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Abstract

One of the most popular interval type–2 defuzzification methods is
the Karnik–Mendel (KM) algorithm. Nie and Tan (NT) have proposed
an approximation of the KM method that converts the interval type–2
membership functions to a single type–1 membership function by averag-
ing the upper and lower memberships, and then applies a type–1 centroid
defuzzification. In this paper we propose a modification of the NT algo-
rithm which takes into account the uncertainty of the (interval type–2)
memberships. We call this method the uncertainty weight (UW) method.
Extensive numerical experiments motivated by typical fuzzy controller
scenarios compare the KM, NT, and UW methods. The experiments
show that (i) in many cases NT can be considered a good approximation
of KM with much lower computational complexity, but not for highly un-
balanced uncertainties, and (ii) UW yields more reasonable results than
KM and NT if more certain decision alternatives should obtain a larger
weight than more uncertain alternatives.

1 Introduction

A type–1 fuzzy set A [15] is characterized by a membership function uA : X →
[0, 1] which quantifies the degree of membership of each element of X in A. Here
we will always consider fuzzy sets over one–dimensional continuous intervals
X = [xmin, xmax]. Type–1 defuzzification is a function d that maps a type–1
fuzzy set to one representative crisp value in X.

d(u(x)) ∈ X (1)

Numerous methods for type–1 defuzzification have been proposed in the liter-
ature. For an overview see [9, 10, 14]. A set of desirable properties of type–1
defuzzification operators has been proposed in [13]. A popular method for type–
1 defuzzification is the centroid function, which will be described in more detail
in section 2.

An interval type–2 fuzzy set [4, 6, 16] Ã is characterized by two member-
ship functions: a lower membership function uÃ : X → [0, 1] and an upper
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membership function uÃ : X → [0, 1], where

uÃ(x) ≤ uÃ(x) (2)

for all x ∈ X. Interval type–2 fuzzy sets are known to be equivalent to interval–
fuzzy sets [1, 2]. It was recently shown that type–2 fuzzy sets can be used to
model risk in decision processes [12].

This paper deals with interval type–2 defuzzification, which is a function d̃
that maps an interval type–2 fuzzy set to one representative crisp value in X.

d̃(u(x), u(x)) ∈ X (3)

A set of desirable properties of interval type–2 defuzzification operators has
been proposed in [11]. A popular method for interval type–2 defuzzification is
the Karnik–Mendel (KM) method [3], which will be described in more detail in
section 2.

Nie and Tan (NT) [7] have proposed an approximation of the KM method
that first converts the interval type–2 membership functions to a single type–
1 membership function by averaging the upper and lower memberships, and
then applies the standard type–1 centroid defuzzification. We will describe this
method in more detail in section 3.

In this paper we propose a modification of the NT algorithm that takes
into account the uncertainty of the (interval type–2) memberships. We call this
method the uncertainty weight (UW) method. We compare the behavior of
the KM, NT, and UW methods in extensive experiments motivated by fuzzy
controller scenarios with different patterns of uncertainty.

This article is structured as follows: Sections 2 and 3 briefly review the KM
and NT interval type–2 defuzzification methods. Section 4 introduces the UW
interval type–2 defuzzification method. Section 5 presents our experiments to
evaluate and compare the KM, NT, and UW methods. Section 6 summarizes
the conclusions of this work and points out some future research questions.

2 Karnik–Mendel Interval Type–2 Defuzzifica-
tion

One of the most popular methods for type–1 defuzzification [9, 10, 14] is the
centroid.

dC(u(x)) =

xmax∫
xmin

u(x) · x dx

xmax∫
xmin

u(x) dx

(4)

The KM defuzzification [3] is an extension of the centroid defuzzification to
interval type–2 fuzzy sets. For any given interval type–2 fuzzy set with the
lower and upper membership functions u(x) and u(x), each embedded type–1
fuzzy set with the membership function u(x) with

u(x) ≤ u(x) ≤ u(x) (5)
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will yield a centroid according to (4). The smallest and largest possible centroids
of such embedded type–1 fuzzy sets are

c̃l = inf
u(x)∈[u(x),u(x)]

xmax∫
xmin

u(x) · x dx

xmax∫
xmin

u(x) dx

(6)

c̃r = sup
u(x)∈[u(x),u(x)]

xmax∫
xmin

u(x) · x dx

xmax∫
xmin

u(x) dx

(7)

