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Abstract

There has been considerable recent interest in models for epidemics on networks
describing social contacts. This thesis considers a stochastic SIR (Susceptible -
Infective - Removed) model for the spread of an epidemic among a population
of individuals, with a random network of social contacts, that is partitioned
into households and in which individuals also make casual contacts, i.e. with
people chosen uniformly at random from the population. The behaviour of the
model as the population tends to infinity is investigated. A threshold parameter
that governs whether or not the epidemic with an initial infective can become
established is obtained, as is the probability that such an outbreak occurs and,
if so, how large it will become. The behaviour of this model is then compared
to that of a finite population using Monte Carlo simulations. The effect of the
different transmission routes on the final outcome of an epidemic and the effect
of introducing social contacts and clustering to the network on the performance
of various vaccination strategies are also investigated.
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1. Introduction

1.1 Motivation and early epidemic models

History is filled with examples of epidemics infecting large numbers of people,
such as the 1918 influenza epidemic or the Black Death which both killed millions.
Indeed, recent notable events often include epidemics, such as swine flu and the
Ebola virus. Therefore there is a lot of interest in both understanding diseases
and mathematically modelling the spread of epidemics. A mathematical model
can give insight into effective vaccination strategies or the required healthcare
infrastructure in a community. One of the earliest accounts of mathematical
modelling of epidemics is by Daniel Bernoulli (1760) (see Hethcote (2000)), who
created a mathematical model to investigate the impact of a vaccination strategy
on the spread of smallpox. Since Bernoulli’s work, the mathematical modelling
of epidemics has continued, with drastically increased popularity from the early
20th century with the differential equation model of malaria by Ross (1911) and
the widely cited deterministic epidemic model by Kermack and McKendrick
(1927).

In most epidemic models, individuals in the population are assigned to
different subgroups, each representing a stage of the epidemic. At any given
time an individual belongs to a single subgroup, but individuals can change
subgroup over time. One of the most common epidemic models, the SIR model,
involves splitting the population into three subgroups: susceptible, infective and
removed. The susceptible subgroup represents the individuals not yet infected by
the disease, the infective subgroup represents the individuals that are currently
infected and the removed subgroup represents the individuals that are no longer
affected by the disease (e.g. due to death or natural immunization). Removed
individuals are unable to be infected again or transmit the infection. An epi-
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demic is said to end when there are no individuals in the infective subgroup.
Another example of a popular epidemic model is the SIS epidemic model, which
is achieved from the SIR model by assuming that individuals are immediately
susceptible again once they have recovered from infection.

Indeed, a special case of the model of Kermack and McKendrick (1927)
considers a finite fixed population with an SIR epidemic model, assuming that
individuals are homogeneously mixing, i.e. that an infected individual is equally
likely to infect any other susceptible individual in the population. One finding of
Kermack and McKendrick is that an epidemic often comes to an end before the
susceptible population is exhausted, leading to the question of what proportion
of the population will be in the removed subgroup when the epidemic ends.

1.2 Threshold theorems and early stochastic
epidemic models

Kermack and McKendrick comment that a threshold density of the population
exists, in which no large epidemic can occur if the population density is be-
low this threshold value, although Heesterbeek (2002) cites the work of En’ko
(1889a), (1889b), as possibly being the first work which implies the existence of
a threshold determining whether large epidemics can occur. However, it is after
the work of Bailey (1953), who defines a stochastic SIR epidemic with infection
and recovery rates, that threshold parameters become better understood. Bailey
uses the ratio of the infection and recovery rates to give a distribution for
the final size of an epidemic, i.e. the number of individuals in the removed
subgroup when the epidemic ends. Building on the work of Bailey, Whittle
(1955) simplifies the calculation of the final size distribution and compares
the ratio of the infection and recovery rates to the total population size as a
threshold parameter, showing that if this ratio exceeds the population size then
a large epidemic cannot occur. However, it is the basic reproduction number,
R0, which has become the most popular threshold parameter in mathematical
epidemic modelling. A key contribution towards understanding R0 is the work
of Bartoszyński (1967), who equates epidemic models to branching processes.
By relating births in the branching process to individuals becoming infected in
the epidemic process, branching process theory provides a natural framework for
the study of epidemics. For example, Ball (1983) shows a strong convergence of
the number of infectives in a stochastic homogeneously mixing epidemic model
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containing N individuals to the number of individuals in a birth-and-death
process as N −→ ∞. Since the branching process approximation assumes an
asymptotic population size, we define the relative final size of a major outbreak
to be the number of individuals in the removed subgroup at the end of the
epidemic divided by the total population size. Branching process theory also
clarifies our understanding of R0, which can be interpreted as the mean number
of offspring of a single individual in the branching process. Thus R0 has a
clear biological interpretation as the total number of individuals infected by a
single infective. Furthermore, if R0 < 1 or R0 = 1 then the branching process is
subcritical or critical respectively, almost surely becoming extinct (i.e. a large
outbreak cannot occur in the epidemic), whereas if R0 > 1 then the branching
process is supercritical and there is a positive probability of non-extinction (i.e. a
large outbreak can occur). Indeed, if the branching process avoids extinction
then a significant proportion of the population in the approximated epidemic is
infected and we say that a major outbreak has occurred. Branching processes
are key to understanding many more complicated epidemic models, including
household and network models, as discussed in the following sections.

One of the earliest stochastic epidemic models is the chain binomial model
(later known as the standard Reed-Frost model) discussed by Reed and Frost in
lectures given in 1928, although its origins can be traced back to En’ko (1889a),
(1889b). The standard Reed-Frost model considers a closed, homogeneously
mixing population, and is a discrete time SIR model. In the standard Reed-
Frost model, each infected individual in generation t, t = 1, 2, . . . , independently
infects each susceptible individual in the population with some probability p.
Any individual that becomes infected by an infected individual in generation t
belongs to generation t + 1, and individuals in generation t become removed.
The epidemic ends when there are no individuals in some generation. Von
Bahr and Martin-Löf (1980) extend the standard Reed-Frost model to the
randomised Reed-Frost process, allowing each individual in the population to
have a different probability of infecting others. Indeed, Martin-Löf (1986) shows
that the randomised Reed-Frost process is a special case of iterative symmetric
sampling procedures, giving more direct and intuitive proofs of the previous
results. Furthermore, Ludwig (1974) shows that the threshold theorem for
the randomised Reed-Frost process is analogous to the threshold theorem for
the deterministic SIR model discussed by Kermack and McKendrick (1927).
Picard and Lefèvre (1990) suggest that the probability an infective infects a
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set of individuals is a function of the size of the set, rather than the number of
susceptibles in the population, and introduce the collective Reed-Frost process.
Finally both Bartlett (1955) and Kendall (1956), have also made important
contributions to analysing epidemics while they are in progress and exploring
how they reach their final size.

1.3 Household epidemic models

Although assuming that a population is homogeneously mixing simplifies the
calculations involved in epidemic modelling, it is clear that such an assumption
is usually unfounded in practice. For example, individuals at opposite ends of
the UK are unlikely to directly infect each other. Therefore interest has spread
to investigating epidemic models that allow for population heterogeneities, such
as households. Watson (1972) introduces a stochastic SIR epidemic model which
splits the population into homogeneously mixing communities, and uses the
idea of considering the spread of the epidemic based on the propagation of
infected communities rather than individuals. However, Watson (1972) assumes
that each community contains a large number of individuals. Using a deter-
ministic model, Bartoszyński (1972) considers a population split into smaller
communities, such as households, by assuming that in the early stages of the
epidemic all infectious contacts made by the infected members of a household
are with individuals in fully susceptible households. Indeed, this assumption
is key to many of the later household epidemic models. Unlike Watson (1972),
who considers a fixed number of large communities, Bartoszyński (1972) inves-
tigates a large number of groups of fixed size (with no minimum group size
requirement). This idea is extended further by Becker and Dietz (1995) and Ball
et al. (1997), who successfully investigate an SIR epidemic on models which can
incorporate small households. Becker and Dietz (1995) and Ball et al. (1997)
consider the spread of the epidemic through a ‘clump’, i.e. a household, and
then consider the number of global contacts made by each clump, leading to a
clump-based threshold parameter R∗. Furthermore, Ball et al. (1997) discuss
the final size distribution of an SIR households model. Later, Ball and Neal
(2002) introduce susceptibility sets to calculate the final size of major outbreaks
in several models, including the households model, in simpler ways than Ball
et al. (1997). Adapting the household model to further reflect current epidemics
is still a key area of research. For example, Neal (2016) investigates a model in
which an individual mixes within a different household or community depending
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on the time of day. For example, individuals infect workplace colleagues during
the day and household neighbours at night.

Although the clump-based threshold parameter R∗ is a powerful tool in
considering the spread of the epidemic, there is substantial interest in extend-
ing the definition of R0 to household-based epidemic models, i.e. calculating
a threshold parameter which, if the approximating branching process avoids
extinction, represents the ratio of individuals infected in the next generation of
the epidemic to the current generation. An attempt to define R0 in household
models is given by Goldstein et al. (2009), who also introduce an ordering of
several reproduction numbers. However, Pellis et al. (2012) refine this definition
of R0, and Ball et al. (2016) provide an alternative method of calculating R0.
Although this thesis primarily addresses the reproduction numbers R∗ and R0,
there are many other reproduction numbers in the literature. Indeed, Ball et al.
(2016) consider more than 10 reproduction numbers and extend the ordering of
reproduction numbers initiated by Goldstein et al. (2009).

Another parameter with clear biological interpretation is the early real-time
exponential growth rate of the epidemic. Indeed, Pellis et al. (2011) note that
the early real-time exponential growth rate is one of the first and simplest pieces
of information available in emerging epidemics, and show its relationship to
other parameters of the epidemic. Furthermore, there has been an increasing
interest in estimating the real-time growth rate for heterogeneous epidemic
models and then calculating other parameters of interest, for example the works
of Pellis et al. (2015) and Trapman et al. (2016).

1.4 Random networks and epidemics

The probabilistic construction of a graph, i.e. a random graph, was first in-
troduced independently by Erdős and Rényi (1959) and Gilbert (1959), and
begins with a network with a fixed number of nodes, in which each pair of
nodes is connected independently with probability p. Although this model is
not a realistic interpretation of many applicable networks, as noted by Erdős
and Rényi themselves in 1960, their work sparked further investigation into
the properties of networks, including social networks. For example, Milgram
(1967) conducted an experiment suggesting that realistic models of social net-
works should contain short chains between individuals, often referred to as
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the ‘small-world’ effect. Furthermore, social networks often incorporate a large
amount of clustering, i.e. subgroups of connected individuals, with Watts and
Strogatz (1998) discussing several real-life examples of small-world networks
with clustering. Watts and Strogatz (1998) also introduce both the clustering
coefficient, a method of quantifying the amount of clustering in a network, and
a method to construct a clustered small-world network. However, Watts and
Strogatz (1998) assume that every vertex has the same degree, whereas Albert
et al. (1999) show that the degree distribution of some real life networks, such
as an actor collaboration network and the World Wide Web, follow a power
law for large vertex degree k. Note that a distribution X has a power law tail
if, for large k, P (X = k) ≈ k−γ, γ > 0. Another common property of social
networks, discussed by Newman (2002b), is that they are assortatively mixed,
i.e. vertices in the network tend to be connected to other vertices with similar
degrees. Therefore models for social networks often aim to have tuneable degree
distribution, clustering and assortativity, and also have small-world properties.

Epidemics on small-world or clustered networks are generally analytically
difficult to investigate owing to the existence of multiple connections between
two individuals, i.e. multiple routes of transmission of the epidemic between
two individuals. Diekmann et al. (1998) construct a deterministic model for
the spread of an SIR epidemic on a random network by assuming a constant
degree distribution and that, in the early stages of the epidemic, the neighbours
of an infected individual, except the source of the infection, are susceptible.
Assuming that all neighbours of an infected individual are susceptible, other
than their parent in the epidemic process, turns out to be a powerful tool
in modelling the spread of epidemics on networks, and is key to the analysis
of many recent epidemic models. Andersson (1998) introduces a stochastic
Reed-Frost epidemic model on a network in which individuals have variable
degree (i.e. the ‘configuration model’). Under the configuration model, each
individual in the population is independently assigned a number of ‘half-edges’
from a specified distribution, and these half-edges are then paired uniformly at
random to form the edges of the network. Andersson (1998) shows that the early
stages of the epidemic are well approximated by a branching process, however
Andersson uses a deterministic approximation to calculate the relative final size
of a major outbreak. Newman et al. (2001) use generating function arguments
to calculate the size of a giant connected component in the configuration model,
i.e. the total number of vertices in the largest connected component in the
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graph divided by the total number of vertices in the graph. Similar generating
function arguments are applied by Newman (2002a) to calculate the expected
relative final size of a major outbreak on the configuration model. Meanwhile,
Ball and Neal (2002) use susceptibility set arguments to calculate the expected
relative final size of a major outbreak on the great circle model, which is closely
related to the model of Watts and Strogatz (1998). The great circle model
involves a population of individuals equally spaced around a circle, and infected
individuals can make both local contacts (i.e. contacts with individuals near
them in the circle) and global contacts (i.e. contacts with individuals chosen
uniformly at random from the population) with different rates. Indeed, Ball
and Neal (2003) give a central limit theorem for the relative final size of a
major outbreak on the great circle model given restrictions on the local and
global contact process. Using the susceptibility set arguments introduced by
Ball and Neal (2002), Ball and Neal (2008) extend the configuration model
to include global contacts, so an infected individual can make contacts with
both network neighbours and individuals chosen uniformly at random from the
population, and prove that the expected relative final size of a major outbreak
is equal to the probability that a ‘backwards’ branching process avoids extinction.

The configuration model has proven to be a popular model for networks
with arbitrary but specified degree distributions, and allows for the calculation
of many properties of epidemics on the network, such as threshold parameters
and the expected relative final size of a major outbreak. However, the methods
used to calculate these properties rely on the assumption that there are not
multiple routes of transmission of the epidemic between two individuals (note
that the configuration model has negligible clustering and is not a small-world
network). Although an important assumption for the coupling theorems between
branching processes and epidemic processes on networks, the lack of clustering
in the configuration model hinders its applications to real-world networks, and is
therefore an important restriction to relax. One method of introducing clustering
to the configuration model is introduced by Trapman (2007), who replaces some
vertices in the network with households (i.e. complete graphs), and each member
of a household has a single neighbour outside of its household. By considering
the spread of the epidemic through household clumps, similarly to Becker and
Dietz (1995) and Ball et al. (1997), and assuming that each household infects
individuals in disjoint households, Trapman (2007) uses a branching process
to approximate the early stages of the epidemic. A similar model proposed
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by Ball et al. (2009), (2010), involves considering a population already split
into households and then constructing a global network using the configuration
model. Ball et al. (2009), (2010), formally couple the epidemic process and
an approximating branching process, and calculate the expected relative final
size of a major outbreak (and other key properties of the model). Meanwhile,
Gleeson (2009) introduces a similar network model to Ball et al. (2009), based
on creating a network with complete subgraphs, although Gleeson constructs the
network beginning with a target clustering coefficient. Gleeson also considers the
bond percolation problem, rather than the spread of an epidemic, which involves
deleting each edge in the network independently with a given probability and
then considering the size of the giant connected component of the graph. The
bond percolation problem for a network is very similar to studying the spread of
an epidemic on the network, where the probability an edge is deleted is related
to the average transmissibility of the disease, and the size of the giant connected
component is related to the expected relative final size of a major outbreak.

In contrast, Newman (2009) introduces a clustered network by modifying
the configuration model to allow individuals to also belong to a given number of
corners of triangles, which are then randomly connected to form triangles in the
network. Newman then considers the percolation problem on the network to cal-
culate the final size of a major outbreak applying a generating function argument.
Karrer and Newman (2010) extend this model to allow for the introduction
of arbitrary subgraphs, rather than limiting the model to an introduction of
triangles. Note that if each individual is assigned at most one subgraph ‘corner’
and the subgraph consists of a complete graph then we recover the model of
Ball et al. (2009).

In this thesis we are primarily focused on the random graph models based
on the configuration model. However, there are many alternative random
graph models and extensions emerging in the literature. For example, Ball and
Sirl (2012) extend the model of Ball et al. (2009) to include multiple types of
individuals. Another commonly studied model is the random intersection graph,
introduced by Singer (1995) and Karoński et al. (1999), in which individuals
belong to groups and an infected individual can infect individuals within the
groups they belong to. Barabási and Albert (1999) introduce a preferential
attachment random graph model, in which individuals that are added to the
network are more likely to be connected with high degree individuals in the
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network, and the spread of a stochastic SIS epidemic model on the Barabási-
Albert random network model is studied by Berger et al. (2005).

1.5 The effect of heterogeneity on the spread
of epidemics

With the addition of many types of heterogeneity to epidemic models there is
naturally an interest in quantifying the effect of heterogeneity on the properties
of the epidemic, such as the expected relative final size of a major outbreak.
Newman (2003) heuristically argues that higher clustering makes it easier for
epidemics to take off, and Britton et al. (2008) support this conjecture by
comparing random intersection graphs with different amounts of clustering.
Furthermore, Newman (2009) compares models with different clustering co-
efficients in the configuration model with triangles to yield the same result.
However, Miller (2009) introduces a rewiring process on the configuration model
with triangles to compare epidemics on clustered networks, and shows that the
results found in Newman (2009) are largely caused by the change in degree
correlation between models. Instead, Miller (2009) suggests that the addition of
clustering actually decreases the expected relative final size of major outbreaks
in the configuration model with triangles. Ball et al. (2013) introduce a network
model that has tuneable clustering, degree correlation and degree distribution,
achieving the tuneable clustering by generalising the rewiring process introduced
by Miller (2009), and find that clustering introduced by households decreases the
expected relative final size of major outbreaks. Coupechoux and Lelarge (2014),
investigating the model of Trapman (2007), also find that in general clustering
decreases the expected relative final size of a major outbreak. Similarly, Gleeson
et al. (2010) show that clustering increases the threshold parameter for a giant
connected component to occur (i.e. increases R∗) in several models, including
the model of Miller (2009) and special cases of the model of Gleeson (2009), and
suggest that clustering decreases the size of the giant connected component.

Britton and Trapman (2012) investigate an analogous problem to that
of maximising the expected relative final size of a major outbreak on the
configuration model, and show that for a fixed mean degree the final size of
a major outbreak is maximised when the network degree is homogeneous. In
contrast to the monotonic results previously discussed in this section, Clancy and
Pearce (2013) investigate the effect of heterogeneity on a multi-type stochastic

9



epidemic model (introduced by Watson (1972)) and give conditions on the
heterogeneity which determine whether the expected relative final size of a
major outbreak will increase or decrease when R0 is held fixed.

1.6 Vaccination strategies

A key application of many mathematical epidemic models is to inform health
policy to reduce the impact of diseases, and a key method of reducing the
impact of diseases is vaccination. Furthermore, there has been a lot of interest
given to modelling the effect of vaccination strategies in the literature. One
of the first such examples is the work by Neyman and Scott (1964), who show
that immunisation can reduce the expected size of a stochastic discrete time
epidemic using a Galton-Watson process. Expanding on this work, Becker (1972)
investigates the problem of minimising the number of individuals vaccinated
to prevent the spread of the epidemic (i.e. calculating the critical vaccination
coverage), motivated by reducing the costs of vaccination. Effectively, Becker
tries to reduce the threshold parameter to below 1 using the fewest possible
vaccinations, and thus prevent a major outbreak from occurring. Indeed, in
epidemic models with basic population structure the critical vaccination coverage
is given by 1− 1/R0, where R0 is the basic reproduction number. Becker (1975)
refines this idea by using a branching process to approximate the early stages
of an epidemic in a model including vaccination, and consider the vaccination
coverage required to prevent a major outbreak. However, these early vaccination
models assume that vaccinated individuals always become immune to the disease
and suffer no ill effects, an often unrealistic assumption noted by Taylor (1968).
One extension of epidemic models to allow for a variable reaction to vaccination
is given by Becker and Starczak (1998), who introduce a generalised vaccine
reaction model which allows for vaccination to result in partial immunity, or
even no immunity at all.

With the introduction of heterogeneity to epidemic models there is also
interest in investigating how the heterogeneity affects vaccination strategies.
For example, we might be interested in calculating the optimal vaccination
strategy on an epidemic model, i.e. the vaccination strategy with the smallest
critical vaccination coverage. Indeed, the optimal vaccination strategies on
both the configuration model and households model of Ball et al. (1997) are
well-understood. As we might intuitively expect, the optimal vaccination strat-
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egy on the configuration model is to vaccinate individuals with large degrees
(see, for example, Dezső and Barabási (2002) or Lloyd-Smith et al. (2005)). In
contrast, the optimal vaccination strategy in the model of Ball et al. (1997)
is the equalisation strategy, which involves choosing individuals for vaccina-
tion to homogenize the number of susceptibles in each household. Becker and
Starczak (1997) and Ball and Lyne (2002), (2006), further extend the analysis
of vaccination in the households model of Ball et al. (1997), investigating the
change in optimal vaccination strategy with the addition of an imperfect vaccine.

However, the optimal vaccination strategy in both the households model
of Ball et al. (1997) and the configuration model require global knowledge of
the network, i.e. to know which large household or high degree individuals
to vaccinate we must know the household size or degree of every individual
in the population. To relax this restriction, Cohen et al. (2003) propose a
network vaccination strategy which works by sampling a fraction of individuals
in the population and, each time an individual is sampled, vaccinating a single
neighbour of that individual chosen independently and uniformly at random
from its set of neighbours. Therefore, the vaccination strategy introduced by
Cohen et al. (2003) tends to vaccinate larger degree individuals than the uniform
vaccination strategy (the degree of an individual sampled at random in the
population is on average lower than the degree of its network neighbours, see Feld
(1991)) while only requiring local knowledge of the network (i.e. the neighbours
of a sampled individual). Thus this acquaintance vaccination strategy requires
less knowledge of the network and performs better than the uniform vaccination
strategy, which involves vaccinating individuals chosen uniformly at random
from the population. The acquaintance vaccination scheme introduced by Cohen
et al. (2003) is further developed and put into a more rigorous framework by
Britton et al. (2007). However, Ball and Sirl (2013) find that this acquaintance
vaccination scheme does not admit a simple closed form expression for the
vaccination coverage, and may require analysis of a branching process with
infinite type space when extended to the generalised vaccine reaction of Becker
and Starczak (1998), due to sibling dependence (cf. Olofsson (1996)). Thus
Ball and Sirl (2013) modify this acquaintance vaccination strategy so that
sampled individuals then choose each neighbour independently for vaccination
with a given probability, and show that the early stages of an epidemic on
the configuration network model under this modified acquaintance vaccination
strategy with generalised vaccine reaction can be approximated by a 6-type

11



branching process which does not suffer from sibling dependence. Furthermore,
Ball and Sirl (2013) show that their acquaintance vaccination performs similarly
to Cohen et al.’s acquaintance vaccination strategy. Ball and Sirl (2017) further
extend the acquaintance vaccination strategy introduced by Ball and Sirl (2013)
to the household and network model, discussed in Ball et al. (2009), and show
that their acquaintance vaccination strategy can outperform the household-based
vaccination schemes if the degree distribution has heavy tails.

