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ABSTRACT

The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium
(ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the C7, fullerene
based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs,
as this result could provide chemical hints towards other possible carriers.

In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the
ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB
surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of
interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers.

EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal,
Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral-
type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic
and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these
goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70000 — 100 000), sensitivity (S/N up to 1000
per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the

goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.
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1. Introduction

The unknown identity of the carriers of all but two diffuse in-
terstellar bands (DIBs) constitutes the longest standing spectro-
scopic enigma of modern astronomy (Sarre 2006). Two features
at 5797 and 5780 A, which are now known to be interstellar in
origin, were first noted by Heger (1922) and studied in relation to
interstellar gas and dust by Merrill & Wilson (1938). At present,
over 400 of these interstellar absorption features are known (for
a handful of sightlines), superimposed on an otherwise nearly
smooth interstellar extinction curve (Herbig 1995; Galazutdinov
et al. 2000; Hobbs et al. 2008). Only recently has the attribu-
tion of a pair of near-infrared DIBs (Foing & Ehrenfreund 1994)
to C{, been confirmed with laboratory gas phase experiments
(Campbell et al. 2015; Kuhn et al. 2016) along with the tentative
astronomical detection of three more predicted bands (Walker
et al. 2015, 2016), though this needs further verification and in-
vestigation (Galazutdinov et al. 2017; Cordiner et al. 2017). This
is an exciting result because Cgp (Cami et al. 2010; Sellgren et al.
2010), and C{, (Berné et al. 2013) have also recently been de-
tected in space through their mid-infrared emission spectra. This
identification may be a chemical clue towards identifying fur-
ther DIB carriers; so far only C; (Haffner & Meyer 1995; Maier

et al. 2001; Schmidt et al. 2014) and Cgo have been identified
as pure polyatomic carbon species in the diffuse ISM and this
leaves a large gap to be filled in our current understanding of
the carbon chemical network in diffuse clouds. It is possible
that the detection of C{ hints at a long predicted important role
of polycyclic aromatic hydrocarbons (PAHs) in the ISM (Van
der Zwet & Allamandola 1985; Léger & d’Hendecourt 1985;
Salama et al. 1996). Recent laboratory (Zhen et al. 2014) and
modelling (Berné et al. 2015) works support the proposal by
Berné & Tielens (2012) that fullerenes may form upon photo-
dissociation of large PAH precursors.

Observational surveys (e.g. Herbig 1993; Friedman et al.
2011; Kos & Zwitter 2013) have shown that the strength of the
strongest ~20 of the DIBs correlates roughly linearly with the
amount of dust and gas, measured by the reddening E(B — V) or
the column density of atomic hydrogen N(H 1), respectively. This
indicates a thorough mixing of the DIB carriers with interstellar
matter (Cox 2011). However, a large real scatter is observed in
these relations with gas and dust, and the relative strengths of
several bands are known to have an environmental dependence
(Cox & Spaans 2006); some bands vary as a function of radiation
strength between different lines-of-sight (Krelowski & Walker
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1987; Cami et al. 1997; Vos et al. 2011; Friedman et al. 2011).
The scatter is also partly due to multiple cloud structures along
sightlines. The relationship between several DIBs and, for ex-
ample, C, and CN, has been investigated (Thorburn et al.
2003; Weselak et al. 2008), but generally the link with di-
atomic species is not well understood. This relation between
DIBs and reddening has not been investigated for the remaining
>380 bands. Whether or not there is a direct physical connection
between DIB carriers and dust grains, e.g. in terms of depletion
onto grains or as carrier formation sites, remains to be seen —
so far no polarisation signal has been detected for the twenty
strongest DIBs (Cox et al. 2011).

Studies of selected bands in a dozen sightlines have revealed
a complex substructure in the narrowest bands (Sarre et al. 1995;
Ehrenfreund & Foing 1996; Galazutdinov et al. 2008) which
show small variations with local temperature (Cami et al. 2004;
Kazmierczak et al. 2010a), typical for a molecular carrier. Sub-
structure has also been identified in weak DIBs, but line-
of-sight variations are less well studied (Galazutdinov et al.
2005). On the other hand, broader DIBs do not contain sub-
structure (Snow 2002; Galazutdinov et al. 2008), which may
be due to lifetime broadening of the absorption band (Lin-
nartz et al. 2010). Considerations of the available elemental
abundances and plausible oscillator strengths lead to the conclu-
sion that abundant large organic molecules are suitable candi-
dates (Léger & d’Hendecourt 1985; Huang & Oka 2015). The
combination of observational studies, theoretical models, and
laboratory astrophysics indicates that candidate carriers should
primarily be sought among a large number of possible carbon-
based organic molecules [see Sarre (2006) for a review, and
Cami & Cox (2014) for an overview of recent progress].

Ongoing and future large spectroscopic surveys offer the
possibility to study (mostly the strongest) DIBs in large areas of
the sky. For example, Lan et al. (2014) and Baron et al. (2015)
constructed DIB strength maps from SDSS spectra, Kos et al.
(2014) produced pseudo-3D maps for the 8621 A DIB using the
RAVE survey, Zasowski et al. (2015) and Elyajouri et al. (2016)
used the APOGEE near-infrared survey to study the distribution
of the 15267 A near-infrared DIB. The spatial distribution and
properties of DIBs can also be studied in smaller fields-of-view
(van Loon et al. 2009; Raimond et al. 2012; Puspitarini et al.
2015) or closer regions, such as the Local Bubble (Farhang et al.
2015; Bailey et al. 2016).

In the last decade it has also been firmly established that
many band carriers are universal; DIBs have been detected and
surveyed in the Magellanic Clouds (Cox et al. 2006, 2007; Welty
et al. 2006; van Loon et al. 2013; Bailey et al. 2015), in M31 and
M33 (Cordiner et al. 2008, 2011), and in individual sightlines in
more distant galaxies (Junkkarinen et al. 2004; Sollerman et al.
2005; Lawton et al. 2008; Cox & Patat 2008, 2014; Monreal-
Ibero et al. 2015). DIB carriers therefore constitute an important
reservoir of (organic) material throughout the Universe.

Identifying the DIB carriers and understanding their prop-
erties must come from high-quality data in the nearby Galactic
interstellar medium (ISM). Identification of the carrier species
will directly impact our understanding of interstellar chemistry,
and can help reconstruct 3D line-of-sight properties if related to
specific environments. It is clear that the ultimate confirmation
must come from a direct comparison between astronomical, the-
oretical, and laboratory spectra over a broad wavelength range.
A commonly applied and straightforward approach is to acquire
laboratory spectra of possible candidate carriers taken under as-
trophysical relevant conditions until an unambiguous match with
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Table 1. UVES instrument setups used. The two spectrograph arms are
used to collect data for a pair of wavelength regions simultaneously. A
second setup allows the gaps to be covered with another pair of settings.
For each setting we give the slit width, nominal resolving power, and
nominal wavelengths covered. Red-L and Red-U refer to the spectra
recorded with the Red Lower EEV CCD and the Red Upper MIT CCD
(c.f. Sect. 5).

