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Abstract

Understanding and identifying individuals’ capabilities and limitations has always been

a challenge within work contexts, but its importance cannot be underestimated.

Humans have a limited mental capacity [142], which means that they can only per-

form a finite set of tasks at any given period of time. Identifying these limitations is a

key factor in the reduction and prevention of what is referred to as Mental Workload

Overload. These measures are used in research and industry to evaluate the interaction

of users with new systems and tasks. Current techniques involve asking users to sub-

jectively assess and self report their levels of workloads using techniques and question-

naires such as NASA-TLX and Instantaneous Self-Assessment (ISA). The subjective

measures become highly important when it comes to evaluating more complex sys-

tems and tasks, where performance based measures become highly difficult to measure.

Even though they are critical for evaluation of these systems, there are certain limita-

tions that cannot be overlooked when using them. Firstly, subjective measures rely on

the participants’ ability to judge and report the state throughout the task. This requires

not only extra effort from the operator, but also skill and potential training. Secondly,

subjective measures, if used in real-time have the potential to interrupt and negatively

affect performance; if used post-task, they rely on the operators’ ability to recall what

happened during certain moments in the past. Direct physiological measures offer an

opportunity to capture workload whilst overcoming these limitations. However, new

research is needed to understand how physiological data can be interpreted within the

context of theories of mental workload. The research presented in this thesis explores

the use of one particular physiological approach, functional Near Infrared Spectroscopy

(fNIRS), to assess workload in controlled laboratory settings, to overcome the limita-

tions and complement the use of subjective measures; a measure based on participants’

brain and physiological responses to task demand, that is independent of the task and/or

the operator (without interrupting the task or relying on the operator skill to self report).



We have examined the reliability of the technique, and significantly extended our un-

derstanding of how artefacts affect recordings during both - a Verbal memory task of

remembering a seven digit number and a Spacial memory task of remembering a 6x6

shaped grid. Our results showed that artefacts have a significantly different impact dur-

ing the two types of tasks, further contributing insights into the existing guidelines of

using fNIRS to assess workload during typical human computer interaction evaluation

settings. We have further evaluated the sensitivity of the tool and understand the poten-

tial implications of using fNIRS as a measure in real-time. Our findings validated fNIRS

as a sensitive workload measure, having consistent results in line with subjective mea-

sures, confirming a correlation between fNIRS and subjective workload questionnaires

NASA-TLX and ISA. Having shown the relationship between fNIRS and workload,

the last part of this thesis explores the use of fNIRS as a novel approach to providing

users with concurrent feedback of their Mental Workload based on the measurements

obtained objectively from fNIRS. We compare this feedback to traditional methods of

asking users to self-assess and report their own mental workload during an Air Traffic

Controller simulation game. In line with previous work, we confirm that self-reporting

methods affect both perceived and actual performance. Furthermore, we found that our

objective concurrent feedback technique allowed participants to reflect metacognitively

on their Mental Workload during tasks, without reducing either actual or perceived per-

formance.

fNIRS showed potential to be a useful and reliable additional channel of informa-

tion about the user during interaction, without further restricting the user during a typ-

ical evaluation settings. We found it sensitive to workload, being able to distinguish

between various levels of workload, and with great potential for real time, continuous

use during tasks. Finally, we explored a new direction of using fNIRS’s assessment

of workload in real time, and we investigated how users can use feedback of their cur-

rent workload state during tasks. This proved to allow users to think metacognitively

about their workload during tasks, without negatively affecting their performance or

workload.

Based on the findings presented in this thesis, scope for future research is proposed

and discussed.
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Chapter 1

Introduction

1.1 Motivation

Although computers are very good at performing repetitive rule-based tasks, humans

can better perform ‘knowledge-based’ tasks that involve decision making processes and

new solutions for rapidly changing problems, and developing them based on past ex-

perience and innovation [111]. Furthermore, as technology pervades our everyday life,

our own tasks are increasingly “dominated by mental rather than physical task compo-

nents” [121]; the human role has moved towards a supervisory and decision making

role for such intelligent systems.

This move has the potential to increase the demands on people’s mental resources

due to the amounts of data being generated and the amounts of concurrent tasks and

decisions we make every day. However, humans have a limited capacity [142], which

means that they can only perform a finite set of tasks at any given period in time. One

problem that may occur during interaction with technology is, therefore, operator over-

load.

Understanding and identifying individuals’ capabilities and limitations has always

been a challenge within work contexts, but its importance cannot be underestimated.

The evaluation of mental workload plays a key role in the development of Human-

Computer Interaction and Human Factors with the focus of ensuring a higher level

of comfort, engagement and satisfaction during interaction with day-to-day computers

[115], as well as ensuring safety in work contexts, while the user is able to reach goals

and have a high standard of performance, avoiding states such as overload.
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Introduction

Years of research have been focused on the development and understanding of meth-

ods for assessing workload [16, 42, 115, 147]. This, however, has been a challenge as

the concept of mental workload is vaguely defined, with poorly understood mechanism,

with indirect measures and “embryonic levels of analytic models” [52]. Cain stresses

that despite the interest in the topic for more than 40 years, there is no one accepted def-

inition of workload [26]. For the purpose of this thesis, we suggest a working definition

of mental workload based on multiple viewpoints [26, 49, 55, 56, 121, 143] :

“Mental workload refers to the amount of effort or strain imposed by the demands of a

task on an individual. The “effort” may have different forms and influenced by

multiple factors. It includes the amount of effort perceived by an individual during

tasks, any physiological or psycho-physiological changes imposed by task demands on

the individual, as well as any impact on individual’s task performance, that is caused

by changes in task demands or external factors while performing the task.”

Many questions have been raised regarding the mental workload measurement, in-

vestigating various aspects of the measure as well as the procedures of the measure.

Questions regarding the user’s involvement in the process, user’s ability to perform

additional tasks, aspects on the nature of the tasks (e.g. task complexity), the user’s

feelings whilst performing tasks, and others [115]. Methods for assessing workload

have ranged from subjective measures such as NASA-TLX [55], to quantitatively mea-

sure individual’s cognition utilising a mixture of task performance and physiological

measures. Considering these aspects, various tools for measuring workload have been

proposed. Meshkati, Hancock, & Rahimi, 1992 [92] categorized them into three main

types:

a. performance based measures;

b subjective procedures;

c. and physiological measures.

Performance measures include primary task and secondary task analysis, and are

based on the assumption that a drop in performance is caused by an increase in task

demands, therefore an increase in mental workload. However, these methods suffer

from trade-off effects that are sometimes hard to account for. You can try to bias it with
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1.2 Thesis Statement and Research Questions

an explicit system of pay-offs but then some would say that it just introduces another

level of confound. It is also the case that one can not necessarily safely assume that the

secondary task is merely additive and does not alter the ways in which performance is

achieved in the primary task.

Subjective procedures are based on the assumption that increased task demand is

linked to perceived effort, therefore it can be appropriately assessed by an individual.

They work on the assumption that an individual is exerting some extra effort understand-

ing and self-judging their state whenever prompted. Repeatedly evaluating and subjec-

tively reporting workload during tasks may have a self-aware effect on the user/operator,

which may lead to introspection of workload, hardly to achieve otherwise. In other

words, this may make users/operators more aware of their workload state during tasks,

allowing them to prioritize tasks in case of situations such as overload. Although they

are highly used in research, subjective techniques tend to be interruptive to the task in

hand, causing disruption and/or loss of focus, potentially affecting task performance.

Physiological measures are typically task independent and therefore provide a way

of having an objective quantifiable measure whilst not interrupting the task. These mea-

sures are based on the assumption that variations in mental workload experienced by an

individual will cause variations in levels of physiological activation. Whether directly

or not, the physiological measures aim to characterise users’ mental state experienced

during the task, without relying on users’ ability to subjectively report this information.

Physiological measures include brain related measures, eye related measures (blink in-

terval and blink rate, pupil dilatation), heart related measures (heart rate, blood volume,

heart rate variability), as well as skin related measures (e.g. skin temperature varia-

tions in various parts of the body, galvanic skin response). Advances in brain imaging

technologies opened doors when studying interaction with technology, by allowing the

collection of useful information during interaction whilst remaining portable and non-

invasive.

1.2 Thesis Statement and Research Questions

Recent research has been examining the potential of functional Near Infrared Spec-

troscopy (fNIRS) as perhaps one of the ways to assess workload. This thesis focuses on
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using this emerging neuroimaging technique in the field of Human Computer Interac-

tion and Human Factors, to objectively assess users’ mental workload during interaction

with technology. This will allow a better understanding of the users’ abilities and work-

load capacity in an objective way that is complementary to subjective techniques.

We explore the use of fNIRS as a potential, useful measure during the evaluation of

technology because it is safe, less-invasive compared to other brain based techniques

(it allows normal interaction with a computer without further restricting the user, or

requiring additional discomforts such as gel on the sensors), and relatively portable.

Furthermore, with the recent advances in the area of sensors development, this research

becomes more relevant as sensors become available to a larger population. Because

the nature of fNIRS technology was originally designed for clinical use, this thesis

will focus on understanding the practicality of the measure during Human Computer

Interaction and Human Factors. The first aim of this thesis is therefore:

• Explore how fNIRS can be used to gain insights into mental workload during

interaction with technology within realistic lab-based evaluation settings by con-

tinuing the work started by Solovey et. al. [127].

If we know that workload is a useful notion and construct, that is probably a com-

bination of memory and attentional demands, and fNIRS will appear to correlate with

this measure, it will be therefore useful to understand the demands placed upon people,

and how the demands impact users’ (available) mental resources during real time task

completion. The second aim of this thesis is:

• Test the sensitivity and validity of the fNIRS measure in the context of real-time,

continuous use for assessing workload during tasks.

Moreover, an individual self-assessment of workload, would potentially allow peo-

ple to regulate their resource allocation to the primary task, this way avoiding situations

where the demands placed upon them will exceed their capabilities and limitations in

terms of mental workload; therefore in the last aim of this thesis is:

• Explore the use of objective assessments of workload using fNIRS, to provide

real-time concurrent feedback of mental workload to users during tasks.
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Based on the aims presented above, we devise and present the thesis research ques-

tions below. The research questions follow on from each other, meaning that each

question is somehow dependent on the previous questions.

1. How can fNIRS be used to assess workload during interaction with technology

within realistic lab-based evaluation settings?

(a) Investigate the possibility of using fNIRS’ measures of oxygenated (HbO)

and de-oxygenated (Hb) hemoglobin to distinguish between a “busy” state

(participant performing a task) and a “rest” state (participant performing no

task).

(b) Investigate how fNIRS can be used in the presence of artefacts produced

during interaction with technology within realistic lab-based evaluation set-

tings. Understand the impact of various artefacts on the two different task

encodings: spatial task vs verbal tasks.

(c) Investigate the Reliability, Replicability, Sensitivity, Validity, of the fNIRS

measure: Understand the sensitivity of the measure to both spatial and ver-

bal memory tasks; investigate methods to distinguish between various levels

of workload using fNIRS.

2. How can fNIRS be used as a sensitive and valid technique in the context of con-

tinuous, real-time use, to gain insights into mental workload during tasks?

(a) Investigate the validity of fNIRS measure in contrast to the subjective tech-

niques including NASA-TLX and the continuous Instantaneous Self Assess-

ment technique (ISA).

(b) Investigate the implications of moving beyond block design, towards the

real time-continuous measure of workload (using fNIRS).

3. How can a real time, continuous version of fNIRS be used to give workload feed-

back to the user?

(a) Explore the impact of workload feedback on task performance.

(b) Explore the impact of workload feedback on subjective ratings.
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1.3 Thesis Contributions

To support the aims and questions of this thesis, my research touches the fields of

Human-Computer Interaction (HCI), Human Factors, signal processing and brain com-

puter interfaces, and contribute mainly to the first two.

Human Factors is where the notion of workload has been extensively studied, and it

focuses on understanding how humans behave physically and psychologically in rela-

tion to particular environments, tasks and jobs. In this thesis we explored and evaluated

models from Human Factors literature, and contributed with several findings in terms

of mental workload and the measurement of mental workload.

On the other side, HCI is where the interaction between people and technology

sits, and it is focused on studying how people interact with computers and to what

extent computers are or are not developed for successful interaction with human beings.

The thesis contributes to the HCI literature by exploring ways in which the notion of

workload can be used to better study the interaction between people and technology.

It also provides practical guidelines and examples on how the measurement of mental

workload can be useful for HCI. There is a massive overlap between the two disciplines,

with various different schools of thought, but this work sits in the intersection between

the two.

The contribution of this thesis can therefore be summarized as follows:

• This thesis contributes to the measurement and assessment of workload using

fNIRS. The reliability of the measure was tested within lab-based evaluation set-

tings, and we extended the understanding of its use during both verbal and spatial

tasks.

• This thesis further contributes to the real time measurement and use of fNIRS

during more natural tasks. We further tested the sensitivity and validity of the

measure, and extended our understanding of workload in relation to performance

measures, subjective techniques and physiological methods using fNIRS.

• The last contribution of this thesis is focused on exploring the potential impact

of workload feedback during tasks. We investigated how feedback of mental

workload (based on real time measurements during tasks using fNIRS) could be
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useful to people, and we showed how people think metacognitively about their

state during tasks.

1.4 Thesis Overview

Table 1.1 presents the structure of this thesis based on chapter contributions to the re-

search questions.

Chapter 2 and Chapter 3 provide an overview of the related work that lays the foun-

dation of this dissertation. Chapter 2 presents the core models of mental workload from

a Human Factors perspective and the methods used to measure it. Chapter 3 explores

and presents physiological techniques used to measure mental workload, and presents

how fNIRS is used in this thesis for assessing workload.

Chapter 4 presents a user study addressing the research question RQ1, investigating

the reliability of fNIRS in a typical user study scenario. It is the baseline - proof of

concept - study as it investigates the suitability and capability of using fNIRS to collect

useful information about the users during interaction with technology.

This research then leads into the study presented in Chapter 5, further investigating

the validity and sensitivity of fNIRS, as an objective, continuous technique to assess

workload during tasks in the context of real-time continuous use. This chapter addresses

aspects of research question RQ2a and RQ2b, but also contributes to RQ1b.

Chapter 6 addresses the final research questions of the thesis, and explores the use

of feedback of mental workload during tasks.

The thesis ends with the discussions and conclusions in Chapter 7.
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Table 1.1 Thesis Chapter Overview

Description Methodology used/
Research Questions Addressed

Chapter 2 Theoretical background of
workload

Literature Review

Chapter 3 Physiology and fNIRS Literature Review and Methodology

Chapter 4 How can fNIRS be used to
assess workload during in-
teraction with technology
within realistic lab-based
evaluation settings?

• Empirical study (15 participants).
• Research Questions involved: RQ1a, RQ1b, RQ1c.
• Task: Simple Verbal and Spatial Memory task (Low Complex-

ity).
• Main Publication: Examining the Reliability of Using fNIRS

in Realistic HCI Settings for Spatial and Verbal Tasks. In:
CHI’15 ACM SIGCHI Conference on Human Factors in Com-
puter Systems, Seoul, Korea, April 2015.

Chapter 5 How can fNIRS be used
as a sensitive and valid
technique in the context of
continuous, real-time use,
to gain insights into men-
tal workload during tasks?

• Empirical study (20 participants).
• Research Questions involved: RQ1b, RQ2a, RQ2b.
• Task: Mathematical Problem Solving (Countdown problem)

Verbal memory task (Medium Complexity).
• Main Publication: Continuous detection of workload over-

load: An fNIRS approach. In Contemporary Ergonomics and
Human Factors 2014: Proceedings of the international con-
ference on Ergonomics & Human Factors 2014, Southampton,
UK, April 2014.

Chapter 6 How can a real time, con-
tinuous version of fNIRS
be used to give workload
feedback to the user dur-
ing tasks?

• Empirical study (32 participants).
• Research Questions involved: RQ1c, RQ2a, RQ2b, RQ3a,

RQ3b.
• Task: Air Traffic Control Simulator Game (High Complexity).

• Main Publication: (Under Review) Workload Alerts - Us-
ing Physiological Measures of Mental Workload to Provide
Feedback during Tasks. In ACM Transactions on Computer-
Human Interaction (TOCHI).

Chapter 7 Discussions and Conclu-
sions

Lessons Learned and Future Directions
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Chapter 2

Mental Workload

This chapter presents two major parts of the thesis related works. The first part will be

focused on the concept behind mental workload. As the term was extensively studied in

the field of Human Factors, multiple models of mental workload from the field will be

presented and discussed. The final part of the chapter will focus on the measurement of

mental workload. We will discuss in detail the methods used to capture the experienced

mental workload but also how workload relates to other factor such as users’ physiology.

2.1 Workload characteristics

Mental workload is a concept used to describe how much mental effort is being expe-

rienced by an individual when completing a task. It is described by Hart and Stave-

land (1988) [55] as a relationship between the mental processing capabilities and the

demands imposed by a task. Non-optimal workload levels may result in human perfor-

mance issues such as slower task performance and increase in error rates such as slips,

lapses or mistakes.

Although the topic has been around for more than 40 years, there is no clear defi-

nition of mental workload. Huey and Wickens discussed the origin of the term, which

did not appear in many dictionaries until 1970 [64]. Psychologists have used the term

in the context of attention and performance, engineers have used it in the context of

aircraft design as a critical factor in system effectiveness, however the term workload

is something that every one of us has experienced in one way or another - we have all

experienced periods of high and low task demands within a specific time period. Huey
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and Wickens pointed out the close relationship between workload and performance, and

discussed workload using four characteristics:

• The relationship between task demands and workload - as difficulty of the task

increases, or the demands imposed on an operator increase, the workload is ex-

pected to increase.

• The relationship between task performance and workload - as performance deteri-

orates (error rates increase, or the task precision decreases), workload is expected

to increase.

• The relationship between mental and physical effort of an the operator and work-

load - workload reflects the impact of the task demands on operator rather than

the task demands directly;

• The relationship between the perceived effort by the operator and workload -

when an operator feels effortful then the workload is expected to be high.

One assumption found in most of the workload definitions, is that workload is a

concept that exists in a relationship between an individual (operator) and a specific as-

signed task, within a specific time constraint; it is much more about the way the task

was experienced by the individual, and the impact of the task demands on the individ-

ual rather than workload as an absolute measure. Sharples and Megaw [121] described

the effect of workload as “the relationship between primary task performance and the

resources demanded by the primary task”. The consequences of optimal/non-optimal

workload levels may have a direct impact on performance. It is expected, but not al-

ways, that when the task difficulty increases, performance degrades. This is typically

the case when the demands placed upon the operator increase with the difficulty of the

task to a level where the operator can no longer cope with the work (potentially reach-

ing a level close to the operators’ maximum capacity). This scenario may be reflected,

as mentioned, into performance degrade, but it could also be captured in the operator’s

subjective experience of the task, or reflected in participants’ physiological data - an

increase in arousal is expected when workload increases (e.g. increase in heart rate).

In order to discuss and better understand workload, a few core models at the heart

of the concept are presented in this chapter. Moreover, these models were explored as
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2.1 Workload characteristics

they are used in this thesis to understand and break down the elements of workload in

the studies presented in later chapters. These include:

• the Working Memory Model first proposed by Baddeley and Hitch [9–13],

• the originally described models of information processing,

• the Multiple Resource Model first proposed and later developed by Wickens et al

[143, 144],

• and the Limited Resource Model, adapted by Sharples and Megaw [121].

• the Framework for Mental Workload Measurement [121]

2.1.1 Working memory

“The concept of working memory proposes that a dedicated system maintains and

stores information in the short term, and that this system underlies human thought pro-

cesses.”(A. Baddeley [11])

In an attempt to characterise and model the cognitive processes involved when a

participant is performing a task demanding mental resources, we draw on research into

psychology models of memory, such as short-term memory, long-term memory, and

working memory, and we will be focusing mainly on the latter one.

As described by Cowan [32], the term short-term memory was first used by Broad-

bent (1958) [22] and Atkinson and Shiffrin (1968) [5] in order to describe “... faculties

of the human mind that can hold a limited amount of information in a very accessi-

ble state temporarily”. Baddeley and Hitch 1974 developed an alternative model of

short-term memory, called Working Memory [13], a specific system in the brain which

“provides temporary storage and manipulation of information” [9]. They were first to

discuss the limitations of short-term memory, and “... demonstrated that a single mod-

ule could not account for all kinds of temporary memory” [32], therefore their proposed

model of working memory was composed of multiple components [13]. Its main char-

acteristics are focused on the way in which information is processed and encoded in

our brain, namely he distinguishes between two types of encodings: verbal and spatial

information encoding. While working memory processes information in the two afore-

mentioned forms: verbal and spatial, Baddeley first divided the process through three
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main components (Figure 2.1) [13]: a visuo-spatial sketch pad holding information in

an analogue spatial form (e.g. colours, shapes, maps), a phonological loop holding

verbal information in an acoustical form (e.g. numbers, words), and finally, a central

executive acting as a supervisory system and controlling the information from and to its

“slave systems”.

Figure 2.1 Baddeley and Hitch 1974 Working Memory Model [13]

Later work completed the working memory model by introducing the episodic buffer

[10, 12], which is dedicated to linking verbal and spatial information in chronological

order (presented in Figure 2.2).

Therefore, the four major components of Baddeley’s model of working memory are:

• A central executive managing attention, acting as a supervisory system and con-

trolling the information from and to its “slave systems”.

• A visuo-spatial sketch pad holding information in an analogue spatial form

(e.g. colours, shapes, maps); specialised on learning by means of Visuo-Spatial

imagery.

• A phonological loop holding verbal information in an acoustical form (e.g. num-

bers, words); specialised on learning and remembering information using repeti-

tion.

12



2.1 Workload characteristics

Figure 2.2 Baddeley complete model of Working Memory

• An episodic buffer dedicated to linking verbal and spatial information in chrono-

logical order. It is also assumed to have links to long-term memory.

In the same model, Baddeley describes the concept of long-term memory, which

represents a different storage location to working memory. Long-term memory is pre-

sented as being unlimited in space and is responsible for storing information that is

no longer in working memory. Typically, information moves from working memory

to long-term memory by repetition or rehearsal, or through repeatedly processing the

same information. Similarly, Wickens [144] described the working memory as the tem-

porary holding of information that is “active”, while long-term memory involving the

unlimited, passive storage of information that is not currently in working memory.

Using this model as a foundation, we can develop tasks to target various compo-

nents through different task encodings, allowing us to investigate whether measurement

techniques can detect them. Tasks involving imagery or mental rotation, for example,

will utilise the visuo-spatial sketchpad since they are spatial, whereas verbalising occurs

in the phonological loop.

Although Baddeley’s model could be used for the understanding of the processes

involved during interaction with technology, it is limited to the decomposition of tasks

based on the either verbal or spatial encoding. There are associated limitations with this

model, when one considers tasks that are highly complex, involving both verbal and

spatial encodings. Moreover, Baddeley’s model does not provide a good understanding
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on the way information is manipulated during interaction. However, one of the model’s

most important limitations is the one regarding the central executive. Although it is the

most important component of the working memory system we know considerably less

about this component than the two subsystems it controls.

Having a critical role of managing attention of the working memory, when comes to

tasks that are performed simultaneously, such as secondary task techniques, a conflict

may arise when the tasks require more - or close to - the maximum available resources

of the working memory. An example can be a driving task, where the driver decides

to set up the satnav during driving. During normal driving conditions the driver can

cope with both tasks, however, when additional resources are required due to a hazard

on the road, the primary task may be affected, resulting in poorer performance in the

primary task rather than instantly abandoning the secondary task. Although we used

the working memory model to understand the cognitive processes during the driver

scenario, this shows once again that primary and secondary measures are affected by

trade-offs and strategies and the risk of denaturing the primary task.

A particular attention should be drawn when discussing secondary tasks in rela-

tion to the phonological loop. As previously discussed, the phonological loop it is

that part of the working memory model that is responsible with dealing with sound or

phonological information. Macken and Jones [86] further discussed the two parts of

the phonological loop: the short-term phonological store dealing with auditory memory

traces and an articulatory rehearsal component (sometimes called the articulatory loop)

that can revive the memory traces. The phonological store acts as an “inner ear”, in a

way responsible with remembering speech sounds in a temporal order, whilst the artic-

ulatory process acts as an “inner voice” responsible with repeating the series of words

in a loop in order to prevent the lose of information [9, 86]. Therefore, performing

tasks simultaneously may cause effects such as articulatory suppression - the process

of inhibiting memory performance by speaking while being presented with an item to

remember [2]. This effect is known to be caused as the articulatory rehearsal processes

are being blocked by the irrelevant speech, leading memory traces in the phonological

loop to decay [78].

A similar interference effect (to the articulatory suppression) during serial recall is

“tapping on a specified point” [71, 117]. Both types of secondary tasks can be used
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2.1 Workload characteristics

to understand the mechanisms underlying working memory by overloading domain-

specific resources [2].

In addition to the working memory model, we consider the Information Processing

Model [145] and Multiple Resource Model [144] proposed by Wickens.

2.1.2 Information Processing Model (IPM)

WM model ties well with what were originally described as models of information pro-

cessing. One shared characteristic between the two, is the limited capacity that we have

as human beings, meaning that we can only process a limited amount of information at

any one time. Two of the early known models are Welford’s [140] and Whiting’s [141],

both models reflecting the same process, however, using slightly different terminology.