1.7 The effect of heterogeneity on vaccination
strategies

In addition to investigating the effect of heterogeneity on the final size of a
major outbreak, there is interest in the literature in investigating the effect of
heterogeneity on the vaccination coverage required to prevent the spread of an
epidemic. May and Anderson (1984) show that falsely assuming a homogeneously
mixing population can lead to undervaccination if the vaccine is allocated
randomly. Similarly, Becker and Utev (1998) consider a stochastic household
model, parameterised by final size data and assuming a saturated household
infection rate (i.e. each household neighbour of an individual is infected with
probability 1), and show that assuming a homogeneously mixing population
may yield an underestimate of the critical vaccination coverage. Investigating a
deterministic clustered network epidemic model, House and Keeling (2011) find
that fixing R0 and varying the clustering coefficient causes a negligible change
in the critical vaccination coverage under the uniform vaccination strategy.

1.8 Research opportunities identified

Based on the literature there are many possible research opportunities. We are
particularly drawn to examine how the incorporation of heterogeneity affects
epidemic models, not only in the transmission of the epidemic but also in the
application of vaccination strategies. This results in the following three research
areas which form the basis of this thesis.

With the addition of epidemic models including households to the literature
several different methods of transmitting the epidemic between households have
been examined. For example, in the households model of Ball et al. (1997)
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infections occur between households via casual contacts whereas in the model of
Ball et al. (2009) infections occur between households via a configuration model
network structure. However, there has been little analytic investigation into
the difference between these two methods of transmitting the epidemic between
households on the final outcome of the epidemic. In this thesis we study the ef-
fect of these two different transmission routes on the final outcome of an epidemic.

With the introduction of acquaintance vaccination strategies, e.g. Cohen
et al. (2003) and Ball and Sirl (2013), there has been research into compar-
ing their performance to previously known vaccination strategies, such as the
uniform and optimal vaccination strategies (e.g. Britton et al. (2007) and Ball
and Sirl (2013)). In this thesis we study the robustness of these vaccination
strategies when the model contains additional routes of transmission. For exam-
ple, what is the effect on the expected relative final size of a major outbreak
if we apply a vaccination strategy assuming that the epidemic spreads along a
random network when it is more appropriate to apply a homogeneously mix-
ing model, and how do these vaccination strategies perform in finite populations?

The current analysis of acquaintance vaccination strategies often assumes
that the network has zero clustering, however this is an unrealistic assumption
in many social networks. Current literature suggests that clustering often has a
large impact on the transmission of the epidemic and reduces the final size of a
major outbreak. However, there is no consensus on the best way to construct a
clustered network. Two common methods of constructing clustered networks
are to include edge-disjoint triangles, e.g. the model of Newman (2009), and
to include households, e.g. the model of Ball et al. (2009). In this thesis we
investigate the effect of these two types of clustering on the performance of
vaccination strategies, especially the vaccination strategy of Ball and Sirl (2013).

1.9 Layout of thesis

In Chapter 2 we define the clustering coefficient and degree correlation of a
network, discuss the final size of a major outbreak in closed finite populations,
give background information on branching processes and introduce some rel-
evant notation. In Chapter 3 we formally introduce an epidemic model with
a household and network structure which includes casual contacts, which can
be considered as an amalgamation of the models introduced by Ball and Neal
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(2008) and Ball et al. (2009). We prove a limit theorem for approximating the
early stages of the epidemic with a branching process, calculate the threshold
parameters R∗ and R0 and finally discuss the expected relative final size of
a major outbreak by relating the total number of individuals infected in an
epidemic to the total progeny of a branching process.

We split Chapter 4 into two segments, firstly using the model of Ball and
Neal (2008) to discuss the effect of network heterogeneity on the final size of a
major outbreak when R0 is fixed, and then using the model of Ball et al. (1997)
to discuss the effect of household heterogeneity on the final size of a major
outbreak when R0 is fixed. We show that casual contacts and contacts made
via a network structure can have different effects on the final outcome of the
epidemic by proving conditions which determine whether introducing network
heterogeneity to the homogeneously mixing model will increase or decrease the
expected relative final size of a major outbreak. Furthermore, we prove that the
effect of introducing a small amount of network heterogeneity to the homoge-
neously mixing model is not necessarily the same as the effect of introducing
more network heterogeneity to an already heterogeneous model. We also prove
conditions which determine whether introducing household heterogeneity to the
homogeneously mixing model will increase or decrease the expected relative
final size of a major outbreak.

In Chapter 5 we investigate the effect of casual contacts on the performance
of the uniform, optimal and acquaintance vaccination strategies on the configu-
ration network model. Note that we only consider the acquaintance vaccination
strategy introduced by Ball and Sirl (2013). Importantly, we prove that if the
degree distribution of the network has a small variance then the acquaintance
vaccination strategy can underperform compared to the uniform vaccination
strategy. Furthermore, we show that the asymptotic expected relative final size
of a major outbreak under the acquaintance vaccination strategy is often a lower
bound on the final size of a major outbreak in finite populations. Our numerical
investigations find that the addition of global contacts while fixing R0 reduces
the performance of the acquaintance and optimal vaccination strategies and
increases the critical vaccination coverage.

In Chapter 6 we extend the model of Newman (2009) to include a rewiring
process and explore the effect of introducing clustering via edge-disjoint trian-
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gles on the performance of the uniform, acquaintance and optimal vaccination
strategies. Our numerical investigations show that fixing R0 and changing the
clustering in the network via the rewiring process generally causes a negligible
change in the critical vaccination coverage of the uniform, acquaintance and
optimal vaccination strategies. However, if the total degree distribution of
the network has a small variance then increasing the edge-triangle clustering
can increase the critical vaccination coverage of the acquaintance vaccination
strategy. In contrast, fixing the expected relative final size of a major outbreak
and increasing the clustering in the network can decrease the critical vaccination
coverages of the vaccination strategies.

In Chapter 7 we modify the model of Ball et al. (2013), by including a general
rewiring process, and explore the effect of introducing clustering via households
on the performance of the uniform and acquaintance vaccination strategies. We
prove that rewiring large households can drastically affect the performance of the
epidemic on the network, for example requiring the uniform vaccination strategy
to vaccinate every individual in the population to prevent a major outbreak.
Furthermore, our numerical investigations find that fixing the expected relative
final size of a major outbreak and increasing the clustering in the network via
the rewiring process will generally increase the critical vaccination coverages
of the uniform and acquaintance vaccination strategies. Finally, in Chapter 8
we give our concluding remarks and comment on questions arising from this
research.
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2. Background theory

In this chapter we introduce some of the definitions and preliminary work
required for this thesis. In Section 2.1 we introduce some of the notation used
throughout this thesis. We consider the spread of the epidemic within a single
household in Section 2.2. Finally, in Section 2.3 we give a brief overview of some
common results in branching process theory.

2.1 Notation

Firstly, we define R and Z to be the set of real and integer numbers respectively.
Similarly, we define R+ and Z+ to be the set of positive real and integer numbers
respectively. Let 1A be the indicator function for the event A and for x ∈ R let
bxc = max {y ∈ Z : y ≤ x}. For x ∈ R, denote by sgn(x) the signum function
of x, so

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(2.1)

For a set Y we say that |Y | is the cardinality of Y . For n ∈ Z+ ∪ {0} let
[0;n] = {0, 1, . . . , n}. For a vector x, we say that |x| is the `2-norm of x, so
| (x1, x2) | =

√
x2

1 + x2
2. Let δx,y be the Kronecker delta function, so

δi,j =

0 if i 6= j,

1 if i = j.
(2.2)

For suitable vectors x = (x1, x2, . . . , xl) and y = (y1, y2, . . . , yl) we say that
x ≤ y if the inequality holds componentwise, and that x < y if all component-
wise inequalities are strict. We say that xy = (xy1

1 , x
y2
2 , . . . , x

yl
l ). We write ∞

16



and 0 for vectors of appropriate dimensions with all entries∞ and 0 respectively.
Similarly, for suitable matrices A and B we say that A ≤ B if the inequality
holds componentwise, and that A < B if all componentwise inequalities are strict.

For a random variable X, we denote its mean by µX and its variance by
σ2
X . Unless otherwise specified, we denote its probability generating function

by fX (s) = E
[
sX
]
or bX (s) = E

[
sX
]
, s ∈ [0, 1], with the choice of fX(s) or

bX(s) generally determined by whether we are calculating the spread of an
epidemic or susceptibility set (see Section 3.3). For a function f(x), we write
f ′(x) for the derivative of f(x) with respect to x. For a random variable X,
with P (X = k) = pk, k = 0, 1, 2, . . . , and µX < ∞, we define the size-biased
distribution X̃, such that P

(
X̃ = k

)
= p̃k = kpk/µX . It follows from this

definition of X̃ that µX̃ = µX + σ2
X/µX and fX̃−1(s) = f ′X(s)/µX .

For two random variables X and Y we write X D= Y if X and Y are equal
in distribution, i.e. P (X ≤ x) = P (Y ≤ x) for all x. Similarly, for a sequence
of real-valued random variables X1, X2, . . . and a random variable X we write
Xn

D−→ X if X1, X2, . . . converge in distribution to X, i.e. the cumulative
density function of Xn at x converges to the cumulative density function of
X at x as n −→ ∞ for every x ∈ R at which the cumulative distribution
function of X is continuous. We give notation for the majority of random
variables used throughout this thesis in Table 2.1, and applying the definition
of the size-biased distribution to a selection of these random variables yields the
probability generating functions for their size-biased distributions given in Table
2.2. Note that for a non-negative integer n, Const (n) D= Bin(n, 1). The random
variable Pow (k∗, α) is investigated in Ball et al. (2010), and is an example of a
distribution with a power law tail. We use this random variable to numerically
investigate the effect of distributions with heavy tails on our models.

2.2 The final size of a household epidemic

We begin this section by defining an SIR epidemic in a homogeneously mixing
closed finite population. In an SIR epidemic every individual in the population
at any given time is either susceptible, infected or removed. An infected individ-
ual is infectious for the length of its infectious period, and each individual in the
population has an infectious period sampled independently from a non-negative
random variable I, with mean µI <∞, which we specify by its Laplace-Stieltjes
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Notation Parameters Support Probability mass function
Const (d) d ∈ Z+ k = d 1
Bin(n, p) n ∈ Z+, p ∈ [0, 1] k ∈ {0, 1, . . . , n}

(
n
k

)
pk(1− p)n−k

Poi(α) α ∈ R+ k ∈ Z+ ∪ {0} αke−α
k!

Poi+(α) α ∈ R+ k ∈ Z+ αk

(eα−1)k!

Geo (p) p ∈ (0, 1) k ∈ Z+ ∪ {0} (1− p)k p
Geo+ (p) p ∈ (0, 1) k ∈ Z+ (1− p)k−1 p

NB(r, p) r ∈ Z+, p ∈ (0, 1) k ∈ Z+ ∪ {0}
(
k+r−1
k

)
(1− p)rpk

Log(p) p ∈ (0, 1) k ∈ Z+ −pk
k log(1−p)

Pow (k∗, α) k∗ ∈ Z+, α ∈ R+ k ∈ Z+

k∗−α if k < k∗,
k−α if k ≥ k∗

Table 2.1: Table of notation for random variables.

Random variable X µX fX(s) fX̃−1(s)
X ∼ Const (d) d sd sd−1

X ∼ Bin(n, p) np (1− p+ ps)n (1− p+ ps)n−1

X ∼ Poi(α) α e−α(1−s) e−α(1−s)

X ∼ NB(r, p) pr
1−p

(
1−p
1−ps

)r (
1−p
1−ps

)r+1

X ∼ Log(p) −p
(1−p) log(1−p)

log(1−ps)
log(1−p)

1−p
1−ps

Table 2.2: The probability generating functions of a selection of random variables
X and X̃ − 1.
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transform φI (θ) = E
[
e−θI

]
(θ ≥ 0). Throughout an individual’s infectious

period it makes contact with any other given individual in the population at the
points of a Poisson process with rate λH (i.e. for each infective and individual
in the population we consider a Poisson process on the real line, corresponding
to time, for which the points correspond to times at which infectious contacts
occur from the infective to the individual), before it becomes removed and plays
no further part in the epidemic. A susceptible individual becomes infected when
it is contacted by an infected individual. The epidemic terminates when there
are no infectives remaining in the population. All infectious periods and Poisson
processes are assumed to be mutually independent.

Gontcharoff polynomials can be used to express the final size distribution
of an SIR epidemic in a homogeneously mixing closed finite population. They
often appear in calculations throughout this thesis because we often consider the
spread of the epidemic through a single household of size n, ignoring network and
global contacts, which can be considered as a homogeneously mixing model with
a single infective, n− 1 susceptibles and infection rate λH . Given a parameter
sequence of real numbers U = (ui, i = 0, 1, . . . ), the Gontcharoff polynomials
Gk(x|U) (introduced by Gontcharoff (1937)) are defined by G0 (x|U) = 1 and
the recurrence

Gk (x|U) = xk

k! −
k−1∑
j=0

uk−jj

(k − j)!Gj (x|U) , k = 1, 2, . . . . (2.3)

Consider the spread of the epidemic through a homogeneously mixing popu-
lation containing a single initial infective and n− 1 susceptibles, i.e. a household
of size n. We say that the final size of a household epidemic is the total number
of removed individuals in the household when there are no infectives remaining
in the household (excluding the initial infective). Let T (n) be the final size of
the household epidemic amongst the initially susceptible individuals within the
household of size n, so T (n) + 1 is the total number of removed individuals in the
household when there are no infectives remaining in the household. To calculate
the probability generating function of T (n), fT (n)(s), we restrict ourselves to
the case of a constant infectious period (we discuss the reasons behind this
restriction in Section 3.2.5). So, assuming a constant infectious period of length
1, from Corollary 3.3 of Lefèvre and Picard (1990) (or Ball (1986), Theorem
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2.6) the probability generating function for T (n), is given by

fT (n)(s) =
n−1∑
k=0

(n− 1)!
(n− 1− k)!q

n−1−k
k+1 Gk (1|V ) sk, n = 1, 2, . . . , (2.4)

where qk = φI (kλH) and V = (qk+1, i = 0, 1, . . . ). Furthermore,

µT (n) = n− 1−
n−1∑
k=1

(n− 1)!
(n− 1− k)!q

n−k
k Gk−1 (1|V ) . (2.5)

Let H̃ be a distribution with support in the non-negative integers and, for
n = 1, 2, . . . , let P(H̃ = n) = ρ̃n. Then let

µT =
∞∑
n=1

ρ̃nµT (n) , (2.6)

be the mean final size, excluding the initial infective, of a household epidemic
in which the household size is sampled according to H̃.

2.3 Branching process theory

We now give a brief overview of common results in discrete time multi-type
branching process theory. This section is an amalgamation of Karlin and Taylor
(1975) (Section 8.6), Mode (1971) (Chapters 1 and 2) and Feller (1968) (Chapter
12), and covers the key results related to branching processes required for this
thesis. We first define and describe the process and then define the probability
generating functions describing the offspring of the various types of individual
in the branching process. We then give the probability of extinction of the
branching process and finally we define the total progeny of the branching
process and give an implicit formula determining the probability generating
function of the total progeny of a single-type branching process.

Consider a population containing p types of individuals. Individuals of each
type will produce offspring of possibly any of the p types, and the offspring
of a given individual is independent of the offspring of any other individual
in the population. Let Z(m)

i , i = 1, 2, . . . , p, m = 0, 1, 2, . . . , be the number of
individuals of type i in the mth generation of the branching process. Then, for
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m = 0, 1, . . . and i = 1, 2, . . . , p,

Z
(m+1)
i =

p∑
j=1

Z
(m)
j∑
k=1

ζjik ,

where, for j = 1, 2, . . . , p, k = 1, 2, . . . , Z(m)
j ,

(
ζj1k , ζ

j2
k , . . . , ζ

jp
k

)
are independent

and identically distributed random vectors with distribution

P
(
ζj1k = l1, ζ

j2
k = l2, . . . , ζ

jp
k = lp

)
= pj(l1, l2, . . . , lp), l1, l2, . . . , lp = 0, 1, 2, . . . .

So pj(l1, l2, . . . , lp) is the probability that a single individual of type j produces
li offspring of type i, i = 1, 2, . . . , p. Let s = (s1, s2, . . . , sp) ∈ [0, 1]p and, for
j = 1, 2, . . . , p, let

fj(s1, s2, . . . , sp) =
p∑
i=1

∞∑
li=0

pj(l1, l2, . . . , lp)sl11 sl22 . . . slpp ,

be the corresponding probability generating functions and we define the vector
of probability generating functions f(s) = (f1(s), f2(s), . . . , fp(s)).

Let ei denote the vector with 1 in the ith component and zero otherwise.
Then we say that a multi-type branching process is irreducible if and only if,
for every pair of types i,j, there exists some natural number m such that

P
(
Z

(m)
j ≥ 1 | Z(0) = ei

)
> 0, (2.7)

where Z(0) =
(
Z

(0)
1 , Z

(0)
2 , . . . , Z(0)

p

)
. Furthermore, we say that the branching

process is positively regular if for some m equation (2.7) holds for all i and j.
We say that a multi-type branching process is singular if each individual has
exactly one offspring, and otherwise the branching process is non-singular.

We say that the branching process becomes extinct if there exists some
natural number N for which if m > N then ∑p

i=1 Z
(m)
i = 0, i.e. in generation

m there are no individuals of any type. To determine whether a branching
process can avoid extinction, we consider the next-generation matrix M , where
mij = ∂fi(1,1,...,1)

∂sj
. So mij is the expected number of type-j offspring of a single

type-i individual. Let R be the largest eigenvalue in absolute value of M . Then
if R < 1 then the branching process almost surely becomes extinct and we
say the branching process is subcritical, if R = 1 then the branching process
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almost surely becomes extinct and we say the branching process is critical and
if R > 1 then the branching process has a strictly positive probability of not
becoming extinct and we say the branching process is supercritical (see, for
example, Karlin and Taylor (1975, Section 8.6).

We now consider the probability generating function for the number of
individuals in the mth generation of the branching process and the probability
of extinction of the branching process. For i = 1, 2, . . . , p, m = 1, 2, . . . , let

f
(m)
i (s) =

p∑
i=1

∞∑
li=0

P
(
Z

(m)
1 = l1, Z

(m)
2 = l2, . . . Z

(m)
p = lp | Z(0) = ei

)
sl11 s

l2
2 . . . s

lp
p ,

be the probability generating function of the state of the process in the mth
generation of the branching process, conditioned on the initial generation con-
taining a single individual of type i. Note that, for i = 1, 2, . . . , p, f (1)

i (s) = fi(s)
and, since the offspring of any individual is independent of the offspring of any
other individual,

f
(n+m)
i (s) = f

(m)
i

(
f

(n)
1 (s), f (n)

2 (s), . . . , f (n)
p (s)

)
. (2.8)

Before giving the probability of extinction of the branching process we de-
fine the smallest and largest solutions to a set of simultaneous equations. We
say that π = (π1, π2, . . . , πp) is the smallest non-negative solution of the set
of simultaneous equations π = g(π) (with g(π) = (g1(π), g2(π), . . . , gp(π)))
when π is such that, for any other nonnegative solution π∗ of the equation
s = g(s), we have that π < π∗. Similarly, we say that z is the largest solu-
tion of the set of simultaneous equations z = g(z), when z is such that, for
any other nonnegative solution z∗ of the equation s = g(s), we have that z < z∗.

Let π be the extinction probabilities for this Galton-Watson branching
process, i.e. πi is the probability of eventual extinction of the branching process
initiated by a single type-i individual. Then π is the smallest solution of the
set of simultaneous equations s = f(s), and this smallest solution is guaranteed
to exist. Furthermore, for i = 1, 2, . . . , p and any s ∈ [0, 1]p, s 6= (1, 1, . . . , 1),

lim
m−→∞

f
(m)
i (s) = πi. (2.9)

We say that the total progeny of the branching process, Ẑ =
(
Ẑ1, Ẑ2, . . . , Ẑp

)
,

is the total number of individuals of each type it contains over its lifetime, or
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∞ if the branching process does not become extinct. So

Ẑ =
∞∑
m=0

(
Z

(m)
1 , Z

(m)
2 , . . . , Z(m)

p

)
.

Finally, consider a single-type branching process (i.e. p = 1) and let f̂Z(s) be
the probability generating function of the total progeny of the branching process
Ẑ1. Then f̂Z(s) is the unique positive solution in [0, 1] of the implicit equation

f̂Z(s) = sf1
(
f̂Z(s)

)
.

23



3. A model of a stochastic SIR
epidemic with three levels of mixing

In this chapter we consider an SIR (Susceptible - Infective - Removed) epidemic
model for the spread of an epidemic among a population of individuals, with
a random network of social contacts, that is partitioned into households and
in which individuals also make casual contacts, i.e. with individuals chosen
uniformly at random from the population. This is an extension of previous
models such as Ball et al. (1997), the standard households model; Ball and Neal
(2008), who consider the spread of an epidemic on a network structure with
casual contacts; and Ball et al. (2009), who consider the spread of an epidemic
on a network with additional household structure.

We approximate the early stages of the epidemic with a household-based
Galton-Watson branching process and prove that as the number of households
in the population tends to infinity the total number of individuals infected in the
epidemic process converges in distribution to the total progeny of a branching
process. Furthermore, we give a limiting theorem that allows us to define a
major outbreak in a finite population.