Setting Arm  Slit width Resolving Spectral range

(nm) @) power (nm)

346 blue 0.4 71000 304.2-387.2

564 red-L 0.3 107000 461.6 —560.8
red-U 566.9 — 665.3

437 blue 0.4 71000 375.2-498.8

860 red-L 0.3 107000 670.4 —853.9
red-U 866.0 — 1042.0

the astronomical data is found. With the notable exception of
the above mentioned work on C{, previous studies have thus far
failed, such as attempts to link PAH cations (Bréchignac & Pino
1999; Salama et al. 2011, 1999; Romanini et al. 1999), neutral
PAHs (Salama et al. 2011; Gredel et al. 2011), carbon chains
(Motylewski et al. 2000; Maier et al. 2004), or H, (Sorokin &
Glownia 1999; Ubachs 2014) to the DIBs. The search for a lab-
oratory match can be optimised if the most likely candidates can
be pre-selected out of the vast collection of possible species, and
if the relevant conditions can be accurately constrained. Hence
it is necessary to unravel the physical and chemical properties of
the DIB carriers through analysis and modelling of observations.
This includes deriving environmental conditions that affect their
strength/profile shapes, as well as understanding the molecular
physics and spectroscopy of candidate carriers.

This paper presents the observational overview of the ESO
Diffuse Interstellar Bands Large Exploration Survey (EDIBLES)
and how we intend to use the obtained spectra in our long-term
goal of reverse-engineering the molecular characteristics of DIB
carriers. In Sect. 2 we describe the scientific goals and immediate
objectives of EDIBLES. Sect. 3 describes the methodology and
survey design. The survey target selection is discussed in Sect. 4
and the data processing steps are described in Sect. 5. Sect. 6
discusses several confounding factors such as telluric and stellar
spectral lines. In Sect. 7 we present a preview of the EDIBLES
data and illustrate their scope and quality. A brief summary is
given in Sect. 8.

2. Scientific goals & immediate objectives

The primary science goal of EDIBLES is to reverse-engineer
molecular characteristics of DIB carriers, through studying the
behaviour of DIBs in relation to the physical and chemical pa-
rameters of their environment. This approach differs from earlier
work in which attempts to identify DIBs were based mainly on
direct comparisons of astronomical and laboratory or theoretical
spectra. A large systematic high-fidelity survey of the diffuse-to-
translucent ISM is necessary to realise this approach.

The aim is to assemble a sample of interstellar spectra with
sufficiently high spectral resolution and signal-to-noise ratio to
allow detailed analysis of numerous DIBs and known atomic
and molecular absorption lines in the same lines-of-sight. At the
same time, our sample is designed to sample a wide range of
interstellar conditions, in terms of reddening, molecular content
and radiation field, within a practical observing time.

With EDIBLES we plan to compile the global properties of
a large ensemble of both weak and strong DIBs, and variations
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therein, as a function of depletion (patterns) and local physical
conditions. The new dataset should allow us to: (a) determine
the relation between weak and strong DIBs by identifying corre-
lations and sequences; (b) identify (sets of) DIBs that correlate
with different physical conditions in the ISM, and assess whether
the DIBs can be used to determine those conditions as a remote
diagnostic tool; (c) study the physico-chemical parameters that
influence the DIB properties, by using state-of-the-art chemical
modelling, combined with extensive auxiliary line-of-sight data
(e.g. on dust); and (d) constrain the chemical composition of the
DIB carriers by studying their relation to interstellar elemen-
tal abundances (depletion levels) and dust grain properties and
composition derived from, for example, the UV-visual extinc-
tion (including the conspicuous 2175 A UV bump) and optical
polarisation curves.

A number of studies have attempted to investigate links be-
tween the physical and chemical conditions of the ISM and the
properties of the DIBs. However, most studies focus only on a
few strong bands in a moderate-to-large number (=100) of sight-
lines (Friedman et al. 2011; Vos et al. 2011; Zasowski et al.
2015), or on many DIBs in just a few sightlines (Cami et al.
1997; Tuairisg et al. 2000; Hobbs et al. 2008, 2009). Hence,
more recent progress in the field has been limited to the study
of only a handful of the strongest DIBs due to high demands on
the signal-to noise ratio (S/N), spectral resolution, the removal
of stellar and telluric lines, and the lack of large, uniform data
sets. EDIBLES is designed to fill this gap, making just such a
large, uniform data set available and thus enabling a large and
systematic study of the physical and chemical parameters that
are expected to directly influence the formation efficiency and
spectroscopic response of DIB carriers.

3. Methodology & survey design

EDIBLES provides the community with optical (~305-
1042 nm) spectra at high spectral resolution (R ~ 70000 in the
blue arm and 100 000 in the red arm) and high signal-to-noise
(S/N; median value ~ 500-1000), for a statistically significant
sample of interstellar sightlines. Many of the >100 sightlines in-
cluded in the survey already have auxiliary available ultraviolet,
infrared and/or polarisation data on the dust and gas components.

Studies of DIBs typically report data such as equivalent
width, central depth, profile shape and substructure identifica-
tion. These cannot easily be compared between surveys due
to differences in the instrumentation, data quality and analy-
sis procedures — e.g. continuum normalisation and measurement
of spectroscopic lines. Archival material comprises a heteroge-
neous sample of spectra with varying S/N, resolving power, and
spectral coverage. To achieve the goals and objectives described
above requires a large and homogeneous survey of UV/visible
spectroscopic tracers across a broad spectral range, covering
a broad variety of interstellar environments. From this self-
consistent set of observations we can extract:

1. Accurate column density measurements (or upper limits) for
the most important atomic and molecular species, across a
wide spectral range. These can be used to assess the veloc-
ity structure of the line-of-sight (in particular to determine
radial velocity differences between species; e.g. Bondar
et al. 2007), derive depletion levels of metals, infer and com-
pute physical conditions (within the limitations imposed
by the current knowledge on interstellar processes), using
diffuse cloud PDR models (Le Petit et al. 2006) or turbulent

energy dissipation models (c.f. Flower & Pineau des Foréts
2015; Godard et al. 2014; Bron 2014).

For the photo-chemistry and derivation of particle density,
radiation fields, turbulent energy dissipation, the key tran-
sitions are those of CN 143874, 7906, CH 143879, 4300,
and CH* 143958, 4232 A, together with H, (from archival
UV spectroscopy). For example, rotational temperatures can
be derived from bands of C, (48756) and C3 (14053), and
cosmic ray ionisation rates can be derived from OH* abun-
dances (1143300-3600 A). CH measurements can be used
to estimate the H, column density (Danks et al. 1984; We-
selak et al. 2004).

2. Accurate measurements of DIB profiles (asymmetries,
wings, substructure) and variations therein. Substructure can
be related to molecular properties / sizes of carrier species
(Kerr et al. 1996; Ehrenfreund & Foing 1996; Huang & Oka
2015) with variations due to changes in the rotational tem-
perature (Cami et al. 2004; KaZmierczak et al. 2010b) or the
presence of hot bands (Marshall et al. 2015).