Further work developed by authors such as Kahneman [74] and Wickens [62, 144] re-

fined the models, having important implications for the definition and measurement of

mental workload. Limited processing capacity was replaced by the term attentional re-

Figure 2.3 A general model of human information processing - from [121] (Adapted
from [62])

sources, which have to be shared between a number of psychological processes such

as perception, WM, and response execution [121]. Wickens describes how necessary

resources are limited and aims to illustrate how elements of the human information pro-

cessing system such as attention, perception, memory, decision making and response

selection interconnect. These are illustrated in the general model of human information

processing proposed by Wickens (see Figure 2.3).
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In a later model, Wickens describes the need of three different ‘stages’ (see STAGES

dimension in Figure 2.4) at which information is transformed: a perception stage, a

processing or cognition stage, and a response stage.

The first stage involves perceiving information that is gathered by our senses and

provide meaning and interpretation of what is being sensed. The second stage represents

the step where we manipulate and “think about” the perceived information. This part of

the information processing system takes place in WM and consists of a wide variety of

mental activities. The response is described based on the modality of its nature.

2.1.3 Multiple Resource Model

The Multiple Resource Model (MRM) proposed by Wickens [144] illustrates how re-

source limitations and coordination affects the interrelation of mental workload in tasks.

MRM is illustrated in Figure 2.4. We are interested in observing how and when these

elements interconnect under various tasks that users perform. The elements of this

model overlap with the needs and considerations of evaluating complex tasks. Wickens

describes the aspects of cognition and the multiple resource theory in four dimensions:

STAGES, MODALITIES, CODES and the VISUAL PROCESSING (see Figure 2.4).

Figure 2.4 The 4-D multiple resource model, by Wickens
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2.1 Workload characteristics

• The STAGES dimension refers to the three main stages of information processing

system as described above (Figure 2.3).

• The MODALITIES dimension indicating that auditory and visual perception have

different sources.

• The CODES dimension refers to the types of memory encodings which can be

spatial or verbal.

• The VISUAL PROCESSING dimension refers to a nested dimension within vi-

sual resources distinguishing between focal vision (reading text) and ambient vi-

sion (orientation and movement).

One of the key roles of the MRM is to demonstrate the hypothesised independence

of modalities and use this to design tasks. Our aim is to understand how elements

of MRM link together and compose more complex components/tasks. On the other

hand, we want to consider how complex tasks can be divided into primary components

according to the models described, in order to better understand task factors impacting

the demands placed upon operators and workload. These will help identify possible

problems in design as well as indicate solutions such as (suggested implications by

Wickens [145]):

• Minimize working memory load of the interactions and consider working mem-

ory limits in instructions;

• Provide more visual echoes (cues) of different types during interaction (verbal vs

spatial);

• Exploit chunking (Miller, 1956 [95]) in various ways: physical size, meaningful

size, superiority of letters over numbers;

• Minimize confusability;

• Avoid unnecessary zeros in codes to be remembered;

• Encourage regular use of information to increase frequency and redundancy;

• Encourage verbalization or reproduction of information that needs to be repro-

duced in the future;
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• Carefully design information to be remembered;

2.1.4 Limited Resource Model (LRM) and Mental Workload

Mental workload is a concept that refers to the amount of resources and necessary

“effort” required by all the processes mentioned above in relation to a task, and the de-

mands required by the task. Sharples and Megaw [121] described the effect of workload

as “the relationship between primary task performance and the resources demanded by

the primary task”.

Figure 2.5 The relationship between the resources allocated to the primary task and
the resources demanded by the primary task, and the relationship between primary task
performance and the resources demanded by the primary task (Adapted from Wickens,
C. D.,et al [146])

The Limited Resource Model (LRM) in Figure 2.5 [121], presents the concept of

workload as the relationship between the resources allocated to the primary task, and the

resources demanded by the primary task, and how performance is “affected” at different

stages of demand. The vertical axes on the left indicates the resources being used by

the task, but also points out that these resources are limited, having a maximum level

of available resources. The vertical axes on the right indicates the performance of the

primary task, and the horizontal axes indicates time. When task demands increase, more

resources need to be allocated (therefore the spare capacity decreases). When allocated

resources reach a point near the maximum available resources, a drop in performance

is expected as the operator cannot cope with the task demands.

Sharples and Megaw further contributed to the original model (see Figure 2.6) by
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identifying three (rather than one) points where performance can be negatively affected

in relation to workload: the impact of underload on performance, the dip in performance

whilst there is still spare capacity due to data limitation, and the less graceful decline in

performance due to reaching the maximum available resources - overload. Later in this

thesis, we will investigate how providing feedback of workload for the two extremes,

namely underload and overload - could support operators during tasks.

Figure 2.6 Further developed model presented by Sharples and Megaw [121] - The
relationship between the resources allocated to the primary task and the resources de-
manded by the primary task, and the relationship between primary task performance
and the resources demanded by the primary task (Adapted from Wickens, C. D., et. al.
[146])

2.1.5 Other related conceptualisations

The term mental workload is interpreted differently by different researchers in different

disciplines. Cognitive Load, for example, is popularly used in Educational disciplines

to evaluate the effectiveness of learning resources [41]. Like mental workload, Cog-

nitive Load accommodates different modalities, limited capacity, and the role of effort

required for comprehending both the task and the materials used to achieve it. While the

term Cognitive Load suggests a consideration of the cognitive aspects of a work task,

Sharples and Megaw point out that its origins of use are in laboratory-based problem-

solving tasks, with a cognitive psychology approach to the issue of load. Conversely,

mental workload is used in relation to real-world tasks or jobs, “where expertise, mem-

ory, attention, situational awareness and social and organisational factors all combine

to contribute to the individual’s experience of workload and thus the concept of mental
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workload needs to reflect the real-world complexity” [90]. Given the strong empirical

validation for Mental Workload in the Human Factors community, we chose to ground

our work in this framework rather than in Cognitive Load.

2.1.6 Syntactic VS Semantic Workload: the relationship between

workload-task and workload-interface

Most of the workload literature in this thesis presents workload as a relationship be-

tween a task in hand, the demands placed upon an individual accomplishing the task,

and the associated effects in workload, performance and the individual’s physiological

changes due to the efforts expelled in completing the task. An interesting perspective

of workload is presented by Girouard et. al. [48], who separates the workload concept

into two components, based on Shneiderman’s theory of semantic and syntactic com-

ponents of a user interface [124]. Shneiderman’s theory discusses the efforts expended

by the user to complete a certain task, and this is denoted as the semantic component of

a user interface, and the effort associated with operating the user interface, denoted as

the syntactic component of the user interface

Based on this principle, Girouard et. al. [48] proposed de-composing the workload

required to perform a task using a computer into a portion attributable to the difficulty

and demands of the task in hand, plus a portion attributed to the means of interacting

with the task, operating the user interface (see Figure 2.7).

Figure 2.7 shows how the approach presented above could be used to evaluate user

interfaces. Interface A and Interface B, they both share the same task, therefore the

workload generated by the task itself remains constant between the two interfaces.

However, they have different hypothetical ways of interaction during task completion.

Therefore the difference in workload between the two, must be based on the work-

load associated with the user interface. Depending on the required need for the task, a

high/low workload interface might be suitable. A low workload associated to the user

interface (Interface B) is typically preferred, however, a high workload is not always

associated with negative effects (for example if the task demands are low and tend to

lead the user towards boredom, a high workload interface might be considered).

Interface A, presented in Figure 2.7 is associated with higher workload caused by

the interface itself, and not by the task. Interface B would be typically the preferred
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Figure 2.7 Separating the workload generated from the task and the workload generated
by the user interface (UI)

option.

Lukanov et. al. [85] used a similar approach to evaluate the workload of three

versions of a web form filling process. The workload itself was measured using both

physiological and subjective techniques.

—————————————————————————-

2.2 Framework for Mental Workload Measurement

To better understand the implications for the actual measurement process of mental

workload in relation to the studies presented in this thesis, we will present a framework

for mental workload measurement in Figure 2.8, discussed in [121]. The framework

consists of three main components: the physical and cognitive task demands; the oper-

ator’s workload/effort; and performance. The relationship between these three compo-

nents, as well as the external and internal influences on workload are the “essence” of

mental workload definition and measurement.

Physical and cognitive task demands reflect the characteristics of a task undertaken

by a person, and thus, imposed on a person. It is therefore important to quantify work
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Figure 2.8 A Framework for mental workload definition and evaluation [144]

demands in the context of mental workload measurement. As the demand may have dif-

ferent impact on different individuals, it is important to not only capture the externally

imposed demands, but also consider measuring the perceived demand.

Operator workload is concerned with an operator performing a task, and it is “equiv-

alent to measures of operator strain or effort” [121]. A lot of workload measurement

techniques are therefore designed to capture the operator’s perceived experience during

and after the task via subjective questionnaires, but measures of effort from behaviour

indices and the impact of effort on physiology are often used. Both subjective and

objective measures for mental workload will be discussed later in the section.

Performance refers to the measures often described in terms of speed and error

rates. However, performance measures can become problematic as task complexity

increases, but also when closely analysing the relationship between the three workload

components of demand, workload and performance; “contrary to what is expected, as

task demands increase there is not necessarily an increase in operator workload, or

decrease in task performance” [121]. Sharples and Megaw, present an indication of

why such simple relationships do exist between the components (see the 5 relationships

numbered in Figure 2.8):

1. Operator workload is influenced depending on how the task is perceived by the

operator, and it is not just a simple relationship between demand and workload. It

can be seen as a consequence of demand created by not only the task demands, but

also by a combination of physical and cognitive task demands and external and
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internal influences [106]. Pickup et. al. presents workload as a being influenced

by intrinsic factors such as operator skill, amount of training, and attitude towards

a task. Therefore, these intrinsic factors can influence the strategies the operator

can take towards performing a task and the workload perceived by the operator,

and indicate that measures of operator workload will not necessarily reflect an

objective measure of task demand.

2. Although there is an expected relationship between operator workload and per-

formance (as presented in Figure 2.6), with higher workload associated with rel-

atively poorer performance, this is not always the case. Sharples and Megaw

discuss that even with a highly sensitive performance measure, it is likely to be

unable to determine differences in how hard an individual is working in order to

maintain a good level of performance.

3. Feedback. Both the unconscious and explicit, operators monitor their own per-

formance at every stage during task completion. This may change the way they

perceive a task, but also their decision making, strategy and attitude towards a

task. The final aims of this thesis will be focused on understanding the impact of

not only performance feedback, but also workload feedback on operators, there-

fore feedback is further discussed later in Chapter 6.

4. Performance outcomes may impact task demands. An error that may have oc-

curred due to high demands on the operator, can lead subsequent task demands

to increase, thus further increasing the demands placed upon the operator. On the

other hand, a good performance may lead to lower demands on subsequent tasks.

5. Sharples and Megaw present this relationship, and the whole framework in the

context of work, and therefore describe most of the external and internal influ-

ences as factors from a workspace perspective. In this thesis, we will discuss and

consider the external and internal factors in terms of the task and the settings of

the tasks, to better state hypothesis, but also understand and interpret the results.

Therefore we will consider external factors that will influence the operator’s be-

haviour and experience or perception of workload, but also internal factors, skill

and motivation when drawing hypothesis and conclusions in relation to this the-

sis.
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In this thesis we will use this framework to understand the underlying processes

that happen during the studies presented in relation to mental workload measurement.

We will use relationship five presented in the framework to break down and control the

external factors in each study, to better understand their impact on various aspects of

workload.

2.3 Measuring Workload

Measuring workload has been a challenge, and multiple attempts from different authors

have been made to establish the appropriate criteria for the measurement of mental

workload.

Measures such as primary task performance, secondary task performance, and sub-

jective ratings are commonly used techniques of assessing workload. Subjective ratings

are usually obtained after the task has been completed, commonly missing essential

information about user’s experiences during the task. In this section, we will discuss

various empirical measures which can be divided into primary and secondary measures,

subjective and psychophysiological measures.

There are a variety of subjective and objective methods used for assessing workload

including performance measures (subdivisions of primary and secondary task measures)

[91], physiological or psychophysiological techniques [42, 59, 76, 108, 127], as well

as self-assessment or subjective rating scales [55, 72]. As workload is such a complex

concept, lacking of a clear definition, it has already been shown that different “accepted”

measures capture various aspects of workload, and the measures usefulness may vary

depending on their application.

Cain [26] suggests that even though questionnaires and interviews are informative

techniques, they can not be classed as workload measurements as they are “complex

to design to avoid unwanted biases, awkward to validate, and difficult to generalize”.

[133].

2.3.1 Criteria for the Mental workload measurement

One of the hot topics in workload literature is exactly what makes a good measure-

ment of workload, and a possible criteria for evaluating mental workload measurement
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techniques, in order to separate good from bad measures of workload.

Multiple authors have considered the following factors that contribute towards the

assessment of workload measurements techniques [42, 62, 121]:

• Sensitivity: Evaluating the technique in detecting changes in task difficulty or

task demands experienced by an individual.

• Diagnosticity: Evaluating the technique in not only detecting the changes in

workload, but potentially also the reason for why workload changed.

• Selectivity: The capability of a technique to identify changes in workload in

terms of cognitive demands, rather than other variables not directly related to the

change in workload (e.g. emotional stress, physical workload)

• Validity: Ensuring the measure is actually detecting changes in workload. One

way of doing this is by exploring it’s relationship to other workload measurement

techniques.

• Reliability: Techniques used for measuring workload should provide consistent

results, that are reproducible and replicable (R (reproducing similar study condi-

tions and stimuli, techniques should have consistent results).

• Intrusiveness: The techniques used for measuring workload should be intrusive

to the task, not interfering with the primary task performance.

• Subject acceptability: This refers to the participants’ perception of validity and

usefulness of the measurement technique.

In addition to the above mentioned considerations, there are other things that could

be considered when discussing ways to evaluate or value workload measurement tech-

niques such as:

• The costs in time and effort towards using a particular technique

• The flexibility of the measurement to accommodate the assessment of workload

in various environments (lab-based techniques vs. more naturalistic environments

(in-the-wild approaches)).
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• The type of workload captured: whether it is a short-term vs. long-term workload

captured; identifying if a momentary or overall workload was captured using a

particular technique.

• Aspects of workload captured: some of the techniques for assessing workload

might capture different aspects of task workload, as presented in Figure 2.8); thus

employing more than one measure may be more helpful for diagnostic purposes.

• Adaptability of the technique: Some workload measurement techniques might

allow the use of other workload measurement techniques simultaneously, while

others might restrict it.

• Relativity of the measure: There is no standard “absolute” rage of high vs low

workload, and this is due to the relative, nature of the workload, being influenced

by multiple factors of the individual. However, a typical “baseline” of low work-

load task could be used in order to class various levels of workload.

2.3.2 Primary and secondary task measures

Primary measures rely on measures of primary task performance to predict workload.

As previously discussed, performance measures can reflect performance, however, they

have limitations to the extent of using primary measures alone: it is difficult to discrim-

inate between levels of effort the operator is going through while the demand changes

and performance does not. Consequently, primary task measures should be combined

with other workload measures. Secondary techniques involve the inclusion of a addi-

tional task to the primary one. The secondary measures are used in cases where the

primary task demands would allow enough available resources (see Figure 2.6) for a

secondary task to be completed concurrently. In this case, the secondary performance

measures can reflect the amount of workload imposed on the operator.

2.3.3 Subjective Measures of Mental Workload

Even though much effort has been invested in developing objective measures of work-

load, subjective techniques are still the most popular due to their acceptance (high face

validity), easy to administer, non-intrusiveness and low cost. Subjective measures of
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workload attempt to capture the users reflection and perspective on how much effort

was expelled and perceived by the operator during the task completion. Subjective

measures are significant, important tools in evaluation, used for assessment of opera-

tors’/users’ workload, but not only. In the context of workload, subjective measures

cannot be underestimated, especially when it comes to evaluating more complex sys-

tems and tasks, where performance based measures become highly complex to measure

[115]. Even though subjective measures are critical for the evaluation of these systems,

there are certain limitations that cannot be overseen. Casali and Wierwille [27] point

out that “. . . properly designed rating scales with associated instructions . . . are par-

ticularly sensitive measurement instruments, especially with highly-trained populations

. . . ”. Cain says it is rather “appropriate” for mental workload to be measured using sub-

jective means, as it is a psychological construct, however, Gopher and Donchin suggest

“... an operator is often an unreliable and invalid measuring instrument” [49].

Subjective measures do rely on the operator’s ability to self-judge and report the

state throughout the task. This requires not only extra effort from the operator, but also

skill and potential training. Moreover, if used in real-time, subjective techniques may

interrupt the operator performing the tasks in hand, and negatively affect performance;

if used post-task, they rely on the operator’s ability to recall what happened during

certain moments in the past.

When applying a subjective rating scale for assessing workload, participants are

typically instructed that the scale should be used for reporting their perceived workload

based on mental rather than physical work. However, some scales such as NASA-TLX

(presented below) have a dedicated sub-scale for the Physical Demand users go through

during the task. Depending on the need for the evaluation, the subjective ratings of

workload could be categorized into uni- and multidimensional scales, retrospective and

concurrent measures.

The most widely used techniques for subjectively assessing workload include NASA

Task Load Index (TLX) [55] and the ISA Instantaneous Self Assessment [21, 72, 73]

used in the studies presented in this thesis, but also others such as Subjective Workload

Assessment Technique (SWAT) [113], The Integrated Workload Scale (IWS) [106], and

Workload profile [135].
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NASA-TLX

Figure 2.9 NASA-TLX workload assessment technique.

NASA-TLX (Task Load Index), developed by Hart and Staveland [54, 55], is an

example of a widely used subjective measure of mental workload. NASA-TLX is a

multi-dimensional tool -see Figure 2.9- that uses perceived workload ratings in order

to assess a task after performing it [84, 108, 110]. This makes the measure suitable for

providing an overview of the task retrospectively, however it does not provide insight

into users workload at a given moment during the task.

The NASA-TLX questionnaire is used to capture participants’ subjective workload

as a self-assessment [55], based on the weighted average ratings of six subscales in-

cluding, in order: Mental Demand, Physical Demand, Temporal Demand, Performance,

Effort and Frustration. In a typical study, participants are asked to self rate their mental

workload using the NASA-TLX questionnaire once after each study condition.

The tool has been successfully used across a wide range of domains, including civil
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and military aviation [14, 80, 130], driving [3, 53], power plant control room operation

[63, 66], and air traffic control (ATC) [39, 93].

ISA

Figure 2.10 Instantaneous Self Assessment (ISA) Recorder App

Concurrent alternatives to NASA TLX exist, including ISA (Instantaneous Self As-

sessment), developed by Jordan and Brennen [21, 72, 73] and have been validated as

being a reliable workload measure [81, 133]. ISA, presented in Figure 6.4, derived for

use within an Air Traffic control setting, and is one of the most frequently used mea-

sures of workload in real-time simulations, being measured using a five-point rating

scale to provide immediate subjective ratings of work demands during the performance

of primary work tasks.

Users are prompted at regular time intervals during the task to rate their current

workload levels. There are, however, questions as to the interference caused by the

measure, with conflicting findings in the existing literature: there are cases of detectable

[133] and non-detectable [81] task intrusions. Regardless, however, the measure has

been considered preferable to other measures, such as Subjective Workload Assessment

Technique (SWAT) [112], and Workload profile[135].
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SWAT

Figure 2.11 The SWAT workload assessment technique.

The Subjective Workload Assessment Technique was developed by Reid and Ny-

gren (1988) [113], and it is a subjective measurement technique of assessing workload

while performing a task. The technique is based on three levels of operator ratings: (1)

low, (2) medium, and (3) high, for each of the following 3 dimensions (also see Figure

2.11):

• time load,

• mental effort load,

• and psychological stress load.

Workload profile

Workload profile of Tsang and Velazquez (1996) [135] is yet another technique to asses

workload subjectively. The multidimensional tool is based on Wickens’ Multiple Re-

source Model [144] presented above, and it attempts to use the benefits of secondary

techniques combined with subjective techniques in order to capture operators’ atten-

tional resources used during a series of tasks. Workload profile (see Figure 2.12) re-

quires operators to rate the the proportion of attentional resources for each task individ-
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Figure 2.12 The workload profile technique for assessing workload.

ually using the dimentions used by Wickens in the Multiple Resource Model. Operators

tasks in a random order, and only when all required tasks are completed.

Physiological measures

The physiological techniques of assessing mental workload stand on the assumption

that as workload is increased, there will be a corresponding effect (increase/decrease)

in the person’s level of arousal, measurable and reflected into the activity of the auto-

nomic nervous system, and therefore reflected in a number of physiological parameters.

With a controversial term such as mental workload, and with no general relationship

between various physiological measures and workload, it has been shown that certain

measures capture different workload components [121]. As physiological parameters

do not involve any extra work to be done by the users during interaction (such as subjec-

tive measures), and have the potential to continuously monitor fluctuations in workload

throughout a long period of time, there are clear advantages in favour of using these

techniques. Moreover, if the environment studied would be a “in the wild” as part of

a natural critical system job such as Air Traffic Control, subjective techniques and sec-

ondary performance techniques would create additional demands on the individuals,

potentially generating a negative impact on performance. This is not acceptable in such

environments, and therefore the use of non-invasive techniques could allow the study

of individuals at work, even in such critical scenarios. However, subjective techniques

are still the most widely used in industry, hence the significance of further exploring

physiological measurements for assessing workload.
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2.4 Chapter Summary

This chapter explored concepts surrounding the structure of workload, and presented

some of the most used techniques for measuring workload. Chapter 3 explores in better

detail how physiological techniques work, and present the latest, most widely used

physiological techniques for assessing mental workload.
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Chapter 3

Measuring Physiological Workload:

Background and Methodology

This chapter aims to present the second part of the literature and related works, describ-

ing how physiological measures work. It begins by describing the connection between

workload and physiology, laying and discussing the foundations of physiology. Further

sections will then present various methods to capture human physiological responses to

mental workload, focused on brain monitoring techniques. The last part of the chap-

ter presents fNIRS measurement methodology in relation to mental workload, and the

techniques used to process fNIRS signal in relation to mental workload.

3.1 Physiological measurement of workload

Research has shown that task demands can induce complex and dynamic processes in-

fluencing a variety of physiological changes [44]. Physiological measures are used to

give an objective perspective on mental workload by not relying on subjective scales or

performance measures. They can be obtained by recording cardiac activity [18, 19, 51,

100, 129, 132, 148], electrodermal activity [31, 122, 123], eye function [15, 67, 74, 88]

or imaging the brain [19, 58, 88, 96, 127]. These techniques detect the change in the

arousal from the autonomic nervous system level which could be used to infer mental

workload levels. Stemberger et al [128] developed and evaluated a system for estima-

tion of workload levels based on analysis of facial skin temperature. Previous studies

that have looked at inferring the level of mental workload by using facial thermography
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have shown a high correlation of workload with the decrease in nose temperature [102].

Wilson and Russell [148] presented ways in which the physiological signals are

known to change with the state of the operator: heart rate increases as the cognitive

demands on the operator increase, and the rate of eye blinking decreases as the vi-

sual demands increase. Different physiological measures capture different aspects of

workload [26], therefore consideration should be put in choosing the most appropriate

measure for the given studied task, setting, and research interest.

Beyond just objectively assessing workload using physiological measures, research

has shown that mental workload itself can be valuable as an input into a system [127].

Afergan et al [1], for example, demonstrated the ability to distinguish and use different

mental workload states during an Unmanned Aerial Vehicle simulation task by looking

at the physiological changes in the brain. These measures were used in real time as

an input to dynamically adjust the difficulty of the task in order to improve user en-

gagement and performance. With a similar aim, but without adapting the task or the

interface, the last study presented in this thesis is focused on exploring a new area of re-

search, providing real time workload feedback to alert users of low and high moments

of mental workload, in order to help users reflect metacognitively, adapt to the task,

focus and better manage when prioritizing resources to tasks. We attempt to under-

stand how people can use this feedback, and the effects this may have on people during

tasks, as described in the relationship 3 in the framework for the measurement of mental

workload.

3.1.1 Prefrontal Cortex (PFC) and Brodmann area 10

The Prefrontal Cortex (PFC) is the anterior part of the frontal lobes of the brain and

is considered central to the function of WM, dealing with executive and attention pro-

cesses [75]. The PFC has been first associated with higher cognitive functions by studies

examining brain damaged individuals [119, 125], however, experiments on healthy sub-

jects using the n-back task have supported this claim [20]. Activation was observed in

the dorsolateral prefrontal cortex, inferior frontal and parietal when the task demanded

more resources. However, it is difficult to point out which brain region is involved with

which processes because one brain area is usually involved in multiple cognitive tasks

[23]. Miller and Cohen define the representations in the PFC as “attentional templates,
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retrieval cues, rules, or goals” [94], and many researchers agree that PFC function is

one of Baddeley’s executive control [4]. Conversely, Rushworth reports that not all

PFC subregions are essential for working memory [116]. The PFC, more specifically

the Brodmann area 10 (BA10), is the region of the participants’ brain that we are tar-

geting using fNIRS during the studies presented in this thesis (See Figure 3.1), since

there is significant evidence to support its role in WM [20, 36]. Brodmann area 10 is

thought to be the gateway between processing perceptual or reflective information. In

addition to the PFC, Brocas area is located within the frontal lobe and is linked with

speech production [43].