This branching process is then used to calculate a household-based threshold
parameter, R∗, that determines whether a major outbreak can occur or not, and
the probability of a major outbreak. We calculate a second threshold parameter,
an individual-based reproduction number R0, following the definition introduced
by Pellis et al. (2012), using a individual-based branching process, and the
expected relative final size of a major outbreak using a backward Galton-Watson
branching process and the concept of susceptibility sets similarly to Ball and
Neal (2002). We investigate the convergence of the probability of a major
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outbreak and the final size of a major outbreak in finite populations to their
asymptotic limits given by the branching process approximation and then con-
sider the effect on the final size of a major outbreak of changing the infection
rates while keeping R0 constant.

This chapter is organised as follows. We formally introduce the epidemic
model in Section 3.1. Approximation of the early stages of an epidemic with
a Galton-Watson branching process is described in Section 3.2. We give a
heuristic description of the approximating branching process and limit theorems
in Section 3.2.1. We discuss threshold parameters R∗ and R0 in Sections 3.2.2
and 3.2.3 respectively, along with an ordering of R0 and R∗ in Section 3.2.4.
Section 3.2 concludes by considering the probability of a major outbreak with a
constant infectious period in Section 3.2.5. Section 3.3 discusses the final size of
a major outbreak. In Section 3.4.1 we numerically explore the model, including
the accuracy of our asymptotic results in finite populations in Section 3.4.1 and
numerical investigations of the model in Section 3.4.2. Finally, we give details
of the Galton-Watson branching process described in Section 3.2.1 and proofs
of the limit theorem, before giving concluding remarks in Section 3.6 and tables
of common notation introduced in this chapter in Section 3.7.

3.1 Model

We study a model consisting of a finite, closed population of N individuals split
into m households, of which mn are of size n (for n = 1, 2, . . . ). We construct
the network structure according to the ‘configuration model’ (see, for example,
Newman (2002a)). This means that we assign each individual in the population
a number of ‘half-edges’ according to independent samples from an arbitrary but
specified distribution D with P (D = k) = pk (k = 0, 1, . . . ). Conditional on the
total number of half-edges being even, these half-edges are then paired uniformly
at random to form the edges of the network. We say that an individual’s degree
is equal to the number of half-edges it has been assigned. So an individual chosen
uniformly at random from the population has degree distributed according to
D.

Next we consider the evolution of the epidemic. We consider an SIR epidemic
which means that every individual in the population at any given time is either
susceptible, infected or removed. A susceptible individual becomes infected when
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it is contacted by an infected individual. An infected individual is infectious
for the length of its infectious period during which it makes infectious contacts
with other individuals, before it becomes removed and plays no further part in
the epidemic. The epidemic terminates when there is no infective remaining in
the population.

The epidemic starts with a single infectious individual chosen uniformly
at random from the population which is otherwise susceptible. The infectious
period of each individual is independently sampled from a non-negative random
variable I, with mean µI <∞, which we specify by its Laplace-Stieltjes trans-
form φI (θ) = E

[
e−θI

]
(θ ≥ 0).

Throughout an individual’s infectious period it can make infectious contact
with other individuals in three ways.

• An infected individual makes contact with any given household neighbour
at the points of a Poisson process with rate λH .

• An infected individual makes contact with any given network neighbour
at the points of a Poisson process with rate λN .

• An infected individual makes global infectious contact with individuals
chosen uniformly at random from the N members of the population at
the points of a Poisson process with rate λG.

Note that λH and λN are per-pair rates but the per-pair rate for global infectious
contact is λG/N . So an infectious individual of degree d in a household of size
n makes infectious contacts at total rate dλN + (n− 1)λH + λG. All infectious
periods, network degrees, Poisson processes and uniform samplings for global
contacts are assumed to be mutually independent, and these are independent
of an individual’s household size. We denote the marginal probability that an
infected individual infects a given susceptible network and household neighbour
by pN = 1− φI (λN) and pH = 1− φI (λH) respectively.

It is important to note that our results are asymptotic as the number of
households m −→ ∞. Although we assume that the epidemic starts with a
single initial infective chosen uniformly at random from the population, our
results are easily modified for several initial infectives, given that the number
of initial infectives remains finite as m −→ ∞. We require that D has finite
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variance and that, as m −→∞,

mn/m −→ ρn (n = 1, 2, . . . ),

where (ρ1, ρ2, . . . , ) is a proper probability distribution. We set H to be the
asymptotic household size distribution given by P (H = n) = ρn, n = 1, 2, . . . ,
and assume that H has finite variance.

The requirement that D has finite variance ensures that any multiple edges
and self-loops amongst individuals becomes sparse in the network as m −→∞,
i.e. the total number of multiple edges and self-loops per individual tends to
0 as m −→ ∞ (see Durrett (2006), Theorem 3.1.2). We say that a multiple
edge between households occurs when two households have multiple network
edges between individuals in them and a household self-loop occurs when two
individuals in the same household have a network edge connecting them. Then
the condition that H has a finite variance ensures that multiple edges between
households and household self-loops also become sparse as m −→∞ (see Ball
and Sirl (2012), Section 6.1).

Note that we can recover several other epidemic models discussed in previous
literature. Setting λH = 0 or ρ1 = 1 effectively removes the households, and
recovers the model of Ball and Neal (2008). Setting λG = 0 removes the global
infection and recovers the model of Ball et al. (2009). If λN = 0 or p0 = 1 we
effectively remove the network structure and recover the household model of
Ball et al. (1997). There are several ways of recovering the usual homogeneously
mixing stochastic SIR epidemic model by removing the household and network
structure, i.e. setting λH = λN = 0, or ρ1 = 1 and p0 = 1. Setting λH = λG = 0,
or ρ1 = 1 and λG = 0 effectively removes the household structure and global
infections, so recovers the network SIR model, Newman (2002a).
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3.2 Early stages of an epidemic

3.2.1 Heuristic description of the approximating branch-
ing process

We begin this section by giving an informal description of the discrete time
two-type Galton-Watson branching process used to approximate the early stages
of the epidemic. We are interested in the final outcome of the epidemic and not
its precise evolution, so we can think of the process evolving in the following
way (see, for example, Ludwig (1975) or Pellis et al. (2008)). First consider the
epidemic spreading only within the household containing the initial infective,
ignoring global and network contacts, which we call the household epidemic.
Next we consider the number of network and global contacts made by each
member of the household epidemic. In the early stages of the epidemic it is likely
that each of these network and global contacts will be made with uninfected
individuals that are in distinct uninfected households, thus each network or
global contact made will result in a single infected household with a single initial
infective.

We let each newly infected household proceed in the same manner, consider-
ing the spread of the epidemic through the household first and then considering
the number of global and network contacts made by the members of the house-
hold epidemic. This can then be viewed as a two-type branching process of
infected households. ‘Individuals’ in this branching process correspond to single-
household epidemics with one initial infective and their type is determined by
whether the initial infective is globally contacted (type-1) or contacted via the
network (type-2). We call the initial infective in a household the primary infec-
tive or case and any subsequent infected individuals in the household secondary
infectives. We assume that the epidemic process is started by an individual
chosen uniformly at random from the population, so the branching process has
a single type-1 ancestor.

Further to the moment conditions on the household size and degree dis-
tributions, i.e. σ2

H < ∞ and σ2
D < ∞, we assume that the branching process

is irreducible, positively regular and nonsingular. Note that the irreducible
and positively regular conditions are satisfied when λG > 0, λN > 0 and
p0 < 1. Relaxing any of these conditions recovers either the model of Ball et al.
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(1997) or Ball et al. (2009). The non-singular condition rules out the possibility
that each individual in the branching process gives rise to precisely one offspring.

Our main result concerning this branching process approximation is an
approximation theorem for the total number of type-1 and type-2 infected
households in the epidemic, whose proof is given in Section 3.5. For an epidemic
on m households, E(m) say, let Ê(m) be the total number of (type-1, type-2)
infected households infected, including the initial infective. Let Z be the
branching process described above, with total progeny Ẑ.

Theorem 3.1.

(i) For k, l = 0, 1, . . . ,

lim
m−→∞

∣∣∣P (Ê(m) = (k, l)
)
− P

(
Ẑ = (k, l)

)∣∣∣ = 0. (3.1)

(ii) For γ ∈ (0, 1/2),

lim
m−→∞

∣∣∣P (Ê(m) < (bmγc, bmγc)
)
− P

(
Ẑ <∞

)∣∣∣ = 0. (3.2)

Theorem 3.1 suggests that, in the limit m −→ ∞, we say that a major
outbreak occurs if the limiting branching process Z does not become extinct.
Therefore, whether a major outbreak can occur is determined by whether or
not the limiting branching process Z is supercritical (i.e. whether R∗ > 1, see
Section 3.2.2). If R∗ > 1, we can then calculate the probability of a major
outbreak (see section 3.2.5), and the expected relative final size of a major
outbreak (see Section 3.3). Furthermore, Theorem 3.1 part (ii) naturally leads
to a definition of a major outbreak in a finite population, i.e. that, for fixed
γ ∈ (0, 1/2) and a finite population, a major outbreak occurs if it contains at
least mγ type-1 or type-2 individuals.

Our definition of a major outbreak in a finite population is similar to Ball
et al. (2009), who define a major outbreak as one which infects at least log(m)
households. Furthermore, Ball et al. show that this is almost surely the same
as the stronger definition of requiring at least log(m) infected households in
generation b2 log logm/ logR∗c, and that the infected households in genera-
tion 1 + b2 log logm/ logR∗c contains less than (log(m))β half-edges, for some
β ∈ (1,∞).

29



It is worth noting that there are many limit theorems for epidemic processes
and branching processes in the literature. For example, Ball and Neal (2002)
couple a branching process to an epidemic with local and global structure,
e.g. the households model of Ball et al. (1997), and prove that, as the number of
individuals in the population tends to infinity, the total number of individuals
infected by the epidemic converges in distribution to the total progeny of their
approximating branching process. Furthermore, Ball and Neal show that with
probability 1 the relative final size of a major outbreak tends to either 0 or a
positive constant as the population size tends to infinity. Ball and Neal (2008)
give a central limit theorem for the final size of a major outbreak in the network
and global model when the degree distribution is constant. We hypothesise that
similar results hold for our epidemic model, however the details are difficult
and not the focus of this thesis. We note that the proofs of our limit theorems
use similar methods to the proofs given by Ball and Neal (2002), Ball and Neal
(2008) and Ball et al. (2009).

We refer to Z as the forward branching process as it is constructed by
considering who an individual will infect forward in time. This is in contrast
to the backward Galton-Watson branching process, discussed in Section 3.3,
which in some sense is constructed by considering the backwards evolution of
the epidemic.

3.2.2 Threshold parameter R∗
Before giving R∗ we introduce some notation. For i, j ∈ {1, 2}, let mij be
the mean number of type-j offspring made by a typical type-i individual in
the forward Galton-Watson branching process. So m11 is the mean number of
globally contacted individuals infected by the members of a single-household
epidemic in which the primary individual was globally contacted. Let M be the
mean next-generation matrix, given by

M =
m11 m12

m21 m22

 . (3.3)

Let R∗ be the largest eigenvalue of the next-generation matrix M . So

R∗ =
m11 +m22 +

√
(m11 −m22)2 + 4m12m21

2 . (3.4)
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Recall that, in the limitm −→∞, a major outbreak occurs in the asymptotic
population if the total progeny of the two-type Galton-Watson forward branch-
ing process is infinite, so whether the epidemic can become a major outbreak is
determined by whether or not the Galton-Watson forward branching process
is supercritical. Standard multi-type branching process theory says that an
irreducible two-type branching process is supercritical if and only if the largest
eigenvalue of the next-generation matrix M is greater than one (see Section
2.3). If R∗ is less than 1 then the Galton-Watson forward branching process is
subcritical and will almost surely become extinct, therefore the probability that
a major outbreak occurs is zero. Similarly, if R∗ = 1, then the Galton-Watson
forward branching process is critical, and will almost surely become extinct.
Thus R∗ is a threshold parameter for whether or not a major outbreak can occur.

If we remove either the global infections, e.g. substituting λG = 0, or the
network spread of the epidemic, e.g. substituting λN = 0, then R∗ is the expected
number of infectious contacts made by a single household epidemic. However,
if λG > 0 and λN > 0 then an intuitive description for R∗ is the expected
total number of contacts made by a typical household, by which we mean a
weighted average of the offspring of type-1 and type-2 household epidemics. The
weighting is given by the proportion of type-1 and type-2 individuals throughout
the lifetime of the branching process.

Theorem 3.2. The next-generation matrix M is given by

M =

λGµI (µT + 1) pNµD (µT + 1)
λGµI (µT + 1) pN

(
µD (µT + 1) + σ2

D

µD
− 1

) , (3.5)

with µT given in equation (2.6).

Proof. This proof uses similar arguments to the work in Ball et al. (2010).

First consider the expected number of global contacts made by type-1 and
type-2 households and note that the number of global contacts made by an
individual is independent of its network degree. This means that the expected
number of global contacts made by a single household epidemic does not depend
on the type of its primary infective, so m11 = m21.

Let CGG be the number of global contacts made by a single household
epidemic where the primary infective was contacted globally. We firstly condition
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on the size of the household that the globally infected individual is in. Note that
although the proportion of households of size n is given by ρn, the probability
that an individual chosen uniformly at random from the population is in a
household of size n is proportional to nρn, leading to the size-biased household
size distribution H̃ (see Section 2.1). Thus

E [CGG] =
∞∑
n=1

ρ̃nE
[
C

(n)
GG

]
,

where C(n)
GG is the random variable CGG conditional on the household being of

size n.

We then decompose C(n)
GG into the number of global contacts emanating from

each member of the household, so

C
(n)
GG = CGG(0) +

n−1∑
j=1

χj CGG (j) , (3.6)

where we have labelled the individuals in the household 0, 1, . . . , n − 1, with
individual 0 being the primary infective in the household, χj is the indicator of
the event that individual j is infected by the household epidemic (i.e. χj = 1
if j is infected and 0 otherwise) and CGG (j) is the number of global infections
made by individual j, conditioned on individual j becoming infectious.

The event that an individual is infected is independent of how many contacts
they would make if they became infected, as whether an individual j is infected
in the household epidemic is independent of individual j’s infectious period, so χj
and CGG (j) are independent for j = 1, 2, . . . , n− 1. Furthermore, (CGG (j) , χj),
j = 1, 2, . . . , n − 1, have the same distribution and CGG (0) has the same
distribution as CGG (1). So taking expectation of equation (3.6) yields

E
[
C

(n)
GG

]
= E [CGG (0)] + E

[
T (n)

]
E [CGG (0)] = E [CGG (0)] (µT (n) + 1) , (3.7)

where T (n) = ∑n−1
j=1 χj is the final size of the household epidemic amongst the

secondary individuals expressed in equation (2.5).

An infectious individual makes global contacts at rate λG throughout an
infectious period I with mean µI . In the limit m −→ ∞, each global contact
is made to a distinct individual. Thus the number of global contacts an
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infectious individual makes has a Poisson distribution with parameter λGµI and
E [CGG (0)] = λGµI . Thus, using T as defined in equation (2.6),

m11 = m21 =
∞∑
n=1

ρ̃nλGµI (µT (n) + 1) = λGµI (µT + 1) . (3.8)

Next we consider the number of infectious network contacts. Let CGN be the
total number of network contacts made by the members of a single household
epidemic in which the primary infective has been globally contacted and CNN
be the number of network contacts made by the members of a single household
epidemic in which the primary infective has been contacted through the network.

Similarly to the argument for CGG above, we first condition on the size of
the household that the primary infective is in. Recall that the probability that
an individual chosen uniformly at random from the population is in a household
of size n is given by ρ̃n, and now consider the probability that an individual
contacted via the network is in a household of size n. We assign each individual
in the population D half-edges independent of the individual’s household size
and these half-edges are then paired uniformly at random to construct the
network. So the probability that a given network neighbour is in a household
of size n is independent of its degree and is equal to the probability that an
individual chosen uniformly at random in the population is in a household of
size n, ρ̃n. So, for A ∈ {G,N},

E [CAN ] =
∞∑
n=1

ρ̃nE
[
C

(n)
AN

]
,

where C(n)
GN and C(n)

NN are the random variables CGN and CNN conditional on
the household being of size n.

We then decompose C(n)
GN and C

(n)
NN into the number of network contacts

emanating from each member of the household. So, for A ∈ {G,N},

C
(n)
AN = CAN (0) +

n−1∑
j=1

χj CAN (j) , (3.9)

where, as before, we have labelled the individuals in the household 0, 1, . . . , n−1,
with individual 0 being the primary infective in the household, χj is the indicator
of the event that individual j is infected by the household epidemic and CGN (j)
(CNN (j)) is the number of network infections made by individual j in a type-1
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(type-2) household, conditioned on individual j becoming infected.

Using analogous arguments to the work leading to equation (3.7), χj and
CAN (j) are independent for j = 1, 2, . . . , n−1, and (CAN (j) , χj), j = 1, . . . , n−1
have the same distribution by symmetry. So considering the expected value of
equation (3.9) yields

E
[
C

(n)
AN

]
= E [CAN (0)] + E

[
T (n)

]
E [CAN (1)] . (3.10)

The expectations of both CGN (j) and CNN (j), j = 0, 1, can be determined by
conditioning on individual j’s infectious period, Ij , and the number of uninfected
neighbours j has in the network, which we denote here by Kj if the primary
infective was globally infected and K̃j otherwise. All infectious periods have the
same distribution, I and K0, K1 and K̃1 will have the same distribution as D.
However K̃0 will have the same distribution as D̃− 1, where D̃ is the size-biased
distribution of D (see Section 2.1). We require the size-biased distribution
because half-edges are paired uniformly at random, so the probability that
a given half-edge is linked to an individual with degree k is proportional to
kpk. The −1 arises from one of the individual’s neighbours, its parent in the
branching process, already having been infected.

In this paragraph we use Kj to also mean K̃j . For j = 0, 1, conditioned on I
and Kj, individual j makes contact with each of its Kj susceptible neighbours
independently at the points of independent Poisson processes with rate λN for
a time Ij. Thus (CGN(j)|Ij, Kj) ∼ Bin(Kj, 1− e−λN Ij) and (CNN(j)|Ij, Kj) ∼
Bin(Kj, 1− e−λN Ij), since a Poisson process with rate λN has no points before
a given time Ij with probability e−λN Ij . Therefore, recalling that φI(θ) =
E
[
e−θI

]
and that an individual’s infectious period is independent of its degree

distribution,

E [CAN (j)] = E [E [CAN (j) |Ij, Kj]] = E
[
Kj(1− e−λN Ij)

]
= E [Kj] (1−φI(λN)).

Recall that pN = 1− φI (λN) and µD̃ = µD + σ2
D/µD, so

E [CGN (0)] = E [CGN (1)] = E [CNN (1)] = µDpN , (3.11a)

E [CNN (0)] =
(
µD + σ2

D/µD − 1
)
pN . (3.11b)
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Substituting equations (3.11) into equation (3.10) yields

E
[
C

(n)
GN

]
= µDpN (µT (n) + 1) ,

E
[
C

(n)
NN

]
=
(
µD (µT (n) + 1) + σ2

D/µD − 1
)
pN .

Thus

m12 =
∞∑
n=1

ρ̃nµDpN (µT (n) + 1) and

m22 =
∞∑
n=1

ρ̃n
(
µD (µT (n) + 1) + σ2

D/µD − 1
)
pN .

Furthermore, substituting µT as expressed in equation (2.6),

m12 = µDpN (µT + 1) and (3.12a)

m22 =
(
µD (µT + 1) + σ2

D/µD − 1
)
pN . (3.12b)

Substituting equations (3.8) and (3.12) together into the next-generation matrix
M yields

M =

λGµI (µT + 1) pNµD (µT + 1)
λGµI (µT + 1) pN

(
µD (µT + 1) + σ2

D

µD
− 1

) .

3.2.3 Basic reproduction number R0

As we discuss in the literature review, early definitions of R0 can be biologically
interpreted as the expected total number of individuals infected by a typical
individual in the early stages of the epidemic, during their entire infectious
period. However, because of the possible small household size, the primary case
in a household epidemic is likely to infect more individuals in the household,
leading to a larger total number of infectious contacts made, compared to that
of an individual infected later in the household epidemic. Therefore there is not
an obvious choice of a typical infectious case, and such a definition needs to
be carefully considered. We use the definition of R0 introduced by Pellis et al.
(2012).

We now introduce the notation and nomenclature needed to discuss the

35



methodology used in Pellis et al. (2012). We say that the initial infective belongs
to global generation 0. Let global generation 1 consist of those individuals with
whom the initial infective has at least one infectious contact through all types
of contact. So global generation 1 consists of all individuals directly contacted
by the initial infective through the household, via the network or via global
contact. Global generation 2 consists of those individuals that are contacted by
at least one global-generation-1 individual, through all types of contact, but not
by the initial infective, and so on. For n = 0, 1, . . . , let X(N)

n denote the number
of global generation-n infectives, where N is the population size. Then R0 is
defined by

R0 = lim
n→∞

lim
N→∞

(
E
[
X(N)
n

]) 1
n .

This definition of R0 can be interpreted to be approximately the ratio of the
number of individuals in the k + 1th global generation of the epidemic to the
number of individuals in the kth global generation, for large k.

Similarly to R∗, in the limit m −→∞, if R0 ≤ 1 then a major outbreak will
not occur and if R0 > 1 there is a positive probability that a major outbreak
will occur. Therefore, similarly to R∗, R0 is a limiting threshold parameter as
m −→∞.

Before we discuss the forward individual-based branching process used to
calculate R0 in our model we introduce rank generation numbers and calculate
the mean number of infection cases in each rank generation of a single household
epidemic in the next section.