3. Updated measurements of peak positions of weak (per unit
reddening) diffuse bands along single cloud sightlines.

4. Measurements and cross-correlation of over 50 weak
and strong bands along the most reddened sightlines
(E(B-V) > 0.4 mag). Correlations between strong and
weak bands might reveal additional information on
groups (or families) of DIBs, but it should be noted that
a strong correlation between DIBs is not a necessarily a
guarantee that they have a common carrier (McCall et al.
2010; Krelowski et al. 2016).

5. Stacking analyses to search for molecules and/or DIBs which
are too weak to be seen in individual spectra.

6. Firm detection limits or abundance constraints on specific
molecular carriers for which laboratory spectra are obtained.

7. Variations in interstellar species due to the small-scale struc-
ture of the diffuse ISM (Cordiner et al. 2013; Smith et al.
2013).

To achieve our objectives efficiently we use the Ultra-
violet Visual Echelle Spectrograph (UVES; Dekker et al. 2000;
Smoker et al. 2009) mounted on the 8-metre second Unit Tele-
scope (UT2) of the ESO (European Southern Observatory) Very
Large Telescope at the Paranal Observatory. The relative bright-
ness of nearby early-type stars allows the observation strategy to
take advantage of poor observing conditions and twilight hours
that would otherwise be under-utilised. The programme is run-
ning as a Large ‘Filler’ Programme (ESO ID 194.C-0833, PIL.
N.L.J. Cox), which has been allocated 280 hours of observing
time. About 8 500 science exposures with a total exposure time
of 229 hours (with blue and red arm exposures taken simulta-
neously) have been collected between September 2014 and May
2017. The program is expected to be completed by late 2017.

UVES has two arms, red and blue, which can be used simul-
taneously by inserting a dichroic mirror (Dekker et al. 2000).
To obtain coverage of the entire spectral range accessible with
UVES, we use two instrumental settings per target: setting #1:
346+564 and setting #2: 437+860, where the pairs of num-
bers refer to the central wavelengths in nanometres of the two
arms. Together this provides near-continuous wavelength cover-
age from ~305 to 1042 nm. The blue and red arm slit widths are
0.4” and 0.3”, respectively, yielding nominal resolving powers
R = A/AA of ~71000 and ~107 000. Table 1 presents a sum-
mary of the instrumental setups. The EDIBLES data presented
here were collected over a period of two years, and it is there-
fore important to realize that the UVES resolution is not fully
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Fig. 1. Galactic distribution of EDIBLES targets. The symbol size reflects the value of Ry, while the interior colour represents the line-of-sight
reddening, E(B — V). Symbols with green edges represent the observed targets, while blue edges correspond to the targets to be observed by the

end of the programme.

stable with time', but the values listed in Table 1 were typically
realised in the actual spectra.

The “filler’-type observation strategy means that observa-
tions are often executed in non-optimal (and unpredictable) con-
ditions e.g. in terms of seeing, cloud coverage, sky emission/air
glow, lunar phase, and water vapour content. This needs to be
taken into account in the implementation of the observations.
Despite these limitations, S/N ratios of 200-300 per exposure
can be reached in short exposure times for the bright (2 < V <
6 mag) targets, and up to 20 exposures (to avoid saturation of
individual frames) are obtained for each to build up higher S/N.
Observations are divided into observing blocks (OBs) for a spe-
cific instrument setting and target. OB execution times range
from ~20 minutes for the bright (V < 6 mag) stars up to ~45
minutes for the fainter (6 < V < 9) stars.

Additional flat-field calibration exposures were taken during
the day-time (when possible, subject to operational constraints)
to reduce residual fringing that would persist with the standard
UVES calibration plan and to increase the overall S/N ratio. De-
tails of the flat-field corrections are given in Sect. 5.

4. Target survey sample selection and
characteristics

We constructed a statistically representative survey sample that
probes a wide range of interstellar environment parameters
including reddening E(B — V), visual extinction Ay, total-to-
selective extinction ratio Ry, and molecular hydrogen fraction
fu,. This is essential to (a) trace depletion patterns from diffuse

! http://www.eso.org/observing/dfo/quality/
UVES/reports/HEALTH/trend\_report\_ECH\
_RESOLUTION\_DHC\_HC.html

Article number, page 4 of 30page.30

— translucent clouds, (b) study the effect of shock- and photo-
processing, (c) probe the behaviour of DIBs with respect to grain
properties, and (d) identify unusual DIB environments.

During target selection the following factors were taken into
account:

— Given that fi,depends non-linearly on Ay, due to the transi-
tion from atomic to molecular hydrogen driven by H, self-
shielding, we require numerous sightlines probing Ay ~
1 — 3 mag and below, in small increments AAy.

— The dust grain properties and attenuation of UV photons (im-
portant for photo-chemistry) are constrained by the extinc-
tion curve, i.e. the Ay and Ry parametrisation (Valencic et al.
2004; Fitzpatrick & Massa 2007) or from fitting with a well-
defined dust-PAH extinction model (Mulas et al. 2013).

— Preference is given to sightlines with auxiliary
atomic/molecular data, such as HI and H, measure-
ments (Jenkins 2009; Gudennavar et al. 2012), optical
polarisation data (Whittet et al. 1992; Weitenbeck 2008), or
Mg/Fe abundances (Voshchinnikov et al. 2012).

Where two targets with similar interstellar conditions are
available, we preferentially selected targets which are brighter
and/or of earlier spectral type.

The target list is given in the Appendix, Table A.l (their
Galactic distribution is shown in Fig. 1). Columns (1) to (3) pro-
vide basic information on the target id (HD number) and co-
ordinates (RA/Dec). Columns (4) and (5) list the spectral type
and corresponding literature reference. The interstellar line-of-
sight dust extinction properties, E(B — V), Ry, Ay, are given
in columns (6) to (9). Columns (10) and (11) list the atomic
and molecular hydrogen abundances with the molecular fraction
fu,listed in column (12).
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Fig. 3. Relation between visual extinction, Ay, and neutral hydrogen
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Note that some EDIBLES lines-of-sight are not included since no direct
H1 or H, measurements are available.

The total number of selected targets amounts to 114 (of
which 96 have been observed at least once as of May 2017) and
comprises mostly bright O and B stars (V = 2-7 mag with a
small fraction 7 < V < 9 mag). The sample probes a wide range
of interstellar dust extinction properties (E(B — V)~ 0-2 mag;
Ry ~ 2-6; Ay ~ 0.1-4.5 mag) and molecular content (fi,~

0.0-0.8). The histograms in Fig. 2 illustrate the range of param-
eters included in the survey sample. In Fig. 3 we show com-
parisons between visual extinction, Ay, and the measured neu-
tral hydrogen column density N(H1), molecular hydrogen col-
umn density N(H;), and total hydrogen column density N(Hyo)
(=N(H1D+2N(H;)). As noted above H, can be estimated using
the CH transitions (Danks et al. 1984; Weselak et al. 2004).

