps to

give more control in the converging rate of the new fitness functions such as Cumulative

Cosine Similarity. The proposed ES techniques in this thesis are presented in details in

Chapters 6 and 7.

2.4 Chapter Summary

This chapter presented the background material for IR and ES. It starts with the IR archi-

tecture followed by the various IR models such as Boolean, vector space and language

models. Then, the chapter introduced the introductory material for the EML techniques

in IR. Finally, the development of ES is presented in the last section (Section 2.3). The

following chapter introduces the test benchmarks with the various type of creation them.
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Test Collections

This chapter describes the dataset types used for IR research. It also presents the vari-

ous paradigms used for creating these IR benchmarks. There are two types of IR dataset

benchmarks. The first type is textual test collections, the second type is distilled fully

judged datasets from the textual test collections. The rest of this chapter provides knowl-

edge about the paradigms used for creating these benchmarks.

3.1 Textual Test Collections

The IR research community started to create test collections to evaluate the performance

of IR systems around 60 years ago (Cleverdon, 1960; Sanderson, 2010). The creation of

test collections was a very expensive and time-consuming process. The reason is that each

test collection requires relevance judgement values to measure the quality of the IR sys-

tems. The relevance judgement values require hiring experts in the test collection domain

(collection topic) and training them for how they can assess the test collections. After the

assessing process, the relevance judgement values and the proposed test collection should

be validated by multiple IR systems. The validation process confirms that the relevance

judgement values are accurate and represent the actual expert user interactions. Thus, the

assessing and the validation processes require more money, time and effort for having the

accurate relevance judgement values. Furthermore, the relevance judgement values were

required to build intelligent IR systems using EML techniques and also for evaluating the

IR research. The developments of test collections were static test collections in which
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the document set and the query set were static (not changeable by time). It means that

the number of documents and queries in the collection are constant numbers. These con-

stant values are two of the static characteristics of the test collections. The IR research

was using these static characteristics of the test collections for producing various TWS.

Thus, the performance of the TWS is limited to the static characteristics of the collection

at the beginning of IR system. This causes that there is a vital demand for re-weighting

the document-term representation in the case of dynamic variation by adding/removing

documents from the collection for keeping the same level of IR system effectiveness.

However, the reason for applying IR research on static standardised test collections is that

the standardised test collections are lower regarding cost, effort and more accurate re-

garding relevance judgement values to compare IR research contributions than applying

IR research on online dynamic IR test collections. The noise and bias in historical user

interaction data in online IR systems cause the limitation of having accurate relevance

judgement values (Kharitonov, 2016). In other words, the historical user interaction data

such as number of user clicks represent the online relevance judgement values (implicit

relevance judgement values). The noise and bias in these implicit relevance judgement

values in online IR test collections cause the limitation of having an accurate and reliable

test collection evaluation in online IR systems (Li, 2014; Kharitonov, 2016; Hofmann,

2013). The user familiarity with IR system and education level are two of the parame-

ters that cause the bias and noise in the implicit relevance judgement (Al-Maskari and

Sanderson, 2011; Lorigo et al., 2006). Thus, the IR researchers (Hofmann, 2013; Schuth,

2016) tended to do their offline and online IR research on standardised test collections that

judged by experts and validated by multiple IR systems. To the best of our knowledge,

there are two well-known paradigms for creating standardised textual test collections. The

first paradigm is the Cranfield paradigm and the second paradigm is the Pooling paradigm.

The following sections describe these two paradigms in more details. Then, the distilled

fully judged datasets are described.

3.1.1 Cranfield Paradigm

Cleverdon and his Cranfield University research team started in early 1960 to evaluate

their IR system using their test collection (Cleverdon, 1960; Sanderson, 2010). They
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created a test collection called Cranfield I and then they extended it to the second version

called Cranfield II. At present, Cranfield II is called Cranfield collection. The Cranfield

was composed of 1,400 documents (titles, author, names and abstracts) derived from the

reference lists of around 200 recent published research papers at that time. The authors

of each of those published papers were asked to write a question for each reference cited

in their papers. These questions became the query set of the test collection. The authors

were also asked to provide the relevance judgement values from their papers and their

papers reference lists. The relevance judgement values used a scale from 1 to 5 to reflect

the relevance degree of the papers to the query set (authors questions). Cleverdon’s team

checked all documents against all the questions. Furthermore, they asked the authors

if they can provide more relevant documents corresponding to the query set. Intensive

research for more than 10 years on Cranfield collection was done by Cleverdon research

team before publishing the Cranfield collection as an open access data resource for other

researchers after validating and evaluating their sponsored research (Cleverdon, 1960).

Other test Collections Using the Cranfield Paradigm

Many test collections have been created using the Cranfield Paradigm. Those collections

are now widely used in IR research using EML techniques (Cordon et al., 2003; Cum-

mins, 2008). Table 3.1 shows a list of the well-known test collections created with the

Cranfield Paradigm (Hersh et al., 1994; Glassgow, 2014). Each test collection has three

main components: a set of documents, a set of queries and the relevance judgement file.

The creation of these collections and their relevance judgements has been done using dif-

ferent approaches including sampling (Cranfield, NPL, CACM, CISI and Medline) and

extracting from real IR system (Ohsumed) (Soboroff, 2007; Hersh et al., 1994). The sam-

pling procedure means the documents were chosen from published paper abstracts and

their authors give samples or example of user queries, while Ohusmed were created by

experts in the field with Boolean searching in MEDLINE system and validated by physi-

cians. The choice of Boolean search for Ohsumed creation reduces the barrier of bias

to any term-weighting scheme used in the relevance judgement procedure by the expert

physicians.

Table 3.1 shows the topic domain of the test collection, the number of documents and
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Table 3.1: Cranfield Paradigm Test Collections General Characteristics.

ID Description
No. of
Docs.

No. of
Queries

Cranfield Aeronautical engineering abstracts 1,400 225

Ohsumed Clinically-Oriented MEDLINE subset 348,566 105

NPL Electrical Engineering abstracts 11,429 93

CACM Computer Science ACM abstracts 3,200 52

CISI Information Science abstracts 1,460 76
Medline Biomedicine abstracts 1,033 30

the number of queries in the test collection. Figures A.1 and A.2 in Appendix A show an

example of a document and a query in the Cranfield collection. Each document contains

5 fields and each field is identified by a symbol. The first field (.I) is the document

number. The second field (.T) is the title of the paper. The paper’s author names are

preceded by (.A) symbol, while the paper publisher and the publishing date are proceeded

by (.B) symbol. Finally, the paper abstract content is preceded by the symbol (.W). Each

query in the Cranfield collection consists of two fields. The symbols (.I) and (.W) are the

query number and the query textual content respectively. For each test collection, there

are specific symbols to identify each document and query fields. The details of each

document and query symbols are provided in (Hersh et al., 1994; Glassgow, 2014). The

largest test collection from table 3.1 is the Ohsumed collection. This collection is a subset

of MEDLINE which is a database of medical publications. The Ohsumed collection

consists of 348,566 documents (out of over 7 million records) from 270 medical journals

during the period of 1987-1991. It includes a document identifier, title, abstract, MeSH

index terms, author, content, and publication details. In addition, Ohusmed contains 106

queries and each query has a query identifier, patient information and information request

(query’s content).

The test collections produced by Cranfield paradigm are reliable and realistic test col-

lections for evaluating IR system accurately but these collections cost more effort, time

and money than have been created using Pooling paradigm (Sanderson, 2010). More-

over, it is difficult and it is not feasible for having very large test collections produced

by Cranfield paradigm. However, the reliable of relevance judgement values to repre-
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sent expert users in the Cranfield collections was the reason of the extensive IR research

based on this type of test collection. Thus, the test collections that illustrated in table 3.1

were used in most of mathematical, probabilistic and evolutionary computation research

to improve IR system as in (Cordon et al., 2003; Cummins, 2008), but the limitation of

Cranfield Paradigm test collections as supervised EML test collections is discussed in

Section 3.1.3.

3.1.2 Pooling Paradigm

The Pooling technique has been widely used in TREC tracks to evaluate the test collec-

tions before submitting it as test benchmarks for IR researchers (TREC, 2016a). The

Pooling Paradigm starts with crawling the web or a specific web domain for creating the

document set of the test collection. Then, TREC organiser committee uses their IR sys-

tem with the crawled document set and expert human annotators to produce the query set

and its relevance judgement. It begins with using a retrieval method of their IR system for

retrieving the documents responding to the queries (topics) created by the expert annota-

tors. Then, the top-k documents retrieved (k pool depth) are judged by the TREC human

expert annotators to determine the relevant and irrelevant documents to each query. Fi-

nally, the test collection becomes ready for TREC track competitions by using multiple

IR systems to validate the test collections and the research outcomes. (Buckley et al.,

2007) argued that the test collection size affects the degree of bias related to the relevance

judgement values. If the test collection is large the pool size should be large respectively

to provide an accurate relevance judgement for each query. This issue inspired the need

for various statistical analysis of the results using various retrieval methods on pooling

benchmarks such as in TREC Disks 4 and 5 (Soboroff, 2007; Sanderson, 2010). The

TREC Disks 4 and 5, .GOV, ClueWeb09 and ClueWeb12 test collections are well-known

document collections used in various TREC and SIGIR tracks (TREC, 2016b; Soboroff

et al., 2003; Habernal et al., 2016). The TREC and SIGIR are the most well-known in-

ternational conferences that produce standardised test collections for IR research. The

most widely used standardised pooling collection from TREC and SIGIR is TREC Disk

4 and 5, while ClueWeb12 is the newest textual pooling test collection. The range size

of TREC Disks 4 and 5 is about half a million documents, while the set of queries and
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their relevance judgements varied between various TREC tracks (TREC, 2016b,c). The

TREC Disks 4 and 5 document set was crawled and created from news and Broadcast

websites such as Financial Times website for FT document set in TREC Disks 4 and 5.

They were combined by multiple relevance judgement set and query set for multiple pur-

pose of IR research in TREC tracks such as TREC 1 to 8, Robust-2003 and Robust-2004

(TREC, 2016b,c). ClueWeb12 has been used in TREC 2014 and contains 733,019,372

pages acting as documents with 27.3 Terabytes of storage on hard disks (TREC, 2016d;

Lemur, 2016a). The comparison between TREC Disks 4 and 5 with ClueWeb12 shows

that the TREC Disks 4 and 5 test collections are more accurate for evaluating IR research

than ClueWeb12 (Urbano, 2016). The common research issues in the ClueWeb12 to act

as real IR test collection are as follows:

• ClueWeb12 is a pooling judged collection which has only 50 queries in the query

set. However, the small pool size compared to the collection size causes the bias to

the retrieval method used to assess the relevance judgement of the test collection as

discussed above. The total unique number of relevant/irrelevant documents existing

in relevance judgement for ClueWeb12 of Web Track 2014 is only 5666 documents,

while the document set contains 733,019,372 documents. This confirm the limita-

tion and bias for having an accurate evaluation with small pool size containing only

5666 relevant/irrelevant documents of 733,019,372 documents existing in the doc-

ument set. This means that there may be a lot of unjudged relevant documents in

the test collection which are corresponding to some queries in the query set but they

are not appear in the relevance judgement file. The unjudged relevant documents

will be considered as irrelevant documents in the evaluation procedure of a new IR

model which causes inaccurate evaluation for IR research. On the other side, TREC

Disks 4 and 5 were judged and evaluated for various TREC tracks by multiple IR

systems. The pool size for these tracks are reasonable comparing to the document

set size. According to the statistical analysis based on results produced by multiple

IR systems in (Urbano, 2016), the Disks 4 and 5 with the relevance judgement pro-

duced in Robust 2004 track are the most stable and accurate pooling test collection

for assessing and comparing between IR research.
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Table 3.2: Characteristics of the Pooling test Collections Used in this Thesis.

ID Description
No. of
Docs

No. of
Queries

TREC Disks 4&5 (Ro-
bust 2004)

News and Broadcast Web-
Pages

472525 230

TREC Disks 4&5
(Crowdsource 2012)

News and Broadcast Web-
Pages

18260 10

• ClueWeb12 document set has been collected using five instances of the Internet

Archive Heritrix web crawler that were running on five Dell PowerEdge R410 ma-

chines with 64GB RAM (Lemur, 2016b). Furthermore, a huge computational cost

will be required for adapting ClueWeb12 to be a fully judged collection for a large

number of queries.

In this thesis, TREC Robust 2004 and Crowdsource 2012 relevance judgements for

Disks 4 and 5 and Cranfield paradigm test collections were used in Chapter 5 and 6

(TREC, 2004; Smucker et al., 2012; Hersh et al., 1994; Glassgow, 2014). The reason

is that they have stable and accurate relevance judgements between various IR systems

which are proved and validated by (Urbano, 2016), TREC tracks (TREC, 2016b,c) and

the previous IR research (Cleverdon, 1960; Sanderson, 2010). In addition, the Cran-

field paradigm collections are the most suitable test collections to simulate the real expert

user feedback without bias. Moreover, they can be used on normal PC for IR systems.

The detailed pooled test collection characteristics used in this thesis are shown in ta-

ble 3.2. On the other hand, we identified the limitation of TREC Disks 4 and 5, and

Cranfield Paradigm test collections to act as supervised EML datasets. This limitation is

discussed in Section 3.1.3. These collections can only simulate the early stage of the IR

test collections before having extensive relevance feedback by user interactions for un-

supervised learning techniques. The later stage of IR systems can use supervised EML

technique when having fully judged test collection from extensive historical user interac-

tions. The fully judged collections can be used to extract fully judged query-document

pairs for applying supervised Learning to Rank and creating ranking models for query

auto-completion searching (Kharitonov, 2016; Liu et al., 2007; Qin et al., 2010).
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3.1.3 Analysis of Textual Collections for Evolving TWS

This section presents the motivation for having non-learning (statistical) IR approaches

instead of Evolutionary and Machine Learning (EML) techniques for evolving TWS at

the early stage of the establishing the IR system. Evolutionary computation approaches

have been applied for evolving term weights or evolving a TWS such as in section

4.1. The relevance judgement is the set of queries for the test collection and their

corresponding relevant documents from the collection. The objective functions of the

learning IR approaches use relevance judgements to check the quality of the evolved

solutions. However, as mentioned earlier, real and test IR test collections are partially

judged as it is not feasible to have fully judged test collections at the beginning of any IR

system (Qin et al., 2010). Consequently, EML techniques for evolving TWS are limited

because the trained queries and their corresponding relevant documents do not cover the

whole term space of the collection.

In the evolving TWS and term weights research, the EML techniques should be

trained using queries and the corresponding relevant documents containing the whole

term space (index terms) that exists in the collection (see section 4.1.1). Then, the IR

system should be tested with a test dataset different to those used in the learning process

(training dataset). To the best of our knowledge, it appears that works applying evolution-

ary computation to IR systems use the same training set from the learning stage to then

test the candidate solution that represents the documents. The index terms that do not ex-

ist in relevant documents are also given random weights. Hence, these index terms cannot

be judged by the fitness function because they do not exist in relevant documents nor the

query set. Thus, the number of random weights created in the evolutionary learning pro-

cess are not really applicable to measure the relevancy for any query. Moreover, evolving

term-weighting function using EML is based on the collection or relevance judgement

values that were used in the evolving process. Thus, the evolved term-weighting function

can not be generalised as the optimal solution for all textual collection. The ideal solu-

tion for this issue is the EML technique should be applied for every textual collection.

However, there is a need for using a term-weighting function (TWS) before evolving it to

gather the user relevance judgement values by establishing IR system. Thus, optimising
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document representation regarding term-weights rather evolving TWS itself after estab-

lishing IR system and gathering the relevance judgement values is the ideal solution for

this issue. Although, most of the documents in the test collection have no relevance val-

ues to optimise them using EML techniques at the beginning of IR system. This issue

is not only for evolving TWS and term-weights but also for using probabilistic and lan-

guage models to establish IR systems (see Section 2.2.4). This is because probabilistic

and language models are probabilistic models that rely on the relevance judgement dis-

tribution between the relevant documents and their corresponding queries to propose its

TWS. The problem with evolving TWS and term weights is likely to arise in any test

collection created at the beginning of establishing IR system.

Table 3.3: Test Collections General Basic Characteristics.
ID Description No. of Docs. No. of Queries
Cranfield Aeronautical engineering abstracts 1,400 225
Ohsumed Clinically-Oriented MEDLINE subset 348,566 105
NPL Electrical Engineering abstracts 11,429 93
CACM Computer Science ACM abstracts 3,200 52
CISI Information Science abstracts 1,460 76
Medline Biomedicine abstracts 1,033 30
FBIS Foreign Broadcast Information Service 130,471 172
LATIMES Los Angeles Times 131,896 230
FT Financial Times Limited 210,158 230

On the other hand, Table 3.3 lists the eight test collections (see Section 3.1) used

in our analysis and that have also been used in most literature for evolving TWS and

term weights (Cordon et al., 2003; Cummins, 2008). Each test collection has three main

components: a set of documents, a set of queries and the relevance judgement file. The

creation of these collections and their relevance judgements has been done using different

approaches including sampling (Cranfield paradigm), extracting from real IR system and

pooling paradigm (Soboroff, 2007; Hersh et al., 1994). FBIS, FT and LATIMES were

the most recent test collections used in evolving local and global term weights in IR

(Cummins, 2008). These test collections are the test collections existing in TREC Disk 4

and 5 with Robust relevance judgement values as discussed in Section 3.1.2. A number

of additional characteristics about the test collection was not taken into consideration for

evolving TWS or evolving term weights. Table 3.4 gives the values for such additional

characteristics which are defined as follows.

NoUR is the number of unique occurrences of relevant documents that exist in the test
October 30, 2017



3.1. Textual Test Collections 59

collection.

NoDR is the number of duplicates occurrences of relevant documents between queries

in the query set.

NoInDC is the total number of index terms that exist in the whole test collection.

NoInDr is the number of unique index terms that exist in the relevant documents set.

NoInNR is the number of index terms that were not covered by relevance judgement

and is given by the difference NoInD − NoInDr. This is the number of index terms

that get a random weights in documents representations without testing them with

the objective function.

Table 3.4: Characteristics of Test Collections to Consider When Evolving TWS.
ID NoUR NoDR NoInDC NoInDr NoInNR

Cranfield 924 914 5,222 4,236 986
Ohsumed 4,660 177 227,616 22,760 204,856

NPL 1,735 348 7,697 3,536 4161
CACM 555 241 7,154 3,189 3,965

CISI 1,162 1,952 6,643 5,709 934
Medline 696 0 8,702 6,907 1,795

FBIS 4,506 42,873 177,065 41,272 135,793
LATIMES 4,683 497 211,909 56,255 155,654

FT 5,658 55,819 287,876 45,564 242,312

Table 3.4 shows characteristics for the collections that were created with a pooling

technique, such as FBIS, FT and LATIMES collections and with Cranfield (Sampling)

technique such as Cranfield and Ohsumed. From this table, the majority of index terms

that exist in the test collections were not covered by the relevance judgements. Thus,

the majority of index terms of the test collections did not exist in the queries nor their

corresponding relevant/irrelevant documents. As discussed above, this is an issue for

evolved TWS because the trained queries and their corresponding relevant documents do

not cover the whole term space of the collection. Hence, it is an argument that having

non-learning IR approaches instead of learning ones at the start of building IR system is

vital. Then, the relevance feedback can be gathered and used for improving the system by

partially learning model as described in Chapter 6.
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3.2 Distilled (LETOR) Benchmark Datasets

From the previous paradigms, (Liu et al., 2007; Qin et al., 2010) proposed producing

fully judged distilled benchmark datasets called LETOR datasets. They used sampled

and pooled test collections to create LETOR datasets. These datasets contain a feature

vector for each query-document pair rather than textual document/query and they were

used for the Learning to Rank (LTR) problem. Each LETOR dataset usually consists

of query-document pairs for a large number of queries (Qin et al., 2010). Table 3.5

shows the representation of several query-document pairs in LETOR datasets. Each

row (query-document pair vector) contains a relevance label indicating the relevance

degree of the document for a query. In most cases, the relevance labels have one of

three values which are: 2 means the query is high relevant to the document, 1 means the

query is relevant to the document and 0 means the query is irrelevant to the document.

There is also a query identifier (id) indicating the corresponding query number for each

query-document pair. The feature vector refers to M features such as Term-Weighting

Scores (e.g. TF-IDF, Okapi-BM25 and Language Models (Qin et al., 2010)), PageRank,

Host Server Importance and other features associated to the similarity matching between

the query and the document such as BM25. The query-document pair also contains

features represent the recent IR research added in SIGIR conference papers such as

Language Model with Absolute Discounted Smoothing (LMIR.ABS), Language Model

with Jelinek-Mercer smoothing (LMIR.JM), Language Model with Bayesian smoothing

using Dirichlet priors (LMIR.DIR) and User Click features (Liu et al., 2007; Qin et al.,

2010; Qin and Liu, 2013; Chen and Goodman, 1996; Chuklin et al., 2015). Each feature

in the Feature Vector has the form: FeatureID:FeatureValue, where FeatureValue contains

the contribution value of this feature in the query-document pair. The whole features

contribute to identify the relevance level of the document to the query.

The dataset itself is divided into N folds (usually it contains five folds) and each fold

consists of training, validation and testing set of the query-document pairs. These folds

are useful for examining the LTR algorithm behaviour and its predictive performance

by applying it on test sets different to the training sets. The creation of LETOR dataset

starts with choosing a textual test collection usually from TREC test collections such
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as Ohsumed, .Gov and .Gov2 collections. Then, the relevant and irrelevant documents

with their corresponding queries that exist in the relevance judgement were selected as

a fully judged test collection. This process is called document sampling or document

selection. There was another sampling method by extracting the documents and their cor-

responding queries from a real search engine such as Microsoft Bing datasets. Following

to this selection process, the selected fully judged test collections were used to extract

low-level features such term frequency in each query with its relevant/irrelevant docu-

ment and high-level feature such BM25 similarity matching between each query with its

relevant/irrelevant document. They also were used to create hybrid features such as men-

tioned in recent SIGIR and TREC papers. The purpose of having this list of features in

each query-document pair vector is to simulate the actual query-document pair represen-

tation in search engines with the recent research work published in the well-known IR

conferences such as SIGIR and TREC conference. On the other hand, the creation of

feature list in Microsoft Bing datasets was different because the features were extracted

from real Microsoft Bing search engine dataset. The search engines usually use multiple

retrieval and representation models (low-level, high-level and hybrid features) in their sys-

tem for effective performance. This is because depending on only one IR model in their

systems is not sufficient for effective and efficient performance. More details about LTR

datasets creation as query-document pairs are in (Qin and Liu, 2013; Qin et al., 2010).

The LETOR datasets represent the later stage of the IR system after the test collections

become fully judged and they becomes ready for applying supervised EML techniques

for ranking retrieved documents problem.
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Figure 3.1: Learning to Rank (LTR) approach architecture as discussed in Liu (2009).

Table 3.5: Learning to Rank (LTR) Query-Document Pairs Representation
Relevance Label QueryId:id Feature Vector

1 qid:1 1:0.1 2:0.8 4:0.5 .....N:M
0 qid:1 1:0.9 2:0.6 4:0.2 .....N:M
1 qid:1 1:0.1 2:0.8 4:0.5 .....N:M
1 qid:2 1:0.2 2:0.4 4:0.5 .....N:M
0 qid:2 1:0.3 2:0.7 4:0.3 .....N:M
1 qid:3 1:0.4 2:0.3 4:0.5 .....N:M

In recent years, LTR as a supervised learning-based method has been widely used in

IR to produce ranking functions based on the training datasets. The ranking function is

used to rank the retrieved documents in response to the user query. Figure 3.1 shows the

general LTR approach architecture that most learning-based approaches follow to deal

with the IR ranking problem. It starts with the training set made of query-document

pairs being the input to a computational intelligence or a machine learning technique (Li,

2014). The ranking model or ranking function is created and then used to rank the search

results for the user queries. The ranking model can also be used in the test phase to

measure the predictive performance of the ranking algorithm on the test datasets. Then,

the resulting ranking system will produce an ordered list of documents retrieved from the

test collection in response to the user search query. The LTR datasets represent the later

stage of IR system test collection when they become fully judged datasets and IR systems
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uses LTR techniques for retrieving document responding to user queries. The next section

reviews the LTR benchmark datasets used in this thesis in order to set the context for the

method proposed.

3.2.1 LETOR 3 Datasets

LETOR 3 datasets were created from different two test collections: Ohsumed and .Gov

corpus. The .Gov collection were used in TREC 2003 and TREC 2004 Web tracks. The

query sets of these tracks were selected for LETOR 3. The .Gov collection itself was

collected from crawling the .Gov US domain on January, 2002. This collection uses

two query sets to create six LTR datasets. In other words, each TREC Web track query

set is used for creating three different LTR datasets. These datasets are related to the

Topic Distillation (TD), Homepage Finding (HP) and Named Page finding (NP). These

three categories were used in TREC 2003 and TREC 2004 Web track competitions. The

TD aims to create a dataset from the list of documents on the same topic domains of the

queries. The HP category is related to creating test collection using query set home pages,

while the NP is related to creating test collection from the web pages that have names

identical to the queries contents. The details of LETOR 3 TREC datasets are shown in

Table 3.6. These datasets are called TD2003, HP2003, NP2003, TD2004, HP2004 and

NP2004. The limitation of these datasets is the number of queries in each dataset is

smaller than number of queries in LETOR 4 datasets. However, the number of features in

each query-document pair in .Gov datasets is 64 features. These features includes more

feature than LETOR 4 datasets. The feature list includes the similar low-level, high-level

and hybrid features that exist in LETOR 4 and Microsoft Bing datasets. The feature low-

level and high-level features represent the characteristics of the various parts existing in

the document (webpage). The feature list of the query-document pair is shown in Table

A.3 in Appendix A.

Finally, the last LETOR 3 dataset is the dataset distilled from Ohsumed test collection.

The Ohsumed corpus is a subset of MEDLINE medical publication database (Hersh et al.,

1994). MEDLINE database consists of about 0.3 million records (out of over 7 million

research articles) from 270 medical journals during the period between 1987 and 1991.

Each record includes title, abstract, MeSH index terms, author, the publisher details and

October 30, 2017



3.2. Distilled (LETOR) Benchmark Datasets 64

Table 3.6: The properties of LETOR 3 datasets used in the experimental study.

Dataset Queries
Query-
Document
Pairs

Features
Relevance
Labels

No. of
Folds

TD2003 50 49058 64 {0, 1, 2} 5

HP2003 150 147606 64 {0, 1, 2} 5

NP2003 150 148657 64 {0, 1, 2} 5

TD2004 75 74146 64 {0, 1, 2} 5

HP2004 75 74409 64 {0, 1, 2} 5

NP2004 75 73834 64 {0, 1, 2} 5

Ohsumed 106 16140 45 {0, 1, 2} 5

publication date. The Ohsumed query set consists of 106 queries and each query consists

of the search request and it is associated with patient disease information. The Ohsumed

relevance set is judged by human annotators on three level: 0 for irrelevant, 1 for partially

relevant and 2 for definitely relevant. The number of query-document pairs in Ohsumed

collection is 16,140. It has five cross-validation folds as they will describe in Table 3.7

in Section 3.2.3. The number of features in each Ohsumed query-document pair is 45

features. The query-document feature list details are shown in Table A.4.

3.2.2 LETOR 4 Datasets

LETOR 4 is the most recent LTR datasets that have been extracted and distilled from

.Gov2 webpage collection ( 25 Million pages) (Qin and Liu, 2013). LETOR 4 datasets

use two query sets from Million Query track of TREC 2007 and TREC 2008. The two

datasets produced by these query sets are called MQ2007 and MQ2008. There are about

1692 and 784 unique queries in MQ2007 and MQ2008 with labelled documents respec-

tively. The advantage of choosing these test collections to produce MQ2008 and MQ2007

are the large number of queries existing in Million Query TREC tracks. Similarly to

the Microsoft Bing Search datasets, MQ2007 and MQ2008 contains five cross valida-

tion folds. The number of query-document pairs in MQ2007 and MQ2008 are 69,623

and 15,211 respectively, while the number of features in each query-document pair is 46

features in MQ2007 and MQ2008. The feature list contains low-level, high-level and hy-

brid features which are similar to the feature list in Microsoft Bing datasets but they have
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lower number of commercial feature list than Microsoft Bing datasets. They also have not

user click and dwell time features that exist in Microsoft Bing datasets. However, they

include most of recent language models, probabilistic models and mathematical models

of term-weighting and similarity matching features. Table A.2 in Appendix A shows the

feature list of the query-document pair in MQ2007 and MQ2008. The relevance label

set consists of value 0 for irrelevant, value 1 for partially relevant and value 2 for to-

tally relevant. The datasets were constructed by Tao Qin et al. This team cooperated

with TREC2007/2008: Northeastern University team, University of Massachusetts team,

I3S Group of ICT team, ARSC team, IBM Haifa team, MPId5 team, Sabir Buckley team,

HIT team, University of Amsterdam team, University Melbourne team to produce LETOR

4 datasets (Qin and Liu, 2013).

3.2.3 Microsoft Bing Search Engine Dataset

Tie-Yan Liu and Tao Qin (Qin and Liu, 2016) created the most recent LETOR datasets

using the Microsoft Bing search engine. Their datasets are called MSLR-WEB30K which

consists of 30,000 queries. A random sample that contains 10,000 queries has been

created from MSLR-WEB30K and it is called MSLR-WEB10K. The two datasets are

large scale benchmarks for evaluating the performance of LTR ranking models. The rel-

evance label set for each query-document pair is created by the Microsoft Bing search

engine. The relevance label takes one of five values from 0 (irrelevant) to 4 (perfectly

relevant). The feature vector for each query-document pair is selected by Tie-Yan Liu

and Tao Qin. The feature list in each query-document pair contains low-level features

such as query term frequency in the webpage (document) parts (body, anchor, title, url

and whole document). It also contains high-level features such as PageRank, BM25 and

Language Model matching. Furthermore, it also contains hybrid feature such dwell time

for gathering user relevance labels, number of user clicks and SiteRank. They include

most of recent language models, probabilistic models and mathematical models for term-

weighting schemes and similarity matching features with commercial importance fea-

tures. Table A.1 in Appendix A shows the feature list and a column called Comments

in this table provides more explanation about these features that exist in Microsoft Bing

search engine dataset. This feature list simulate the real dataset existing in the search
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engines (real IR system). The number of query-document pairs in the MSLR-WEB10K

and MSLR-WEB30K datasets are 1,200,192 and 3,771,125 query-document pairs respec-

tively. Each query-document pair consists of 136 features and one relevance label. The

MSLR-WEB10K or MSLR-WEB30K dataset is partitioned into five parts S1, S2, S3, S4

and S5 using five-fold cross validation. In each fold, three parts are: one part used for

training set, one part is used as validation set and the remaining part is used as a test

set. Table 3.7 shows the details of MSLR-WEB10K or MSLR-WEB30K cross-validation

folds. These datasets was created by Tao Qin, Tie-Yan Liu, Wenkui Ding, Jun Xu, Hang

Li with Bing search engine team including Nick Craswell as leader for that team (Qin and

Liu, 2016). The training set is used to train the ranking model using LTR algorithm, while

the validation set is used to tune the hyper-parameter of the learning algorithm. Finally,

the test set is used to evaluate the predictive performance of the learning model.

Table 3.7: LTR Dataset Folds From Dataset Partitions S1, S2, S3, S4 and S5.
Folds Training Set Validation Set Test Set
Fold1 S1,S2,S3 S4 S5

Fold2 S2,S3,S4 S5 S1

Fold3 S3,S4,S5 S1 S2

Fold4 S4,S5,S1 S2 S3

Fold5 S5,S1,S2 S3 S4

3.3 Chapter Summary

This chapter demonstrated the test benchmarks with various type of creation them. It

started with Cranfield and Pooling paradigm for creating textual test collections. It also

showed various LTR datasets details. It also introduced an analysis for textual collections

that have been used for evolving TWS using EML techniques. From this analysis, we

argue that there is a preference for using mathematical TWS rather than evolving it when

the relevance judgement queries and documents do not cover the whole term-space.
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Related Work

Evolutionary and Machine Learning (EML) approaches have been widely used in IR.

The Term Vector Model (TVM) and Feature Vector Model (FVM) are methods of data

representation employed when applying these approaches. For the TVM, the document

and the query are represented as vectors of term-weights. In TVM, EML techniques

are usually used with the traditional Vector Space Model (VSM). Whereas, in the FVM,

the term-weights are replaced by feature-weights to produce feature vectors of query-

document pairs. These features represent the query-document similarity matching values

(such as cosine similarity and BM25), the query-document term-weights (such as TF-IDF,

Okapi and Language Models) and the reputation of the document on the web. The rest of

this chapter presents some of the literature related to using EML techniques on the TVM

and FVM.

4.1 Learning Approaches Based on the Term Vector

Model (TVM)

The application of EML techniques in IR research, using TVM has been on numerous

problem domains, the most important ones are as follows:

1. Document Indexing Problem. This problem domain is mainly about evolving or

learning the most appropriate document vector representations in IR system.

2. Query Optimisation Problem. This problem area is primarily about evolving or
67
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learning the most appropriate query vector representations in IR system. These

queries are saved for the next search to be used in query auto-completion suggestion

by the IR system.

3. Similarity Matching Functions Problem. This problem domain concerns about op-

timising or evolving a similarity matching function based on the query-document

vector representation of term-weights.

The most of the literature related to using EML techniques on the TVM and FVM are

population-based techniques which require large memory sizes or requiring large com-

putational evolving/training time periods. The next sections describe some of the work

related to these problem domains in details.

4.1.1 Document Indexing Problem

EML techniques are commonly used to improve the effectiveness or the accuracy of var-

ious IR problem areas such as in document indexing problem (Cordon et al., 2003; Liu,

2009). The objective functions used in Evolutionary Computation (EC) and Machine

Learning (ML) techniques usually rely on the relevance judgements to determine the qual-

ity of the evolved candidate solutions. The following sections outline previous research

carried out regarding the document indexing problem (Zobel and Moffat, July, 2006) us-

ing EC techniques. The document indexing problem refers to the process of assigning

weights to each term that exists in every document in the collection. This type of problem

can be divided into: 1) evolving term-weighting schemes (TWS), and 2) evolving term

weights.

Evolving Term-Weighting Schemes

In this category, researchers have tried to evolve the best TWS for improving IR

effectiveness using Genetic Programming (GP). However, these TWS can be considered

as collection-based functions, because each test collection has different characteristics.

Furthermore, all the test collections are partially judged to simulate real test collections

at the beginning of IR systems. As a result, most of the index terms in a test collection

do not exist in the training queries and their relevant documents (see section 3.1.3).
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Furthermore, there is a need for using a TWS to collect the relevance judgement values

before using EC techniques and it is impractical to evolve TWS without relevance

judgement values. Moreover, evolving TWS technique does not guarantee having better

IR effectiveness than mathematical TWS in test collections different from the ones used

in evolving procedure. Hence, research work in (Fan et al., 2000; Oren, 2002; Cummins

and O’Riordan, 2006) has been carried out for evolving TWS in IR research field and

they did not consider these issues.

The first approach for evolving a weighting function using GP was developed by (Fan

et al., 2000) using two test collections. One was the Cranfield collection containing 1,400

documents and 225 queries. The other was the Federal Register (FR) text collection from

TREC 4 containing a huge number of documents (55,554 documents) compared to its

queries (50 queries). Fan et al. argued that few documents were relevant for these queries

so they chose a larger number of documents (2,200 documents) than the number of rele-

vant documents as a training set. They used the precision based on collections relevance

judgement with a threshold as a fitness function in their application. The evolved TWS

created with their GP approach was used to test the same trained queries on the whole

test collections. Their results outperformed TF-IDF. However, no results for the Cran-

field collection have been shown with this approach (Fan et al., 2000). This technique is

population-based EML method which requires large memory size and consequently large

evolving time. These limitation are not existing in (1+1)-Evolutionary Algorithms.

(Oren, 2002) proposed employing GP to evolve the term-weighting function using a

terminal set similar to the one used by Fan et al. discussed above, but with an additional

function operator (square root). Oren used the Cystic Fibrosis database (Shaw et al.,

1991) which consists of 1239 documents and 100 queries, comparing his approach to

the TF-IDF term-weighting scheme. His method outperformed TF-IDF with regards

to recall-precision values. In that experiment, a cluster of computers was used due to

the problem size. Thus, the computational cost of Oren’s approach even for the small

collection used, was very high.

(Cummins and O’Riordan, 2006) proposed a methodology for evolving local and
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global term-weighting schemes from small test collections. They showed that their global

weighting function evolved on small collections also increased the average precision on

larger test collections. However, their local weighting function evolved on small collec-

tions did not perform well on large collections. They conducted experiments on five test

collections: Medline, Cranfield, CISI, NPL and Ohsumed. The computational runtime

required by their approach on the smallest training set from the Medline collection was

significant: 6 hours on a standard PC. Thus, the main limitations of their approach are:

1) long computational time and large problem size on medium and large test collections,

2) the issue of test collections being partially judged, 3) evolving local and may be global

TWS can not be generalised from test collection to another, and hence poor performance

on collections other than the training set. Cummins and O’Riordan identified that full term

weighting scheme evolved on small test collections did not outperform Okapi-BM25 on

large test collections (Ohusmed88, Ohsumed89, Ohsumed90-91 and NPL collections).