Mean number of cases in each rank generation of a single household
epidemic

We compute the rank generations of infection in the household epidemic as
in Ball et al. (2016). Consider a household epidemic in a household of size
n. We label the initial infective 0 and label the n − 1 remaining susceptibles
in the household 1, 2, . . . , n − 1. For each individual i, i = 0, 1, . . . , n − 1, we
then construct a list containing the individuals that i would infect, if it became
infected itself. Then construct a directed graph, G(n)

f , with vertices labelled
0, 1, . . . , n − 1, in which for any ordered pair of distinct vertices (i, j), there
is a directed edge from i to j if and only if individual j is in individual i’s
list of attempted infections. We say that the initial infective, i.e. individual
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0, has a household generation 0. Those individuals that are in 0’s list are
then said to have household generation 1. Individuals not in individual 0’s list,
or individual 0, but who are in a household generation-1 infective’s list have
household generation 2 and so on. The set of individuals ultimately infected
by the epidemic comprises those individuals in G(n)

f that have a chain of di-
rected edges leading to them from individual 0 and the household generation
number of such an infected individual, i say, is the length of the shortest chain
joining 0 to i, where the length of a chain is the number of edges in it. Fol-
lowing Ludwig (1975) we call these generation numbers rank generation numbers.

Denote by µ(n)
i the mean number of infectives in generation i of a single

household epidemic with a household size of n. We follow the calculations
made in Pellis et al. (2012) to calculate µ(n)

i . We denote the probability of m
susceptibles out of s escaping direct infection from a infectives by Pa(m, s),
a = 1, 2, . . . , s = 1, 2, . . . ,m = 0, 1, . . . , s. We also denote by i = s − m the
number of infectives in the following generation. Label the s susceptibles
1, 2, . . . , s and the a infectives −1,−2, . . . ,−a. We define the indicator random
variables Ji, i = 1, 2, . . . , s, to be

Ji =

1 if individual i escapes infection from a infectives,

0 otherwise,

and X = {i : Ji = 1}, so X is the set of individuals that escape infection from
the a infectives. Then Pa(m, s) = P(|X| = m).

Next consider the inclusion probability

R (Y ) = P (X ⊇ Y ) = E
[∏
i∈Y

Ji

]
= E

∏
i∈Y

∏
j∈A

Ji (j)
 ,

where Y ⊆ {1, 2, . . . , s}, A = {−1,−2, . . . ,−a} and

Ji (j) =

1 if individual i escapes infection from infective j,

0 otherwise.

Let Ij be the infectious period of individual j. For l = −1,−2, . . . ,−a, k =
−1,−2, . . . ,−a, k 6= l and i = 1, 2, . . . , s, the probability that individual l makes
infectious contact with i is independent of the probability that individual k
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makes infectious contact with i. Thus, conditioning on the infectious periods of
the infected individuals,

R (Y ) = E
∏
i∈Y

∏
j∈A

Ji (j)
 = E

E
∏
i∈Y

∏
j∈A

Ji (j)

∣∣∣∣∣∣I−1, I−2, . . . , I−a


= E

∏
j∈A

E
[∏
i∈Y

Ji (j)
∣∣∣∣∣I−1, I−2, . . . , I−a

]
= E

∏
j∈A

E [JY (j)|I−1, I−2, . . . , I−a]
 ,

where

JY (j) =

1 if all individuals in Y escape infection from infective j,

0 otherwise.

Infectious contacts through the household from an individual j, with given
infectious period Ij , to a given household neighbour i are made at the points of
a Poisson process with rate λH . So, given Ij, the probability that no infectious
contacts are made is e−λHIj . All Poisson processes are independent, so

R (Y ) = E
∏
j∈A

E [JY (j)|I−1, I−2, . . . , I−a]
 = E

∏
j∈A

e−λHIj |Y |
 .

The infectious periods are independent and distributed according to I. Thus

R (Y ) = E
∏
i∈Y

∏
j∈A

Ji (j)
 =

∏
j∈A

E
[
e−λHI|Y |

]
= φI (λH |Y |)a .

Therefore we see that the probability a given set, Y say, of individuals from
{1, 2, . . . , s} is infected depends only on the size of the set Y . Then we can use
Martin-Löf (1986) Equation 9, based on the Möbius inversion formula, to see
that

Pa(m, s) =
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
qH (k)a , m = 0, 1, . . . , s,

where qH (k) = φI (kλH).

Next we denote Ya,s,k, a = 1, 2, . . . , s = 1, 2, . . . , k = 1, 2, . . . , s, to be the
number of cases in generation k of the epidemic and let µa,s,k = E [Ya,s,k] be its
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expectation. For a = 1, 2, . . . , s = 1, 2, . . . , k = 1, 2, . . . , s, conditioning on the
number of infectives in the first generation yields

µa,s,k = E [E [Ya,s,k|Ya,s,1]] =
s−k+1∑
i=1

E [Ya,s,k|Ya,s,1 = i] P (Ya,s,1 = i) .

Now P (Ya,s,1 = i), i = 1, 2, . . . , s− k + 1, is the probability that precisely i out
of s susceptibles are directly infected by a infectives. We can consider this as
the probability s− i individuals out of s escape infection from a infectives, so
P (Ya,s,1 = i) = Pa (s− i, s).

Next consider E [Ya,s,k|Ya,s,1 = i]. This is the same as the expected number
of cases in generation k − 1, when generation 0 has i initial infectives and s− i
susceptibles, so E [Ya,s,k|Ya,s,1 = i] = E [Yi,s−i,k−1] = µi,s−i,k−1. Thus

µa,s,k =
s−k+1∑
i=1

Pa (s− i, s)µi,s−i,k−1,

with µa,s,0 = a and µa,0,k = 0, a = 1, 2, . . . , s = 1, 2, . . . , and k = 1, 2, . . . , s.

Finally, we conclude by noting that, for i = 0, 1, . . . , n− 1,

µ
(n)
i = µ1,n−1,i. (3.13)

Note that if we sum over the mean number of infected individuals in each
generation conditioned on the household size n, we get the mean size of a single
household epidemic in a household of size n. So using the definition of T (n) from
equation (2.6) we see that

n−1∑
i=0

µ
(n)
i = µT (n) + 1. (3.14)

The forward individual-based branching process

To calculate R0, we construct a discrete-time two-type individual-based branch-
ing process, different to the branching process introduced in Section 3.2.1. In
the forward Galton-Watson branching process discussed in Section 3.5, each
‘individual’ in the branching process is an infected household and the households
containing the global and network contacts made by the infected members of
this infected household are the next generation in the branching process, so one
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Figure 3.1: Comparing the spread of the epidemic, the individuals in the forward
branching process and the individuals in the forward individual-based branching
process.

time period corresponds to a household epidemic. Similarly, each ‘individual’ in
the forward individual-based branching process consists of an infected household.
For the rest of this section, we refer to an ‘individual’ in the forward individual-
based branching process as a H-individual, to differ from the individuals in the
population. In the contrast to the forward Galton-Watson branching process, in
the forward individual-based branching process we consider the infections in the
household epidemic occurring in multiple generations as the infection spreads
throughout the household. A time period corresponds to a new generation being
infected, so an H-individual’s age is which generation of the household epidemic
it is in. Thus an H-individual in this branching process will have offspring at
multiple time points, as the epidemic spreads through the household. Note
that the distribution of the number of offspring of a H-individual over its entire
lifespan in this forward individual-based branching process will be the same
as the distribution of the number of offspring of an ‘individual’ in the forward
Galton-Watson branching process. We hypothesise that, as m −→∞, the total
progeny of the forward individual-based branching process will converge in dis-
tribution to the total number of (type-1, type-2) infected households infected in
the epidemic process on m households, similarly to the forward Galton-Watson
branching process in Section 3.2.1.

We construct this forward individual-based branching process similarly to
the single type process used in Ball et al. (2016). As already mentioned, each
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H-individual in the branching process represents an infected household. A
type-1 individual is a household in which the initial infective was contacted
globally, and a type-2 individual is a household in which the initial infective
was contacted via the network. Recall from the beginning of Section 3.2.3
that the global generation of an infective is its generation in the epidemic at
large. So the initial infective in the epidemic, i∗, has global generation 0. Given
that i∗ became infected, individuals that i∗ would contact, through either the
household, the network or globally, are then global generation 1. Similarly,
given that individuals in generation 1 became infected, individuals which are
not members of a previous global generation that members of generation 1
would infect, through either the household, the network or globally, are then
generation 2 and so on. We say that an H-individual’s time of birth is given
by the global generation of the corresponding household primary case in the
epidemic process (see Figure 3.1). An H-individual in this branching process
may reproduce at ages 1, 2, . . . . For a type-1 individual, we denote the mean
number of type-1 offspring at age i+ 1 by ν(i)

GG and the mean number of type-2
offspring at age i+ 1 by ν(i)

GN . Similarly, for a type-2 individual, we denote the
mean number of type-1 offspring at age i + 1 by ν(i)

NG and the mean number
of type-2 offspring at age i + 1 by ν(i)

NN . Then R0 is given by the asymptotic
(Malthusian) geometric growth rate of the forward individual-based branching
process, which is the value of λ ∈ R+ such that the maximal eigenvalue of V (λ)
is 1, where V (λ) is given by

V (λ) =
∞∑
i=1

ν(i−1)
GG /λi ν

(i−1)
GN /λi

ν
(i−1)
NG /λi ν

(i−1)
NN /λi

 . (3.15)

See, for example, Haccou et al. (2005) Section 3.3.2, adapted to the discrete-time
setting.

Calculation of R0

Recall µ(n)
i , i = 0, 1, . . . , n− 1, the mean number of infectives in rank generation

i of a single household epidemic in a household size of n, which were calculated
in Section 3.2.3. Furthermore, let µi−1 = ∑∞

n=i ρ̃nµ
(n)
i−1, so µi−1, i = 1, 2, . . . , is

the mean number of cases in rank generation i− 1 of a typical single-household
epidemic.

41



Theorem 3.3. The threshold parameter R0 is the largest positive real root of
the equation

1− νGG (λ)− νNN (λ) + νGG (λ) νNN (λ)− νGN (λ) νNG (λ) = 0, (3.16)

under the constraint
2− νGG (λ)− νNN (λ) ≥ 0, (3.17)

where

νGG (λ) = νNG (λ) = λGµI
∞∑
i=1

1
λi

µi−1, (3.18a)

νGN (λ) = µDpN
∞∑
i=1

1
λi

µi−1, (3.18b)

νNN (λ) = µD̃−1pN
λ

+ µDpN
∞∑
i=2

1
λi
µi−1. (3.18c)

Proof. We begin by calculating the elements of the matrix V (λ) given in equa-
tion (3.15). First note that global and network contacts are both made with
individuals in households of size H̃. So the mean rank generation sizes of a
typical single-household epidemic are given by ∑∞n=i ρ̃nµ

(n)
i−1 = µi−1, i = 1, 2, . . . .

Now consider ν(i−1)
GG and ν(i−1)

NG . Note that whether the primary infective was
infected globally or via the network does not affect how the epidemic spreads
through the household or the number of global contacts made by an individual,
so ν(i−1)

GG = ν
(i−1)
NG . As in the proof of Theorem 3.2, the mean number of global

contacts made by an infected individual is λGµI , so

ν
(i−1)
GG = λGµIµi−1 for i = 1, 2, . . . ,

and ∞∑
i=1

ν
(i−1)
GG /λi = λGµI

∞∑
i=1

1
λi

µi−1 = νGG (λ) = νNG (λ) . (3.19)

Next we consider ν(i−1)
GN . As in the proof of Theorem 3.2, the mean number of

network contacts made by a secondary individual in the household epidemic, or
an individual infected globally, is pNµD. Thus

ν
(i−1)
GN = pNµDµi−1 for i = 1, 2, . . . ,
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and ∞∑
i=1

ν
(i−1)
GN /λi = pNµD

∞∑
i=1

1
λi

µi−1 = νGN (λ) . (3.20)

Finally we consider ν(i−1)
NN . As mentioned in the proof of Theorem 3.2, the mean

number of network contacts made by a secondary individual in the household
epidemic is pNµD and the mean number of network contacts made by a primary
individual infected via the network is pNµD̃−1. So the expected network offspring
of an individual in generation 0 is pNµD̃−1 and the expected network offspring
of an individual in a subsequent generation is pNµD. Therefore

ν
(i−1)
NN =

pNµD̃−1 if i = 1,

pNµDµi−1 if i = 2, 3, . . . ,

and ∞∑
i=1

ν
(i−1)
NN /λi = pNµD̃−1

λ
+ pNµD

∞∑
i=2

1
λi

µi−1 = νNN (λ) . (3.21)

Equations (3.19), (3.20) and (3.21) yield the elements of the matrix V (λ) in
equation (3.15),

V (λ) =
 νGG (λ) νGN (λ)
νNG (λ) νNN (λ)

 ,
which are also the values in equation (3.15). Now that we have V (λ), we
investigate its dominant eigenvalue.

We have defined R0 to be the value of λ ∈ R+ such that the maximal
eigenvalue of V (λ) is 1. Since all elements of V (λ) are positive for all λ > 0, the
Perron-Frobenius Theorem guarantees a positive real eigenvalue of maximum
modulus. Denote the eigenvalues of V (λ) by α± and consider its characteristic
equation in variable α, which we denote g(α, λ). So

g(α, λ) = α2 − α (νGG (λ) + νNN (λ)) + νGG (λ) νNN (λ)− νGN (λ) νNG (λ) .

This is a quadratic equation in α and has roots α± where α− ≤ α+. Let g′(α, λ)
be the derivative of g(α, λ) with respect to α. The coefficient of α2 is positive,
so g′(α−, λ) ≤ 0 and g′(α+, λ) ≥ 0, with equality precisely when α− = α+.
Therefore 1 is the maximal eigenvalue of V (λ) if g′(1, λ) ≥ 0 and g (1, λ) = 0.
The constraint g′(1, λ) ≥ 0 yields

2− νGG (λ)− νNN (λ) ≥ 0,
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which is the constraint in equation (3.17). Given that the largest eigenvalue of
V (λ) is 1, we can substitute 1 into the characteristic equation to see that R0 is
the largest root of the equation

1− νGG (λ)− νNN (λ) + νGG (λ) νNN (λ)− νGN (λ) νNG (λ) = 0,

which is equation (3.16), thus finishing the proof.

Remark. As we would intuitively expect, R0 = R∗ if all households are of
size 1, the argument for which we briefly state. It follows easily from equation
(3.15) that if all households are of size 1, λV (λ) = M . At λ = R0, the largest
eigenvalue of V (λ) is 1. The largest eigenvalue of M is defined to be R∗, and is
equal to the largest eigenvalue of R0V (R0), which is R0. Hence R0 = R∗ if all
households are of size 1.

3.2.4 Ordering between R∗ and R0

For this section we assume that there is household structure and that λH > 0,
since otherwise R0 = R∗. Before considering the ordering between R0 and R∗,
we introduce a proposition which gives an ordering of the maximal eigenvalues
of two matrices given information about the ordering of the elements of the two
matrices.

Proposition 3.1. Let A and B be non-negative matrices and denote their
largest eigenvalues by ρ(A) and ρ(B) respectively. Then, by Wielandt’s Theorem
(see, for example, Meyer (2000)), if A < B then ρ(A) < ρ(B).

We now present a theorem which orders R∗ and R0.

Theorem 3.4. (i) If R0 > 1 then R∗ > R0.

(ii) If R0 < 1 then R∗ < R0.

(iii) R∗ = 1⇔ R0 = 1.

Proof. Recall that R∗ is the largest eigenvalue of the next-generation matrix
M . Then R∗ is the value of λ such that the maximal eigenvalue of V∗ (λ) is 1,
where V∗ (λ) = M/λ. Thus, substituting in equations (3.14) and (2.6) and then
changing the order of summation, we see that

V∗ (λ) =
ν∗GG (λ) ν∗GN (λ)
ν∗NG (λ) ν∗NN (λ)

 ,
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where

ν∗GG (λ) = λGµI
λ

∞∑
i=1

µi−1,

ν∗NG (λ) = ν∗GG (λ) ,

ν∗GN (λ) = µDpN
λ

∞∑
i=1

µi−1,

ν∗NN (λ) = µD̃−1pN
λ

+ µDpN
λ

∞∑
i=2

µi−1.

First note that V (1) = V∗ (1) so, as required for part (iii),

R∗ = 1⇔ R0 = 1.

We write ρ (λ) and ρ∗ (λ) for the maximal eigenvalues of V (λ) and V∗ (λ) respec-
tively. Note that, for λ > 0, both V (λ) and V∗ (λ) are non-negative matrices
and that ρ (λ) and ρ∗ (λ) are both decreasing functions of λ. Furthermore,

V∗ (λ) < V (λ) if 0 < λ < 1,

V∗ (λ) > V (λ) if 1 < λ <∞,

Hence, by Proposition 3.1,

ρ∗ (λ) < ρ (λ) if 0 < λ < 1,

ρ∗ (λ) > ρ (λ) if 1 < λ <∞.

Suppose that R0 < 1. Then

ρ∗ (R0) < ρ (R0) = 1.

A further application of Proposition 3.1 yields that ρ∗ (λ) is decreasing on (0,∞).
Therefore, since ρ∗ (R∗) = 1, we see that R∗ < R0. Similarly, if R0 > 1, then

ρ∗ (R0) > ρ (R0) = 1⇒ R∗ > R0.

45



3.2.5 Probability of a major outbreak

We begin by recalling some notation introduced in Section 3.2.2. The number
of (type-1, type-2) offspring of a single type-1 and type-2 individual are denoted
by (CGG, CGN) and (CNG, CNN) respectively. Let s = (s1, s2), π = (π1, π2)
and fC(s) = (fC1(s), fC2(s)) =

(
E
[
sCGG1 sCGN2

]
,E
[
sCNG1 sCNN2

])
. By standard

branching process theory (see Section 2.3), if R∗ > 1 then the probability that
the forward Galton-Watson branching process does not become extinct is given
by ρmaj = 1 − π1, where π is the smallest solution of the set of simultaneous
equations π = fC(π). Therefore ρmaj is the probability of a major outbreak
since, by definition, in the limit m −→∞ a major outbreak occurs if and only
if the forward Galton-Watson branching process does not become extinct.

We now give explicit expressions for the probability generating functions
fC1(s) and fC2(s), assuming a constant infectious period of length 1 so φI(t) =
e−t. Note that if the infectious periods are not constant then the infectious
periods of individuals infected by a household epidemic are not independent of
the final size of that household epidemic, which invalidates the decomposition
we use in equation (3.23) to determine fC(s). For example, a large number
of global contacts emanating from a single individual suggests that it had a
long infectious period, thus increasing the probability that more household
neighbours become infected and also increasing the total number of network
contacts made by the household. Similarly to Ball et al. (2010), it is possible
to use the theory of final state random variables developed in Ball and O’Neill
(1999), by considering the joint probability generating function of the number
of global contacts and contacts made via the network of a household epidemic,
to express fC(s) in terms of Gontcharoff polynomials. Unfortunately these
calculations are very involved and we do not present them here. For convenience
let GN (s2) = fD (1− pN + pNs2) and G̃N (s2) = fD̃−1 (1− pN + pNs2).
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Theorem 3.5. Assuming a unit infectious period, the joint probability generating
functions for the offspring distributions of the forward Galton-Watson branching
process are given by

fC1 (s1, s2) = e−λG(1−s1) GN (s2)
∞∑
n=1

ρ̃n fT (n)

(
e−λG(1−s1) GN (s2)

)
,

fC2 (s1, s2) = e−λG(1−s1) G̃N (s2)
∞∑
n=1

ρ̃n fT (n)

(
e−λG(1−s1) GN (s2)

)
.

Proof. This proof proceeds by conditioning on the household size of an initial
infective and on the size of its household epidemic, and applying independence
results to consider the number of type-1 and type-2 offspring from each member
of the initial infective’s household epidemic separately.

Conditioning the probability generating functions fC1 (s1, s2) and fC2 (s1, s2)
on the size of the primary infective’s household yields

fC1 (s1, s2) =
∞∑
n=1

ρ̃n E
[
s
C

(n)
GG

1 s
C

(n)
GN

2

]
,

fC2 (s1, s2) =
∞∑
n=1

ρ̃n E
[
s
C

(n)
NG

1 s
C

(n)
NN

2

]
,

(3.22)

where C(n)
GG, C

(n)
NG, C

(n)
GN and C(n)

NN are the quantities CGG, CNG, CGN and CNN
conditioned on the primary infective being in a household of size n.

As the calculations of fC1 (s1, s2) and fC2 (s1, s2) are similar, we write CAG
and CAN , where A ∈ {G,N}. We next decompose C(n)

AG and C
(n)
AN into the

number of contacts made by each member of the primary infective’s household
epidemic. So

C
(n)
AG = CAG (0) +

T (n)∑
j=1

CAG (j) and (3.23)

C
(n)
AN = CAN (0) +

T (n)∑
j=1

CAN (j) ,

where T (n) is the size of the primary infective’s household epidemic, we have
labelled the members of the primary infective’s household epidemic 0, 1, . . . , T (n),
with 0 corresponding to the primary individual and CAG (j) (CAN (j)) is the
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number of global (network) contacts made by individual j. Therefore

E
[
s
C

(n)
AG

1 s
C

(n)
AN

2

]
= E

sCAG(0)+
∑T (n)

j=1 CAG(j)
1 s

CAN (0)+
∑T (n)

j=1 CAN (j)
2

 ,
= E

sCAG(0)
1 s

CAN (0)
2 s

∑T (n)

j=1 CAG(j)
1 s

∑T (n)

j=1 CAN (j)
2

 .
Consider a primary infective i and a secondary infective k in a household of size
n. In the limit m −→∞, all infectious contacts made by i and k, both global
and via the network, are made to individuals belonging to different households.
Furthermore, since there is a constant infectious period, conditioned on T (n)

we know that: the number of global contacts made by individual i (or k), the
degree distribution of i (or k) and the probability a given network neighbour is
contacted by i (or k) are all mutually independent. So, for j = 0, 1, . . . , T (n),
CAG (j) and CAN (j) are pairwise independent for each j and also independent
of T (n). Furthermore, the number of contacts made by each individual in the
household epidemic are independent, so (CAG (0) , CAN (0)), (CAG (1) , CAN (1)),
. . . ,

(
CAG

(
T (n)

)
, CAN

(
T (n)

))
are all independent, so

E
[
s
C

(n)
AG

1 s
C

(n)
AN

2

]
= E

[
s
CAG(0)
1

]
E
[
s
CAN (0)
2

]
E
s∑T (n)

j=1 CAG(j)
1 s

∑T (n)

j=1 CAN (j)
2

 .
(3.24)

We consider the three expectations in equation (3.24) separately. We begin by
turning our attention to the last term,

E
s∑T (n)

j=1 CAG(j)
1 s

∑T (n)

j=1 CAN (j)
2

 = E
T (n)∏
j=1

s
CAG(j)
1

T (n)∏
j=1

s
CAN (j)
2

 .
Conditioning on T (n) and then using the independence of CAG (j) and CAN (j),
j = 1, 2, . . . , T (n), yields

E
T (n)∏
j=1

s
CAG(j)
1

T (n)∏
j=1

s
CAN (j)
2

 = E
E

T (n)∏
j=1

s
CAG(j)
1

T (n)∏
j=1

s
CAN (j)
2

∣∣∣∣∣∣T (n)

 (3.25)

= E
E

T (n)∏
j=1

s
CAG(j)
1

∣∣∣∣∣∣T (n)

E
T (n)∏
j=1

s
CAN (j)
2

∣∣∣∣∣∣T (n)

 .
Infectious contacts made by an individual through the network in the forward
branching process occur independently through a given network edge with
probability pN . Let Kj , j = 0, 1, . . . , T (n), be the number of network neighbours
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of j which are not already infected. Then (CAN (j) |Kj) ∼ Bin(Kj, pN), so
E
[
s
CAN (j)
2

∣∣∣Kj

]
= (1− pN + pNs2)Kj .