Figure 3.1 A brain drawing with the prefrontal cortex highlighted 1

3.1.2 Brain sensing techniques and BCI

Brain sensing technologies were first created for medical and diagnostic use, however

it has been only recently that advances in cognitive neuroscience and brain imaging

technologies have made a new era possible: interfacing directly with the human brain.

Firstly driven by the needs of people with disabilities, researchers have used these tech-

nologies to build Brain Computer Interfaces (BCI), systems where users explicitly ma-

nipulate their brain activity as an alternative interface to the outside world. Recently,

researchers in the field of HCI, have adopted BCI techniques to learn more about peo-

1https://i1.wp.com/neurosciencenews.com/neuroscience_images/
prefrontal-cortex-public.jpg
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Technique Physical
Property

Sensitivity
to Mo-
tion

Portability Spatial
Resolution

Temporal
Resolu-
tion

Cost

fMRI Magnetic Very
High

None High Low Expensive

EEG Electrical High Portable Low High Reasonable
fNIRS Optical Low Portable High Low Moderate

Table 3.1 Summary of Brain Sensing technologies

ple during interaction with technology [1, 85, 127, 152]. It is agreed, however, that

to be valuable for HCI, measures and techniques used for measuring workload should

provide useful information about the user while allowing normal interaction with the

computer [7, 108, 127, 152]. Pike et. al. presented a comparison between various BCI

techniques, with a focus on their suitability in HCI settings [108].

Brain imaging technologies can be therefore classed in two general categories: inva-

sive techniques, and non-invasive techniques. Depending on the level of invasiveness,

the sensors can range from being implanted directly on, or in the brain, putting a human

subject inside a sensor (fMRI), to less invasive techniques that only require wearing a

headband shaped device with external sensors only [131]; the later ones being preferred

for studying the interaction with technology.

There are several brain sensing technologies available for research, including (but

not limited to) fMRI, EEG, and fNIRS, which are summarised in Table 3.1. Each of

these technologies have different strengths and weaknesses, as discussed by Tan and

Nijholt [131]. In this thesis the focus is on technologies for assessing brain activity

using external sensors only.

Functional Magnetic Resonance Imaging (fMRI) is a functional neuroimaging tech-

nique that associates detected changes in blood flow (hemodynamic response) to brain

activity. fMRI is typically used for applications requiring high spatial resolution, but

requires people to lay very still, and precludes the use of a computer. Experiments that

have used fMRI for studying the interaction with technology, typically place a mirror

above the participant such that they can see a display in another room. Participants are

unable to interact directly with a system, but can respond to visual stimuli through the

use of mirrors. Li et. al. [82] for example, used real time fMRI to control the animation

speed of a virtual human runner.
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Electroencephalography (EEG) typically uses between 16 and 64 sensors on the

scalp to detect varying electrical charge within the brain. With the introduction of com-

mercially available bluetooth EEG sensors, like the Emotiv2, EEG has become an af-

fordable option for brain sensing [40]. Researchers have successfully utilised EEG as

a form of input, rather than evaluation, as major events can be more easily detected

as triggered (see [134]). For evaluation, however, EEG data is susceptible to motion

artefacts, and so producing averages for periods of interaction provides limited insight.

Pike et al [107] proposed, that EEG data was most valuable when combined visually

with recorded think aloud data, as statements of confusion, or pauses in verbalising

ones’ actions, coincided with and were qualified by the EEG data.

fNIRS - Functional Near Infrared Spectroscopy - uses blood oxygenation, rather

than electrical levels, for determining the activation of areas in the brain, where more

blood flow indicates higher activity. Recent research has shown that because blood-flow

in the brain is less affected by body movement, fNIRS may be a more appropriate brain

sensing technology for evaluation [60, 79, 105]. Because it takes several seconds for

blood to flow to the brain [65, 137], fNIRs has been largely discounted for real-time

interaction with systems, or for direct control during active BCI.

3.2 fNIRS

fNIRS is an emerging neuroimaging technique that offers a non-invasive, portable and

low-cost method of monitoring brain activity. fNIRS is based on the use of near in-

frared spectroscopy (NIRS), introduced by F.F. Jobsis in 1977 [70], which started to

be used later for functional brain imaging [28, 136, 137]. Around 1990, fNIRS started

to increase its popularity, and it was further introduced to overcome the limitations of

using EEG and other techniques, mainly due to its non-invasive nature, allowing a more

naturalistic study setting [29].

fNIRS uses near infrared (NIR) light to measure regional hemodynamic responses

associated with neuron behaviour, namely changes in blood volume and oxygenation.

This is possible due to the properties of our biological tissue, in our case the skull,

that is relatively permeable to electromagnetic (EM) radiation of different frequencies

2http://www.emotiv.com/
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and intensities. Light penetrates the skull well at near infrared range, allowing the NIR

light to reach different molecules that are known to absorb different wavelengths of EM

radiation to different degrees (in this case light). For fNIRS imaging, the concerned

molecule is haemoglobin, which is the oxygen carrier for the red blood cells. These

are the primary absorbers of near-infrared light in tissues. During the hemodynamic

and metabolic processes, the light values change proportionally with neural activity

in the brain [29, 68] fMRI studies [37] have confirmed that a decrease in deoxygenated

hemoglobin indicates an increase in brain activity. When a brain region becomes active,

it requires more oxygen. To meet these demands, there is an increase in oxygenated

hemoglobin, resulting in a decrease of deoxygenated hemoglobin.

fNIRS has been successfully used to measure brain activity in different brain regions

such as, prefrontal cortex [7], motor cortex[61] and auditory cortex [109].

3.2.1 Using fNIRS to assess Workload

fNIRS was used in a wide range of disciplines, but for the sake of this thesis, the focus

will be the use of fNIRS for measuring a range of cognitive processes and states of

operators during their interaction with technology in normal working conditions. A few

studies in the area include [1, 30, 57, 105, 127, 153]. The general aim of this thesis is to

understand how fNIRS can be used in relation to mental workload, to assess and reflect

the demands placed upon individuals whilst performing tasks, by observing the relative

changes in oxygen concentration in the PFC. A typical fNIRS equipment consists of a

probe, a data processing unit for pre-filtering and pre-processing the raw data, a power

supply, and two computer units, one used to collect and process the data, and the other

to present stimuli to participants (e.g. an Air Traffic Control task).

fNIRS has been used to evaluate various tasks, including remotely operating vehi-

cles [7, 38], mental arithmetic [108], n-back tasks [7, 38], and other complex cognition

tasks such as video games [7, 24, 68]. Its robust nature to ambient electrical noise, (that

is the main artefact affecting the EEG signal, fNIRS allows a more naturalistic study

of interaction compared to fMRI, while measuring essentially the same signals, and the

relatively reduced hardware requirements, make fNIRS well suited for BCI systems.
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3.2.2 fNIRS during human computer interaction

Recent research has proven fNIRS to be more suitable (compared to other brain sensing

techniques) for assessing mental workload in HCI user studies [1, 87, 127, 152] due

to the robustness in noisy environments. HCI researchers are concerned with using

fNIRS to assess mental workload, and use this as an additional channel of information

about users during interaction with technology. Lukanov et. al. used fNIRS to assess

workload during usability testing of three versions of an insurance claim form [85].

fNIRS has also been used for implicit input. Afergan et. al., used fNIRS as implicit

input to control and dynamically adjust task difficulty based on user’s mental workload

state [1]. This was the first step towards using fNIRS in the context of adaptive user

interfaces. Yeksel et. al. used the same technology for adapting learning during piano

lessons [153]. With a similar aim, we investigated how fNIRS can be used as input to

provide users with feedback of their mental workload levels in real time during tasks,

and how the users can better think about their state.

The BCI studies (including the ones with fNIRS) in human computer interaction

move away from traditional psychology experiments, “where one can isolate, manipu-

late and measure mental workload with great precision” [48], into the use of the tech-

niques for assessing more realistic user interfaces. This enables researchers to study

and create better technology and user interfaces as a result of using an objective per-

spective of interaction, without relying on participants’ ability to self-report, or create

additional burden to the interaction (such as a secondary task). However, studying more

complex tasks and interactions, makes it harder to understand and interpret the data and

the results. This is why fNIRS is used as a complementary measure during human com-

puter interaction to provide an additional channel of information about the users during

interaction, and often researchers combine the results of various measures together for

a better understanding and interpretation of results. The studies presented in this thesis

involve a transition of increased level of task complexity, from very traditional memory

tasks in the first study, to more naturalistic air traffic control game simulator in the last

study.

Peck (2013) [105] found a correlation between the NASA-TLX subjective ques-

tionnaire [55] and deoxygenated hemoglobin levels in fNIRS data during a visual task.

Peck (2013) [105] successfully managed to distinguish between various levels of n-back
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visual tasks with fNIRS, suggesting that different levels of n-back induced different

levels of mental workload. Confirming with the fMRI findings, fNIRS deoxygenated

hemoglobin levels had lower values during 3-back task compared with 1-back task.

These are great findings further validating fNIRS as a measurement of workload. We

will attempt to validate these results and further understand the sensitivity of fNIRS to

various levels of workload.

3.3 fNIRS methodology

Throughout the experiments presented in this thesis, we used fNIRS to assess users’

workload state during tasks. This section presents a few insights into how fNIRS was

used, including some general processing stages for a typical fNIRS experiment.

We recorded measures of brain activity using an fNIRS300 device and the associated

Cognitive Optical Brain Imaging (COBI) Studio hardware integrated software platform

provided by Biopac Systems Inc. The headband shaped device is a sixteen-channel

transducer for continuous Near Infrared Spectroscopy (NIRS). The headband consists

of four infrared (IR) emitters operating on a range between 700 to 900 nm, and ten IR

detectors.

3.3.1 Hemodynamic response

The hemodynamic response is a slow one, and changes measured by fNIRS occur in

a time span of 6-8 seconds [25]. It is therefore important to consider and account

for the delay when designing brain based interfaces, or simply ant experiments using

fNIRS. This is one of the main reasons fNIRS has been largely discounted for direct

control in these types of BCIs. Research has been exploring the potential of using

event-related fNIRS (for direct control of a BCI) [34], however, most of the studies are

taking advantage of the delay in order to monitor the user’s state during tasks.

3.3.2 Processing stages

Oxygenated (HbO) and deoxygenated (Hb) hemoglobin are both strong absorbers of

light, whereas skin, tissue and bone are mostly transparent to NIR light, this property
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is typically referred to as the optical window [69]. The tissue is radiated by the light

sources and the detectors receive the light after the interaction with the tissue. See Fig.

3.2 [6] for an illustration of how the headband is positioned, and to visualise the path

that the light follows during operation.

Figure 3.2 Sensor layout for the Biopac fNIRS used 3

fNIRS data could be used to detect changes in blood flow and oxygenation in real-

time, or the data could be processed and analysed after the experiment has been com-

pleted. For real time use, COBI Studio, the associated platform for processing fNIRS

signal, requires collecting baseline signal levels (typically asking participants to rest),

that are used in order to calculate oxygenation in real time, via the Modified Beer Lam-

bert Law (MBLL) [136].

fNIRS data can be further processed and analysed post-experiment, with the ad-

vantage of using additional filters and feature extraction techniques discussed below.

For the post-experiment fNIRS analysis we processed the data using fnirSoft, the Com-

prehensive Signal Processing, Analysis and Visualization Platform for Optical Brain

Imaging [8]. A low pass filter with cut off frequencies of 0.2 Hz can be used in order

to remove high-frequency noise, physiological artefacts such as heartbeats and motion

derived artefacts. In addition, the Correlation Based Signal Improvement (CBSI) [35], a

technique designed for fNIRS technology, can be used as a filtering method to improve

detection of workload. In the analysis, we also considered the delay associated with

the hemodynamic response [136], using various techniques including: averages across
3Many thanks to Hyosun Kwon for the designs of this image.
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blocks of data, omitting the first few seconds of the trials when processing, or simply

delaying the trial data by a few seconds [105, 108]. These were further detailed in each

study chapter.

For studying mental workload, the device is typically placed on the participants’

forehead, targeting the PFC and Brodmann area 10 (BA10) (see Fig. 6.2). As displayed

in Fig. 3.2, the Biopac fNIRS device provides 16 channels of brain data reading. Each

channel is defined by the relationship between a IR source and a near by IR detector

pair. After the MBLL is calculated, COBI studio provides a file with two measures HbO

and Hb, and for the post experiment analysis the TotalHb can be calculated (Hb+HbO),

and one additional measure of oxygenation (OXY) can be obtained from fnirSoft, that

is oxygenation (OXY).

3.4 Thesis Overview

Chapter 2 and Chapter 3 presented the underlying background of this thesis. Various

specific aspects of background literature will be provided in chapters when needed. The

following chapter presents the proof of concept study, further investigating the use of

fNIRS to assess workload during interaction with technology within realistic lab-based

evaluation settings, therefore continuing the work of Solovey et. al. [127]. Chapter 5

presents the challenges of using fNIRS as a sensitive and valid technique in the context

of continuous, real-time use, to gain insights into mental workload during tasks. The

study presented in the same chapter starts the investigation of fNIRS’s relationship with

subjective workload techniques and performance measurements (that will continue in

the last study presented in the following chapter). The last study of this thesis is pre-

sented in Chapter 6. The study is focused on using the continuous, real time assessment

of workload based on fNIRS objective measurements to provide users with workload

feedback during tasks. We then investigate the impact of workload feedback on both,

users’ performance and perception of workload, but we also assess their experience

throughout the experiment and potential future use of the feedback element.

42



Chapter 4

Using fNIRS within realistic lab-based

evaluation settings: Investigating the

Reliability of the measure in the

presence of artefacts

How can fNIRS be used to assess workload during interaction with technology within

realistic lab-based evaluation settings?

4.1 Introduction

This thesis investigates the use of fNIRS as a technique to assess workload continuously

during tasks. However, to be valuable for HCI/HF research, sensors and techniques used

for collecting data from users should be as transparent as possible, while still providing

useful information about them. This is to ensure that the studied interaction would be

affected as little as possible, in order to simulate naturalistic study settings.

Because the nature of fNIRS technology was originally designed for clinical use, in

this chapter, we present a study to explore the reliability of fNIRS, and how it can be

used to assess workload during interaction with technology, within realistic lab-based

evaluation settings; therefore an attempt to answer the first research question RQ1 with

the sub questions RQ1a, RQ1b, and RQ1c. See the overview Table 4.1 below.
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Table 4.1 Experiment 1 - Experimental Program Development

No Research Questions and Aims Main findings What next?

R
Q

1(
a) Investigate the possibility of using

fNIRS’ measures of oxygenated
(HbO) and de-oxygenated (Hb)
hemoglobin to distinguish between a
“busy” state (participant performing
a task) and a “rest” state (participant
performing no task).

• For both Verbal and Spatial tasks,
a paired-sample t-test, within par-
ticipants, revealed significant dif-
ferences over multiple channels
between rest periods and task pe-
riods.

• In both task conditions HbO was
significantly higher compared to
rest states.

• fNIRS was useful to detect moments
of high workload (participants per-
forming a cognitive task compared
to participants at rest). One of the
future challenges is moving beyond
comparing between the binary con-
ditions rest and task, towards the as-
sessment of workload during more
complex tasks.

R
Q

1(
b) Investigate how fNIRS can be used

in the presence of artefacts produced
during interaction with technology
within realistic lab-based evaluation
settings. Understand the impact of
various artefacts on the two different
task encodings: spatial task vs verbal
tasks.

• It was hypothesised that non-
related verbalisation will nega-
tively impact performance during
the Verbal task, as demonstrated
by Pike et al. [108], however,
we also hypothesised that perfor-
mance will not change during the
spatial conditions, as the resources
used during the spatial task are
complementary.

• Investigating whether there are dif-
ferences between the presence and
absence of the artefacts in the
fNIRS signal.

• In addition to reproducing the dis-
tinction between rest and Ver-
bal task times (as identified by
Solovey et al.), there will also be a
significant difference between rest
and Spatial task times.

• Participants performed signifi-
cantly worse under the typing
artefact compared to all other
conditions during the Verbal task.

• Participants also performed sig-
nificantly worse in the Verbalisa-
tion artefact condition compared
to the no artefact one during the
Spatial task.

• For both Verbal and Spatial tasks,
a paired-sample t-test, within par-
ticipants, revealed significant dif-
ferences over multiple channels
of fNIRS’ HbO and Hb, dis-
tinguishing between rest periods,
task periods and artefact periods.

• The two types of tasks, Verbal and
Spatial, were affected differently for
each artefact. This was reflected in
both performance and fNIRS mea-
sures. For the Verbal task, the great-
est interference was typing, which
could be interpreted as being a Spa-
tial input modality since the keys
have a physical mapping. Whereas
for the Spatial task, the verbalis-
ing artefact had the greatest inter-
ference providing a crossing of re-
source modalities, which is the op-
posite of our original hypothesis.

• Consider the task encoding and arte-
facts nature in future experiments.

R
Q

1(
c) Investigate the Reliability, Replica-

bility, Sensitivity, Validity, of the
fNIRS measure: Understand the sen-
sitivity of the measure to both spatial
and verbal memory tasks; investigate
methods to distinguish between vari-
ous levels of workload using fNIRS.

• Results confirmed Solovey et al.
findings and showed the relia-
bility of fNIRS to distinguish
between users’ rest states and
users performing a Verbal mem-
ory task.

• The replicability of fNIRS exper-
iments was also tested by repro-
ducing a previous fNIRS experi-
ment.

• fNIRS proved to have potential for
detecting periods of performing a
task compared to periods where par-
ticipants were at rest. The results
also showed the potential of us-
ing fNIRS during human computer
interaction lab-based experiments.
Further, it would be essential to ex-
plore how fNIRS could be used as
real-time, continuous measure, to
assess workload during tasks.

• Therefore, it is also essential to test
the sensitivity of the measure to dis-
tinguish various levels of workload
during tasks, but also validate the
measurement in relation to existing
workload assessment techniques.



4.2 Reliability of fNIRS

To understand the implications of using fNIRS during lab-based experiments, this

work builds on the initial findings of Solovey et. al. [127]. In 2009, Solovey showed that

functional near-infrared spectroscopy (fNIRS) has potential value for brain sensing in

HCI user studies, being more suitable than other brain sensing techniques such as EEG,

PET, fMRI and others. Their research has shown that, although large head movement

significantly affects fNIRS data, typical interaction with a computer does not affect the

fNIRS measurements. During a Verbal memory task, they studied a number of typical

artefacts present in HCI lab-based settings, including: large/normal head movement,

facial movement, ambient light and ambient noise, respiration and heartbeat, muscle

movement, and slow hemodynamic response.

This chapter replicates and extends Solovey’s study and aims to examine the Re-

liability of fNIRS, by 1) confirming these prior findings (Solovey et. al. [127]), and

2) significantly extending our understanding of how artefacts affect recordings during

Spatial tasks, since much of user interfaces and interaction is inherently spatial.

This chapter is based on the “Examining the Reliability of Using fNIRS in Realistic

HCI Settings for Spatial and Verbal Tasks” by Horia A Maior, Matthew Pike, Sarah

Sharples, Max L Wilson, paper which was presented at ACM Conference on Human

Factors in Computing Systems (CHI2015) in Seoul, Korea.

4.2 Reliability of fNIRS

Sharples and Megaw [121] state the appropriate criteria for choosing the technique

for the measurement and assessment of mental workload: Validity, Reliability, Gener-

alisability, Sensitivity, Interference, Diagnosticity, Selectivity, Granularity/Bandwidth,

Feasibility of use, Acceptability/Ethics and Resources.

Pike et. al. and Peck et. al. [105, 108] provide evidence of fNIRS correlating with

NASA-TLX, a widely used measure of MWL (Validity). fNIRS is inherently gener-

alisable as it simply measures oxygenation and is not specific to a particular domain

(Generalisability). Afergan et. al. [1] demonstrated the ability to distinguish between

different workload states (Sensitivity) during a UAV simulation task. Additionally, the

study identified workload changes over time (Bandwidth). Pike et. al. [108] identified

non-related verbalisations as being a contributing factor to increased mental workload
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(Diagnosticity). Solovey et. al. [127] demonstrated that fNIRS was able to distinguish

between common human behaviours (typing, mouse movement, head and facial move-

ment) and a Verbal Memory task (Selectivity). fNIRS has been deployed in a number of

studies and has caused minimal Interference, with many reporting ecological validity

whilst using fNIRS (also demonstrating Feasibility of use, Acceptability/Ethics and

Resources) [1, 108, 127].

In the context of this study, however, exploring the reliability of fNIRS during hu-

man computer interaction is a focus. As fNIRS is an emerging technology in this field,

replicating the findings of existing work is one step towards establishing the reliability

of the technology.

4.3 Experiment Design

The aim of this study is to identify the reliability of fNIRS as a measure of mental work-

load in the context of human computer interaction. This study examines and tests the

work of Solovey et. al. [127] and Pike et. al. [108] on verbal memory, but significantly

extends our understanding of the impact of artefacts on fNIRS measurements, by also

examining Spatial tasks. Reliability of the measure is one of the criteria identified by

Sharples and Megaw [121] as being appropriate for measuring workload. In this study,

much of the original procedure was followed, as described by Solovey et. al., however,

some of the behaviours under study were removed, in order to focus on the behaviours

that had the greatest impact on the fNIRS signal (Typing and Head Movement). More

over, a new human behaviour was included in the study - Verbalisation, a common part

of a typical evaluation study, that was not investigated by Solovey et. al.

This study also addressed the issue of task types in terms of information encoding,

and how various artefacts investigated in this study could potentially affect the fNIRS

signal during different task encodings. In the original study, the task of memorising

a seven digit number was Verbal since the encoding of the digits would reside within

the Phonological Loop of Baddeley and Hitch’s model of WM [13]. To extend our

understanding in terms of the impact of different task encodings and artefacts on fNIRS,

we introduced a Spatial memory task of memorising a 6x6 grid. This task will be

encoded in the Visuo-spatial Sketchpad (according to the same model [13]), allowing
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us to investigate whether there are differences in results according to the encoding type

of the task.

4.3.1 Study Conditions

We devised a study focused on investigating three behaviours and potential artefacts,

typical during typical interaction evaluation settings, two of them selected from Solovey

et. al. (head movement and keyboard typing) and one original (Verbalising). Therefore,

we designed a study with four conditions (three artefacts plus a control condition having

no artefacts present), which were tested under both task types (Verbal memory and

Spatial memory):

C1 Task Only (No Artefact)

C2 Task + Head Movement

C3 Task + Typing

C4 Task + Verbalising.

The same repeated measures, within-participants approach was followed to compare

conditions, as in Solovey et. al. [127].

4.3.2 Study Task - Verbal and Spatial Memory

As previously described, there were two devised tasks in this study, a verbal memory

task and a spatial memory task. The verbal memory task involved memorising and

reproducing a series of 7 digit numbers, see below the study protocol and procedure,

and it closely followed the task presented in Solovey et. al.

The second task, was meant to be similar in terms of demand and complexity, how-

ever, having a spatial encoding. Therefore we devised a spatial memory task, where

participants were asked to memorize and reproduce a series of 6x6 black and white

shaped grids using an on-screen form (See Figure 4.1). Similarly, in the Verbal task

conditions, participants submitted the memorized number using an on-screen form.
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Figure 4.1 Spatial Task - Stimuli and Input form

Figure 4.2 Experiment Procedure with Spatial Task

4.3.3 Study Protocol

The study procedure closely followed that of the original study by Solovey et. al.

Participants completed eight experiment parts; two task encodings x four Study

Conditions (three Artefact conditions and one Control-No Artefact-condition), with

each part composed by eight trials - like presented in Figure 4.2. Each trial started

with 15s rest, followed by 4s presented stimuli (the s 7 digit number or the gird), 15s

remembering the stimuli, and ended with an input form for answering the remembered

stimuli. For the artefact conditions the 15s remembering period also included perform-

ing the specific artefact, and an additional 15s period of performing the artefact alone

was performed after the task. Performing the artefact involved asking participants to

move their head repeatedly, type random keys at the keyboard repeatedly, or verbaliz-

ing a previously decided word repeatedly, depending on the study condition.
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4.3.4 Measurements, Data and Equipment

Two types of measures were collected in this study, namely brain activity using fNIRS

and task performance.

fNIRS data was recorded using an fNIRS300 device and the associated COBI Stu-

dio recording software provided by Biopac Systems Inc. Using the Matlab Toolbox

NIRS-SPM [150] we applied filtering algorithms to remove high-frequency noise, phys-

iological artefacts such as heartbeats and motion derived artefacts. Finally, each trial

was separated according to the condition under test (rest/ task/ artefact) considering the

slow hemodynamic response [136], and averaged the data accordingly.

Task performance for both task types was calculated using two measures: Absolute

performance - where an answer is simply correct or not, and Relative Performance -

where answers were scored according to distance from the target answer (calculated

with Levenshtein distance).

4.3.5 Study Conditions and Hypothesis

For each artefact, there were four steps tested by Solovey et. al. with the corresponding

study research question, as described in Figure 4.3:

1 A baseline with no cognitive task or artefact;

2 The cognitive task alone with no artefact;

3 Artefact alone with no cognitive task;

4 Task along with an artefact;

There were two major aims in this study, and we devised the following hypothesis.