Evolving Term Weights

Genetic Algorithms (GA) have been used for evolving term weights to produce better

document representations for whole test collections. These approaches are also based on

the relevance judgement. The same drawbacks noted previously arise when using these

approaches: the reliance on partial relevance judgement for the collection and the need

to run the GA again after changes occur within the collection (adding more documents

to the test collection). This because the added documents to the collection requires

document-weight representation that should be assigned by GA rather than traditional

TWS.

(Gordon, 1988) proposed the first approach of applying a GA to IR for adapting

the term weights for every document in the corpus. He demonstrated the value of

using a GA for adapting term weights instead of using probabilistic models. He also

highlighted some issues of using probabilistic models, such as dependencies among

index terms, dependency on the estimation of probabilities, relevance judgement based

on a small set of queries and high computational cost of automated probabilistic models.

In this research, the GA used a probability of crossover equal to 1 with no mutation
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and relevance feedback adaptation as the fitness function. Findings showed that the

GA improved document representation to distinguish between relevant and non-relevant

queries. The problem size was very large, more than the document space as it consisted

of multiple representations for each document.

(Vrajitoru, 1998) also applied a GA to adapt term weights. The approach used a

new dissociated crossover and tested different ways to generate the initial document

descriptions. Vrajitoru conducted experiments using two test collections (CISI and

CACM collections), which were both larger than Gordon’s chosen collection (Gordon,

1988). However, this approach also had the same limitation related to the relevance

judgement due to the nature of the test collections.

The research limitation identified above of evolving TWS and evolving document-

term weights was the motivation for proposing a new perspective of evolving global term

weights rather than evolving TWS and evolving document-weight representations. Chap-

ter 6 shows a new method for optimising document-weight representations by evolving

global term weights using (1+1)-Evolutionary Gradient Strategy. This technique has the

lowest problem size than the above techniques and it considers the limitation of relevance

judgement values at the beginning of IR systems.

4.1.2 Query Representation Problem

Optimising query representation has been a dominant problem in the TVM of IR research.

The EML applications have been used to modify the query representation by adding and

removing terms or adapting better weights for the existing query terms. This is done

while considering the relevance judgements (such as users clicks on retrieved relevant

documents). This problem has been devised from the Ide dec-hi and the other mathe-

matical methods ideas (Salton and Buckley, 1997) for improving query representation

for future user searches. This modified query term/weight vector representation has been

used to retrieve more relevant documents than the original user query. These improved

query representations were saved in the IR system as modified representations, in order

to improve future searches using the same set of queries. However, this approach only
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improved IR system effectiveness for the trained set of queries. This boosted the need to

re-run EML application for every new added query to the IR system relevance to update

the representation for the new query. This type of problem is divided into three groups

(Cordon et al., 2003) which are as follows:

• Query Weight Learning (Weight Selection). This problem area is primarily about

adapting the query weight representation to the most appropriate representation.

Thus, the query can retrieve the relevant documents in the top of the search list and

the irrelevant documents in the bottom of the search list.

• Query Term Selection. This problem area is primarily about adapting the query

terms representation to the most appropriate representation by adding/removing

terms with their weights to the query from its relevant/irrelevant documents. Thus,

the query can retrieve the relevant documents in the top of the search list and the

irrelevant documents in the bottom of the search list.

• Mixed Term and Weight Selection. This problem domain is mainly about mixing

between query weight learning and term selection for better-saved query represen-

tation in the IR systems.

The following sections will discuss some of the approaches used to tackle these prob-

lems.

Hill-Climbing Using Okapi Approach

Hill-Climbing is a local search algorithm used for identifying better solutions in the

solution search space by improving query vector representations (Talbi, 2009; Robert-

son, Walker, Hancock-Beaulieu, Jones and Gatford, 1995; Robertson et al., 1996). Hill-

Climbing technique starts with initial solution which is the original query. Then, hill-

Climbing technique searches the neighbourhood solutions by adapting the original query

for better IR effectiveness in several evolving iterations using mutation procedure. In

TREC-3 (Robertson, Walker, Hancock-Beaulieu, Jones and Gatford, 1995), the hill-

climbing approach was used to optimise query representation via a term selection method.

The experimental settings of this approach were as follows:

October 30, 2017



4.1. Learning Approaches Based on the Term Vector Model (TVM) 73

1. The weight values of the terms in term-set were static which is Okapi term-weights

in the corresponding relevant documents to the query. This means that each selected

term from relevant document to be added or removed had a fixed weight which is

the weight existing in the relevant document.

2. The terms in the term-set were ordered as a list in a descending order of their Okapi

term-weights. It was updated in every evolving iteration in hill-climbing using the

index terms of the test collection.

3. The three top weighted terms from each relevant document in the collection were

used to build the query’s (topic’s) term-set.

4. The terms were considered just once during the iterations of the evolution of the

new query vector.

5. After the first top three terms, the successive term in the term-set was added to the

query. Then the fitness value was calculated, which was the average precision of

the top 1000 documents retrieved.

6. The above steps were repeated until a stopping criterion was satisfied.

The stopping criterion could be one of the following thresholds:

• The maximum number of terms on the term-set was the max-terms =30 terms.

• The maximum number of successive iterations that have worse offspring query rep-

resentation was max-bads = 8 successive iterations.

• The maximum total number of terms in each query was MaxTerms = 150 terms in

the chromosome representation.

• The maximum runtime which has been set to the max-time= 1 or 2 hours per each

evolved query (topic).

Robertson et al. (Robertson et al., 1996) tried to minimise the computational run

time of the above approach by using additional constraints. The constraints used were as

follows:
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1. Terms were sorted in descending order of their Retrieval Selection Value (RSV)

(Robertson, 1991).

2. The maximum number of terms in the selection process was 200.

3. Terms were added or removed one-by-one in a specified computational runtime

limit.

This technique has been applied on TREC Disk 1, 2 and 3 with 50 queries. Robertson

et al. compare their technique against Okapi-BM25 approach using average precision,

precision at top-5, top-30 and top-100 document retrieved and recall evaluation metrics.

From their results, their proposed technique outperformed Okapi-BM25 for all evaluation

metrics. The computational runtime of this technique was 34 minutes per 48 documents

used. However, there is no show for the computational runtime comparison between

Okapi-BM25 and the proposed approach.

Simulated Annealing Using Okapi Approach

The hill-climbing technique is usually stuck in local optima solutions and consuming

too much runtime for jumping from local optimum solution to global one. Several

remedies have been proposed for this issue and Simulated Annealing (SA) is one of these

proposed techniques. SA is a local search technique that is similar to hill-climbing but

with accepting a worst solution in the evolving iterations under specific circumstances.

The SA technique inspired from metal annealing process in Physics (Talbi, 2009). This

technique has been used for optimising query representations using term and weighting

selection (Walker et al., 1997). The term-weighting function used in document and query

representations is Okapi. This approach employs two methods: a simple SA and a mild

SA. In simple SA, the query representations are optimised by searching for the most

appropriate query representations. In this approach, the query representations with lower

average precision values were accepted under a certain temperature (T). This procedure

is generally used for adapting the term selection procedure from local optima to global

optima. The acceptance criteria for the worst score (average precision) is the probability

of exp(−(best score − new score)/T ). Unfortunately, when tested this approach

produced disappointing results compared to hill-climbing approach in the previous
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studies (Robertson, Walker, Hancock-Beaulieu, Jones and Gatford, 1995; Robertson

et al., 1996). This is because the computational runtime was higher. It appeared that the

annealing process was over-fitting the terms and there was no deterministic re-weighting

process, which consumed too much runtime. A second method that has been used is

a mild simulated annealing approach, in which a deterministic re-weighting process is

combined with the SA mechanism. This approach gave a noticeable improvement in IR

effectiveness. Walker et al. compare both simple and mild SA using average precision,

precision at top-5, top-10, top-15, top-20 and top-30 document retrieved and recall

evaluation metrics. They applied their experiments on TREC-5 routing test collection.

The mild SA outperformed simple SA in all cases. There is no show for computational

runtime in their paper.

Genetic Algorithm for Term and Weight Selection

In this approach, Genetic Algorithm (GA) is used to adapt an optimised query representa-

tion. Several research efforts have been introduced to solve this problem using GA (Cor-

don et al., 2003). (Radwan et al., 2006) proposed a new fitness function for evolving better

query optimisation, which involved minimising the difference between the query vectors

and their corresponding relevant documents. It is also maximising the difference be-

tween the query vectors and their top-30 irrelevant documents retrieved from VSM model

based on TF-IDF weighting scheme. The results were compared with non-evolving IR

approaches and the GA that used cosine similarity as a fitness function. Findings showed

that the new fitness function outperformed the GA approach using cosine similarity as a

fitness function. The main features of this investigation were as follows:

• Three test collections (CISI, CACM and NPL) were used to demonstrate the results.

• The selection mechanism was a roulette wheel selection.

• The probabilities of crossover and mutation were Pc = 0.8 and Pm = 0.7

• The approach was a mixture of learning the most appropriate weight and term se-

lection methods.
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In this approach, there is no show comparison between the runtime of the proposed

approach.

4.1.3 Similarity Matching Functions Problem

In this research field, EC has been used to evolve better functions for measuring the sim-

ilarity between documents and queries. These evolved functions are used to retrieve the

relevant documents at the top of the retrieved documents. In other words, they have one

purpose, to retrieve similar documents in terms of relevance at the top of retrieved doc-

ument list. Whereas, the less relevant documents will be retrieved at the bottom of the

retrieved list.

Evolving Similarity Matching Function Using Genetic Programming

(Fan et al., 1999) proposed the first approach for evolving similarity matching functions

using GP. They started by using the automatic generation of GP applications to evolve

a general similarity function in (Fan et al., 1999). Then, they customised their approach

to be suitable for each personal user profile and the context of the search, with search

keywords, context and so on (Fan et al., 2004). The main characteristics of their GP

approach were as follows:

• The fitness function of their GP application was the effectiveness measure (Van Ri-

jsbergen, 1977) given by the following equation:

E = 1− 1

[ α
P

+ (1−α)
R

]
(4.1.1)

where α is a constant that expresses the degree of user preference for precision(P)

or recall (R) component.

• Terminal set contained term frequency (TF), document frequency (DF), inverse

document frequency (IDF), maximum term frequency in the document (TFmax),

average term frequency (TFavg) and random constants.

• Function set contained +, -, *, /, log and sqrt.
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Unfortunately, the evolved similarity matching functions were not presented in their

paper. Furthermore, these evolved functions cannot be generalised for other document

collections. This is because the evolved function is a collection-based similarity match-

ing function. Thus, it depends on the relevance judgement of a specific dataset and on

the dataset characteristics. Evolving similarity matching functions using GP has a similar

limitation to the other EC applications for automatic indexing through relevance judge-

ment. It has a weakness of random IR effectiveness with queries that have different index

terms than the trained ones. The reason for this is that the fitness functions do not cover

the whole term space because all test collections are partially judged.

4.2 Learning to Rank Based on Feature Vector Model

(FVM)

The most common issue in IR research is ranking the retrieved documents responding to

the user query with regard to their relevance. In early IR research, the unsupervised TVM

techniques such as VSM based on TF-IDF or Okapi-BM25 and language models were

used (Manning et al., 2008). These models were used to rank the retrieved documents

based on their matching similarity to user queries. However, using only one scoring

method (TWS) in IR systems was not effective enough for effective IR systems. The

reason is that the scoring methods such as Okapi-BM25 and various language models

are limited to the relevance judgement in terms of retrieving accurate search results

(Tonon et al., 2015; Urbano, 2016). This highlights the need for using more than one

TWS method for ranking the documents with respect to the user queries. In addition,

the importance of the documents on the web and the host server, among other desirable

features, should be considered to rank the documents. Recently, (Qin et al., 2010)

proposed a new trend of research into ranking documents by producing LETOR datasets.

These datasets are distilled benchmarks from search engines and from the well-known

TREC conference collections. These benchmarks contain more than one term-weighting

scheme (scoring methods) as part of the benchmark features. They also contain some

other features that indicate the importance of the documents on the web. The documents

in these datasets were mapped into fully judged query-document pairs for Learning to
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Rank (LTR) research problems. The scoring method features and the other desirable

features in these datasets are tuned and optimised by EML techniques in LTR research to

produce efficient ranking models for effective IR systems.

There are three categories of LTR approaches (Liu, 2009): (1) the pointwise method,

(2) the pairwise method and (3) the listwise method. These categories are based on the

loss function or fitness function measurements. The pointwise approach views each

single object (query-document pair) as the learning instance. Examples of pointwise

approaches are Linear Regression (LR) (Yan and Su, 2009), Boosting (Freund et al.,

2003), Gradient Boosted Regression Trees (GBRT or MART) (Friedman, 2001; Mohan

et al., 2011) and Random Forest (RF) (Breiman, 2001). The pairwise approach views the

pair of objects (two query-document pairs for the same query) as the learning instance.

Examples of the pairwise approaches are RankNET (Rank Neural Net) (Burges et al.,

2005), RankBoost and SVMRank (Rank Support Vector Machine) (Li, 2014). The

listwise approach takes the entire retrieved list of objects (the list of query-document

pairs for each query) as the learning instance. Examples of the listwise approaches are

ListNET (Listwise Neural Net) (Cao et al., 2007), RankGP (Lin et al., July, 2012; Mick,

2016), Coordinate Ascent (Metzler and Croft, 2007), AdaRank (Xu and Li, 2007) and

RankGPES (Islam, 2013). The proposed ES-Rank method described later in Chapter 7 is

a listwise approach because this type has been shown to perform better than pointwise

and pairwise approaches (Cao et al., 2007).

Although listwise methods have been shown to perform better regarding accuracy

than point-wise and pair-wise approaches (Cao et al., 2007), the need to improve the

performance of LTR approaches has motivated researchers to propose hybrid methods as

well. For example, Sculley proposed an approach (CoRR) combining linear regression

(point-wise) with support vector machine (pair-wise) (Sculley, 2010). That approach is

implemented in the Sofia-ml package and while it executes in reasonable computational

time, its performance in terms of NDCG and MAP is limited. In order to achieve better

NDCG, Mohan et al. proposed a hybrid machine learning approach for initialising GBRT

using Random Forest (Mohan et al., 2011). However, experiments showed that their
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approach consumes too much run-time compared to other approaches from the literature

(Dang, 2016; Li, 2014). Two other hybrid approaches are LambdaRank and Lamb-

daMART which combine pair-wise with list-wise methods (Burges, 2010). LambdaRank

is based on RankNET while LambdaMART is the boosted tree from LambdaRank.

Both LambdaMART and LambdaRank have shown better performance regarding IR

accuracy than the method by Mohan et. al. on the Yahoo! LTR Challenge (Chapelle and

Chang, 2011). Thus, the combination of listwise and pointwise techniques has shown

to be promising. Muahmmed and Carman conducted experiments combining listwise

with pointwise Random Forest (Hybrid RF) showing that the their hybrid outperformed

other both pointwise and listwise RF in computational run-time and accuracy (Ibrahim

and Carman, 2016). Most of the LTR approaches still have some limitation on the

computational run-time or the achieved accuracy of the predictive results. In Chapter

7, we proposed two hybrid methods by initialising ES-Rank with LR (pointwise) and

SVMRank (pairwise) for achieving better predictive accuracy.

The previous approaches relate to offline LTR based on FVM. (Schuth et al., 2013)

proposed a new research trend in LTR based on the simulation of user click models.

This research trend is called online LTR and it simulates online LTR in search engines.

However, this research is based on offline relevance labels existing in the LTR datasets

to check the quality of the proposed LTR models. Thus, online LTR techniques can

be implemented for offline LTR techniques by adding user click simulation to these

techniques. However, offline LTR techniques learn explicitly from the relevance labels

and online LTR techniques learn implicitly from the relevance labels. Chapter 8 provides

details about one of the click models in online LTR Lerot package and how to optimise

its LTR models using ES-Rank technique.

Most of the offline and online LTR techniques are based on sampling methods to check

the quality of the proposed LTR model in each learning/evolving iteration. The sampling

methods are used to pick up samples of the training instances (query-document pairs)

from the training set rather than taking the whole training set instances in each learning

iteration. However, sampling methods such as bootstrap Bagging or Boosting cause over-
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fitting and under-fitting problems. The proposed ES-Rank evolves better ranking models

with smooth fitting and better performance regarding run-time and accuracy. In addition,

ES-Rank has the lowest problem size compared to other evolutionary techniques because

it is (1+1)-Evolutionary Strategy approach. The following sections provide details about

LTR methods based on FVM.

4.2.1 SVMRank: Support Vector Machine for Ranking

(Joachims, 2016) proposed a pairwise approach for LTR based on a Support Vector Ma-

chine, called SVMRank. The approach compares every two query-document pairs in

order to rank them in a retrieved query-document pair list. This approach uses the error

rate between the actual ranking and the ranking from its model as a loss function. The

objective of the SVMRank technique is to minimise the loss function value between the

actual relevance labels and the ranking model labels on the training dataset. This approach

produces a linear ranking model of weights. Assuming the vector of weights that are ad-

justed by the SVMRank technique is −→w . The ranking model is represented by f−→w (q),

where q is the query set of the training data. The ranking of two documents di and dj that

have query-document pairs Φ(q, di) and Φ(q, dj) can be represented by:

(di, dj) ε f−→w (q)⇔ −→wΦ(q, di) >
−→wΦ(q, dj) (4.2.2)

If the training set contains n queries, the target of the SVMRank is to find the weight

vector −→w that maximises the number of the fulfilled inequalities in:

(di, dj) ε r
∗
1 : −→wΦ(q1, di) >

−→wΦ(q1, dj)

.....

.....

(di, dj) ε r
∗
n : −→wΦ(qn, di) >

−→wΦ(qn, dj) (4.2.3)

This direct generalisation in equation 4.2.3 for equation 4.2.2 shows that this prob-

lem is complex (NP-hard) problem to solve. However, it can be simplified based on the
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classification problem using SVM. Thus, the optimisation problem of SVMRank can be

represented as follows:

minimise : V (−→w ,
−→
ξ ) =

1

2
−→w · −→w + C

∑
ξi,j,k (4.2.4)

subject to:

(di, dj) ε r
∗
1 : −→wΦ(q1, di) ≥ −→wΦ(q1, dj) + 1− ξi,j,1

.....

.....

(di, dj) ε r
∗
n : −→wΦ(qn, di) ≥ −→wΦ(qn, dj) + 1− ξi,j,n

∀i,∀j and ∀k : ξi,j,k ≥ 0 (4.2.5)

where C is a constant that adjusts the margin size against the training error and ξi,j,k is the

slack variable. Thus, the problem is to minimise the upper bound of
∑
ξi,j,k. This problem

is a convex problem that has no local optima. For clarifying, constraints in equation 4.2.5

can be re-arranged as:

−→w (Φ(qk, di)− Φ(qk, dj)) ≥ 1− ξi,j,k, (4.2.6)

In the beginning, Joachims proposed a support vector machine called svmlight library

package (Joachims, 2015). However, this package was slower than other LTR techniques.

Thus, he proposed a new library package for ranking called SVMRank (Joachims, 2016).

SVMRank package is faster because it does not include all query-document pairs of the

training set in each learning iteration. Another issue of SVMRank is that the range of the

relevance label for each query-document pair is 0 or 1 or 2. Therefore, a large dataset such

as LETOR MSLR-WEB10K can not be tested with this method. In the literature, SVM-

Rank and SVM-light did not compared to other LTR techniques in terms of computational

runtime. In Chapter 7, SVMRank and SVM-light (in MSLR-WEB10K as SVMRank)

was in comparison with ES-Rank and other LTR in terms of accuracy and computational

runtime.
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4.2.2 RankBoost: An Efficient Boosting Algorithm for Combining

Preferences

The RankBoost approach (Freund et al., 2003) is the extension of the Adaptive Boost-

ing (AdaBoost) (Le and Smola, 2007) approach for the classification of LTR in IR. The

RankBoost is a pairwise approach in which the loss function is an exponential loss be-

tween every two query-document pairs of the learning sample. This learning technique

combines many weak rankers of the given training set to produce a strong learning rank-

ing model. Each weak ranker ht(x) is a linear ranking model of vector weights, while the

final strong ranking model is H(x) =
∑

t αtht(x). The symbol x represents the training

query-document pairs set, while t is the number of weak rankers ht(x) used to produce

H(x). On the other hand, the parameter αt represents the importance weight value of the

weak ht(x) in H(x). In the RankBoost approach, the exponential pairwise loss function

is used to measure the quality of the proposed ht(x). The calculation of the parameter

αt is based on a distribution Dt and the initial distribution value of D1 has a value of

one. There are three methods for computing αt in each learning iteration. These methods

are based on minimising the exponential pairwise loss function. The first method used

a simple linear search for assigning αt values, the second method assumes the ranking

model produces one of two values either are zero or one. The third method assumes that

the loss function has a real value of between zero and one. As with most LTR techniques,

RankBoost is based on sampling technique to check the quality of weak ranker rather us-

ing the whole training set in each learning iteration. Thus, there is a drawback regarding

accuracy for LTR models produced by this approach. Furthermore, this technique was

not compared before with other LTR approaches regarding computational runtime versus

accuracy obtained by it. More details about RankBoost can be found in (Freund et al.,

2003) and RankBoost was implemented in the RankLib package (Dang, 2016).

4.2.3 RankNET: Learning to Rank Using Neural Nets

RankNET was proposed by Burges et al. (Burges et al., 2005; Burges, 2010) and it is a

pairwise approach. The technique uses the neural network combined with gradient de-

scent steps. These gradient descent steps are used to control the learning rate in each
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iteration. RankNET is an extension of a back-propagation neural network with prob-

abilistic loss function that can handle pairs of instances (query-document pairs). This

means that the loss function relies on two query-document pairs for measuring the quality

of the proposed ranking model in each iteration. RankNET has two hidden layers and it

uses backpropagation to minimise the pairwise loss function. Given two query-document

pairs di and dj associated with the training query q, the target probability of the ranking

sequence (di, dj) is P di,dj . The value of P di,dj is calculated based on the ground truth

labels of di and dj . For example, P di,dj = 1, if the difference between the ground truth la-

bels ydi,dj = 1, while P di,dj = 0, otherwise. The modelled probability Pdi,dj is calculated

based on the difference between the scores of these query-document pairs as follows:

Pdi,dj =
exp(−→wΦ(di)−−→wΦ(dj))

1 + exp(−→wΦ(di)−−→wΦ(dj))
(4.2.7)

Then, the loss function is represented by the cross entropy between the target proba-

bility and the modelled probability can be calculated by:

Lossdi,dj = −P di,dj log(Pdi,dj)− (1− P di,dj)log(1− Pdi,dj) (4.2.8)

The Backpropagation neural network uses the loss function to learn the ranking model.

Burges et al. did not provide the dataset that was used in their experiments to be avail-

able for other researchers. In addition, their comparison was based only on one evalua-

tion metric which is NDCG with its computational runtime. The comparison was made

against other gradient descent methods which are PRank and RankProp techniques. In

this comparison, one layer and two layer versions of RankNET outperformed PRank and

RankProp techniques regarding NDCG values, but they were slower than linear Prank

and RankProp. There is no extensive comparison for this technique with recent LTR tech-

niques in the literature. RankNET is similar to other pairwise techniques that checks the

quality of the ranking model for each two query-document pairs separately in each learn-

ing iteration rather than the whole retrieved list. Thus, this technique has a drawback in

terms of evaluation metric values on datasets that have multiple relevance labels than bi-

nary relevance labels. Further details about this approach can be found in (Burges et al.,

2005; Burges, 2010). The method has been implemented in the RankLib package (Dang,
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2016).

4.2.4 ListNET: Listwise Learning to Rank Based on Neural Nets

ListNET is a listwise and probabilistic technique for LTR proposed by Cao et al. (Cao

et al., 2007). This technique is different than RankNET in its way for calculating the loss

function. The loss function in ListNET is a listwise loss function. This technique is based

on the probability distribution in the ranking list of the query-document pairs. Suppose

that each query i has the instance (Xi, yi), where Xi is the feature vector of the query-

document pair and yi is the ground truth label. Then, the training data that contains N

queries is given as S = {(Xi, yi)}Ni=1. The ListNET technique is used to create a ranking

model which has a vector of weightW = (w1, ..., wM), whileM is the number of features

in the training data. The ranking model function can be represented by F (X,W ). The

ListNET calculates the KL Divergence probability of all training query-document pairs

as the total loss function value. Then, it attempts to minimise the total loss by updating

the learning ranking model weights. The total loss function is given by:

L(w) =
m∑
i=1

L(yi, F (xi,W )) (4.2.9)

Here L(yi, F (Xi,W )) is the cross-entropy loss function for each query. This loss

function for top-K query-document pairs for query i is given by:

L(yi, F (Xi,W )) = −
∑

yi,jεGroundTruthKj

K∏
j=1

exp(yi,j)∑ni

L=j exp(yi,L)
·

log
K∏
j=1

exp(F (Xi,j,W ))∑ni

L=j exp(F (Xi,L,W ))
(4.2.10)

where ni is the number of query-document pairs for each query i. The ListNET up-

dates the ranking model weight vector in each learning iteration for better accuracy by

W = W − η 5 L(W ), where η is a learning rate parameter that can be chosen in the

training time and 5L(W ) is the Gradient of the total loss. Cao et al. (Cao et al., 2007)

compared their technique with RankBoost, RankNET and RankSVM using NDCG and
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MAP evaluation metrics. They argued that ListNET outperformed RankBoost, RankNET

and RankSVM on LETOR2 (Ohsumed, TD2003 and TD2004) benchmarks (Qin et al.,

2010). However, they did not mention the parameter settings of each technique nor the

training computational runtime of each technique. This method has been implemented in

the RankLib package (Dang, 2016).

4.2.5 AdaRank: A Boosting Algorithm for Information Retrieval

The AdaRank technique is a listwise approach based on Adaptive Boosting (Ada-Boost)

in text classification (Xu and Li, 2007). The main difference between RankBoost and

AdaRank is their loss functions. In the RankBoost technique the loss function is an

exponential pairwise loss function, while the loss function in AdaRank is an exponential

listwise loss function. Similar to RankBoost, AdaRank combines the linear weak rankers

ht(x) to produce an effective ranker modelH(x) =
∑

t αtht(x). The symbol x represents

the training query-document pairs set, while t is the number of weak rankers ht(x) used

to produce H(x).

On the other hand, the parameter αt represents the importance weight value of the

weak rankers ht(x) in H(x). In the learning procedure, the AdaRank repeats the pro-

cess of re-weighting the training samples to create each weak ranker. Then, it calculates

the weight (the importance) for the weak ranker in the learning ranking model. Further-

more, the AdaRak technique is used to optimise an exponential loss function based on the

IR evaluation metrics such as MAP, NDCG, Error Rate, Reciprocal Rank, Precision. The

exponential loss function is the upper bound of the normal loss function based on the eval-

uation metrics. In each learning iteration, AdaRank maintains a weight distribution over

the training set. This distribution is used to identify the importance of each weak ranker

in the ranking model. Xu and Li (Xu and Li, 2007) compared their approach with Okapi-

BM25, SVMRank and RankBoost approaches on four benchmarks: Ohsumed, WSJ, AP

and .GOV datasets. The AdaRank outperformed these approaches on these datasets using

MAP and NDCG evaluation fitness metrics. However, AdaRank has not been tested us-

ing more fitness evaluation metrics nor state-of-the-art large LETOR datasets. They also

did not mention the parameter settings of each technique nor the training computational
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runtime of each technique. Furthermore, the implementation of AdaRank and other LTR

approaches does not consider the whole training instances (query-document pairs) in each

learning iteration to check the quality of the proposed solution, which causes a drawback

in the evaluation values (accuracy) of AdaRank. More details about this approach can

be found in (Xu and Li, 2007) and the technique has been implemented in the RankLib

Package (Dang, 2016).

4.2.6 RankGP: Learning to Rank Using Genetic Programming

Yeh et al. proposed a new research trend for evolving ranking function using Genetic

Programming called RankGP (Yeh et al., 2007; Mick, 2016). This approach is a listwise

LTR approach. They used LETOR2 (TD2003 and TD2004) benchmarks (Qin et al.,

2010). Their approach outperformed the traditional, probabilistic and machine learning

ranking functions (BM25, RankBoost and SVMRank) in terms of the IR system effec-

tiveness. The system effectiveness was measured by three IR evaluation measures which

are Precision of each top-10 query-document pair retrieved, Mean Average Precision

(MAP) (Baeza-Yates and Ribeiro-Neto, 2011) and Normalised Discounted Cumulative

Gain (NDGG) (Jarvelin and Kekalainen, October 2002).

However, the computational cost of their approach was high in comparison with other

approaches. It cost approximately 35 hours to learn a better evolved ranking function for

the TD2003 benchmark. The equipment used for these experiments was a 1.8 GHz Intel

Core 2 CPU and 2GB memory PC. The main characteristics of this approach were as

follows:

1. Before applying the GP approach, all the features existing on the trained and vali-

dation subsets were normalised into values between 0 and 1.

2. This approach used Layered Genetic Programming (Lin et al., 2007a, July, 2012;

Mick, 2016) with ramped half-and-half for creating the initial population for the

proposed function with a maximum depth of 8 terminals and operators.

3. The function set contained {+, -, *} and the division was neglected to evolving

linear solutions with less computational cost. The terminal set contained all bench-
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mark features (44 features) and 44 constant values between 0 to 1. In addition, the

fitness function was Mean Average Precision (MAP) for all queries.

4. The crossover rate, mutation rate, and the number of generations and reproductions

were set according to (Lin et al., 2007a). Furthermore, the mutation rate was the

adaptive mutation rate tuning AMRT (Lin et al., 2007a, July, 2012).

The limitations of this approach and all learning to rank approaches using EC referenced

in the literature are as follows:

• The computational runtime is higher than for other machine learning applications

as mentioned by Yeh et al. (Yeh et al., 2007). In addition, this technique requires a

large problem size to represent a population of the proposed solutions in each evolv-

ing iteration compared to (1+1)-Evolutionary Algorithms (ES-Rank technique).

• The state-of-the-art machine learning techniques outperformed this approach in

terms of NDCG and MAP metrics theoretically from the results recorded in the

literature papers and documented in (Tax et al., 2015). However, there is no prac-

tical comparison between the state-of-the-art LTR techniques and RankGP on the

same datasets that considers the computational runtimes and the accuracy values.

This technique has been implemented in the LAGEP Package (Mick, 2016).

4.2.7 LambdaRank

Burges et al. proposed the LambdaRank technique, which is based on the RankNET

technique (Burges et al., 2006). The LambdaRank is a pairwise technique that utilises

the minimisation of the surrogate loss function which is equal to L(W ) = −λ, where λ

is based on the Normalised Discounted Cumulative Gain (NDCG) of the training query-

document pairs on each learning iteration. The λ parameter is equal to
∑K

j=1( 1
1+exp(si−sj)

∗

(NDCGi −NDCGj)), where K is the number of query-document pairs in the retrieved

truncated ranking list and the parameters Si and Sj are the score rankers for documents

i and j. Suppose the gradient of the loss function is 5L(W ), then, the LambdaRank

updates the ranking model weight vector in each learning iteration for better accuracy,

through W = W − η5L(W ), where η is a learning rate parameter that can be chosen in
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the training time. The experiment settings for Burges et al. technique were 1 layer and 2

layers (with 10 hidden nodes) nets experiments and they run on a 2.2GHz 32 bit Opteron

machine. Burges et al. only compared this technique with the RankNET technique and

LambdaRank outperformed it in terms of NDCG and runtime across speedup procedures.

However, the detailed characteristics and its source (feature type and the name of the

search engine) of the dataset did not state in his paper. In addition, there is no show for

the total runtime of the technique on the dataset.

4.2.8 Random Forest

Random Forests (RF) (Breiman, 2001; Ganjisaffar et al., 2011) is a pointwise LTR ap-

proach that combines decision tree rankers and determines their average, in order to pro-

duce a strong ranking model. The RF technique is an ensemble method that utilises

rankers based on bagging and sampling features. Bagging refers to the procedure of com-

bining multiple decision trees and calculating their average. The technique takes a sample

of the training set and then uses randomly chosen features to build a decision regression

tree as a ranker. This procedure is repeated M times, which is the number of bagging.

Then, the ranking model is the average value of the rankers produced by the decision

trees. The random sampling of the features adds an additional control to the variance

of the bagging. Recently, (Ibrahim and Carman, 2016) extended RF from pointwise to

listwise. The computational complexity of listwise RF was higher than the pointwise

RF. The lowest training time of listwise RF per tree for 30% of MSLR-WEB10K queries

was 137 minutes. Thus, Ibrahim and Carman proposed a hybrid pointwise-listwise RF

to overcome the computational complexity on large datasets. They compared the list-

wise, the pointwise and the hybrid RF. The results show that hybrid RF outperformed

both pointwise and listwise RF in terms of NDCG@10, MAP and Error rate. They also

compared hybrid RF with MART, Coordinate Ascent, RankSVM, AdaRank, RankBoost,

LambdaMART techniques on MSLR-WEB10K (Microsoft Bing search engine) and Ya-

hoo datasets. The comparison shows that LambdaMART outperformed other techniques,

while hybrid pointwise-listwise RF was the second best performance technique. How-

ever, the comparison did not include the computational runtime of each technique. The

RF was developed in rt-rank and ranklib packages (Mohan et al., 2011; Dang, 2016).
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4.2.9 Gradient Boosted Regression Tree (MART or GBRT)

Gradient Boosted Regression Tree (MART or GBRT) technique is another pointwise LTR

technique. GBRT combines the boosted technique with random regression trees from the

sampled features. This technique was first proposed in data mining (Friedman, 2001),

then it was developed in rt-rank and ranklib packages (Mohan et al., 2011; Dang, 2016).

The loss function of this technique is the RMSE values. Similar to the RankBoost, this

technique combines the weak ranker to produce a strong ranker. It starts with initial

ranker. Then, it uses the gradient of RMSE to produce the following rankers. The dif-

ference between RankBoost and GBRT is that each ranker in GBRT is produced from

random regression tree. The algorithm and the details of this technique are shown in

(Friedman, 2001; Mohan, 2010). The computational runtime has not been investigated

in the literature on LTR datasets for that technique. Furthermore, there is no extensive

comparison for this technique with other LTR techniques for various evaluation metrics.

4.2.10 LambdaMART

LambdaMART is the extended listwise version for the GBRT technique. The difference

between GBRT or MART and LambdaMART is the loss function. The loss function

of GBRT is the RMSE or the Error Square value, while the loss function for Lamb-

daMART is the negative NDCG value. In LambdaMART and GBRT techniques, the

boosted method based on the random regression tree of the samples is employed. The

details of this technique are presented in (Li, 2014; Burges, 2010). LambdaMART is

a powerful LTR technique that won the Yahoo Challenge for LTR problems (Chapelle

and Chang, 2011). It won Yahoo challenge for LTR techniques in terms of IR effective-

ness (Reciprocal Rank) (Chapelle and Chang, 2011). The other LTR techniques in this

challenge were IGBRT, AdaBoost and YetiRank. However, the performance of Lamb-

daMART in terms of computational runtime has not been investigated in the literature.

LambdaMART is also one of the most effective LTR applications after Coordinate As-

cent in terms of effectiveness in Ranklib package (Dang, 2016).
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4.2.11 Coordinate Ascent

Coordinate Ascent (CA) is a local search technique in which the learning model may reach

to the global maxima if the fitness evaluation function is concave (Metzler and Croft,

2007). Metzler and Croft proposed this technique to produce a linear ranking model.

Their approach uses multinomial manifolds to propose the weights of the ranking model.

The multinomial manifold is a parameter space from a multinomial distribution. The

summation of the proposed weights of the ranking model on the training set features is

one. The benefit of multinomial manifold is the ability to converge the solutions without

repeating similar ranking models that have the same evaluation values. In other words, if

W11, ...,W1m is the current ranking model and its fitness evaluation value is E1, the next

proposed learning ranking model must have weights W21, ...,W2m with different fitness

evaluation value thanE1. This is due to the properties of the multinomial manifold param-

eter values. However, this approach consumes too much time in large datasets. In addi-

tion, the CA cannot guarantee the optimal solution for every fitness function. Metzler and

Croft only compared this technique with SVMRank and Language Model without con-

sidering the computational time of each technique in the comparison. In that comparison,

Coordinate Ascent outperformed SVMRank and Language Model regarding MAP eval-

uation metric on various TREC document collections (TREC Disk 1 to 5, .Gov2, WSJ,

WT10g and AP). (Dang, 2016) implemented this technique in Ranklib library package.