Conditioning on K =
{
Kj, j = 1, 2, . . . , T (n)

}
, and using the independence

of CAN (j), j = 1, 2, . . . , T (n) yields

E
T (n)∏
j=1

s
CAN (j)
2

∣∣∣∣∣∣T (n)

 = E
E

T (n)∏
j=1

s
CAN (j)
2

∣∣∣∣∣∣K,T (n)

∣∣∣∣∣∣T (n)


= E

T (n)∏
j=1

E
[
s
CAN (j)
2

∣∣∣K,T (n)
]∣∣∣∣∣∣T (n)


= E

T (n)∏
j=1

(1− pN + pNs2)Kj
∣∣∣∣∣∣T (n)

 .
For j = 1, 2, . . . , T (n), Kj are independent copies of D, so

E
T (n)∏
j=1

s
CAN (j)
2

∣∣∣∣∣∣T (n)

 = E
T (n)∏
j=1

(1− pN + pNs2)D
∣∣∣∣∣∣T (n)


= (fD (1− pN + pNs2))T

(n)
. (3.26)

Substituting equation (3.26) into equation (3.25) and recalling that GN (s2) =
fD (1− pN + pNs2) yields

E
T (n)∏
j=1

s
CAG(j)
1

T (n)∏
j=1

s
CAN (j)
2

 = E
E

T (n)∏
j=1

s
CAG(j)
1

∣∣∣∣∣∣T (n)

 (GN (s2))T
(n)

 . (3.27)

For j = 0, 1, . . . , T (n), individual j makes infectious contacts at the points of a
Poisson process with rate λG, and each infectious contact is made with a different
individual in a different household. Thus CAG (j) ∼ Poi (λG). Substituting
E
[
s
CAG(j)
1

]
= e−λG(1−s1) into equation (3.27) and then (3.24) yields

E
[
s
C

(n)
GG

1 s
C

(n)
GN

2

]
= e−λG(1−s1) E

[
s
CGN0
2

]
E
[(

e−λG(1−s1)
)T (n)

(GN (s2))T
(n)
]

= e−λG(1−s1) E
[
s
CGN0
2

]
E
[(

e−λG(1−s1)GN (s2)
)T (n)]

= e−λG(1−s1) E
[
s
CGN0
2

]
fT (n)

(
e−λG(1−s1)GN (s2)

)
, (3.28)

where an expression for fT (n)(s) is given by equation (2.4) in Section 2.2.

Finally consider E
[
s
CGN (0)
2

]
and E

[
s
CNN (0)
2

]
. An individual that has been
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contacted globally has D network neighbours, all of whom are susceptible. Thus
K0

D= D for a type-1 household and

E
[
s
CGN (0)
2

]
= E

[
E
[
s
CGN (0)
2

∣∣∣K0
]]

= E
[
(1− pN + pNs2)D

]
= GN (s2) .

A primary infective in a type-2 household has been infected by one of its network
neighbours, so the probability that a primary individual in a type-2 household
has degree k is proportional to kpk and the network degree distribution of this pri-
mary infective is given by D̃. Thus this individual has D̃−1 susceptible network
neighbours and K0

D= D̃− 1. So E
[
s
CNN (0)
2

]
= fD̃−1 (1− pN + pNs2) = G̃N (s2).

Substituting E
[
s
CGN (0)
2

]
= GN (s2), E

[
s
CNN (0)
2

]
= G̃N (s2) and equation

(3.28) into equation (3.22) yields the required expressions for fC1 (s1, s2) and
fC2 (s1, s2) given in the statement of the theorem.

3.3 Final size of a major outbreak

3.3.1 Susceptibility sets and size of a household suscep-
tibility set

Before our calculation of the expected relative final size of a major outbreak,
we first introduce susceptibility sets. The idea behind susceptibility sets is that
for each individual in the population we can find all individuals that it would
infect, if the individual itself is infected. We can then construct a directed
graph based on these lists, in which there is an edge from vertex i to j if and
only if, given individual i was infected, individual i would infect individual
j. The susceptibility set of an individual j is all individuals that have a path
to j in the digraph and j itself. Therefore, the probability that an individual
ultimately becomes infected in the epidemic is equal to the probability that
a member of its susceptibility set becomes infected. Details on susceptibility
sets can be found in several papers, for example Ball (2000) and Ball et al. (2009).

We now define an individual’s household susceptibility set. Similarly to our
construction of G(n)

f in Section 3.2.3, we construct the directed graph, G(n)
BH , with

vertices labelled 0, 1, . . . , n− 1, in which for any ordered pair (i, j) of distinct
individuals there is a directed arc from i to j if and only if i, if infected, would
contact j through the household. For i, k = 1, 2, . . . , n− 1 we write i H k if and
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only if there is a chain of directed arcs from i to k in G(n)
BH , with the convention

that i H i. We define the size of individual i’s household susceptibility set by
S

(n)
i =

∣∣∣∣{j ∈ {0, 1, . . . , n− 1} : j H i
}∣∣∣∣. Note that we can consider G(n)

f as a
graph in which arcs are added as the epidemic spreads through the population,
whereas in G(n)

BH we follow these arcs backward.

For an individual i∗ in a household of size n, we define M (n) to be the size
of i∗’s household susceptibility set, not counting i∗ itself. We use a result of
Ball (2000), Lemma 3.1, where it is shown that the probability mass function of
M (n) is given by

P
(
M (n) = k

)
= (n− 1)!

(n− 1− k)!q
n−1−k
k+1 Gk (1|V) k = 0, 1, . . . , n− 1, (3.29)

where qk = φI (kλH), V = (qk+1, k = 0, 1, . . . ). As usual, we denote E
[
sM

(n)
]

=
fM(n)(s).

Next we define an individual’s local susceptibility set. We construct the
directed graph, GNBL, with vertices labelled 1, 2, . . . , N . For any ordered pair (i, j)
of distinct individuals there is a directed arc from i to j if and only if i, if infected,
would contact j through the household or network. For i, j ∈ {1, 2, . . . , N} we
write i j if and only if there is a chain of directed arcs from i to j in GNBL, with
the convention that i i. We define the size of individual i’s local susceptibility
set by S(N)

L (i) = {j ∈ {1, 2, . . . , N} : j  i}. Then we conjecture that, assuming
σ2
H < ∞ and σ2

D < ∞, as m −→ ∞, S(N)
L (i) converges in distribution to a

limiting random variable, SL say. We argue the proof that S(N)
L (i) D−→ SL as

m −→∞, follows a similar construction and coupling argument to the proof of
Theorem 3.1 given in Section 3.5 (see also Ball and Neal (2008) Section 4.2).

3.3.2 Heuristic calculation of the expected relative final
size of a major outbreak

Given that an epidemic becomes a major outbreak it is useful to investigate
the proportion of the population which becomes infected. We now make a
heuristic argument for our calculations of the expected relative final size of
a major outbreak, i.e. the proportion of susceptible individuals that become
removed at the end of the epidemic process, hereafter referred to as the final
size of a major outbreak. There are two main arguments for calculating the final
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size of a major outbreak. We use an argument similar to that by Ball and Neal
(2002) for the household model. However, Ball et al. (2009) use an alternative
argument to give an expression for the final size of a major outbreak in a model
with household and network structure by relating an individual’s asymptotic
susceptibility set to its fate in the event of a major outbreak. We assume that
λG > 0, since otherwise we revert to the aforementioned model by Ball et al.
(2009).

We follow the arguments given by Ball and Neal (2002), until we introduce
a two-type branching process. Let z be the expected relative final size of a
major outbreak, by which we mean z is the proportion of individuals that are
ultimately infected by the epidemic in a major outbreak in the limit as m −→∞
when the initial infective was chosen uniformly at random from the population.
Then 1− z is the probability that a typical initial susceptible avoids infection by
the epidemic. The probability that a typical initial susceptible avoids infection
by the epidemic is equal to the probability that all of the individuals in its
local susceptibility set avoid infection from global contacts during the course of
the epidemic. There are N individuals in the population and a proportion z
of them are ultimately infected by the epidemic. Each of these individuals has
an expected infectious period of µI . Recalling that the individual to individual
global infection rate is λG/N and that each individual has an expected infectious
period of µI , we see that the probability a given individual avoids global infection
is approximately given by the probability that a Poisson process with rate λG/N
has no events in a time interval with length NzµI . Thus the probability a given
individual avoids global infection is approximately π = e−λGzµI .

In the limit as m −→ ∞ this approximation becomes exact and distinct
individuals avoid global infection independently of each other. Thus the proba-
bility that a typical individual’s local susceptibility avoids infection from global
contacts is given by E

[
π|SL|

]
, and z satisfies

1− z = E
[
π|SL|

]
= f|SL|

(
e−λGzµI

)
. (3.30)

We can investigate the roots of this equation by considering a single-type
Galton-Watson branching process in which the number of offspring of a typical
individual, R̃ say, follows a Poisson distribution with random mean λGµI |SL|.
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Then R̃ has probability generating function given by

fR̃(s) = E
[
sR̃
]

= E
[
E
[
sR̃
∣∣∣|SL1 |]] = E

[
e−λGµI |SL1 |(1−s)

]
= f|SL1 |

(
e−λGµI(1−s)

)
.

Then s = 1 − z satisfies the equation s = fR̃(s), the equation governing the
extinction probability of the above single-type Galton-Watson branching pro-
cess with one initial ancestor chosen uniformly at random from the population.
Therefore we conjecture that 1− z is equal to the probability that the above
single-type Galton-Watson branching process with one initial ancestor becomes
extinct.

Recall that in the forward Galton-Watson branching process (a two-type
process), used to approximate the early stages of the epidemic, each individual
in the branching process corresponds to a single-household epidemic and their
type is determined by whether the primary infective is infected via a global or
network contact. In contrast, the above single-type Galton-Watson branching
process can be viewed as approximating the spread of an individuals suscepti-
bility set through the population, with each individual in the branching process
corresponding to a single local susceptibility set. We now consider a two-type
Galton-Watson branching process, the backward Galton-Watson branching
process, in which each individual in the branching process corresponds to a
single household susceptibility set and their type is determined by whether the
primary individual joins the susceptibility set via a global or network contact.
Furthermore, we argue that the backward Galton-Watson branching process
has the same probability of extinction as the above single-type Galton-Watson
branching process, and thus can be applied to calculate z. We consider the
backward Galton-Watson branching process over the single-type Galton-Watson
branching process because we find the two-type branching process easier to
analytically investigate.

We construct the two-type backward Galton-Watson branching process in a
similar manner to Ball et al. (2010). So we start with an initial individual, j, who
has been chosen uniformly at random from the population. The type-1 offspring
in the first generation of the backward Galton-Watson branching process consists
of the households containing an individual that makes global infectious contact
with a member of individual j’s household susceptibility set (we call these
individuals the type-1 primary individual in their household). Similarly, the
type-2 offspring in the first generation of the backward Galton-Watson branching

53



process consists of the households containing an individual that makes infectious
contact via the network with a member of individual j’s household susceptibility
set (we call these individuals the type-2 primary individual in their household).
Subsequent generations then consist of those households with individuals who
make infectious contact globally (type-1), or via the network (type-2), with the
household susceptibility set of any of the primary individuals in the previous
generation of the backward branching process.

Then the single-type Galton-Watson branching process can be viewed as
an ‘embedded’ version of the two-type backward Galton-Watson branching
process, as we now explain. We remove the type-2 individuals in the two-type
backward Galton-Watson branching process by attributing all offspring of a
type-2 individual to its parent. Thus the total progeny of the new branching
process is equal to the number of type-1 individuals in the two-type backward
Galton-Watson branching process, and the number of offspring of an individual
in the new branching process is equal to the total number of type-1 individuals
in the two-type backward Galton-Watson branching process connected to the
corresponding individual via a chain of type-2 individuals. Note that each
individual in the new branching process then corresponds to a single local
susceptibility set, and indeed the new branching process is the single-type
Galton-Watson branching process. It is clear from the construction of the single-
type Galton-Watson branching process from the backwards Galton-Watson
branching process that, assuming λG > 0, the two-type backward Galton-
Watson branching process has finite total progeny if and only if the single-type
Galton-Watson branching process has finite total progeny. Therefore, both
the backward Galton-Watson branching process and the single-type Galton-
Watson branching process have the same probability of extinction, as required
to calculate z.

3.3.3 The backward Galton-Watson branching process

Before considering the backward Galton-Watson branching process, we give
the following proposition about the convergence in distribution of the Binomial
distribution to the Poisson distribution, whose proof is given in, for example,
Roussas (1997) Section 3.4, Theorem 1.

Proposition 3.2. Let X(N) ∼ Bin (N, p(N)) and Y ∼ Poi(λ). If p(N) −→ 0
and Np(N) −→ λ > 0 as N −→∞ then X(N) D−→ Y .
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Let BGG be the number of global contacts made to the members of the house-
hold susceptibility set of a type-1 primary individual and let BNG be the number
of global contacts made to the members of the household susceptibility set of a
type-2 primary individual. Similarly, let BGN be the number of contacts made
via the network to the members of the household susceptibility set of a type-1
primary individual and let BNN be the number of contacts made via the network
to the members of the household susceptibility set of a type-2 primary individual.

We let b1(s1, s2), (s1, s2) ∈ [0, 1]2, be the probability generating function
for the offspring distribution of a type-1 household in the backward branching
process, so b1 (s1, s2) = E

[
sBGG1 sBGN2

]
. Similarly, let b2 (s1, s2) be the probability

generating function for the offspring distribution of a single type-2 household in
the backward branching process, so b2 (s1, s2) = E

[
sBNG1 sBNN2

]
.

The expected relative final size of a major outbreak is z = 1 − π1, where
π = (π1, π2) is the smallest solution to the set of simultaneous equations
π = b(π), where b (s1, s2) = (b1 (s1, s2) , b2 (s1, s2)).

Theorem 3.6. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

b1 (s1, s2) = e−λGµI(1−s1) GN (s2)
∞∑
n=1

ρ̃n fM(n)

(
e−λGµI(1−s1) GN (s2)

)
,

b2 (s1, s2) = e−λGµI(1−s1) G̃N (s2)
∞∑
n=1

ρ̃n fM(n)

(
e−λGµI(1−s1) GN (s2)

)
.

Proof. This proof follows by conditioning on the household size of a primary
individual and the size of its household susceptibility set, and applying indepen-
dence arguments to consider the number of global contacts and contacts made
via the network to each member of its household susceptibility set separately.

Consider an individual i in the population. The probability that another
individual j makes global infectious contact with i depends on j’s infectious
period but not on i’s, thus i’s network degree is independent of the number of
global infectious contacts i receives and, since the only difference between a
type-1 household and a type-2 household is the network degree of the primary
individual, we know that BGG

D= BNG.

55



We first condition the probability generating functions b1 (s1, s2) and b2 (s1, s2)
on the size of the household that the primary individual is in. So

b1 (s1, s2) =
∞∑
n=1

ρ̃n E
[
s
B

(n)
GG

1 s
B

(n)
GN

2

]
,

b2 (s1, s2) =
∞∑
n=1

ρ̃n E
[
s
B

(n)
NG

1 s
B

(n)
NN

2

]
,

(3.31)

where B(n)
GG, B

(n)
NG, B

(n)
GN and B(n)

NN are the quantities BGG, BNG, BGN and BNN

conditioned on the primary individual being in a household of size n.

As the calculations of b1 (s1, s2) and b2 (s1, s2) are similar, we write BAG

and BAN , where A ∈ {G,N}. We next decompose B(n)
AG and B

(n)
AN into the

number of contacts made to each member of the primary individual’s household
susceptibility set. Thus

B
(n)
AG = BAG (0) +

M(n)∑
j=1

BAG (j) ,

B
(n)
AN = BAN (0) +

M(n)∑
j=1

BAN (j) ,

where we have labelled the members of the primary individual’s household
susceptibility set 0, 1, . . . ,M (n), with 0 corresponding to the primary individual,
BAG (j) (BAN (j)) is the number of global (network) contacts made to individ-
ual j andM (n) is the size of the primary individual’s household susceptibility set.

Applying this decomposition we can break down E
[
s
B

(n)
AG

1 s
B

(n)
AN

2

]
, so

E
[
s
B

(n)
AG

1 s
B

(n)
AN

2

]
= E

sBAG(0)+
∑M(n)

j=1 BAG(j)
1 s

BAN (0)+
∑M(n)

j=1 BAN (j)
2

 ,
= E

sBAG(0)
1 s

BAN (0)
2 s

∑M(n)

j=1 BAG(j)
1 s

∑M(n)

j=1 BAN (j)
2

 .
Consider a primary individual i and a secondary individual k in a household
of size n. As m −→∞ and the susceptibility set process contains only a small
proportion of the total population, all infectious contacts made to i’s household
susceptibility set, both global and via the network, are made by individuals
belonging to different households. Therefore all infectious contacts made to the
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members of i’s household susceptibility set are made by individuals with inde-
pendent and identically distributed infectious periods, I. We also know that the
number of global contacts made is independent of an individual’s network degree,
so the number of global contacts made to i (or k) is independent of the number
of contacts made to i (or k) via the network, so, for j = 0, 1, . . . ,M (n), BAG (j)
and BAN (j) are pairwise independent for each j and also independent of M (n).
Furthermore, the number of contacts made to each member of i’s household
susceptibility set are independent, so (BAG (0) , BAN (0)), (BAG (1) , BAN (1)),
. . . ,

(
BAG

(
M (n)

)
, BAN

(
M (n)

))
are all independent and

E
[
s
B

(n)
AG

1 s
B

(n)
AN

2

]
= E

[
s
BAG(0)
1

]
E
[
s
BAN (0)
2

]
E
s∑M(n)

j=1 BAG(j)
1 s

∑M(n)

j=1 BAN (j)
2

 .
(3.32)

We now consider the last term in equation (3.32),

E
s∑M(n)

j=1 BAG(j)
1 s

∑M(n)

j=1 BAN (j)
2

 = E
M(n)∏
j=1

s
BAG(j)
1

M(n)∏
j=1

s
BAN (j)
2

 .
Conditioning on M (n) and then using the independence of BAG (j) and BAN (j),
j = 1, 2, . . . ,M (n) yields

E
M(n)∏
j=1

s
BAG(j)
1

M(n)∏
j=1

s
BAN (j)
2

 = E
E

M(n)∏
j=1

s
BAG(j)
1

M(n)∏
j=1

s
BAN (j)
2

∣∣∣∣∣∣M (n)

 (3.33)

= E
E

M(n)∏
j=1

s
BAG(j)
1

∣∣∣∣∣∣M (n)

E
M(n)∏
j=1

s
BAN (j)
2

∣∣∣∣∣∣M (n)

 .
Infectious contacts made to an individual through the network in the back-

ward branching process occur independently through a given network edge with
probability pN . If we let Kj, j = 0, 1, . . . ,M (n), be the number of network
neighbours of j which are not already in a household susceptibility set we see
that (BAN (j) |Kj) ∼ Bin(Kj, pN) so E

[
s
BAN (j)
2

∣∣∣Kj

]
= (1− pN + pNs2)Kj .

Conditioning on K =
{
Kj, j = 1, 2, . . . ,M (n)

}
, and applying the indepen-
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dence of BAN (j), j = 1, 2, . . . ,M (n) yields

E
M(n)∏
j=1

s
BAN (j)
2

∣∣∣∣∣∣M (n)

 = E
E

M(n)∏
j=1

s
BAN (j)
2

∣∣∣∣∣∣K,M (n)

∣∣∣∣∣∣M (n)


= E

M(n)∏
j=1

E
[
s
BAN (j)
2

∣∣∣K,M (n)
]∣∣∣∣∣∣M (n)


= E

M(n)∏
j=1

(1− pN + pNs2)Kj
∣∣∣∣∣∣M (n)

 .
For j = 1, 2, . . . ,M (n), Kj are independent copies of D so

E
M(n)∏
j=1

s
BAN (j)
2

∣∣∣∣∣∣M (n)

 = E
M(n)∏
j=1

(1− pN + pNs2)D
∣∣∣∣∣∣M (n)


= (fD (1− pN + pNs2))M

(n)
. (3.34)

Substituting equation (3.34) into equation (3.33), and recalling that GN (s2) =
fD (1− pN + pNs2) yields

E
M(n)∏
j=1

s
BAG(j)
1

M(n)∏
j=1

s
BAN (j)
2

 = E
E

M(n)∏
j=1

s
BAG(j)
1

∣∣∣∣∣∣M (n)

 (GN (s2))M
(n)

 .
(3.35)

Next we consider the distribution of BNG (j), j = 0, 1, . . . ,M (n). Recall that
an individual has infectious period I and consider a population containing N
individuals. Then, for specified individuals, l and k say,

P(l globally contacts k) = 1− E
[
e−λGI/N

]
= 1− φI (λG/N) .