These equations can be equivalently written as

c̃l = inf
L∈[xmin,xmax]

L∫
xmin

u(x) · x dx+
xmax∫
L

u(x) · x dx

L∫
xmin

u(x) dx+
xmax∫
L

u(x) dx

(8)

c̃r = sup
R∈[xmin,xmax]

R∫
xmin

u(x) · x dx+
xmax∫
R

u(x) · x dx

R∫
xmin

u(x) dx+
xmax∫
R

u(x) dx

(9)

The optimal switch points L,R ∈ [xmin, xmax] can be found by the KM algorithm
[3]. The result of the KM defuzzification is defined as the average of the smallest
and largest possible centroids:

d̃(u(x), u(x)) =
c̃l + c̃r

2
(10)

The next section provides the details of the Nie–Tan approach to interval type–2
defuzzification.

3 Nie–Tan Interval Type–2 Defuzzification

Nie and Tan (NT) [7] proposed an approximation of the KM method. The NT
method first maps a given interval type–2 membership function to a type–1
membership function by averaging the upper and lower interval type–2 mem-
berships.

u(x) =
1

2
(u(x) + u(x)) (11)

Then NT computes the conventional type–1 centroid (4) of this type–1 member-
ship function. Type–1 conversion (11) and computation of the type–1 centroid
using (4) is computationally much cheaper than iteratively minimizing c̃l (8)
and maximizing c̃r (9). Therefore, the NT method is a popular low effort ap-
proximation of the KM method. We now introduce our new UW method.
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4 The Uncertainty Weight Method

Though NT is quite simple and straightforward, it is found that it may lose
the information of uncertainty. Consider two data points x1 and x2 with the
interval type–2 memberships u(x1) = 0, u(x1) = 1, u(x2) = 0.5, u(x2) = 0.5.
For both data points the averaging function (11) will yield the same interval
type–2 memberships u(x1) = u(x2) = 0.5, so both data points will have the
same impact on the defuzzification result, although the membership of x1 has
a very high uncertainty reflected by the range of memberships from u(x1) = 0
to u(x1) = 1, and the membership of x2 has a very low uncertainty reflected by
the fact that the upper and lower memberships are equal, u(x2) = u(x2) = 0.5,
so in this example the information about the uncertainty is lost by averaging
the upper and lower memberships. We define the degree of certainty of the
memberships u(x) and u(x) as

w(x) = (1 + u(x)− u(x))α (12)

with a suitable parameter α > 0. Smaller values of α will lead to a higher
weight for medium uncertainties, and larger values of α will lead to a lower
weight for medium uncertainties. In this paper we will always use α = 1,
which corresponds to a linear weight of the uncertainties. For our example
above, equation (12) yields the certainty values w(x1) = 1 + 0 − 1 = 0 and
w(x2) = 1 − 0.5 + 0.5 = 1, so data point x1 is considered very uncertain, and
data point x2 is considered very certain. We want to reflect the (un)certainty
of the different data points in defuzzification by using the certainty as a weight
for each data point. This means that a relatively certain alternative has a large
weight and that a relatively uncertain alternative has a small weight. Including
the weights (12) in the averaging function (11) yields the weighted averaging
function

u(x) =
1

2
(u(x) + u(x)) · (1 + u(x)− u(x))α (13)

We combine weighted averaging (13) with type–1 centroid defuzzification (4)
and call this the uncertainty weight (UW) method. Just as NT, UW is compu-
tationally much cheaper than KM. The main motivation for UW, however, is not
only the computational cost, but also the explicit consideration of uncertainties.

5 Experiments

In this section we illustrate and compare the behavior of the KM, NT, and UW
interval type–2 defuzzification methods. The results of the KM method are
shown as solid lines, the results of the NT method are shown as dotted lines,
and the results of the UW method are shown as dashed lines.