A There will be significant differences in the fNIRS data between participants rest-

ing and participants performing the cognitive task.

B There will be significant differences in the fNIRS data between participants rest-

ing, participants performing the cognitive task in the presence of artefacts, and

participants performing the artefacts alone.

We followed a similar approach in this study.
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Figure 4.3 Original Study Aims edited from [127]

4.3.6 Participants

Fifteen participants (11 male, 4 female) with an average age of 22.06 (SD = 2.31) were

recruited to take part in the study. All participants had normal or corrected vision and

reported no history of head trauma or brain damage. The study was approved by the

Computer Science ethics committee. Participants provided informed consent and were

compensated with gift vouchers.

4.4 Results

Table 4.2 summarizes the findings of this experiment in contrast to the original study

by Solovey et. al. [127]:

Control
Artefacts

Head
Movement

Typing
Mouse

Movement
Facial

Movement
Verbalising

Ta
sk Verbal ✓HbO ℧ ✓HbO ✓HbO

Spatial ✓HbO ✓Hb ℧ ✓HbO
■Non-Replicated Conditions, ■Replicated Conditions, ■Novel Conditions

Table 4.2 Results and Contributions of the current and Solovey et. al. study. ✓HbO
means fNIRS is fine to use in the presence of the investigated artefact, best measure to
use HbO. ℧ means that the artefact needs to be avoided or filtered.

4.4.1 Performance data

No significant difference between conditions was reported by Solovey et. al. in task

performance, where the number of correct (in-place) digits was used as the dependent
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variable. It was hypothesised that non-related verbalisation will negatively impact per-

formance during the Verbal task, as demonstrated by Pike et. al. [108].

Based on Wickens MRM [144], no performance differences are expected under

Spatial conditions as the resources are complementary. However, a within participants,

one-way repeated measure ANOVA with LSD correction, revealed that participants per-

formed significantly worse under the typing artefact compared to all other conditions

during the Verbal task with N = 15,d f = 3, p < 0.025,F = 3.8 (see Figure 4.4).

Figure 4.4 Performance outcomes during the verbal task

Participants also performed significantly worse in the Verbalisation artefact condi-

tion compared to the no artefact condition during the Spatial task with N = 15,d f =

3, p < 0.05,F = 3.8 (see Figure 4.5).

The findings fail to prove the hypothesis, but do lead to an interesting discussion.

For the Verbal task, the greatest interference was typing, which could be interpreted as

being a Spatial input modality since the keys have a physical mapping. On the other

hand, for the Spatial task, the verbalising artefact had the greatest interference providing

a crossing of resource modalities, which is the opposite of our original hypothesis.
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Figure 4.5 Performance outcomes during the spatial task

4.4.2 Experiments: No artefacts (C1)

One of the essential aims in this study was distinguishing between states of rest and

cognition, a distinction described as “fundamental” in the original study. That is distin-

guishing, using fNIRS, between two conditions: participants performing the cognitive

task and participants at rest. It was hypothesised that this would be the case in both, the

Verbal task condition (as identified by Solovey et. al.), and also in the Spatial task con-

dition. In both cases we hypothesised that fNIRS measurements will be significantly

different when participants are resting, compared to when participants are performing

either the Verbal or Spatial memory task.

A paired-sample t-test, within participants, revealed significant differences over

multiple channels between rest periods and task periods, as hypothesised for both task

conditions. Figure 4.8 shows the average HbO levels during the Rest VS Task condi-

tions, across participants for all 16 channels of data from fNIRS. In both task conditions

HbO was significantly higher compared to rest states, with N = 15, p < 0.05,d f = 14

and t value ranging from t = 2.3tot = 4.3 for the significant comparisons. During the

verbal task, the mean HbO value across all participants was 0.4 during the cognitive
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task and 0.13 during participants at rest (See Figure 4.6). During the spatial task, the

mean HbO value across all participants was 0.42 during the cognitive task and 0.26

during participants at rest (See Figure 4.7).

Figure 4.6 Mean Values for Hb and HbO for the Verbal Task in C1
.

Figure 4.7 Mean Values for Hb and HbO for the Spatial Task in C1
.

Our results are in line with those identified by Solovey et. al. and with our hypothe-

sis regarding the Spatial task. It is to note that the results favoured HbO over Hb in the

detection of these states. Based on these findings we accept hypothesis A.
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Figure 4.8 Average Oxygenated Hemoglobin (HbO) levels across participants during
Rest VS Task task conditions. See how average HbO is higher during Task time com-
pared to rest time across all 16 channels of data.

.

To provide a visual representation of fNIRS ability to distinguish between rest and

cognitive states, Figure 4.9 visualises one participant fNIRS data (from one channel:

ch.1) for the no artefact experiment (consisting of 8 trials hence the 8 peaks in HbO

data).

Figure 4.9 Oxygenation level peaks for 8 Verbal trials.

4.4.3 Experiments: With artefacts (C2, C3, C4)

The interest here lies in distinguishing cognition in the presence of artefacts (Table 4.2

provides the summary of our findings). To achieve this, a combination of the following

three stages was necessary: rest periods, artefact (alone) periods, and cognitive task

under artefact into paired comparisons. A series of one-way repeated measure ANOVAs
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within participant design with LSD correction were applied for each of the artefact

conditions.

C2 - Head Movement Artefact

In the original study, as reported by Solovey et. al., it was not possible to significantly

distinguish between participants at rest and participants performing the cognitive task

in the presence of major head movement. However, a series of one-way repeated mea-

sures ANOVAs showed significant differences between conditions over multiple chan-

nels with p < 0.05,d f = 2,F = 3.261. Our results showed significant difference be-

tween participant at rest and participants performing just the artefact (Hb, p < 0.025),

indicating that head movement is detrimental to the fNIRS signal. Moreover, it was

possible to distinguish between cognition in the presence of head movement and per-

forming the artefact alone (Hb, p < 0.01), indicating the potential for filtering of this

artefact in the future. Accordingly, it is advisable to account for major head movements

during studies involving a Verbal memory task. For the same artefact, but under the

Spatial task, the results suggest more relaxed restrictions. For the Spatial Task, the re-

sults showed significance in Hb for all comparisons (rest/task/artefact) (p < 0.05,d f =)

indicating that Spatial based tasks are less prone to head movement artefacts.

C3 - Keyboard Input Artefact

In the case of keyboard input artefact series of one-way repeated measure ANOVAs

showed significant differences between conditions with p < 0.025,d f = 2,F = 4.7.

It was possible to distinguish between rest and task periods (HbO, p < 0.05) during

the Verbal Task. However, the difference was no longer significant during the Spatial

task. Potential for filtering exists again due to the significant difference between the

remaining two comparisons (rest vs artefact and artefact vs cognitive task HbO, p <

0.05). The findings suggest that keyboard input does not affect the fNIRS signal during

verbal tasks, however, it should be controlled for the spatial tasks.

C4 - Verbalisation Artefact

For the Verbalisation conditions again, a series of one-way repeated measure ANOVAs

revealed significant differences between conditions with p < 0.05,d f = 2,F = 3.6.
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There were significant differences between rest and cognition periods for both Verbal

and Spatial tasks (HbO, p < 0.01 Verbal Task and HbO, p < 0.025 Spatial Task) in the

presence of verbalisation artefact. This finding implies that fNIRS could be reliably

used in the presence of Verbalisation artefacts, confirming the findings of Pike et. al.

[108]. The results also show that Verbalization artefact is the most compatible with

fNIRS for typical evaluation settings.

In this study we discuss the use fNIRS in the presence of various artefacts during

both verbal and spatial task encodings, and based on the findings above, we accept the

second hypothesis (B).

4.5 Discussions

This study aimed to replicate and extend the work performed by Solovey et. al., inves-

tigating the effect of common human behaviours on fNIRS ability to distinguish states

of cognition from other states. To do so, the investigated study tested the reliability of

fNIRS as a measure during lab-based evaluation settings and extend our understanding

of how various artefacts impact the fNIRS signal during different task types (verbal and

spatial). The verbal memory task was a serial recall of 7-digit numbers and the spatial

memory task was a serial recall of 6x6 shaped grids. There were four investigated con-

ditions for both types of tasks; a baseline condition where no artefact was performed

(C1) followed by three conditions where participants were asked to perform artefacts

such as head movement (C2), random keyboard typing (C3), and repeatedly verbalising

(C4).

Objective performance and physiological techniques were used in order to under-

stand the effects of the artefacts on fNIRS.

The fundamental findings in this chapter confirmed that we are able to distinguish

between cognitive and rest states during both Verbal (as confirmed by Solovey et. al.)

and Spatial tasks.

The two types of tasks, however, were differently affected, according to the two key

fNIRS measures, for each artefact. Our addition of a Spatial task, therefore, provided

a greater understanding of fNIRS’ ability to distinguish cognition under tasks using

such encodings. Further, our inclusion of the verbalisation artefact also provided this
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greater understanding for an additional, but very common user study behaviour. These

findings contribute towards a body of evidence to suggest that, for a typical evaluation

context, fNIRS is indeed a valuable measure, and has the potential to be used with

careful consideration. To provide further practical advice to other researchers about

fNIRS reliability and portability, future work might examine other untested artefacts,

such as: age of participants, interface familiarity, task expertise, but this is out of the

scope for this thesis.

Additional to the original paper a new artefact was investigated - nonsense verbal-

isation, and a new type of task was introduced in the study design - a spatial memory

task. fNIRS was found to be resilient to non-sense verbalisation artefact especially for

the spatial task, and inducing a higher level of mental effort especially in the verbal con-

dition (as hypothesised). It was also interesting to find the spatial and verbal task to be

differently affected by various artefacts. In the presence of keyboard input artefact, for

example, most of the significant differences for the verbal task were in the HbO data,

whereas for the spatial task the significant channels of data were in Hb. This could be

used for the future fNIRS analysis as an indication of what to expect.

Overall, fNIRS showed more resilience to artefacts in the presence of the spatial

task.

Although against our hypothesis, the performance data showed an interesting find-

ing, leading to an interesting discussion. For the Verbal task, the greatest interference

artefact was typing, which could be interpreted as being a Spatial input modality since

the keys have a physical mapping. On the other hand, for the Spatial task, the verbal-

ising artefact had the greatest interference providing a crossing of resource modalities,

which is the opposite of our original hypothesis.

Another way of looking at the two “interfering artefacts” used in this experiment,

randomly typing at the keyboard and non-sense verbalisation while performing the two

memory tasks is to treat them as the commonly used working memory secondary tasks

of “tapping” and “articulatory suppression”. This way, our performance results show

that a tapping task would have a higher interference on a verbal task, while articulatory

suppression has a higher interference on a spatial task.
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4.6 Chapter Summary

Based on the findings in this chapter, we addressed the aforementioned research ques-

tions, however, these will further leave space for evidence in the next chapters.

Now that we have discussed the challenges of using fNIRS during lab-based evalu-

ation settings, we can start to understand the challenges of using it for real-time contin-

uous assessment of workload. The next chapter explores the sensitivity and validity of

the measure in the context of continuous measurement of workload.
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Chapter 5

fNIRS Validity and Sensitivity -

Moving towards continuous real time

measure of workload

How can fNIRS be used as a sensitive and valid technique in the context of continuous,

real-time use, to gain insights into mental workload during tasks?

5.1 Introduction

Now that we know from the previous chapter that fNIRS has the potential to be a useful

measure during lab-based evaluation settings to provide an additional channel of infor-

mation about the user during interaction with technology, we can discuss the sensitivity

and validity of the measure in the context of real time use for continuously assessing

workload.

Using the guidelines discussed in the previous chapter, we begin to investigate how

fNIRS can be used as a sensitive measure of workload, and investigate how it can dis-

tinguish between various levels of workload in line with various levels of demand.

In this chapter we present a study in order to support the second research question

RQ2, and present the potential of using fNIRS as a continuous measure of workload,

moving away from block design analysis, towards more realistic applications (RQ2b).

See the overview Table 5.1 below.
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Table 5.1 Experiment 2 - Experimental Program Development

No Research Questions and Aims Main findings What next?

R
Q

2(
a) Investigate the validity of fNIRS

measure in contrast to the subjec-
tive techniques including NASA-
TLX and the continuous Instanta-
neous Self Assessment technique
(ISA).

• Evaluate the Sensitivity of
fNIRS: how can fNIRS distin-
guish between various levels of
workload?

• What is the impact of verbaliza-
tion on fNIRS signal?

• What is the relationship between
fNIRS and subjective measure-
ments (Validating fNIRS in rela-
tion to existing workload assess-
ment technique NASA-TLX)?

Two conditions were designed (C1 and
C2) for this experiment, eliciting dif-
ferent levels of workload (C2 involved
a secondary task of non-sense verbali-
sation), in order to allow performance
and workload measures to sense two
levels of workload. Therefore, we ex-
pected significant difference between
the two conditions in performance and
workload measurements.

• We found significant differences be-
tween conditions in the NASA-TLX
scales: Mental Effort, Mental De-
mands, and Physical Demands.

• We found a fNIRS to compliment the
subjective technique NASA-TLX,
and although fNIRS results were
not directly conclusive, we found
a close relationship between fNIRS
and NASA-TLX.

• We found no significant differences
between the two conditions in task
accuracy and performance, however,
average time to complete the tasks in
C1 was higher than the average time
to complete the tasks in C2.

• Although NASA-TLX is a one off
measurement technique, taken typ-
ically after the task has been com-
pleted, we tried to understand its
relationship with fNIRS, which is
a continuous technique that cap-
tures participants’ workload dur-
ing the task. We found signifi-
cant evidence to show that fNIRS
and NASA-TLX are complemen-
tary, and follow similar patterns.
It is therefore essential to validate
fNIRS technique with a continu-
ous workload measurement, such
as ISA (Instantaneous Self Assess-
ment), a subjective technique that
captures participants perception of
workload at regular intervals dur-
ing the task.

R
Q

2(
b) Investigate the implications of mov-

ing beyond block design, towards
the real time-continuous measure of
workload (using fNIRS).

• How can we assess user’s work-
load using fNIRS during interac-
tion with technology?

• Understanding the implications
of moving beyond block design,
propose the real time-continuous
use of fNIRS to detect changes in
operators’ workload during tasks.

• The findings showed that fNIRS
could be used as a reference to work-
load during tasks. Although this ex-
periment was still following a block
design analysis, the challenges of
moving towards the continuous mea-
sure of workload using fNIRS were
discussed.

• Now that we discussed the chal-
lenges of moving beyond block
design, the next steps would be
moving towards continuous, real-
time assessment of workload using
fNIRS.

• Once we use fNIRS for assess-
ing workload during tasks, we can
then look into the understanding
of how we can use the measure to
provide users with real-time work-
load feedback during tasks.



5.1 Introduction

Simultaneously, we are are trying to further validate fNIRS measure for the assess-

ment of workload, and further contribute to the potential of using fNIRS in the presence

of verbalization artefacts as discussed by Pike et. al. [108] and further contribute to 1b.

We will do this by understanding the relationship between fNIRS and the subjective

measure of workload - the well established workload questionnaire - NASA-TLX [55]

(RQ2a).

Measurements such as primary task performance, secondary measures, and subjec-

tive ratings are commonly used methods of measuring workload. While performance

measures are useful techniques that can reflect participants’ workload throughout the

task, they become harder to use for highly complex tasks, where metrics cannot be

used to quantify performance directly. Subjective measurements are usually obtained

after the task has been completed, commonly missing essential information about user’s

experiences during the task. Therefore, while subjective measures provide useful sub-

jective information, an objective measure of workload such as the one based on fNIRS,

could have the potential to provide continuous information about the user over long

periods of time (granularity of data is presented in Figure 5.1). To address this issue,

the use of a non-invasive, real time brain monitoring technique - fNIRS - is explored, to

objectively measure and assess participants’ physiological changes in the PFC region

of brain related to mental workload during tasks.

Figure 5.1 Granularity of the measures. Comparison between continuous measures of
workload e.g. fNIRS - and - subjective questionnaires of workload e.g. NASA-TLX

Recent research has shown functional near-infrared spectroscopy (fNIRS) to be a

highly suitable brain sensing technology for typical user studies, providing an objective,
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non-intrusive measure correlating to what is known as human Mental Workload. This

was further confirmed in the previous chapter. In this chapter we further contribute to

the findings in Chapter 4, where we have discussed and showed the reliability of fNIRS

within lab-based evaluation settings.

The works presented in this Chapter are mainly based on two presented papers:

“Continuous detection of workload overload: An fNIRS approach.” presented In Con-

temporary Ergonomics and Human Factors 2014: Proceedings of the international

conference on Ergonomics & Human Factors 2014, Southampton, UK, April 2014 and

“Measuring the effect of Think Aloud Protocols on Workload using fNIRS” presented at

CHI’14 ACM SIGCHI Conference on Human Factors in Computer Systems, Toronto,

April-May 2014.

5.2 Experiment design

One aim of this study was to identify how fNIRS could be used as a continuous tech-

nique to assess workload as per research question RQ2, and how fNIRS can be sensi-

tive to various task demands inducing different levels of workload on participants. The

study also investigates the relationship between the fNIRS measure and the standard

subjective workload questionnaire NASA-TLX, in an attempt to validate the technique

for assessing workload, as proposed by [121]. The final aim, further contributes to the

findings and aims in Chapter 4, and tests the reliability of fNIRS in the presence of ver-

balization artefact. As “talking” is part of typical “artefact” present when studying the

interaction between people and technology, this study also investigates whether simply

using your voice and simply verbalizing “Blah blah” during tasks creates an artefact in

the fNIRS data.

We have summarized the following chapter research questions and aims:

1. How can we assess user’s workload using fNIRS during interaction with technol-

ogy?

2. Evaluate the Sensitivity of fNIRS: how can fNIRS distinguish between various

levels of workload?

3. What is the impact of verbalization on fNIRS signal?
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4. What is the relationship between fNIRS and subjective measurements (Validating

fNIRS in relation to existing workload assessment technique NASA-TLX)?

5.2.1 Study Conditions

To answer the research questions and aims presented above, a study with two conditions

was desired as follows:

• The conditions will have different levels of demand placed upon users, in order

to allow fNIRS to sense the differences in users’ workload between the two con-

ditions.

• A baseline condition with users performing the task quietly, will be compared to

a second condition where they will perform the task while also talking, in order

to study the effect of talking on fNIRS.

• The task would be one with controllable difficulty, however, one that would allow

a theoretical understanding of the underlying processes related to human cogni-

tion, mental workload and the interconnection between these.

A mathematical problem solving task was chosen, as described below, and a study

with two conditions was designed as follows:

C1 Baseline Condition that required participants to simply solve the mathematical

task, and

C2 Verbal Condition which introduced a nonsense verbal utterance (“Blah”) that par-

ticipants were required to repeatedly verbalise whilst solving the mathematical

problem.

5.2.2 Study Task - Mathematical Problem Solving

Considering the desired task properties above, the task had to be chosen carefully, as

verbalisation could potentially interrupt the task process. The first criterion, therefore,

was devising a task that primarily uses the phonological loop, and thus be a verbally

oriented task. It would also be desired that the task allows a secondary task in order to

generate a higher demand in the second study condition, allowing fNIRS to distinguish
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Figure 5.2 A screenshot of the task

between the two levels of demand. The task had to involve continuous use of the phono-

logical loop, and so a simple and discrete memory task was not sufficient. Finally, the

task also had to have various levels of difficulty, to enable control over the primary task

mental demands; according to the Limited Resource Model [90] harder tasks would

increase the demands and thus reducing participant’s available resources for a potential

secondary task (verbalization in our case). Finally, performance on the task had to be

measurable in order to determine the effect of verbalisations, but also understand the

implications and relationship between performance and workload. Based upon these

four criteria, we decided on using a mathematics problem solving task. Participants

were provided with a set of six numbers and had to get as close as possible to a target

final number (See Figure 5.2). This problem is a variation on what is commonly known

as the countdown problem1. Each number may be used only once (although there is no

requirement to use every number), and participants have 60s to reach as close as possi-

ble to the target number by manipulating the six numbers using four operators: addition,

subtraction, multiplication and division. In a simplified example, if the target number

is 100 and the given numbers would be 1,5,21, one solution would be (21− 1) ∗ 5 to

reach 100.

Sixteen versions of the task were generated at varying difficulties across the two

conditions. To classify their difficulty, one researcher and two independent judges rated

1based on the mathematical challenge presented to contestants of the popular UK TV quiz show
“Countdown”
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the difficulty of each problem. Difficulty was judged in four categories: easy, quite easy,

quite hard, and hard. Inter-rater agreeability was confirmed with a Cohen’s Kappa test,

where the researcher achieved scores of 0.6419 (substantial agreement [77]) with the

first independent judge, and 0.8571 (almost perfect agreement) with the second. This

agreement was used to ensure that problem difficulty was balanced between conditions.

5.2.3 Study Protocol

Participants were first introduced to the task that they would be completing during the

study. They were given two practice runs of the task (under baseline conditions) to

familiarise themselves and reduce the impact of learning in their first condition. Once

comfortable with the requirements of the task, participants were fitted with the fNIRS

brain imaging device, which was placed upon their forehead targeting the PFC. At this

point participants entered the recorded session of the study. During this stage, partici-

pant input was captured, verbalisations were recorded via microphone, and brain data

was captured on a separate, calibrated machine.

Participants partook in the two conditions which were counterbalanced using a Latin

square rotation. Each condition began with a tutorial and practice session. The tutorial

session was particularly important for condition C2, as it was used to train the partici-

pant on how to verbalise whilst performing the task. Each condition included eight of

the tasks described above.

For each of the eight tasks in each condition, participants were given sixty seconds to

attempt the problem. All calculations were performed mentally; pen and paper was not

provided. After the sixty seconds had elapsed (or if the participant decided to proceed

prior to this), participants were prompted to enter the number they had achieved during

the calculation period. To avoid participants simply entering the target number, they

were prompted to recall their solution. The solutions provided by participants were

recorded by the researcher on paper and later digitalised.

After each condition, participants completed a standard NASA TLX form to sub-

jectively rate their mental workload during the task. Each condition concluded with a

thirty second rest period where the participants were asked to remain still, relax and

empty their mind of thoughts.

The study was conducted in an office-like environment. To preserve the settings
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typically observed during evaluation studies, we made little changes to a typical study

set-up, the participant was sat at a desk with a standard desktop computer and 20” mon-

itor. This was an important consideration as many brain based studies are conducted

under strictly controlled lab settings. The office environment provides a more natural-

istic and ecologically valid setting.

5.2.4 Measurements, Data and Equipment

We collected various types of data during the study. The data was then categorised into

two groups: Performance during the study (P), and Cognition (C).

Task Accuracy - P

We measured task performance according to the distance from the targeted answer for

each of the 16 problems across the two conditions. Because the target varied, we used

measured distance from the target as a percentage, which was subtracted from 100%.

100% represented the correct answer, 95% as being 5% from the target, and so on. As

the results tended towards the target, task accuracy was analysed. To provide incentive

to submit actual rather than ideal answers, we also measured whether participants could

recall the solution to their answer.

Task Time - P

Task time was measured for each of the 16 problems performed across the two condi-

tions. We note that participants were not encouraged to solve the problem in the shortest

possible time, rather, they were asked to get as close possible to the target.

NASA-TLX questionnaire - C

The NASA-TLX questionnaire was used to capture participants’ subjective workload

self-assessment [55], based on the weighted average ratings of six subscales including,

in order: Mental Demand, Physical Demand, Temporal Demand, Performance, Effort

and Frustration. Each participant was asked to self rate their mental workload using the

NASA-TLX once after each condition. We additionally investigated each of subscales

independently.
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Table 5.2 fNIRS Measurements

Measure Channels Description

OxyLeft / DeOxyLeft /
TotalLeft 3, 4, 5 ,6

The average of channels 3-6, which
are located on the left hand side of
the device.

OxyRight / DeOxyRigh /
TotalRight 11,12,13,14

The average of channels 11-14, which
are located on the right hand side of
the device.

OxyOverall / DeOxy-
Overall / OverallTotal All Channels

The average of all channels on the
device.

fNIRS data - C

fNIRS data was recorded using an fNIRS300 device and the associated COBI Studio

recording software provided by Biopac Systems inc. During this experiment the device

was placed on participants’ PFC targeting the Brodmann area 10 (BA10).

Preprocessing was performed to transform raw data from the device into oxygena-

tion values using the Modified Beer-Lambert law (MBLL) [136]. We also applied fil-

tering algorithms to remove high-frequency noise, physiological artefacts such as heart-

beats and motion derived artefacts. To perform this preprocessing step in this experi-

ment we used the Matlab Toolbox, NIRS-SPM [150]. We performed de-trending using

a discrete cosine transform with a high frequency cut off of 128 seconds. The baseline

was removed, and low pass filtering was performed with a Gaussian filter with a width

of 1 second. We also considered the delay induced by the hemodynamic response [136]

by omitting the first 10s of the trial when processing the data [105].

The Biopac fNIRS device used in this study provides 16 channels of brain data

readings. From the MBLL we receive Hb, HbO and TotalHb (Hb + HbO) values for

each channel. Measures were synthesised by combining specific channels averages to

form a single measurement. Channels 3,4,5,6 were used to represent the left side and

channels 11,12,13,14 formed the right side in these measurements. For the full left and

right measures see Table 5.2. An overall measurement was produced by averaging the

data from all 16 channels.