Further details of this approach can be found in (Metzler and Croft, 2007).

4.2.12 CoRR: Combined Regression with Ranking

Schulley proposed a new technique for improving the performance of Support Vector

Machine (SVM) using regression (Sculley, 2010). This approach uses the stochastic sub-

gradient descent SVM solver (SGD SVM) with linear regression optimisation function.

The reason for using SGD SVM is its performance compared to the other three SVM

approaches (Sculley and Inc, 2009). The regression CoRR optimisation function is given

by Equation 4.2.11. In this equation, the parameter αε[0, 1] is the trade-off between the

optimising by regression loss and optimising pairwise loss. In the case of using α = 1, the

equation recovers only the standard regression, while the equation recovers only pairwise
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ranking when α = 0. TheD parameter represents the training set data, while P represents

the two query-document pairs, λ is the learning parameter and L(.,.) is the loss function.

Equation 4.2.11 is used in the Stochastic Gradient Step to modify the weight of the LTR

ranking model in each iteration.

min
w ε IR

αL(w,D) + (1− α)L(w,P ) +
λ

2
||w||22 (4.2.11)

Schulley used two loss functions in his technique; the squared loss function and the

logistic loss function. He assessed the accuracy of his approach by using three evaluation

metrics (Mean Square Error (RMSE), Mean Average Precision (MAP) and Normalised

Discounted Cumulative Gain (NDCG)). The LETOR MQ2007 and MQ2008 have been

used to compare the accuracy of this approach with SVMRank. The results indicated that

Ranking by assigning α = 0 in Equation 4.2.11 only outperformed the Regression (for

α = 1), SVMRank and CoRR techniques in the two datasets in MAP and NDCG, while

his Regression approach outperforms SVMRank, Ranking and CoRR in RMSE. That ap-

proach is implemented in the Sofia-ml package and while it executes in reasonable com-

putational time, its performance in terms of NDCG and MAP is limited. This approach

has been compared with RankSVM, while there are numerous available LTR packages

that implement various EML techniques in LTR. Moreover, the pairwise techniques do

not consider the whole list of query-document pairs when ranking the documents. Thus,

pairwise approaches have limitations for multiple relevance label levels, but are more ap-

propriate for binary relevance labels. The details of CoRR approaches are demonstrated

in (Sculley, 2010).

4.2.13 RankDE: Learning to Rank Using Differential Evolution (DE)

In this approach, Differential Evolution is used to learn the most appropriate weights for

each feature existing in the LETOR dataset (Bollegala et al., 2011). This approach out-

performed Okapi-BM25, SwarmRank, RankBoost, SVMRank and RankGP techniques in

terms of precision, NDCG and MAP using LETOR TD2003 and TD2004 datasets (Qin

et al., 2010). The evaluation measures used were three effectiveness measures which were

also used in the RankGP approach. Some of other characteristics of that approach are as
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follows:

• Feature weight vectors are evolved as real number values.

• The chromosome dimension space has 44 genes. The initial population of these

genes in each chromosome has a value of between [-1,1].

• Similar to the RankGP approach (Yeh et al., 2007), the fitness function is the Mean

Average Precision (MAP).

However, the computational runtime comparison between this technique and other tech-

niques has not been presented. It may consume less runtime than the RankGP approach,

but it may consume more runtime than (1+1)-Evolutionary Algorithms. The parameter

settings such as probability of mutation and crossover have not been presented in their

paper.

4.2.14 Linear Regression

The Linear Regression (LR) technique was introduced in the Ranklib library package

(Dang, 2016), but there is no paper discussing its usefulness compared to other LTR tech-

niques. The method used in Ranklib is the least square LR technique (Miller, 2006). In

this method, the ranking model weight vector is chosen based on minimising the total dis-

tance between the ground truth labels of the training query-document pairs and the labels

produced by ranking the ranking model. The ranking model produced by LR technique

has the objective to minimise loss = 1
N

∑N
j=1 |yj−

∑n
i=1(wixij)|, where N is the number

of query-document pairs in the training set, n is the number of features in each query-

document pairs, wi is the weight for feature i in the ranking model proposed by LR and

xij is the feature value for feature i in query-document pair j. Finally, yj is the ground

truth label for query-document pair j. From our findings, the LR technique in Ranklib is

the fastest approach, but it is not the most effective one in Ranklib package.

4.2.15 Initialised GBRT using Random Forests (IGBRT)

This application is a hybrid pointwise LTR technique (Mohan et al., 2011). It uses the

ranking model produced by the pointwise RF technique in the initialisation procedure of
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the GBRT technique. Mohan (Mohan et al., 2011) developed this technique with point-

wise GBRT and pointwise RF in rt-rank package (Mohan et al., 2011). This technique

has been introduced in Yahoo challenge for LTR problems (Chapelle and Chang, 2011).

It was in comparison with LambdaMART, AdaBoost and YetiRankand approaches. The

LambdaMART outperformed IGBRT technique regrading reciprocal rank evaluation val-

ues in this challenge. This comparison did not consider the computational time of each

technique. However, IGBRT outperformed GBRT and RF in terms of receiprocal rank.

From our findings, IGBRT technique also consumes considerable computational runtime

for large LETOR datasets.

4.3 Chapter Summary

In this chapter, the related works of Evolutionary Computation (EC) and Machine Learn-

ing (ML) in TVM and FVM are presented. The chapter started with the TVM and in-

troduced the limitation of applying EC and ML in TVM for evolving term weights. The

limitation is summarised in the problem size and the computational run-time for evolving

the whole document representations. Besides to the relevance judgement limitation for

applying EC or ML techniques at the beginning of establishing a new IR system. These

cause the need for proposing a new methodology for evolving document representations

using EML techniques. This Chapter also introduces the various LTR techniques on FVM.

In this research domain, the EML techniques are used to learn the most suitable ranking

model weight for the training data and testing the performance of the techniques on the

test data. The literature research was not stated the experimental settings nor the training

computational run-time in their comparison. Furthermore, most of the EML techniques

give high accuracy more than other heuristic techniques. The following chapter presents

a new TWS called TF-ATO and it shows the heuristic issues caused by the pre-processing

procedure in IR.
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Chapter 5

Term Frequency With Average Term

Occurrences (TF-ATO)

5.1 Introduction

In the context of Information Retrieval (IR) from textual documents, the term-weighting

scheme (TWS) is a key component of the matching mechanism when using the TVM

(Term Vector Model) representation. At the beginning of establishing an IR system,

there is a need for using a non-learning (mathematical) term-weighting scheme (TWS).

This is because there are no relevance judgement values provided by the users for the

IR test collection. The preferable non-learning TWS is the term-weighting function that

considers most of non-noisy document words as index terms and assigns a discriminate

weight value for it. As discussed in Section 2.2.2, an effective TWS is crucial to make

an IR system more efficient. There are various TWS proposed in the literature and

some have been implemented in search engines. To the best of our knowledge, the most

widely used approach is the term frequency-inverse document frequency (TF-IDF) as a

non-learning TWS. However, TF-IDF and its variations may remove some significant

keywords before user relevance feedback is gathered by the IR systems. This may cause

the bias of relevance judgement values based on the used TWS in the IR system (Buckley

et al., 2007; Urbano, 2016).

An analysis of commonly used test collections for evolving TWS and term weights is
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demonstrated in subsection 3.1.3. This analysis shows that test collections are not fully

judged as achieving that is expensive and may be unfeasible for large collections at the

early stage of establishing the IR system. A test collection being fully judged means that

every document in the collection acts as a relevant document to a specific query or a

group of queries. Some Evolutionary Computation (EC) techniques have been used for

evolving TWS or evolving term weights using those test collections (Cummins, 2008;

Cordon et al., 2003). However, such approaches have an important drawback. These EC

approaches usually use the relevance judgements for the test collection on their fitness

functions for checking the quality of the proposed solutions. The relevance judgement of

a collection gives the list of relevant/irrelevant documents for every query. Furthermore,

the real IR test collection have not relevance judgement values at the beginning of IR

systems. This means that TWS can not be evolved at the beginning of establishing IR

system. This provokes that when using EC techniques most documents have random term

weight representations. In addition, TWS evolved with Genetic Programming (GP) as in

(Cummins and O’Riordan, 2006; Cordon et al., 2003) are based on the characteristics of

the test collections and hence, not easily generalisable to be effective on collections with

different characteristics.

This is what motivates the work presented in this chapter on the development of such

the proposed TWS. In this work, the Term Frequency With Average Term Occurrence (TF-

ATO) is proposed which computes the average term occurrences of terms in documents

and uses a Discriminative Approach (DA) based on the document centroid vector to re-

move less significant weights from the documents. This TWS does not require any prior

knowledge about relevance judgement values.

This chapter evaluates the performance of TF-ATO and investigates the effect of

stop-words (or negative words) removal (Fox, 1992) and the DA as procedures for

removing non-significant terms and term weights in heuristic TWSs. The performance

of the proposed TF-ATO and the well-known TF-IDF approach are compared in this

chapter. It is shown that using TF-ATO results in better effectiveness in both static and

dynamic test collections. In addition, this chapter investigates the impact that stop-

words removal and our DA have on TF-IDF and TF-ATO. The results show that both,
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stop-words removal and the DA, have a positive effect on both term-weighting schemes.

More importantly, it is shown that using the proposed DA is beneficial for improving IR

effectiveness and performance with no information in the relevance judgement for the col-

lection. The intended contributions of this chapter are contributions 2 and 3 in section 1.4.

5.2 The Proposed Term-Weighting Scheme

How to assign appropriate weights to terms is one of the critical issues in automatic term-

weighting schemes. In this section, a new TWS called Term Frequency Average Term

Occurrences (TF-ATO) is proposed and is expressed by:

Wij =
tfij

# ATO in document j
(5.2.1)

and

# ATO in document j =
Σ
mj

i=1tfij
mj

(5.2.2)

where tfij is the term frequency of term i in document j, ATO is the average term oc-

currences of terms in the document and is computed for each document, mj represents

the number of unique terms in the document j or in other words it is the number of

index terms that exist in document j. This TWS does not require any relevance judge-

ment values for establishing IR system. TF-ATO considers long/short document/query

variation length by normalising term frequency by the average term occurrence in the

term-weighting scheme. The global part of TF-IDF scheme and its variations depends

on the test collection characteristics, while the proposed TF-ATO scheme considers that

global weights are the same in any term weight that has a value of 1 for any existing term

in the collection. The Discrimination Approach (DA) incorporated into TF-ATO uses the

documents centroid as a threshold to remove less-significant weights from the documents.

The DA can discriminate between the term weight representations in the documents for

better document representations, while IDF discriminates between the terms themselves

by removing most repeated terms between documents. Thus, if the term is significant in
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a specific document or a group of documents but repeated in all documents, it will have

0 TF-IDF value in all documents regardless its importance in some documents. How-

ever, the documents, in which this term is a discriminative term for them, should have a

term-weight value that indicates its importance as a discriminative term. Thus, we pro-

posed DA to discriminate terms in term-weight level in the documents rather than IDF

that discriminate the terms in term level in the collection.

5.3 Discriminative Approach (DA)

The proposed DA is a non-learning heuristic approach for improving documents represen-

tation. To the best of our knowledge, this is the first non-learning discriminative approach

for improving documents representation. It is similar to the heuristic method Ide dec-hi

(Salton and Buckley, 1997) for improving queries representation. However, our DA is for

documents representation instead of queries. It does not require any relevance judgements

information and it depends only on test collection representations. Thus, it depends on

the topic domain of the test collection to remove less significant words from it. This DA

can be represented by:

Wij =

 Wij if ci < Wij

0 if ci ≥ Wij

where ci is the weight of term i in the documents centroid vector and Wij is the term

weight of term i in document j as calculated with equation 5.2.1. This DA is applied

to every term weight Wij in every document in the collection. Assuming that M is the

number of index terms in the collection and N is the number of documents existing the

collection, the document centroid vector of the collection is given by:

C = (c1, c2, ..., ci, ..., cM) (5.3.3)

and

ci =
1

N
ΣN
j=1 Wij (5.3.4)

October 30, 2017



5.4. Implementation and Experimental Study 98

This proposed DA is somehow based on Luhn’s approach (cuts-off) (Luhn, 1957) for

removing non-significant words from text (see subsection 5.5.1). However, it takes into

account that some non-significant words can become significant in different context ac-

cording to some documents domains (Saif et al., 2014). Thus, our DA is used to remove

non-significant term weights when they are non-significant compared to the centroid of

the term weights, instead of removing the terms totally from the document representa-

tions.

5.4 Implementation and Experimental Study

5.4.1 Building the IR System

Information Retrieval systems manage their data resources (test collections) by processing

words to extract and assign a descriptive content that is represented as index terms to

documents or queries. In text documents, words are formulated with many morphological

variants, even if they refer to the same concept. Therefore, the documents often undergo a

pre-processing procedure before building the IR system model. The model here is based

on the vector space model (VSM) as explained in Chapter 2. The following procedures

are applied to each document in our IR system:

1. Lexical analysis and tokenization of text with the objective of treating punctuation,

digits and the case of letters.

2. Elimination of stop-words with the objective of filtering out words that have very

low discrimination value for matching and retrieval purposes.

3. Stemming of the remaining words using Porter stemmer (Jones and Willett, 1997)

with the objective of removing affixes (prefixes and suffixes) and allowing the re-

trieval of documents containing syntactic variations of query terms.

4. Index terms selection by determining which words or stems will be used as index

terms.

5. Assign weights to each index term in each document using one given weighting

scheme which gives the importance of that index term to a given document.
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6. Create document vectors of term weights in the test collection space (create inverted

and directed files using term weights for documents from the test collection).

7. Apply the previous steps (1-6) to queries in order to build query vectors.

8. For the proposed weighting scheme only (TF-ATO), there are two additional steps:

• Compute the document centroid vector from document vectors by using equa-

tions (9) and (10).

• Use the documents centroid for normalising document vectors. This can be

done by removing small non-discriminative weights using the documents cen-

troid as a threshold.

9. Matching between document vectors and each query using cosine similarity and

rank them according to their cosine similarity values in descending order. Then,

the precision was calculated under fixed 9-points recall values. In other words, the

ranked document retrieved until one recall point of the nine recall points is reached

(cut-off according nine recall points). Then, precision is calculated for the retrieved

list. The precision values are for the retrieved documents for each corresponding

recall value (recall point) for each query.

10. Compute the average precision values for the whole query set in 9-points recall

values for the retrieved documents. Then compute the Mean Average Precision

(MAP) value. The average precision under fixed 9-points recall values as evaluation

metric is an accurate evaluation metric for the textual test collections compared to

measuring the the precision for the whole document retrieved. This is because there

are variations in the number of relevant documents per each query.

11. Repeat steps 5 to 12 for each weighting scheme tested and compare results.

The above procedure has been used for experiments with static data stream. For the

case of dynamic data stream, there are two approaches. The first one is to re-compute

terms weights for each document in the collection by conducting the above procedure for

each update to the collection using a non-learning approach. This of course, adds extra

computation cost for every data update in a dynamic data stream. The second approach
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involves using IDF or the documents centroid in the next approach that is measured

from the initial test collection. Then assign term weights to the new documents using

the term frequency in the document multiplied by the corresponding IDF for the term

that computes by the initial test collection or alternatively, use the DA. In addition to

the term-weighting approach proposed here, the old documents centroid vector is used

for eliminating non-discriminative term weights from the added documents. The second

approach costs less in computation time but it may give lower effectiveness in terms

of MAP in both the proposed TF-ATO and TF-IDF. The reason for this drawback is

the variation between the actual values of IDF or documents centroid in dynamic test

collection compared with the old values that are computed for the initial collection. We

think that all proposed term-weighting schemes have drawbacks in their effectiveness if

they do not re-compute their weighting scheme after every large update to the collection.

However, this issue has not been investigated in the previous work when considering

dynamic data streams as well as static ones. Thus, this work investigates the issue behind

of using dynamic test collection in IR system to check its impact on IR effectiveness

when using TF-IDF and TF-IDF with DA.

5.4.2 Experimental Results and Analysis

In this Section, two experiments are conducted using the overall procedure described

in subsection 5.4.1. The purpose of the first experiment was to compare the average

recall-precision values achieved by the proposed TF-ATO with and without the DA to

the ones achieved by TF-IDF. This experiment considered the test collection as static.

For this first experiment the largest test collection created by Cranfield paradigm was

used which is Ohsumed and the pooling paradigm LATIMES test collection is also used

in this experiment with their query sets (outlined in Table 3.3). The experiments were

conducted on a PC with 3.60 GHz Intel (R) core(TM) i7-3820 CPU with 8GB RAM

and the implementation was in Java NetBeans under Windows 7 Enterprise Edition. The

computational run-time for indexing using TF-ATO, TF-ATO with DA and TF-IDF on

Ohsumed collection are 25, 31 and 40 minutes respectively, while the indexing run-time

using TF-ATO, TF-ATO with DA and TF-IDF on LATIMES collection are 24, 29 and 43
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minutes.

Tables 5.1 and 5.2 present the results from the first experiment applied on Ohsumed

and LATIMES. The tables show the Average Precision (AvgP) value obtained by each

TWS method for nine Recall values as well as the corresponding Mean Average Precision

(MAP) value. It is observed that the proposed weighting scheme TF-ATO gives high

effectiveness compared to TF-IDF. The tables show that TF-ATO without the DA does

not achieve better precision values than TF-IDF for some recall values, but when the DA

is used then TF-ATO always outperforms TF-IDF for all recall values. Considering all

the recall values, the average improvement in precision using Ohsumed collection (given

by the MAP value) achieved by TF-ATO without DA is 6.94% while the improvement

achieved by TF-ATO using the DA is 41%. Moreover, the average improvement in

precision using LATIMES collection achieved by TF-ATO without DA is 2.2% while the

improvement achieved by TF-ATO using the DA is 29.4%.

Table 5.1: Average Recall-Precision and MAP for Static Experiment Applied on
Ohsumed collection.

Recall
AvgP and MAP for static document experiment

TF-IDF TF-ATO without DA TF-ATO with DA

0.1 0.648 0.713 0.816

0.2 0.445 0.47 0.61

0.3 0.343 0.361 0.472

0.4 0.253 0.259 0.362

0.5 0.216 0.196 0.288

0.6 0.176 0.153 0.24

0.7 0.156 0.13 0.199

0.8 0.136 0.114 0.154

0.9 0.123 0.108 0.13

MAP 0.277 0.278 0.364

From the results of this first experiment, it is clear that the proposed TF-ATO

weighting scheme gives better effectiveness (higher average precision values) when
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Table 5.2: Average Recall-Precision and MAP for Static Experiment Applied on LA-
TIMES collection.

Recall
AvgP and MAP for static document experiment

TF-IDF TF-ATO without DA TF-ATO with DA

0.1 0.528 0.563 0.764

0.2 0.431 0.441 0.658

0.3 0.392 0.393 0.51

0.4 0.345 0.348 0.41

0.5 0.305 0.32 0.329

0.6 0.261 0.29 0.268

0.7 0.172 0.172 0.222

0.8 0.158 0.158 0.201

0.9 0.126 0.126 0.196

MAP 0.305 0.312 0.395

compared to TF-IDF in static test collections. Furthermore, there is an improvement by

using the document centroid as a DA with the proposed weighting scheme. Moreover,

the proposed DA reduces the size of the documents in the test collections by removing

non-discriminative terms and less significant weights for each document. These reduction

ratios are illustrated in Section 5.5.2.

The purpose of the second experiment was to investigate the average recall-precision

values achieved by the proposed TF-ATO with the DA to the ones achieved by TF-IDF

but now considering the test collection as dynamic. In order to conduct this experiment

considering the test collection as dynamic, the given document sets in the test collections

are split into parts. Then, the first part of the test collection is taken as the initial test

collection to apply steps 1-8 of the procedure described in section 5.4.1. This allows

to compute the index terms IDF values and document centroid vector of term-weights

for the collections. The test collections are then updated by adding the other parts

but without updating the index terms IDF values or document centroid vector weights

computed for the initial collections. So, no recalculation is done even after adding a large

number (remaining parts) of documents to the initial collections. The reason for this is
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that re-computing IDF values and assigning new weights (for updating documents in the

collection) would have a computational cost of O(N2 ∗M ∗ Log(M)), where N is the

number of documents in the collection and M is the number of index terms in the term

space (Reed et al., 2006b). So, there would be a cost for updating the system in both IDF

and document centroid values but there is no extra cost for using them for assigning term

weights without updating.

In order to determine the ratio for splitting the test collections into parts, some

preliminary experiments were conducted. The document set in the test collections were

split into 2, 5, 10 and 30 parts and observed that if the ratio was small (few parts), the

variation in MAP values was small and less significant. That is, the simulated effect

of having a dynamic data stream was better achieved by splitting the collection into a

larger number of parts. Thus, for the second experiment, the document sets in the test

collections were split into 30 parts, i.e. the ratio between the initial document set in the

test collection and the final updated document set in the collection was 1:29.

Table 5.3: Average Recall-Precision Using TF-IDF and TF-ATO with DA in Dynamic
Experiment for Ohsumed.

Recall
AvgP and MAP for Dynamic Experiment
TF-IDF TF-ATO with DA

0.1 0.516 0.776

0.2 0.329 0.561

0.3 0.26 0.402

0.4 0.202 0.283

0.5 0.159 0.213

0.6 0.138 0.17

0.7 0.126 0.146

0.8 0.117 0.125

0.9 0.111 0.11

MAP 0.217 0.309

Tables 5.3 and 5.4 present the results from the second experiment applied on

Ohsumed and LATIMES collections. The tables show the results using TF-IDF or
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Table 5.4: Average Recall-Precision Using TF-IDF and TF-ATO with DA in Dynamic
Experiment for LATIMES.

Recall
AvgP and MAP for Dynamic Experiment
TF-IDF TF-ATO

0.1 0.403 0.663

0.2 0.217 0.449

0.3 0.15 0.292

0.4 0.101 0.182

0.5 0.1 0.132

0.6 0.059 0.109

0.7 0.05 0.061

0.8 0.041 0.055

0.9 0.035 0.03

MAP 0.128 0.219

TF-ATO with DA for dynamic simulation experiment by adding more documents in the

document set without re-weighting neither IDF nor DA. The tables show the average

precision values obtained by the given TWS method for nine Recall values as well as the

corresponding MAP value.

From these tables, it is observed that there is a drawback in the effectiveness

compared to the case with static data streams. The MAP drawback ratios from static

to dynamic using TF-IDF and TF-ATO with DA on Ohsumed collection are 21.8% and

15% respectively, while, the MAP drawback ratios from using TF-IDF and TF-ATO

with DA on LATIMES collection are 57.9% and 44.5%. This means only large variation

on the document size by adding a large number of documents may cause an impact

on the IR effectiveness. However, the proposed weighting scheme TF-ATO with DA

still gives better effectiveness values than those produced with the TF-IDF weighting

scheme. It can be also seen from these tables that the average improvement in precision

of TF-ATO with DA compared to TF-IDF is 42.38% for Ohsuemd collection, while the

average improvement in precision of TF-ATO with DA compared to TF-IDF is 70.7%

for LATIMES collection. Furthermore, the dynamic experiment shows the effect of the

strong dynamic variation and drawback in IR effectiveness. Adding a large number
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Figure 5.1: Illustrating the Average Precision performance for Static/Dynamic Experi-
ments on Ohsumed Collection.

of documents to the document set (the index file) can cause a drawback in IR system

effectiveness.

Figures 5.1 and 5.2 illustrate the bar chart for static/dynamic experiments on

Ohsumed and LATIMES results reported in the tables mentioned above. In these figures,

higher values correspond to better performance. From these figures it can be observed

that the TF-ATO with DA TWS exhibits the overall best performance. On the other hand,

the p-values of paired t-test for experiments is shown in Table 5.5. From the table, we

can observe that the improvements using TF-ATO with DA are significant comparing

with TF-IDF.

5.5 Stop-words Removal and DA Case Studies

The performance of the proposed term-weighting scheme TF-ATO was further inves-

tigated in terms of its DA and the impact of stop-word removal. The related work is
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Figure 5.2: Illustrating the Average Precision performance for Static/Dynamic Experi-
ments on LATIMES Collection.

Table 5.5: Paired T-test for Static and Dynamic Experiments

Paired
Ohsumed LATIMES

static dynamic static dynamic

TF-IDF and TF-ATO without DA 0.932 NA 0.049 NA

TF-IDF and TF-ATO with DA 0.0026 0.0223 0.011 0.02465

TF-ATO without /with DA 0.0001 NA 0.155 NA
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Figure 5.3: Zipf’s Relationship Frequency vs. Rank Order for Words and Luhn’s Cut-off
Points for Significant and Non-significant Words on Text as in (Rijsbergen, 1979).

reviewed first and then the conducted experiments are introduced to compare the effec-

tiveness of TF-ATO and TF-IDF in respect to the issues mentioned.

5.5.1 Related Work on Stop-word Lists

Zipf’s Law and Luhn’s Hypothesis

Zipf states that the relation between the frequency of the use of words and their cor-

responding rank order is approximately constant (Zipf, 1949). Zipf based his study on

American English Newspapers. Based on Zipf’s law, Luhn suggested that words used

in texts can be divided into significant and non-significant keywords. He specified upper

and lower cut-off points on Zipf’s curve as shown in Figure 5.3. The words below the

lower cut-off point are rare words that do not contribute significantly to the content of

articles. The words above the upper cut-off point occur most frequently and cannot be

good discriminators between articles because they are too common in texts. From Zipf’s

and Luhn’s works, researchers have proposed lists of stop-words that should be removed
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from texts for better effectiveness (accuracy) in natural language processing (NLP). From

the literature, stop-words lists (stoplists) can be divided into three categories as follows.

1. General Stoplists: These general purpose stoplists are generated from large cor-

pus of text using term ranking scheme and high Document Frequency (high-DF)

filtering among other methods inspired by Zipf’s law. Examples are the Rijsber-

gen (Van Rijsbergen, 1975), SMART’s (SMART, 2014) and Brown’s (Fox, 1992)

stoplists. Later, (Sinka and Corne, 2003b) generated two ranked list of words in as-

cending order of their entropy and constructed modern stoplists based on Zipf’s and

Luhn’s work. They showed that their stoplists outperform Rijsbergen’s and Brown’s

stoplists in text clustering problem with respect to accuracy. However, Rijsbergen’s

and Brown’s stoplists perform better on other case studies. Sinka and Corne did

not make their stoplists available. It should be noted that the computational cost to

build new stoplists from large corpus by this method is high compared to the slight

improvement in accuracy.

2. Collection-Based Stoplists: These stoplists are generated from the test collection

and can be applied on the test and real IR test collections. The challenge here is in

choosing the cut-off points to classify the words in the collection into stop-words,

rare (non-significant) words and significant. Four approaches based on Zipf’s law

and Luhn’s principle for choosing corpus-based stop-words list were proposed by

(Lo et al., 2005). Further, they used Kullback-Leibler (KL) divergence measure

(Cover and Thomas, 1991) to determine the cut-off on these approaches. Their

study concluded that the approach using normalised inverse document frequency

(IDF) gave better results. It should be noted that the computational time and efforts

including mathematical and probabilistic calculations to build collection-based sto-

plists for each test collection is high compared to using general stoplists. Further-

more, Lo et al. illustrated that there is no significant differences between using

general stoplists and collection-based stoplists in terms of average precision when

using TREC Disk 4&5 and .Gov collections.

3. Evolving Stoplists: In this category, meta-heuristic techniques are used for evolving

a group of general stoplists with the aim of producing better stoplists. To the best
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of our knowledge, only (Sinka and Corne, 2003a) have used this approach. Their

method starts by combining the top 500 stop-words in the stoplists of (Sinka and

Corne, 2003b) with the stoplists of Rijsbergen’s and Brown’s into one group to

be evolved. Then, they applied Hill Climbing (HC) and Evolutionary Algorithm

(EA) with 2000 documents in 2-mean clustering problem. This approach has been

applied on text classification problem in which each document is belong to a specific

class. The similar approaches for evolving stoplists in IR require the relevance

judgement values in each test collection to check the quality of the proposed stoplist

comparing to the IR system effectiveness.

Hence, the general stoplists are the most appropriate stoplist in IR at the beginning

of establishing IR system. The general stoplists can be used with less computational cost

and without the need for having relevance judgement values to use it. They are available

and easy to apply stopword removal with them at the start of establishing IR system.

5.5.2 Experimental Results and Analysis

In these experiments, the impact of our DA was investigated as a heuristic method for im-

proving documents representations. The system effectiveness and performance in terms

of the Mean Average Precision (MAP) and the size of the index file were measured. In

order to apply the DA no information about relevance judgement is needed. In these

experiments, the impact of stop-words removal is also examined. As discussed above,

this is an important process for improving the performance and effectiveness of IR sys-

tems. Then the impact of the DA and the removal of stop-words were examined on two

TWS, our proposed TF-ATO and also TF-IDF. The experiments were conducted using

the following five test collections: Ohsumed, Cranfield, CISI, FBIS and LATIMES (see

Table 3.3). These test collections are used by researchers on mathematical (non-learning)

and on Computational Intelligence domain (Cummins, 2008; Reed et al., 2006b; Smucker

et al., 2012; Voorhees, 2004). The following four case studies are used in the experiments

where TWS is either our TF-ATO or TF-IDF:

• Case 1: apply TWS without using stop-words removal nor DA.

• Case 2: apply TWS using stop-words removal but without DA.
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• Case 3: apply TWS without using stop-words removal but using DA.

• Case 4: apply TWS using both stop-words removal and DA.

Table 5.6: Mean Average Precision (MAP) Results Obtained From Each Case in the
Experiments. Using and Not-using Stop-words Removal is Indicated With sw(y) and
sw(n) Respectively, Similarly for the DA.

Case No. TWS Ohsumed Cranfield CISI FBIS LATIMES

Case 1: sw(n)/da(n)
TF-IDF 0.215 0.275 0.282 0.287 0.269

TF-ATO 0.188 0.233 0.241 0.249 0.22

Case 2: sw(y)/da(n)
TF-IDF 0.268 0.3 0.307 0.348 0.34

TF-ATO 0.279 0.355 0.34 0.392 0.35

Case 3: sw(n)/da(y)
TF-IDF 0.277 0.282 0.295 0.293 0.306

TF-ATO 0.278 0.301 0.315 0.295 0.312

Case 4: sw(y)/da(y)
TF-IDF 0.349 0.356 0.358 0.394 0.386

TF-ATO 0.364 0.4 0.362 0.427 0.395

Detailed results from our experiments are shown in Tables 5.7, 5.8, 5.9, 5.10

and 5.11. Each table reports for one test collection, the average recall-precision values

obtained with the four case studies as described above. The last row in each of these

tables shows the MAP values for TWS on each case study across 9-points recall values.

Then, the MAP values are collated and presented in Table 5.6. The p-values of the paired

t-test for Case1, Case2, Case3 and Case4 are 0.0004, 0.025, 0.7 and 0.048 respectively.

These values indicate the significant variation in each case study. The lower value is the

highest significant.

Several observations can be made from the results in Table 5.6. First, it is clear

that for both TWS in all five collections, using both stop-words removal and the DA

(case 4) gives the better results. When comparing cases 2 and 3 (using only one of

stop-word removal or DA), better results in general are obtained when using stop-words

removal (case 2) than when using the DA (case 3). It is noted that when comparing

TF-ATO and TF-IDF on cases 2, 3 and 4, our proposed TWS produces better results.

Specifically, in case 2 (using stop-words removal only) TF-ATO outperforms TF-IDF by

2-18%, in case 3 (using DA only) TF-ATO outperforms TF-IDF by 0.3-7% and in case
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Table 5.7: Average Recall-Precision Results Obtained on the Ohsumed Collection.

Recall

Average Precision In Ohsumed Collection For Cases Studies

Case1 Case2 Case3 Case4

TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO

0.1 0.547 0.536 0.663 0.742 0.648 0.713 0.797 0.816

0.2 0.331 0.267 0.456 0.47 0.445 0.47 0.584 0.61

0.3 0.246 0.183 0.348 0.346 0.343 0.361 0.442 0.472

0.4 0.176 0.142 0.233 0.238 0.253 0.259 0.343 0.362

0.5 0.151 0.127 0.192 0.191 0.216 0.196 0.26 0.288

0.6 0.133 0.117 0.16 0.154 0.176 0.153 0.241 0.24

0.7 0.124 0.112 0.133 0.14 0.156 0.13 0.194 0.199

0.8 0.117 0.107 0.118 0.121 0.136 0.114 0.145 0.154

0.9 0.111 0.104 0.11 0.111 0.123 0.108 0.134 0.13

MAP 0.215 0.188 0.268 0.279 0.277 0.278 0.349 0.364

Table 5.8: Average Recall-Precision Results Obtained on the LATIMES Collection.

Recall

Average Precision In LATIMES Collection For Cases Studies

Case1 Case2 Case3 Case4

TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO

0.1 0.522 0.406 0.57 0.58 0.528 0.563 0.723 0.764

0.2 0.474 0.337 0.54 0.579 0.431 0.441 0.685 0.658

0.3 0.352 0.316 0.496 0.503 0.392 0.393 0.432 0.51

0.4 0.294 0.27 0.387 0.391 0.345 0.348 0.367 0.41

0.5 0.243 0.182 0.317 0.319 0.305 0.32 0.328 0.329

0.6 0.183 0.159 0.259 0.264 0.261 0.29 0.289 0.268

0.7 0.142 0.143 0.203 0.208 0.172 0.172 0.254 0.222

0.8 0.111 0.106 0.162 0.161 0.158 0.158 0.217 0.201

0.9 0.095 0.064 0.125 0.144 0.126 0.126 0.181 0.196

MAP 0.269 0.22 0.34 0.35 0.305 0.312 0.386 0.395
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Table 5.9: Average Recall-Precision Results Obtained on the FBIS Collection.

Recall

Average Precision In FBIS Collection For Cases Studies

Case1 Case2 Case3 Case4

TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO

0.1 0.487 0.458 0.582 0.601 0.513 0.507 0.623 0.669

0.2 0.422 0.403 0.501 0.578 0.457 0.491 0.559 0.633

0.3 0.381 0.31 0.493 0.55 0.418 0.428 0.532 0.599

0.4 0.343 0.291 0.41 0.428 0.377 0.348 0.407 0.517

0.5 0.295 0.247 0.372 0.421 0.21 0.22 0.383 0.429

0.6 0.206 0.195 0.302 0.397 0.195 0.19 0.389 0.39

0.7 0.207 0.166 0.21 0.271 0.161 0.172 0.254 0.292

0.8 0.138 0.117 0.15 0.159 0.158 0.158 0.217 0.193

0.9 0.106 0.05 0.11 0.121 0.144 0.144 0.181 0.117

MAP 0.287 0.249 0.348 0.392 0.293 0.295 0.394 0.427

4 (using both) TF-ATO outperforms TF-IDF by 2-12%. It is believed that the DA and

stop-words removal are capable of removing more non-significant keywords compared

to the traditional IDF method. However, it was recognised that the TF-IDF outperforms

TF-ATO by 14-22% in case 1 (not using stop-words removal nor DA). This is due to the

ability of IDF to remove some non-significant words from the documents by assigning

values of 0 to words that are repeated in all documents in the collection.

Table 5.10: Average Recall-Precision Results Obtained on the Cranfield Collection.

Recall

Average Precision In Cranfield Collection For Cases Studies

Case1 Case2 Case3 Case4

TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO

0.1 0.643 0.454 0.659 0.698 0.653 0.664 0.729 0.765

0.2 0.425 0.426 0.485 0.53 0.456 0.464 0.548 0.655

0.3 0.373 0.343 0.403 0.457 0.362 0.402 0.461 0.526

0.4 0.292 0.277 0.332 0.402 0.296 0.331 0.362 0.41

0.5 0.205 0.237 0.268 0.359 0.257 0.29 0.317 0.361

0.6 0.183 0.128 0.195 0.267 0.153 0.162 0.27 0.293

0.7 0.154 0.109 0.14 0.205 0.117 0.147 0.229 0.226

0.8 0.107 0.072 0.112 0.156 0.135 0.133 0.156 0.192

0.9 0.095 0.048 0.108 0.119 0.107 0.122 0.129 0.173

MAP 0.275 0.233 0.3 0.355 0.282 0.301 0.356 0.4

The stop-words removal and DA have a large impact on the efficiency of the IR
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Table 5.11: Average Recall-Precision Results Obtained on the CISI Collection.