The considered examples are motivated by a fuzzy controller [5] with (for
simplicity) two rules, Gaussian membership functions, and sum–product infer-
ence, so the fuzzy controller output is a weighted sum of two Gaussian mem-
bership functions. An application example for this setup is a controller of an

4



autonomous vehicle avoiding an obstacle, where one rule triggers the action turn
left and the other rule triggers turn right [8]. To mimic this scenario we consider
the unit range X = [0, 1] and construct interval type–2 membership functions
by adding pairs of weighted Gaussian functions.

u(x) = y
1
· e

(
− x−µ1

2σ2
1

)
+ y

2
· e

(
− x−µ2

2σ2
2

)
(14)

u(x) = y1 · e

(
− x−µ1

2σ2
1

)
+ y2 · e

(
− x−µ2

2σ2
2

)
(15)

In our first set of experiments we investigate the effect of varying uncertainty
on the results of the considered defuzzification methods. We keep one Gaussian
constant and perform different variations of the uncertainty of the second Gaus-
sian: difference between upper and lower memberships, the lower memberships
only, and the upper memberships only.

In our first experiment we consider variations of the difference between the
upper and the lower memberships. To do so, we set µ1 = 1/4, σ1 = 1/8,
µ2 = 3/4, σ2 = 1/8, y

1
= 0.5, y1 = 1, y

2
= 0.75−∆/2, y2 = 0.75 + ∆/2, where

the parameter ∆ is varied in [0, 0.5]. The top left graph in Fig. 1 shows an
example of this membership function(s) for ∆ = 0.3. Here, the uncertainty of
the right Gaussian is a little smaller that the uncertainty of the left Gaussian.
The different defuzzification results are marked by vertical lines. In this case,
KM (solid) and NT (dotted) yield almost the same results, and UW (dashed)
yields a slightly higher defuzzification result which takes into account the fact
that the certainty on the right is higher than the certainty on the left. The top
right graph in Fig. 1 shows the defuzzification results d for KM, NT, and UW as
the uncertainty of the right Gaussian ∆ is changed from 0 to 0.5. For ∆ = 0.5
both Gaussians are equal, and so for reasons of symmetry all three methods
yield d̃ = 0.5. As pointed out above, NT (dotted) ignores the different levels of
uncertainty and therefore always yields the output d̃ = 0.5. KM (solid) is only
very slightly different from NT (dotted), so here NT is a good approximation
of KM with a much lower computational effort. Only UW (dashed) takes into
account the (un)certainty and yields a much higher output (closer to the right
Gaussian) when the uncertainty of the right Gaussian is lower (for smaller values
of ∆).

In our second experiment we consider variations of the lower memberships
only, and set µ1 = 1/4, σ1 = 1/8, µ2 = 3/4, σ2 = 1/8, y

1
= 0.5, y1 = 1, y

2
= h,

y2 = 1, where the parameter h is varied in [0, 1]. The second row of Fig. 1 shows
the results of this experiment. On the left we see two Gaussians again, both with
a maximum upper membership of one. The left Gaussian has a maximum lower
membership of 0.5, and the right Gaussian has a maximum lower membership
of h, in this case h = 0.3. Here, KM (solid vertical line) and NT (dotted
vertical line) yield very similar results, and UW (dashed vertical line) yields a
slightly smaller result. The right diagram in row 2 shows the results of the three
methods for h ∈ [0, 1]. For h ≈ 0.5 all three methods produce (almost) the same
result around d̃ ≈ 0.5, as expected for symmetry reasons. As the upper limit of
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Figure 1: Gaussians with different uncertainty patterns (solid: KM, dotted:
NT, dashed: UW).
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the lower membership function decreases (lower h), UW (dashed) decreases the
result most, then KM (solid), and NT (dotted) decreases the result least. For
lower values of h, i.e. for quite unbalanced uncertainty patterns, KM (solid) and
NT (dotted) yield significantly different results. This is an example, where NT
does not approximate KM well. As the upper limit of the lower membership
function increases (higher h), KM (solid) and NT (dotted) stay almost the same,
but UW (dashed) increases the result much more, which reflects the higher
certainty of the right Gaussian(s). For h ∈ [0.5, 1] NT can again be considered
a good low effort approximation of KM, but not for h ∈ [0, 0.5], and UW better
takes into account the varying uncertainty of the type–2 memberships.