5. Data processing

Acquiring high-S/N spectra with UVES is challenging in the
context of EDIBLES for a number of reasons. For example,
small errors in the wavelength calibration at the edges of indi-
vidual adjacent orders can cause the appearance of ripples in the
continuum in high-S/N exposures. Moreover, the unpredictable
seeing and other observing conditions inherent in a filler pro-
gramme mean that individual exposure times cannot be opti-
mised for the actual sky conditions.

The overall quality of all 8 500 science and ~ 1600 flat expo-
sures was checked visually. This visual inspection led us to dis-
card about 150 exposures that appeared corrupted. This could,
for example, be due to sudden changes in weather conditions
or premature termination of exposures. In addition, we care-
fully inspected for the presence of incorrect thorium-argon lamp,
format-check, and flat field exposures that could result in faulty
order tracing or wavelength calibration solutions (see also be-
low).
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Fig. 4. Comparison of the S/N of HD 23180 with changing number
of flat frames. The S/N ratios plotted for each instrument setting are
average values of S/N measured in five different continuum regions in
the respective setting.

Within a sequence of observations (20—40 minutes including
overheads) the change in barycentric velocity correction is small
(< 0.1 kms™' per hour) so the spectra can be averaged without
compromising the velocity precision. However, exposures taken
on different nights were not averaged. This is to preserve multi-
epoch information — specifically for spectroscopic binaries and
the search for time-variable interstellar absorption — and to
avoid addition of misaligned interstellar features due to varia-
tions in the barycentric velocity of the frame of the observer.

The data reduction was performed by two semi-independent
teams, one using version 5.7.0 of the UVES pipeline (Ballester
et al. 2000), esorex (version 3.12; ESO CPL Development
Team 2015) integrated in a python pipeline (hereafter Reduction
’A’), and the other using the 4.4.8 version of the UVES pipeline
(Reduction ’B’).

Each set of around 20 science frames was processed with the
same set of calibration frames. For the format check, order defi-
nition and wavelength calibrations these were the nearest in time,
with the master bias and master flats using frames taken typically
over several days or weeks. In general, both data reductions used
similar parameters for the different pipeline recipes, but with a
few differences. Reduction ‘A’ adopts optimal merging, applies
the blaze correction and uses about 100—130 flats for each arm,
while reduction ‘B’ uses optimal merging and takes the near-
est 140 flat field frames.

In the following we provide a detailed description of the dif-
ferent data processing steps and discuss their impact on the qual-
ity of the reduced spectra. The differences between reductions
‘A’ and ‘B’ are discussed in relation to the blaze correction and
order merging step.

Bias To subtract the CCD bias level in science frames, we
created a master bias frame by median-stacking a set of 50
(reduction ‘A’) or 25 (reduction ‘B’) bias exposures, using the
uves_cal_mbias recipe. To handle the bad columns in the
REDL CCD, by default the recipe interpolates across bad pix-
els but does not apply this interpolation in science frames. This
inconsistency creates boxy emission-like artifacts in the reduced
spectra. To avoid this from occurring, high-quality bias frames
are carefully pre-selected and the data are processed without in-
terpolating over bad pixels.
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Fig. 5. (a) Part of the extracted spectrum of HD 23180 taken using the
Red Lower EEV CCD (Red-L). (b) Ditto but for Red Upper MIT CCD
(Red-U). The latter is a thick chip so fringing is much reduced compared
with the EEV detector. The vertical scale is the same in both cases.

Order definition 1In order to find the physical position of
echelle orders in the X and Y directions of spectral frames for a
given instrument setting, esorex uses a physical model based
on the instrument configuration, ambient pressure, the humidity,
slit width, central wavelength, camera temperature and CCD ro-
tation angle. The physical model then predicts the X and Y pixel
position corresponding to the nominal orders and stores the cal-
culations into the guess line and order tables. These tables are
then normally used as the initial values for identifying the spe-
cific positions of the orders.

To accurately detect the order positions, esorex defines a
search box on the detected lines in the arc lamp frames and tries
to match the predicted position of the physical model lines. The
following procedure robustly detects the order positions:

1. measure the raw X and Y pixel positions of the thorium-
argon lines on an arc frame exposure by defining a 60 x 60
pix? square search box,

2. compute the difference of predicted and detected order posi-
tions,

3. decrease the size of the search box to 40 x 40 pix2, iterate
the X and Y shifts to search for residuals less than +1 pixel
and to reduce the root-mean-square (RMS) values,

4. fit a 2D Gaussian function to XY pixel positions within a “fit
box’ centred at the predicted line positions,

5. For reduction ‘B’ additional iterations of the format
check are done using different values of the CCD rota-
tion offset, selecting the one with the maximum number
of lines found,

6. and, finally, perform a 2D second-order polynomial fit in
XY to the fitted line positions.

The highlighted values in the above steps are our tuned parame-
ters in the uves_cal_predict recipe.

Flat fielding The flat-fielding is applied, to the 2D frame, be-
fore the order extraction (see below). This is known as the pixel
flat-fielding method. The standard UVES pipeline uses only five
flat field frames, which limits the maximum S/N. To demonstrate
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spectra.
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Fig. 6. Close-up view of a region including two overlapping orders
in the 564-nm setting for HD 23180 for both reduction ‘A’ (bottom
red trace) and reduction ‘B’ (top black trace). The small jump in the
continuum at approximately 5855 A seen in reduction B (top black
trace) is due to imperfect merging of two echelle orders. The ap-
parent difference in S/N is due to alternative choices of wavelength
sampling.

Table 2. Wavelength calibration uncertainties for the thorium-
argon frames corresponding each of the observed UVES settings
for HD 23180.

Arm uncertainty (A)  uncertainty (m s~')
346-nm 6.4%x107% 52
437-nm 7.8 x107* 54
564-nm L 45% 107 26
564-nm U 7.0x 107 34
860-nm L 8.3x10™ 33
860-nm U 1.1x1073 36

the necessity for accurate flat-fielding to reach the required S/N
ratio, we reduced 11 science frames of HD 23180 using a dif-
ferent number of flat field frames to build the master flat frame.
As shown in Fig. 4, increasing the number of flat fields helps
to increase the final S/N. More than 100 flat field frames do not
cause the S/N to increase further, indicating that flat fielding is
no longer the limiting factor on the S/N. In the case of the 860-
nm setting the S/N drops between 100 and 130 applied flats due
to the presence of several bad-quality flat frame exposures. For
the final reduction these were rejected and we selected as many
as possible, usually about 100, good quality flat frames. By us-
ing the additional flat fields, we were able to improve the final
S/N by factors of two to five, depending on the wavelength.

Note that the intensity (photon counts) of normal flats are
very low in the UV (<320 nm). Therefore, to improve the qual-
ity of the first-orders of the 346-nm arm spectra, a final master
flat is constructed by combining a set of normal flats with flats
obtained by exposing with a deuterium calibration lamp. The
merging was done at orders 145 and 146 around 321 nm with
the master deuterium-lamp flat being used bluewards of this and
the normal flat redwards. This is to avoid as much as possible
spurious absorption-line features in the final science spectrum
caused by emission features in the deuterium lamp redwards of
321 nm.