Experiment Software

When designing the study we placed a strong emphasis on automating the running of

the study and collection of the associated data. With the exception of the brain data, all
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other measures were collected from a single program. We developed this program using

PEBL: The Psychology Experiment Building Language [97]. The language provides a

convenient set of features including accurate experiment timing and predefined psy-

chology/study procedures such as demographic questionnaires. Of particular relevance

to this study was the pre-defined, computerised version of NASA-TLX.

5.2.5 Study Hypothesis

From the research aims and questions presented, we propose the following hypotheses:

A There will be a significant difference in performance between conditions C1 and C2.

B There will be a difference in workload between conditions C1 and C2.

C There will be a relationship between the NASA-TLX ratings and fNIRS data.

5.2.6 Participants

Twenty participants (14 male, 6 female) with an average age of 28.55 years were re-

cruited to take part in the study. Participants were recruited from the University of

Nottingham, and included a mix of staff members and students from a range of dis-

ciplines. All participants had normal or corrected vision and reported no history of

head trauma or brain damage. The study was approved by the school’s ethics commit-

tee. Participants provided informed consent, and were compensated with £15 in gift

vouchers.

5.3 Results

The aim of this study is to identify whether fNIRS is suitable in the detection of work-

load, with the eventual aim of using the imaging technique to detect workload overload.

Our hypothesis state that the workload measurement with fNIRS should correlate with

the measures observed with the NASA-TLX scale, and thus show the relationship be-

tween fNIRS and workload. We report below results in order of the stated hypothesis.

————————————-
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5.3.1 Performance differences between conditions C1 and C2

The aim of hypothesis A was to identify if there was a significant difference in perfor-

mance between conditions C1 and C2. In other words, trying to investigate whether

or not participants felt overloaded during condition C2 compared to condition C1, and

whether this had a significant impact on participants performance data (due to the addi-

tional demands on users through the continuous non-sense verbalisation).

A series of paired sample t-tests were conducted for all collected performance mea-

sures (including measures of task accuracy and response time). Against hypothesis

A, the analysis showed no significant difference in task accuracy between conditions.

There were no statistical significant differences in performance between the two con-

ditions, and there was no difference in the number of tasks correctly calculated in each

condition.

We can attribute this to the findings of Geddie et al [47], who states: “two sys-

tems with the same level of overall performance may impose quite different levels of

workload on operators”. This was also discussed by Sharples and Megaw [121] in the

Framework for mental workload definition and evaluation (see Figure 2.8).

Despite the non-significant results, it is interesting to observe that the average time

to complete the tasks in C1 was higher than the average time to complete the tasks in C2

(see Figure 5.3). This is indeed surprising, however, this effect might have been caused

by the frustrating secondary task (non-sense verbalization during a verbal task) rather

than a lower workload in the first condition.

5.3.2 Workload differences between conditions C1 and C2.

The aim of Hypothesis B was to understand the impact of non-sense verbalization on

participants’ workload. As described in the previous section, we collected two types of

workload data, one capturing participants’ subjective workload levels using the NASA-

TLX questionnaire, and one objective measure using fNIRS.

Subjective workload using the NASA TLX scale

In the case of NASA-TLX questionnaire, we have analysed both, the weighted score

across all its sub-scale, as well as each individual sub-scale alone. In favour of hy-

69



fNIRS Validity and Sensitivity - Moving towards continuous real time measure of
workload

Figure 5.3 Average Time to complete the task in C1 and C2.

pothesis B, we found significant differences between conditions in the NASA-TLX

scales: Mental Effort, Mental Demands, and Physical Demands. Twenty participants

were recruited to understand whether non-sense verbalization elicited a higher per-

ceived workload compared to the baseline condition. Statistical tests showed that B2

created significantly more mental effort than B1 (Z = −2.058, p < 0.05), and it re-

quired more mental demands (Z = −2.292, p < 0.05). A Wilcoxon signed-rank test

showed that C2 created significantly more mental effort than C1 - a statistically sig-

nificant median increase in the presence of non-sense verbalization for the Mental Ef-

fort subscale (mean rank C2 = 8.68 compared to the baseline of performing the task

alone in C1 = 7.67,z = 2.346, p < .019), and it required more mental demand (mean

rank C2 = 7.5 compared to the baseline condition in C1 = 5.8,z = 2.292, p < .022).

Participants also rated C2 being more physically demanding in the Physical Demand

Subscale (mean rank C2 = 9.8 compared to the baseline of performing the task alone

in C1 = 3.3,z = 2.263, p < .024). This shows that participants found the additional

utterance of the nonsense verbalization whilst solving the maths problems inducing a

greater physical demand than the other condition.
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fNIRS results

As shown in Figure 5.4, OverallHbO was, as expected, higher during C2 compared to

C1. This follows a similar pattern to NASA-TLX measure, indicating a relationship

between the two. As this effect was not statistically significant directly on fNIRS data,

further analysis was performed. We found a statistical difference on the effects on

of rest time at the end of each condition in fNIRS data: values at rest after C2 were

significantly higher than values at rest after C1 (p = 0.05).

Figure 5.4 Overall Oxygenation comparison between C1 and C2.

Hypothesis B stated that a difference in workload should be observed between con-

ditions C1 and C2 in the study. We found a significant amount of evidence to support

this hypothesis, we can therefore reject the null hypothesis and accept hypothesis B.

5.3.3 Relationship between the NASA-TLX ratings and fNIRS data

In relation to workload, and specifically workload overload situations, it is not necessar-

ily the case that our task was not demanding enough to elicit an overload state. Rather,

since the performance measure used here were averages across all problems in each

condition, some of the overload situations may be hidden through averaging. Hypothe-

sis C states that there is a relationship between NASA-TLX and the measures obtained

from the fNIRS device. Correlations between performance scales from unweighted

NASA-TLX and performance data were found to support this hypothesis:
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• A Pearson correlation (r =−0.340, p= 0.03) exists between overall deoxygenated

hemoglobin and the mental effort subscale measure of NASA-TLX. This finding

agrees with Peck et al [105] who found that decreases in deoxygenated hemoglobin

correlated with increased mental effort in NASA-TLX.

• A Spearman test (r =−0.352, p = 0.02) identified a negative correlation between

the Total oxygenation (HbO + Hb) and Mental Demand subscale from NASA-

TLX questionnaire.

We believe the relationship between fNIRS and subjective measurements of work-

load could be stronger if compared with continuous subjective measurements rather

than a retrospective technique (such as NASA-TLX). Further in this thesis, we investi-

gate the relationship between fNIRS and ISA, a continuous real time subjective measure

of workload, and we expect a stronger relationship between the two.

5.4 Discussion

The aim of this research was to investigate how fNIRS could be a suitable technique for

detecting workload, and explore the sensitivity and validity of the measure. We devised

a mathematical arithmetic task with varying difficulties to elicit different workload re-

quirements from participants. Additionally, we introduced another condition which

included a nonsense utterance (as a secondary task), requiring the use of additional,

non-complementary resources.

The results of this study support the thesis research question RQ2, that aims to

investigate how fNIRS can be used to assess workload, and indeed fNIRS could be

used to indicate changes in workload between the compared conditions. The same

study contributes to the thesis research question RQ1b, which investigates the reliability

of fNIRS in presence of various artefacts. This one in particular was contributing to

the understanding of fNIRS reliability in the presence of non-sense verbalization as an

artefact. We found fNIRS and NASA-TLX technique complementary to each other, and

the results showed a relationship between the two even though NASA-TLX is a one off

measure, whereas fNIRS is a continuous one.
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5.4.1 Articulatory suppression during the mathematical arithmetic

task

As described above, in this study we used a mathematical arithmetic task that involved

mental calculations. There were two investigated conditions, one where participants

were asked to perform the task alone, and one where they also performed a verbal

utterance simultaneously while performing the task in order to increase workload.

During mental calculations, the elements of working memory are know to be highly

important. Logie et. al. [83] discuss the general implications for the role of working

memory in arithmetic problem solving, and showed how the central executive compo-

nent of working memory is necessary when performing the calculations required for

mental addition but also essential in producing approximately correct answers. They

additionally discuss how other elements such as the visuospatial resources are involved

in approximations and the subvocal and rehearsal is providing means of maintaining

accuracy.

Therefore, one could argue that the verbal utterance used in this study played the

role of articulatory suppression during a mental arithmetic task. Our perspective is

that the verbal utterance did play this role, overloading specific resources in working

memory, however, the purpose of the study condition was indeed to create interference

and increase workload (compared to the baseline). In this study we were more interested

in how can fNIRS distinguish between various levels of workload, and less focused on

what exactly was the cause of the workload differences.

5.4.2 Performance measures to reflect participants’ workload.

It is known that participants’ workload could be assessed using primary and secondary

performance measures. This is based on the assumption that there is a direct relation-

ship between task demands and performance outcomes; when task demands increase,

there is a high chance of participants’ performance to decline. In this study, we have

collected participants performance throughout the conditions, and stated hypothesis ac-

cordingly. Therefore, a significant difference in the performance data was expected

between conditions C1 and C2, due to the utterance and extra-demands placed upon

participants during C2.
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As there was no statistical significance in performance between the two conditions,

and there was a statistical significance in the subjective workload measure, a discussion

is raised on the relationship between performance measures and workload. Although

some studies showed a direct relationship between workload and task performance, oth-

ers showed dissociations between the two [103, 138], mostly in the context of subjective

measures [50, 151]. The results in this study, add to the growing discussion and pre-

vious findings of Geddie et al [47], who states: “two systems with the same level of

overall performance may impose quite different levels of workload on operators”. This

effect was also discussed by Sharples and Megaw [121] in the Framework for mental

workload definition and evaluation (see Figure 2.8).

5.4.3 NASA-TLX questionnaire

In this study we have collected participants’ perceived workload using the NASA-TLX

questionnaire. There was an expected difference in workload between C1 and C2, due

to the additional utterance and demands placed upon participants by the simultaneous

non-sense verbalization task (of verbalizing “Blah Blah”) while performing the verbal

“countdown” problems.

The weighted score across all the sub-scales, as well as each individual subscale

was analysed. Although the weighted score was not significant, the Mental Demand,

Physical Demand and Mental Effort sub-scales were conclusive. The results suggest, as

expected, increased mental effort, physical effort and mental demand in the presence of

the non-sense verbalization task, as hypothesised (Hypothesis B).

5.4.4 fNIRS - continuously assessing workload

Activations in the left side of the pre-frontal cortex are known to occur during semantic,

relative to non-semantic, tasks that relate or involve “the generation of words to seman-

tic cues or the classification of words or pictures into semantic categories” [45]. Due to

the physical placement of our fNIRS device on participants foreheads, we can discount

the interaction between Broca’s area and our results as it does not fall within the reach

of our device.

fNIRS is picking up an indicator related to mental workload and the fNIRS data
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showed a higher workload during C2 compared to C1. This could be explained based

on the non-compatibility and non-complementarity resources used during B2 with the

mathematical reasoning task.

Despite not finding any significant differences with fNIRS data directly, further

analysis showed how fNIRS results found an indicator related to mental workload and

that C2 induces more workload, and how fNIRS measure is complementary to the ex-

isting measure, NASA-TLX.

One of the reasons for not having significance on the conditions data with fNIRS

could have been the power of the study; increasing the number of participants would

increase power, reduce type II error and positively impact our findings; hence the after

effect we found in the rest data. Also we note that overload situations might be hidden

through averaging the fNIRS data over conditions. Data that cannot be identified with

the NASA-TLX questionnaire might be detected using fNIRS.

This experiment followed a block design analysis, having two conditions with an

expected varying demand. Therefore, it was quite simple to draw hypothesis and in-

terpret results. One of the future challenges, is moving beyond block design, towards

continuous assessment of workload during task, in less controlled settings. One solution

can be having tasks that are easily modelled in terms of their demand placed upon users.

A different approach could include a second continuous workload measure, having it as

a reference in future fNIRS experiments.

5.4.5 Relationship between subjective and objective measures: in-

sights into using a continuous subjective measure

Workload is a construct that sits in the intersection of multiple contributing factors (as

presented by Sharples and Megaw [121] in the framework for mental workload def-

inition and measurement - Figure 2.8), that could be categorized depending on the

measurement technique. For example, one will consider capturing the different ele-

ments that influence demand on an individual, or the elements that have an impact on

the individual’s performance, or how the individual perceives different changes in task

demands.

In this study, we attempted to capture participants’ workload by:
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• evaluating participants’ performance during the study,

• capturing participants’ perception of their load using the self-assessment NASA-

TLX questionnaire,

• and, using fNIRS to capture participants physiological (brain) responses to dif-

ferent levels of task demands.

One of the aims of this thesis (and research question RQ2a) was validating the

fNIRS technique for assessing workload. This is one of the criteria when selecting and

establishing a workload measurement techniques, as proposed by previous authors (e.g.

[101] and [62]).

We have therefore attempted to understand the relationship between the different

techniques used in this study. The relationship between fNIRS and NASA-TLX provide

insight into fNIRS ability to detect different levels of workload. Coinciding with the

findings from [105] and [37], this study suggested that fNIRS is in fact capable of

detecting workload continuously, and the technique is able to sense between different

levels of workload.

This study was an example of how a combination of complementary measures

(NASA-TLX, fNIRS and other measures of workload) can provide greater insight into

human mental workload. fNIRS property of being a continuous measure enables the

detection of workload states that are not observable in NASA-TLX data alone.

An interesting discussion when comparing fNIRS measure with NASA-TLX is the

different nature of the two measures. Whilst NASA-TLX is a one off questionnaire at

the end of a condition or experiment, fNIRS is a continuous measure that captures in-

sights throughout the experiment. Therefore, the comparison between the two measures

is difficult. However, one solution can be comparing fNIRS to a continuous subjec-

tive measure, such as ISA (the Instantaneous Self Assessment). The following chapter

(Chapter 6) presents one study where fNIRS is compared to ISA.

This works and the ones presented in the next chapter contribute towards research

question RQ2a.
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5.4.6 fNIRS - use in evaluation settings

One of the aims in this study was evaluating the potential of using fNIRS as a sensitive

measure for evaluating participants’ workload in lab-based evaluation settings. fNIRS

was chosen for its non invasive nature, portability and relative resilience to motion arte-

facts as presented in the previous chapter (Chapter 4). This chapter further investigated

the suitability of the technology in lab-based evaluation settings in the presence of ver-

balization, a typical artefact in such settings. This was in line with the thesis research

questions RQ1b. We found the device to be suitable ecologically for such settings, pro-

viding rich data about the interaction in the presence of verbalization, with minimal

distraction and interference. Furthermore, at the end of the study, participants were

informally questioned about their comfort and experience with regards to wearing the

fNIRS device. No participant described feeling particularly uncomfortable during the

study, some did however state that they began to experience some discomfort towards

the end of the study. Therefore, it is advisable that studies utilising fNIRS, and the par-

ticular headband used in this study, should aim to keep study sessions below one hour

in a single sitting.

In line with the research question RQ1b we found fNIRS well suited to typical

evaluation and usability testing settings.

5.5 Chapter Summary

In this thesis so far we have investigated the reliability of fNIRS in lab-based evaluation

settings. We discussed the consideration for its use for Human Computer Interaction

research, and measured the impact of artefacts typical for this sort of study settings. This

chapter further validated the technique, by comparing it to the widely used subjective

technique NASA-TLX. Although fNIRS proved to follow similar patterns in terms of

sensitivity to workload, considerations were discussed whether a continuous subjective

technique is more appropriate for comparison to fNIRS, and ISA was proposed. This

chapter also explored the challenges of moving beyond block design, and future studies

were proposed where fNIRS should be used to assess workload continuously. The next

chapter will further investigate the validity and sensitivity of the measure by looking at

other correlations between fNIRS and continuous subjective techniques for assessing
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workload. However, fNIRS proved to be a useful measure during Human Computer

Interaction, and its use in real time for continuous assessment and feedback of workload

is proposed for the next chapter.
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Chapter 6

Workload Alert. Using Physiological

Data to Assess and Feedback

Workload in real-time

6.1 Introduction

How can a real time, continuous version of fNIRS be used to give workload feedback to

the user during tasks?

Up to this point, the works presented in this thesis showed how various techniques

can be applied with fNIRS in order to assess users mental workload during human com-

puter interaction studies. Chapter 4 presented the reliability of fNIRS in such settings,

the following chapter showed the sensitivity of the measure and its ability to distinguish

different levels of workload that can be used in studies in order to evaluate interactions.

This chapter presents the final study in this thesis, which explores how a real time,

continuous version of fNIRS can be used to give workload feedback to the users during

tasks. Therefore, the first part of the chapter includes the literature review on feed-

back. It will address RQ3 with the associated RQ3a and RQ3b, exploring the impact of

workload feedback on both, task performance and participants’ subjective ratings. This

chapter is based on the “Workload Alerts - Using Physiological Measures of Mental

Workload to Provide Feedback during Tasks” paper which was submitted for publi-

cation at the ACM Transactions on Computer-Human Interaction (TOCHI). See the

overview Table 6.1 below.
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Table 6.1 Experiment 3 - Experimental Program Development

No Research Questions and
Aims

Main findings What next?

R
Q

3 How can a real time, con-
tinuous version of fNIRS be
used to give workload feed-
back to the user?

• A rather simple approach to continu-
ously assessing workload using fNIRS
was presented. Objective measure-
ments of brain activity were monitored
using fNIRS and classified based on
individual physiological responses to
task demand into two states of interest:
High and Low workload states. These
were further used to provide real-time
feedback to participants during tasks
using an office dynamic lighting en-
vironment that had programmable of-
fice lamps with capabilities of chang-
ing their colour.

• Participants were affected in differ-
ent ways by the feedback. This was
identified in multiple data streams,
both, objective and subjective, col-
lected during the experiment Some of
the participants described feedback as
a good indicator of “how much” is go-
ing on during the task. Others found
the feedback intrusive.

Although this study was not focused on
measuring in-task behaviour change,
qualitative anecdotes imply that peo-
ple did reflect on their mental workload
and considered their current status. It
would be highly interesting in future
work to more directly study whether or
not there are behavioural markers for
when participants take action based on
their feedback.

R
Q

3(
a,

b)

• Explore the impact of
workload feedback on
task performance.

• Explore the impact of
workload feedback on on
subjective ratings.

• Both subjective and objective mea-
surements of workload used in this
study, provide evidence that partici-
pants’ mental workload was associ-
ated with task demand.

• The performance and perceived per-
formance results suggested a negative
impact in the presence of the concur-
rent subjective workload measurement
technique used, ISA, most likely due
to the additional required resources.
We found that this was not the case
with providing objective feedback of
workload.

• Although not significant within our
sample, feedback appeared to slightly
improve actual performance and par-
ticipants perceived that they per-
formed slightly better.

• One of the future directions of this
work could be moving towards the
assessment of workload of every-
day task, moving beyond controlled
lab-settings, even moving away from
brain based sensors, using less in-
vasive physiological techniques (e.g.
HR, EDA, BHP).

• In this study we provided partici-
pants with objective based feedback
of their workload during task us-
ing a binary feedback type for two
states of interest: high and low work-
load. Future work could also exam-
ine other feedback types, including
more granular types, as noted qual-
itatively by participants during the
post-experiment interview.



6.2 Feedback

Sharples and Megaw [121] described the effect of workload as “the relationship

between primary task performance and the resources demanded by the primary task”.

They illustrate two causes of decrease in performance: 1) underload and 2) overload

conditions, where task performance drops as mental workload increases beyond an in-

dividuals capacity. One concern in this thesis is understanding users’ capabilities and

limitations in terms of their Mental Workload during interaction with technology.

The study presented in this chapter explores and investigates whether giving users

real time unobtrusive feedback based upon an objective assessment of their mental

workload can help them understand and manage it during tasks. We compare this feed-

back to traditional methods of asking users to self-assess and report their own mental

workload during tasks.

An individual self-assessment of workload, would potentially allow them to regu-

late their resource allocation to the primary task, therefore not reaching the described 2

conditions. There are a variety of subjective and objective methods used for measuring

mental workload including primary and secondary task analysis [91], physiological or

psychophysiological techniques [59, 76, 108, 127], as well as user opinions using sub-

jective techniques [55, 72]. The most common methods, however, involve asking people

to self report their level of mental workload simultaneously with the task in hand, but

this has been shown to negatively impact workload and task performance itself [133].

In the following sections of this chapter, we present fNIRS as a real-time vs post

experiment tool to assess workload as used in the analysis for this particular study. The

chapter continues by describing a user study comparing the impact of mental workload

feedback to the traditional method of asking users to self-assess and report their own

mental workload, ISA (Instantaneous Self Assessment). We then present the results

of the study, discuss the findings in terms of what we can learn about feedback of

mental workload in general, and give recommendations for further work in this research

direction.

6.2 Feedback

Feedback allows us to review, reflect, and improve our performance. In this section we

review the related works and literature on feedback. In line with the final aim of this
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PhD, we will explore later in this chapter how feedback of workload could be used to

support operators during tasks by allowing them to reflect over their state.

Reflection

The word “reflection” originates from the Latin verb “reflectere” which means bend or

turn ("flectere") backwards or back ("re") [17], and it was used to describe the reflection

of light against some reflective surface (e.g. water, mirror). When the word “reflection”

is used to refer to thinking, meditation, cogitation and similar intellectual activities,

it means that some phenomenon is subjected to thorough consideration, and involves

focusing for a longer period of time on an object in order to get a better and deeper

understanding of it [17]. When the object of reflection is one’s own activity or character,

then we can refer to it as self-reflection.

To explain reflection, Schon discusses the “feeling” when doing something right or

wrong [118]. When one notices doing something good, this will encourage him/her to

repeat the exact thing that he/she did before that proved successful.

Schon describes that “studying the winning habits”, makes us think about the “know-

how” that enabled us to win. This process of understanding and thinking about various

patterns of actions, while we perform various tasks or immediately after, can be ref-

ereed to as reflecting on action and, in some cases, reflecting in action. In this study,

we aim to understand what “feels” appropriate for people when presented with mental

workload feedback. We will be looking to understand if people notice any patterns of

actions when reflecting on their mental workload.

“Reflecting-in-action. If common sense recognizes knowing-in-action, it also

recognizes that we sometimes think about what we are doing. Phrases like “thinking

on your feet”, “keeping your wits about you,” and “learning by doing” suggest not

only that we can think about doing but that we cant think about doing something while

doing it. Some of the most interesting examples of this process occur in the midst of a

performance”. [118]

Starting from knowledge, Schon et. al. [118] presents the following properties of

“knowing”:
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• There are actions, recognitions and judgements which we do not have to think

about during or prior their performance. So knowing, we will carry these out

spontaneously.

• We are often not aware of learning new things, “we simply find ourselves doing

them”.

• Whether we are/were aware or not of the understandings for certain actions, we

are usually unable to describe the knowing which our action reveals.

Moreover, even in the context of workload and performance, Sharples and Megaw

discuss feedback as one of the five relationships in the framework for mental workload

measurements. They present both the unconscious and explicit feedback of perfor-

mance as something that operators monitor during tasks to self-judge and cognitively

think about their state. Similar to the unconscious and explicit feedback of perfor-

mance, the aim of this chapter is to allow operators to reflect on their workload during

task completion.

6.2.1 Biofeedback

Biofeedback is the process of presenting a person or user with feedback of their phys-

iological information such as blood pressure and heart rate. “The motivation for early

biofeedback research was to explore whether displaying real-time physiological infor-

mation ... would be sufficient to condition physiological processes” [131]. As presented

in [131], initial work in the field was much focused on using biofeedback towards the

treatment of chronic illnesses such as migraine headaches and hypertension, but this

was soon disregarded due to unsuccessful validation of the technique [114].

With a different scope, biofeedback was adopted by neuroscience and BCI research.

Neural biofeedback is the biofeedback of brain and neural activity and it plays an es-

sential role in training and control for the BCI system. As presented in [131], a typical

BCI user learns to control a particular brain signal (such as increasing the amplitude

of motor cortical signals, [149]) or to indicate the relative status of a brain signal (also

explored using fNIRS [99]).

In this chapter we will explore neural biofeedback in the context of providing the

user with workload feedback based on their brain activity measurements using fNIRS.
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Metacognition and Mental Workload

Metacognition is the state where one reflects upon one’s thoughts i.e. “thinking about

thinking”. Fletcher [44] showed that when in meta-cognitive states, users can moni-

tor their performance, task cues and other states, and therefore potentially assess their

mental workload throughout the task and ‘act’ accordingly, if given mental workload

feedback. One consideration of continuous subjective measures (ISA) during tasks is

that rating your own mental workload subjectively, will also make you aware of this

information, potentially having an impact on your meta-cognitive state. The interest

of this study in meta-cognition, is the potential for supporting such acts by presenting

relevant mental workload feedback, but in a way that does not affect task performance

such as continuous subjective methods do.

6.3 Implementation

While Brain-Computer Interfaces (BCIs) were traditionally focused on users with dis-

abilities, providing them direct control or interface with the outside world, current ad-

vances investigate the use of brain as an additional channel of information about healthy

users interacting with technology. This “passive” rather than “active” channel, some-

times called implicit [126], can act as a complementary source of information about

users’ state, that can be combined with traditional methods, or used as an input to sys-

tem, task, or interface. In this section, we present a Workload Feedback System (WFS

- see Figure 6.1) that uses passive BCI to 1) measure, 2) detect, and 3) feedback users’

workload during tasks.