Recall

Average Precision In CISI Collection For Cases Studies

Case1 Case2 Case3 Case4

TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO TF-IDF TF-ATO

0.1 0.56 0.468 0.643 0.624 0.51 0.603 0.727 0.74

0.2 0.421 0.355 0.521 0.56 0.46 0.544 0.626 0.621

0.3 0.395 0.308 0.427 0.457 0.423 0.431 0.526 0.537

0.4 0.342 0.266 0.319 0.403 0.39 0.36 0.442 0.465

0.5 0.289 0.235 0.264 0.331 0.203 0.298 0.339 0.263

0.6 0.183 0.186 0.208 0.267 0.189 0.169 0.245 0.246

0.7 0.14 0.175 0.14 0.186 0.171 0.147 0.149 0.147

0.8 0.111 0.108 0.127 0.122 0.163 0.154 0.108 0.123

0.9 0.095 0.067 0.11 0.11 0.148 0.127 0.058 0.115

MAP 0.282 0.241 0.307 0.34 0.295 0.315 0.358 0.362

Table 5.12: The Ratios (%) Of Reduction Of The Size Of The Index File Obtained From
Its Original Index Size For Each Case in the Experiments.

Case Id TF-IDF TF-ATO
Ohsumed Case1 0.083% 0%
Ohsumed Case2 30.61% 30.65%
Ohsumed Case3 0.7% 0.75%
Ohsumed Case4 32.72% 32.76%
LATIMES case1 0.006% 0%
LATIMES case2 35.21% 35.22%
LATIMES case3 8.17% 8.16%
LATIMES case4 36.8% 36.78%

FBIS case1 9.12% 0%
FBIS case2 38.27% 33.7%
FBIS case3 30.22% 27.4%
FBIS case4 39.8% 39.6%

Cranfield case1 0.17% 0%
Cranfield case2 33.9% 33.83%
Cranfield case3 9.1% 9.4%
Cranfield case4 34.7% 34.5%

CISI case1 0.19% 0%
CISI case2 38.15% 38.4%
CISI case3 7.9% 7.5%
CISI case4 39% 38.9%
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system measured in terms of the index file size. Results for this are presented in

Table 5.12. From this table, we can see that when comparing cases 2 and 3 for each

TWS on the five test collections, using stop-words removal (case 2) helps to reduce the

index file size by 30.61-38.4% of the original index file (case 1). Whereas, the reduction

when using DA only (case 3) is between 0.7-30.22%. Using both stop-words removal

and DA (case 4) reduces the index file size between 32.72-39.8%. The positive effect of

stop-words removal and DA is larger on TF-ATO than on TF-IDF. This is because IDF

has already the ability to remove non-significant words.

Table 5.13: The Indexing Time in Minutes Using TF-IDF and TF-ATO For Each Case in
the Experiments.

Case Id TF-IDF TF-ATO
Ohsumed Case1 36 22
Ohsumed Case2 40 25
Ohsumed Case3 38 23
Ohsumed Case4 43 27
LATIMES case1 39 21
LATIMES case2 43 24
LATIMES case3 41 25
LATIMES case4 46 29

FBIS case1 37 20
FBIS case2 43 23
FBIS case3 40 22
FBIS case4 45 29

Cranfield case1 7 5
Cranfield case2 10 7
Cranfield case3 8 6
Cranfield case4 12 9

CISI case1 6 4
CISI case2 8 6.5
CISI case3 7.5 7
CISI case4 11 9.5

From Table 5.13, the average computational indexing time for the TF-ATO was less

than for the TF-IDF in the experimental case studies. Furthermore, the execution time for

applying DA in each test collection is less than the execution time for applying Stop-
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words removal. Thus, the TF-ATO outperformed the TF-IDF on computational time

and also system effectiveness. The average running time of the TF-ATO was between

4 minutes and 29 minutes in the smallest and largest test collections, while the average

computational time for the TF-IDF was between 6 minutes and 46 minutes. In general,

the TF-ATO with DA outperformed the other approaches in terms of computation time

and effectiveness. However, the TF-ATO with DA weighting scheme had lower reduction

ratio values in the index size than the TF-IDF in some study cases. These experiments

were conducted on a 3.60 GHz Intel (R) core(TM) i7-3820 CPU with 8GB RAM and the

implementation was in Java NetBeans under Windows 7 Enterprise Edition.

5.6 Chapter Summary and Conclusion

From the study presented in this chapter, it is concluded that the proposed Term Frequency

- Average Term Occurrences (TF-ATO) term-weighting scheme (TWS) can be considered

competitive when compared to the widely used TF-IDF. The proposed TWS gives

higher effectiveness in both cases of static and dynamic test collections. Moreover, the

document centroid vector can act as a threshold in normalisation to discriminate between

documents for better effectiveness in retrieving relevant documents. The variation and

reduction in system effectiveness when using dynamic instead of static test collections

were observed, plus there is additional cost for every update to the collection. The only

adding very large number of documents to the test collections can have significant a

negative impact on IR effectiveness, if the term re-weighting did not apply.

It was also observed that both stop-words removal and the DA have a positive effect

on both TWS (TF-IDF and TF-ATO) for improving the IR performance and effectiveness.

Furthermore, TF-IDF has a positive impact for removing some non-significant keywords

from the test collections compared to TF-ATO. However, using stop-words removal

and the DA have a larger impact on removing non-significant weights and keywords

from the collection, more positive significantly on TF-ATO but also on TF-IDF. This

means that it is beneficial to use the proposed DA as a heuristic method for improving IR

effectiveness and performance with no information on the relevance judgement for the
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collection. Our results showed that in general TF-ATO outperforms TF-IDF in terms of

effectiveness and indexing time. Only when both stop-words removal and DA are not

used, TF-IDF outperforms TF-ATO in terms of IR effectiveness. Chapter 6 argues a new

methodology for evolving document representation weights and based on TF-ATO as

local term-weights using a new technique called (1+1)-Evolutionary Gradient Strategy.

This technique considers the limitation of the previous learning EML technique for

evolving document representation weights.
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Chapter 6

(1+1)-Evolutionary Gradient Strategy

to Evolve Global Term Weights

6.1 Introduction

The effectiveness of an Information Retrieval (IR) system is measured by the quality of

retrieving relevant documents responding to user information needs (queries). One of the

common models used in IR is Vector Space Model (VSM). Documents are represented

in VSM as vectors of term weights. The VSM is the most well-known TVM category

besides the probabilistic models. The term weight has a significant impact on the IR

system effectiveness to retrieve relevant documents responding to user information

needs. An IR system contains the document weight representations of the test collection

in the form of an IR index file (Zobel and Moffat, July, 2006). For every index term

in an IR index file, a term weight measures the information content or the importance

of the term in the document. This term weight has two parts: the local and the global

weights. The Local Term Weight (LTW) measures the contribution of the term within a

given document. The Global Term Weight (GTW) measures the discrimination value of

the term to represent the topic of the documents in the collection. GTW also indicates the

importance of the term as a good discriminator between documents. Figure 6.1 shows

the term weights structure in the Index File in an IR system.

Term weights can be improved for achieving better IR effectiveness if the users can
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Figure 6.1: The Construction of the Index File (also called post file) which serves as an
index for the IR system. It contains the global and local term weights for every term in
each document and the document and term identifiers with the local term weight for each
term.

identify examples of the relevant documents that they require for their current search.

These examples of relevant documents and their corresponding user queries are stored

into the relevance judgement file of the test collection. The relevance judgement of

the IR test collection contains the group of relevant documents identified by users and

their corresponding user information needs (queries). Evolutionary Computation (EC)

techniques have been used extensively to improve IR effectiveness using the relevance

judgement feedback from IR systems (Cordon et al., 2003; Cummins, 2008). Some of

that previous research does not consider the problem size and the computational time that

are required in order to achieve an improvement in IR effectiveness.

The related work on the Term-Weighting Problem can be divided into two cate-

gories: 1) evolving collection-based Term-Weighting Schemes (TWS) and 2) evolving

term weights. These approaches have limited success to be used in real IR systems due to

several reasons as explained below, which gives the motivation for the work presented in

this chapter.
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1. The TWS evolved by Genetic Programming (GP) rely on the relevance judgement

(Cummins and O’Riordan, 2006; Cordon et al., 2003; Oren, 2002) to check the

quality of the proposed weighting function. These approaches have the following

limitations:

• The IR test collections have not any relevance judgement values at the be-

ginning of IR systems. However, the relevance judgement values are used in

the objective functions to check the quality of the evolved solutions. In addi-

tion, the term-weighting scheme should be used first to collect the relevance

judgement values.

• Okapi-BM25 TWS outperformed the whole TWS evolved using small test

collections different from the unseen large test collections in (Cummins and

O’Riordan, 2006). This is because the evolved local term weighting schemes

in small test collections did not perform well in large test collections.

• The problem size of creating better collection-based weighting function us-

ing GP is large (Cummins and O’Riordan, 2006; Oren, 2002; Escalante et al.,

2015). This is because the whole document space in the collection is consid-

ered in the evolving procedure of the global and local term-weighting func-

tions.

• The computational runtime required to create better collection-based weight-

ing functions using GP is high (Cummins and O’Riordan, 2006; Oren, 2002;

Escalante et al., 2015). In (Escalante et al., 2015), the computational runtime

for evolving TWS in a subset of 20-Newsgroup collection (Rennie, 2015)

using GP was 18 hours. Moreover, other GP approaches (Cummins and

O’Riordan, 2006; Oren, 2002) applied on very small collections used a cluster

of computers or took long computational runtime.

2. Evolving term weights of the document representations and evolving TWS us-

ing EC have resulted in better IR effectiveness regarding Mean Average Precision

(MAP) and Average Precision (AP) on the same test collections used in the evolving

procedure (Cummins, 2008; Cordon et al., 2003).
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The main aim of this work is to propose a method to increase IR effectiveness by

evolving better representations of documents in the collection for the trained queries

with less computer memory usage. This is accomplished by evolving the Global Term

Weights (GTWs) of the collection rather than evolving representations for the whole

collection as is typically done with previous EC approaches in the literature. Hence, the

main contribution of this chapter is the development of a (1+1)-Evolutionary Gradient

Strategy ((1+1)-EGS) with Adaptive Ziggurat Random Gaussian Mutation to evolve

GTWs. The Ziggurat random numbers is mentioned in (Kuo and Zulvia, 2015; Doornik,

2005; Loshchilov, 2014). The proposed methodology reduces the problem size, from

evolving (N ×M) document representation vectors to evolving (1×M) vector, where N

is the number of documents in the collection and M is the number of index terms in the

collection. This chapter also examines a new meta-heuristic method ((1+1)-EGS) in IR

with a new methodology for evolving document representation. This method considers

the limitation of the relevance judgement of the test collections in EC (see subsection

3.1.3).

In order to evaluate the performance of the proposed method, experimental results

are presented and discussed. The study compares results from using classical, fully

evolved and partially evolved IR experiments. The proposed approach obtained improved

MAP and improved AP compared to the Okapi-BM25 and TF-ATO weighting schemes

(Robertson and Zaragoza, 2009; Ibrahim and Landa-Silva, 2016). In addition, the ratio

of AP improvement obtained is larger than the one from evolving global term weighting

function approaches in some related work (Cummins and O’Riordan, 2006; Fan et al.,

2000; Cordon et al., 2003).

6.2 The Proposed Approach

This section presents the proposed approach to evolve Global Term Weights (GTWs) in

information retrieval from test collections. The method uses Term Frequency-Average

Term Occurrence (TF-ATO) that introduced in Chapter 5 and a (1+1)-Evolutionary
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Gradient Strategy (EGS) for this purpose. The general Evolutionary Gradient algorithms

was described in (Arnold and Salomon, 2007; Kuo and Zulvia, 2015). To the best of

our knowledge, this approach is the first one that focuses on evolving the GTWs vector

instead of evolving term-weighting functions or evolving term weights for the whole test

collection, as discussed in the introduction. Experiments conducted here show that this

approach achieves better MAP and AP compared to the other methods in the literature

(Cummins and O’Riordan, 2006; Cordon et al., 2003; Oren, 2002; Fan et al., 2000).

An outline of the main steps in the method is given next. The first step is to obtain

the corresponding vectors of local term weights for three sets of documents: the relevant

document set, the irrelevant document set and their query set. These vectors contain

TF-ATO values (see Chapter 5), of the index terms for every document in the three sets.

Then, a (1+1)-EGS and Ziggurat random sampling (Doornik, 2005) is used to mutate

the gradient steps. This method was selected because it has been shown that compared

to other evolutionary strategies methods, Ziggurat random sampling has lower cost in

terms of memory space or computational runtime (Loshchilov, 2014). The aim of the

(1+1)-EGS is to optimise the residuals between relevance labels and labels produced

from similarity matching between query set and document set. This can be accomplished

by maximising cosine similarity (Baeza-Yates and Ribeiro-Neto, 2011) between the

relevant document vectors and the query vectors. At the same time, it aims to minimise

the cosine similarity between the irrelevant document vectors and the query vectors. The

evolved GTWs will then be assigned to index-terms in the test collection. These GTWs

are multiplied by TF-ATO to produce term weight vectors for each document in the

collection.

The pseudo-code of the (1+1)-EGS is shown in Algorithm 2 and Table 6.1 lists

the notations used in the pseudo-code. Steps 1 to 6 include two methods to initialise

the parent GTW chromosome. The first method gives higher initialisation values

and is applied to index terms that are good discriminators. An index term is a good

discriminator when: 1) it exists in irrelevant documents only or 2) it exists with higher

TF-ATO value in relevant documents than in irrelevant document and this index term
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Table 6.1: The Notations Used in Algorithm 2.
Notation Definition

RelDocSet
is the relevant document vector set of TF-ATO as the form of
local term weight vectors.

IRRDocSet
is the irrelevant document vector set of TF-ATO as the local
term weight representations.

QSet is the query set of vectors in TF-ATO form.

ParentChromosomeGTW is the current parent proposed of the evolved GTW vector chro-
mosome for the index terms.

OffspringChromosomeGTW
is the current offspring of the evolved GTW vector of the index
terms. This is the mutated (evolved) GTW parent chromosome
(PG) of the current iteration.

ZGaussian(0,1)
is the Ziggurat random Gaussian number with 0 mean and 1
standard deviation and the value is between 0 and 1 Doornik
(2005).

MutatPos is the position of the gene that will undergo mutation.

MutatPosGood
is the array that saved the previous position of the gene that
had mutations in the previous iteration.

NoMutations is the number that indicates the number of genes (GTWs) that
will be mutated.

NoMutationsGood
is the saved number from the previous generation that indicates
the number of genes (GTWs) that had mutations.

MaxGTW
is the maximum GTW which is 1 in our case with using TF-
ATO as a local weighting scheme.

Random(t1,t2) is a function used to generate random number between t1 and
t2
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Algorithm 2: (1+1)-Evolutionary Gradient Strategy for Evolving GTWs
Data:
{RelDocSet:} is the Relevant Document Vector Set of TF-ATO weights.
{IRRDocSet:} is the Irrelevant Document Vector Set of TF-ATO weights.
{QSet:} is the Query Vector Set of TF-ATO weights.
{MaxGTW:} is equal 1 in case of using TF-ATO as a weighting scheme.
{M:} is equal to the number of index terms used to evolve their GTWs.
{Good:} has FALSE as an initialization value.
Result: Evolved GTWs of the Index Terms based on the relevance judgment values

1 Initialization for (IndexTerm Termi ∈M) do
2 if (Termi is a good discriminator) then
3 ParentChromosomeGTW[i] = MaxGTW + ZGaussian(0,1);
4 else
5 ParentChromosomeGTW[i] = ZGaussian(0,1);
6 end
7 OffspringChromosomeGTW[i] = ParentChromosomeGTW[i];
8 end
9 while CosineSimilarity(RelDocSet,QSet,ParentChromosomeGTW) ≤ Maximum do

10 if (Good==TRUE) then
11 NoMutations=NoMutationsGood;
12 else
13 NoMutations = Random(0,M);
14 NoMutationsGood = NoMutations;
15 end
16 for i=1→ NoMutations do
17 if (Good==TRUE) then
18 MutatPos=MutatPosGood[i];
19 else
20 MutatPos = Random(0,M);
21 MutatPosGood[i]=MutatPos;
22 end
23 OffspringChromosomeGTW[MutatPos]=OffspringChromosomeGTW[MutatPos]+

(ParentChromosomeGTW[MutatPos] - OffspringChromosomeGTW[MutatPos]) * ZGaussian(0,1);
24 end

/* Keep the fitter evolved chromosome */
25 if (CosineSimilarity(RelDocSet,QSet,ParentChromosomeGTW)

<CosineSimilarity(RelDocSet,QSet,OffspringChromosomeGTW)) AND (CosineSimilarity(IRRDocSet,QSet,
ParentChromosomeGTW) > CosineSimilarity(IRRDocSet,QSet,OffspringChromosomeGTW)) then

26 for i=1→ M do
27 ParentChromosomeGTW[i] = OffspringChromosomeGTW[i];
28 end
29 Good=TRUE;
30 else
31 for i=1→ M do
32 OffspringChromosomeGTW[i] = ParentChromosomeGTW[i];
33 end
34 Good=FALSE ;
35 end
36 end
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exists in the queries. The second method gives lower initialisation values and is applied

to index terms that are not good discriminators. Adding MaxGTW (a value of 1) to

the initialisation for good discriminators, instead of only a Ziggurat random number,

reduces the convergence runtime. The initialised parent chromosome is then copied as

the offspring chromosome in step 7. Then, the main evolution cycle of the (1+1)-EGS

is described in steps 9-36. The stopping criterion of the algorithm (step 9) indicates

that the evolution will stop when the maximum similarity (a value of 1 as given by the

cosine function) between relevant documents and user queries is achieved. Steps 10 to

24 show the procedure to control the mutation within the (1+1)-EGS. As shown in step

23, the actual mutation operator uses the genes gradient multiplied by Ziggurat random

Gaussian number with mean equal to 0 and standard deviation equal to 1 as the step-size.

Steps 10 to 22 show the strategy to control the number of gradient mutations and the

position in the chromosome to mutate. Note that this strategy repeats the mutation

settings when the mutated offspring chromosome improves upon the parent chromosome

(this is indicated by the Boolean variable Good). The objective function that examines

the quality of the offspring solution is shown in step 25. This objective function contains

two conditions. The first condition is to increase the cosine similarity value between the

relevant document vector set and the query vector set. The second condition is to reduce

the cosine similarity between the irrelevant document vector set and the query vector set.

That is, the offspring GTW chromosome is selected as the parent chromosome (line 27)

for the next iteration if it increases the discrimination between the relevant and irrelevant

document vector sets with the query vector set. In this case, the variable Good is set to

TRUE so that the mutation settings are repeated in the next iteration. Otherwise, the

offspring GTW chromosome is replaced by the parent GTW chromosome (line 32), and

the variable Good is set to FALSE.

As explained above, the initialisation step in the above (1+1)-EGS distinguishes be-

tween index terms that are good discriminators and those that are not. This gives the

proposed approach the ability to tackle Polysemy, one of the challenges in natural lan-

guage. Polysemy happens when the same terms exists in both the relevant and the irrel-

evant document sets and the term has multiple different meanings in different contexts.
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Hence, Polysemy words are not good discriminators because they have high TF-ATO

values (LTWs) in relevant and irrelevant documents. However, with the proposed ap-

proach Polysemy words get lower GTWs than the good discriminator terms, which em-

phasises their non-discriminating nature. The Computational complexity of this algorithm

is Ω(Q ∗N ∗ n ∗ log(R)), where Q is the number of training queries, N is the number of

training documents, n is the number of evolving iterations and R is the number of genes

in the chromosome.

6.3 Experimental Study and Evaluation

6.3.1 Test Collections

Eight test collections were used in these experiments (Hersh et al., 1994; Glassgow,

2014; Smucker et al., 2012; TREC, 2004). Table 6.2 shows their main characteristics.

In these experiments, four combination groups from the test collections were used to

produce four test collections. Each test collection combination contains three textual

materials: a set of documents, a set of queries, and relevance judgements between

documents and queries. For each query, a list of relevant documents is associated with

it. The first test collection consists of Ohsumed, CISI and CACM test collections (Hersh

et al., 1994; Glassgow, 2014), containing 353226 documents and 233 queries. The

second test collection consists of Cranfield, Medline and NPL test collections (Glassgow,

2014), containing 13862 documents and 348 queries. These two test collections were

formed from sampled collections and they have been widely used for research such as

in (Sebastiani, 2002; Cordon et al., 2003). The third and fourth collection combinations

are from three test collections in the TREC Disks 4 & 5 with two different query sets

and their relevance judgements. Crowdsourced and robust relevance evaluation were

used with the queries and relevance judgements (Smucker et al., 2012; TREC, 2004).

These third and fourth combinations contain FBIS, LA and FT test collections. The third

test collection contains 472525 documents and 230 queries, while the fourth collection

contains 18260 documents and 10 queries.
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Table 6.2: Characteristics of the Test Collections Used in the Experiments.
ID Description No. of Docs No. of Queries
Cranfield Aeronautical engineering abstracts 1400 225

Ohsumed Clinically-Oriented MEDLINE subset 348566 105

NPL Electrical Engineering abstracts 11429 93

CACM Computer Science ACM abstracts 3200 52

CISI Information Science abstracts 1460 76

Medline Biomedicine abstracts 1033 30

TREC Disks 4&5 (Robust 2004) News and Broadcast WebPages 472525 230

TREC Disks 4&5 (Crowdsource
2012) News and Broadcast WebPages 18260 10

6.3.2 Experimental Results

In this chapter, two term-weighting schemes were used. The first weighting scheme was

the Okapi-BM25 probabilistic weighting scheme (see subsection 2.2.3). This weighting

scheme has a good capability for estimating the term weights. It also outperformed the

whole evolved term-weighting schemes produced by Genetic Programming (Cummins

and O’Riordan, 2006). The second weighting scheme was TF-ATO with the Discrimi-

native Approach (DA) (see Chapter 5), which is the only existing non-evolved approach

that gives a good performance by discriminating documents without requiring any prior

knowledge of the collection’s relevance judgement. The number of index terms that were

used in evolving their GTWs in the Partially Evolved Experiment in the test collections

were 31658, 14679, 63091 and 6230 respectively. These terms are the keywords that

exist in the relevant documents, the top-30 irrelevant documents using TF-ATO weighting

scheme and their corresponding queries in the relevance judgement. In this experiment,

the remaining non-evolved index terms in the test collections had values of 1s as GTWs.

The number of index terms used in the Fully Evolved Experiment were 241450, 21600,

476850 and 18429 terms respectively. These terms constitute all the index terms in the

collections. In this experiments, we normalised relevance labels between 0 and 1, where

0 is for irrelevant documents and 1 for relevant documents in the relevance judgement.

Then, Residuals values can be represented by the subtraction between relevance labels

and cosine similarity matching value between corresponding queries with documents.

Figures 6.2 and 6.3 show the residuals values between normalised relevance labels
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Figure 6.2: Shows Residuals between Relevant Documents/Queries Matching with Rele-
vance Labels for First and Second Collection Combinations.

and cosine similarity values of the relevant documents with queries using the evolved

GTW with TF-ATO as LTW. If the cosine similarity between a relevant document with

a query, the residual value becomes closer to 0. From these figures, we can observe

that the majority of relevant documents becomes more similar to their corresponding

queries through optimising GTW using (1+1)-EGS. Thus, there are improvements in IR

effectiveness through these evolving procedure.

Table 6.3: The NDCG@30 in the Four Collection Combinations of Using Okapi-BM25,
TF-ATO with DA and the Proposed Approach.

Normalised Discounted Cumulative Gain for top-30 Documents Retrieved

DocID Okapi-BM25 TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 0.451 0.525 0.663 0.695

2nd Collection Combination 0.515 0.57 0.733 0.754

3rd Collection Combination 0.558 0.608 0.768 0.778

4th Collection Combination 0.519 0.569 0.729 0.739

Detailed results from our experiments are shown in Tables 6.5, 6.6, 6.7 and 6.8. Each

table reports for one test collection, the average recall-precision values obtained with the

four test collections. The last row in each of these tables shows the MAP values for each

approach across 9-points recall values. Then, the MAP values are collated and presented

in Table 6.3. Tables 6.3 and 6.4 show the average results of 10 runs of the proposed ap-
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Figure 6.3: Shows Residuals between Relevant Documents/Queries Matching with Rele-
vance Labels for Third and Fourth Collection Combinations.

Table 6.4: The Mean Average Precision in the Four Collection Combinations of Using
Okapi-BM25, TF-ATO with DA and the Proposed Approach.

Mean Average Precision (MAP)

DocID Okapi-BM25 TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 0.29 0.364 0.4272 0.4779

2nd Collection Combination 0.345 0.4 0.4884 0.5157

3rd Collection Combination 0.3767 0.4243 0.5007 0.5245

4th Collection Combination 0.399 0.4512 0.5144 0.522
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proach. These results are focused in the MAP and the Normalised Discounted Cumulative

Gain (NDCG@30) for the experimental study. The Partially Evolved Experiment and the

Fully Evolved Experiment in general outperformed the Okapi-BM25 and TF-ATO with

DA approaches in terms of effectiveness. From Table 6.3, the (NDCG@30) values of the

Partially Evolved Experiment were 0.695, 0.754, 0.778 and 0.739 for the test collection

combinations, while the NDCG@30 values of the Fully Evolved Experiment were 0.663,

0.733, 0.768 and 0.729. The ratios of improvement in NDCG@30 regarding Okapi-BM25

in Partially and Fully Evolved Experiments were better than the improvement gained in

evolving term-weighting functions in the literature (Cummins and O’Riordan, 2006; Fan

et al., 2000). The ratios of improvement using the Partially Evolved Experiments with re-

spect to Okapi-BM25 were 54.1%, 46.41%, 39.43% and 42.39% respectively in the four

collections, while the improvement ratios in the Fully Evolved Experiments were 47.01%,

42.33%, 37.63% and 40.46%. From Table 6.4, the improvement ratios in the MAP values

in the Partially Evolved Experiments were 64.8%, 49.5%, 39.24% and 30.83%, while the

improvement ratios in the MAP values in the Fully Evolved Experiments were 47.31%,

41.57%, 32.92% and 28.92% respectively. From these results, the Partially Evolved Ex-

periments outperformed Fully Evolved Experiments. The reason is that the training doc-

ument set in Partially Evolved Experiments are only the relevant documents with top-30

irrelevant documents, while the document set in Fully Evolved Experiments are the whole

relevant/irrelevant test collection. Thus, the convergence for better evolved global term-

weights is slower in Fully Evolved Experiments than Partially Evolved Experiments.

Table 6.5: The improvement in MAP and AP on Partially Evolved and Fully Evolved
Experiments of the first collection.

Recall

AP and MAP In The First Multi-topic Test Collection

Okapi-BM25 TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi-BM25

DA Improvement
(%)

Full Evolved Im-
provement (%)

Partially Evolved
Improvement (%)

0.1 0.745 0.816 0.872 0.891 9.54 16.98 19.57

0.2 0.504 0.61 0.736 0.82 21.11 46.032 62.76

0.3 0.357 0.472 0.511 0.615 31.96 43.109 72.27

0.4 0.236 0.362 0.42 0.494 53.39 78.29 109.8

0.5 0.2 0.288 0.397 0.41 44.15 98.6 104.75

0.6 0.155 0.24 0.308 0.358 54.84 98.839 131.032

0.7 0.138 0.199 0.24 0.298 44.13 73.55 115.58

0.8 0.135 0.154 0.19 0.219 14.148 41.037 62.3

0.9 0.127 0.13 0.171 0.197 -3.64 34.65 55.12

MAP 0.289 0.364 0.427 0.478 25.57 39.067 50.1
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Table 6.6: The improvement in MAP and AP on Partially Evolved and Fully Evolved
Experiments of the second collection.

Recall

AP and MAP In The Second Multi-topic Test Collection

Okapi-BM25TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi-BM25

DA Improvement
(%)

Full Evolved Im-
provement (%)

Partially Evolved
Improvement (%)

0.1 0.62 0.765 0.857 0.874 23.487 38.354 41.001

0.2 0.509 0.655 0.698 0.715 28.740 37.271 40.554

0.3 0.479 0.526 0.610 0.657 9.969 27.544 37.283

0.4 0.396 0.408 0.575 0.595 3.183 45.275 50.379

0.5 0.348 0.361 0.482 0.496 3.741 38.705 42.647

0.6 0.281 0.293 0.391 0.428 4.018 39.011 52.312

0.7 0.214 0.226 0.342 0.392 5.621 60.000 83.607

0.8 0.146 0.192 0.248 0.281 31.712 70.068 92.123

0.9 0.118 0.173 0.192 0.205 46.480 63.020 73.537

MAP 0.345 0.4 0.488 0.516 17.44 46.583 57.049

Table 6.7: The improvement in MAP and AP on Partially Evolved and Fully Evolved
Experiments on TREC Disk 4&5 Robust 2004 relevance feedback (TREC, 2004).

Recall

AP and MAP In The Third Multi-topic Test Collection

Okapi-BM25TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi-BM25

DA Improvement
(%)

Fully Evolved
Improvement (%)

Partially Evolved
Improvement (%)

0.1 0.61 0.729 0.898 0.907 19.51 47.21 48.69

0.2 0.59 0.66 0.82 0.85 11.86 38.98 44.07

0.3 0.53 0.55 0.58 0.6 3.77 9.43 13.21

0.4 0.43 0.49 0.53 0.54 13.95 23.26 25.58

0.5 0.38 0.41 0.43 0.46 7.89 13.16 21.05

0.6 0.32 0.33 0.411 0.435 3.13 28.28 35.94

0.7 0.22 0.26 0.347 0.391 18.18 57.73 77.82

0.8 0.17 0.2 0.273 0.296 17.65 60.59 74.12

0.9 0.14 0.19 0.218 0.241 35.71 55.71 72.29

MAP 0.377 0.424 0.501 0.525 14.63 37.15 45.86

Figure 6.4 illustrates the bar chart for Fully and Partially Evolved experiments on

the four test collections for the results reported in the tables mentioned above. In this

figure, higher values correspond to better performance. From these figures it can be

observed that the Partially Evolved Experiments exhibits the overall best performance.

On the other hand, the p-values for paired t-test in the MAP results for Okapi-BM25

with TF-ATO, Okapi-BM25 with Partially Evolved, Okapi-BM25 with Fully Evolved,

TF-ATO with Fully Evolved and TF-ATO with Partially Evolved are 0.0021, 0.00004,

0.000002, 0.00011 and 0.00002 respectively. The lower value indicates how the signif-

icant improvement between Partially or Fully Evolved comparing to Okapi-BM25 and

TF-ATO with DA TWS.
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Table 6.8: The improvement in MAP and AP Partially Evolved and Fully Evolved Ex-
periments on TREC Disk 4&5 crowdsource 2012 relevance feedback (Smucker et al.,
2012).

Recall

AP and MAP In The Fourth Multi-topic Test Collection

Okapi-BM25TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi-BM25

DA Improvement
(%)

Fully Evolved
Improvement (%)

Partially Evolved
Improvement (%)

0.1 0.631 0.693 0.925 0.939 9.83 46.6 48.81

0.2 0.597 0.653 0.875 0.853 9.38 46.57 42.88

0.3 0.548 0.598 0.62 0.638 9.12 13.19 16.42

0.4 0.463 0.569 0.597 0.592 22.89 28.96 27.86

0.5 0.435 0.492 0.447 0.436 13.10 2.76 0.23

0.6 0.367 0.392 0.395 0.398 6.81 7.63 8.45

0.7 0.237 0.292 0.335 0.325 23.21 41.35 37.13

0.8 0.185 0.198 0.246 0.276 7.03 32.97 49.19

0.9 0.127 0.174 0.189 0.244 37.01 48.82 92.13

MAP 0.399 0.451 0.514 0.522 15.4 29.9 35.9

Table 6.9: The Average Computational runtime per a Document in the Four Collection
Combinations of Using Okapi-BM25, TF-ATO with DA and the proposed Approach.

Average Computational Runtime in Seconds per an Instance

DocID Okapi-BM25 TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 17 15 300 180

2nd Collection Combination 19 17 430 120

3rd Collection Combination 18 15 600 230

4th Collection Combination 17 15 260 75

The computational runtime periods were computed for each instance (query with its

relevant/irrelevant documents) in the test collections. From Table 6.9, the average compu-

tational run time for the Partially Evolved Experiment was less than for the Fully Evolved

Experiment by 120 to 370 seconds depending on the number of evolved index terms in the

GTWs vector. Thus, the Partially Evolved Experiment outperformed the Fully Evolved

Experiment on computational time and also system effectiveness. The average running

time of the Partially Evolved Experiment was between 75 seconds and 230 seconds in

the smallest and largest collection combination, while the average computational time

for the Fully Evolved Experiment was between 260 seconds and 600 seconds. In general,

the TF-ATO with DA outperformed the other approaches in terms of computation time.

However, the TF-ATO with DA weighting scheme had lower effectiveness values than

the proposed approach. Thus, the next step in future research will be to reduce the com-
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Figure 6.4: Illustrating the MAP and NDCG@30 performance for Okapi-BM25, TF-ATO
with DA, Fully and Partially Evolved Experiments.

putational time using a combined machine learning technique with (1+1)-EGS. These

experiments were conducted on a 3.60 GHz Intel (R) core(TM) i7-3820 CPU with 8GB

RAM and the implementation was in Java NetBeans under Windows 7 Enterprise Edition.

6.4 Chapter Summary and Conclusion

This chapter proposes an approach based on a (1+1)-Evolutionary Gradient Strategy and

on Term Frequency-Average Term Occurrence (TF-ATO), for evolving the Global Term

Weights (GTWs) of the test collection in Information Retrieval (IR). By using (1+1)-

chromosomes of M genes, the proposed method is less demanding in terms of computer

memory, compared to other evolutionary computation approaches for IR used in the lit-

erature. Other approaches in the literature use non-adaptive evolutionary computation

techniques and have large search spaces for evolving document vectors. In contrast, the

technique described here optimised the document vectors through a GTW vector using

the local weight vectors of the collection. This approach also has positive impacts on

improving IR effectiveness. In addition, the Partially Evolved Experiment considers the
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limitations of the relevance judgement of the collection. The index terms that did not

exist in the Partially Evolved Experiment had values of 1 for GTWs and TF-ATO for

LTWs. The Partially Evolved Experiment was used to evolve the GTWs of the index

terms existing in the relevant document set and top-30 irrelevant document set rather than

all the index terms existing in the collection. The remaining documents that did not have

relevance judgement values only had TF-ATO representations. The Partially Evolved

Experiment outperformed the Fully Evolved Experiment in IR system effectiveness. In

addition, the two experimental methods had better effectiveness than the Okapi and TF-

ATO weighting schemes. On the other hand, the Fully Evolved Experiment consumed

more computational time than the Partially Evolved Experiment for evolving GTWs for

the queries existing in the collection’s relevance judgement.
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Chapter 7

Learning to Rank Model Based on

Feature Vector Model

7.1 Introduction

Ranking the search results responding to the user query is a vital research domain in IR

system. In this research domain, the Evolutionary and Machine Learning (EML) tech-

niques have been used intensively to achieve the best IR accuracy and performance. The

contribution of this chapter is to investigate the importance of the initialisation procedure

in (1+1)-Evolutionary Strategy ((1+1)-ES) to tackle the Learning to Rank (LTR) prob-

lem. It also introduces ES as a novel technique in LTR problem. The ES technique can

be considered as a scalable alternative to Reinforcement Learning technique with which

the optimisation problem converges to near optimal solutions in less runtime than other

evolutionary computation techniques (Salimans et al., 2017; Beyer and Schwefel, 2002).

Moreover, (1+1)-ES uses the lowest memory size comparing to other EML techniques in

LTR problem. The proposed method is called ES-Rank and consists of evolving a vec-

tor of weights where each weight represents the importance value of a dataset feature.

The initialisation procedure in ES-Rank has been tuned based on Linear Regression (LR)

and Support Vector Machine (SVM) ranking models to produce IESR-Rank (Initialising

ES-Rank with LR) and IESVM-Rank (Initialising ES-Rank with SVMRank). Details of

the proposed method are presented in Section 7.2. In order to assess the performance of

ES-Rank, Mean Average Precision (MAP), Root Mean Square Error (RMSE), Normalised
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Discounted Cumulative Gain (NDCG@10), Reciprocal Ranking (RR@10) and Precision

(P@10) at top-10 query-document pairs retrieved (Liu, 2011; Li, 2014) were used and

a comparison is carried out against fourteen state-of-the-art LTR approaches from the

literature. Experimental results in this chapter show that ES-Rank performs very well

when compared to those other methods in terms of MAP, NDCG@10, RR@10, P@10

and RMSE. Furthermore, the better initialisation procedure using machine learning rank-

ing model has a positive impact on improving ES-Rank in most cases. Furthermore, most

of the other methods consumed very long computational time while ES-Rank was much

faster. For example, some of the other methods consumed more than 9 hours on each

MSLR-WEB10K dataset fold (Qin et al., 2010) while ES-Rank consumed only around

30 minutes on each fold. Another advantage of ES-Rank is that it has small memory

requirements according to the problem size (2XM dimensions where M represents the

number of features in the training dataset). It is also observed that the appropriate ini-

tialisation values for ES-Rank can improve the accuracy of evolved ranking model. This

chapter provides the evidence that the initialisation procedure based on LR can improve

the accuracy of ES-Rank on LETOR datasets and introducing a new EML technique (ES-

Rank) in LTR problem. Furthermore, this chapter introduces the first comparison between

LTR techniques in terms of accuracy against computational time. The experimental re-

sults are presented in Section 7.3 which clarify the research finding of this chapter while

the conclusion and the proposed future work are given in Section 7.4.