Order extraction Various possible extraction methods were
tested and we find that the average extraction method with per-
forming a flat fielding before the extraction (see above) leads
to a higher S/N with respect to other methods (such as opti-
mal extraction), which is generally the case for high S/N spec-
troscopy. This method also reduces the fringing seen in the red
wavelengths > 700 nm, although does not entirely remove it.
Fig. 5 shows that displays parts of an extracted science spectrum

Setting Arm  A-range (nm) Median S/N  Sample
(0.04 A bin) size
346 blue 339.3-3394 7804 204
437 blue 398.8 —398.9 10704 187
564 red-L  511.0-511.1 1090° 205
red-U 613.1-613.2 1020° 205
860 red-L  675.35-6754.55 670" 184
red-U 869.9 —870.0 880" 183
@ Reduction ‘A’ @ Reduction ‘B’
A LA A T
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Fig. 7. Comparison between the ADP and EDIBLES processing of
HD184915 spectra (0.02 A binsize). The S/N measurements, taken
at 49124913 A and 6129-6130 A for the Red-L and Red-U spectra,

are given in the top and bottom panel. Resampling to 0.04 A binsize
(i.e. corresponding to the spectral resolution) further increases the

S/N by factor V2.

near the gap between the upper and lower CCDs. The fringing
is much worse in the lower thinned EEV chip than in the upper
MIT thick chip (Smoker et al. 2009).

Cosmic ray rejection and hot pixels To remove the cosmic
rays and possible hot pixels we applied a sigma-clipping method
to each extracted spectrum. The default sigma-clipping threshold
value in esorex is k = 10, but to identify all induced hot pixels
we set this k = 6 to be sure that all cosmic/hot pixels are removed
and no real data are clipped.
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Fig. 8. EDIBLES UVES spectra of HD 170740 (B2 V) for each setting from top to bottom: 346B, 437B, 564L, 564U, 860L, 860U. This overview
figure is a demonstration of the data quality. The main gaps in wavelength coverage are between 5610-5670 A and 8530-8680 A which
correspond to the physical separation of the Red-L and Red-U detectors in both the 564 and 860-nm settings. Note also the inter-order
gaps, several are indicated with arrows, in the 860-nm Red-U spectrum above ~9600 A as well as several conspicuous regions containing
bands of closely-spaced telluric absorption lines (indicated with red horizontal bars) mostly in the Red-L and Red-U 860-nm spectra
(bottom two panels). Two order-merging jumps are indicated in the fourth panel. A more detailed version of this figure is shown in the
appendix (Fig. B.1) where specific interstellar species are labeled and a synthetic DIB spectrum is shown for comparison.

Wavelength calibration UVES wavelength calibration errors
are typically in the range of 0.1-0.5 kms~' (Whitmore et al.
2010). To achieve an accurate wavelength calibration, the dis-
persion relation is obtained by extracting the thorium-argon arc
lamp frames using the same weights as those used for the sci-
ence objects. Therefore, first we reduced the science frames with
an optimal extraction method to generate a pixel weight map.
Then by applying this weight map to the wavelength calibra-
tion, an accurate wavelength calibration with a statistical error
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less than 5 x 10~* A typically in all central wavelengths (for
more details see Table 2) and a systematic uncertainty less than
1.7x107* A is achieved. To optimize the number of lines used in
the wavelength calibration solution we tested a tolerance value
=~ (.07 pixels to reject the line identification with wavelength
residuals worse than the tolerance. For the final iterations of
the fit of the wavelength calibration solutions we set the sigma-
clipping to k = 3. Further improvements to the wavelength
calibration are being studied for the public release of the
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data. For example, there is a temperature and density depen-
dent shift (which can be as much as 1 pixel and different for
the different wavelength regions) in the position of the thorium-
argon lines (UVES User Manual). This can be potentially cor-
rected by taking into account the difference between the ob-
servation and calibration temperatures and pressures. Also, we
foresee improvements to the final wavelength calibration in
the 860 nm Red-U arm, where there are few thorium-argon
lines, by cross-referencing with a model telluric transmission
spectrum.

Blaze function and order merging Previous analyses of data
obtained with UVES demonstrate that the shape and position of
the blaze function is the primary source of problems in the or-
der overlap regions. The continuum changes vary smoothly over
subsequent orders, which may be related to the fact that the blaze
profiles produced by UVES are not the same as the theoretical
predictions. Accordingly, the blaze function at the overlapping
regions is not sufficiently well characterised, therefore by av-
eraging the overlap regions some artificial features appear and
cause the signal level to fall off at the end of the orders. Irregular
variations in the continua at the edges of orders are likely due to
a mismatch between the paths of the light from the star and the
flat-field lamp (Nissen 2008) and result in discontinuities where
orders have been merged.

For reduction ‘B’, no blaze correction was performed. Opti-
mal merging provided the best results in the overlapping regions
for both reductions ‘A’ and ‘B’. Fig. 6 shows a comparison of
reductions ‘A’ and ‘B’ for HD 23180 in a spectral region with
two overlapping orders. Reduction ‘B’ reveals a mismatch
of the order-overlapping regions, resulting in a jump in the
spectra at 5855 A not present in the reduction ‘A’ spectrum.

Quality control The S/N of the spectra as a function of wave-
length was estimated by fitting a first order polynomial to re-
gions of the spectra in bins of 1 A and measuring the residual in
each 0.02 A wavelength bin. Table 3 lists the median S/N (per
2-pixel “resolution-element’) for each setting, together with
the respective continuum wavelength regions. In Fig. 7 we
compare for HD 184915 the spectra obtained with the dedi-
cated EDIBLES processing presented here and the default
archive data products (ADP) provided by ESO. ?> The in-
crease in S/N (labelled in the figure) is almost a factor two
for both the Red-L and Red-U spectra (cf. Table 1). For each
target the different settings/arms generally have different S/N
ratios. This is primarily due to (1) the choice of targets which
are often brighter in V band compared to B band (i.e. redden-
ing), and (2) the lower efficiency of UVES in the very blue and
very red parts of the accessible wavelength range. In terms of
S/N reduction ‘A’ performs slightly better than reduction
’B’ for the 346-nm setting, both perform similar for the 437-
nm and 860-nm settings, while reduction ‘B’ performs better
for the 564-nm setting. The main difference between the two
reductions is in terms of the order-merging jumps. In ad-
dition, there are small, though noticeable differences in the
‘noise’ between both reductions. The reduction scheme ‘A’

2 These spectra are generated by ESO’s Quality Control Group for

all UVES point-source observations. The pipeline processing is done
automatically through a dedicated workflow (with no fine-tuning of
pipeline parameters specific to the needs of our programme). The
1d-extracted spectra are ingested into the ESO archive as so-called
“Phase 3” data products.

is adopted as the primary scheme for results shown in this
work. Both reductions are therefore retained for reference and
as a control for spurious features.