6.3.1 Monitoring workload using fNIRS

Measures of brain activity were recorded using an fNIRS300 device and the associated

Cognitive Optical Brain Imaging (COBI) Studio hardware integrated software platform

provided by Biopac Systems Inc.

For real time use, COBI Studio requires collecting baseline signal levels before the

start of the study conditions that are used in order to calculate oxygenation in real time,

via the Modified Beer Lambert Law (MBLL) [136]. The resulting data was used as an

input for the WFS classification step described later in this section.
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Figure 6.1 The Workload Feedback System WFS

fNIRS data can be further processed and analysed post-experiment, with the advan-

tage of using additional filters and feature extraction techniques discussed below. For

the post-experiment fNIRS analysis the data was processed using fnirSoft, the Compre-

hensive Signal Processing, Analysis and Visualization Platform for Optical Brain Imag-

ing [8]. A low pass filter with cut off frequencies of 0.2 Hz was used in order to remove

high-frequency noise, physiological artefacts such as heartbeats and motion derived

artefacts. Additionally, the Correlation Based Signal Improvement (CBSI) method was

applied [35], a technique designed for fNIRS technology in order to improve detection

of workload. In the analysis, the delay associated with the hemodynamic response [136]

was taken into account using various techniques including: averages across blocks of

data, omitting the first few seconds of the trials when processing, or simply delaying

the trial data by a few seconds [105, 108].

For each participant in the study, the device was placed on the PFC targeting the

Brodmann area 10 (BA10) (see Fig. 6.2). The Biopac fNIRS device provides 16 chan-

nels of brain data reading. Each channel is defined by the relationship between a IR

source and a near by IR detector pair. After the MBLL is calculated, COBI studio

provides a file with two measures HbO and Hb, and for the post experiment analysis

the TotalHb can be calculated (Hb+HbO), and one additional measure of oxygenation
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(OXY) can be obtained from fnirSoft, that is oxygenation (OXY).

Figure 6.2 Brodmann area 10 (BA10) - targeted using fNIRS

6.3.2 Detection of state

As our fNIRS device provides 16 locational channels of data with two readings per sec-

ond, an important step before the study could began was identifying localised Hb/HbO

changes for each participant. There are three reasons for this step: 1) fNIRS data is

highly sensitive to individual differences between participants, 2) the physical place-

ment of the 16 channels varies between participants (based on the shape and size of the

forehead), and 3) different forms of workload create changes in Hb/HbO in different re-

gions of the forehead [87]. We used training tasks to identify the most sensitive region,

and identified the most valuable channel for the WFS system to focus on; the post-task

evaluation, however, utilised recordings from all 16 channels.

Configuration task

With workload having so many different aspects related to the operator performing

a specific task, instead of using e.g. N-Back tasks that are well known for eliciting
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increased levels of workload, we used variations of a task intended to be more rep-

resentative of the complexity of a real world task, with manipulations corresponding

to increased variation of difficulty. This way, we observed the responses associated

with increased demand to our actual task for all the 16 channels and two measures (Hb

and HbO). The study task, described further below, consisted of an Air Traffic Control

game, where participants had to coordinate the landing and departure of aeroplanes.

The calibration phase, therefore, included a 30 seconds resting state of relaxing and

not performing the task, followed by two 30 second variations of increased demands:

low-normal load (3-5 aeroplanes to control), and normal-high load (>7 aeroplanes to

control). Averages of HbO and Hb values were used to calculate range thresholds for

the three periods (rest, low, and high), that were used later on in detecting significant

increases and decreases of workload.

State Tracking

We were particularly interested in monitoring, detecting and feeding back two states of

interest: participants reaching a “high” workload state, as well as going back to a “low”

workload state. Therefore, using the most sensitive channel and using a running window

of 30 seconds, we continuously calculated a rolling average based on the previous 30

seconds worth of readings. The WFS monitored significant increases and decreases

in Hb/HbO (of the selected channel) by comparing each new real-time value with the

rolling average. A high workload state would be detected if HbO/Hb increase/decrease

value was higher than the threshold set during the calibration stage. A low workload

state would be detected in the opposite conditions.

6.3.3 Feedback choice

Once the participant state was detected, the WFS produces a binary integer that can be

used for changing the state of a feedback mechanism. For the purpose of this study,

we specifically designed feedback to be noticeable, but at the same time transparent

and in the background of the task, such that a minimum of resources would be used by

operators.

For our study, the output of the WFS was used to invoke changes in the desk light-

ing around the participant, using Philips Hue Bulbs (programmable light bulbs) in desk
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lamps. Initially, the lighting was set as normal white lighting, which would turn red

when participants entered states detected by the fNIRS measurements to have High

Workload and return to white as participants returned to lower levels of Mental Work-

load. We discuss this colour choice further in the section below.

6.4 Experiment Design

As stated above, our aim was to investigate whether providing people with real-time

feedback on their mental workload, now that we can objectively and reliably measure

it with fNIRS, could facilitate a form of Reflection-in-Action during tasks: that partic-

ipants, in knowing their Mental Workload levels, can take action to manage their task

or workload. Sharples & Megaw 2015, said “Operator workload or effort is not simply

a function of task demands, but is influenced by how the task is perceived by the oper-

ator...”. In this case, we are making the Operator Workload explicit in the model, and

examining the impact on both performance, and the demands of the task.

Our primary aim, therefore, was to evaluate the effectiveness of using the Workload

Feedback System (WFS) to aid an individual’s self awareness of current workload,

such that they could a) be more aware of their mental workload, and b) achieve good

performance outcomes. As a secondary aim, we wanted to examine these outcomes

against one of the widely used techniques for keeping people aware of their workload

during tasks: Instantaneous Self Assessments (ISAs); ISA, described further below,

requires people to self-report their workload at intervals in order to keep them self-

aware of it.

6.4.1 Study Conditions

Based on the aims of the study, our two primary independent variables were: 1) the

use, or not, of the WFS and 2) the use, or not, of ISA reporting. This created four

within-subject repeated-measure conditions, as shown in Table 6.2. Initially, however,

we designed the WFS lights to turn red (from normal white) when participants were

experiencing high workload. However, midway during the study we noted that multiple

participants reported in interviews that the red colour acted as a stressor to their experi-

ence. We decided to identify the participants thus far as Phase 1, and introduced a 3rd
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between-subjects independent variable to create a Phase 2 with the colours reversed:

turning white from red when participants experience high workload. In both lighting

phases, the lights returned to their base colour when workload reduced, and thus could

change back and forth multiple times during each task. We include the colour-based

independent variable in the results, and examine the implications of colour choice in

the discussion.

Table 6.2 Four main conditions in the study

Id Condition Includes WFS Includes ISA
C1 Task Only No No
C2 Feedback Yes No
C3 Feedback + ISA Yes Yes
C4 ISA No Yes

6.4.2 Air Traffic Control (ATC) Task

For the experiment, we required a task that a) increased in difficulty, and b) could be

managed by participants taking action in response to feedback. We selected an ATC

task, using the commercially available Airport Madness 4 Game1, shown in Figure 6.3,

in all task conditions. Participants had to coordinate the landing and departing of as

many aeroplanes as possible, without causing incidents (e.g. collision between aero-

planes); the number of aeroplanes increased over time, thus increasing the demand as

the task progressed. Planes are managed by clicking on the desired plane icon and se-

lecting an appropriate action - ‘Land at runway X’, ‘Go Around’, ‘Increase/Decrease

speed’, ‘change direction’. Similar options existed for planes requiring take off e.g.

‘line up’, ‘immediate take off’. These controls allowed participants to use various

strategies to reduce their mental workload during moments of high demands by e.g.

sending aeroplanes around, managing all landings on one lane and departures on other.

The task interface also presented participants with direct measures of performance (seen

in Figure 6.3), such as the number of landed/departed aeroplanes.

1More information about the study task and a free trial version of the game can be found here: https:
//www.bigfatsimulations.com/game/airportmadness4

89

https://www.bigfatsimulations.com/game/airportmadness4
https://www.bigfatsimulations.com/game/airportmadness4


Workload Alert. Using Physiological Data to Assess and Feedback Workload in
real-time

Figure 6.3 Airport Madness 4 - Screenshot of participant managing the landing of an
aeroplane.

6.4.3 Participants and Study Protocol

A total of 32 participants were recruited to take part in the experiment. Fifteen par-

ticipants (9 male, 6 female) with an average age of 25.3 (SD = 2.31) experienced the

white-to-red lighting in Phase 1, and seventeen (9 male, 8 female) with an average age

of 25.5 (SD = 8.05) experienced the red-to-white lighting in Phase 2. All participants

had normal or corrected vision and reported no history of head trauma or brain dam-

age. Participants were given a £10 voucher as a thank you and remuneration for their

contribution to the project. The study protocol below was approved by the School of

Computer Science ethics committee.

After gaining informed consent, participants began with a task familiarisation tu-

torial. All participants watched the same recorded video that introduced all the inter-

actions with the video, and then were given the opportunity to practice the task until

they felt confident in the game play; participants determined the time when they were

ready to begin the experiment. The WFS was then calibrated for each participant, as

90



6.4 Experiment Design

described in Section 3.

Participants completed each of the four study conditions, which were counterbal-

anced using Latin-square design to account for learning effects. In each condition, they

were required to perform the study task from scratch for a period of seven minutes. If

they were to cause more than three major incidents within a condition, the game would

automatically stop and the study condition would end (this however was not common).

Seven minutes was enough to see numerous workload changes in the lights, but keep the

full length of participation, including training, calibration, four tasks and between-task

rest periods, to approximately one hour. After each condition, participants filled in a

questionnaire to record perceived performance, before moving onto the next condition.

After all four conditions, the study finished with a short interview, where participants

had the chance to discuss the study experience and the way they perceived the WFS.

6.4.4 Measures of Dependent Variables

We collected three forms of data from each condition in the study: fNIRS data, ISA

data, and Performance Data. We also recorded debriefing interviews to gain insights

into participants responses to the conditions that were not otherwise observable in data.

fNIRS data

Although the WFS was only used during the Feedback conditions, participants wore the

fNIRS sensor in all conditions. While the WFS system used a single channel in the most

sensitive region to monitor workload during tasks, comprehensive fNIRS data (HbO

and HO) was recorded from all channels for the duration of all conditions. fNIRS data

was further processed for post-experiment analysis using additional filters and feature

extraction techniques. fNIRS data was processed using fnirSoft, the Comprehensive

Signal Processing, Analysis and Visualization Platform for Optical Brain Imaging [8].

A low pass filter with cut off frequencies of 0.2 Hz was used in order to remove high-

frequency noise, physiological artefacts such as heartbeats and motion derived artefacts.

Additionally, we applied the Correlation Based Signal Improvement (CBSI) filter [35],

a technique designed for fNIRS technology in order to improve detection of workload.

We named the resulting data OXY. In analysing the OXY data, we also considered

the delay associated with the hemodynamic response [136], using various techniques
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including: averages across blocks of data, omitting the first few seconds of the trials

when processing, and simply delaying the trial data [105, 108].

ISA data

During ISA conditions, participants had to respond to the 5-point rating scale on a

mobile device (Figure 6.4) every 30 seconds, prompted by an audible notification; 1

means very low and 5 very high experienced workload. Although the question ‘how

do you rate your workload at present?’ had a small font on the device, all participants

were instructed and familiar with the tool, and had the chance to play with the mobile

app before the start of the experiment. The ISA scores were recorded, as was time-to-

respond to the prompt. It is common for secondary task performance, as with reporting

ISA scores, to drop during periods of extremely high workload. If participants did not

respond to the ISA prompt during a 30 second period, the score was recorded as a 5

(high workload); time-to-respond was calculated from the most recent prompt.

Figure 6.4 Instantaneous Self Assessment (ISA) Recorder App

Performance data

The task was screen captured and recorded for subsequent analysis. Actual performance

was analysed in two ways: 1) the performance outcomes (number of planes landed,

number of take-offs) at the end of each condition, and 2) demand levels at moments

during the task either a) at each ISA interval (number of planes in the air and on the
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ground), or b) demand levels when WFS lighting changed (number of planes in the air

and on the ground). Informally, we were also able to examine the actions and timing

of actions taken by the user after key events such as plane accidents, WFS changes,

and after ISA responses (go around, increase speed, decrease speed, change direction).

After each condition, perceived performance scores were collected using a five point

rating scale (1 - poor, 5 - excellent performance).

Figure 6.5 Framework for Mental Workload Measurement: the relationship between
MWL Feedback, ISA, performance and workload. (Adapted from [121])

6.4.5 Study Hypotheses

To better understand the relationship between Feedback, ISA, workload, and perfor-

mance, we state our hypotheses based on an adapted version of Sharples & Megaw’s

Framework for Mental Workload Measurement 2015, where we controlled the External

Influences. Essentially, as shown in Figure 6.5, our two primary independent variables

are shown as alternatives to the External Influences boxes.

• H1 - Variation in task demand will create measurable differences in Mental Work-

load.

As a baseline, as it is generally expected that increased task demands will generate

increased levels of workload, we therefore expect that changes in task demands

should be observable in both the ISA ratings and the objective measures of work-

load. We expect ISA ratings (H1i in Figure 6.5) to increase with increased task

demand, and fNIRS measures to correlate (H2f), either positively or negatively,

with task demand.
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• H2 - Participants’ performance will be affected, positively or negatively, when

made aware of their mental workload.

Ideally participants may perform better because they are more aware of their

workload without having to self-report using ISA, but may also have decreased

performance if the feedback affects their ability to focus. We expect a lower

performance in the presence of ISA (H2i) because of the activity involved in self-

reporting. However, we do not expect a negative impact on performance from the

WFS lighting changes (H2f).

• H3 - Participants’ perception of performance will be affected positively or nega-

tively, when made aware of their mental workload.

As operators monitor their own performance, unconsciously or explicitly, having

their workload levels presented during tasks should allow operators better reflect

on performance. Aside from actual performance, participant’s perception of their

performance might be affected as they are made aware of their workload levels -

increased workload could create a sense of poorer performance or higher perfor-

mance for both independent variables (H3i and H3f).

• H4 - Participants’ perception and management of the task demands will be af-

fected, positively or negatively, when made aware of their mental workload.

We expect that, given feedback-in-action, participants will think about their state

whilst performing the task. Participants may also then take action to manage and

manipulate the demands of the task, in order to maintain their workload levels

to a particular point. In the case of ISA, H4i in Figure 6.5 highlights that there

is a direct connection from ISA to the task demands, as participants have to do

extra work to report their workload levels. As the WFS does not require addi-

tional effort from participants during tasks, we expect that their task demands

will not change, however, being presented with feedback of their workload levels

more explicitly during tasks, participants perception of the task, and the decisions

during the task may be affected (H4f).
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6.5 Results

Below, we address each of the four hypotheses in subsections; statistical tests were

conducted across both phases to determine whether feedback or ISA conditions had

any impact on task performance and workload. Additional between-phase tests were

used, when relevant, to examine whether there was an effect created by the tertiary

variable of feedback colour (Phase1 vs Phase2).

6.5.1 H1) Variation in task demand will create measurable differ-

ences in Mental Workload

To begin our analysis, we first sought to confirm that our measures of participant mental

workload were affected by and related to the task demand. To do this, task demand

was quantified as the total number of aeroplanes participant was monitoring every 30

seconds (the frequency at which ISA scores were collected). Below we analyse how

both our subjective ratings (ISA) and objective measures (fNIRS) correlate with these

task demands over time.

Subjective ratings from ISA

We found strong correlations between demand and ISA measures, with examples shown

in Figure 6.6, further showing the hypothesis H1i in Figure 6.5. The average correlation

value across all participants, between ISA and demand (measured every 30 seconds)

was r = .68 with the maximum value of r = .899(p = .006) for Participant4 in Phase

2. This correlation was strong for some participants, where P1’s ISA correlation with

task demand in Phase 2 during the ISA Condition, for example, was r = .808, p = .003,

and r = .751, p = .003 in the Feedback+ISA condition. There were, however, several

cases across participants, where ISA did not reflect well its relationship to task demand,

such as when participants were either too busy or to focused on the task and thus did

not respond to the ISA questions (Figure 6.6a). This range of correlations highlights

one of the known limitations of using mid-task self assessment scales, as they rely on

operators rating their workload during tasks.
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(a) Participant2: Demand VS ISA (b) Participant2: Demand VS fNIRS-OXY

(c) Participant6: Demand VS ISA (d) Participant6: Demand VS fNIRS-OXY

Figure 6.6 Emphasizing the value and limitations of ISA (when participants fail to self-
report values of their workload (a) it becomes hard to understand what happened during
the task).

Objective measures from fNIRS

As described in the previous subsection, ISA was not always able to reflect the user’s

state (See Figure 6.6a and Figure 6.6c), and mainly because it relies upon users sub-

jectively reporting how they feel. For the same conditions and the same participants,

Figure 6.6b and Figure 6.6d show how OXY correlates more objectively with the task

demand. The average correlation value across participants, between fNIRS OXY and

demand (measured every 30 seconds) was r = .81 with the maximum value of r =

.973(p = .001) for Participant6 in Phase 2. This shows how fNIRS could be used to

assess workload without relying on a subjective measure such as ISA.
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Summary of H1 Results

Based on these results, we are able reject the null hypothesis and accept H1, as both

subjective and objective measures provide evidence that participants’ mental workload

was associated with task demand. We conclude, however, that our objective measure

(hypothesis H1f in Figure 6.5) was able to provide stronger and more consistent evi-

dence of increased workload than subjective ratings (hypothesis H1i).

6.5.2 H2) Participants’ performance will be affected, positively or

negatively, when made aware of their mental workload

Considering all participants across both phases, a series of two-way repeated measure

ANOVAs showed no statistical significance in the three performance measures (Total

Departures, Total Landings and Total Performance) between the four conditions. Total

Performance, shown in Figure 6.7 for example, was different between the two phases.

Similarly, the number of departures2 and landings varied between phases, especially

during the presence of both Feedback + ISA (see Figure 6.8). Participants performed

slightly worse in Task Only condition in Phase 2 (the mean Total Departures was 10.2

for Phase 1 and 11.13 for Phase 2, and the mean Total Landings was 18.15 for Phase

1 and 17.36 for Phase 2), and slightly better in Feedback+ISA condition in the same

study, compared to Phase 1 (the mean Total Departures was 11.1 for Phase 1 and 9.93

for Phase 2, and the mean Total Landings was 16.46 for Phase 1 and 18.43 for Phase 2).

Phase 1 performance data

To consider the performance in Phase 1 (white light changed to red in periods of high

workload as detected via fNIRS), we examine the Total Landings and Total Departures

data over the four conditions in Phase 1, shown in the blue bars of Figure 6.8. For

all the cases, the Total Departures, the Total Landings and the Total Performance mea-

sures, performance appeared to decrease in the presence of ISA, suggesting that ISA

might have a negative effect over the average participants’ performance, and therefore

affecting hypothesis H2i in Figure 6.5. This is not the case in the presence of Feed-

2There was one outlier in the Total Departures and the Total Performance data, which had a studen-
tized residual value greater than ±3. The outlier was removed from the analysis.
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Figure 6.7 Total performance difference between Phase 1 and Phase 2 - mean scores
across conditions

back, therefore, hypothesis H2f presents workload feedback having no explicit negative

effects on performance.

There was no statistical significance found in the Total Departures with feedback

impact F(1,12) = .055, p = .819, and ISA impact F(1,12) = 2.476, p = .142 as as-

sessed by a two-way repeated measure ANOVA. There was also no statistically signifi-

cant two-way interaction either between Feedback and ISA effect, F(1,12) = .014, p =

.907. For the Total Landings, the presence of feedback showed no significant impact

F(1,12) = 1.147, p = .305, however ISA significantly reduced performance F(1,12) =

5.637, p = .035 as assessed by a two-way repeated measure ANOVA. These results in-

dicate that participants who responded to the ISA scale during task performance per-

formed less well on the task, hence, hypothesis H2i in Figure 6.5 suggests a negative

impact of ISA use on performance. There was no statistically significant two-way in-

teraction between Feedback and ISA effect, F(1,12) = .014, p = .907. A two way

repeated measure ANOVA additionally showed the impact of ISA on the Total Perfor-

mance measure F(1,12) = 5.368, p = .039, and no effect of the presence of feedback

was found F(1,12) = .675, p = .427, nor the two way interaction between the two,

F(1,12) = .007, p = .937. From this we conclude that objective feedback provided via

the change in lighting colour had no explicit negative impact on performance scores,

and thus all the significant differences are caused by the deployment of ISA.
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(a) Departures

(b) Landings

Figure 6.8 Performance data across the 2 phases

Phase 2 performance data

In Phase 2 (red light changed to white in periods of high workload as detected via

fNIRS), looking at the red bars in Figure 6.8, the negative effect of ISA was not found

to be significant. Instead, the graph suggests a higher average performance during the

presence of Feedback, after the colour change via lighting. This may suggest that work-

load feedback, and hypothesis H2f in Figure 6.5 may have a positive impact on perfor-

mance.

Feedback showed no significant impact on performance with Total Departures F(1,14)=

.008, p = .932, Total Landings F(1,13) = 0.127, p = .727, and Total Performance

F(1,13) = 0.072, p = .793. ISA had no longer significant impact on performance, with

Total Departures F(1,14) = .229, p = .639, Total Landings F(1,13) = .011, p = .919,

and Total Performance F(1,13) = 0.064, p = .804 There was a statistically significant

two-way interaction between ISA and Feedback effect on all performance measures;
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Total Departures F(1,14) = 7.565, p = .015, Total Landings F(1,13) = 6.475, p =

.024, and Total Performance F(1,13) = 9.388, p = .009. The average performance

across participants was lower in the absence of Feedback and ISA, compared to all

other conditions as shown in Figure 6.8.

Summary of H2 Results

Based on the results above, we reject the null hypothesis and accept H2 for ISA only,

and not for our WFS. Overall, we found that performance was negatively impacted by

ISA - an effect that was exaggerated when also being given feedback by our WFS - but

overall we did not see performance being impacted by the WFS alone.

6.5.3 H3) Participants’ perception of their performance and work-

load will be affected, positively or negatively, when made aware

of their mental workload

Perceived Performance Scores

A five point rating scale was used to capture participants’ subjective perception of per-

formance after each condition. Across both phases, a Friedman test was conducted to

understand the within-subjects effects between all levels of the two factors: Feedback

and ISA on perceived performance scores with Feedback-NoFeedback x ISA-NoISA

conditions. Results showed a statistically significant difference between conditions,

N = 30,X (2) = 9.072, p = .05 (Figure 6.9). Pairwise comparisons were performed with

a Bonferroni correction for multiple comparisons. There was a significant difference

in the perceived performance scores between Feedback+ISA and Task alone p = 0.05,

and between Feedback+ISA and Feedback condition p = 0.05. Figure 6.9 shows how

participants’ perceived performance was significantly lower when ISA present. These

results show how ISA significantly reduces participants’ perceived performance (hy-

potheses H2i and H3i), while the presence of feedback has no negative impact (hy-

potheses H2f and H3f).

For each of the two phases, the subjective performance scale generally showed lower

perception of performance during the presence of ISA as showed in Figure 6.10, this

being somewhat expected. This is directly related to hypotheses H4i, H2i, and H3i
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Figure 6.9 Combined Phase 1 and Phase 2 mean perceived performance scores across
conditions

in Figure 6.5. It is interesting to observe how the perception of performance increased

during the presence of ISA for Phase 2 compared to Phase 1, this effect being significant

in Feedback+ISA condition. This suggests an impact caused by the feedback type. To

investigate the within-subjects effects between all levels of the two factors Feedback and

ISA on perceived performance scores, a Friedman test was conducted with Feedback-

NoFeedback x ISA-NoISA conditions for each phase separately.

Phase 1 perceived performance

In Phase 1, the test showed statistically significant difference between conditions, X (2)=

12.756, p = .005,d f = 3. Pairwise comparisons were performed with a Bonferroni cor-

rection for multiple comparisons. This shows that ISA presence significantly impacted

the perceived performance scores in the presence of feedback p = .003, but also com-

pared to the baseline condition p= .013. However, the presence vs absence of workload

feedback had no impact on the perceived performance indicating that the presence of

ISA negatively affected perceived performance. From these results we concluded that,

in contrast to feedback and the hypotheses H2f and H3f, ISA and the hypotheses H2i

and H3i significantly reduced task performance as well as perceived task performance;

this was further significantly exaggerated by objective feedback.
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Figure 6.10 Mean perceived performance scores across conditions

Phase 2 perceived performance

Similar to the performance data, the subjective perception of performance data in-

creased for the Feedback + ISA condition in Phase 2 (Figure 6.10). The Friedman test

revealed no more significance in the perceived performance data between conditions,

the presents of ISA having no longer significant impact X (2) = 1.38, p = .71,d f = 3.