7.2 The Proposed Approaches

The proposed LTR methodology uses a (1+1)-Evolutionary Strategy (ES) for evolving

the ranking function, due to the proven capability of evolutionary strategies to effec-

tively and efficiently converge towards a better solution (Beyer and Schwefel, 2002).

In addition, the list-wise approach have high performance values in terms of Mean

Average Precision (MAP) and Normalised Discounted Cumulative Gain (NDCG) against

pair-wise and point-wise approaches in literature (Cao et al., 2007). The proposed tech-

nique in this chapter is called Evolution Strategy Ranking (ES-Rank). The EGS-Rank

((1+1)-Evolutionary Gradient Strategy LTR) by mutating the chromosome under the
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gradient of the fitness evaluation metric is another extension of ES-Rank. Unfortunately,

EGS-Rank is not efficient than ES-Rank when used for LETOR datasets. The limitation

of EGS-Rank relates to runtime and the accuracy when compared to the ES-Rank

application. The chromosomes initialisation in ES-Rank are by assigning zero value

for each gene (each query-document feature weight). It is well-known that choosing an

appropriate initial solution in evolutionary techniques is an important issue (Diaz-Gomez

and Hougen, 2007; Burke et al., 1998). Three ways to create the initial parent are

investigated here. One is to set all weights to the same value of zero, another ones uses

Linear Regression (LR), the third one uses Support Vector Machine. Experiments later

in this chapter show that using Linear Regression or Support Vector Machine for parent

initialisation helps ES-Rank to converge towards better solutions.

Algorithm 3 outlines the proposed ES-Rank. This approach is essentially a (1+1)-

Evolutionary Strategy that evolves a single vector over a number of generations. The

input is the training set of query-document pairs or feature vectors and the output is a

linear ranking function. The chromosome ParentCh is a vector of M genes, where each

gene is a real number representing the importance of the corresponding feature for rank-

ing the document. Steps 1 to 4 initialise the chromosome vector by setting each gene to

a value of 0. The Boolean variable Good used to indicate whether repeating the mutation

process from the previous generation is set to FALSE in Step 5. A copy of ParentCh is

made into OffspringCh in step 6. The evolution process for MaxGenerations genera-

tions (MaxGenerations = 1300 in this chapter) starts in Step 7 and ends in Step 24.

Steps 8 to 16 show the strategy to control the mutation process by choosing the number of

genes to mutate (R), the actual genes to mutate and the mutation step. The mutation step

is determined using Equation 7.2.1, where Gaussian(0,1): is a random Gaussian num-

ber with 0 mean and 1 standard deviation, and Cauchy(0,1): is a cumulative distributed

Cauchy random number with value between 0 and 1.

Mutated Gene i = Gene i+ Gaussian(0, 1) ∗

exp(Cauchy(0, 1)) (7.2.1)
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Algorithm 3: ES-Rank: (1+1)-Evolutionary Strategy Ranking Approach
Input : A training set φ(q, d) of query-document pairs of feature vectors. Weight

Feature Vector WLR = g(wlri) from applying LR or SVM on φ(q, d) set.
Output: A linear ranking function F (q, d) that assigns a weight to every

query-document pair indicating its relevancy degree.
1 Initialization
2 for (Geni ∈ ParentCh) do
3 Geni = 0.0 or weight from LR or SVMRank ranking model;
4 end
5 Good=FALSE;
6 OffspringCh = ParentCh;
7 for G = 1 to MaxGenerations do
8 if (Good==TRUE) then
9 Use the same mutation process of generation (G− 1) on OffspringCh to

mutate OffspringCh, that is, mutate the same R genes using the same
MutationStep;

10 else
11 Choose number of genes to mutate R at random from 1 to M ;
12 for j = 1 to R do
13 Choose at random, Geni in OffSpringCh for mutation;
14 Mutate Genei using MutationStep according to equation (7.2.1)
15 end
16 end
17 if (Fitness(ParentCh,φ(q, d)) <Fitness(OffspringCh,φ(q, d))) then
18 ParentCh = OffspringCh;
19 Good=TRUE;
20 else
21 OffspringCh = ParentCh;
22 Good=FALSE ;
23 end
24 end
25 return the linear ranking function F (q, d) = ParentChT •φ(q, d) = W T •φ(q, d),

that is ParentCh at the end of the MaxGenerations contains the evolved vector
W of M feature weights, T indicates the transpose
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The mutation step defined by Equation 7.2.1 was chosen based on preliminary

experiments in which several ways of combining the Gaussian and Cauchy numbers

were tried. The combinations tried involved adding, subtracting and multiplying these

numbers. Both random and probabilistic mutation rates were tried in the preliminary

experiments. Among the various combinations tried, the one expressed by Equation

7.2.1 provided the best performance for ES-Rank. A mutation process that is successful

(produces a better offspring) in generation (G − 1) is replicated in generation G as

shown in Step 9. Otherwise, the parameters of the mutation process are reset as shown

in Steps 11 to 15. Steps 17 to 23 select between the ParentCh and the OffspringCh

according to their fitness measured using MAP or NDCG. Finally, ES-Rank returns the

ranking function in Step 25, defined by the transpose of the evolved vector of feature

weights and the query-document pairs. The computational complexity of this algorithm

is Ω(N ∗ n ∗ log(R)), where N is the number of training query-document pairs, n is the

number of evolving iterations and R is the number of genes in the chromosome.

Instead of the simple initialisation process in steps 1 to 4 of Algorithm 3, Linear

Regression (LR) and Support Vector Machine (SVM-Rank) are used now (see Chapter

4). That is, the genes in the ParentCh vector take the weight values that result from the

least square LR or SVM-Rank models (Dang, 2016; Joachims, 2016). Incorporating

these machine learning techniques into an evolutionary approach is a novel idea within

the LTR domain. The reason for choosing LR and SVMRank is as well as ES-Rank,

they produce linear ranking models, while other techniques produce non-linear ranking

models or they have high computational run-time.

The run-time efficiency of the proposed method also allows for all training instances

to be used in each learning iteration. Most other LTR techniques do not do that and

instead they use sampling methods for learning and checking the quality of the proposed

ranking models. However, sampling methods such as bootstrap Bagging or Boosting

cause over-fitting and under-fitting problems (Brownlee, 2017). The proposed method

evolves better ranking models with smooth fitting and better performance regarding

run-time and accuracy.
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Then, in order to apply the proposed LTR approach, the first step is to obtain the

datasets which contain the training, validation and test benchmarks. Next, the proposed

ES-Rank algorithm is applied to the training set in order to evolve a linear ranking

function. Then, the performance of the evolved linear ranking function is assessed using

the test set to get the predictive performance of the learning algorithm. The proposed

approach is a novel approach in Learning to Rank domain. The following section shows

the experimental study of these approaches as a comparative study with fourteen machine

learning techniques which were mentioned in Chapter 4.

7.3 Implementation and Experimental Results

This section presents a comprehensive experimental study comparing the performance of

the proposed LTR approach to fourteen other methods both in terms of accuracy and com-

putational run-time. Accuracy is measured using five metrics described in Section 2.1.6:

Mean Average Precision (MAP), Normalized Discounted Cumulative Gain (NDCG), Pre-

cision (P), Reciprocal Rank (RR) and Root Mean Square Error (RMSE). In order to assess

the performance of a method for LTR, benchmark datasets containing training, validation

and test sets are identified. The LTR approach is first applied to the training set in order

to learn a ranking function. Then, the performance of the learned ranking function is

assessed using the test set to measure the predictive performance of the LTR algorithm.

7.3.1 Dataset Benchmarks

The benchmark datasets used in the experiments of this chapter are MSLR-WEB10K,

LETOR 4 (MQ2007 and MQ2008) and LETOR 3 ( Ohsumed, TD2003, TD2004,

HP2003, HP2004, NP2003 and NP2004) (Qin and Liu, 2013; Liu, 2011; Qin et al.,

2010). Table 7.1 outlines the properties of these datasets. The number of query-document

pairs and the number of features in the Microsoft Bing Search dataset (MSLR-WEB10K)

are much larger than in the LETOR 4 (MQ2007 and MQ2008) or the LETOR 3 (Ohsumed

and .Gov) datasets. Each query-document pair in the datasets contains low-level features
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such as term frequency and inverse document frequency of the document terms existing

in the queries. The low-level features were determined for all document parts (title,

anchor, body and whole). There are also high-level features that indicate the similarity

matching between the queries and the documents. Furthermore, hybrid features represent

the recent IR models such as Language Model with Absolute Discounted Smoothing

(LMIR.ABS), Language Model with Jelinek-Mercer smoothing (LMIR.JM), Language

Model with Bayesian smoothing using Dirichlet priors (LMIR.DIR) and User Click

features (Liu, 2011; Qin et al., 2010; Qin and Liu, 2013).

The largest number of queries (10000) is in the MSLR-WEB10K dataset. All the other

datasets have less than 1000 queries with the exception of the MQ2007 dataset which

has 1692. Each query has associated a number of relevant and irrelevant documents,

i.e. query-document pairs for each query. The relevance label indicates the relevance

degrees for the queries with the documents (query-document relationship). In most cases,

the relevance labels include values of 0 (for irrelevant), 1 (for partially relevant) and 2

(totally relevant). The exception is for the MSLR-WEB10K dataset with values (created

by the Bing search engine) from 0 (irrelevant) to 4 (perfectly relevant). The LETOR 3 and

LETOR 4 datasets were constructed by several research groups in collaboration (Qin and

Liu, 2013; Liu, 2011). To the best of our knowledge, this chapter is the first to conduct a

comprehensive comparison between many LTR approaches considering several accuracy

metrics and computational run-time on several very different benchmark datasets.

Table 7.1: Properties of the benchmark datasets used in the experimental study.

Dataset Queries
Query-
Document
Pairs

Features Relevance La-
bels

No. of
Folds

MQ2007 1692 69623 46 {0, 1, 2} 5

MQ2008 784 15211 46 {0, 1, 2} 5

Ohsumed 106 16140 45 {0, 1, 2} 5

HP2003 150 147606 64 {0, 1, 2} 5

TD2003 50 49058 64 {0, 1, 2} 5

NP2003 150 148657 64 {0, 1, 2} 5

HP2004 75 74409 64 {0, 1, 2} 5

TD2004 75 74146 64 {0, 1, 2} 5

NP2004 75 73834 64 {0, 1, 2} 5

MSLR-WEB10K 10000 1200192 136 {0, 1, 2, 3, 4} 5
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7.3.2 Results

In this study, MAP, NDCG@10, P@10, RR@10 and RMSE were used (Baeza-Yates

and Ribeiro-Neto, 2011; Li, 2014) as five separate fitness functions on the training

sets. They also were used as the evaluation metrics for the ranking functions on the

test sets. The variants of the proposed LTR method are called ES-Rank (baseline

initialisation), IESR-Rank (linear regression initialisation) and IESVM-Rank (support

vector machine initialisation). Tables 7.2, 7.3, 7.4, 7.5 and 7.6 show the overall results

for all the methods tested. The other fourteen methods are implemented in the packages

RankLib (Dang, 2016), Sofia-ml (Sculley, 2010), SVMRank (Joachims, 2016), Layered

Genetic Programming for LTR (RankGP) (Lin et al., 2007b; Mick, 2016) and rt-rank

for IGBRT (Mohan et al., 2011). IGBRT technique has not MAP, P@10 and RR@10

results due to the limitation of rt-rank package. The parameter values used for those

other approaches are the default settings in these packages. Those settings produced

the shortest computational run time and the lowest memory size requirements for each

approach. The experimental results presented are the average scores of five runs on

5-folds cross validation. Each dataset fold consists of a training, a validation and a

testing data. Experiments were conducted on a PC with 3.60 GHz Intel (R) core(TM)

i7-3820 CPU and 8GB RAM. The implementation was in Java NetBeans under Windows

7 Enterprise Edition.

The results shown in Tables 7.2, 7.3, 7.4, 7.5 and 7.6 correspond to the predic-

tive values of the average performance of five runs by the tested approaches. As

mentioned above, the performance is measured with the evaluation metrics Average

MAP, NDCG@10, P@10, RR@10 and RMSE. From these results, it can be seen that

IESR-Rank is generally the best approach producing the best performance among all

methods in 7 out of 10 average MAP, 6 out of 10 average NDCG@10, 2 out of 10

average P@10, 2 out of 10 RR@10 and 4 out of 10 RMSE. The second best approach

is ES-Rank, producing the best performance in 2 out of 10 average MAP, 2 out of 10

average NDCG@10, 1 out of 10 average P@10, 2 out of 10 average RR@10 and 2 out

of 10 RMSE. Random Forest comes in the third position with 3 out of 10 average P@10

and 3 out of 10 average RR@10, while IESVM-Rank is fourth with 4 out of 10 RMSE.
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Table 7.2: Algorithms Average Performance Applied on 10 Datasets Using MAP Fitness
Evaluation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.574 0.477 0.453 0.448 0.698 0.205 0.647 0.6259 0.218 0.553

SVMRank 0.457 0.4 0.408 0.383 0.419 0.081 0.433 0.351 0.124 0.378

ListNET 0.473 0.453 0.44 0.44 0.124 0.057 0.201 0.174 0.136 0.157

AdaRank 0.571 0.465 0.454 0.437 0.72 0.245 0.618 0.715 0.191 0.57

MART 0.58 0.473 0.459 0.427 0.746 0.188 0.665 0.5 0.204 0.519

Coordinate Ascent 0.586 0.481 0.46 0.446 0.748 0.237 0.663 0.658 0.225 0.653

LambdaMART 0.586 0.47 0.455 0.426 0.737 0.181 0.655 0.5 0.187 0.496

RankNET 0.486 0.452 0.448 0.435 0.737 0.224 0.65 0.619 0.186 0.647

Random Forest 0.598 0.47 0.459 0.433 0.769 0.285 0.708 0.63 0.254 0.603

Linear Regression 0.502 0.455 0.43 0.433 0.492 0.217 0.557 0.506 0.189 0.467

RankGP 0.467 0.427 0.414 0.399 0.564 0.215 0.581 0.526 0.21 0.514

CoRR 0.476 0.439 0.422 0.396 0.489 0.224 0.568 0.543 0.21 0.487

LambdaRank 0.476 0.348 0.34 0.307 0.717 0.131 0.645 0.367 0.172 0.644

ES-Rank 0.57 0.483 0.47 0.421 0.799 0.278 0.749 0.718 0.262 0.752

IESR-Rank 0.603 0.494 0.473 0.435 0.8 0.291 0.754 0.693 0.258 0.758

IESVM-Rank 0.457 0.473 0.456 0.443 0.637 0.254 0.663 0.575 0.193 0.52

Table 7.3: Algorithms Average Performance Applied on 10 Datasets Using NDCG@10
Fitness Evaluation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.335 0.5 0.433 0.439 0.745 0.275 0.681 0.677 0.309 0.63

SVMRank 0.222 0.432 0.365 0.333 0.442 0.107 0.479 0.347 0.197 0.434

ListNET 0.193 0.484 0.417 0.393 0.166 0.121 0.179 0.184 0.114 0.278

AdaRank 0.346 0.497 0.43 0.448 0.746 0.265 0.654 0.713 0.279 0.626

MART 0.395 0.504 0.44 0.428 0.787 0.276 0.708 0.548 0.245 0.587

Coordinate Ascent 0.402 0.507 0.443 0.452 0.777 0.319 0.74 0.772 0.315 0.702

LambdaMART 0.4 0.505 0.448 0.417 0.778 0.284 0.696 0.625 0.25 0.505

RankNET 0.191 0.484 0.424 0.441 0.767 0.22 0.686 0.663 0.259 0.722

Random Forest 0.4 0.497 0.439 0.438 0.798 0.362 0.755 0.665 0.349 0.64

Linear Regression 0.361 0.487 0.42 0.43 0.552 0.32 0.61 0.556 0.275 0.541

RankGP 0.354 0.441 0.415 0.414 0.593 0.254 0.586 0.67 0.273 0.712

CoRR 0.358 0.474 0.422 0.424 0.57 0.251 0.557 0.659 0.279 0.599

LambdaRank 0.196 0.313 0.276 0.28 0.722 0.151 0.686 0.295 0.130 0.539

IGBRT 0.394 0.518 0.457 0.444 0.808 0.306 0.756 NA NA NA

ES-Rank 0.382 0.507 0.451 0.446 0.826 0.362 0.754 0.778 0.358 0.792

IESR-Rank 0.415 0.517 0.455 0.454 0.829 0.376 0.758 0.778 0.356 0.79

IESVM-Rank 0.224 0.498 0.436 0.449 0.789 0.34 0.733 0.572 0.213 0.524
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Table 7.4: Algorithms Average Performance Applied on 10 Datasets Using P@10 Fitness
Evaluation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.587 0.274 0.372 0.504 0.102 0.144 0.088 0.083 0.233 0.085

SVMRank 0.405 0.25 0.332 0.401 0.065 0.072 0.068 0.053 0.148 0.053

ListNET 0.436 0.267 0.358 0.466 0.033 0.068 0.033 0.024 0.112 0.027

AdaRank 0.594 0.247 0.356 0.499 0.1 0.128 0.085 0.083 0.224 0.089

MART 0.631 0.275 0.379 0.476 0.104 0.146 0.084 0.082 0.237 0.081

Coordinate Ascent 0.627 0.273 0.378 0.483 0.103 0.158 0.092 0.097 0.249 0.092

LambdaMART 0.645 0.275 0.384 0.478 0.096 0.156 0.087 0.079 0.229 0.0747

RankNET 0.443 0.267 0.362 0.496 0.097 0.148 0.087 0.085 0.215 0.096

Random Forest 0.607 0.275 0.378 0.492 0.105 0.194 0.094 0.087 0.267 0.088

Linear Regression 0.457 0.274 0.372 0.481 0.087 0.18 0.083 0.08 0.225 0.081

RankGP 0.447 0.24 0.344 0.416 0.067 0.105 0.082 0.073 0.143 0.073

CoRR 0.441 0.243 0.355 0.418 0.077 0.08 0.068 0.059 0.111 0.056

LambdaRank 0.43 0.213 0.292 0.328 0.056 0.022 0.032 0.021 0.132 0.043

ES-Rank 0.634 0.27 0.377 0.494 0.097 0.184 0.096 0.096 0.257 0.091

IESR-Rank 0.643 0.276 0.372 0.498 0.104 0.19 0.089 0.099 0.259 0.091

IESVM-Rank 0.405 0.272 0.376 0.481 0.103 0.166 0.092 0.083 0.168 0.069

Table 7.5: Algorithms Average Performance Applied on 10 Datasets Using RR@10 Fit-
ness Evaluation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.777 0.533 0.564 0.723 0.726 0.47 0.645 0.64 0.498 0.557

SVMRank 0.505 0.451 0.485 0.625 0.404 0.161 0.424 0.349 0.355 0.242

ListNET 0.581 0.513 0.552 0.67 0.155 0.169 0.104 0.096 0.163 0.257

AdaRank 0.803 0.533 0.548 0.739 0.752 0.41 0.576 0.698 0.51 0.568

MART 0.809 0.53 0.569 0.706 0.792 0.43 0.668 0.567 0.428 0.523

Coordinate Ascent 0.772 0.533 0.558 0.697 0.789 0.432 0.678 0.704 0.529 0.608

LambdaMART 0.812 0.53 0.57 0.737 0.775 0.397 0.672 0.561 0.424 0.481

RankNET 0.622 0.505 0.552 0.719 0.767 0.426 0.64 0.653 0.447 0.655

Random Forest 0.812 0.53 0.566 0.723 0.796 0.539 0.713 0.625 0.651 0.589

Linear Regression 0.594 0.513 0.55 0.741 0.519 0.471 0.554 0.506 0.504 0.464

RankGP 0.573 0.483 0.542 0.559 0.584 0.309 0.465 0.477 0.478 0.454

CoRR 0.586 0.455 0.543 0.541 0.581 0.295 0.466 0.464 0.461 0.452

LambdaRank 0.58 0.428 0.5 0.602 0.752 0.312 0.615 0.368 0.37 0.579

ES-Rank 0.764 0.537 0.546 0.727 0.801 0.524 0.674 0.724 0.573 0.629

IESR-Rank 0.819 0.535 0.569 0.725 0.792 0.506 0.69 0.729 0.57 0.629

IESVM-Rank 0.513 0.513 0.56 0.729 0.768 0.474 0.638 0.435 0.459 0.422

October 30, 2017



7.3. Implementation and Experimental Results 144

Table 7.6: Algorithms Performance Applied on 10 Datasets Using RMSE Fitness Evalu-
ation Metric

Algorithms MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 NP2003 TD2003 HP2004 NP2004 TD2004

RankBoost 0.232 0.097 0.102 0.191 0.051 0.041 0.04 0.041 0.036 0.05

SVMRank 0.182 0.08 0.082 0.154 0.032 0.028 0.027 0.043 0.16 0.067

ListNET 0.274 0.093 0.099 0.191 0.018 0.011 0.013 0.005 0.012 0.025

AdaRank 0.213 0.074 0.076 0.199 0.04 0.025 0.03 0.023 0.018 0.029

MART 0.23 0.098 0.105 0.196 0.057 0.042 0.037 0.03 0.034 0.046

Coordinate Ascent 0.228 0.098 0.102 0.2 0.052 0.042 0.041 0.046 0.043 0.055

LambdaMART 0.24 0.098 0.104 0.192 0.051 0.043 0.034 0.037 0.03 0.046

RankNET 0.265 0.093 0.098 0.188 0.049 0.04 0.027 0.042 0.044 0.045

Random Forest 0.295 0.096 0.105 0.194 0.053 0.045 0.048 0.041 0.039 0.063

Linear Regression 0.165 0.095 0.099 0.18 0.034 0.035 0.043 0.033 0.03 0.049

LambdaRank 0.291 0.072 0.062 0.124 0.031 0.017 0.017 0.012 0.012 0.019

IGBRT 0.397 0.183 0.193 0.162 0.016 0.014 0.021 NA NA NA

ES-Rank 0.095 0.03 0.028 0.056 0.001 0.002 0.003 0.001 0.00 0.001

IESR-Rank 0.068 0.028 0.029 0.05 0.00 0.001 0.002 0.00 0.003 0.002

IESVM-Rank 0.166 0.026 0.027 0.058 0.001 0.00 0.001 0.001 0.003 0.005

Table 7.7: Average run-time for the five evaluation fitness metrics in seconds of the algo-
rithms on the datasets

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 NP2003 TD2003 HP2004 NP2004 TD2004

RankBoost 3720 15 74 28 483 1153 460 493 597 604

SVMRank 32409 19 23 15 33 40 36 33 35 32

ListNET 18005 45 95 43 145 255 250 145 140 142

AdaRank 3600 11 20 16 228 453 486 227 123 240

MART 1200 8 11 12 12 23 11 13 15 19

CA 25200 37 240 28 580 940 396 460 480 460

LambdaMART 3720 9 11 8 24 89 21 23 25 27

RankNET 10800 33 96 98 55 119 130 110 117 298

RF 3660 27 55 17 72 168 71 72 70 80

LR 157 2 3 3 5 6 5 5 4 5

RankGP 26020 375 390 360 430 519 486 423 406 496

CoRR 10803 42 51 39 59 61 58 57 58 57

LambdaRank 18015 46 142 165 145 237 462 150 150 438

IGBRT 36750 274 253 197 393 389 386 NA NA NA

ES-Rank 1800 35 51 15 128 137 47 69 68 70

IESR-Rank 1957 37 54 18 133 143 52 74 72 75

IESVM-Rank 34209 54 74 30 161 177 83 102 103 102
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Figure 7.1: Illustrating the MAP performance for all LTR methods on the LETOR
datasets.

The LambdaMART is fifth with 2 out of 10 average P@10 and 1 out of 10 average

RR@10. The IGBRT and RankBoost are joint in the sixth position with 2 out of 10

average NDCG@10 for IGBRT, while RankBoost has 1 out of 10 average MAP and 1

out of 10 average P@10. Table 7.9 shows the detailed summary of the winner algorithm

in each dataset.

Figures 7.1, 7.2, 7.3, 7.4 and 7.5 illustrate the radar chart for each fitness evaluation

metric results reported in the tables mentioned above. In the first four figures, higher

values correspond to better performance, while in the last figure lower values correspond

to better performance. From these figures it can be observed that the IESR-Rank

technique exhibits the overall best performance among all techniques.

The statistical Paired t-test of the results are presented in Table 7.8. This table shows

how the degree of significant improvements between ES-Rank, IESR-Rank, IESVM-

Rank against the Fourteen LTR techniques. The lower p-value indicates the algorithm
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Figure 7.2: Illustrating the NDCG@10 performance for all LTR methods on the LETOR
datasets.

Figure 7.3: Illustrating the P@10 performance for all LTR methods on the LETOR
datasets.
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Figure 7.4: Illustrating the RR@10 performance for all LTR methods on the LETOR
datasets.

Figure 7.5: Illustrating the RMSE performance for all LTR methods on the LETOR
datasets.
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improvements is higher, while the p-value indicates the algorithm does not have a signif-

icant out-performance.

Table 7.8: P-values of Paired t-test between ES-Rank, IESR-Rank, IESVM-Rank and the
Fourteen LTR Techniques

Algorithm
Paired t-test p-value

ES-Rank IESR-Rank IESVM-Rank

RankBoost 0.02419 0.01093 0.0001328

RankSVM 0.0000001 0.00000007 0.000011

ListNET 0.000002 0.0000013 0.000041

AdaRank 0.00745 0.003108 0.002079

MART 0.02 0.008526 0.002322

Coordinate Ascent 0.7094 0.3884 0.0000027

LambdaMART 0.01704 0.007375 0.005833

RankNET 0.003851 0.002967 0.003704

Random Forest 0.6615 0.9919 0.00000003

Linear Regression 0.0001257 0.000071 0.7654

RankGP 0.0000000001 0.00000000002 0.02346

CoRR 0.0000000002 0.00000000005 0.004306

LambdaRank 0.00000003 0.00000002 0.0006133

IGBRT 0.06411 0.1048 0.0103

The average computational run-times of the algorithms for each benchmark dataset

are shown in Table 7.7. These results show that the variants of the proposed LTR

method are still very efficient in terms of computational run-time. It can be seen that by

incorporating linear regression into ES-Rank, the computational run-time of IESR-Rank

increases just slightly over ES-Rank, but as discussed above, the accuracy results

produced by IESR-Rank are much better.

7.4 Chapter Summary and Conclusion

This chapter presented a new LTR approach called ES-Rank which is based on a

(1+1)-Evolutionary Strategy with a tailored mutation process and three initialisation

techniques. The first technique uses zeros values to initialise the initial chromosomes

and it is called ES-Rank. The second initialisation technique uses weights from LR

ranking model to initialise the initial chromosome and it is called IESR-Rank. The third

initialisation technique uses weights from Support Vector Machine model to initialise
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Table 7.9: Winner Number of Accuracy Per Each Algorithm

Algorithm
Fitness and Evaluation Metric

P@10 MAP NDCG@10 RR@10 RMSE Total

RankBoost 1 1 0 0 0 2

SVMRank 0 0 0 0 0 0

ListNET 0 0 0 0 0 0

AdaRank 0 0 0 0 0 0

MART 0 0 0 0 0 0

Coordinate Ascent 0 0 0 0 0 0

LambdaMART 2 0 0 1 0 3

RankNET 1 0 0 1 0 2

Random Forest 3 0 0 3 0 6

Linear Regression 0 0 0 1 0 1

RankGP 0 0 0 0 0 0

CoRR 0 0 0 0 0 0

LambdaRank 0 0 0 0 0 0

IGBRT 0 0 2 0 0 2

ES-Rank 1 2 2 2 2 9

IESR-Rank 2 7 6 2 4 21

IESVM-Rank 0 0 0 0 4 4

the initial chromosome and it is called IESVM-Rank. The performance of the proposed

approach was compared to fourteen EML approaches from the literature. The metrics

Mean Average Precision (MAP), Normalized Discounted Cumulative Gain (NDCG@10),

Precision (P@10), Reciprocal Ranking (RR@10) and Root Mean Square Error (RMSE)

were used as fitness functions within ES-Rank, IESR-Rank and IESVM-Rank. They

also used for evaluating the performance of the LTR approaches in the comparison. The

datasets used here are MSLR-WEB10K (Microsoft Bing ten thousand web queries)

dataset, LETOR 4 ( MQ2008, MQ2007 TREC Million queries datasets for years 2008

and 2007) and LETOR 3 (Ohsumed and 6 .Gov datasets).

From the experimental results, in general IESR-Rank exhibited an overall better per-

formance than the other fourteen methods tested, achieving the best performance in 7 out

of 10 average MAP, 6 out of 10 average NDCG@10, 2 out of 10 average P@10, 2 out of

10 average RR@10 and 4 out of 10 RMSE. The second best approach is ES-Rank, pro-

ducing the best performance in 2 out of 10 average MAP, 2 out of 10 average NDCG@10,

1 out of 10 average P@10, 2 out of 10 average RR@10 and 2 out of 10 RMSE. Random

Forest comes in the third position with 3 out of 10 average P@10 and 3 out of 10 average
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RR@10, while IESVM-Rank is the fourth best performance with 4 out of 10 RMSE. The

LambdaMART is in the fifth position with 2 out of 10 average P@10 and 1 out of 10

average RR@10. The IGBRT and RankBoost are joint in the sixth position with 2 out of

10 average NDCG@10 for IGBRT, while RankBoost has 1 out of 10 average MAP and 1

out of 10 average P@10. Thus, the (1+1)-Evolutionary Strategy is a competitive approach

to tackle the LTR problem.
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Chapter 8

ESClick: Learning to Rank Using

Evolutionary Strategy Based Click

Model

8.1 Introduction

Most search engines save user clicks behaviours (historical interaction data) in their logs.

This data is called Click-through data. This data in search engine logs is a highly valuable

source for embedded user satisfaction and implicit relevance labels. Numerous research

such as in (Joachims, 2002; Liu, 2009; Schuth et al., 2013) proposed Click-though data

as replacement resources for the relevance labels. This is because Click-through data

costs are lower than Pooling and Cranfield paradigms for IR dataset creation. However,

Click-through data undergoes several criteria of bias by user decisions. Examples of

these criteria are: 1) The user education levels, intelligence and his familiarity with

IR system which affect the decision of user satisfaction and IR system performance

(Al-Maskari and Sanderson, 2011). This causes click bias based user education level and

familiarity with IR system. 2) User clicks are known to be biased, noisy and difficult

to interpret for the position of the document in the retrieved ranked list (Li, 2014; Liu,

2009; Kharitonov, 2016). One of the bias criteria is the user preference to click the top

ranked documents regardless if these documents are relevant or not. Thus, research has

been established to simulate the actual Click-through data without noise and bias. This
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research has been used to propose several Click models based on various assumptions

for removing the noise from Click-through data. These Click models were used in online

LTR problems. In this research, the relevance labels on the benchmarks were used to

check the performance of the click ranking models on the training set. The performance

metrics for online Click models can be classified into two categories. The first category

is offline and the second is online evaluation metrics. The offline and online evaluation

metrics such as MAP, NDCG, P@K, RR@K,Err@K, A/B testing and Interleaving

respectively (Hofmann, 2013; Schuth, 2016; Kharitonov, 2016).

The offline evaluation metrics are MAP, NDCG, P@K, RR@K and Err@K metrics

(see subsection 2.1.6) without A/B testing and without Interleave user interactions, while

the online evaluation metrics are these metrics with A/B testing or with interleave user

interactions. The A/B testing and Interleave procedures simulate the user interaction with

the search result retrieved to the user, while user is replaced by Click models. In A/B

testing, user Click model chooses (clicks or picks) the preferred documents from two

search result list produced by ranking models A and B. Then, fitness evaluation metric

such as MAP evaluates the two ranking models A and B based on the clicked (picked)

documents in the search ranked lists. The ranking model that has search ranked list

containing more clicked (picked) of relevant documents based on evaluation metric is

selected for the next learning iteration. The Interleave procedure is different from A/B

testing by combining the two search result ranked list into one search result ranked list

and then Click model is selected from one list and finally the preference between the two

ranking models is based on the number of clicked documents from each ranking model.

According to Kharitonov (Kharitonov, 2016; Hofmann, 2013) Probabilistic Interleave

is more effective to represent the user interaction with the IR system than A/B test in

online LTR. The offline and online evaluation metrics are based on the relevance labels

existing in the training set. In addition, offline evaluation metrics are the most reliable

metrics for comparing between CI and ML techniques due to online evaluation metric

limitations (Al-Maskari and Sanderson, 2011; Kharitonov, 2016). This chapter shows the

capability of ES-Rank to optimise online LTR click models using five evaluation metrics

(MAP, NDCG, P@10, RR@10 and Err@10). Firstly, the LTR model is initialised from
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online LTR model based on the Dependent Click Model (DCM), while Probabilistic

Interleave is used to modify the ranked query-document pairs list based on the DCM

model before evaluation. Then, the ranking model weights of the training set features,

produced by online LTR Lerot package, were used as the initial chromosome vector for

(1+1)-Evolutionary Strategy.

For online LTR, there is a randomised procedure to produce another LTR model from

the current learning one. Then, two ranking models were introduced to Probabilistic

Interleave to merge them into one ranked list. Then, the DCM is used to re-order its

query-document pairs. This procedure is repeated until a better ranking model produced

using DCM model and Probabilistic Interleave fitness evaluation. Then, the weights of

features in the final online ranking model are assigned as an initial chromosome vector

for ES-Rank. This chapter begins with the definition of the used click model in section

8.2. Then, the results are discussed in section 8.3.

8.2 Dependent Click Model

The Cascade Click Model (CCM) assumes that a user scans the ranked retrieved document

list from top to bottom until she/he finds one relevant document and click it (Craswell

et al., 2008). However, the user may be required to browse more than one document

from the retrieved list until she/he is satisfied. Thus, (Guo et al., 2009) proposed a more

sophisticated click model which is an extension for CCM. This model is called Dependent

Click Model (DCM). The DCM is CCM with multiple clicks until the user is satisfied

with the browsed relevant clicked documents from the ranked retrieved list. The DCM

considers the position of the clicked documents (instances), the average of user clicks

and the document examination parameters in its calculation. Assume µi is the position-

dependent parameter that is used to reflect the probability that the user would like to see

more documents after a click at position i. If the user does not click the document, the

next document will be examined with probability one. The parameters µ are a set of

shared behaviour parameters for a user over multiple query sessions. The Click and the

Examination probabilities in DCM can be demonstrated in the following recursive process
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(1 ≤ i ≤M , where M is the number of documents in the search result):

Ed1,1 = 1,

Cdi,i = Edi,i · rdi ,

Edi+1,i+1
= µi · Cdi,i + (Edi,i − Cdi,i). (8.2.1)

where Edi,i is the probability of examination of document di, while Cdi,i is the click

probability for document di, rdi is the relevance degree of document di and µi is the user

behaviour parameter for browsing (examining) document i.