As an example, the final continuum normalised EDIBLES
UVES spectrum of HD 170740 (from reduction ‘A’) is shown
in full in Fig. 8, where each panel corresponds to one of the
instrument settings (Table 1). A closer view of this spectrum in
shown in Appendix B. All processed EDIBLES spectra will be
released as new ‘“Phase 3’ data to the ESO archive later in
the project.

6. Telluric and stellar features
6.1. Earth transmission spectrum

A large number of weak and strong telluric oxygen and water
absorption bands arise from molecules present in the Earth at-
mosphere covering nearly the full DIB range. In addition, for
the near-UV spectral domain (300-350 nm) a correction for at-
mospheric ozone needs to be applied.

These telluric lines can be removed or modelled by using
bright, early-type type star spectra recorded in the same con-
ditions as the targets, or by using synthetic atmospheric trans-
mittance spectra. The former method requires observing (unred-
dened) standard stars at roughly similar airmass, shortly before
or after the primary science target observations. This procedure
is not possible within the filler observation strategy, and as the
EDIBLES targets are themselves bright this would double the
required observing time. The latter method has the advantage
of saving observing time, avoiding features associated with the
standard star and benefits from the increase in quality and avail-
ability of the molecular databases. The first tests of atmospheric
spectra correction were performed based on the following ap-
proach:

First, the telluric transmittance is optimally adapted to each
target. Paranal observing conditions are downloaded from the
TAPAS facility3 (Bertaux et al. 2014). The TAPAS transmittance
spectra are based on the latest HITRAN molecular database
(Rothman et al. 2013), radiative transfer computations (Line-By-
Line Radiative Transfer Model; Clough & Iacono 1995), and are
computed for atmospheric temperature, pressure and composi-
tion interpolated by the ETHER data centre* based on a combi-
nation meteorological field observations and other information.

Then, in regions of moderate absorption (i.e. less than 70%
at line centers before instrumental broadening), a simple method
called rope-length minimization is used (Raimond et al. 2012).
Briefly, the algorithm searches for the minimal length of the
spectrum that is obtained after division of the data by the trans-
mittance model. To do so the column of the absorbing species,
the Doppler shift and the width of the instrumental function by
which the transmittance model is convolved are all tuned. The
method uses the fact that when the telluric lines are not well
reproduced, strong maxima and minima remain after the data-
model division and the spectrum length increases. On the con-
trary, if the modelled lines follow very well the observed ones,
the corrected spectrum is smooth. An example of correction is
shown in Fig. 9 for the 6284 A DIB. Here the rope-length method
has been first applied to the O, lines, then in a subsequent step
the O,-corrected spectrum is corrected for the weak H,O lines
that are also present in this spectral region.

For regions of stronger telluric lines, division by deep lines
induces overshoot and the exact shape of the telluric profiles and

3 http://ether.ipsl.jussieu.fr/tapas/
4 www.pole-ether.fr
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Fig. 9. (Left) Example of telluric line correction in the weak line regime by means of the rope-length method applied to the spectrum of HD 170740.
Telluric lines of O, are corrected first, then H,O lines. (Right) Example of telluric line correction in the strong line regime by means of a two-step
method and a composite instrumental profile adjustment (see text). Residuals remain at the location of the deepest lines, especially when the model
does not predict their shape and exact Doppler shift very accurately. The positions of the 9577 and 9632 A DIBs attributed to Cy, are indicated.

of the instrumental function becomes crucial. The simple rope-
length method alone is no longer appropriate. We have tested an
iterative method that is a combination of the rope-length method
and a classical fitting. In a first step we excluded all spectral
intervals around the centres of the deep lines and performed a
segmented rope-length optimization, i.e. the algorithm searches
for the model parameters that minimize the sum of the lengths of
the individual spectral segments. We then divided the data by the
corresponding adjusted model and performed a running average
of the divided spectrum to obtain an approximate stellar contin-
uum. We then fitted the data to the convolved product of this
continuum and a telluric transmittance. The instrumental func-
tion is now modelled as the sum of a Gaussian and a Lorentzian,
which allows weak extended wings to be taken into account. The
instrumental profile is the same for all lines within the corrected
interval. The parameters defining these two components as well
as the column of the absorbing species are free to vary during the
adjustment. The data were then divided by this updated model.
This process can be iterated and stopped when there is no longer
any decrease of the "rope-length". An example of such a two-
step correction is shown in Fig. 9 for the spectral region of the
Cgo 9577 and 9632 A DIBs. There are still some residuals, but
these are limited mostly to the deepest, (partially) saturated tel-
luric lines. This occurs particularly when these lines are slightly
Doppler shifted or broadened due to atmospheric pressure in a
way that is not fully predicted by the model. For a description
of such effects see Bertaux et al. (2014). Nevertheless, the DIBs
at 9577 and 9632 A, assigned to be due to C}, as mentioned in

60
the introduction, stand out clearly in the telluric corrected spec-

trum. The three weaker DIBs between 9350 and 9450 A re-
ported by Walker et al. (2015), though not yet confirmed in-
dependently (Galazutdinov et al. 2017; Cordiner et al. 2017)
present significant challenges for detection due to the pres-
ence of strong, saturated telluric water lines in this spectral
range. We intend to investigate the C/ bands in more detail
later in the EDIBLES project, but this will depend upon the
accuracy and success of the telluric line modelling for each
line-of-sight (as there are numerous saturated atmospheric
water absorption lines in this wavelength region) as well as
the stellar atmosphere modelling required to account for, for
example, contribution of Mg II (as discussed in Galazutdinov
et al. 2017).
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6.2. Stellar spectra

In addition to the goals discussed above, the EDIBLES observa-
tions provide high-quality spectra of the target stars themselves.
These span the full spectral range of early-type stars, from early
O-type dwarfs through to late B-type supergiants (plus a cou-
ple of later/cooler stars). Published spectral classifications of the
sample are summarised in Tables A.1 and A.2.

All of the O-type EDIBLES targets have been observed as
part of the Galactic O-Star Spectroscopic Survey (GOSSS), a
comprehensive survey of bright Galactic O stars at a resolv-
ing power of R ~2500 (Sota et al. 2011, 2014). The detailed O-
star classifications quoted in Tables A.1 and A.2 are the GOSSS
types — a thorough description of the classification criteria was
given by Sota et al. (2011), including an overview of the various
classification qualifiers used to convey additional information on
the spectra (their Table 3).

In contrast, most of the B-type stars in the EDIBLES sam-
ple have not been subject to such morphological rigour with
high-quality digital spectroscopy. Work is underway within the
GOSSS to better define spectral standards and the classification
framework for early B-type stars (Villasefior et al. in prep.), with
a few stars overlapping with the EDIBLES sample. Nonetheless,
the high-quality, high-resolution spectra from EDIBLES will be
useful to refine the classification framework for B-type stars, par-
ticularly compared to similar efforts in the Magellanic Clouds
(e.g. Evans et al. 2015).