Comparing Phases

A Mann-Whitney U test was conducted for each of the four conditions between the two

studies to determine if there were any significant differences in perceived performance

scores between Phase 1 and Phase 2. The test showed statistical significance between

the two studies in the presence of both workload feedback and ISA. The distribution of

perceived performance scores between Phase 1 and Phase 2 was different as assessed by

visual inspection. Mean rank value for Phase 1 was 12.47 (N=15) and for Phase 2 18.53

(N=15). The test showed significant statistical difference in perceived performance

scores between the two studies in the Feedback + ISA condition, with N = 30,U =

158, and Asymptotic Sig. (2-sided test) p = 0.05. This finding suggests there was a

difference between the feedback type used, with Phase 2 type having higher perceived

performance scores.
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Summary of H3 Results

We found that the deployment of ISA significantly reduced participants’ perceived per-

formance (hypotheses H2i and H3i), while the presence of feedback had no negative

impact (hypotheses H2f and H3f in 6.5). However, as with actual performance, it is

interesting to note that the mean ISA score (across participants) revealed higher per-

ceived workload in the presence of our WFS (see Figure 6.10). We again conclude

that the impact of deploying ISA was exaggerated by additional demands, since partic-

ipants’ perception of workload was affected by presence of ISA, but not by WFS alone.

Overall, we have enough evidence to reject the null hypothesis and accept H3 for ISA,

but not in the case of the WFS.

6.5.4 H4). Participants’ perception and management of the task

demand will be affected, positively or negatively, when made

aware of their mental workload

Each participant took part in a short post-experiment interview about their experience

during the study. The focus of this was to collect opinions related to perception of

mental workload feedback, ISA, the way they foresee feedback of workload in their

every day lives and their views of its use in a critical jobs scenario, similar to the task

they performed.

Impact of Feedback on participants

In Phase 1, 11/15 of participants reported feedback affected them, 3/15 reported feed-

back did not affect them in any way and just 1/15 was not sure about it (See Figure

6.11a). In Phase 2, only 6/17 reported feedback affected them, 6/17 reported feedback

did not affect them, and 4/17 were not sure about it (See Figure 6.11b). This finding

suggests that one particular feedback type (Phase 1) had more of an effect on partici-

pants, or the case where feedback in Phase 2 was more transparent, hence, not directly

affecting participants’ perception. However, it does not reflect the type of effects (neg-

ative or positive) the feedback had.

Participants were affected in different ways by the feedback. Some participants

described feedback as a good indicator of “how much” is going on during the task; P11
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(a) Phase 1 (b) Phase 2

Figure 6.11 The impact of different feedback on participants

(Phase 1) gave an example of how he/she used the feedback during the task: “helpful

in that you knew there was a lot going on and you are concentrating, which meant you

had to pay extra attention to the details. When the lights went red, it meant that, yeah,

I am probably concentrating a lot, that means I am probably miss some of the smaller

aircrafts, and I would try and go back and have a look around to see if I was missing

any small planes”. P9 (Phase 1) had similar feelings ”They did help me to figure out

how I was feeling, and how I was going. Sometimes when it went bright red, I thought

to myself, I need to be calm, and think for a second what was going on in the game

again. It made me take a second and just relax, that is all”.

In other cases participants felt that feedback was stressing them even more and

making them feel anxious: P1 (Phase 1) said “So whenever it went red, it was kind

of stressful ... and I felt like why are you showing me red if I am stressed? ... It was

NOTICEABLE! So in the sense that if I was doing a thing and I was stressed as I was

playing that game, and I was trying to focus on the game, then I am being told that

I need to focus more on the game, than that does not really help me, does it?”, and

P7 (Phase 1) said “It does not really inform me about my next decision, because I did

not stop even when the lights were red. It actually added to the stress. I tried to be

calm...” Similar feelings were found in participants’ opinions for Phase 2. P17 (Phase

2) used the feedback to ‘relax’ during stressful moments “I enjoyed the experience and

I think the feedback is very... indicative. Though not very specific... But for the person

interacting with the system, is like.... oh now I am tensed... maybe I should relax”.

Even though some participants noticed and used the feedback, others ignored it, and

better focused on the task, P22 (Phase 2) said “I did notice it. I did not pay attention to

it.” and P28 (Phase 2) “I did not worry too much because sometimes you forget about
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feedback”.

Validity, Accuracy, and Delay

Participants also questioned the validity and correctness of the feedback. There were

mixed views on what the feedback was informing, and how it worked. P29 (Phase 2)

said “I noticed that when I would get calmed they would change to red. But sometimes I

thought that I was working and they would still be red.”, P2 (Phase 1) said “...most of the

times it was accurate...”, and P4 (Phase 1) said “I was impressed though, they seemed

what was not immediately responsive, but accurate. They seemed to change red when

I was under a higher workload. When I was under more stress I said: crap...another

plane is coming in, they will crash!”. It did seem to pick up on that quite a lot which

was cool”. These comments imply that, despite being able to perceive the delay caused

by the hemodynamic response [136], participants found the WFS to be mostly accurate

to their current perceived workload.

Granularity and other limitations

One of the limitations identified by participants during the study was the granularity

of the WFS feedback; P1 (Phase 1) said “I was a bit annoyed in a way, because the

changes were not gradual, it is like uh, it is now white and it is suddenly turning red

ekhhhhh (electroshock noises) ... I think if I were to align it with what I felt my work-

load to be at that point in time, then the colour changes would be much more frequent”,

and P13 (Phase 1) also suggested a more transparent modality of communicating the

feedback “...they seem to switch from an extreme to another and apart from them being

in my eyes and bothering me while I was looking at the screen I didn’t really pay at-

tention to them”. P14 (Phase 1) added to this “If it was in the background more in the

background it would have been nicer. Now it was straight in your face”.

Impact of ISA on participants

During the interview, participants were also asked thoughts about ISA, its use, whether

they think ISA had any impact on their performance and whether it was ambient or dis-

tracting by nature. We found 7/15 participants in Phase 1 and 5/17 in Phase 2 believed

their performance was worse because of it, 6/15 in Phase 1 and 9/17 in Phase 2 believed
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(a) Phase 1 (b) Phase 2

Figure 6.12 The impact of ISA on participants perception.

it had no effects and the rest were not sure about it (see Figure 6.12a and Figure 6.12b).

One participant reported that ISA had no impact on them, however, in the presence of

both, feedback and ISA, it made him/her think: P16 (Phase 2) saying: “No. It did not

bother me that much. But at times it made me think, during the condition with feedback

as well, especially when there was a discrepancy between the two”. The majority of

participants who reported ISA having a negative impact on them, also reported losing

focus when having to answer ISA questionnaire during the task. P26 (Phase 2) said “It

definitely made it worse ... because it takes you out of the action, and then it takes a

little while to figure out where you were”. P31 (Phase 2) reported that ISA had a con-

tinuous negative impact, “Sometimes I would hear the notification in my subconscious,

and I did not pay attention because I was very concentrated on the task”.

Others said they ignored answering the questions when concentrating on the task:

P7 (Phase 1) reported “I do not think I paid much of attention of answering the ques-

tions. I know I missed some, and for some questions I did not really think about the

question, I just answered it”, and similar view was found with P9 (Phase 1) “I forgot

about the questionnaire as the task demand went higher. I completely blanked out. I

focused on it when I was relaxed. When I got busy it went down my mind. Ignored

it sometimes...”. Some participants, however, considered ISA easy and fast, and ISA

presence improving their performance in some cases: P8 (Phase 1) reported “...it is

very easy it took less than a second, and the buttons were really big. I think it was a

normal performance, even better than normal”, and P13 (Phase 1) had similar feelings

“just another button I had to press, I do not think it has an impact on my performance”;

P21 (Phase 2) described ISA as an “automatic move”.
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Summary of H4 Results

This hypothesis was mostly examined through the post-experiment interview and par-

ticipants’ opinions, since we did not have any objective measurements of how people

reflected on the feedback mid-task. It is clear that both ISA and feedback had an impact

on participants’ management of the task. Although the opinions were divided, and par-

ticipants were “affected” differently by the feedback and ISA, the findings were very

constructive and informative. We found insights to confirm that participants noticed the

feedback and considered it at a meta-cognitive level during the task, and therefore have

enough evidence to reject the null hypothesis in case of H4. In comparison to ISA, P24

(Phase 2) said “I think the lights are more effective, because the cellphone app (ISA)

just made me feel more busy. They lights show me when I am busy, where ISA made me

feel busy”. In the discussion section below, we consider what future work may do to

investigate this finding in more detail.

6.6 Discussion and summary

This chapter describes an alternative way to raise self-awareness of mental workload,

through providing workload feedback based upon a concurrent objective measure, and

our results showed that it did so without negatively affecting performance (as with ISA).

We expected that if users are alerted that they are approaching a drop/dip in performance

because of high/low workload, then they might be able to take action to avoid it. Table

6.3 summarizes the results of the study that relate to the relationships presented in the

adapted version of Sharples & Megaw’s Framework for Mental Workload Measurement

[121] (shown earlier in Figure 6.5).

6.6.1 Impact of ISA

In line with the findings of previous work [81, 133], we also found that self-reporting

mental workload through ISA had a significant impact on both actual and perceived

performance. In the task itself, participants landed significantly fewer planes than in

other conditions. As is also typically expected with ISA, we saw many participants miss

ISA entries when under high workload, and were often surprised when we showed them

gaps in their self-reporting. P13, who missed several ISA responses, said: “I did not
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know if there was a time limit I had to answer. I do not think I missed any”, but said ISA

was “just another button I had to press... it became a mechanical task”. Conversely,

P14 said “It was annoying! I was OK, go away, go away... It is like an alarm in the

morning” and P15 said “Annoying..your phone app workload questionnaire is really

annoying... I did not notice the phone sometimes when I was concentrating on the task,

so completely ignoring ISA. Sometimes people get easily distracted and for this kind

of task it can be dangerous...”. Even though the general feeling was against ISA, some

participants’ perception of ISA was not that bad; P3 said “I do not think that ISA had an

impact on performance...”. These sentiments were generally observable in the data, and

so our findings match the consensus of prior research into both its validity for measuring

mental workload (since it had strong correlation scores) and the interference it has on

the primary task.

6.6.2 Impact of Objective Feedback

The aim of this study was to investigate whether presenting users with real time men-

tal workload feedback, would make them aware of their load without notably reducing

either actual or perceived performance. This was presented in contrast to ISA measure,

which requires the user to reflect upon their mental workload and take action to report

it. In our results, feedback did not affect actual and perceived performance in a negative

way. Although not significant within our sample, feedback appeared to slightly im-

prove actual performance and participants perceived that they performed slightly better

(Feedback Condition - See Figure 6.10). The findings alone, however, do not tell us

whether participants noticed the feedback, understood their mental workload, and took

action to reduce them.

In interviews, some participants indicated that they did take note of the feedback:

“When the lights become red, it works as a reminder to take a big breath and relax [...]

it is like a warning ...” (P15 Phase1). For some, this was positive, with P14 (Phase 1)

saying “I really liked it! The whole experience ... If I would get another chance I would

do it again”. Some, however, were frustrated that they couldn’t do much about it: “It

is actually affecting me. When the feedback is red, I try to relax. To try to make it white.

But it did not work, because I felt even more concentrated ... because I was looking at

the planes and to the lights as well, so it added up really to my concentration” (P14).
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Other participants felt that feedback had no use as they already know when they are

busy and when not: P1 (Phase 1) said “I felt like: why are you showing me red if I

already know that I am busy?” even though he said later that “I am usually really

bad at judging my own workload”. These insights confirm that participants noticed

the feedback and considered it at a meta-cognitive level during the task. For some

participants the feedback, however, perhaps increased the sense of anxiety (especially

in the first phase), when participants were not able to take action to change it. Because

of this, P15 (Phase1) went further to suggest that although the objective measure of

their mental workload was useful, they would have preferred to see it afterwards, rather

than during the task: “I would like to add that it would be much more interesting for me

to have a feedback to reflect on but not a concurrent one. So maybe record it and reflect

on it later on.”. This may be an interesting area of future work, as a mental workload

parallel to life-logging and tracking daily fitness activity - a form of Mental Workload

Fitness tracker. Further more participants suggested various levels of feedback would

be much more useful “rather than a cut off point ... a gradual transition in a way” (P1

Phase 1).

Overall, the results show strong support for a) helping people to reflect, in action,

about their current mental workload but without negatively impacting performance or

indeed their Mental Workload. We did not, however, manage to observe improved

performance, nor changes in behaviour because of the feedback they received. We

discuss these more below.

Does this mean making a single evaluation at the end of each experimental task or

trial? Cr making measurements from moment to moment during each trial. I suggest

making this clearer by stating what the time granularity for measurements was and

perhaps elaborating on the difficulties of interpreting more continuous measurements.

6.6.3 Continuously assessing mental workload

Continuous assessment of workload, as presented in this thesis, refers to the assessment

of the operators’ workload during tasks, and it is presented as opposed to post-task

analysis - that is making a single evaluation at the end of each experimental task. This

enables us to better understand what has happened during the task, having a grater gran-

ularity of data. In case of real time measurements, having a continuous technique will
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further enable direct intervention in case of workload overload/underload. In practice,

however, there is much effort invested in filtering and processing the data after the ex-

periment has been completed, as these steps require extra time and resources. Hence

using a technique in real time might constrain the amount of data processing, therefore

the quality of the results.

Beyond the challenges of real time processing of data, there are a number of inter-

esting events that can occur when continuously assessing mental workload - we noted

that mental workload fluctuated noticeably when aeroplanes crashed, and informally

participants noted feeling stressed. It is interesting to consider what participants do in

these situations, and what this might look like in mental workload data.

The Impact of Fail on Physiology.

We wanted to investigate what happened when participants failed to monitor and control

all aeroplanes on the screen, and two or more aeroplanes ended up colliding. Figure

6.13a and Figure 6.13b show, for example, measurable changes in fNIRS OXY signal

after such a fail, and its impact on Feedback. It is clearly important to consider whether

this is cause or affect, but based on informal secondary analyses of our data, we saw

many of these dramatic shifts in mental workload around fail scenarios.

(a) Example 1 (b) Example 2

Figure 6.13 Participant Oxygenation Levels measured with fNIRS after a “crash” event

In future work, we would like to more directly evaluate and, accommodate these

reactions to events, whilst still giving people reliable feedback about their mental work-

load. Such future work may also focus on using other measures of mental workload, as

emotional reactions are typically more observable through other physical reactions. We

used an fNIRS device, which has been shown to be suitable for HCI user study evalua-
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tions, but more commercially available devices like the NeuroSky3 EEG device might

be more suitable for day to day feedback. Similarly, even less invasive measures of men-

tal workload could be taken from Heart Rate Variability [59] through smart watches,

remotely detected by pupil dilation [76] or facial skin temperature [128] with cameras.

Many of these other measures also better detect emotional responses, and perhaps con-

cepts like stress and anxiety, and so might better serve future work on recording both

Mental Workload and emotional response.

The implications of using different feedback types

In general, the binary feedback of workload was alerting users of a high workload when

a sudden increase in Oxygenation was detected using fNIRS. In the same way, a sudden

decrease would cause a low workload alert after. The changes were visible to partici-

pants, such that they could monitor and use their workload feedback presented by the

WFS. However, future work could first examine more granular forms of feedback, as

noted qualitatively by participants. It was interesting, however, to first informally ob-

serve, and then analytically find differences between the choice of lighting feedback

in two phases in the study. This post-hoc independent variable in our analysis revealed

interesting results that confirm Sharples & Megaw’s description that mental workload is

closely affected by the way in which participants experience that workload. In Phase1,

red colour was used for feeding back high workload states, and white colour for low

workload states, and in Phase2 the colours were swapped. Having white light to alert of

high workload made some participants feel “right” being on the white colour rather than

red making them feel they are not working enough; P29 (Phase 2) “...when they were

red, I thought I am not working enough. When they were white it felt right, it felt that I

was paying a lot of attention, it was in the right track”. On the other side, having the red

colour to alert of high workload generated pressure when “being” on red, P9 (Phase 1)

reported that “When the lights become red, it works as a reminder to take a big breath

and relax”. It would be extremely interesting in future work to artificially manipulate

changes in feedback, and to observe changes in mental workload in a similar way to

when participants experienced crashes (like in Figure 6.13). Such an analysis would

help us to separately examine the impact of mental workload created by feedback and

3http://neurosky.com/
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mental workload created by task demand. Future work should also, therefore, explore

the design and mode of feedback, as well as the granularity of feedback.

Behaviour change

One large research area is behaviour change, and this study was not designed to measure

and observe it. Although this study was not focused on measuring in-task behaviour

change, qualitative anecdotes imply that people did reflect on their mental workload

and considered their current status. It would be highly interesting in future work to

more directly study whether or not there are behavioural markers for when participants

take action based on their feedback. Such work would need more accommodating task

conditions that allow people to manage, delay or even share their workload with others.

We consider this avenue of research to be a very interesting direction for the future.

——————————

6.7 Summary of Chapter

In this chapter the last study of this thesis was presented attempting to understand

whether brain sensing techniques, which are increasingly becoming commercially avail-

able, and in particular fNIRS, could be used to give people concurrent feedback about

their Mental Workload levels. Although existing techniques, like the Instantaneous Self

Assessment (ISA) tool, are designed to help people to report and reflect on their current

Mental Workload levels, they also often have a negative impact on the primary task

at hand. We hoped that, with objectively measuring and providing concurrent feed-

back during tasks, participants would be able to reflect on the mental workload levels,

without the associated performance drops.

In order to capture and understand these effects, we have adapted the Framework

for mental workload evaluation (presented in Figure 2.8). We “controlled” the “exter-

nal factors” presented in the relationship 5 of the framework (in our case the presence

of ISA and the presence of Feedback). Our results first confirmed both approaches to

measuring Mental Workload during tasks, accurately correlating the measures with task

demands, this further contributing to the findings in previous chapters, validating and

understanding the sensitivity of fNIRS measure of workload. We then confirmed prior
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research findings that self-reporting techniques had an impact on both actual and per-

ceived performance, as well as increasing the task demands on the participants. Our

results, however, showed no such drops in performance were found with our Mental

Workload Feedback System. Using the framework, we confirmed the existing relation-

ships between the physical and cognitive task demands, and the operator workload (see

relationship 1 in Figure 2.8), as well as the direct connection between operator workload

and performance (see relationship 2 in Figure 2.8). Further, our interviews confirmed

that feedback led participants to think metacognitively during tasks, but that the choice

of feedback (using red lights to warn them of high Mental Workload) created a nega-

tive stressor to their experience. This effect was removed after changing the choice of

colour in our feedback mechanism. The results suggested that participants do use the

feedback of workload, therefore showing the relevance of relationship 3 in the same

framework. Relationship 4 was not directly studied, however, the future work section

presented discusses an interest in associating various physiological reactions to events

(e.g such as task failure).

We conclude that objectively measured concurrent feedback of Mental Workload

can help people to understand and actively manage their behaviour during tasks, but

without the negative affects on performance created by self-reporting techniques. Such

personal insight would be important for safety critical tasks like Air Traffic Control, but

has the potential for a much wider impact, helping the general population to understand

and manage their own mental workload across the many tasks that fill our lives.

The future direction of this work could be assessing the workload of everyday tasks,

outside controlled lab-settings, moving away from brain based sensors towards us-

ing less invasive physiological techniques (e.g. HR, EDA, BHP). Another direction

of research could be studying reflection of workload extensively, and understanding

how people could actually use workload feedback to reflect on the work/break patterns

throughout the day.

The following chapter presents the discussions and conclusions of this thesis.
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Table 6.3 Summary of key findings, by hypothesis

Hypotheses Expected effects Results
H1 Participants’ workload gener-

ated by the task demands
would have measurable effects
with ISA and fNIRS

We found both fNIRS and ISA
measures sensitive to task de-
mands (in our case the number
of aeroplanes to control dur-
ing an ATC game). Overall,
we found high correlation co-
efficients between fNIRS and
demand, and we showed how
it can be used to assess work-
load without relying on par-
ticipants’ ability to self-report
during the task (See Figure
6.6).

H2 & H3 ISA would have a negative im-
pact on performance. Feed-
back would have no explicit
negative impact on perfor-
mance. Workload and percep-
tion of performance would in-
crease or decrease in the pres-
ence of both ISA and our WFS.

We presented evidence sup-
porting ISA’s negative im-
pact on both performance and
perceived performance mea-
sures. In contrast to ISA,
we found mental workload
feedback having no explicit
negative impact. Instead,
Figure 6.10 suggests similar
or slightly better performance
with our WFS. We found
no significant evidence of our
WFS increasing performance
or participant’s perception of
performance.

H4 In contrast to our WFS, ISA
will create additional physical
and cognitive task demands.

Although we found no direct
evidence, the performance and
perceived performance results
suggested a negative impact
in the presence of ISA, most
likely due to the additional re-
quired resources. This was not
the case with our WFS. Dur-
ing the interview, participants
had mixed feelings about the
impact of ISA; views were di-
vided into participants affected
by ISA, participants who con-
sidered ISA having no negative
impact (describing it “easy”
and “fast”), and participants
who ignored ISA when con-
centrating on the task.
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Chapter 7

General Discussions and Thesis

Conclusions

In order to design interactive systems (such as tools for the digital economy) to be used

by people, one should take into account users capabilities and limitation (e.g. their

cognition). Cognition refers to memory, attention, the amount of information we can

“handle” in a given time, and the ways we solve problems and make decisions. It is

really important to understand how we use and deal with information, so we can design

systems that support, rather than mitigate users during interaction. For example, if we

are designing an interactive system for a car, we need to consider the existing demands

on the users (drivers). Drivers already have a high visual load during driving, so it may

not be appropriate to design a visual display of a high complexity that demands the

driver’s attention for a long period of time. Instead, a different interaction modality

could be considered (see Wickens MRM [143, 144]).

This thesis was largely focused on this matter, exploring physiological methods to

learn about user’s state during interaction, and in particular the assessment and feed-

back of users’ mental workload during tasks. The first part of the thesis was focused on

understanding the suitability of fNIRS during Human Computer Interaction. We inves-

tigated how various artefacts typical for lab-based evaluation settings impact the fNIRS

signal and provided guidance on how to use the technology in such settings. The next

part presented the suitability of fNIRS for assessing workload, we therefore investigated

the replicability, reliability, sensitivity and validity of the measure. This was continu-

ously investigated throughout the thesis. We showed that there is a relationship between
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fNIRS and subjective techniques, including NASA-TLX, however the relationship was

much stronger in contrast to a continuous subjective measure, such as ISA, as proposed

in Chapter 5. The last part of the thesis investigated the use of a continuous, real time

version of fNIRS technique to assess and feedback workload in real time. We found

that people could self-reflect when given workload feedback during tasks, without side

effects on their performance, and this area of research could be further explored.

7.1 Summary and contributions of the research to the-

ory and practice

The contributions of this thesis are:

• This thesis contributes to the measurement and assessment of workload using

fNIRS. The reliability of the measure was tested within lab-based evaluation set-

tings, and we extended the understanding of its use during both verbal and spatial

tasks. This was presented in Chapter 4.

• This thesis further contributes by testing the sensitivity and validity of the tech-

nique, and extended our understanding of workload in relation to performance

measurements, subjective techniques and physiological methods using fNIRS.

We have also presented the challenges of using fNIRS continuously during tasks.

This was presented in both Chapter 4 and Chapter 6.

• The last contribution of this thesis, presented in Chapter 6, is exploring the po-

tential impact of presenting users with concurrent feedback of their workload

during tasks. We investigated how feedback of mental workload (based on real

time measurements during tasks using fNIRS) could be useful to people, and we

showed how people think metacognitively about their state during tasks.

To preserve naturalistic interaction settings, the methods and sensors used to collect

useful data about the users during interaction should ideally allow a normal, unrestricted

interaction, with minimal controlled settings. Solovey et. al. investigated the potential

of using fNIRS [127] in such settings, and reproduced artefacts normal to a typical eval-

uation study settings, to measure their effects on the fNIRS signal. Chapter 4 presented
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a study focused on investigating the the sensitivity of fNIRS measure to workload, but

also the reliability and replicability of the results but reproducing and confirming some

of the Solovey et. al. [127] study settings and results. This is particularly important

in the context of using fNIRS as a technique to assess workload. Sharples and Megaw

present the property of sensitivity and reliability as key aspects when establishing a

workload assessment technique. Solovey et. al. results were confirmed and new in-

sights were drawn by extending the original study, and exploring the reliability of the

fNIRS measure in the presence of movement artefacts during a spatial memory task of

remembering a 6x6 shaped grid (the original task was a verbal memory task of remem-

bering a 7 digit number). Chapter 4 addressed in particular the first research question

RQ1 with the associated subquestions RQ1a, RQ1b, and RQ1c.

As one of the aims in this thesis was to use fNIRS to provide real time mental

workload feedback to users during tasks, the second research question RQ2 with the

related subquestions explored the capabilities of using fNIRS as a sensitive measure

to continuously assess workload, and the challenges of using the measure in real time.

Chapter 5 addressed some of the above mentioned issued, but also contributed to RQ1b,

and further validated the measure by understanding its relationship to the widely used

subjective technique, the NASA-TLX questionnaire. The results of the study presented

confirmed previous findings such as the results from Peck et. al. [105], and a few

discussions are presented in the next sections of this chapter.