Denote by W (N)
j the number of individuals that contact an individual j globally

in a population of size N . Then W
(N)
j ∼ Bin (N, 1− φI (λG/N)). Clearly

limN−→∞W
(N)
j

D= BGG(j). If, as N −→∞,

(i) 1− φI (λG/N) −→ 0,

(ii) N (1− φI (λG/N)) −→ λGµI > 0,

then applying Proposition 3.2 yields BGGj ∼ Poi (λGµI). Therefore we need
only check the conditions required for Proposition 3.2 hold.
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Clearly φI (λG/N) −→ φI (0) = 1 as N −→ ∞, so 1 − φI (λG/N) −→ 0.
Therefore we need only show that N (1− φI (λG/N)) −→ λGµI > 0. Substitut-
ing h = λG/N yields

N (1− φI (λG/N)) = λG
(φI (0)− φI (λG/N))

λG/N
= λG

(φI (0)− φI (h))
h

.

Since φI (h) < φI (0) and h −→ 0 as N −→∞, by the definition of the derivative

lim
h−→0

λG
(φI (0)− φI (h))

h
= λGφ

′
I (0) = λGµI .

If λG = 0 then no global contacts are made and BGG(j) = 0. Otherwise, since
I is a non-negative random variable and so µI > 0, λGµI > 0. Thus, for
j = 1, 2, . . . ,M (n), BGG(j) ∼ Poi (λGµI) and thus E

[
s
BAG(j)
1

]
= e−λGµI(1−s1).

Substituting equation (3.35) into equation (3.32) yields

E
[
s
B

(n)
GG

1 s
B

(n)
GN

2

]
= e−λGµI(1−s1) E

[
s
BGN0
2

]
E
[(

e−λGµI(1−s1)
)M(n)

(GN (s2))M
(n)
]

= e−λGµI(1−s1) E
[
s
BGN0
2

]
E
[(

e−λGµI(1−s1)GN (s2)
)M(n)]

= e−λGµI(1−s1) E
[
s
BGN0
2

]
fM(n)

(
e−λGµI(1−s1)GN (s2)

)
, (3.36)

where an expression for fM(n)(s) is given in equation (3.29).

Finally we consider E
[
s
BGN (0)
2

]
and E

[
s
BNN (0)
2

]
. An individual chosen uni-

formly at random from the population has D network neighbours, all of whom
are able to infect the primary individual through the network if they were to
become infected. Thus for a type-1 household K0

D= D and

E
[
s
BGN (0)
2

]
= E

[
E
[
s
BGN (0)
2

∣∣∣K0
]]

= E
[
(1− pN + pNs2)D

]
= GN (s2) .

Next consider the primary individual in a type-2 household. We know that
this primary individual has D̃ network neighbours, and D̃ − 1 network neigh-
bours which are not already in a susceptibility set, so K0

D= D̃ − 1. Thus
E
[
s
BNN (0)
2

]
= fD̃−1 (1− pN + pNs2) = G̃N (s2).

Substituting the results E
[
s
BGN (0)
2

]
= GN (s2), E

[
s
BNN (0)
2

]
= G̃N (s2) and

equation (3.36) into equation (3.31) yields the expressions for b1 (s1, s2) and
b2 (s1, s2) given in the statement of the theorem as required.
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Remark. In the case of a constant infectious period, it is clear that the proba-
bility generating functions for the final size of a household epidemic and the size
of an individual’s household susceptibility set, i.e. fT (n)(s) and fM(n)(s) given
in equations (2.4) and (3.29) respectively, are equal. Therefore the probability
generating functions for the offspring of the forward branching processes and
backward branching processes are equal and the probability of a major outbreak
is equal to the expected relative final size of a major outbreak.

3.4 Numerical studies

3.4.1 Accuracy of asymptotic results for finite m

In this section we investigate whether the asymptotic results for the probability
of a major outbreak and the final size of a major outbreak, given in Sections
3.2.5 and 3.3.3 respectively, give a good approximation for the final size of a
major outbreak in finite populations. To do this we run 1000 simulations of
the epidemic on finite populations and then estimate the quantities of interest
empirically, comparing these results with the asymptotic calculations. In Ap-
pendix A.1 we give an algorithm in pseudo-code for a single simulation, however
we now give an overview of the method.

For each simulation we generate a random population with the desired
network and household structure and then run a single epidemic with the initial
infective chosen uniformly at random. Note that in each simulation we consider
a new population and construct a new network and household structure. We
then determine a cut-off for whether a particular final size constitutes a major
outbreak by inspecting histograms of the relative final size for our simulations,
for which we find that a cut-off of 0.15 of the population size is appropriate for
the population sizes and parameters we use (see Figures 3.2).

We also include error bounds for the probability and final size of a major out-
break in finite populations which are ±2 standard errors (SEs) of the estimator,
similarly to Ball et al. (2010). Note that for the probability of a major outbreak,
estimated as p̂maj, SE =

√
p̂maj(1− p̂maj)/n. For the mean relative final size

SE = σ̂RFS/
√
nmaj where σ̂RFS is the sample standard deviation of the relative

final sizes of the nmaj major outbreaks. The difference in size of the standard
error between the probability of a major outbreak and the final size of a major
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(a) λN = 0.1, λH = 0.1 and λG =
0.05, so R0 = 0.89.

(b) λN = 0.15, λH = 0.3, λG = 0.2,
so R0 = 1.5.

(c) λN = 0.25, λH = 0.1 and λG =
0.25, so R0 = 2.0.

(d) λN = 0.35, λH = 0.4 and λG =
0.25, so R0 = 2.8.

Figure 3.2: Histograms showing the final size of the epidemic in finite populations.
In all figures H ∼ Const(3), D ∼ Geo(1/5) and m = 200. Using the cutoff
z = 0.15, we determine that no major outbreak occurs in Figure 3.2a, whereas
major outbreaks do occur in Figures 3.2b, 3.2c and 3.2d.

outbreak is because each simulation tells us one piece of information about
whether a major outbreak occurred or not, however for each major outbreak that
occurs we receive information from each initial susceptible in the population.
Although the information about the final size of a major outbreak is highly
correlated, each simulation contains more information about the final size of a
major outbreak than available from a single simulation about the probability of
a major outbreak and thus leads to much smaller error bars.

As with the similar investigations by Ball and Neal (2008) and Ball et al.
(2010), we find that the asymptotic probability and final size of a major outbreak
are quite good approximations for a small number of individuals, as illustrated
in Figures 3.3. Changing the household size distribution, without heavy-tails,
seems to have little impact on the convergence (see Figures 3.3a and 3.3g and
Figures 3.3b and 3.3h). Furthermore, changing the network distribution, without
heavy-tails, also has little impact on the convergence (see Figures 3.3c and 3.3e
and Figures 3.3d and 3.3f). However, we conjecture that investigating a degree
distribution with heavy-tails would result in a slower convergence, similarly to
Ball et al. (2010). Furthermore, we conjecture that investigating a household
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size distribution with heavy-tails would also result in a slower convergence.

3.4.2 Exploration of the model

The epidemic model we introduce in this chapter allows for individuals to trans-
mit the epidemic between households via global contacts and via a configuration
model network structure. Therefore an important question to therefore consider
is whether the complexity from the addition of both routes of transmission is
warranted. For example, if we incorrectly assume that the population is homo-
geneously mixing outside of the household, when there is actually a network
structure, and estimate the final size of a major outbreak, how ‘bad’ is our
approximation? Furthermore, how should we tune these models so that they
are comparable? In this section we choose to compare two epidemic models by
keeping the threshold parameter R0 constant. Indeed, this is the method used by
Clancy and Pearce (2013) to compare several properties of multi-type epidemic
models including the final size of a major outbreak. Therefore whenever we
reference reducing one or more infection rates at the expense of others, we are
implicitly doing this in such a way that R0 remains fixed. We note that this
is not the only way to compare different epidemic models, for example models
can be matched by final size epidemic data or the real-time growth rate. This
section provides motivation for Chapter 4, which explores analytical results on
the simpler models of Ball et al. (1997) and Ball et al. (2009).

Firstly, if both σ2
H and σ2

D are small then fixing R0 and increasing either
of their corresponding infection rates (λN or λH respectively) at the expense
of the casual contact infection rate (λG) will increase the final size of a major
outbreak, as illustrated in Figure 3.4a. In contrast, if σ2

D is ‘large’ then fixing R0

and increasing λN at the expensive of λG will instead decrease the final size of a
major outbreak, as illustrated in Figure 3.4b. However, fixing R0 and increasing
λN at the expensive of λG will not always result in a monotonic change in the
final size of a major outbreak, as illustrated in Figure 3.4c. However, we note
that the changes in Figure 3.4c are very small. Indeed, fixing R0 and increasing
λH at the expense of λG also does not always result in a monotonic effect on
the final size of a major outbreak, as illustrated in Figure 3.4d.

This implies that, assuming we correctly estimate R0, the final size of a
major outbreak is sensitive to our choice of parameters H, D, λH , λN and λG,
suggesting that casual contacts and network contacts can affect the final size
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(a) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Const(4), D ∼ Poi (4).

(b) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Const(4), D ∼ Poi (4).

(c) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (3) + 1, D ∼ Poi (4).

(d) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (3) + 1, D ∼ Poi (4).

(e) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (3) + 1, D ∼ Geo (1/5).

(f) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (3) + 1, D ∼ Geo (1/5).

(g) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (9) + 1, D ∼ Poi (4).

(h) λN = 0.45, λH = 0.25, λG = 0.1,
H ∼ Poi (9) + 1, D ∼ Poi (4).

Figure 3.3: Numerical exploration of convergence of empirical estimates of pmaj
and z in finite populations to the asymptotic final size.
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(a) D ∼ Const(8) and
ρ = [0.29, 0.35, 0.16, 0.15, 0.05]. (b) D ∼ Geo+(1/9) and

ρ = [0.29, 0.35, 0.16, 0.15, 0.05].

(c) D ∼ Log(0.62) and
ρ = [0.29, 0.34, 0.16, 0.14, 0.05, 0.02].

(d) D ∼ Log(0.62) and
ρ = [0.74, 0.13, 0.1, 0.03].

Figure 3.4: Final size of a major outbreak, z, with R0 = 1.5 and varying infection
rates λH , λN and λG. Note the different axis (used for visibility). We discuss
our choice of household size distributions in Section 4.2.

of a major outbreak in different ways. Unfortunately the interactions between
these variables are complicated and difficult to investigate analytically, which is
why in Chapter 4 we consider simpler models.

3.5 Proof of Theorem 3.1

3.5.1 Overview and Notation

In this section we provide a rigorous argument for the use of a two-type Galton-
Watson branching process approximation to the epidemic process described in
Section 3.1, and a proof of Theorem 3.1. We begin by giving a brief overview
of this subsection. Firstly we define a realisation of the epidemic process on m
households, E(m) say, viewed on a generational basis, and a realisation of an
approximating branching process, Z(m) say. Let Ê(m) be the total number of
(type-1, type-2) infected households infected, including the initial infective, in
the epidemic process E(m), and let Ẑ(m) be the total progeny of the approxi-
mating branching process Z(m). As m −→∞, Z(m) converges to the limiting
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two-type Galton-Watson forward branching process, Z say, with total progeny Ẑ.

We show that as m −→∞, Ẑ(m) converges in distribution to Ẑ. We then
consider the number of previously contacted households in the population when
a previously contacted household is contacted for a second time in the epidemic
process, before finally giving the proof of Theorem 3.1.

The following notation holds only for Section 3.5. A household category
α = (n; d1, d2, . . . , dn), where n is the household size and d1, d2, . . . , dn are the
degrees of the n individuals in the household. Recall that the degree of an
individual i is the number of half-edges emanating from i. We assume that if the
household size is n then the individuals in it are labelled 1, 2, . . . , n and di is the
degree of individual i. This means that, for example, the household categories
(2; 1, 2) and (2; 2, 1) are not the same. Let A be the set of all possible household
categories and An be the set of all household categories with household size
n. Note that, for each n ∈ Z+, An is a union of finitely many countable sets
and is therefore countable. Furthermore, ∪n∈Z+An is countable and thus A is
countable.

3.5.2 Construction of the epidemic process and the ap-
proximating branching process on m households

Let (Ω1,F1,P1) be a probability space, on which are defined the following
independent quantities:

(i) a sequence D = (D1, D2, . . . ) of independent random variables, each
distributed according to the degree distribution D;

(ii) a sequence H = (H1, H2, . . . ) of independent random variables, each
distributed according to the household size distribution H.

Let N (0) = 0 and for m = 1, 2, . . . , let N (m) = ∑m
i=1Hi be the number

of individuals in the first m households. Then we construct the sequence
α = (α1, α2, . . . ), where αk ∈ A for k = 1, 2, . . . , from the sequences D and H ,
with αk = (Hk;DN(k−1)+1, DN(k−1)+2, . . . , DN(k)) for k = 1, 2, . . . .
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Let (Ω2,F2,P2) be a probability space, on which are defined the following
mutually independent random quantities:

(i) for every (α, j) ∈ A×Z+, a sequence of random variables
(
Ψ(α,j)
G (1),Φ(α,j)

G (1)
)
,(

Ψ(α,j)
G (2),Φ(α,j)

G (2)
)
, . . . , which are independent copies of the random vari-

able
(
Ψ(α,j)
G ,Φ(α,j)

G

)
defined below;

(ii) for every (α, j) ∈ A×Z+ a sequence of random variables
(
Ψ(α,j)
N (1),Φ(α,j)

N (1)
)
,(

Ψ(α,j)
N (2),Φ(α,j)

N (2)
)
, . . . , which are independent copies of the random vari-

able
(
Ψ(α,j)
N ,Φ(α,j)

N

)
defined below.

We also require uniformly distributed random variables defined on (Ω2,F2,P2),
which we describe only informally because the detail is not important for our
proofs.

The random variable
(
Ψ(α,j)
G ,Φ(α,j)

G

)
describes the number of global (type-1)

and network (type-2) contacts respectively made by the members of a household
epidemic within a household with category α in which individual j was contacted
via a global contact. Similarly, the random variable

(
Ψ(α,j)
N ,Φ(α,j)

N

)
describes the

number of global and network contacts respectively made by the members of a
household with category α in which individual j was contacted via a network
contact. The definitions of

(
Ψ(α,j)
G ,Φ(α,j)

G

)
and

(
Ψ(α,j)
N ,Φ(α,j)

N

)
are similar, so we

let A ∈ {G,N} and define the random variables as follows.

Let Gα, with α = (n; d1, d2 . . . , dn) say, be the random directed graph on
the vertices Vα = {1, 2, . . . , n} obtained as follows. For each vertex i ∈ Vα,
take independent realisations, Ii say, of the infectious period distribution I.
Conditional upon I1, I2, . . . , In, for each i ∈ Vα, we put an arc from vertex i to
each other vertex in Vα independently with probability 1− e−λHIi .

Fix the initial infective j. Then, given Gα, with α = (n; d1, d2 . . . , dn),
I1, I2, . . . , In, and vertices Vα, let C(n)

AN(1), C(n)
AN(2), . . . , C(n)

AN(n) be random vari-
ables, which are independent given I1, I2, . . . , In, with

C
(n)
AN(i)|I1, I2, . . . , In ∼ Bin

(
d′i, 1− e−λN Ii

)
, i = 1, 2, . . . , n,

where if A = G, then d′i = di else if A = N then d′i = di for i 6= j and dj = dj−1.
Let C(n)

AG(1), C(n)
AG(2), . . . , C(n)

AG(n) be random variables, which are independent
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given I1, I2, . . . , In, with

C
(n)
AG(i)|I1, I2, . . . , In ∼ Poi (λGIi) , i = 1, 2, . . . , n.

Then

Ψ(α,j)
A =

n∑
i=1

1{j i}C
(n)
AN(i),

Φ(α,j)
A =

n∑
i=1

1{j i}C
(n)
AG(i),

where j  i denotes the event that there is a directed path from vertex j to i
in Gα.

We now introduce some further notation. For α = (n; d1, d2, . . . , dn) ∈ A,
let dα = ∑n

i=1 di be the total degree of the household. The kth household,
k = 1, 2, . . . , has household category αk, and consists of Hk individuals with
total degree dαk . Let N

(m)
D = ∑m

k=1 dαk , be the total number of half-edges in the
first m households.

The epidemic and approximating branching processes are defined on the
probability space (Ω,F ,P) = (Ω1,F1,P1) × (Ω2,F2,P2). Conditional on the
household category sequence α and for every m = 1, 2, . . . , we now describe the
construction of a branching process, Z(m) =

(
Z

(m)
G , Z

(m)
N

)
, which approximates

the early stages of the spread of the epidemic amongst households 1, 2, . . . ,m,
and the epidemic process among m households, E(m) =

(
E

(m)
G , E

(m)
N

)
.

First we describe the branching process Z(m). Set

Z(m)(0) =
(
Z

(m)
G (0), Z(m)

N (0)
)

= (1, 0) .

To find the offspring of the initial individual, choose an individual uniformly
at random from 1, 2, . . . , N (m). Suppose that it is individual ς from household
∆0 ∈ {1, 2, . . . ,m}. Then

Z(m)(1) =
(
Z

(m)
G (1), Z(m)

N (1)
)

=
(

Ψ(α∆0 ,ς)
G (1),Φ(α∆0 ,ς)

G (1)
)
.

For subsequent generations k ≥ 2 we continue the construction as follows. For
each i = 1, 2, . . . , Z(m)

N (k − 1), sample a half-edge uniformly at random from
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the N (m)
D half-edges in the population. Suppose this half-edge emanates from

individual ς1 in household ∆1. Set

(
Z

(m)
NG(k, i), Z(m)

NN(k, i)
)

=
(

Ψ(α∆1 ,ς1)
N (νN(∆1, ς1) + 1) ,Φ(α∆1 ,ς1)

N (νN(∆1, ς1) + 1)
)
,

where νN(∆1, ς1) is the number of times we have sampled previously from the
sequence

(
Ψ(α∆1 ,ς1)
N (1),Φ(α∆1 ,ς1)

N (1)
)
,
(

Ψ(α∆1 ,ς1)
N (2),Φ(α∆1 ,ς1)

N (2)
)
, . . . .

Similarly, for each j = 1, 2, . . . , Z(m)
G (k − 1), sample uniformly at random from

the N (m) individuals in the population. Suppose this is individual ς2 in household
∆2. Set

(
Z

(m)
GG (k, j), Z(m)

GN (k, j)
)

=
(

Ψ(α∆2 ,ς2)
G (νG(∆2, ς2) + 1) ,Φ(α∆2 ,ς2)

G (νG(∆2, ς2) + 1)
)
,

where νG(∆2, ς2) is the number of times we have sampled previously from the
sequence

(
Ψ(α∆2 ,ς2)
G (1),Φ(α∆2 ,ς2)

G (1)
)
,
(

Ψ(α∆2 ,ς2)
G (2),Φ(α∆2 ,ς2)

G (2)
)
, . . . .

Then

Z
(m)
G (k) =

Z
(m)
G (k−1)∑
j=1

Z
(m)
GG (k, j) +

Z
(m)
N (k−1)∑
i=1

Z
(m)
NG(k, i),

Z
(m)
N (k) =

Z
(m)
G (k−1)∑
j=1

Z
(m)
GN (k, j) +

Z
(m)
N (k−1)∑
i=1

Z
(m)
NN(k, i)

and Z(m)(k) =
(
Z

(m)
G (k), Z(m)

N (k)
)
.

We construct the epidemic process E(m) in the same way as Z(m) until
we sample an individual or half-edge contained within a previously chosen
household. At this point the construction of the epidemic process E(m) can be
continued, however the detail is not important for our purposes.

The branching process Z(m) and the epidemic process E(m) can be coupled
by using the same α,

(
Ψ(α,j)
G ,Φ(α,j)

G

)
’s,
(
Ψ(α,j)
N ,Φ(α,j)

N

)
’s and uniformly random

samples. The coupling breaks down when a half-edge is sampled that emanates
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from a household that has been previously used in the epidemic or an individual
is sampled from a household that has been previously used in the epidemic.
As m −→∞, Z(m) converges to the limiting two-type Galton-Watson forward
branching process, denoted by Z, which uses the asymptotic distributions in its
construction as opposed to the construction of Z(m), which uses the empirical
household size and degree distributions.

3.5.3 Analysis of the forward process

For m = 1, 2, . . . , let Ê(m) =
(
Ê

(m)
G , Ê

(m)
N

)
be the total number of (type-1, type-

2) households infected in the epidemic E(m), including the initial household.
Similarly, let Ẑ(m) and Ẑ be the total progeny, including the initial individual,
of the branching processes Z(m) and Z respectively.

Lemma 3.1.

(i) limm−→∞ P
(
Ẑ(m) = (k, l)

)
= P

(
Ẑ = (k, l)

)
, k, l = 0, 1, 2, . . . ,

(ii) P
(
Ẑ = ∞

)
= 1− P

(
Ẑ <∞

)
,

(iii) limm−→∞ P
(
Ẑ(m) = ∞

)
= P

(
Ẑ = ∞

)
.

Proof. Part (i) is proven by summing the probabilities of the finite number of
sample paths of Ẑ(m) with Ẑ(m) = (k, l), k, l = 1, 2, . . . , and then noting that
by the strong law of large numbers the empirical household size and degree
distributions will almost surely converge to the asymptotic distributions and
thus limm−→∞ P

(
Ẑ(m) = (k, l)

)
= P

(
Ẑ = (k, l)

)
as required.

Since by our assumptions Z is an irreducible, positively regular and nonsin-
gular multi-type Galton-Watson branching process, part (ii) holds by standard
branching process theory. See, for example, Mode (1971) Theorem 5.1.

Finally we consider part (iii). We assume that λG > 0, so we introduce
the following embedded single-type branching processes. Let Y be the single-
type (type-1) Galton-Watson process embedded in Z, in which, for each type-1
individual in Z, its parent in Y is given by its most recent type-1 ancestor
when looking backwards in the family tree. Similarly, for m = 1, 2, . . . , let
Y (m) be the single-type (type-1) Galton-Watson process embedded in Z(m), in
which, for each type-1 individual in Z(m), its parent in Y (m) is given by its most
recent type-1 ancestor when looking backwards in the family tree. Note that

69



the offspring distributions of Y and Y (m) may have a mass at ∞.

Let πY and π(m)
Y be the extinction probability of Y and Y (m) respectively.