The DCM model can be explained as follows. The click probability of the document

in the search result is determined by its relevance, after the user examination. Then, after

clicking on a document, the probability for next document examination is determined

by µi. From equation 8.2.1, the examination and click formula for document di,i are as

follows:

Edi,i =
i−1∏
j=1

(1− rdj + µj · rdj),

Cdi,i = rdi ·
i−1∏
j=1

(1− rdj + µj · rdj). (8.2.2)

If the actual click event use {C1, C2, ..., CM} in query session, while M is the number

of documents in the search result (ranked retrieved list) and the rdi is the document rel-

evance of document di. The log-likelihood for DCM clicks in each query session before

position l is given by (Guo et al., 2009):

LDCM =
l−1∑
i=1

(
Ci ∗ (log(rdi) + log(µi)) + (1− Ci) ∗ log(1− rdi)

)
+Cl ∗ log(rdl) + (1 + Cl) ∗ log(1− rdl) + log

(
1− µl + µl ∗

n∏
j=l+1

(1− rdj)
)
, (8.2.3)
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LDCM ≥
l∑

i=1

Ci ∗ log(rdi) + (1 + Ci) ∗ log(1− rdi)

+
l−1∑
i=1

Ci ∗ log(µi) + log(1− µl) (8.2.4)

If the query session does not receive any clicks, then LDCM is a particular case with

l = M,Cl = µl = 0. A learning approach is carried for DCM learning by maximising the

lower bound of LDCM in equation 8.2.4. The user behaviour parameter is estimated by:

µi = 1− No. of query sessions when last clicked position is i

No. of query sessions when position i is clicked
(8.2.5)

For 1 ≤ i ≤M − 1, the equation 8.2.5 gives the empirical probability of position i being

a non-last-clicked position for all query sessions in the training set. Finally, the sampling

procedure of DCM model for examination variables Ei and click variables Ci, while the

users examine the search result list one-by-one from the top position until the end is given

by:

1: E1 ← 1;

2: if Ei == 0, then

3: Ci ← 0,

4: Ei+1 ← 0,

5: else

6: Ci ≈ Bernoulli(rdi),

7: Ei+1 ≈ Bernoulli(1− Ci + µi ∗ Ci)

8: end if

where Bernoulli() is the Bernoulli probabilistic distribution (Teugels, 1990). For the

most state-of-the-art click models, (Chuklin et al., 2015) surveyed their details.
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Table 8.1: Average of the Training Data Results of Nine LETOR Datasets
Average Training Data Results of the Datasets

Evaluation Metric Approach MQ2008 MQ2007 HP2004 TD2004 NP2004 HP2003 TD2003 NP2003 Ohsumed

MAP
ES-Click 0.49 0.467 0.822 0.247 0.23 0.817 0.336 0.729 0.457

DCM Model 0.309 0.329 0.112 0.027 0.044 0.044 0.055 0.232 0.327

NDCG@10
ES-Click 0.512 0.442 0.833 0.357 0.366 0.823 0.402 0.773 0.474

DCM Model 0.34 0.266 0.122 0.0313 0.057 0.048 0.062 0.251 0.252

P@10
ES-Click 0.277 0.382 0.101 0.284 0.277 0.111 0.201 0.095 0.537

DCM Model 0.211 0.266 0.019 0.028 0.048 0.008 0.034 0.035 0.327

RR@10
ES-Click 0.55 0.575 0.819 0.628 0.681 0.806 0.672 0.744 0.735

DCM Model 0.345 0.39 0.108 0.075 0.12 0.042 0.094 0.226 0.594

Err@10
ES-Click 0.023 0.024 0 0 0 0 0 0.00 0.036

DCM Model 0.058 0.061 0.00 0.001 0.007 0.003 0.007 0.014 0.113

Table 8.2: Average of the Test Data Results of Nine LETOR Datasets
Average Test Data Results of the datasets

Evaluation Metric Approach MQ2008 MQ2007 HP2004 TD2004 NP2004 HP2003 TD2003 NP2003 Ohsumed

MAP
ES-Click 0.473 0.457 0.712 0.223 0.197 0.736 0.256 0.66 0.446

DCM Model 0.298 0.326 0.117 0.025 0.048 0.045 0.055 0.21 0.332

NDCG@10
ES-Click 0.493 0.43 0.691 0.292 0.312 0.78 0.286 0.714 0.452

DCM Model 0.325 0.262 0.131 0.033 0.059 0.049 0.079 0.233 0.262

P@10
ES-Click 0.271 0.38 0.09 0.249 0.215 0.102 0.156 0.085 0.496

DCM Model 0.207 0.268 0.021 0.029 0.045 0.009 0.05 0.034 0.343

RR@10
ES-Click 0.526 0.552 0.699 0.452 0.535 0.761 0.353 0.669 0.628

DCM model 0.329 0.381 0.114 0.082 0.124 0.046 0.167 0.206 0.623

Err@10
ES-Click 0.025 0.026 0.00 0.00 0.00 0.00 0.003 0.00 0.056

DCM Model 0.054 0.06 0.00 0.00 0.01 0.003 0.014 0.013 0.118

8.3 Implementation and Experimental Results

In this section, the summary of the results obtained from applying this approach on nine

dataset benchmarks were presented. Lerot and then ES-Rank library packages (Schuth

et al., 2013) were used for the implementation of this experiments. The Lerot package is

an online LTR package that is used for producing ranking models for the LTR datasets.

The experimental settings of ES-Rank and Lerot are the default of these packages. The

number of evolving iteration is 1300 iteration in ES-Rank, while configuration setting in

Lerot is the default one provided with the package. The ES-Rank takes the ranking model

produced by Lerot package using DCM model as initial parent chromosome. Then, it

evolves a better ranking model for each training dataset using various evaluation fitness

metrics. The p-value of the null hypothesises of paired t-test is 10−15 for these results.

This indicates the high degree of confidence in the result improvements for the various

experimental settings between ESClick and DCM.
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Figure 8.1: Illustrating the Table 8.1 performance for on the LETOR datasets.

From Table 8.1 and 8.2, the ES-Rank can improve the DCM ranking model when

applied on the training and test data of nine well-known LETOR dataset benchmarks.

This approach used five fitness evaluation metrics to show the optimisation capability of

ES-Rank. The MAP, NDCG@10, P@10, RR@10 and Err@10 are the evaluation fitness

metrics used in this experiment. The highest values of each DCM and ES-Click in the

MAP, NDCG@10, P@10 and RR@10 results are the best accuracy results, while the

lowest value of each DCM and ES-Click on Err@10 is the best accuracy results. For ex-

ample, the training ES-Click result value in MQ2008 is 0.4896, while the corresponding

DCM value on the same training set (MQ2008) is 0.3094. Thus, ES-Click outperforms

DCM model on MQ2008. Similarly, the other datasets have similar accuracy on the rest of

benchmarks on the training and test data values. Thus, ES-Click in general outperformed

DCM model. The LETOR dataset benchmarks used on this experiment are MQ2008,

MQ2007, HP2004, TD2004, NP2004, HP2003, TD2003, NP2003 and Ohsumed bench-

marks. The details of these results on the five folds in the nine benchmarks are shown on

the Appendix C in Tables C.1 to C.18.

Figures 8.1 and 8.2 illustrates the bar chart for each fitness evaluation metric results

reported in the Tables 8.1 and 8.2. In the figures, higher values correspond to better

performance, while in the last figure lower values correspond to better performance.

Figure 8.1 represents the performance on the training sets, while Figure 8.2 represents

the predictive performance on testing sets. From these figures it can be observed that the

ES-Click technique exhibits the overall best performance among all techniques.
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Figure 8.2: Illustrating the Table 8.2 performance for on the LETOR datasets.

8.4 Chapter Summary and Conclusion

To sum up, the ES-Rank can improve the performance of DCM ranking model using five

evaluation fitness metrics. This approach is called ES-Click (Evolutionary Strategy De-

pendent Click Model). It started with learning DCM ranking model from the benchmarks

and then the ES-Rank used the DCM ranking models to evolve better ranking models.

In general, the ES-Click ranking model outperformed the DCM model in all cases. The

Lerot and ES-Rank packages are used in this chapter for producing DCM ranking model

and improving it using ES-Rank. Nine LETOR datasets are used in this experiment which

show the powerful of ES-Rank to optimise a DCM model. Thus, Evolutionary Strategy

can improve the online LTR models as it showed its capability to improve the offline LTR

models.
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Chapter 9

Conclusions and Future Work

9.1 Introduction

This chapter provides the answers to the research questions presented in Chapter 1. It also

presents the conclusion and the summary of contributions of the whole thesis. Moreover,

it discusses the possible extensions for the future related research work in the field.

9.2 Answers to Research Questions

This section summarises the answers for the main research questions that were presented

in Chapter 1. These questions and their answers are as follows:

1. Is there a limitation in Evolutionary and Machine Learning (EML) techniques on

IR systems for TVM representation (Bag-of-Words) ? and What is the need for

mathematical and non-learning term-weighting schemes? What is the importance

of relevance judgement and relevance label in evolutionary and machine learning

approaches?

Yes, there is a limitation for using EML techniques at the beginning of the IR sys-

tem. This limitation applies for partially judged and non-judged test collections.

The reason for this limitation is that the fitness and loss functions use the relevance

labels to check the quality of the solutions in every learning iteration of any EML

technique. Thus, the non-existence of relevance judgement at the beginning of IR
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system restricts the use of EML technique and its quality for optimising the IR

accuracy (effectiveness). In Chapter 5, the limitation of applying EML was identi-

fied in the well-known test collections by the IR community. In addition, TF-ATO

has been proposed as a new mathematical term-weighting scheme which is more

efficient than the well-known TF-IDF weighting scheme.

2. What is the limitation of static collection characteristics on different IR weighting

functions on Term Vector Models? How will this parameter affect on dynamic

variation in test collection?

The static test collection characteristics have been used in various MM (Mathe-

matical Models such as TF-ATO and TF-IDF) and EML term-weighting schemes

such as TF-IDF, Okapi, evolving term-weighting scheme using genetic program-

ming and local search techniques. They usually use the number of documents in

the collection as a parameter. However, this parameter should be a variable num-

ber that changes by adding and removing documents from the collection. The high

variations in the test collection size causes a negative effect on the IR system. This

impact is illustrated by the dynamic variation using TF-IDF and TF-ATO in Chap-

ter 5. The only very large dynamic variation in the test collections affects on the IR

accuracy.

3. What is the impact of the pre-processing procedure (stop-word removal) in term-

weighting functions?

The stop-word removal has a positive impact for improving the IR system. The non-

use of stop-word removal has a strong negative effect on TF-ATO more than TF-

IDF. The reason for this issue is that the TF-IDF weighting scheme removes some

stop-words from the collection. The word (term) has 0 value as TF-IDF weight

when the term is repeated in all documents in the collection at least one time. Fur-

thermore, the term-weighting scheme used for creating TREC pooled collections

are usually TF-IDF or its variations. This causes another bias in the collections re-

lated to the chosen term-weighting scheme. However, TF-ATO performs better with

the Discriminative Approach (DA) which can be considered as collection domain of

stop-words removal. The DA increases the accuracy (effectiveness) using TF-IDF
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or TF-ATO, because its capability for removing some noisy keywords. Chapter 5

demonstrated the impact of the stop-words removal and the DA for increasing the

performance of the IR systems.

4. What is the importance of EML techniques in IR to overcome the pre-processing

(stop-words removal and stemming) impact for creating effective IR system?

Usually, the use of stop-words removal or stemmer from different topic domains

has a negative effect of the performance of the IR system. This is because some

discriminative terms were removed or stemmed which were indicated as the topic

of the document. Previous studies proved that the EML techniques can adjust the

the similarity matching between the relevant documents and the queries. Conse-

quently, EML techniques can improve the accuracy of the IR system using the rele-

vance judgement. Chapter 4 states the capability of EML techniques to improve IR

systems.

5. What are the limitations of applying EML techniques on IR systems for FVM rep-

resentation (Bag-of-Features)?

The previous studies did not indicate fixed settings to evaluate the performance and

effectiveness of various EML techniques. Furthermore, some EML techniques such

as RankNET, ListNET among others did not consider the over-fitting and under-

fitting problems in the sampling process in each learning iteration. Moreover,

pairwise approaches have a limitation for producing an accurate ranking model

for graded relevance labels. Furthermore, there is a limitation for creating FVM

datasets and using EML techniques at the beginning of IR systems. On the other

hand, most of EML techniques consumes large computational runtime. These is-

sues motivate to propose ES-Rank application as an effective EML technique in

Learning to Rank problem in IR.

6. How is the adaptive (1+1)-evolutionary techniques can be used to improve the IR

system with the lowest problem size and the lowest computational time?

The (1+1)-evolutionary techniques are similar to the other population-based EML

techniques for improving the IR accuracy based on the relevance judgement.
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The (1+1)-evolutionary techniques use one parent chromosome and one offspring

(child) chromosome to evolve a better solution. These techniques are using less

memory than the population-based EML techniques. Chapters 6, 7 and 8 proposed

(1+1)-Evolutionary Gradient Strategy and (1+1)-Evolutionary Strategy to optimise

IR systems with various novel methods. To the best of my knowledge, these meth-

ods have not been used before in the literature of the IR research field. These

techniques outperformed the TF-IDF, Okapi and fourteen EML techniques in TVM

and FVM approaches.

7. What is the importance of the initialisation procedure in (1+1)-Evolutionary Strat-

egy technique? Chapter 7 showed the importance of the initialisation procedure in

ES-Rank. The appropriate initialisation procedure improves the performance and

accuracy of the ES-Rank. In Chapter 7, the zero values, the ranking models pro-

duced by the linear regression and the support vector machine have been used as

initialisation values in ES-Rank. The best performance and the best accuracy pro-

duced by linear regression as initialisation procedure.

8. Can (1+1)-Evolutionary Strategy improve user simulation click ranking model?

Yes, The linear ranking model from Dependent Click Model (DCM) has been used

as an initialisation procedure in ES-Rank application. We called this technique as

ES-Click. Chapter 8 illustrated the ability of ES-Rank ((1+1)-Evolutionary Strat-

egy) to improve DCM model in both training and testing dataset.

9.3 Review of Contributions

During the progression of this thesis there was a set of achievements in terms of develop-

ing new techniques and publications for optimising IR systems. The following is a list of

contributions that identified these achievements:

1. Based on an analysis of commonly used test collections in Chapter 5, we provided

an argument in favour of using heuristic mathematical TWS at the beginning of the

IR system. Then, the IR system can be used for gathering the relevance judgement
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from the users through users historical data. Then, the IR system can adapt its

performance using EML techniques.

2. A new non-learning TWS is proposed which is called Term Frequency With Av-

erage Term Occurrence (TF-ATO) with a discriminative approach to remove less

significant weights from the documents. Chapter 5 described and studied the per-

formance of TF-ATO compared to the widely used TF-IDF approach using various

types of test collections such as sampled and pooled (Soboroff, 2007; Hersh et al.,

1994). Our experimental results showed that the proposed TF-ATO gives higher

effectiveness in both cases of static and dynamic test collections. Thus, TF-ATO

can be used at the early IR system stage for gathering the user interaction feedback

data.

3. The impact of our discriminative approach and the stop-words removal process

on the IR system effectiveness and performance when using TF-ATO and TF-IDF

have been demonstrated in Chapter 5. These two processes have a positive impact

on both TWSs for improving the IR performance and effectiveness. Thus, they are

recommended to be used at the early stage of the IR system to improve the accuracy

of the IR system without prior knowledge about relevance judgement values.

4. This thesis proposed a new method for evolving better document representations in

the collection through global term weights. This method is an efficient EML tech-

nique in terms of computer memory usage. This is accomplished by evolving only

the Global Term Weights (GTWs) of the collection rather than evolving represen-

tations for the whole collection as is typically done with previous EC approaches

in the literature. Hence, the main contribution of Chapter 6 is the development of

a (1+1)-Evolutionary Gradient Strategy ((1+1)-EGS) with Adaptive Ziggurat Ran-

dom Gaussian Mutation (Kuo and Zulvia, 2015; Doornik, 2005; Loshchilov, 2014)

to evolve GTWs. The proposed methodology reduces the problem size, from evolv-

ing (N ×M) document representation vectors to evolving (1 ×M) vector, where

N is the number of documents in the collection andM is the number of index terms

in the collection. This method considers the limitation of the relevance judgement

of the test collections that illustrated in subsection 3.1.3.
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5. Chapter 7 presented an Evolutionary Strategy (ES) technique to tackle the LTR

problem. The proposed technique is called ES-Rank and includes evolving a vector

of weights where each weight represents the importance of a desirable feature. The

mutation step-size in ES-Rank has been tuned based on preliminary experimenta-

tion. Details of the proposed method have been presented in section 7.2. In order

to assess the performance of ES-Rank, MAP, P@10, RR@10, NDCG@10, RMSE

(Qin et al., 2010) were used in the comparison carried out against fourteen state-

of-the-art LTR approaches from the literature. Experimental results in Chapter 7

show that ES-Rank outperforms other methods in terms of MAP, P@10, RR@10,

NDCG@10 and RMSE. Furthermore, most of the other techniques consumed very

long computation time while ES-Rank was much faster. For example, some of the

other methods consumed more than 9 hours on each MSLR-WEB10K dataset fold

(Qin et al., 2010) while ES-Rank consumed only around 30 minutes on each fold.

Another feature of ES-Rank is that it has small memory requirements according to

the problem size (2XM dimensions where M represents the number of features in

the training dataset).

6. The importance of the initialisation procedure in Evolutionary Strategy (ES) in

ES-Rank is presented to tackle the LTR problem. The initialisation procedure in

ES-Rank has been tuned based on Linear Regression and Support Vector Machine

ranking model. In order to assess the performance of ES-Rank, MAP, RMSE,

NDCG@10, RR@10 and P@10 at top-10 query-document pairs retrieved (Liu,

2011; Li, 2014) were used. The comparison has been carried out against fourteen

state-of-the-art LTR approaches from the literature. Experimental results in Chapter

7 show that the use of machine learning ranking model as an initialisation procedure

has a positive impact on ES-Rank technique for Learning to Rank problem. Fur-

thermore, the better initialisation procedure using Linear Regression (LR) machine

learning ranking model has a better positive impact on improving ES-Rank in most

cases than Support Vector Machine (SVM).

7. ES-Rank technique has been used to optimise Click Dependent Model to tackle the

Click Ranking Models problem. The experimental results in Chapter 8 show the
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improvements of ES-Rank in DCM model on training and testing LETOR datasets.

9.4 Conclusions

This thesis has argued that using EML techniques in evolving the document repre-

sentations and the learning to rank models improves the effectiveness of IR systems.

However, the usage of EML techniques undergo the limitation of the existing of

relevance judgement at the early stage of creating the IR system. Thus, there is a need

for proposing an effective mathematical term-weighting scheme at the beginning of the

IR system to gather user relevance judgements from historical user interactions. Then, it

is possible to propose a partially evolved technique for optimising the document weight

representation for obtaining a better accuracy for partially judged test collections. This

thesis proposed a novel partially evolved technique with efficient mathematical model to

improve the IR system effectiveness. This technique uses (1+1)-Evolutionary Gradient

Strategy ((1+1)-EGS) and the proposed mathematical TWS in this thesis is TF-ATO

(Term Frequency-Average Term Occurrence). The partially evolved technique used less

memory than Genetic Programming techniques in the literature and it outperformed

TF-IDF, Okapi-BM25 and TF-ATO with DA (Mathematical and Probabilistic Models) in

terms of MAP and NDCG.

Furthermore, this thesis also proposed ES-Rank technique to optimise the IR systems

through FVM approach in LTR problem. This technique uses lower problem size than

other EML techniques in the literature. It is also faster and more efficient than other EML

techniques. In this thesis, fourteen EML techniques have been used in a comparison with

ES-Rank to learn the best ranking model for the LETOR datasets. From the results of

this comparison, ES-Rank outperformed the fourteen EML techniques in the accuracy

and the computational run-time. The accuracy in this comparison includes five fitness

evaluation metrics which are: MAP, NDCG@10, P@10, RR@10 and Err@10. This

comparison is detailed in Chapter 7. This Chapter also discussed the importance of the

initialisation procedure in ES-Rank. Two machine learning techniques have been used

to create initial weight representations for the initial parent chromosome in ES-Rank. A
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comparison between these two initialisation procedures and the zero value initialisation

procedure has been carried out. This comparison has been used to examine the impact of

the initialisation procedure on the accuracy. Additional strength for the ES-Rank is the

evolving iteration in this technique considers all training data instance for checking the

quality of the evolved ranking model, while most of EML techniques consider a sample of

the training data instance in each learning iteration. This strength increases the accuracy

and the convergence for better evolved ranking model than EML techniques.

9.5 Practical Implications and Future Work

The work introduced in this thesis can be regarded as a step of research findings for using

EML techniques in IR systems. Thus, this research can be considered the start point of

exploring a new perspective of establishing the IR systems based on EML techniques.

Future extensions of the thesis work can be divided in the following research points:

1. One of the research limitations are based on the significant runtime for evolving

GTWs using cumulative Cosine similarity fitness function. This can be reduced by

using less complex similarity measures. An extension research work for evolving

GTW can involve the examination of the proposed approach using city block func-

tion, distance function, MAP and NDCG@10 as objective functions. This extended

work will investigate these objective functions for better performance. Moreover,

combining machine learning techniques with (1+1)-EGS for evolving the GTWs

may reduce computational run-time and may give better IR effectiveness than when

using an (1+1)-Evolutionary Gradient Strategy.

2. Another research limitation is the method of evolving GTWs has not been tested

with machine learning techniques. Learning to Weight using EML techniques can

be another extension for evolving GTW. However, the textual test collections are

partially judged with small number of fully judged documents. Thus, this research

costs money and effort to apply it regardless of the capability of re-using the same

Learning to Rank packages in Learning to Weight.

3. The ES-Rank can be improved using the acceptance of weak offspring under spe-
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cific cooling temperature. This technique may converge the evolved ranking model

to global optima faster than ES-Rank itself. This technique will be developed as a

future work. This technique is called Simulated Annealing Strategy.

4. ES-Rank can use a different ranking model from different EML technique than LR

and SVM as an initial chromosome. This initialisation may improve the accuracy

of ES-Rank.

5. ES-Rank can be extended to multi-objective optimisation problem by using three

or more evaluation fitness metrics (such as MAP, NDCG@10 with Err@10) as ob-

jective functions. This will be the first multi-objective technique in LTR problem.

However, the computational run-time will increase.

6. Various online LTR click models can use ES-Rank technique for improving the

accuracy in their online LTR techniques. The click models simulates the user be-

haviours on IR systems.
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Dataset Collections

Textual Document Collections

Figure A.1: One document from the Cranfield collection
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Figure A.2: Example of one query from the Cranfield collection

Feature List of Feature Model Benchmarks (LETOR

Datasets)

Microsoft Bing Search Engine Dataset Features

Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

1 Covered query term

frequency

body

2 anchor

3 title

4 url

5 whole document

6 Covered query term

ratio

body

7 anchor
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

8 title

9 url

10 whole document

11 stream length body

12 anchor

13 title

14 url

15 whole document

16 IDF(Inverse document

frequency)

body

17 anchor

18 title

19 url

20 whole document
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

21

sum of term frequency

body

22 anchor

23 title

24 url

25 whole document

26 min of term frequency body

27 anchor

28 title

29 url

30 whole document

31

max of term frequency

body

32 anchor

33 title
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

34 url

35 whole document

36

mean of term frequency

body

37 anchor

38 title

39 url

40 whole document

41 Variance of term fre-

quency

body

42 anchor

43 title

44 url

45 whole document
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

46 Sum of stream length

normalized term fre-

quency

body

47 anchor

48 title

49 url

50 whole document

51 Min of stream length

normalized term fre-

quency

body

52 anchor

53 title

54 url

55 whole document

56 Max of stream length

normalized term fre-

quency

body
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

57 anchor

58 title

59 url

60 whole document

61 Mean of stream length

normalized term fre-

quency

body

62 anchor

63 title

64 url

65 whole document

66 Variance of stream

length normalized

term frequency

body

67 anchor

68 title
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

69 url

70 whole document

71

Sum of tf*idf

body

72 anchor

73 title

74 url

75 whole document

76

Min of tf*idf

body

77 anchor

78 title

79 url

80 whole document

81 Max of tf*idf body
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

82 anchor

83 title

84 url

85 whole document

86

Mean of tf*idf

body

87 anchor

88 title

89 url

90 whole document

91

Variance of tf*idf

body

92 anchor

93 title

94 url
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

95 whole document

96 Boolean model body

97 anchor

98 title

99 url

100 whole document

101 Vector space model body

102 anchor

103 title

104 url

105 whole document

106

BM25

body

107 anchor
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

108 title

109 url

110 whole document

111 LMIR.ABS body Language model approach

for information retrieval (IR)

with absolute discounting

smoothing

112 anchor

113 title

114 url

115 whole document
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

116

LMIR.DIR

body Language model approach

for IR with Bayesian smooth-

ing using Dirichlet priors

117 anchor

118 title

119 url

120 whole document

121

LMIR.JM

body Language model approach

for IR with Jelinek-Mercer

smoothing

122 anchor

123 title

124 url
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

125 whole document

126 Number of slash in

URL

127 Length of URL

128 Inlink number

129 Outlink number

130 PageRank

131 SiteRank Site level PageRank

132 QualityScore The quality score of a web

page. The score is out-

putted by a web page quality

classifier.
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Table A.1: The MSLR-WEB10K and MSLR-WEB30K fea-

ture list as in (Qin and Liu, 2016)

Feature List in Query-Document Pair of Microsoft Bing Datasets

feature

id

Feature Description Stream Comments

133 QualityScore2 The quality score of a web

page. The score is outputted

by a web page quality classi-

fier, which measures the bad-

ness of a web page.

134 Query-url click count The click count of a query-

url pair at a search engine in

a period

135 url click count The click count of a url ag-

gregated from user browsing

data in a period

136 url dwell time The average dwell time of

a url aggregated from user

browsing data in a period
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LETOR 4 Datasets Feature List

Table A.2: The MQ2007 and MQ2008 feature list as in (Qin

and Liu, 2013).

Feature List in Query-Document Pair of MQ2007 and MQ2008

FeatureID Description

1 TF(Term frequency) of body

2 TF of anchor

3 TF of title

4 TF of URL

5 TF of whole document

6 IDF(Inverse document frequency) of body

7 IDF of anchor

8 IDF of title

9 IDF of URL

10 IDF of whole document

11 TF*IDF of body

12 TF*IDF of anchor

13 TF*IDF of title

14 TF*IDF of URL

15 TF*IDF of whole document

16 DL(Document length) of body

17 DL of anchor
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Table A.2: The MQ2007 and MQ2008 feature list as in (Qin

and Liu, 2013).

Feature List in Query-Document Pair of MQ2007 and MQ2008

FeatureID Description

18 DL of title

19 DL of URL

20 DL of whole document

21 BM25 of body

22 BM25 of anchor

23 BM25 of title

24 BM25 of URL

25 BM25 of whole document

26 LMIR.ABS of body

27 LMIR.ABS of anchor

28 LMIR.ABS of title

29 LMIR.ABS of URL

30 LMIR.ABS of whole document

31 LMIR.DIR of body

32 LMIR.DIR of anchor

33 LMIR.DIR of title

34 LMIR.DIR of URL

35 LMIR.DIR of whole document
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Table A.2: The MQ2007 and MQ2008 feature list as in (Qin

and Liu, 2013).

Feature List in Query-Document Pair of MQ2007 and MQ2008

FeatureID Description

36 LMIR.JM of body

37 LMIR.JM of anchor

38 LMIR.JM of title

39 LMIR.JM of URL

40 LMIR.JM of whole document

41 PageRank

42 Inlink number

43 Outlink number

44 Number of slash in URL

45 Length of URL

46 Number of child page

LETOR 3 Datasets Feature List

Table A.3: The TREC .Gov LETOR datasets feature list as

in (Qin et al., 2010).

Feature List for TREC .Gov LETOR Datasets

FeatureID Description

1 Term frequency (TF) of body
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Table A.3: The TREC .Gov LETOR datasets feature list as

in (Qin et al., 2010).

Feature List for TREC .Gov LETOR Datasets

FeatureID Description

2 TF of anchor

3 TF of title

4 TF of URL

5 TF of whole document

6 Inverse document frequency (IDF) of body

7 IDF of anchor

8 IDF of title

9 IDF of URL

10 IDF of whole document

11 TF*IDF of body

12 TF*IDF of anchor

13 TF*IDF of title

14 TF*IDF of URL

15 TF*IDF of whole document

16 Document length (DL) of body

17 DL of anchor

18 DL of title

19 DL of URL
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Table A.3: The TREC .Gov LETOR datasets feature list as

in (Qin et al., 2010).

Feature List for TREC .Gov LETOR Datasets

FeatureID Description

20 DL of whole document

21 BM25 of body

22 BM25 of anchor

23 BM25 of title

24 BM25 of URL

25 BM25 of whole document

26 LMIR.ABS of body

27 LMIR.ABS of anchor

28 LMIR.ABS of title

29 LMIR.ABS of URL

30 LMIR.ABS of whole document

31 LMIR.DIR of body

32 LMIR.DIR of anchor

33 LMIR.DIR of title

34 LMIR.DIR of URL

35 LMIR.DIR of whole document

36 LMIR.JM of body

37 LMIR.JM of anchor
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Table A.3: The TREC .Gov LETOR datasets feature list as

in (Qin et al., 2010).

Feature List for TREC .Gov LETOR Datasets

FeatureID Description

38 LMIR.JM of title

39 LMIR.JM of URL

40 LMIR.JM of whole document

41 Sitemap based term propagation

42 Sitemap based score propagation

43 Hyperlink base score propagation: weighted in-link

44 Hyperlink base score propagation: weighted out-link

45 Hyperlink base score propagation: uniform out-link

46 Hyperlink base feature propagation: weighted in-link

47 Hyperlink base feature propagation: weighted out-link

48 Hyperlink base feature propagation: uniform out-link

49 HITS authority

50 HITS hub

51 PageRank

52 HostRank

53 Topical PageRank

54 Topical HITS authority

55 Topical HITS hub
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Table A.3: The TREC .Gov LETOR datasets feature list as

in (Qin et al., 2010).

Feature List for TREC .Gov LETOR Datasets

FeatureID Description

56 Inlink number

57 Outlink number

58 Number of slash in URL

59 Length of URL

60 Number of child page

61 BM25 of extracted title

62 LMIR.ABS of extracted title

63 LMIR.DIR of extracted title

64 LMIR.JM of extracted title

Table A.4: The Ohsumed LETOR datasets feature list as in

(Qin et al., 2010).

Feature List for Ohsumed dataset in LETOR 3

1 Term frequency (TF) of title

2 logarithm(TF+1) of title

3 Normalized TF of title

4 logarithm(Normalized TF+1) of title

5 Inverse document frequency (IDF) of title

6 logarithm(IDF) of title
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Table A.4: The Ohsumed LETOR datasets feature list as in

(Qin et al., 2010).

Feature List for Ohsumed dataset in LETOR 3

7 logarithm(Collection Size(C)/Query Term Frequency(QTF)+1) of title

8 logarithm(Normalized TF * IDF+1) of title

9 TF*IDF of title

10 logarithm(Normalized TF*C/QTF + 1) of title

11 BM25 of title

12 log(BM25) of title

13 LMIR.DIR of title

14 LMIR.JM of title

15 LMIR.ABS of title

16 TF of abstract

17 logarithm(TF+1) of abstract

18 Normalized TF of abstract

19 logarithm(Normalized TF+1) of abstract

20 Inverse document frequency (IDF) of abstract

21 logarithm(IDF) of abstract

22 logarithm(Collection Size(C)/Query Term Frequency(QTF)+1) of

abstract

23 logarithm(Normalized TF * IDF+1) of abstract

24 TF*IDF of abstract
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Table A.4: The Ohsumed LETOR datasets feature list as in

(Qin et al., 2010).

Feature List for Ohsumed dataset in LETOR 3

25 logarithm(Normalized TF*C/QTF + 1) of abstract

26 BM25 of abstract

27 log(BM25) of abstract

28 LMIR.DIR of abstract

29 LMIR.JM of abstract

30 LMIR.ABS of abstract

31 Term frequency (TF) of title+abstract

32 logarithm(TF+1) of title+abstract

33 Normalized TF of title+abstract

34 logarithm(Normalized TF+1) of title+abstract

35 Inverse document frequency (IDF) of title+abstract

36 logarithm(IDF) of title+abstract

37 logarithm(Collection Size(C)/Query Term Frequency(QTF)+1) of

title+abstract

38 logarithm(Normalized TF * IDF+1) of title+abstract

39 TF*IDF of title+abstract

40 logarithm(Normalized TF*C/QTF + 1) of title+abstract

41 BM25 of title+abstract

42 log(BM25) of title+abstract
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Table A.4: The Ohsumed LETOR datasets feature list as in

(Qin et al., 2010).

Feature List for Ohsumed dataset in LETOR 3

43 LMIR.DIR of title+abstract

44 LMIR.JM of title+abstract

45 LMIR.ABS of title+abstract
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Appendix B

Learning to Rank Model Based on

Feature Vector Model

B.1 The Predictive results on test data for Mean Aver-

age Precision (MAP) as a Fitness and an Evaluation

Function

Table B.1: MAP results for ranking models using evolutionary and machine learning
techniques on MSLR-WEB10K

Algorithm
MAP Results in MSLR-WEB10K Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5746 0.5716 0.5743 0.5739 0.5741

RankSVM 0.4583 0.456 0.4543 0.4598 0.4584

ListNET 0.4723 0.4745 0.4731 0.4735 0.4739

AdaRank 0.5711 0.5714 0.5713 0.5711 0.571

MART 0.5796 0.5795 0.5791 0.5798 0.5796

Coordinate Ascent 0.5869 0.5845 0.5876 0.5887 0.5837

LambdaMART 0.5849 0.5861 0.5859 0.5857 0.5861

RankNET 0.4857 0.4865 0.4859 0.4856 0.4855

Random Forest 0.5997 0.5967 0.5984 0.5986 0.5975

Linear Regression 0.5016 0.5023 0.5019 0.5025 0.5017

RankGP 0.4687 0.4634 0.4674 0.4665 0.4706

Combined Regression & Ranking 0.4758 0.4741 0.4787 0.4736 0.4785

LambdaRank 0.4763 0.4755 0.4743 0.4735 0.4791

ES-Rank 0.5661 0.576 0.5689 0.5706 0.57033

IESR-Rank 0.5975 0.5993 0.5995 0.6173 0.6

IESVM-Rank 0.4586 0.4564 0.4546 0.4599 0.4576
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Table B.2: MAP results for ranking models using evolutionary and machine learning
techniques on MQ2008

Algorithm
MAP Results in MQ2008 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.4673 0.4348 0.4525 0.528 0.5035

RankSVM 0.4002 0.3514 0.3656 0.4471 0.4349

ListNET 0.4406 0.4107 0.4486 0.4906 0.4723

AdaRank 0.3962 0.4149 0.4525 0.5392 0.5237

MART 0.4657 0.4309 0.4506 0.5171 0.5019

Coordinate Ascent 0.4651 0.4318 0.4572 0.5379 0.5134

LambdaMART 0.4522 0.4206 0.4456 0.5257 0.5079

RankNET 0.4453 0.4114 0.428 0.4966 0.4786

Random Forest 0.4599 0.4353 0.4462 0.5067 0.5014

Linear Regression 0.4378 0.4166 0.4236 0.5035 0.4935

RankGP 0.4373 0.4309 0.4016 0.4279 0.4359

Combined Regression & Ranking 0.4406 0.4382 0.4396 0.4407 0.4382

LambdaRank 0.4031 0.3472 0.2622 0.3586 0.3707

ES-Rank 0.4898 0.5042 0.5177 0.477 0.4275

IESR-Rank 0.4921 0.5198 0.5121 0.4815 0.4628

IESVM-Rank 0.4517 0.4314 0.4583 0.5215 0.5039

Table B.3: MAP results for ranking models using evolutionary and machine learning
techniques on MQ2007

Algorithm
MAP Results in MQ2007 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.4627 0.4531 0.4498 0.4304 0.4714

RankSVM 0.4474 0.4141 0.4236 0.3748 0.3793

ListNET 0.4614 0.4375 0.4417 0.4157 0.4419

AdaRank 0.4776 0.4434 0.4515 0.4336 0.4631

MART 0.478 0.4616 0.4585 0.4342 0.4624

Coordinate Ascent 0.4867 0.4518 0.4516 0.4398 0.4689

LambdaMART 0.4707 0.4523 0.4532 0.4392 0.4607

RankNET 0.4685 0.4357 0.4516 0.4283 0.4563

Random Forest 0.4772 0.4608 0.458 0.4377 0.4596

Linear Regression 0.4317 0.4378 0.4429 0.4235 0.4128

RankGP 0.4094 0.4173 0.4176 0.4201 0.4068

Combined Regression & Ranking 0.4197 0.4274 0.4186 0.4164 0.4261

LambdaRank 0.3533 0.2833 0.3788 0.278 0.4056

ES-Rank 0.4687 0.4672 0.4648 0.4758 0.4737

IESR-Rank 0.4842 0.4656 0.4679 0.4725 0.4754

IESVM-Rank 0.4828 0.4436 0.4515 0.4337 0.4659
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Table B.4: MAP results for ranking models using evolutionary and machine learning
techniques on Ohsumed

Algorithm
MAP Results in Ohsumed Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3458 0.447 0.4623 0.514 0.4701

RankSVM 0.2685 0.4073 0.4304 0.4741 0.3355

ListNET 0.3357 0.4146 0.4635 0.5114 0.4753

AdaRank 0.3228 0.4529 0.4374 0.5182 0.4515

MART 0.3325 0.4316 0.4342 0.4835 0.4527

Coordinate Ascent 0.3455 0.4414 0.4707 0.5145 0.4581

LambdaMART 0.3212 0.4265 0.4307 0.4909 0.4597

RankNET 0.3198 0.4446 0.4347 0.5047 0.4717

Random Forest 0.3405 0.4405 0.4352 0.4907 0.4557

Linear Regression 0.3208 0.4359 0.4494 0.5065 0.4539

RankGP 0.3169 0.4175 0.4273 0.4165 0.4175

Combined Regression & Ranking 0.3017 0.4045 0.4249 0.4235 0.4256

LambdaRank 0.1673 0.2656 0.4248 0.4062 0.2725

ES-Rank 0.3369 0.4515 0.4514 0.4406 0.4277

IESR-Rank 0.3593 0.4897 0.4426 0.4522 0.4302

IESVM-Rank 0.3397 0.451 0.4506 0.5138 0.4609

Table B.5: MAP results for ranking models using evolutionary and machine learning
techniques on HP2003