In our third experiment we consider variations of the upper memberships
only, and set µ1 = 1/4, σ1 = 1/8, µ2 = 3/4, σ2 = 1/8, y

1
= 0.5, y1 = 1, y

2
= 0.5,

y2 = h, where the parameter h is varied in [0.5, 1], see the third row of Fig. 1.
On the left we see that the maximum upper membership of the right Gaussian
is h, here h = 0.7. Also in this case KM (solid vertical line) and NT (dotted
vertical line) yield almost the same results, but UW (dashed vertical line) yields
a slightly higher result. The right diagram shows the results for h ∈ [0.5, 1]. For
h = 1 we obtain the symmetric case again and all three methods yield d̃ = 0.5.
For h < 1 UW (dashed) stays almost constant at d̃ = 0.5, because the reduction
of the memberships is approximately compensated by the increased certainty.
In contrast to that, KM (solid) and NT (dotted) are almost the same again and
decrease with decreasing h. Again, NT is a good approximator for KM, but
UW handles the varying uncertainties in an intuitively more reasonable way
than KM and NT.

In our second set of experiments we investigate the effect of variations of
horizontal widths σ2, horizontal positions µ2, and vertical scales y2 = 2 · y2. In
[11, 13] the corresponding transformations are called x–scaling, x–translation,
and u–scaling, respectively.

The first row of Fig. 2 shows the effects of variations in the horizontal width
σ2 of the right Gaussian. We set µ1 = 1/4, σ1 = 1/8, µ2 = 3/4, y

1
= 0.5,

y1 = 1, y
2

= 0.5, y2 = 1 and vary the parameter σ2 in [0, 0.5]. The left diagram
shows the case σ2 = 1/16, where all three methods (solid, dotted, and dashed
vertical lines) yield almost the same results. The right diagram shows the results
of the three defuzzification methods for σ2 = [0, 0.5]. For σ2 = 1/8 we have the
symmetric case and all three methods yield d̃ = 0.5. For smaller σ2 all three
methods yield almost the same results: As the width of the right Gaussian
is decreased, the defuzzification result decreases as well. For smaller σ2 KM
(solid) and NT (dotted) yield almost the same results: As the width of the right
Gaussian is increased, both Gaussians overlap and the left Gaussian gets larger
memberships, so also here the defuzzification result becomes lower. For UW
(dashed) the results stays close to d̃ ≈ 0.5 because the increasing memberships
of the left Gaussian are approximately compensated by an increasing uncertainty
(difference between upper and lower memberships of the left Gaussians). Also
here, NT is a good approximator for KM, but UW better take into account the
uncertainties.

The second row of Fig. 2 shows the effects of variations in the horizontal
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Figure 2: Gaussians with different horizontal widths, horizontal positions, and
vertical scales (solid: KM, dotted: NT, dashed: UW).
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position µ2 of the right Gaussian. We set µ1 = 1/4, σ1 = 1/8, σ2 = 1/8,
y
1

= 0.5, y1 = 1, y
2

= 0.5, y2 = 1 and vary the parameter µ2 in [0.5, 1]. For
µ2 = 0.85 (left diagram) all three methods (solid, dotted, and dashed vertical
lines) yield almost the same results. The right diagram shows the results for
µ2 = [0.5, 1]. For µ2 = 3/4 we have the symmetric case and all three methods
yield d̃ = 0.5. Also for all other values of µ2 = [0.5, 1], all three methods yield
almost the same results, so in this case both NT and UW are good approximators
for KM.