Clearly Y becomes extinct if Z becomes extinct. The only way Z can survive
given Y becomes extinct is the event

{
ẐG <∞, ẐN =∞

}
. However, part (ii)

shows that P
(
ẐG <∞, ẐN =∞

)
= 0, so Z becomes extinct if Y becomes

extinct almost surely. Thus πY = π1, where π1 is the extinction probability of
Z when starting with a single type-1 individual, and a similar argument yields
π

(m)
Y = π

(m)
1 , where π(m)

1 is the extinction probability of Z(m) when starting
with a single type-1 individual.

We denote by the total progeny of Y and Y (m) respectively. Then, as
the probability that the total progeny of a branching process, with extinc-
tion probability π, is infinite is equal to 1 − π, clearly, for m = 1, 2, . . . ,
P
(
Ẑ(m) = ∞

)
= P

(
Ŷ (m) =∞

)
and P

(
Ẑ = ∞

)
= P

(
Ŷ =∞

)
. Thus we

need only show that limm−→∞ P
(
Ŷ (m) =∞

)
= P

(
Ŷ =∞

)
to prove part (iii).

Let Ỹ (m) and Ỹ be the offspring distribution of a single individual in the
branching processes Y (m) and Y respectively. Then Ỹ (m) D−→ Ỹ so, by Lefèvre
and Utev (1999) Lemma 3.6, Ŷ D−→ Ŷ (m). Thus, as required,

lim
m−→∞

P
(
Ŷ (m) =∞

)
= P

(
Ŷ =∞

)
.

In order to prove the convergence of the total progeny of the epidemic
process to the total progeny of the limiting branching process, we first investi-
gate the number of previously contacted households in the population when a
previously contacted household is contacted again in the epidemic process. Let
τ

(m)
G = (τ (m)

GG , τ
(m)
GN ) be the total number of (type-1, type-2) previously contacted

households in the epidemic process when a member of a previously contacted
household is contacted via a global infection event for the first time. Similarly, let
τ

(m)
N = (τ (m)

NG , τ
(m)
NN ) be the total number of (type-1, type-2) contacted households

in the epidemic process when a member of a previously contacted household
is contacted by a network infection event for the first time. Let χ(m)

G (i) be the
household containing the individual chosen at the ith global infection event
which contains χ̂(m)

G (i) individuals, χ̄(m)
G (i) half-edges and occurs in generation

ξ
(m)
G (i). Similarly, let χ(m)

N (i) be the household containing the half-edge chosen
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at the ith network infection event which contains χ̂(m)
N (i) individuals, χ̄(m)

N (i)
half-edges and occurs in generation ξ(m)

N (i). We now give bounds on the expected
value of the quantities χ̂(m)

G (i), χ̄(m)
G (i) and χ̂(m)

N (i). The random variable χ̂(m)
N (i)

is considered separately, in the proof of Lemma 3.3.

Proposition 3.3. For i = 1, 2, . . . ,m,

E
[
χ̂

(m)
G (i)

]
≤ E

[
H2
]
.

Proof. The probability that an individual chosen uniformly at random from
the population is in a household of size n, conditioned on the household cat-
egory sequence α, is given by ∑m

i=1Hi1{Hi=n}/
∑m
i=1Hi. Recalling that Hi,

i = 1, 2, . . . ,m, are independent and identically distributed copies of the
random variable H and that households contain at least 1 individual, so
N (m) = ∑m

i=1Hi ≥ m, yields

E
[
χ̂

(m)
G (i)

]
= E

[
E
[
χ̂

(m)
G (i)

∣∣∣α]]
= E

[ ∞∑
n=1

n

∑m
i=1Hi1{Hi=n}∑m

i=1 Hi

]

≤ E
[∑m

i=1Hi
∑∞
n=1 n1{Hi=n}
m

]

= E
[∑m

i=1H
2
i

m

]
= E

[
H2
]
.

Proposition 3.4. For i = 1, 2, . . . ,m,

E
[
χ̂

(m)
N (i)

]
≤ E

[
H2
]
.

Proof. Each individual in the population has been assigned half-edges indepen-
dently of the individual’s household size, and these half-edges are then paired
uniformly at random. Therefore the probability that an individual contacted by
a network infection event is in a household of size n is equal to the probability
that an individual chosen uniformly at random from the population is in a
household of size n, so, for i = 1, 2, . . . ,m,

E
[
χ̂

(m)
N (i)

]
= E

[
χ̂

(m)
G (i)

]
≤ E

[
H2
]
.
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Proposition 3.5. For i = 1, 2, . . . ,m,

E
[
χ̄

(m)
G (i)

]
≤ E

[
H2
]
µD.

Proof. Recall that, for i = 1, 2, . . . ,m, a household contacted by a global
infection event contains χ̂(m)

G (i) individuals, each of whom is independently
given Dj half-edges, j = 1, 2, . . . , χ̂(m)

G (i), where Dj
D= D. Therefore we find

that E
[
χ̄

(m)
G (i)

]
= E

[∑χ̂
(m)
G (i)
j=1 Dj

]
, and applying Proposition 3.3 yields

E
[
χ̄

(m)
G (i)

]
= E

χ̂
(m)
G (i)∑
j=1

Dj


= E

E

χ̂
(m)
G (i)∑
j=1

Dj

∣∣∣∣∣∣∣χ̂(m)
G (i)




= E
[
χ̂

(m)
G (i)

]
µD

≤E
[
H2
]
µD.

Lemma 3.2 states that if limm−→∞|g(m)|2/m = 0 then P
(
τ

(m)
G ≤ g(m)

)
−→ 0

as m −→∞, where τ (m)
G is the total number of previously contacted households

in the epidemic process when a member of a previously contacted household is
contacted via a global infection event for the first time.

Lemma 3.2. Let g(m) = (g1(m), g2(m)) be an integer-valued function that
satisfies

lim
m−→∞

|g(m)|2/m = 0. (3.37)

Then
P
(
τ

(m)
G ≤ g(m)

)
−→ 0 as m −→∞.

Proof. Before proceeding, we recall that by our notation,

P
(
τ

(m)
G ≤ g(m)

)
= P

({
τ

(m)
GG ≤ g1(m)

}
∩
{
τ

(m)
GN ≤ g2(m)

})
.

For the event
{
τ

(m)
G ≤ g(m)

}
to occur, there must be at least one global infection

event within a household that has already had a global or network infection event
within the first g1(m) global infection events and g2(m) network infection events.
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Note that this is similar to the birthday problem. We say that a match occurs
between two infection events if they both occur in the same household. Let
M

(m)
GG (g(m)) be the number of matches among the first g1(m) global infection

events and let M (m)
GN (g(m)) be the number of matches between the first g1(m)

global infection events and the first g2(m) network infection events when the
network infection occurred before the global infection event. Then

M
(m)
GG (g(m)) =

g1(m)−1∑
i=1

g1(m)∑
j=i+1

1{
χ

(m)
G (i)= χ

(m)
G (j)

}, (3.38)

M
(m)
GN (g(m)) =

g1(m)∑
i=1

g2(m)∑
j=1

1{
χ

(m)
G (i)= χ

(m)
N (j)

}1{
ξ
(m)
G (i)> ξ

(m)
N (j)

}. (3.39)

Note that M (m)
GG (g(m)) is the number of times a global infection event occurs

in a household that has already had a global infection event, and M (m)
GN (g(m))

is the number of times a global infection event occurs in a household that has
already had a network infection event, within the first g1(m) global infection
events and the first g2(m) network infection events. Therefore

{
τ

(m)
G ≤ g(m)

}
=
{
M

(m)
GG (g(m)) +M

(m)
GN (g(m)) ≥ 1

}
,

and, applying Markov’s inequality,

P
(
τ

(m)
G ≤ g(m)

)
= P

(
M

(m)
GG (g(m)) +M

(m)
GN (g(m)) ≥ 1

)
≤ P

(
M

(m)
GG (g(m)) ≥ 1

)
+ P

(
M

(m)
GN (g(m)) ≥ 1

)
≤ E

[
M

(m)
GG (g(m))

]
+ E

[
M

(m)
GN (g(m))

]
. (3.40)

Recall that the recipient of a global infection event is chosen uniformly at
random from all N (m) ≥ m individuals in the population. Then, applying
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Proposition 3.3 to the expectation of equation (3.38) yields

E
[
M

(m)
GG (g(m))

]
=

g1(m)−1∑
i=1

g1(m)∑
j=i+1

P
(
χ

(m)
G (i) = χ

(m)
G (j)

)

=
g1(m)−1∑
i=1

g1(m)∑
j=i+1

E
[
P
(
χ

(m)
G (i) = χ

(m)
G (j)

∣∣∣χ̂(m)
G (i), N (m)

)]

=
g1(m)−1∑
i=1

g1(m)∑
j=i+1

E
 χ̂(m)

G (i)
N (m)


≤

g1(m)−1∑
i=1

g1(m)∑
j=i+1

E [H2]
m

=
(
g1(m)

2

)
E [H2]
m

≤ (g1(m))2 E [H2]
m

. (3.41)

Similarly, applying Proposition 3.4 to the expectation of equation (3.39) and
recalling that ξ(m)

G (i) and ξ(m)
N (i) are the generations in which the ith global or

network infection event occurs yields

E
[
M

(m)
GN (g(m))

]
=

g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
G (i) = χ

(m)
N (j), ξ(m)

G (i) > ξ
(m)
N (j)

)

≤
g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
G (i) = χ

(m)
N (i)

∣∣∣ξ(m)
G (i) > ξ

(m)
N (j)

)

=
g1(m)∑
i=1

g2(m)∑
j=1

E
[
P
(
χ

(m)
G (i) = χ

(m)
N (j)

∣∣∣χ̂(m)
N (j), N (m), ξ

(m)
G (i) > ξ

(m)
N (j)

)]

=
g1(m)∑
i=1

g2(m)∑
j=1

E
 χ̂(m)

N (j)
N (m)


≤

g1(m)∑
i=1

g2(m)∑
j=1

E [H2]
m

≤ g1(m)g2(m)E [H2]
m

. (3.42)
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Substituting inequalities (3.41) and (3.42) into inequality (3.40) yields

P
(
τ

(m)
G ≤ g(m)

)
≤ (g1(m))2 E [H2]

m
+ g1(m)g2(m)E [H2]

m

= g1(m) [g1(m) + g2(m)] E [H2]
m

.

Applying the assumption given in equation (3.37) and the moment condition
σ2
H <∞ yields limm−→∞ P

(
τ

(m)
G ≤ g(m)

)
= 0 as required.

Before giving a similar result for τ (m)
N , we briefly state Chebyshev’s inequality

as a proposition. See, for example, Tucker (1967) Section 2.4 for a proof.

Proposition 3.6 (Chebyshev’s inequality). Let X be a random variable with
σ2
X <∞. Then, for every ε > 0,

P (|X − E [X]| > ε) ≤ σ2
X

ε2
. (3.43)

The proof of Lemma 3.3 proceeds similarly to Lemma 3.2, although considers
the number of half-edges in the population rather than the number of individuals.

Lemma 3.3. Let g(m) = (g1(m), g2(m)) be an integer-valued function that
satisfies

lim
m−→∞

|g(m)|2/m = 0. (3.44)

Then
P
(
τ

(m)
N ≤ g(m)

)
−→ 0 as m −→∞.

Proof. For the event
{
τ

(m)
N ≤ g(m)

}
to occur, there must be at least one network

contact infection event occurring in a household that has already had a global or
network infection event within the first g1(m) global infection events and g2(m)
network infection events. Let M (m)

NN (g(m)) be the number of matches among
the first g2(m) network infection events and let M (m)

NG (g(m)) be the number of
matches between the first g2(m) network infection events and the first g1(m)
global infection events when the global infections occurred before the network
infection event. Then

M
(m)
NN (g(m)) =

g2(m)−1∑
i=1

g2(m)∑
j=i+1

1{
χ

(m)
N (i)=χ(m)

N (j)
}, (3.45)

M
(m)
NG (g(m)) =

g2(m)∑
i=1

g1(m)∑
j=1

1{
χ

(m)
N (i)=χ(m)

G (j)
}1{

ξ
(m)
N (i)≥ξ(m)

G (j)
}. (3.46)
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Note that M (m)
NN (g(m)) is the number of times a network infection event occurs

in a household that has already had a network infection event and M (m)
NG (g(m))

is the number of times a network infection event occurs in a household that
has already had a global infection event, within the first g1(m) global infection
events and the first g2(m) network infection events. Therefore

{
τ

(m)
N ≤ g(m)

}
=
{
M

(m)
NN (g(m)) +M

(m)
NG (g(m)) ≥ 1

}
,

and, applying Markov’s inequality,

P
(
τ

(m)
N ≤ g(m)

)
= P

(
M

(m)
NN (g(m)) +M

(m)
NG (g(m)) ≥ 1

)
≤ P

(
M

(m)
NN (g(m)) ≥ 1

)
+ P

(
M

(m)
NG (g(m)) ≥ 1

)
≤ E

[
M

(m)
NN (g(m))

]
+ E

[
M

(m)
NG (g(m))

]
. (3.47)

Recall that N (m)
D = ∑m

i=1 dαi is the number of half-edges in the population
of m households. For i = 1, 2, . . . ,m, dαi are independent and identically
distributed copies of some random variable, TD say, so E

[
N

(m)
D

]
= mE [TD] and

Var
[
N

(m)
D

]
= mVar [TD]. Note that TD D= ∑H

j=1Dj, where Dj are independent
copies of the degree distribution D. So E [TD] = µHµD and, applying the
conditional variance formula,

Var [TD] = E [Var [TD|H]] + Var [E [TD|H]]

= E
Var

 H∑
j=1

Dj

∣∣∣∣∣∣H
+ Var

E
 H∑
j=1

Dj

∣∣∣∣∣∣H


= E [HVar [D]] + Var [HµD]

= µHσ
2
D + σ2

Hµ
2
D. (3.48)

So Var
[
N

(m)
D

]
= m (µHσ2

D + µ2
Dσ

2
H) <∞ since we assume σ2

H <∞ and σ2
D <∞.

So, by Chebyshev’s inequality,

P
(
N

(m)
D <

mµDµH
2

)
≤ P

(
|N (m)

D −mµDµH | >
mµDµH

2

)

≤
4Var

[
N

(m)
D

]
(mµDµH)2

= 4m (µHσ2
D + µ2

Dσ
2
H)

m2µ2
Hµ

2
D

= 4 (µHσ2
D + µ2

Dσ
2
H)

mµ2
Hµ

2
D

. (3.49)
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The probability that a half-edge chosen uniformly at random from the population
is in a household with total household degree k, conditioned on the household
category sequence α, is given by ∑m

i=1 dαi1{dαi=k}/N
(m)
D . Recalling that dαi ,

i = 1, 2, . . . ,m, are independent and identically distributed copies of the random
variable TD and conditioning on Lm =

{
N

(m)
D ≥ mµDµH

2

}
yields

E
[
χ̄
N(m)
i

∣∣∣Lm] = E
[
E
[
χ̄
N(m)
i

∣∣∣Lm,α]∣∣∣Lm]
= E

 ∞∑
k=1

k

∑m
i=1 dαi1{dαi=k}

N
(m)
D

∣∣∣∣∣∣Lm


≤ E
 ∞∑
k=1

k

∑m
i=1 dαi1{dαi=k}

mµDµH
2

∣∣∣∣∣∣Lm


= E
∑m

i=1 dαi
∑∞
k=1 k1{dαi=k}

mµDµH
2

∣∣∣∣∣∣Lm


= 2
mµDµH

E
[
m∑
i=1

d2
αi

∣∣∣∣∣Lm
]

= 2m
mµDµH

E
[
T 2
D

∣∣∣Lm]
= 2
µDµH

E
[
T 2
D

∣∣∣Lm] (3.50)

It follows from equation (3.45), by conditioning on whether Lm occurs, that

E
[
M

(m)
NN (g(m))

]
=

g2(m)−1∑
i=1

g2(m)∑
j=i+1

P
(
χ

(m)
N (i) = χ

(m)
N (j)

)

=
g2(m)−1∑
i=1

g2(m)∑
j=i+1

P
(
χ

(m)
N (i) = χ

(m)
N (j), Lcm

)
+ P

(
χ

(m)
N (i) = χ

(m)
N (j), Lm

)

≤
g2(m)−1∑
i=1

g2(m)∑
j=i+1

P (Lcm) + P
(
χ

(m)
N (i) = χ

(m)
N (j), Lm

)

≤
(
g2(m)

2

)
P (Lcm) +

g2(m)−1∑
i=1

g2(m)∑
j=i+1

P
(
χ

(m)
N (i) = χ

(m)
N (j)

∣∣∣Lm)P (Lm) . (3.51)

For i = 1, 2, . . . ,m, the recipient of a network infection event is chosen
uniformly at random from all N (m)

D half-edges in the population, of which
there are χ̄(m)

N (i) in the ith household contacted by a network infection event.
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Therefore

E
[
P
(
χ

(m)
N (i) = χ

(m)
N (j)

∣∣∣χ(m)
N (i), N (m)

D

)]
= E

χ(m)
N (i)
N

(m)
D

 ,
and so, also conditioning on Lm,

P
(
χ

(m)
N (i) = χ

(m)
N (j)

∣∣∣Lm) = E
[
P
(
χ

(m)
N (i) = χ

(m)
N (j)

∣∣∣Lm, χ(m)
N (i), N (m)

D

)]
= E

χ(m)
N (i)
N

(m)
D

∣∣∣∣∣∣Lm


≤ E
χ(m)

N (i)
mµDµH

2

∣∣∣∣∣∣Lm


= 2
mµDµH

E
[
χ

(m)
N (i)

∣∣∣Lm] . (3.52)

Substituting equation (3.52) and inequalities (3.49) and (3.50) into inequality
(3.51) yields

E
[
M

(m)
NN (g(m))

]
≤ (g2(m))2 P (Lcm) +

g2(m)−1∑
i=1

g2(m)∑
j=i+1

2
mµHµD

E
[
χ̄

(m)
N (i)

∣∣∣Lm]P (Lm)

= (g2(m))2 P (Lcm) +
g2(m)−1∑
i=1

g2(m)∑
j=i+1

4
mµ2

Hµ
2
D

E
[
T 2
D

∣∣∣Lm]P (Lm)

≤ (g2(m))2 P (Lcm) +
g2(m)−1∑
i=1

g2(m)∑
j=i+1

4
mµ2

Hµ
2
D

E
[
T 2
D

]

= (g2(m))2 P (Lcm) +
(
g2(m)

2

)
4

mµ2
Hµ

2
D

E
[
T 2
D

]
≤ (g2(m))2 4 (µHσ2

D + µ2
Dσ

2
H)

mµ2
Hµ

2
D

+ (g2(m))2 4
mµ2

Hµ
2
D

E
[
T 2
D

]
= (g2(m))2 4

mµ2
Hµ

2
D

[
µHσ

2
D + µ2

Dσ
2
H + E

[
T 2
D

]]
= (g2(m))2 4

mµ2
Hµ

2
D

[
2µHσ2

D + µ2
Dσ

2
H + E

[
H2
]
µ2
D

]
. (3.53)

Similarly, it follows from equation (3.46), by applying definition of conditional
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probability and the conditioning on whether Lm occurs,

E
[
M

(m)
GN (g(m))

]
=

g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
N (i) = χ

(m)
G (j), ξ(m)

N (i) ≥ ξ
(m)
G (j)

)

≤
g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
N (i) = χ

(m)
G (j)

∣∣∣ξ(m)
N (i) ≥ ξ

(m)
G (j)

)

=
g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
N (i) = χ

(m)
G (j), Lm

∣∣∣ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
+ P

(
χ

(m)
N (i) = χ

(m)
G (j), Lcm

∣∣∣ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
≤

g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
N (i) = χ

(m)
G (j), Lm

∣∣∣ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
+ P (Lcm)

≤ g1(m)g2(m)P (Lcm)

+
g1(m)∑
i=1

g2(m)∑
j=1

P
(
χ

(m)
N (i) = χ

(m)
G (j)

∣∣∣Lm, ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
P (Lm) . (3.54)

For j = 1, 2, . . . ,m, the recipient of a network infection event is chosen uniformly
at random from all N (m)

D half-edges in the population, of which there are χ̄(m)
G (j)

in the jth household contacted by a network infection event. Therefore,

P
(
χ

(m)
N (i) = χ

(m)
G (j)

∣∣∣ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
= E

 χ̄(m)
G (j)
N

(m)
D

 ,
and so, also conditioning on Lm,

P
(
χ

(m)
N (i) = χ

(m)
G (j)

∣∣∣Lm, ξ(m)
N (i) ≥ ξ

(m)
G (j)

)
= E

[
P
(
χ

(m)
N (i) = χ

(m)
G (j)

∣∣∣Lm, χ̄(m)
N (i), N (m)

D , ξ
(m)
N (i) ≥ ξ

(m)
G (j)

)]
= E

 χ̄(m)
G (j)
N

(m)
D

∣∣∣∣∣∣Lm


≤ E
 χ̄(m)

G (j)
mµDµH

2

∣∣∣∣∣∣Lm


= 2
mµDµH

E
[
χ̄

(m)
G (j)

∣∣∣Lm] . (3.55)

Substituting Proposition (3.5) and inequalities (3.49) and (3.55) into inequality
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(3.54) yields

E
[
M

(m)
GN (g(m))

]
≤ g1(m)g2(m)P (Lcm) +

g1(m)∑
i=1

g2(m)∑
j=1

2
mµDµH

E
[
χ̄

(m)
G (j)

∣∣∣Lm]P (Lm)

≤ g1(m)g2(m)P (Lcm) +
g1(m)∑
i=1

g2(m)∑
j=1

2E [H2]µD
mµHµD

≤ g1(m)g2(m)4 (µHσ2
D + µ2

Dσ
2
H)

mµ2
Hµ

2
D

+ g1(m)g2(m)2E [H2]µD
mµHµD

= g1(m)g2(m) 2
mµHµD

[
2 (µHσ2

D + µ2
Dσ

2
H)

µHµD
+ E

[
H2
]
µD

]
. (3.56)

Substituting inequalities (3.53) and (3.56) into inequality (3.47) yields

P
(
τ

(m)
N ≤ g(m)

)
≤ (g2(m))2 4

mµ2
Hµ

2
D

[
2µHσ2

D + µ2
Dσ

2
H + E

[
H2
]
µ2
D

]
+ g1(m)g2(m) 2

mµHµD

[
2 (µHσ2

D + µ2
Dσ

2
H)

µHµD
+ E

[
H2
]
µD

]
.