In the short-term we will inspect the EDIBLES data in
the context of classification, to update/refine spectral types as
required — whether arising from the added information of
the high-resolution UVES data (cf. lower-resolution spec-
troscopy from the GOSSS, for example), or simply from in-
trinsic spectral variability, which is seen in many early-type
stars. This will ensure the best parameters are adopted in es-
timating stellar colours, thence the line-of-sight extinctions.
We will also look for evidence of spectroscopic binaries in
targets with multiple observations (and/or relevant archival
data, see, e.g., Sect. 7.4). Our longer-term objective is a quan-
titative analysis of the stellar spectra to determine their phys-
ical parameters (effective temperature, gravities, rotational ve-
locities, mass-loss rates etc), employing tools developed specif-
ically for the analysis of early-type spectra (e.g. Mokiem et al.
2005; Simén-Diaz et al. 2011). Ultimately this will help removal
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Fig. 10. An illustration of the quality of the spectra for the 5780 and 5797 A (left) and 6614 A (right) DIBs. For each target all observed spectra
were co-added in the heliocentric reference frame. The five targets shown have comparable E(B-V) values (Tables A.1 and A.2), and thus
have similar 5797 A DIB strengths. The well established, strongly variable 5780/5797 ratio can be seen in the spectra, with the intensity of
5780 absorption inversely related to the molecular gas fraction, fy, (Tables A.1 and A.2). The five spectra are shown superimposed on each
other at the top of the panels. Note that because of generally poor observing conditions there are numerous weak and narrow atmospheric water
features present (particularly noticeable around 5788-5792 A) that could influence the 5797 A profile. In the future these features will be removed

using the method described in Sect. 6.

of stellar features from the EDIBLES spectra to aid analysis of
the interstellar features.

7. Quality assessment: the interstellar spectrum

In this Section we highlight the interstellar lines and bands ob-
served for a few selected lines-of-sight.

7.1. EDIBLES

As noted above, the full spectrum of HD 170740 is shown as an
example in Figs. 8 and B.1. For initial guidance in identifying the
DIBs in this line-of-sight the average ISM DIB spectrum (Jen-
niskens & Désert 1994), scaled to E(B — V)= 0.5 mag, is shown
in the latter figure. This reference spectrum includes broad DIBs
not included in e.g. Hobbs et al. (2009) but which appear to be
present in the observed spectrum.

In Fig. 10 we compare the three strong DIBs at 5780, 5797 A
(Heger 1922; Merrill & Wilson 1938) and 6614 A for single-
cloud lines-of-sight towards five EDIBLES targets, HD 149757,
HD 184915, HD 144470, HD 145502, and HD 147165. The line
of sight reddening, E(B — V), for these sightlines differs by less
than 0.17 mag (c.f. Table A.1). The spectra are averages of indi-
vidual exposures co-added in the heliocentric rest frame and sub-
sequently continuum normalised (but not otherwise scaled other
than to offset them in the figure).

As expected, for sightlines with such small variations in red-
dening, the 5797 A DIB profiles have similar central depths (in-
sensitive to fi,; Cami et al. 1997). The large variations in the
strength of the 5780 ADIB are thought to be related to variations
in the local interstellar conditions. The sightline with the weak-
est 5780 A DIB is more neutral as indicated by the large molec-

ular fraction, whereas the sightline with the strongest 5780 A
DIB has the highest atomic column density. However, while the
6614 A DIB of the former is %llSO the weakest, the latter does
not exhibit the strongest 6614 A DIB, thus indicating that addi-
tional parameters must play a role in determining the DIB carrier
column density.

7.2. EDIBLES versus CES

High-resolution (R = 220,000) spectra of the 6614 A band
have been recorded using the Coude Echelle Spectrograph
(CES) fed by the fibre link with the Cassegrain focus of the
3.6 m telescope at La Silla Observatory (Galazutdinov et al.
2002). A signal-to-noise of ~600-1000 was achieved. Com-
parison of the EDIBLES and CES data is shown in Fig. 11
for HD 184915, HD 144470 and HD 145502 and the main fea-
tures are in good agreement. Of the three principal absorp-
tion components, the shortest wavelength feature (compo-
nent 1) is relatively strong for HD 184915 in both studies,
whereas components 1 and 3 have comparable intensities for
the lines-of-sight towards HD 144470 and HD 145502. No sig-
nificant additional structure is evident in the higher resolu-
tion CES spectra.

7.3. EDIBLES versus AAT

To assess the quality of our spectra with respect to previous stud-
ies, we compared our EDIBLES spectrum of HD147888 (ob-
tained in a single exposure on 2016-08-08) with a spectrum ob-
tained using the Anglo-Australian Telescope (AAT) in June 2004
by Cordiner et al. (2013). The AAT spectra were obtained using
the UCLES instrument at a resolving power of 58 000 and have
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Fig. 13. Comparison of EDIBLES (black) and Fig. 14. Comparison of EDIBLES (black) and UVES POP (red) spectra of HD 148937

UVES POP (red) spectra of HD 169454 for in- (06 £?p) for the i

nterstellar Na lines (UV, top left; D, top right) and DIBs at 115480-

terstellar lines of NH(143353.92, 3358.05 f&) 5545A (lower left) and 2116360-6379 A (lower right). The telluric spectrum is shown in
(top) and CN(1-0) (113579.45, 3579.96, and  orange, and the average ISM DIB spectrum in green. The apparent feature at 6384 Ain the
3580.9 A; Meyer et al. 1989) (bottom); the tel- UVES POP data (bottom right panel) is related to the order merging, but the significant
luric spectrum is shown in orange. HD 169454 change in the He 15876 line (top right panel) appears astrophysical in nature.

is a blue supergiant (B1 Ia) — the broad stellar
line in the spectrum is He 1 13355 A.

110
HD184915

MALSASN N

105 A
70

H
8

HD14550

Normalised Intensity

095 — EDIBLES
— CES >
6611 6612 6613 6614 6615 6616

Wavelength (A)

Fig. 11. Comparison of the 6614 A DIB for HD 184915,
HD 144470, and HD 145502 obtained with EDIBLES (black solid
line; this work, R ~ 110000) and the CES (blue solid line;
Galazutdinov et al. 2002; R ~ 220000). The sub-structure compo-
nents 1, 2, and 3 are labelled in the bottom trace (see text).