The third row of Fig. 2 shows the effects of variations in the vertical scale
of the right Gaussian. In contrast to the experiments in the third row of Fig.
1 we not only scale the upper membership function of the right Gaussian, y2,
but also the lower membership function of the right Gaussian, y

2
, but keep the

ratio between upper and lower memberships equal to 2, so that y2 = 2 ·y2. This
simulates the situation that the first rule fires with strength 1 (yielding the left
Gaussian) and the second rule fires with strength h ∈ [0, 1] (yielding the right
Gaussian), so in our experiments we can observe the behavior of the output
when a rule fades out (or fades in). We set µ1 = 1/4, σ1 = 1/8, µ2 = 3/4,
σ2 = 1/8, y

1
= 0.5, y1 = 1, y

2
= h/2, y2 = h and vary the parameter h

in [0, 1]. For h = 0.6 (left diagram) we have y
2

= 0.3 and y2 = 0.6, and
KM (solid vertical line) and NT (dotted vertical line) yield very similar results,
whereas UW (dashed vertical line) yields a slightly higher result. The right
diagram shows the results for h ∈ [0, 1]. For h = 1 we obtain the symmetric
case and all three methods yield d̃ = 0.5. For h = 0 the second Gaussian
disappears and all three methods yield the center of the first Gaussian d̃ = 0.25.
The transition between the two extremes h = 0 (first rule completely active
and second rule completely inactive) and h = 1 (both rules completely active)
simulates a gradual increase of the firing strength of the second rule from zero to
one. During this transition all three methods smoothly move from d̃ = 0.25 at
h = 0 to d̃ = 0.5 at h = 1. KM (solid) and NT (dotted) yield almost the same
results, but UW (dashed) yields slightly higher values, because the certainty
of the right Gaussian is higher than the certainty of the left Gaussian. Here
again, NT is a good approximator for KM but UW handles uncertainties in
more plausible way.

We repeated the same experiments with triangular instead of Gaussian mem-
bership functions, where for comparability we chose the triangle widths as 4σ1
and 4σ2.

u(x) = y
1
·max

(
0, 1−

∣∣∣∣x− µ1

2σ1

∣∣∣∣)+ y
2
·max

(
0, 1−

∣∣∣∣x− µ2

2σ2

∣∣∣∣) (16)

u(x) = y1 ·max

(
0, 1−

∣∣∣∣x− µ1

2σ1

∣∣∣∣)+ y2 ·max

(
0, 1−

∣∣∣∣x− µ2

2σ2

∣∣∣∣) (17)

Fig. 3 shows the results of the triangle experiments corresponding to the
Gaussian experiments shown in Fig. 1. The results of the triangular case are
very similar to the results of the Gaussian case. Fig. 4 shows the results of the
triangle experiments corresponding to the Gaussian experiments shown in Fig.
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11



2. Again, the results of the triangular case are very similar to the results of the
Gaussian case.

6 Conclusions

We have proposed UW, a modification of the NT interval type–2 defuzzifica-
tion method that takes into account the uncertainties of the (upper and lower)
type–2 membership values. We performed extensive experiments comparing
the standard KM method with NT and UW. All experiments were motivated
by fuzzy controller scenarios with (for simplicity) two rules, where we inves-
tigated the effect of different uncertainty patterns and of different horizontal
widths, horizontal positions, and vertical scales of the membership functions on
the defuzzification results.

To summarize, our experiments show the following: For the considered sce-
narios KM and NT mostly yield very similar results, except when parts of the
interval type–2 membership function have very different levels of uncertainty.
The computational complexity of KM is much higher than NT. Therefore, NT
can often be considered a good approximation of KM with low complexity but
only for well balanced uncertainties. UW also has a much lower computational
complexity than KM, but in addition explicitly takes into account the uncer-
tainty of the interval type–2 memberships, so it yields more reasonable results
if more certain decision alternatives should obtain a larger weight than more
uncertain alternatives.

This work is a first step in the explicit consideration of uncertainty in type–
2 defuzzification. We have to leave many points open for future research, for
example:

• We used the weighting scheme in equation (13) to implement the uncer-
tainty weighting, with α = 1. What are other equations or values of α will
lead to a intuitively plausible treatment of the uncertainties in the type–2
memberships?

• We have applied the uncertainty weighting to the NT method. How could
different levels of uncertainty be considered in the KM method?

• How does the behavior of all three methods change if we replace the cen-
troid by other (type–1) defuzzification methods?
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