The third and the last aim with associated research question (RQ3) explored how

a continuous, real-time version of fNIRS can be used to assess peoples’ workload in

real time, and provide them with workload feedback during tasks. This system was

called the Workload Feedback System WFS (see Figure 6.1), and used a passive BCI to

measure, classify, and feedback users’ workload in real time. The WFS was presented

in Chapter 6, however, the research was focused on exploring how WFS can be used

to allow people to understand, manage, and reflect over their workload during tasks, by

presenting them with workload feedback based on measures of brain activity.
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7.2 Using fNIRS in typical evaluation and user testing

settings

To be suitable for studying human interaction with technology, the sensors and tech-

niques used to collect useful information about users during interactions should ideally

be as transparent as possible - allowing a naturalistic interaction - therefore not heavily

restricting users from their normal way of interacting with technology or performing

various tasks. The study presented in Chapter 4 aimed to investigating the effects of

common human behaviours on fNIRS ability to distinguish states of cognition from

other states, replicating and extending the work of Solovey et. al. [127]. Solovey iden-

tified and studied using a verbal memory task, a number of four typical artefacts in such

stetting and their impact on fNIRS signal, including: head movement, keyboard input,

mouse input, facial movement, and further investigated a control condition in the pres-

ence of no artefacts. Table 7.1 presents the conditions investigated in the original study,

but also shows the novel contributions investigated in this thesis. Chapter 4 presents a

study replicating three of the original artefact conditions, and additionally identified and

investigated the impact of verbalization as an artefact on fNIRS signal. Further more,

the study extended our understanding of artefacts’ effects on fNIRS during a Spatial

task as opposed to Verbal alone, with the addition of a new spacial task of remembering

a 6 x 6 shaped grid.

The fundamental finding confirmed in this study is that fNIRS can be used to distin-

guish between cognitive and rest states in both Verbal (as confirmed by Solovey et. al.)

and Spatial tasks. Table 4.2 presented how artefacts affected the two task types, such

that the significance between rest and task was sensed using different fNIRS measures

for different artefact and task type. Therefore, the addition of a Spatial task, provided a

greater understanding of fNIRS’ ability to distinguish cognition under tasks using such

encodings, and further stressing that both fNIRS key measures, Hb and HbO need to be

considered during experiments.

Testing the reliability of fNIRS in the presence of artefacts, and further confirming

fNIRS’ ability to distinguish rest vs task times in the presence of the investigated arte-

facts regardless of task type (Verbal and Spatial) was at the base of this thesis. This

further answered the first research question RQ1, allowing the next research questions
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Table 7.1 Reliability of using fNIRS in typical evaluation settings

Artefact Conditions
Control
No-Artefact

Head
Movement

Keyboard
Input Verbalizing

Verbal Task
Showed fNIRS Reliability in presence of various
Artefacts during a Verbal task - as Investigated by
Solovey et. al. [127].

Extended original study
further investigating the
impact of verbalizing -as
an artefact on fNIRS signal.

Spatial Task Extended original study further investigating the
Reliability of fNIRS during a Spatial Memory task.

to be investigated (research questions in this thesis were dependent on previous research

questions - falling out of each other).

7.3 fNIRS as a continuous measure to assess workload

during tasks

Perhaps the most important property of fNIRS in relation to workload assessment, and

one shared amongst various other physiological techniques, is the continuous capabil-

ities of reflecting users’ workload during tasks. Compared to other techniques that

restrict the workload assessment to a one-off measure, typically taken after the task has

been completed, the physiological techniques provide granularity of data, further facil-

itating cause and effect analysis with data that reflects participants’ experience during

the task.

As physiological techniques, including fNIRS, do not involve any extra work to be

done by the users during tasks, they have the potential to be used in settings otherwise

hard to study using other techniques e.g. subjective techniques. Exploring the use of

physiological techniques is therefore essential for the study of operators working within

safety-critical systems such as ATC.

One of the aims in this thesis was to explore the use of fNIRS for continuous mon-

itoring of workload during tasks. Chapter 5 explored and discussed the challenges of

using fNIRS for continuous assessment of workload.

Chapter 6 explored how the measure could be used for the assessment of work-

load in real time, and how feedback of workload based on fNIRS objective assessment

could help users during tasks. The contribution of this thesis in relation to fNIRS is not
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focused on the way the signal was analysed, nor exploring new data processing tech-

niques; instead, it was much more focused on exploring the potential of using fNIRS as

a useful measure during lab-based evaluation settings based on the existing knowledge

of data processing and analysis.

Workload is a construct that sits in the intersection of multiple contributing fac-

tors (as presented by Sharples and Megaw [121] in the framework for mental workload

definition and measurement - Figure 2.8), that could be categorized depending on the

measurement technique. Because various techniques reflect different workload com-

ponents, the studies presented in this thesis were designed such that a combination of

performance data, subjective measures and physiological techniques (mainly fNIRS)

are captured to better understand the relationship between them, and in particular, to

understand the relationship between fNIRS and other measures of workload.

With this approach, fNIRS was found to be a complementary measure, providing

useful information about users in a continuous manner during interaction.

7.4 Real time Mental Workload Feedback

The last study presented in this thesis explored how a real time, continuous version of

fNIRS could be used to give workload feedback to the users during tasks. As this was

not previously explored, we compared the workload feedback to the individual self-

assessment technique where users would reflect and report their workload during tasks.

We believed the two might have similar effects, potentially allowing users to self-reflect

over their state and regulate their resources allocation to the primary task when reaching

a high workload state.

Between the subjective self-assessment techniques, ISA was chosen due to its ro-

bustness and non-invasive nature, allowing self-reflection continuously during tasks, the

same way feedback of workload would potentially allow it without the additional effort

of self-reporting.

We have implemented the Workload Feedback System (WFS), that uses measure-

ments of brain activity in the prefrontal cortex in order to assess, classify and feedback

workload to users during tasks. Two states of interest were used for feedback in the

study, high and low workload. The feedback and the WFS was specifically designed
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to be noticeable, but at the same time transparent and in the background of the task,

such that a minimum of resources would be used by operators to perceive the feed-

back during tasks. The office desk lights were the means of providing the feedback. A

dynamic lighting environment (DLE), designed to aid in an individuals self awareness

when completing a task, was programmed to turn red (from normal white) when partic-

ipants were experiencing high workload, and white (from red) when experiencing low

workload. Midway through the study, the colours were reversed: turning white from

red when participants experience high workload.

During an air traffic control simulator game participants were presented with (close)

to real-time feedback of their workload. We found high correlations between task de-

mand and the objective workload measure from fNIRS and we concluded that fNIRS

has the potential to be a more reliable measure for detecting periods of high workload

compared to ISA subjective ratings. We further found that performance was negatively

impacted by ISA - an effect that was exaggerated when also being given feedback by our

WFS - but overall we did not see performance being negatively impacted by the WFS

alone. This effect was also significant in the case of perceived performance scores, we

found ISA significantly reducing participants’ perceived performance, while the pres-

ence of feedback had no negative impact.

In the post experiment interview, the opinions were divided, and participants were

“affected” differently by the feedback and ISA, the findings were very constructive and

informative. We found insights to confirm that participants noticed the feedback and

considered it at a metacognitive level during the task, thus opening interesting research

directions.

7.5 Specific instance of future research to initially test

out our ideas

In this thesis, fNIRS was presented as a useful tool for assessing mental workload dur-

ing tasks. Being a continuous measure, fNIRS allows users’ workload assessment at

every stage of interaction, and does not rely on operator reflecting and recalling their

experienced workload during tasks or retrospectively. Being cheap and with a quick set-

up, this research showed how fNIRS can be used for both real-time use, and for post-
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experiments analysis, to get insights into human mental workload. Moreover, fNIRS

was showed to be suitable and useful during typical evaluation study settings, without

further restricting users during interaction.

Despite these key properties that makes fNIRS suitable for these types of study set-

tings, there are other scenarios associated with limitations to the technology. One could

consider measuring workload of everyday life, that does not happen in a controlled lab

settings. In fact, this is one of the future works discussed in Chapter 6, where we used

fNIRS to assess and feedback workload within controlled lab-settings during a game

which simulated an ATC job. However, brain scanners are not commonly worn by the

general public, on the streets or in the office, and alternatives should be considered for

monitoring the workload of everyday life. If the works in this PhD are focused on using

fNIRS as a technique to establish a consistent reference baseline for mental workload,

the future research could explore the use of other physiological techniques, that are

better to be used outside the lab settings. In order to do this, fNIRS could be used as

an objective reference to mental workload, and other methods and techniques could be

used in relation to fNIRS and subjective techniques.

7.5.1 Future work. Pilot Experiment.

The works in this thesis established a baseline of knowledge in the field of physiolog-

ical measurement and feedback of workload. As a first step towards more complex

applications of the present work we present below a pilot experiment investigating the

relationship between mental workload, variation of performance and other objective

physiological parameters in comparison to fNIRS. The aim of this pilot study is there-

fore to explore how other physiological methods that are less invasive compared to

fNIRS could be used to reflect a similar assessment of workload outside laboratory

settings, where fNIRS could be hardly used.

In order to control the demand placed on the participant, a specific computer based

task was designed, that would impose different levels of experienced mental workload.

The task consisted of a computer game played in two different versions. Using a Joy-

stick controller, and a 50 inch TV approx 2 meters away from the joystick, the partici-

pant is presented with moving coloured balls on a black background. The movement of

the balls gives the impression that they are falling from the top of the screen and the task
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is to aim and shoot the target balls using the joystick. See Figure 7.1 for a description

picture of the task.

Figure 7.1 Pilot Study Task of shooting red balls.

There were three study conditions:

• In the first condition, participant is asked to only shoot the red balls as targets.

• In the second condition, balls have numbers on them, and participants are asked to

shoot odd numbered ball regardless of colour, introducing an additional cognitive

element with the intent of increasing mental demand.

• The third condition is identical to the first.

Each condition consisted of 13 stages (45 seconds each) of varying difficulty [120].

The number of target balls was varied in order to control the level of demand, ranging

from 3 target balls to 15, and then back to 3. A yellow line which started at the top of

the screen was dragged down with every miss shot, or with every target ball reaching it

(see Figure 7.1). Therefore the position of the yellow line on the screen would reflect
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participants performance in relation to the success rate and demand at every point during

the task.

Similar to the approach in Chapter 6, a 5-point version of ISA was used, with the

participant self-rating subjective workload on a scale from 1 (low) to 5 (high). This

version required the participant to verbalize the number, rather than use the mobile

phone app due to the nature of the task. The scores were recorded on paper, and further

digitalized and used for analysis.

The participant was presented with an information sheet and consent form prior the

study, and was required to have no pre-existing heart/brain related condition and have

no skin conditions or allergies that could prevent them from wearing the physiological

sensors. The study was approved by the Faculty Research Ethics Committee at Univer-

sity of Nottingham.

We collected a variety of physiological measures including:

• heart R-R inter-beat intervals;

• breathing rate data;

• pupil diameter for both left and right eyes;

• fNIRS OXY measure (based on the CBSI filter that combines both OXY and

de-OXY haemoglobin);

• skin temperature from E4;

• EDA from E4;

• BVP from E4;

The Zephyr BioHarness 3 chest strap was used for measuring posture, heart and

breathing activity. The device outputs raw ECG data at a sampling rate of 1000 Hz and

also a processed version of the raw signal including the R-R intervals and heart rate

(Medtronic, Annapolis USA).

For eye-tracking, the RED 250 eye tracker was used in stand-alone configuration,

measuring pupil diameter and gaze data at 60 Hz (SensoMotric Instruments, Teltow-

Germany).
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The Empatica E4 [46] is a hand wearable wireless multisensor device for real-time

computerized biofeedback and data acquisition. In this study, the E4 band was used to

capture electrodermal activity (EDA), skin temperature variations, accelerometers data,

Photoplethysmography Data (PPG) - that measures Blood Volume Pulse (BVP), from

which heart rate, heart rate variability (HRV), and other cardiovascular features may

be derived. The main aim for including the E4 was to investigate the accuracy of such

user-friendly device (compared to the Zwphyr chest strap) that efficiently combines 4

sensors into the wristband, replacing traditional multiple sources (e.g., heart rate chest

strap, finger-placed EDA sensor, wrist worn accelerometers and temperature). Unlike

traditional physiological acquisition devices, the E4 wristband can be worn during daily

activities; therefore, the wristband is less likely to interfere with everyday activities, and

could useful for research outside of the lab for monitoring the workload of everyday

task.

Measures of brain activity were recorded using an fNIRS300 device and the asso-

ciated Cognitive Optical Brain Imaging (COBI) Studio hardware integrated software

platform provided by Biopac Systems Inc. A similar approach to the one presented in

Chapter 6 was used for analysing fNIRS data.

There were 13 instances of the ISA questionnaire during each of the three study

conditions to capture the participants’ perceived workload while performing the task.

The aims of this pilot study were investigating whether there is a close relationship

between demand, task performance and the different workload techniques. The results

were promising and a full study is to be conducted and submitted for publication at

ACM CHI2018 conference.

We expected to find:

• a negative correlation between perceived workload (ISA) and task performance

(yellow line on the screen);

• a positive correlation between fNIRS OXY and ISA measure, as they are both

continuous measures reflecting participants’ workload during the task, and

• a negative correlation between fNIRS OXY and performance (the yellow line).

The findings in the pilot study showed a strong negative Spearman’s correlation

between the ISA scores and the performance measure r = .921 and p < .001. Figure
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7.2 shows the close relationship between fNIRS and both performance data and ISA.

There was a Pearson Correlation between fNIRS OXY and Performance data (yellow

line), with r = .716 and p < .01 as well as a Spearman’s correlation between fNIRS

OXY and ISA r = .725 and p < .01. The results further confirm fNIRS as a potential

baseline measure for workload assessment.

Figure 7.2 Relationship between fNIRS OXY measure, ISA, and Performance.

We then explored the relationship between workload, demand and performance us-

ing the other physiological techniques.

Figure 7.3 Pupil Left VS ISA scores

Figure 7.4 Pupil Right VS ISA scores VS Performance
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Figure 7.3 and Figure 7.4 shows the close relationship between the continuous sub-

jective measure of workload ISA and the physiological response of pupil size for both

the left and right eyes. The results showed a Spearman’s correlation between ISA and

both, Left and Right pupil r = .659, p < .05. There was however a stronger correla-

tion between fNIRS’s OXY measure and the left and right pupil response to workload

r = .868, p < .001 and r = .854, p < .001 respectively.

Figure 7.5 Heart Rate VS ISA scores VS Performance

Figure 7.6 Breathing Rate VS ISA scores VS Performance

Similar patterns could be observed in the heart rate HR signal Figure 7.5 and breath-

ing rate BR from the Zephyr chest band. However the correlations between HR, BR,

and ISA were not statistically significant.

Another aim was to evaluate the quality and limitations of using the E4 wrist band

in comparison with the dedicated chest band for measuring the heart activity. There was

a Pearson correlation between the two sensors r = .614, p = .026, and generally there

was a similar pattern between the two (Figure 7.7), however, a stronger correlation was

expected.

There was a close relationship between the E4 heart rate, EDA, and skin temperature

and fNIRS signal. There was a Pearson correlation between E4 HR and fNIRS Oxy

measures r = .838, p < 0.001, E4 EDA and fNIRS Oxy measures r = .7, p < 0.01, E4
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Figure 7.7 HR using E4 VS Zephyr

Skin Temperature and fNIRS Oxy measures r = .56, p < 0.05. There was no direct

correlation between the E4 measures and ISA.

A similar discussion was presented by Nagasawa and Hagiwara [98].

7.5.2 Limitation of physiological techniques outside the lab settings

fNIRS was shown to provide a useful reference baseline for assessing mental workload

and changes in demand during tasks. However, when comes to using fNIRS, one is

limited to lab-based evaluation settings. Even-though wireless fNIRS alternative exists,

it is not yet common to have a wearable techniques to measure mental brain activity

throughout every day task. The aim of this pilot study was to investigate the limitations

of other physiological techniques that tend to be more suitable when comes to studying

mental workload outside of the lab.

Even-though there was no direct relationship the subjective ISA measure of work-

load and the other physiological sensors, there was a close relationship between the

physiological data and fNIRS, indicating the same patterns. It is therefore to suggest

that there is an indication of workload in the data from the E4 band, and there is scope

to use fNIRS to better understand how to combine physiological data in order to assess

workload of everyday life.
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7.6 Considerations and Guidance for researchers new

to fNIRS workload experiments

Depending on the interests and settings of the research, fNIRS technique could be useful

in different ways for Human Computer Interaction and Human Factors research. In this

section we present a practical guidance to future researchers that have not used fNIRS

before, who want to adopt this technique for their research.

The fNIR technology is designed to allow you to track relative changes in oxygen

consumption as well as changes in blood volume in various parts of the brain, however,

for workload experiments the aim is the prefrontal cortex, the area behind the forehead

for a typical healthy adult.

7.6.1 Operating procedure

To operate a typical fNIR System you will need:

• an fNIRS probe (the actual sensors you place on subjects) that could be wired or

wireless,

• an fNIRS control box, connected to the probe via wired/wireless technology,

• and a laptop or personal computer.

The probe is collecting the actual physiological signals using the IR sensors, the

signal is further sent for pre-processing to the control box. The control box is further

connected for signal acquisition and processing to the personal computer.

After obtaining informed consent, participants are ready to be connected to the

fNIRS probes. Applying the sensor probes correctly is the most important step in get-

ting good data. Each individual forehead has a different size and shape, however, the

typical targeted place is between the subject’s hair and eyebrows. To place the sensor

on the forehead, the subject’s hair must be pulled back using one hand (for long hair a

hair band could be used), and the other is used to place the sensor. It is important that

all sensors are in contact directly with the skin. Finally, the sensors should ideally be

covered using a bandage or a headband, to keep out the extraneous light (e.g. sunlight).
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A baseline step is required with each individual subject, in which usually partic-

ipants are asked to stay quiet and rest, trying not to perform any mental activities.

Beer–Lambert Law, is at the heart of the fNIRS technology for calculating the oxy-

gen concentrations in various regions in the brain, and these are indicative of brain

activity. Using the properties of the law, which could be further explored in [136], it

is possible to calculate the OXY-haemoglobin and de-OXY hemoglobin levels in the

target medium in relation to the levels at baseline, where participants are asked to rest.

A few other measurements including total oxygenation could be obtained by further

combining the two.

7.6.2 Stimuli and study tasks

Using various stimuli of interest, including interactions with technology (e.g. testing

various interfaces), typically presented using a different laptop or personal computer,

participants’ physiological changes in the brain could be monitored continuously using

fNIRS. Time markers are used to track various points during interaction, or to mark the

beginning and the end of each study condition.

As fNIRS measurements are not absolute values, the comparison between partici-

pants is not ideal, and the within participants design is more appropriate. This means

that the oxygenation measurements from the fNIRS device are relative to the individual,

and not to the rest of the participants.

A good starting point could be the use of fNIRS for a typical block design analysis,

for say having a study comparing three variations of a user interface. fNIRS could be

useful to reflect which of the three variations of the interface generates a higher average

workload during interaction, however it could be also used to detect period of high

workload during the conditions.

fNIRS measurements are complimentary to existing workload techniques, and mea-

sures of performance subjective techniques and other physiological methods could be

used to better understand and interpret results. As fNIRS is a continuous technique, the

use of continuous subjective measures such as ISA rather than one-off measures such

as NASA-TLX, would be better off in contrast to fNIRS.

The design of the experiment tasks should allow a good monitoring of task per-

formance, but also a understanding of the demands placed upon the subjects during
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the experiments. Combined with subjective techniques, one could study the relation-

ship between task performance, perceived workload, and physiological (more objective

workload) using fNIRS, but also understand where during interaction, high and low

periods of workload have an impact on task performance and perceived workload.

7.6.3 Signal processing

A typical fNIRS experiment involves various levels of pre-processing and processing,

and depending on the technology and software you get with it (manufacturing company

and software package), you have some of the processing done automatically. For ex-

ample, fNIRS picks up artefacts related to respiration and heart beats [33]; some fNIRS

technologies clear these automatically, however some of the challenges of filtering tech-

niques are mentioned by [127] and explored in [89].

For the studies presented in this thesis, measurements of brain activity were recorded

using an fNIRS300 device and the associated Cognitive Optical Brain Imaging (COBI)

Studio hardware integrated software platform provided by Biopac Systems Inc. The

processing and filtering was performed using two software packages:

• the Matlab Toolbox NIRS-SPM [150],

• and fnirSoft, the Comprehensive Signal Processing, Analysis and Visualization

Platform for Optical Brain Imaging [8].

A low pass filter with cut off frequencies of 0.2 Hz can be used in order to re-

move high-frequency noise, physiological artefacts such as heartbeats and motion de-

rived artefacts. In relation to workload feature extractions, the Correlation Based Sig-

nal Improvement (CBSI) method can be applied [35], a technique designed for fNIRS

technology in order to improve detection of workload (based on the expected negative

correlation between changes in Oxy and De-Oxy hemoglobin).

7.6.4 Things to watch out for

fNIRS is particularly sensitive to skin colour, and it was found to be less reliable in

particular for individuals with dark skin [139]. This effect was mainly observed in the

medical domain, where patients identified as black had a significantly increased chance
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of not being able to have a NIRS reading [104], and the interpretation of results were

interpreted with caution. From my experience with the technology, this effect is caused

by the change in the level of IR light absorption by the skin itself, darker skin absorbing

more of the IR light and therefore not reaching the right depth in the brain. Some of

the fNIRS technologies today allow further control over the light intensities, further

allowing various intensities for different skin colours.

Small foreheads tend to be another problem with fNIRS experiments, mostly when

using a pre-defined sensor layout, which is designed for a typical/average adult. In

most of these cases some of the sensors are either reaching the hair, or sitting on the

eyebrows, in both cases we tend to ignore the channels of data coming from the sensors

not sitting right on the skin.

The delay associated with the hemodynamic response [136] can be taken into ac-

count using various techniques including: averages across blocks of data, omitting the

first few seconds of the trials when processing, or simply delaying the trial data by a few

seconds [105, 108]. Depending on the experiments, we use different techniques, how-

ever for the continuous use and cause and effect analysis, we tend to delay the whole

blocks of trials before we triangulate the data with events.

Another common problem shared between most of the BCI experiments is partici-

pants sleepiness during the experiments. Extensive periods of time in the lab, wearing

brain based sensors tend to make participants feel sleepy, we found this in a few ex-

periments, in one case in particular the participant fell asleep during one of the study

conditions. We therefore advise on having a targeted 1 to 1 and a half hour per experi-

ment, bur a no longer than 2 hours of continuous data collection is advisable.

7.7 Thesis Strengths and Limitations. Future Work.

This thesis explored the use of fNIRS, as an emerging technique for studying the in-

teraction between people and technology. The first part of the thesis investigated the

feasibility of using fNIRS in typical lab-based evaluation settings, we then looked into

its properties in relation to workload (sensitivity, reliability, validity), and the thesis

finished by exploring its use for the continuous evaluation and feedback of workload

during tasks.

132



7.7 Thesis Strengths and Limitations. Future Work.

We found the technique relatively suitable and complementary for typical evalu-

ation settings, providing useful information about the user during interaction without

further restricting users from their interaction with a computer based system. However,

there are major drawbacks for using such technology in the wild, for the continuous

monitoring of the workload of everyday task. This is one future direction of this re-

search, and therefore, looking into other, more portable techniques, including wireless

fNIRS techniques and other physiological sensors is essential. Heart, skin, eye activity,

facial thermography, have the potential to reflect a similar understanding of workload,

however, with the benefit of being less invasive and more portable. The specific in-

stance of future research presented above was exploring how these less invasive and

more portable physiological techniques could be used to measure workload; the first

step into monitoring the workload of everyday task.

If the above research will be possible, the feedback of workload of everyday task

could be explored. This future research would explore how people could reflect when

given feedback of their workload throughout the day. Similar to physical activity track-

ers and based on a combination of physiological data, the feedback will reflect the

amount of mental activity and workload a person is going through during daily activi-

ties.

Another future direction could be exploring feedback of workload in the context of

critical settings such as Air Traffic Control, Train Driver, but also in in-car-settings. A

further understanding of what feedback of workload means, and how it can be used,

and studying the way and modality people prefer to receive the feedback could also be

explored.

One other important aspect of future work is moving towards machine learning

algorithms to automatically detect users’ state. It was not in the scope of this thesis

to explore this area of research, however, this is an important step for future work,

where the continuous assessment of workload outside laboratory settings - using a data

triangulation between multiple physiological data streams - is required.

If workload is a concept discussed particularly when comes to tasks and jobs with

high demands where the operators are under a high mental workload, with a similar

importance but at the opposite end of the spectrum is the issue of boredom. Certain

jobs and tasks that place a low demand on operators, and/or jobs that are repetitive over
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long periods of time (e.g. train drivers) may lead to operator simply not having enough

work to do causing underload or boredom. During this state, the operators are again

prone to mistakes. In the previous chapter we discussed the importance of providing

both feedback of low and high workload. One particular path of future work could

explore in detail the use of physiological techniques to particularly assess boredom.

The works presented in this thesis established a baseline of knowledge in the field of

physiological measurement and feedback of workload. It requires further evaluation to

understand its true feasibility and contribution in a load of contexts, however, this work

developed an extensive understanding of how physiological techniques - such as fNIRS

- can be used and evaluated in terms of mental workload measurement in the context of

Human Factors and Human-Computer Interaction research.
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