Algorithm
MAP Results in HP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.6043 0.7737 0.7085 0.7847 0.6207

RankSVM 0.6871 0.626 0.5233 0.1298 0.1301

ListNET 0.0625 0.0327 0.1798 0.3306 0.0151

AdaRank 0.6391 0.7927 0.7325 0.7651 0.6727

MART 0.6988 0.7984 0.7235 0.7217 0.7877

Coordinate Ascent 0.7122 0.8218 0.8022 0.7411 0.6612

LambdaMART 0.7135 0.8116 0.7426 0.7256 0.6932

RankNET 0.7268 0.8274 0.7552 0.7454 0.6299

Random Forest 0.7294 0.8476 0.7689 0.7583 0.7386

Linear Regression 0.5366 0.5078 0.4235 0.5061 0.4883

RankGP 0.5682 0.5726 0.5795 0.5623 0.5363

Combined Regression & Ranking 0.5125 0.4462 0.5013 0.4876 0.4968

LambdaRank 0.7266 0.7885 0.7497 0.6853 0.6331

ES-Rank 0.74 0.7949 0.7845 0.8192 0.8565

IESR-Rank 0.7455 0.8117 0.8023 0.7903 0.8512

IESVM-Rank 0.7301 0.7259 0.6654 0.4994 0.5635
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Table B.6: MAP results for ranking models using evolutionary and machine learning
techniques on TD2003

Algorithm
MAP Results in TD2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.1499 0.2177 0.3243 0.2097 0.1249

RankSVM 0.0529 0.091 0.1562 0.0348 0.0723

ListNET 0.0897 0.01 0.0087 0.1399 0.0382

AdaRank 0.1652 0.2449 0.3126 0.3577 0.1456

MART 0.149 0.229 0.2393 0.1965 0.1249

Coordinate Ascent 0.1071 0.3092 0.3356 0.259 0.1747

LambdaMART 0.0966 0.1676 0.2952 0.2647 0.0785

RankNET 0.124 0.2296 0.3069 0.3294 0.1312

Random Forest 0.1848 0.3487 0.3381 0.3733 0.1784

Linear Regression 0.1231 0.1939 0.2615 0.2658 0.2407

RankGP 0.1262 0.1709 0.2665 0.2658 0.245

Combined Regression & Ranking 0.1409 0.1824 0.2602 0.2936 0.2449

LambdaRank 0.1071 0.115 0.2791 0.0534 0.1

ES-Rank 0.1913 0.2226 0.3395 0.3738 0.2648

IESR-Rank 0.217 0.2353 0.3442 0.3856 0.2747

IESVM-Rank 0.1786 0.3104 0.3919 0.2252 0.1615

Table B.7: MAP results for ranking models using evolutionary and machine learning
techniques on NP2003

Algorithm
MAP Results in NP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5406 0.6185 0.6551 0.6963 0.7251

RankSVM 0.4829 0.5366 0.5701 0.4074 0.1688

ListNET 0.1729 0.1412 0.2674 0.2453 0.1789

AdaRank 0.5246 0.5415 0.6538 0.6541 0.7168

MART 0.6372 0.6146 0.6343 0.6811 0.7591

Coordinate Ascent 0.6497 0.6278 0.628 0.6792 0.7294

LambdaMART 0.5788 0.5738 0.6952 0.7303 0.6944

RankNET 0.5339 0.6271 0.6729 0.6942 0.7205

Random Forest 0.6682 0.6874 0.6864 0.7271 0.7706

Linear Regression 0.4939 0.4953 0.6375 0.6099 0.546

RankGP 0.5942 0.5879 0.5649 0.6069 0.5529

Combined Regression & Ranking 0.5644 0.5612 0.5924 0.5685 0.5528

LambdaRank 0.5523 0.6204 0.6832 0.6839 0.686

ES-Rank 0.7457 0.8053 0.7563 0.7133 0.7241

IESR-Rank 0.7507 0.784 0.754 0.7569 0.7266

IESVM-Rank 0.6377 0.6468 0.6467 0.7213 0.6604
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Table B.8: MAP results for ranking models using evolutionary and machine learning
techniques on HP2004

Algorithm
MAP Results in HP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5612 0.5496 0.7262 0.6404 0.6519

RankSVM 0.3207 0.3307 0.3997 0.3439 0.3615

ListNET 0.4156 0.0051 0.3317 0.0014 0.1175

AdaRank 0.7354 0.6676 0.7827 0.6701 0.7208

MART 0.3531 0.4873 0.664 0.3879 0.6052

Coordinate Ascent 0.6178 0.6946 0.7141 0.6498 0.6112

LambdaMART 0.5699 0.6131 0.4225 0.3826 0.5142

RankNET 0.5875 0.6157 0.7454 0.6174 0.5313

Random Forest 0.5838 0.6273 0.7663 0.545 0.6273

Linear Regression 0.4806 0.5043 0.5591 0.4132 0.5743

RankGP 0.5207 0.507 0.5997 0.439 0.5615

Combined Regression & Ranking 0.5256 0.5744 0.4871 0.5686 0.5616

LambdaRank 0.6786 0.15 0.4391 0.1 0.4659

ES-Rank 0.7206 0.7187 0.7007 0.7161 0.7336

IESR-Rank 0.6568 0.6447 0.6972 0.7334 0.7311

IESVM-Rank 0.5729 0.5638 0.5729 0.5892 0.5749

Table B.9: MAP results for ranking models using evolutionary and machine learning
techniques on TD2004

Algorithm
MAP Results in TD2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.1971 0.2143 0.1958 0.2518 0.2302

RankSVM 0.1153 0.1263 0.1273 0.1244 0.1272

ListNET 0.0344 0.1585 0.1604 0.1562 0.1688

AdaRank 0.1324 0.2051 0.1991 0.2161 0.2041

MART 0.1353 0.2136 0.2114 0.2484 0.2119

Coordinate Ascent 0.2103 0.2313 0.2212 0.1991 0.2604

LambdaMART 0.1439 0.2772 0.1731 0.1477 0.1952

RankNET 0.1867 0.1507 0.1937 0.1995 0.2009

Random Forest 0.1895 0.2582 0.2785 0.2707 0.2736

Linear Regression 0.1725 0.2141 0.1628 0.1615 0.2321

RankGP 0.1825 0.2117 0.2196 0.1951 0.2431

Combined Regression & Ranking 0.2078 0.2161 0.2149 0.1999 0.2128

LambdaRank 0.196 0.1619 0.1289 0.1909 0.1827

ES-Rank 0.2511 0.2792 0.273 0.2598 0.2446

IESR-Rank 0.2605 0.2637 0.279 0.2532 0.2355

IESVM-Rank 0.1937 0.1896 0.1925 0.1956 0.1948
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Table B.10: MAP results for ranking models using evolutionary and machine learning
techniques on NP2004

Algorithm
MAP Results in NP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3639 0.4748 0.6884 0.6526 0.5846

RankSVM 0.3685 0.3918 0.3837 0.3754 0.3713

ListNET 0.0501 0.1713 0.1 0.3246 0.1382

AdaRank 0.3564 0.5948 0.6383 0.6304 0.6304

MART 0.4012 0.6846 0.6502 0.4386 0.4196

Coordinate Ascent 0.5247 0.6546 0.8111 0.624 0.6507

LambdaMART 0.472 0.4034 0.595 0.514 0.4943

RankNET 0.5489 0.6425 0.7389 0.6146 0.692

Random Forest 0.5744 0.6196 0.6902 0.6097 0.5212

Linear Regression 0.5027 0.4245 0.5746 0.3869 0.4467

RankGP 0.4685 0.4918 0.5837 0.554 0.473

Combined Regression & Ranking 0.5142 0.5066 0.5498 0.3702 0.4917

LambdaRank 0.4512 0.6501 0.7889 0.6244 0.7066

ES-Rank 0.7896 0.774 0.7138 0.7327 0.7513

IESR-Rank 0.7797 0.7838 0.7298 0.7325 0.7638

IESVM-Rank 0.5281 0.5277 0.5195 0.5153 0.5072
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B.2 The Predictive results on test data for Normalized

Discounted Cumulative Gain (NDCG@10) as a Fit-

ness and an Evaluation Function

Table B.11: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on MSLR-WEB10K

Algorithm
NDCG@10 Results in MSLR-WEB10K Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3345 0.3349 0.3356 0.334 0.3375

RankSVM 0.2195 0.2196 0.2183 0.2235 0.2269

ListNET 0.1949 0.1923 0.1915 0.1927 0.1923

AdaRank 0.3467 0.3465 0.3455 0.3463 0.3462

MART 0.3946 0.3947 0.3949 0.3948 0.3945

Coordinate Ascent 0.4015 0.4023 0.4019 0.4016 0.4005

LambdaMART 0.4015 0.3997 0.3993 0.3995 0.3998

RankNET 0.1895 0.1923 0.1915 0.1918 0.1923

Random Forest 0.4012 0.3995 0.399 0.3985 0.4

Linear Regression 0.3598 0.3623 0.3619 0.3601 0.3618

RankGP 0.3543 0.3523 0.3546 0.3529 0.3543

Combined Regression & Ranking 0.3563 0.3579 0.3572 0.3582 0.3583

LambdaRank 0.1924 0.1952 0.1959 0.1975 0.1986

ES-Rank 0.3638 0.3887 0.3849 0.3867 0.3876

IESR-Rank 0.415 0.4133 0.4174 0.4109 0.4186

IESVM-Rank 0.2229 0.2234 0.2207 0.226 0.2272

IGBRT 0.39355 0.3901 0.39327 0.39507 0.39921
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Table B.12: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on MQ2008

Algorithm
NDCG@10 Results in MQ2008 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.4868 0.4449 0.4818 0.553 0.5351

RankSVM 0.4254 0.3827 0.4021 0.4822 0.4687

ListNET 0.4647 0.4312 0.4779 0.532 0.5142

AdaRank 0.4835 0.4365 0.4728 0.5491 0.5412

MART 0.4931 0.4579 0.4769 0.5527 0.5375

Coordinate Ascent 0.4871 0.4517 0.4965 0.5568 0.5413

LambdaMART 0.4891 0.4576 0.4821 0.5504 0.5473

RankNET 0.4726 0.432 0.4644 0.5365 0.514

Random Forest 0.4897 0.4537 0.4708 0.5381 0.5315

Linear Regression 0.4725 0.4358 0.4599 0.5356 0.5318

RankGP 0.4658 0.4692 0.4125 0.4197 0.4359

Combined Regression & Ranking 0.4647 0.4723 0.4759 0.4815 0.4759

LambdaRank 0.3747 0.2776 0.2638 0.2963 0.3501

ES-Rank 0.51 0.5417 0.5346 0.4984 0.4481

IESR-Rank 0.5114 0.5411 0.5397 0.5048 0.4875

IESVM-Rank 0.4792 0.4416 0.4923 0.5504 0.5246

IGBRT 0.5073 0.5186 0.4995 0.5167 0.5486

Table B.13: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on MQ2007

Algorithm
NDCG@10 Results in MQ2007 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.4611 0.4221 0.4325 0.4054 0.4429

RankSVM 0.4068 0.3724 0.3914 0.3306 0.3217

ListNET 0.4301 0.4045 0.4298 0.3906 0.4295

AdaRank 0.4542 0.4202 0.4448 0.3985 0.4322

MART 0.4667 0.4317 0.4496 0.4109 0.4401

Coordinate Ascent 0.4635 0.4268 0.4448 0.4134 0.4646

LambdaMART 0.4721 0.4351 0.4609 0.4234 0.4473

RankNET 0.447 0.4129 0.4337 0.3941 0.4337

Random Forest 0.4723 0.429 0.4454 0.4189 0.4313

Linear Regression 0.4217 0.4298 0.4263 0.3987 0.4221

RankGP 0.4278 0.4281 0.4042 0.4169 0.4003

Combined Regression & Ranking 0.4289 0.4229 0.4201 0.4194 0.4211

LambdaRank 0.3272 0.3083 0.2392 0.2167 0.2865

ES-Rank 0.4452 0.4479 0.4565 0.4561 0.4474

IESR-Rank 0.4673 0.4464 0.4538 0.4537 0.4541

IESVM-Rank 0.4593 0.4237 0.4394 0.4139 0.4416

IGBRT 0.4326 0.5042 0.4293 0.4375 0.4825
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Table B.14: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on Ohsumed

Algorithm
NDCG@10 Results in Ohsumed Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3766 0.4433 0.4143 0.4677 0.4907

RankSVM 0.2449 0.4294 0.3945 0.3739 0.2221

ListNET 0.3274 0.4029 0.3638 0.4536 0.415

AdaRank 0.3701 0.4487 0.4441 0.4764 0.4997

MART 0.3766 0.4485 0.3748 0.4581 0.4831

Coordinate Ascent 0.3678 0.4607 0.4368 0.4831 0.5126

LambdaMART 0.3212 0.4511 0.4038 0.4499 0.4566

RankNET 0.3547 0.4532 0.4193 0.4658 0.5139

Random Forest 0.3727 0.4665 0.4144 0.4655 0.4694

Linear Regression 0.3347 0.4584 0.4144 0.4659 0.4778

RankGP 0.3574 0.4613 0.4275 0.4189 0.4035

Combined Regression & Ranking 0.3368 0.4593 0.4461 0.4418 0.4375

LambdaRank 0.2754 0.2319 0.3975 0.3674 0.1285

ES-Rank 0.382 0.4527 0.4729 0.4699 0.453

IESR-Rank 0.3873 0.4939 0.473 0.4726 0.4452

IESVM-Rank 0.3581 0.4785 0.4607 0.4511 0.4943

Table B.15: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on HP2003

Algorithm
NDCG@10 Results in HP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.6755 0.8107 0.7264 0.8289 0.6821

RankSVM 0.7193 0.7031 0.5793 0.0595 0.1506

ListNET 0.0851 0.4328 0.014 0.2289 0.0688

AdaRank 0.6849 0.8095 0.7648 0.7681 0.7045

MART 0.7337 0.8465 0.7668 0.7775 0.8129

Coordinate Ascent 0.7235 0.8316 0.8329 0.7762 0.7219

LambdaMART 0.7304 0.7463 0.818 0.7856 0.8072

RankNET 0.7487 0.8267 0.8061 0.7839 0.669

Random Forest 0.7416 0.8509 0.8157 0.7951 0.7849

Linear Regression 0.5776 0.5802 0.4882 0.5573 0.5588

RankGP 0.5924 0.5975 0.5978 0.5889 0.5883

Combined Regression & Ranking 0.5638 0.5386 0.5623 0.5888 0.5943

LambdaRank 0.6957 0.8045 0.7759 0.6641 0.6706

ES-Rank 0.8056 0.8299 0.8156 0.8185 0.8612

IESR-Rank 0.8116 0.8303 0.8093 0.8294 0.8627

IESVM-Rank 0.7193 0.8819 0.7896 0.8094 0.7423

IGBRT 0.7988 0.8327 0.7988 0.8153 0.7952
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Table B.16: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on TD2003

Algorithm
NDCG@10 Results in TD2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.1498 0.2648 0.4201 0.2564 0.2823

RankSVM 0.0504 0.1087 0.2253 0.0434 0.1051

ListNET 0.0479 0.1848 0.1574 0.073 0.1434

AdaRank 0.1587 0.3739 0.3596 0.2397 0.1939

MART 0.2107 0.3133 0.3301 0.2418 0.2823

Coordinate Ascent 0.2222 0.3489 0.4018 0.2882 0.3335

LambdaMART 0.186 0.2445 0.3986 0.3518 0.2396

RankNET 0.1498 0.1659 0.4156 0.1925 0.1766

Random Forest 0.2447 0.452 0.4218 0.3984 0.2931

Linear Regression 0.175 0.3837 0.3386 0.3468 0.3576

RankGP 0.2182 0.2938 0.2788 0.2463 0.2344

Combined Regression & Ranking 0.2063 0.2873 0.2514 0.2453 0.2624

LambdaRank 0.1479 0.2597 0.0835 0.1909 0.0723

ES-Rank 0.2514 0.4024 0.4189 0.3673 0.3722

IESR-Rank 0.2619 0.4378 0.4272 0.3743 0.3793

IESVM-Rank 0.2635 0.3438 0.4901 0.3417 0.2619

IGBRT 0.2156 0.3051 0.4223 0.316 0.272

Table B.17: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on NP2003

Algorithm
NDCG@10 Resullts in NP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.6017 0.6514 0.7004 0.7238 0.7268

RankSVM 0.5252 0.6125 0.6391 0.4439 0.1737

ListNET 0.0796 0.1257 0.1308 0.2791 0.2786

AdaRank 0.5707 0.608 0.6833 0.6487 0.7616

MART 0.6564 0.692 0.6983 0.7263 0.7693

Coordinate Ascent 0.7148 0.7042 0.7235 0.7682 0.7914

LambdaMART 0.6779 0.6385 0.7 0.7596 0.7015

RankNET 0.6017 0.6519 0.7175 0.7039 0.754

Random Forest 0.7167 0.7599 0.7327 0.7652 0.7995

Linear Regression 0.5319 0.5376 0.7006 0.6704 0.6127

RankGP 0.5909 0.5839 0.5471 0.6003 0.6073

Combined Regression & Ranking 0.5659 0.5798 0.5839 0.5366 0.5172

LambdaRank 0.5972 0.6889 0.7361 0.69 0.7179

ES-Rank 0.74246 0.7209 0.7826 0.7584 0.7646

IESR-Rank 0.7033 0.7205 0.7894 0.8027 0.7717

IESVM-Rank 0.7149 0.6788 0.7333 0.757 0.7788

IGBRT 0.71009 0.74667 0.73266 0.8353 0.75691
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Table B.18: MAP results for ranking models using evolutionary and machine learning
techniques on MSLR-WEB10K

Algorithm
NDCG@10 Results in HP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.602 0.6199 0.7496 0.7122 0.7023

RankSVM 0.3631 0.3233 0.3754 0.3299 0.3423

ListNET 0.01 0.308 0.0409 0.0667 0.4927

AdaRank 0.746 0.7259 0.6831 0.697 0.714

MART 0.4373 0.5607 0.69 0.4038 0.6499

Coordinate Ascent 0.7725 0.7735 0.7821 0.7829 0.7508

LambdaMART 0.5941 0.6641 0.7784 0.4041 0.6842

RankNET 0.7095 0.6584 0.7247 0.6537 0.5697

Random Forest 0.6727 0.6477 0.7667 0.5562 0.6792

Linear Regression 0.4917 0.5746 0.6351 0.4506 0.6259

RankGP 0.693 0.6778 0.6187 0.6522 0.7062

Combined Regression & Ranking 0.6696 0.693 0.6677 0.6187 0.6455

LambdaRank 0.5376 0.1 0.2 0.19 0.4459

ES-Rank 0.7733 0.7319 0.8114 0.8206 0.752

IESR-Rank 0.8076 0.7317 0.8274 0.7503 0.7733

IESVM-Rank 0.5531 0.5793 0.5816 0.5729 0.5725

Table B.19: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on TD2004

Algorithm
NDCG@10 Results in TD2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3162 0.2907 0.3049 0.3225 0.3093

RankSVM 0.1967 0.1959 0.1958 0.1948 0.2031

ListNET 0.0488 0.1371 0.1368 0.1301 0.1165

AdaRank 0.1775 0.3182 0.2636 0.2943 0.3432

MART 0.1861 0.292 0.2795 0.166 0.3003

Coordinate Ascent 0.2875 0.3202 0.3028 0.329 0.3368

LambdaMART 0.2453 0.1834 0.3075 0.2549 0.2603

RankNET 0.2756 0.2075 0.2904 0.2412 0.2794

Random Forest 0.2765 0.3564 0.3842 0.3538 0.375

Linear Regression 0.2456 0.3194 0.252 0.2362 0.3217

RankGP 0.2969 0.2922 0.2385 0.2362 0.2992

Combined Regression & Ranking 0.2996 0.2378 0.2778 0.2822 0.2956

LambdaRank 0.1 0.113 0.1427 0.1222 0.1729

ES-Rank 0.3284 0.3399 0.3854 0.3717 0.3642

IESR-Rank 0.3164 0.3496 0.3933 0.3786 0.3406

IESVM-Rank 0.2 0.2156 0.2149 0.2175 0.2183
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Table B.20: NDCG@10 results for ranking models using evolutionary and machine learn-
ing techniques on NP2004

Algorithm
NDCG@10 Results in NP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.4975 0.5719 0.7438 0.7017 0.6374

RankSVM 0.4066 0.4853 0.4299 0.4174 0.4287

ListNET 0.1345 0.5857 0.4224 0.1 0.1483

AdaRank 0.3795 0.6582 0.7019 0.6946 0.6946

MART 0.456 0.7131 0.7192 0.5415 0.5072

Coordinate Ascent 0.4952 0.7277 0.877 0.7525 0.6587

LambdaMART 0.4192 0.4023 0.5684 0.5242 0.612

RankNET 0.6094 0.7019 0.8595 0.7279 0.7128

Random Forest 0.6456 0.655 0.7279 0.5991 0.572

Linear Regression 0.5834 0.4655 0.6628 0.5147 0.4782

RankGP 0.7381 0.7872 0.698 0.6418 0.6948

Combined Regression & Ranking 0.712 0.6159 0.7003 0.4896 0.4756

LambdaRank 0.4997 0.1954 0.6412 0.6533 0.707

ES-Rank 0.8299 0.8312 0.7637 0.7368 0.7996

IESR-Rank 0.8269 0.8127 0.7813 0.7445 0.7841

IESVM-Rank 0.5368 0.5183 0.5275 0.5182 0.5173

B.3 The Predictive results on test data for Precision

(P@10) as a Fitness and an Evaluation Function

Table B.21: P@10 results for ranking models using evolutionary and machine learning
techniques on MSLR-WEB10K

Algorithm
P@10 Results in MSLR-WEB10K Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5907 0.5874 0.5834 0.5863 0.5861

RankSVM 0.4063 0.405 0.4002 0.4045 0.4067

ListNET 0.4519 0.4352 0.4276 0.4286 0.436

AdaRank 0.5944 0.5789 0.5848 0.5854 0.6273

MART 0.6152 0.5929 0.6128 0.6658 0.6692

Coordinate Ascent 0.624 0.6308 0.6026 0.6366 0.6401

LambdaMART 0.6215 0.6486 0.6314 0.6571 0.6656

RankNET 0.4381 0.4441 0.4527 0.4421 0.4371

Random Forest 0.4528 0.6302 0.6514 0.6458 0.656

Linear Regression 0.4579 0.4569 0.4511 0.4611 0.4596

RankGP 0.4517 0.4536 0.4472 0.4427 0.4419

Combined Regression & Ranking 0.4483 0.4423 0.4391 0.4372 0.4387

LambdaRank 0.4317 0.4327 0.4289 0.4308 0.4267

ES-Rank 0.6116 0.6319 0.6394 0.6575 0.6319

IESR-Rank 0.6214 0.6491 0.6481 0.6547 0.6436

IESVM-Rank 0.4074 0.4069 0.4002 0.4048 0.4075
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Table B.22: P@10 results for ranking models using evolutionary and machine learning
techniques on MQ2008

Algorithm
P@10 Results in MQ2008 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.2694 0.2496 0.2512 0.3257 0.2729

RankSVM 0.2443 0.2291 0.2289 0.2951 0.2531

ListNET 0.2611 0.2362 0.2512 0.3155 0.271

AdaRank 0.247 0.2043 0.2385 0.306 0.2411

MART 0.2681 0.2457 0.2576 0.3244 0.2793

Coordinate Ascent 0.2613 0.2457 0.255 0.3251 0.2793

LambdaMART 0.2694 0.2489 0.2563 0.3251 0.2755

RankNET 0.2643 0.2355 0.2518 0.3136 0.2691

Random Forest 0.2694 0.2496 0.2531 0.3206 0.2806

Linear Regression 0.2694 0.2464 0.2537 0.3257 0.2723

RankGP 0.2519 0.2367 0.2275 0.2368 0.2472

Combined Regression & Ranking 0.2582 0.2415 0.2149 0.2473 0.2519

LambdaRank 0.2168 0.1948 0.1697 0.2455 0.2366

ES-Rank 0.2611 0.2432 0.2575 0.3181 0.271

IESR-Rank 0.2662 0.2508 0.2563 0.3264 0.2768

IESVM-Rank 0.2661 0.2381 0.2569 0.3289 0.2691

Table B.23: P@10 results for ranking models using evolutionary and machine learning
techniques on MQ2007

Algorithm
P@10 Results in MQ2007 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3884 0.3855 0.3595 0.3513 0.3735

RankSVM 0.3607 0.3467 0.3267 0.3109 0.3147

ListNET 0.3708 0.3708 0.3509 0.3392 0.3593

AdaRank 0.3961 0.3808 0.3521 0.3147 0.3342

MART 0.3926 0.3956 0.3742 0.3569 0.3743

Coordinate Ascent 0.3902 0.3888 0.3722 0.3637 0.3735

LambdaMART 0.4012 0.3862 0.3775 0.3705 0.3835

RankNET 0.3789 0.3752 0.3521 0.3401 0.3628

Random Forest 0.394 0.3873 0.3725 0.3628 0.3746

Linear Regression 0.3845 0.3894 0.3627 0.3499 0.3755

RankGP 0.3356 0.3415 0.3583 0.3365 0.3478

Combined Regression & Ranking 0.3716 0.3574 0.3579 0.3465 0.3394

LambdaRank 0.3539 0.2655 0.281 0.2437 0.3177

ES-Rank 0.3958 0.3894 0.371 0.356 0.372

IESR-Rank 0.3845 0.3876 0.363 0.3498 0.3755

IESVM-Rank 0.4027 0.3846 0.3624 0.3551 0.374
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Table B.24: P@10 results for ranking models using evolutionary and machine learning
techniques on Ohsumed

Algorithm
P@10 Results in Ohsumed Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3682 0.4524 0.5143 0.5762 0.6095

RankSVM 0.2636 0.4143 0.5 0.519 0.3095

ListNET 0.3182 0.4571 0.4429 0.5429 0.5667

AdaRank 0.3545 0.4762 0.5476 0.5714 0.5429

MART 0.3682 0.4381 0.4762 0.5571 0.5381

Coordinate Ascent 0.3636 0.4852 0.5 0.5238 0.5429

LambdaMART 0.3045 0.4476 0.481 0.5619 0.5952

RankNET 0.3545 0.4524 0.5 0.5619 0.6095

Random Forest 0.3682 0.4667 0.4952 0.5762 0.5524

Linear Regression 0.3182 0.4619 0.5 0.5619 0.5619

RankGP 0.3315 0.3607 0.4163 0.5127 0.4563

Combined Regression & Ranking 0.3381 0.4172 0.4498 0.4362 0.4479

LambdaRank 0.1273 0.4048 0.4143 0.5 0.1952

ES-Rank 0.3727 0.4857 0.5095 0.5619 0.5381

IESR-Rank 0.3864 0.4476 0.519 0.5921 0.5429

IESVM-Rank 0.35 0.4619 0.5333 0.5571 0.5047

Table B.25: P@10 results for ranking models using evolutionary and machine learning
techniques on HP2003

Algorithm
P@10 Results in HP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0833 0.1067 0.1167 0.097 0.1067

RankSVM 0.09 0.106 0.09 0.01 0.0267

ListNET 0.05 0.02 0.0767 0.017 0.0033

AdaRank 0.08 0.0967 0.1167 0.103 0.1033

MART 0.09 0.1067 0.11 0.103 0.11

Coordinate Ascent 0.0767 0.1033 0.12 0.107 0.11

LambdaMART 0.0833 0.0933 0.1 0.103 0.1

RankNET 0.0833 0.1067 0.1167 0.087 0.0933

Random Forest 0.0867 0.1067 0.1167 0.107 0.11

Linear Regression 0.0733 0.0967 0.09 0.083 0.09

RankGP 0.05 0.0533 0.0767 0.087 0.07

Combined Regression & Ranking 0.0533 0.0767 0.09 0.1 0.0667

LambdaRank 0.01 0.05 0.1067 0.047 0.0667

ES-Rank 0.08 0.107 0.1133 0.107 0.08

IESR-Rank 0.09 0.107 0.12 0.1 0.1033

IESVM-Rank 0.0766 0.11 0.1167 0.103 0.1067
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Table B.26: P@10 results for ranking models using evolutionary and machine learning
techniques on TD2003

Algorithm
P@10 Results in TD2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.14 0.14 0.18 0.11 0.15

RankSVM 0.05 0.06 0.13 0.03 0.09

ListNET 0.04 0.1 0.1 0.06 0.04

AdaRank 0.12 0.13 0.13 0.12 0.14

MART 0.14 0.21 0.13 0.11 0.14

Coordinate Ascent 0.16 0.2 0.1 0.12 0.21

LambdaMART 0.13 0.23 0.14 0.12 0.16

RankNET 0.13 0.17 0.17 0.12 0.15

Random Forest 0.17 0.3 0.14 0.15 0.21

Linear Regression 0.13 0.26 0.14 0.15 0.22

RankGP 0.1 0.12 0.1 0.1033 0.1033

Combined Regression & Ranking 0.05 0.1 0.09 0.06 0.1

LambdaRank 0.01 0.02 0.05 0.02 0.01

ES-Rank 0.17 0.2 0.19 0.15 0.21

IESR-Rank 0.16 0.26 0.15 0.16 0.22

IESVM-Rank 0.18 0.18 0.15 0.14 0.18

Table B.27: P@10 results for ranking models using evolutionary and machine learning
techniques on NP2003

Algorithm
P@10 Results in NP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0867 0.08 0.0933 0.0867 0.0933

RankSVM 0.07 0.0866 0.0933 0.0614 0.0266

ListNET 0.0001 0.0367 0.01 0.0848 0.0333

AdaRank 0.0833 0.0833 0.0867 0.0833 0.09

MART 0.08 0.09 0.09 0.08 0.08

Coordinate Ascent 0.0833 0.0867 0.1 0.0881 0.1

LambdaMART 0.0833 0.09 0.0867 0.0881 0.0867

RankNET 0.0833 0.08 0.1 0.0833 0.09

Random Forest 0.09 0.0933 0.0967 0.0914 0.0967

Linear Regression 0.07 0.07 0.0967 0.0914 0.0867

RankGP 0.08 0.07 0.09 0.08 0.09

Combined Regression & Ranking 0.07 0.05 0.07 0.07 0.08

LambdaRank 0.0667 0.0233 0.0633 0.0081 0.001

ES-Rank 0.0867 0.09 0.11 0.0915 0.1

IESR-Rank 0.0867 0.08 0.097 0.0881 0.0933

IESVM-Rank 0.0833 0.0966 0.0866 0.0947 0.0966

October 30, 2017



B.3. The Predictive results on test data for Precision (P@10) as a Fitness and an
Evaluation Function 226

Table B.28: P@10 results for ranking models using evolutionary and machine learning
techniques on HP2004

Algorithm
P@10 Results in HP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0833 0.0867 0.0933 0.0667 0.0867

RankSVM 0.06 0.05 0.04 0.05 0.0667

ListNET 0.001 0.0333 0.02 0.0267 0.04

AdaRank 0.08 0.1067 0.08 0.06 0.0867

MART 0.09 0.0933 0.0733 0.0733 0.08

Coordinate Ascent 0.0933 0.1 0.1 0.1 0.0933

LambdaMART 0.06 0.0867 0.0933 0.06 0.0933

RankNET 0.0833 0.0933 0.08 0.0933 0.0733

Random Forest 0.08 0.0933 0.0933 0.08 0.0867

Linear Regression 0.06 0.1 0.0867 0.0667 0.0867

RankGP 0.0733 0.0867 0.0733 0.0733 0.06

Combined Regression & Ranking 0.06 0.05 0.06 0.0733 0.05

LambdaRank 0.0333 0.0133 0.04 0.0133 0.0067

ES-Rank 0.0867 0.1133 0.0933 0.0933 0.0933

IESR-Rank 0.1 0.107 0.0867 0.1 0.1

IESVM-Rank 0.0933 0.1 0.0667 0.0733 0.08

Table B.29: P@10 results for ranking models using evolutionary and machine learning
techniques on TD2004

Algorithm
P@10 Results in TD2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.2467 0.2267 0.26 0.2 0.2333

RankSVM 0.13 0.1053 0.1383 0.1772 0.19

ListNET 0.1 0.2267 0.0533 0.1067 0.0733

AdaRank 0.2 0.2333 0.2133 0.2067 0.2667

MART 0.18 0.2267 0.2133 0.28 0.2867

Coordinate Ascent 0.24 0.2933 0.2333 0.2133 0.2667

LambdaMART 0.1933 0.26 0.1867 0.2533 0.2533

RankNET 0.2 0.1933 0.2467 0.1867 0.2467

Random Forest 0.2067 0.2933 0.26 0.2467 0.3267

Linear Regression 0.2133 0.26 0.1733 0.1933 0.2867

RankGP 0.125 0.129 0.109 0.17 0.18

Combined Regression & Ranking 0.1197 0.1019 0.115 0.1021 0.117

LambdaRank 0.1067 0.1667 0.04 0.1667 0.18

ES-Rank 0.2533 0.3 0.22 0.2333 0.28

IESR-Rank 0.207 0.287 0.2333 0.2399 0.327

IESVM-Rank 0.17 0.11 0.19 0.19 0.18
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Table B.30: P@10 results for ranking models using evolutionary and machine learning
techniques on NP2004

Algorithm
P@10 Results in NP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0667 0.0933 0.0933 0.0867 0.0867

RankSVM 0.0667 0.04 0.04 0.0667 0.0533

ListNET 0.04 0.02 0.04 0.02 0.0133

AdaRank 0.08 0.0867 0.1 0.0867 0.0933

MART 0.0667 0.0867 0.0867 0.08 0.0867

Coordinate Ascent 0.0867 0.1 0.0933 0.0867 0.0933

LambdaMART 0.0667 0.0667 0.0733 0.08 0.0867

RankNET 0.0867 0.1067 0.1 0.0933 0.0933

Random Forest 0.0867 0.0933 0.0933 0.0733 0.0933

Linear Regression 0.0867 0.0667 0.0933 0.0933 0.0667

RankGP 0.07 0.0667 0.07 0.0867 0.0733

Combined Regression & Ranking 0.0667 0.0467 0.0667 0.0467 0.0533

LambdaRank 0.0467 0.0333 0.004 0.0533 0.08

ES-Rank 0.09 0.09 0.0933 0.08 0.1

IESR-Rank 0.08 0.1 0.0933 0.09 0.09

IESVM-Rank 0.07 0.0667 0.0667 0.07 0.07
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B.4 The Predictive results on test data for Reciprocal

Rank (RR@10) as a Fitness and an Evaluation Func-

tion

Table B.31: RR@10 results for ranking models using evolutionary and machine learning
techniques on MSLR-WEB10K

Algorithm
RR@10 Results in MSLR-WEB10K Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5746 0.5716 0.5743 0.5739 0.5741

RankSVM 0.4583 0.456 0.4543 0.4598 0.4584

ListNET 0.4723 0.4745 0.4731 0.4735 0.4739

AdaRank 0.5711 0.5714 0.5713 0.5711 0.571

MART 0.5796 0.5795 0.5791 0.5798 0.5796

Coordinate Ascent 0.5869 0.5845 0.5876 0.5887 0.5837

LambdaMART 0.5849 0.5861 0.5859 0.5857 0.5861

RankNET 0.4857 0.4865 0.4859 0.4856 0.4855

Random Forest 0.5997 0.5967 0.5984 0.5986 0.5975

Linear Regression 0.5016 0.5023 0.5019 0.5025 0.5017

RankGP 0.4687 0.4634 0.4674 0.4665 0.4706

Combined Regression & Ranking 0.4758 0.4741 0.4787 0.4736 0.4785

LambdaRank 0.4763 0.4755 0.4743 0.4735 0.4791

ES-Rank 0.5661 0.576 0.5689 0.5706 0.57033

IESR-Rank 0.5975 0.5993 0.5995 0.6173 0.6

IESVM-Rank 0.4586 0.4564 0.4546 0.4599 0.4576
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Table B.32: RR@10 results for ranking models using evolutionary and machine learning
techniques on MQ2008

Algorithm
RR@10 Results in MQ2008 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5192 0.4844 0.5141 0.5979 0.5499

RankSVM 0.4525 0.3965 0.4061 0.5032 0.4943

ListNET 0.4867 0.4717 0.5106 0.5731 0.525

AdaRank 0.5021 0.4765 0.5122 0.6181 0.557

MART 0.5131 0.4839 0.5057 0.5888 0.556

Coordinate Ascent 0.5004 0.4684 0.5195 0.5921 0.587

LambdaMART 0.5106 0.4831 0.5207 0.586 0.5477

RankNET 0.482 0.46 0.4955 0.5798 0.5059

Random Forest 0.5083 0.5028 0.5124 0.5729 0.5559

Linear Regression 0.4867 0.4552 0.4947 0.5785 0.5517

RankGP 0.4723 0.4835 0.4952 0.4719 0.4931

Combined Regression & Ranking 0.4419 0.4572 0.4581 0.4625 0.4571

LambdaRank 0.4166 0.3773 0.4258 0.4976 0.4225

ES-Rank 0.5093 0.4901 0.5212 0.5989 0.5662

IESR-Rank 0.5024 0.47 0.5235 0.6049 0.5752

IESVM-Rank 0.4884 0.4524 0.4815 0.5682 0.5739

Table B.33: RR@10 results for ranking models using evolutionary and machine learning
techniques on MQ2007