S/N ~ 900. Cordiner et al. (2013) reduced their data using a cus-
tom procedure, taking special care to optimally correct for CCD
non-linearity, scattered light subtraction and flat fielding, as well
as wavelength calibration. A comparison between the EDIBLES
and AAT spectra is shown in Fig. 12 for the 6614 A DIB, which
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Fig. 12. Comparison of the 6614 A DIB for HD 147888 (o Oph D) ob-
tained with EDIBLES (this work, R ~ 110000) and the AAT (Cordiner
et al. 2013, R ~ 58 000). The top spectrum labeled “ADP” is the spec-
trum obtained with the standard ESO archive pipeline processing (i.e.
using the default number of 5 flat-field frames). The red dotted line
represents the telluric absorption spectrum, shifted to match the helio-
centric rest frame of each target; highlighting the presence of a small
telluric absorption feature at 6614/6614.5 A.

makes for a good general test case due to the presence of narrow
and broad features within its profile. Apart from differences in
the wavelengths of the telluric features, and a slight difference in
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the overall spectral slope (presumably due to uncorrected differ-
ences between the UVES and UCLES blaze functions), the spec-
tra are almost identical within the noise. Slight differences in the
depths and widths of the substructure peaks are attributable to
the higher resolution of the UVES spectrum. The overall excel-
lent match demonstrates the quality of our EDIBLES reduction
procedure. For reference we show also the ADP spectrum, which
uses only 5 flat-field frames; the large increase in S/N when us-
ing our custom flat-field processing is apparent.

7.4. EDIBLES versus UVES POP

To further illustrate the quality of the data we compared spectra
of two targets, HD 148937 (Fig. 13) and HD 169454 (Fig. 14),
which were both observed as part of the EDIBLES survey
and the UVES Paranal Observatory Project (POP; Bagnulo
et al. 2003). The UVES POP programme gathered a library
of high-resolution, high S/N spectra of (field) stars across the
Hertzsprung-Russell diagram. The spectra in the figures have
been scaled in intensity to facilitate comparison, but not con-
tinuum normalised.

Fig. 13 shows the NH and OH" lines in the sightline towards
HD 169454. The top panels in Fig. 14 compare the sodium dou-
blets at ~3303 A (see also Hunter et al. 2006) and ~5895 A for
the sightline towards HD 148937. The bottom panel compares
several weak and strong DIBs in the HD 148937 line-of-sight.
In each panel the EDIBLES and UVES POP spectra are shown
in black and red, respectively. The average ISM synthetic DIB
spectrum (adapted from Jenniskens & Désert 1994) is shown in
green and a generic Paranal model telluric spectrum? is shown in
orange. The agreement between stellar and interstellar features
in the EDIBLES and UVES POP is excellent, where the EDI-
BLES data generally reach a higher S/N.

The two right-hand panels of Fig. 14 reveal apparent varia-
tions between the EDIBLES data compared to the UVES POP
spectrum. The strong absorption in the POP data at ~6384 A co-
incides with the order ends/overlap, and appears to be an artefact
of the order merging. In contrast, the significant change in the
He I 5876 absorption seems robust. In the context of HD 148937
being a peculiar magnetic star, this variation is quite remarkable.
This aspect will be discussed elsewhere.

These comparisons with existing data for selected sightlines
show the excellent data quality of the spectra acquired within
EDIBLES, illustrating its potential for detailed studies of physi-
cal conditions and DIB properties in the diffuse ISM.

8. Summary

In this first of a series of papers we have presented the design
and scope of the ESO Diffuse Interstellar Bands Large Explo-
ration Survey (EDIBLES). We presented the scientific goals and
the immediate objectives of EDIBLES, along with the survey
sample and its characteristics.

At the time of writing (May 2017), spectra had been acquired
for 96 targets from 114 in the overall programme. These spec-
tra cover the wavelength range from 305 to 1042 nm at a spec-
tral resolving power of ~70 000—110000. We have presented the
data-processing steps employed to reduce the survey data so
far.

The median S/N ratio (per 0.04 A spectral bin) varies from
~600-700 hundred in the blue (<400 nm) and near-infrared
(>800 nm) ranges, to >1000 in the green-red (500-700 nm). To

5 generated from the ESO SkyCalc Sky Model Calculator

illustrate the quality and scope of the new spectra we have com-
pared (1) EDIBLES and AAT spectra of the 6613 A DIB towards

HD 147888, (2) EDIBLES and CES spectra of the 6613 A
DIB for the sightlines towards HD 184915, HD 144470 and
HD 145502, and (3) EDIBLES and UVES POP spectra of
HD 148937 and HD 169454.

Upcoming papers in this series will present in detail the
array of scientific results that are being explored with the
EDIBLES data set. Once the program is completed the advanced
data products (merged and normalised spectra) will be released
to the community through the ESO Science Archive and the
CDS/ViZieR service.
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Appendix A: Survey sample

Table A.1 lists spectral classifications and line-of-sight parameters for the observed EDIBLES targets to date; Table A.2 lists the
additional observations that will supplement the data discussed here in due course. The Ry and Ay extinction values are taken (in
order of preference) from Valencic et al. (2004), Fitzpatrick & Massa (2007), or Wegner (2003). HI and H;, column densities are
from Jenkins (2009). The interstellar reddening, E(B — V), was computed from (B — V), colours (taking the average from Tycho-2
and Simbad B — V colours; where Tycho-2 colours were converted to Johnson colours; Mamajek et al. 2002) and the published
spectral classifications, adopting intrinsic colours from Fitzgerald (1970).

References for the spectral classifications in col. 4 of both tables are: M50 (Morgan & Roman 1950); S52 (Sharpless 1952); M55
(Morgan et al. 1955); H56 (Hiltner 1956); S56 (Stebbins & Kron 1956, classification originally from W. W. Morgan); F57 (Feast
et al. 1957); 059 (Osawa 1959); G68 (Guetter 1968); L68 (Lesh 1968); A69 (Abt & Morgan 1969); C69 (Cowley et al. 1969); H69
(Hiltner et al. 1969); S71 (Schild & Chaffee 1971); W71 (Walborn 1971); H73 (Humphreys 1973); M73 (Morgan & Keenan 1973);
L75 (Levato 1975); L76 (Levato & Abt 1976); W76 (Walborn 1976); G77 (Garrison et al. 1977); H78 (Houk 1978); H82 (Hendry
1982); G94 (Garrison & Gray 1994); M95 (Massey et al. 1995); P98 (Parsons & Ake 1998); S99 (Steele et al. 1999); GO1 (Gray
et al. 2001); EO5 (Evans et al. 2005); L06 (Levenhagen & Leister 2006); R0O9 (Renson & Manfroid 2009); S11 (Sota et al. 2011);
H13 (Holberg et al. 2013); S14 (Sota et al. 2014).
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Appendix B: Spectrum of HD170740
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Fig. B.1. EDIBLES spectrum for HD 170740 (solid blue). The preliminary normalisation shown here is from spline fits to broad regions of each
UVES settings, and order-merging residuals can also be seen — future quantitative analysis will employ tailored, local rectifications of the data.
]glﬁf i‘g[ﬁ élISi 'é) éi oy e%%%r mic and di-atomic species are labeled. Above 4000 A a generic model of the telluric transmission spectrum
(retréeveiiY #f(?m’fﬁe%g g]{iy (g)a ulator) is shown in yellow/orange as well as the Jenniskens & Désert (1994) average ISM DIB spectrum (scaled
to E(B — V) =0.5 mag) in solid green.
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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Fig. B.1. EDIBLES spectrum for HD 170740 (continued).
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