Algorithm
RR@10 Results in MQ2007 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5938 0.5508 0.5569 0.5433 0.5742

RankSVM 0.5166 0.5057 0.5217 0.4459 0.4368

ListNET 0.5596 0.5422 0.5537 0.5301 0.5731

AdaRank 0.5696 0.5147 0.5454 0.5308 0.5811

MART 0.5921 0.5627 0.585 0.5351 0.5706

Coordinate Ascent 0.5766 0.5532 0.5648 0.5248 0.5694

LambdaMART 0.5817 0.5636 0.583 0.5452 0.5779

RankNET 0.5659 0.5541 0.561 0.5209 0.5592

Random Forest 0.589 0.5591 0.5736 0.5406 0.5682

Linear Regression 0.5768 0.5654 0.5315 0.5306 0.5479

RankGP 0.5485 0.5368 0.5415 0.5437 0.5385

Combined Regression & Ranking 0.5375 0.5417 0.5465 0.5492 0.5418

LambdaRank 0.5295 0.475 0.5119 0.4735 0.5106

ES-Rank 0.5867 0.4887 0.5357 0.5448 0.5754

IESR-Rank 0.5768 0.5727 0.5736 0.5497 0.57

IESVM-Rank 0.5756 0.5505 0.5789 0.5261 0.5687
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Table B.34: RR@10 results for ranking models using evolutionary and machine learning
techniques on Ohsumed

Algorithm
RR@10 Results in Ohsumed Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5922 0.6984 0.718 0.7728 0.8322

RankSVM 0.4876 0.7261 0.7739 0.7132 0.4256

ListNET 0.6001 0.5524 0.7198 0.7183 0.7576

AdaRank 0.5947 0.7579 0.7659 0.7817 0.7952

MART 0.6103 0.6973 0.7401 0.6993 0.7833

Coordinate Ascent 0.5899 0.6845 0.6981 0.7143 0.7996

LambdaMART 0.658 0.7119 0.666 0.7782 0.869

RankNET 0.549 0.7103 0.8092 0.7579 0.7698

Random Forest 0.5947 0.7341 0.7445 0.6996 0.8413

Linear Regression 0.6125 0.8135 0.7206 0.7825 0.7778

RankGP 0.5245 0.5639 0.5783 0.5369 0.5923

Combined Regression & Ranking 0.5174 0.5278 0.5435 0.5513 0.5639

LambdaRank 0.5028 0.5417 0.7496 0.5992 0.6167

ES-Rank 0.6137 0.719 0.7687 0.7837 0.7476

IESR-Rank 0.5709 0.7857 0.7298 0.773 0.7635

IESVM-Rank 0.5428 0.7794 0.7703 0.7436 0.8095

Table B.35: RR@10 results for ranking models using evolutionary and machine learning
techniques on HP2003

Algorithm
RR@10 Results in HP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5991 0.8053 0.8603 0.719 0.6456

RankSVM 0.6983 0.6305 0.4862 0.047 0.1577

ListNET 0.0333 0.0289 0.1318 0.515 0.0637

AdaRank 0.6484 0.8194 0.8511 0.736 0.7066

MART 0.7203 0.8317 0.8164 0.77 0.8222

Coordinate Ascent 0.6959 0.8444 0.8542 0.783 0.7667

LambdaMART 0.7437 0.802 0.8575 0.728 0.7417

RankNET 0.731 0.8417 0.8417 0.735 0.6844

Random Forest 0.7333 0.8411 0.8472 0.779 0.78

Linear Regression 0.5469 0.5095 0.4787 0.538 0.523

RankGP 0.5974 0.5817 0.5845 0.574 0.5839

Combined Regression & Ranking 0.5853 0.5809 0.5739 0.58 0.5842

LambdaRank 0.7042 0.802 0.8594 0.726 0.6694

ES-Rank 0.7589 0.8492 0.8742 0.778 0.7453

IESR-Rank 0.7375 0.8833 0.8444 0.756 0.7383

IESVM-Rank 0.7704 0.85 0.8219 0.75 0.6472
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Table B.36: RR@10 results for ranking models using evolutionary and machine learning
techniques on TD2003

Algorithm
RR@10 Results in TD2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.2425 0.5333 0.4833 0.5225 0.5667

RankSVM 0.095 0.1867 0.3055 0.0225 0.1952

ListNET 0.085 0.3643 0.26 0.025 0.1111

AdaRank 0.445 0.5167 0.3047 0.4093 0.375

MART 0.3783 0.5908 0.3944 0.325 0.46

Coordinate Ascent 0.3403 0.4583 0.4844 0.4533 0.4243

LambdaMART 0.3992 0.3226 0.3625 0.395 0.506

RankNET 0.5236 0.55 0.4593 0.2319 0.3644

Random Forest 0.4093 0.6394 0.52 0.5292 0.595

Linear Regression 0.3136 0.525 0.4144 0.4268 0.675

RankGP 0.3389 0.3194 0.2959 0.3158 0.2762

Combined Regression & Ranking 0.3045 0.3076 0.2874 0.2782 0.2995

LambdaRank 0.0343 0.485 0.5208 0.1726 0.345

ES-Rank 0.3792 0.5725 0.6311 0.4267 0.61

IESR-Rank 0.356 0.5983 0.55 0.4293 0.595

IESVM-Rank 0.4694 0.6125 0.4333 0.3366 0.5194

Table B.37: RR@10 results for ranking models using evolutionary and machine learning
techniques on NP2003

Algorithm
RR@10 Results in NP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5495 0.6098 0.6458 0.6881 0.73

RankSVM 0.4681 0.5299 0.5797 0.3956 0.1459

ListNET 0.1903 0.0033 0.1428 0.1731 0.0083

AdaRank 0.5179 0.537 0.5383 0.6517 0.6344

MART 0.6389 0.6133 0.6329 0.6886 0.7667

Coordinate Ascent 0.6525 0.6356 0.6403 0.6923 0.7672

LambdaMART 0.6648 0.6522 0.6428 0.7093 0.6931

RankNET 0.5134 0.6139 0.6936 0.6725 0.7053

Random Forest 0.6717 0.7089 0.6983 0.737 0.7511

Linear Regression 0.4825 0.4844 0.6454 0.6064 0.5491

RankGP 0.4391 0.4783 0.4759 0.4672 0.4662

Combined Regression & Ranking 0.4486 0.4617 0.4783 0.4853 0.4573

LambdaRank 0.5278 0.6111 0.6537 0.5995 0.6825

ES-Rank 0.6279 0.6725 0.6597 0.7164 0.6929

IESR-Rank 0.6771 0.5742 0.7256 0.7006 0.7736

IESVM-Rank 0.5431 0.5944 0.6361 0.7123 0.7056
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Table B.38: RR@10 results for ranking models using evolutionary and machine learning
techniques on HP2004

Algorithm
RR@10 Results in HP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5991 0.5747 0.7241 0.6585 0.6433

RankSVM 0.2683 0.3791 0.3685 0.3685 0.3585

ListNET 0.3207 0.0407 0.05 0.03 0.04

AdaRank 0.6484 0.7022 0.7833 0.5889 0.7667

MART 0.7203 0.5194 0.6467 0.35 0.6

Coordinate Ascent 0.7648 0.725 0.7667 0.6744 0.5872

LambdaMART 0.5911 0.6133 0.5207 0.3889 0.6911

RankNET 0.7281 0.71 0.7262 0.5778 0.5206

Random Forest 0.6 0.6333 0.7639 0.5067 0.6222

Linear Regression 0.4889 0.5111 0.5611 0.3963 0.575

RankGP 0.4758 0.4723 0.4753 0.4815 0.4823

Combined Regression & Ranking 0.4683 0.4672 0.4658 0.4593 0.4579

LambdaRank 0.6079 0.0956 0.6556 0.4778 0.001

ES-Rank 0.7467 0.75 0.7833 0.6889 0.65

IESR-Rank 0.6689 0.7778 0.6933 0.7389 0.7667

IESVM-Rank 0.4359 0.4381 0.4277 0.4385 0.4365

Table B.39: RR@10 results for ranking models using evolutionary and machine learning
techniques on TD2004

Algorithm
RR@10 Results in TD2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.5706 0.4973 0.5067 0.5115 0.4022

RankSVM 0.3485 0.3395 0.3638 0.3633 0.3582

ListNET 0.04 0.0333 0.412 0.0863 0.2439

AdaRank 0.4133 0.5534 0.5429 0.478 0.5623

MART 0.2889 0.4859 0.5963 0.4112 0.358

Coordinate Ascent 0.5056 0.6111 0.5963 0.4374 0.4945

LambdaMART 0.3329 0.4783 0.438 0.4402 0.4303

RankNET 0.5185 0.3489 0.4939 0.4278 0.4444

Random Forest 0.5556 0.5511 0.7389 0.7652 0.6444

Linear Regression 0.3972 0.4967 0.6856 0.4423 0.4984

RankGP 0.4791 0.5075 0.4762 0.4618 0.4636

Combined Regression & Ranking 0.4486 0.4793 0.4573 0.4562 0.4615

LambdaRank 0.4229 0.0467 0.4408 0.3741 0.5633

ES-Rank 0.4345 0.7017 0.6244 0.5689 0.5363

IESR-Rank 0.5733 0.5692 0.5596 0.6017 0.5467

IESVM-Rank 0.4583 0.4592 0.4581 0.4553 0.4617
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Table B.40: RR@10 results for ranking models using evolutionary and machine learning
techniques on NP2004

Algorithm
RR@10 Results in NP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.3636 0.5074 0.6817 0.6484 0.5833

RankSVM 0.2173 0.2572 0.2475 0.2376 0.2512

ListNET 0.1 0.2263 0.1667 0.4733 0.3162

AdaRank 0.3278 0.6069 0.5373 0.7278 0.6417

MART 0.3911 0.7278 0.6484 0.4362 0.4094

Coordinate Ascent 0.4661 0.5917 0.7278 0.6472 0.6095

LambdaMART 0.4204 0.4524 0.5056 0.5306 0.4984

RankNET 0.5614 0.6579 0.68 0.6944 0.6833

Random Forest 0.5804 0.604 0.7 0.5667 0.4951

Linear Regression 0.498 0.4206 0.5722 0.3869 0.4411

RankGP 0.4753 0.4486 0.4386 0.4467 0.4597

Combined Regression & Ranking 0.4618 0.4519 0.4219 0.4387 0.4852

LambdaRank 0.4589 0.5562 0.65 0.6056 0.6229

ES-Rank 0.4229 0.64 0.689 0.731 0.6611

IESR-Rank 0.4984 0.5861 0.7317 0.6833 0.647

IESVM-Rank 0.4279 0.4131 0.4183 0.4271 0.4219

B.5 The Predictive results on test data for Error Rate

(ERR@10) as Fitness and Evaluation Functions

Table B.41: ERR@10 results for ranking models using evolutionary and machine learning
techniques on MSLR-WEB10K

Algorithm
ERR@10 Results in MSLR-WEB10K Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.229 0.2369 0.2289 0.2378 0.2265

RankSVM 0.185 0.1808 0.1767 0.1882 0.1793

ListNET 0.2744 0.2759 0.2718 0.2689 0.2763

AdaRank 0.2097 0.2093 0.2187 0.2165 0.2092

MART 0.2312 0.2275 0.2259 0.2287 0.2365

Coordinate Ascent 0.2219 0.2243 0.2263 0.2284 0.2361

LambdaMART 0.2375 0.2384 0.2476 0.2366 0.2397

RankNET 0.2514 0.2682 0.2837 0.2531 0.2657

Random Forest 0.2919 0.2965 0.2907 0.2975 0.2972

Linear Regression 0.1621 0.1659 0.1606 0.1678 0.1701

LambdaRank 0.2972 0.2855 0.2913 0.2957 0.2849

ES-Rank 0.0846 0.1101 0.1098 0.0823 0.0854

IESR-Rank 0.0645 0.0642 0.0666 0.0727 0.0721

IESVM-Rank 0.1634 0.1672 0.1655 0.1681 0.1631

October 30, 2017



B.5. The Predictive results on test data for Error Rate (ERR@10) as Fitness and
Evaluation Functions 234

Table B.42: ERR@10 results for ranking models using evolutionary and machine learning
techniques on MQ2008

Algorithm
ERR@10 Results in MQ2008 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0984 0.0813 0.0878 0.1177 0.0973

RankSVM 0.0803 0.0675 0.0702 0.0948 0.0819

ListNET 0.0912 0.0821 0.0862 0.1134 0.0908

AdaRank 0.0801 0.0702 0.0655 0.0701 0.0836

MART 0.0986 0.0842 0.0908 0.1181 0.095

Coordinate Ascent 0.0961 0.08 0.0916 0.1158 0.1004

LambdaMART 0.0979 0.0851 0.0926 0.1142 0.1

RankNET 0.0952 0.0784 0.0849 0.1115 0.0921

Random Forest 0.0971 0.0827 0.0898 0.1139 0.0955

Linear Regression 0.0956 0.0808 0.0879 0.1137 0.095

LambdaRank 0.0605 0.047 0.0781 0.099 0.0634

ES-Rank 0.0294 0.0269 0.0249 0.0337 0.0317

IESR-Rank 0.0284 0.0296 0.0214 0.0308 0.0306

IESVM-Rank 0.026 0.0251 0.0225 0.0289 0.0273

Table B.43: ERR@10 results for ranking models using evolutionary and machine learning
techniques on MQ2007

Algorithm
ERR@10 Results in MQ2007 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.1107 0.0978 0.0979 0.0988 0.1031

RankSVM 0.0914 0.0852 0.0853 0.0748 0.0714

ListNET 0.1044 0.0954 0.0975 0.092 0.1027

AdaRank 0.0793 0.0699 0.0847 0.0689 0.0734

MART 0.1141 0.1004 0.104 0.0988 0.1045

Coordinate Ascent 0.108 0.0987 0.1009 0.0984 0.1023

LambdaMART 0.1102 0.1011 0.1037 0.1015 0.1053

RankNET 0.1038 0.0942 0.0976 0.0929 0.1028

Random Forest 0.1134 0.1011 0.1049 0.0996 0.1036

Linear Regression 0.1064 0.099 0.0954 0.095 0.1007

LambdaRank 0.0752 0.0551 0.0548 0.0638 0.0588

ES-Rank 0.0331 0.0304 0.0282 0.0206 0.0272

IESR-Rank 0.0308 0.032 0.0266 0.0241 0.0315

IESVM-Rank 0.0286 0.0312 0.0248 0.02 0.0268
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Table B.44: ERR@10 results for ranking models using evolutionary and machine learning
techniques on Ohsumed

Algorithm
ERR@10 Results in Ohsumed Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.1553 0.1766 0.1809 0.2048 0.2267

RankSVM 0.1033 0.1994 0.1811 0.1603 0.0954

ListNET 0.1509 0.2009 0.1783 0.2004 0.2185

AdaRank 0.1548 0.1892 0.2121 0.2108 0.2186

MART 0.172 0.201 0.1873 0.1972 0.2189

Coordinate Ascent 0.1499 0.1924 0.2026 0.2006 0.2378

LambdaMART 0.1553 0.1841 0.1837 0.2085 0.2197

RankNET 0.1576 0.1809 0.1755 0.1972 0.2242

Random Forest 0.1474 0.1941 0.1896 0.2032 0.2256

Linear Regression 0.1424 0.1424 0.1797 0.2013 0.2183

LambdaRank 0.0264 0.1688 0.0963 0.1329 0.1429

ES-Rank 0.0412 0.0411 0.0519 0.0775 0.0603

IESR-Rank 0.0243 0.0545 0.053 0.0558 0.0569

IESVM-Rank 0.0333 0.0464 0.0475 0.0813 0.0687

Table B.45: ERR@10 results for ranking models using evolutionary and machine learning
techniques on HP2003

Algorithm
ERR@10 Results in HP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0528 0.0525 0.0586 0.046 0.0439

RankSVM 0.0444 0.0419 0.0378 0.003 0.0099

ListNET 0.0275 0.007 0.0226 0.019 0.0026

AdaRank 0.0497 0.0365 0.0448 0.032 0.035

MART 0.0681 0.0556 0.0536 0.05 0.055

Coordinate Ascent 0.0469 0.0598 0.0536 0.052 0.0476

LambdaMART 0.0467 0.0541 0.0537 0.05 0.0516

RankNET 0.039 0.0549 0.0564 0.049 0.0446

Random Forest 0.0466 0.0571 0.059 0.051 0.0518

Linear Regression 0.0342 0.0351 0.0322 0.035 0.0333

LambdaRank 0.007 0.0388 0.001 0.041 0.0398

ES-Rank 0 0 0.0026 0 0

IESR-Rank 0 0 0 3E-04 0.0005

IESVM-Rank 0.0012 0 0 0 0
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Table B.46: ERR@10 results for ranking models using evolutionary and machine learning
techniques on TD2003

Algorithm
ERR@10 Results in TD2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0239 0.0465 0.0383 0.029 0.0534

RankSVM 0.001 0.0142 0.0117 0.0317 0.0473

ListNET 0.0158 0.0054 0.0189 0.0078 0.011

AdaRank 0.0235 0.0379 0.0295 0.017 0.0373

MART 0.0311 0.0544 0.0317 0.0266 0.033

Coordinate Ascent 0.0306 0.0451 0.0314 0.0349 0.0561

LambdaMART 0.0317 0.0314 0.0372 0.0331 0.038

RankNET 0.0217 0.0225 0.034 0.0181 0.0353

Random Forest 0.0344 0.0643 0.0443 0.0375 0.0517

Linear Regression 0.0271 0.0546 0.0327 0.0313 0.0581

LambdaRank 0.0163 0.006 0.0332 0.002 0.0063

ES-Rank 0 0.0062 0 0.0007 0.0006

IESR-Rank 0.001 0 0 0.0002 0.0041

IESVM-Rank 0 0.001 0.001 0 0

Table B.47: ERR@10 results for ranking models using evolutionary and machine learning
techniques on NP2003

Algorithm
ERR@10 Results in NP2003 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0335 0.0381 0.042 0.043 0.0466

RankSVM 0.0292 0.033 0.0367 0.0247 0.0091

ListNET 0.0233 0.0033 0.001 0.0089 0.0005

AdaRank 0.01 0.0348 0.0005 0.003 0.041

MART 0.0399 0.0383 0.0408 0.0422 0.0482

Coordinate Ascent 0.0384 0.0381 0.042 0.0424 0.0495

LambdaMART 0.0401 0.0363 0.0437 0.0469 0.0477

RankNET 0.0354 0.0366 0.0427 0.0414 0.0451

Random Forest 0.0425 0.0425 0.0455 0.0453 0.047

Linear Regression 0.0302 0.0303 0.0416 0.0381 0.0343

LambdaRank 0.0173 0.0105 0.0244 0.0146 0.0132

ES-Rank 0 0 0.0023 0.0029 0

IESR-Rank 0 0 0 0.0004 0

IESVM-Rank 0 0 0 0.0002 0
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Table B.48: ERR@10 results for ranking models using evolutionary and machine learning
techniques on HP2004

Algorithm
ERR@10 Results in HP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0362 0.0376 0.0472 0.0418 0.0409

RankSVM 0.0453 0.0391 0.0457 0.0436 0.0429

ListNET 0.001 0.0079 0.0067 0.0021 0.0004

AdaRank 0.0334 0.0306 0.0192 0.0124 0.0027

MART 0.0213 0.0342 0.0308 0.0211 0.0375

Coordinate Ascent 0.0448 0.0498 0.0479 0.0383 0.0469

LambdaMART 0.0343 0.0383 0.0439 0.0258 0.0415

RankNET 0.04 0.0441 0.045 0.045 0.0335

Random Forest 0.0411 0.0415 0.0492 0.031 0.0397

Linear Regression 0.0306 0.0341 0.0351 0.0248 0.0364

LambdaRank 0.0019 0.0097 0.0052 0.0089 0.0225

ES-Rank 0 0.002 0 0 0

IESR-Rank 0 0.0006 0 0 0

IESVM-Rank 0.0007 0.002 0.001 0 0

Table B.49: ERR@10 results for ranking models using evolutionary and machine learning
techniques on TD2004

Algorithm
ERR@10 Results in TD2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0547 0.0538 0.0512 0.0493 0.0366

RankSVM 0.0617 0.0661 0.0673 0.0694 0.0686

ListNET 0.003 0.0231 0.031 0.0116 0.0368

AdaRank 0.0168 0.001 0.049 0.0228 0.0306

MART 0.0294 0.0485 0.0545 0.0438 0.0494

Coordinate Ascent 0.0502 0.0605 0.0584 0.0564 0.051

LambdaMART 0.029 0.0501 0.0449 0.0483 0.0526

RankNET 0.0499 0.0411 0.0483 0.034 0.0498

Random Forest 0.0574 0.0586 0.0707 0.064 0.0651

Linear Regression 0.0419 0.054 0.0529 0.0396 0.0548

LambdaRank 0.0069 0.0072 0.0327 0.0244 0.0021

ES-Rank 0 0.0024 0.0016 0.001 0.001

IESR-Rank 0.0005 0.0041 0 0.0028 0

IESVM-Rank 0.004 0.005 0.007 0.006 0.001
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Table B.50: ERR@10 results for ranking models using evolutionary and machine learning
techniques on NP2004

Algorithm
ERR@10 Results in NP2004 Dataset Folds

Fold1 Fold2 Fold3 Fold4 Fold5

RankBoost 0.0227 0.0331 0.0426 0.0405 0.0384

RankSVM 0.0352 0.0429 0.0391 0.0495 0.347

ListNET 0.0173 0 0.0203 0.0063 0.0046

AdaRank 0.0042 0.0035 0.0008 0.0306 0.027

MART 0.0244 0.0455 0.0405 0.0273 0.0269

Coordinate Ascent 0.0302 0.0483 0.0507 0.0427 0.0396

LambdaMART 0.0293 0.0228 0.0297 0.0348 0.0319

RankNET 0.0344 0.0436 0.05 0.0433 0.0453

Random Forest 0.0355 0.0402 0.0441 0.0385 0.0349

Linear Regression 0.0311 0.0263 0.0358 0.0242 0.0295

LambdaRank 0.0093 0.0136 0.0025 0.0045 0.021

ES-Rank 0 0 0 0 0

IESR-Rank 0.0041 0 0.0042 0 0

IESVM-Rank 0.0062 0 0.0037 0 0
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Detailed Results of the ESClick

Experimental Study

Table C.1: The training data results for DCM and ES-Click on MQ2008
Training data results for MQ2008

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.4848 0.51238 0.5136 0.4741 0.463

DCM Model 0.2849 0.4488 0.2824 0.2547 0.276

NDCG
ES-Click 0.509 0.5393 0.5238 0.5037 0.4847

DCM Model 0.3149 0.4857 0.31264 0.2815 0.3052

P@10
ES-Click 0.2776 0.2896 0.2922 0.2652 0.2586

DCM Model 0.2016 0.2748 0.206 0.1827 0.1916

RR@10
ES-Click 0.5538 0.5909 0.5757 0.5297 0.50216

DCM Model 0.3331 0.5064 0.3 0.2635 0.3197

ERR@10
ES-Click 0.023 0.0233 0.0245 0.0237 0.0226

DCM Model 0.0546 0.0917 0.04899 0.041 0.05299

Table C.2: The test data results for DCM and ES-Click on MQ2008
Test data results for MQ2008

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.4497 0.436 0.4491 0.524 0.5045

DCM Model 0.2811 0.3976 0.2326 0.2918 0.2879

NDCG
ES-Click 0.4821 0.4253 0.4662 0.5535 0.5402

DCM Model 0.3082 0.4119 0.2583 0.3015 0.3439

P@10
ES-Click 0.26169 0.2457 0.2492 0.3257 0.2704

DCM Model 0.2014 0.2317 0.1767 0.2111 0.2131

RR@10
ES-Click 0.4995 0.4621 0.5271 0.5935 0.54815

DCM Model 0.3424 0.431 0.2429 0.2896 0.3391

ERR@10
ES-Click 0.0258 0.0265 0.0209 0.0288 0.0251

DCM Model 0.05582 0.0722 0.0395 0.04635 0.05397
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Table C.3: The training data results for DCM and ES-Click on MQ2007
Training data results for MQ2007

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.4565 0.4652 0.4674 0.4747 0.4697

DCM Model 0.3326 0.3409 0.2859 0.3703 0.31514

NDCG
ES-Click 0.4235 0.4464 0.4519 0.4367 0.4535

DCM Model 0.2771 0.2877 0.2004 0.32496 0.2409

P@10
ES-Click 0.3752 0.3723 0.3812 0.3957 0.3844

DCM Model 0.2743 0.2829 0.2162 0.3064 0.2519

RR@10
ES-Click 0.5579 0.5726 0.5842 0.5856 0.5746

DCM Model 0.3925 0.4168 0.3193 0.4574 0.36469

ERR@10
ES-Click 0.0218 0.0226 0.02486 0.02597 0.02483

DCM Model 0.06278 0.06512 0.047 0.07597 0.05534

Table C.4: The test data results for DCM and ES-Click on MQ2007
Test data results for MQ2007

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.4847 0.4537 0.4489 0.4273 0.4683

DCM Model 0.36 0.3551 0.2738 0.3356 0.3076

NDCG
ES-Click 0.4523 0.4275 0.4407 0.3915 0.4398

DCM Model 0.3 0.3014 0.2029 0.2793 0.2265

P@10
ES-Click 0.4033 0.3903 0.3645 0.3584 0.3811

DCM Model 0.2988 0.3115 0.2123 0.2711 0.24484

RR@10
ES-Click 0.5658 0.55 0.5563 0.5133 0.57624

DCM Model 0.41933 0.4344 0.3069 0.3999 0.3459

ERR@10
ES-Click 0.0285 0.02568 0.02656 0.02178 0.02764

DCM Model 0.0715 0.0685 0.04633 0.06251 0.0495

Table C.5: The training data results for DCM and ES-Click on HP2004
Training data results for HP2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.8568 0.8554 0.8131 0.7738 0.8094

DCM Model 0.0036 0.0361 0.1299 0.38638 0.006

NDCG
ES-Click 0.8437 0.8366 0.8224 0.8204 0.8435

DCM Model 0 0.0403 0.1543 0.4086 0.0064

P@10
ES-Click 0.107 0.1 0.0911 0.1022 0.1044

DCM Model 0 0.007 0.029 0.0578 0.0022

RR@10
ES-Click 0.82 0.8556 0.7819 0.8217 0.8174

DCM Model 0 0.0389 0.1125 0.3876 0.0022

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0 0 0 0 0
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Table C.6: The test data results for DCM and ES-Click on HP2004
Test data results for HP2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.695 0.75 0.812 0.7253 0.58

DCM Model 0.01797 0.0723 0.036 0.4554 0.0038

NDCG
ES-Click 0.7084 0.7579 0.6841 0.7438 0.5588

DCM Model 0.0237 0.07 0.0433 0.5201 0

P@10
ES-Click 0.1 0.107 0.08 0.0933 0.07

DCM Model 0.007 0.007 0.0133 0.08 0

RR@10
ES-Click 0.5661 0.775 0.8167 0.7778 0.5578

DCM Model 0.011 0.07 0.028 0.4595 0

ERR@10
ES-Click 0.0007 0 0 0 0

DCM Model 0.0007 0 0 0 0

Table C.7: The training data results for DCM and ES-Click on TD2004
Training data results for TD2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.2452 0.27113 0.25298 0.2279 0.237

DCM Model 0.0384 0.0418 0.0225 0.01726 0.01418

NDCG
ES-Click 0.3678 0.3651 0.3576 0.38404 0.31014

DCM Model 0.0549 0.0518 0.02254 0.01519 0.01198

P@10
ES-Click 0.2689 0.3178 0.2956 0.2733 0.2622

DCM Model 0.0444 0.0467 0.02444 0.01333 0.0111

RR@10
ES-Click 0.6986 0.6754 0.5869 0.571 0.6107

DCM Model 0.136 0.1313 0.0347 0.03833 0.0333

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0 0 0 0.0027 0

Table C.8: The test data results for DCM and ES-Click on TD2004
Test data results for TD2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.1979 0.2308 0.22719 0.1949 0.2643

DCM Model 0.0331 0.0208 0.0335 0.01027 0.0276

NDCG
ES-Click 0.2728 0.348 0.2008 0.3222 0.31659

DCM Model 0.05546 0.0235 0.0447 0 0.0408

P@10
ES-Click 0.2267 0.2733 0.2333 0.2467 0.2667

DCM Model 0.0533 0.02667 0.03333 0 0.0333

RR@10
ES-Click 0.4392 0.5452 0.3579 0.3475 0.5719

DCM Model 0.1303 0.0495 0.1083 0 0.1233

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0 0 0 0 0
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Table C.9: The training data results for DCM and ES-Click on NP2004
Training data results for NP2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.2591 0.26197 0.2599 0.1296 0.2379

DCM Model 0.01754 0.07488 0.0859 0.0196 0.02

NDCG
ES-Click 0.3482 0.4074 0.3647 0.385 0.3229

DCM Model 0.01869 0.1126 0.1159 0.0192 0.02096

P@10
ES-Click 0.2689 0.2578 0.3044 0.3089 0.2467

DCM Model 0.0156 0.0956 0.09556 0.0111 0.0222

RR@10
ES-Click 0.7334 0.6837 0.6973 0.6481 0.6428

DCM Model 0.04157 0.2594 0.2331 0.03095 0.03259

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0.0019 0.0125 0.0189 0 0

Table C.10: The test data results for DCM and ES-Click on NP2004
Test data results for NP2004

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.2192 0.21956 0.2058 0.0813 0.2614

DCM Model 0.0113 0.04863 0.1242 0.0131 0.0406

NDCG
ES-Click 0.2916 0.3709 0.2371 0.3099 0.3508

DCM Model 0 0.0661 0.17269 0.0107 0.04578

P@10
ES-Click 0.2133 0.2467 0.1467 0.2467 0.22

DCM Model 0 0.0467 0.1333 0.01333 0.0333

RR@10
ES-Click 0.4467 0.5889 0.5673 0.4973 0.5735

DCM Model 0 0.175 0.3417 0.01667 0.0889

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0.0028 0.0169 0.0287 0 0

Table C.11: The training data results for DCM and ES-Click on HP2003
Training data results for HP2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.8626 0.8077 0.76656 0.8098 0.838

DCM Model 0.00822 0.1509 0.03151 0.0254 0.0028

NDCG
ES-Click 0.8246 0.8437 0.7615 0.8148 0.8696

DCM Model 0.008 0.1672 0.03514 0.02821 0

P@10
ES-Click 0.12 0.1156 0.1056 0.108 0.108

DCM Model 0.0022 0.027 0.007 0.0056 0

RR@10
ES-Click 0.8592 0.8493 0.7946 0.7798 0.7448

DCM Model 0.0038 0.1511 0.0337 0.02196 0

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0.00024 0.0097 0.0021 0.00137 0
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Table C.12: The test data results for DCM and ES-Click on HP2003
Test data results for HP2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.71065 0.8671 0.72791 0.7049 0.66765

DCM Model 0.04224 0.1554 0.02047 0.00239 0.0049

NDCG
ES-Click 0.7169 0.87 0.78 0.785 0.7492

DCM Model 0.0436 0.1805 0.0217 0 0

P@10
ES-Click 0.077 0.107 0.12 0.107 0.1

DCM Model 0.0067 0.03 0.007 0 0

RR@10
ES-Click 0.7423 0.8678 0.8472 0.7492 0.5992

DCM Model 0.0444 0.1706 0.017 0 0

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0.0028 0.0109 0.00139 0 0

Table C.13: The training data results for DCM and ES-Click on TD2003
Training data results for TD2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.3653 0.373 0.2938 0.2845 0.3649

DCM Model 0.0059 0.211 0.0093 0.0115 0.03485

NDCG
ES-Click 0.4452 0.4927 0.3516 0.3711 0.3479

DCM Model 0 0.2582 0.0055 0.0133 0.0345

P@10
ES-Click 0.21 0.2133 0.207 0.1833 0.19

DCM Model 0 0.137 0.007 0.01 0.017

RR@10
ES-Click 0.5831 0.715 0.6062 0.725 0.7306

DCM Model 0 0.3289 0.0125 0.0483 0.0822

ERR@10
ES-Click 0 0 0 0 0

DCM Model 0 0.02778 0.0008 0.003 0.0051

Table C.14: The test data results for DCM and ES-Click on TD2003
Test data results for TD2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.1624 0.2497 0.3833 0.2599 0.2257

DCM Model 0.0181 0.1696 0.0291 0.0048 0.0548

NDCG
ES-Click 0.2286 0.3826 0.323 0.3301 0.1641

DCM Model 0.0214 0.2279 0.0412 0 0.103

P@10
ES-Click 0.1499 0.18 0.18 0.13 0.14

DCM Model 0.01 0.15 0.02 0 0.07

RR@10
ES-Click 0.1968 0.6 0.177 0.3458 0.4472

DCM Model 0.05 0.4292 0.1 0 0.2536

ERR@10
ES-Click 0.003125 0 0 0 0.009375

DCM Model 0.003125 0.03844 0.0082 0 0.01975
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Table C.15: The training data results for DCM and ES-Click on NP2003
Training data results for NP2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.6874 0.7769 0.7555 0.7283 0.6971

DCM Model 0.0047 0.2994 0.5611 0.2908 0.0025

NDCG
ES-Click 0.7289 0.8108 0.8024 0.7998 0.7223

DCM Model 0.006 0.3396 0.5839 0.3244 0.0033

P@10
ES-Click 0.096 0.0983 0.0949 0.097 0.088

DCM Model 0.00159 0.0527 0.0694 0.049 0.0011

RR@10
ES-Click 0.7553 0.7765 0.7433 0.75 0.6958

DCM Model 0.0037 0.29182 0.55686 0.2755 0.0012

ERR@10
ES-Click 0.00009 0.00009 0.00009 0 0

DCM Model 0.00023 0.0182 0.0348 0.01722 0.00007

Table C.16: The test data results for DCM and ES-Click on NP2003
Test data results for NP2003

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.6019 0.6114 0.5857 0.75132 0.7478

DCM Model 0.001 0.1765 0.4702 0.39801 0.0026

NDCG
ES-Click 0.6315 0.6848 0.7144 0.7804 0.7575

DCM Model 0 0.1991 0.528 0.4358 0

P@10
ES-Click 0.08 0.087 0.09 0.0881 0.08

DCM Model 0 0.0333 0.0733 0.0614 0

RR@10
ES-Click 0.6057 0.63 0.6298 0.7139 0.7631

DCM Model 0 0.158 0.47948 0.3906 0

ERR@10
ES-Click 0 0 0.0021 0.00029 0

DCM Model 0 0.0098 0.03 0.02441 0

Table C.17: The training data results for DCM and ES-Click on Ohsumed
Training data results for Ohsumed

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.4868 0.4912 0.441 0.4324 0.4324

DCM Model 0.2952 0.3228 0.33 0.4006 0.2844

NDCG
ES-Click 0.4823 0.4978 0.4731 0.4667 0.448

DCM Model 0.161 0.1884 0.2514 0.425 0.2355

P@10
ES-Click 0.5587 0.5921 0.5438 0.5031 0.4891

DCM Model 0.2667 0.2873 0.3438 0.4391 0.2984

RR@10
ES-Click 0.8075 0.4772 0.8375 0.8142 0.7402

DCM Model 0.4147 0.8276 0.4944 0.7647 0.4705

ERR@10
ES-Click 0.0312 0.0396 0.04 0.0353 0.03486

DCM Model 0.0696 0.0924 0.1059 0.1934 0.1038
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Table C.18: The test data results for DCM and ES-Click on Ohsumed
Test data results for Ohsumed

Evaluation Metrics Approcahes Fold1 Fold2 Fold3 Fold4 Fold5

MAP
ES-Click 0.3587 0.4426 0.4594 0.5127 0.4555

DCM Model 0.1839 0.2748 0.3302 0.5043 0.3648

NDCG
ES-Click 0.3722 0.4496 0.44 0.4924 0.5051

DCM Model 0.1277 0.1967 0.224 0.4852 0.274

P@10
ES-Click 0.3727 0.4905 0.519 0.5762 0.5238

DCM Model 0.1455 0.2714 0.3143 0.5762 0.4095

RR@10
ES-Click 0.6315 0.3845 0.7966 0.7476 0.5822

DCM Model 0.3697 0.8056 0.5152 0.8095 0.6143

ERR@10
ES-Click 0.0488 0.0428 0.0404 0.0827 0.06367

DCM Model 0.0657 0.083 0.1052 0.2142 0.1237
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