Thus applying the assumption given in equation (3.44) and the moment restric-
tion σ2

H <∞ yields limm−→∞ P
(
τ

(m)
N ≤ g(m)

)
= 0 as required.

The following Lemma is used in the proof of Theorem 3.1, as it relates the
total progeny of Ẑ(m) to the total progeny of Z. For the rest of this section we
say mγ = (bmγc, bmγc).

Lemma 3.4. For fixed γ ∈ (0, 1/2),

lim
m−→∞

P
(
Ẑ(m) <mγ

)
= P

(
Ẑ <∞

)
Proof. For any k ∈ N

lim inf
m−→∞

P
(
Ẑ(m) <mγ

)
≥ lim inf

m−→∞
P
(
Ẑ(m) < (k, k)

)
= P

(
Ẑ < (k, k)

)
. (3.57)

Clearly P
(
Ẑ < (k, k)

)
−→ P

(
Ẑ <∞

)
as k −→ ∞, so letting k −→ ∞ in

equation (3.57) yields

lim inf
m−→∞

P
(
Ẑ(m) <mγ

)
≥ P

(
Ẑ <∞

)
. (3.58)
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Also, applying Lemma 3.1(ii),

lim sup
m−→∞

P
(
Ẑ(m) <mγ

)
≤ lim sup

m−→∞
P
(
Ẑ(m) <∞

)
= P

(
Ẑ <∞

)
.

Thus
lim sup
m−→∞

P
(
Ẑ(m) <mγ

)
≤ P

(
Ẑ <∞

)
,

which, with equation (3.58), yields the required result.

We are now ready to give the proof of Theorem 3.1, reiterated below.

Theorem.

(i) For k, l = 0, 1, . . . ,

lim
m−→∞

∣∣∣P (Ê(m) = (k, l)
)
− P

(
Ẑ = (k, l)

)∣∣∣ = 0. (3.59)

(ii) For γ ∈ (0, 1/2),

lim
m−→∞

∣∣∣P (Ê(m) <mγ
)
− P

(
Ẑ <∞

)∣∣∣ = 0. (3.60)

Proof. We begin by considering part (i). Note that, by the triangle inequality,
∣∣∣P (Ê(m) = (k, l)

)
− P

(
Ẑ = (k, l)

)∣∣∣ ≤ ∣∣∣P (Ê(m) = (k, l)
)
− P

(
Ẑ(m) = (k, l)

)∣∣∣
+
∣∣∣P (Ẑ(m) = (k, l)

)
− P

(
Ẑ = (k, l)

)∣∣∣ .
The second term on the right-hand side of the above equation tends to 0 as
m −→∞ by Lemma 3.1 part (i) and (iii), so we need only show that

lim
m−→∞

∣∣∣P (Ê(m) = (k, l)
)
− P

(
Ẑ(m) = (k, l)

)∣∣∣ = 0. (3.61)

Recall that by our notation,

P
(
Ê(m) = (k, l)

)
= P

({
Ê

(m)
G = k

}
∩
{
Ê

(m)
N = l

})
.

Let τ (m) =
(
τ

(m)
G , τ

(m)
N

)
be the total number of (type-1, type-2) infected house-

holds in the epidemic process when a member of an already infected household
is contacted for the first time. Since Z(m) and E(m) are coupled until τ (m),

P
(
Ê(m) = (k, l), τ (m) > (k, l)

)
= P

(
Ẑ(m) = (k, l), τ (m) > (k, l)

)
. (3.62)
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Note that P
(
Ê(m) = (k, l), τ (m)

G > k, τ
(m)
N ≤ l

)
= 0, since this is the probability

of two mutually exclusive events. Similarly,

• P
(
Ê(m) = (k, l), τ (m)

G ≤ k, τ
(m)
N > l

)
= 0,

• P
(
Ẑ(m) = (k, l), τ (m)

G > k, τ
(m)
N ≤ l

)
= 0,

• P
(
Ẑ(m) = (k, l), τ (m)

G ≤ k, τ
(m)
N > l

)
= 0.

Therefore,

P
(
Ê(m) = (k, l)

)
= P

(
Ê(m) = (k, l), τ (m) ≤ (k, l)

)
+ P

(
Ê(m) = (k, l), τ (m) > (k, l)

)
(3.63)

and

P
(
Ẑ(m) = (k, l)

)
= P

(
Ẑ(m) = (k, l), τ (m) ≤ (k, l)

)
+ P

(
Ẑ(m) = (k, l), τ (m) > (k, l)

)
. (3.64)

So, applying the triangle inequality and substituting equations (3.62), (3.63)
and (3.64),

∣∣∣P (
Ê(m) = (k, l)

)
− P

(
Ẑ(m) = (k, l)

)∣∣∣
=
∣∣∣P (Ê(m) = (k, l), τ (m) ≤ (k, l)

)
+ P

(
Ê(m) = (k, l), τ (m) > (k, l)

)
−P

(
Ẑ(m) = (k, l), τ (m) ≤ (k, l)

)
− P

(
Ẑ(m) = (k, l), τ (m) > (k, l)

)∣∣∣
=
∣∣∣P (Ê(m) = (k, l), τ (m) ≤ (k, l)

)
− P

(
Ẑ(m) = (k, l), τ (m) ≤ (k, l)

)∣∣∣
≤ 2P

(
τ (m) ≤ (k, l)

)
. (3.65)

As defined above Lemma 3.2, let τ (m)
G = (τ (m)

GG , τ
(m)
GN ) be the total number of

(type-1, type-2) infected households in the epidemic process when a member of
an already infected household is contacted via a global contact for the first time.
Similarly, let τ (m)

N = (τ (m)
NG , τ

(m)
NN ) be the total number of (type-1, type-2) infected

households in the epidemic process when a member of an already infected
household is contacted via a network contact for the first time. Note that either
τ

(m)
G ≤ τ (m)

N or τ (m)
G ≥ τ (m)

N , so τ (m) = min
{
τ

(m)
G , τ

(m)
N

}
. Thus

P
(
τ (m) ≤ (k, l)

)
≤ P

(
τ

(m)
G ≤ (k, l)

)
+ P

(
τ

(m)
N ≤ (k, l)

)
. (3.66)

Note that, since limm−→∞ |(k, l)|2/m = 0, the two quantities on the right-hand
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side of equations (3.66) tend to 0 as m −→∞ by Lemmas 3.2 and 3.3 respec-
tively, so substituting equation (3.66) into equation (3.65) and considering the
limit m −→∞ yields equation (3.61) as required.

Finally we consider part (ii), the proof of which proceeds analogously to the
proof of part (i). Note that, by the triangle inequality,

∣∣∣P (Ê(m) <mγ
)
− P

(
Ẑ <∞

)∣∣∣ ≤ ∣∣∣P (Ê(m) <mγ
)
− P

(
Ẑ(m) <mγ

)∣∣∣
+
∣∣∣P (Ẑ(m) <mγ

)
− P

(
Ẑ <∞

)∣∣∣ .
The second term on the right-hand size of the above equation tends to 0 as
m −→∞ by Lemma 3.4, so we need only show that

lim
m−→∞

∣∣∣P (Ê(m) <mγ
)
− P

(
Ẑ(m) <mγ

)∣∣∣ = 0. (3.67)

Recall that τ (m) =
(
τ

(m)
G , τ

(m)
N

)
is the total number of (type-1, type-2) infected

households in the epidemic process when a member of an already infected
household is contacted for the first time. Since Z(m) and E(m) are coupled
until τ (m),

P
(
Ê(m) <mγ, τ (m) >mγ

)
= P

(
Ẑ(m) <mγ, τ (m) >mγ

)
. (3.68)

Note that P
(
Ê(m) <mγ, τ

(m)
G > mγ, τ

(m)
N ≤ mγ

)
= 0, since this is the probabil-

ity of two mutually exclusive events. Similarly,

• P
(
Ê(m) <mγ, τ

(m)
G ≤ mγ, τ

(m)
N > mγ

)
= 0,

• P
(
Ẑ(m) <mγ, τ

(m)
G > mγ, τ

(m)
N ≤ mγ

)
= 0,

• P
(
Ẑ(m) <mγ, τ

(m)
G ≤ mγ, τ

(m)
N > mγ

)
= 0.

Therefore,

P
(
Ê(m) <mγ

)
= P

(
Ê(m) <mγ, τ (m) ≤mγ

)
(3.69)

+ P
(
Ê(m) <mγ, τ (m) >mγ

)
, (3.70)

and

P
(
Ẑ(m) <mγ

)
= P

(
Ẑ(m) <mγ, τ (m) ≤mγ

)
+ P

(
Ẑ(m) <mγ, τ (m) >mγ

)
. (3.71)
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So, applying the triangle inequality and substituting equations (3.68), (3.70)
and (3.71),

∣∣∣P (
Ê(m) <mγ

)
− P

(
Ẑ(m) <mγ

)∣∣∣
=
∣∣∣P (Ê(m) <mγ, τ (m) ≤mγ

)
+ P

(
Ê(m) <mγ, τ (m) >mγ

)
−P

(
Ẑ(m) <mγ, τ (m) ≤mγ

)
− P

(
Ẑ(m) <mγ, τ (m) >mγ

)∣∣∣
=
∣∣∣P (Ê(m) <mγ, τ (m) ≤mγ

)
− P

(
Ẑ(m) <mγ, τ (m) ≤mγ

)∣∣∣
≤ 2P

(
τ (m) ≤mγ

)
. (3.72)

Recall that τ (m)
G = (τ (m)

GG , τ
(m)
GN ) is the total number of (type-1, type-2) infected

households in the epidemic process when a member of an already infected
household is contacted via a global contact for the first time. Similarly, τ (m)

N =
(τ (m)
NG , τ

(m)
NN ) is the total number of (type-1, type-2) infected households in the

epidemic process when a member of an already infected household is contacted
via a network contact for the first time. Note that either τ (m)

G ≤ τ
(m)
N or

τ
(m)
G ≥ τ (m)

N , so τ (m) = min
{
τ

(m)
G , τ

(m)
N

}
. Thus

P
(
τ (m) ≤mγ

)
≤ P

(
τ

(m)
G ≤mγ

)
+ P

(
τ

(m)
N ≤mγ

)
. (3.73)

For fixed γ ∈ (0, 1/2), limm−→∞ |mγ|2/m = 0, so the two quantities of the
right-hand side of equation (3.73) tend to 0 as m −→ ∞ by Lemmas 3.2 and
3.3 respectively. Therefore, substituting equation (3.73) into equation (3.72)
and considering the limit m −→∞ yields equation (3.67) as required.

3.6 Concluding remarks

In this chapter, we introduce the epidemic model and a branching process
approximation for the early stages of the epidemic along with limit theorems
showing that as the number of households in the population tends to infinity
the total number of individuals infected in the epidemic process converges in
distribution to the total progeny of a branching process. This allows us to find
asymptotic results including threshold parameters that give explicit criteria for
whether a major outbreak can occur or not, along with the probability of a
major outbreak assuming a constant infectious period. We then give a heuristic
argument that the final size of a major outbreak is equal to the probability
that a two-type branching process survives, and give the probability generating
functions for the offspring distribution of said branching process. We then
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discuss the convergence of the probability of a major outbreak and the final size
of a major outbreak in finite populations to our asymptotic results. Finally, we
briefly discuss one way to compare epidemic models, by keeping R0 constant, and
use this to investigate how the addition of heterogeneity to the homogeneously
mixing model affected the final size of a major outbreak. These numerical results
are explored further in the next chapter along with analytic results.
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3.7 Table of common notation introduced in
Chapter 3

Symbol Meaning Page
N Number of individuals in the population. 25
m Number of households in population. 25
D Network degree distribution. 25
pk P (D = k). 25
I Infectious period distribution. 26

φI (θ) Laplace-Stieltjes transform of I. 26
λH Household infection rate. 26
pH 1− φI (λH). 26
λN Network infection rate. 26
pN 1− φI (λN). 26
λG Global infection rate. 26
H Household size distribution. 27
ρn P (H = n). 27
E(m) Epidemic process on m households. 29
Ê(m) Total number of households infected in the epi-

demic process on m households.
29

Z Forward branching process. 29
Ẑ Total progeny of the forward branching process. 29
R∗ Threshold parameter. 30
M Mean next-generation matrix of the forward

branching process.
30

(CGG, CGN) Total number of (type-1, type-2) offspring of a
typical type-1 individual in the forward branch-
ing process.

31

fC1(s) E
[
sCGG1 sCGN2

]
. 46

(CNG, CNN) Total number of (type-1, type-2) offspring of a
typical type-2 individual in the forward branch-
ing process.

31

fC2(s) E
[
sCNG1 sCNN2

]
. 46

fC(s) (fC1(s), fC2(s)). 46
Gk(x|U) kth Gontcharoff polynomial. 19
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T (n) Final size of a household epidemic. 20
µT Mean final size of a household epidemic in which

the household size is sampled according to H̃.
20

R0 Basic reproduction number. 35
µ

(n)
i Mean number of infectives in generation i of a

single household epidemic with a household size
of n.

37

ρmaj Probability of a major outbreak. 46
GN (s2) fD (1− pN + pNs2). 46
G̃N (s2) fD̃−1 (1− pN + pNs2). 46
M (n) Size of an individuals household susceptibility

set when the individual is in a household of size
n.

51

z Relative final size of a major outbreak. 52
bi(s) Joint generating function for the offspring of

a typical type-i individual in the backwards
branching process.

55

b(s) Vector of joint generating functions for the off-
spring of each type of individual in the back-
wards branching process.

55

Z(m) Forward branching process on m households. 64
Ẑ(m) Total progeny of the forward branching process

on m households.
64

3.7.1 Table of common notation introduced in Section
3.5

Symbol Meaning Page
α Household category. 65
A Set of all possible household categories. 65

N (m) Total number of individuals in the first m house-
holds.

65

dα Total degree of a household with household cat-
egory α.

67
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τ
(m)
GG Total number of type-1 previously contacted

households in the epidemic process when a mem-
ber of a previously contacted household is con-
tacted via a global infection event for the first
time.

70

τ
(m)
GN Total number of type-2 previously contacted

households in the epidemic process when a mem-
ber of a previously contacted household is con-
tacted via a global infection event for the first
time.

70

τ
(m)
G

(
τ

(m)
GG , τ

(m)
GN

)
. 70

τ
(m)
NG Total number of type-1 previously contacted

households in the epidemic process when a mem-
ber of a previously contacted household is con-
tacted via a network infection event for the first
time.

70

τ
(m)
NN Total number of type-2 previously contacted

households in the epidemic process when a mem-
ber of a previously contacted household is con-
tacted via a network infection event for the first
time.

70

τ
(m)
N

(
τ

(m)
NG , τ

(m)
NN

)
. 70

χ
(m)
G (i) Household containing the individual chosen at

the ith global infection event.
70

χ̂
(m)
G (i) Number of individuals in household χ(m)

G (i). 70
χ̄

(m)
G (i) Number of half-edges in household χ(m)

G (i). 70
ξ

(m)
G (i) Generation in which the ith global infection

event occurs.
70

χ
(m)
N (i) Household containing the half-edge chosen at

the ith network infection event.
70

χ̂
(m)
N (i) Number of individuals in household χ(m)

N (i). 70
χ̄

(m)
N (i) Number of half-edges in household χ(m)

N (i). 70
ξ

(m)
N (i) Generation in which the ith network infection

event occurs.
70
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4. Effect of heterogeneity on the final
size of a major outbreak

With the introduction of epidemic models to the literature which avoid some of
the homogeneity assumptions exhibited by the early epidemic models, e.g. Ker-
mack and McKendrick (1927), it has become increasing clear that heterogeneity
in the population structure or the types of individual in the population has
a varied effect on the spread of an epidemic. Indeed, quantifying the effect
of heterogeneity on the epidemic outcome, including the final size of a major
outbreak, has been identified as one of the eight challenges for network epidemic
modelling, Pellis et al. (2015). In this chapter we explore the effect of two types
of heterogeneity, specifically heterogeneity introduced by the construction of
a network and heterogeneity introduced by the inclusion of a household structure.

However, we first discuss how we compare two epidemic models with different
heterogeneity. Kiss et al. (2006) investigate the effect of heterogeneity in a de-
terministic epidemic model with a network structure and global contacts on the
relative final size of a major outbreak while keeping the overall transmission po-
tential constant. In the same model, although studying a stochastic model, Ball
and Neal (2008) investigate the effect of heterogeneity on R0 and the expected
relative final size of a major outbreak while the mean of the degree distribution
is fixed. Similarly, Britton and Trapman (2012) consider maximising the size of
the giant component in the thinned configuration model, i.e. the relative final
size of a major outbreak in the standard network model, while fixing the mean
of the degree distribution, and prove that the giant component is maximised
when the degrees of the individuals in the population are homogenised. We
choose to compare models by fixing R0 because it is well studied, i.e. estimating
R0 from data about an emerging epidemic, or the initial growth rate of the
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epidemic, is a large topic of interest (e.g. Heesterbeek and Dietz (1996), Fraser
(2007)) and it has a clear biological implication in many epidemic models.

Therefore we consider two epidemic models with differing amounts of het-
erogeneity, fix R0 and then compare the asymptotic results for the expected
relative final size of a major outbreak (which we again refer to as the final size
of a major outbreak). This is similar to Clancy and Pearce (2013), who fix
R0 and investigate the effect of heterogeneity in a multi-type epidemic model
on various epidemic outcomes, including the final size of a major outbreak.
Clancy and Pearce (2013) give several conditions upon the parameters of the
multi-type epidemic model for which fixing R0 and increasing the heterogeneity
will increase or decrease the final size of a major outbreak.

We now give a brief comment on notation. We name models with multiple
levels of mixing after the ways in which the infection can spread through the
population, and assume that all unmentioned infection rates are 0 and unmen-
tioned network or household structures are not included. So we call the model
of Ball and Neal (2008) the network and global model, which is recovered from
our model in Chapter 3 by setting λH = 0 and ρ1 = 1. For consistency, we
call the households model of Ball et al. (1997) the household and global model,
which we recover by setting λN = 0 and p0 = 1. We use the standard network
model, see Newman (2002a), for the model which has no global contacts and no
household structure, which is recovered from our model by setting λG = 0 and
ρ1 = 1. Finally, for the model without network or household structure we use
the standard name in the literature of the homogeneously mixing model, see
Kermack and McKendrick (1927), which we recover by setting either p0 = 1 or
λN = 1 and either ρ1 = 1 or λH = 0.

We split Chapter 4 into two segments. In Section 4.1 we restrict our attention
to the network and global model, and in Section 4.2 we consider the household
and global model. In Section 4.1.1 we consider the effect of introducing a small
amount of network heterogeneity to the homogeneously mixing model. In Section
4.1.2 we give examples of degree distributions for which when R0 is fixed the
final size of a major outbreak is independent of some parameters of the degree
distribution, which is then applied in Section 4.1.3 to give an ordering for the
final size of a major outbreak on the standard network model. In Sections 4.1.4
and 4.1.5 we consider constant and logarithmic degree distributions respectively,
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and use the Logarithmic degree distribution to prove that introducing network
heterogeneity to the homogeneously mixing model does not always have a
monotonic effect on the final size of a major outbreak. In Section 4.2.1 we
investigate the effect of introducing a small amount of household heterogeneity
to the homogeneously mixing model, and in Section 4.2.2 we discuss an ordering
for the final size of a major outbreak on the households and global model with
a saturated household infection rate. Finally, we give concluding remarks in
Section 4.3 and a table of common notation introduced in this chapter in Section
4.4.

4.1 Network and global model

In this section we investigate how the choice of degree distribution affects the
final size of a major outbreak in the household and global model while R0 > 1 is
fixed. To do this we investigate how the final size of a major outbreak varies as
we change the network infection rate, λN , while adjusting the global infection
rate, λG, to keep R0 fixed for a range of degree distributions. Note that this
means we fix all other parameters, including the distribution of the infectious
period I.

Figure 4.1 plots the final size of a major outbreak in the network and global
model against the global infection rate, λG, as the network infection rate, λN ,
is reduced to keep R0 = 2 constant, for a range of degree distributions, and
φI(t) = e−t. Note that this means that each of the 7 distributions have a
different value of λN when λG = 0, i.e. the left-hand side of Figure 4.1. For
each of the 7 degree distributions considered in Figure 4.1, we see a monotonic
change in the final size of a major outbreak as λG is increased, although whether
it is increasing or decreasing depends on the degree distribution. For example,
if D ∼ Const(4), then the final size of a major outbreak is monotonically de-
creasing in λG, whereas if D ∼ Geo(1/9), then the final size of a major outbreak
is monotonically increasing in λG. In Section 4.1.5 we prove that fixing R0

and increasing λG while decreasing λN to keep R0 constant does not always
have a monotonic effect on the final size of a major outbreak by considering a
logarithmic degree distribution.

Figure 4.1 shows that the choice of degree distribution and λG can have a
large impact on the final size of a major outbreak. For example, on the standard
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Figure 4.1: Effect of the degree distribution on the final size of a major outbreak
in the network and global model for a range of degree distributions. Other
parameters are R0 = 2 and I ∼ Const(1).

network model with R0 = 2 (i.e. λG = 0 in Figure 4.1) if D ∼ Const(4) then
the final size of a major outbreak is close to 1, whereas if D ∼ Pow (8, 3) then
the final size of a major outbreak is close to 0.

We now recall results required to give the final size of a major outbreak and
the formula for R0 in the network and global model. Recall that, by substituting
λH = 0 and ρ1 = 1 into b1(s1, s2) and b2(s1, s2) given in Theorem 3.6, the
final size of a major outbreak in the network and global model z = 1 − π1,
where π = (π1, π2) is the smallest solution to the set of simultaneous equations
π = b(π), with

b1 (s1, s2) = e−λGµI(1−s1)fD (1− pN + pNs2) , (4.1a)

b2 (s1, s2) = e−λGµI(1−s1)fD̃−1 (1− pN + pNs2) . (4.1b)

Remark. Ball and Neal (2008) consider a single-type Galton-Watson branching
process, similar to that mentioned in Section 3.3.2, which is an embedded version
of the two-type Galton-Watson branching process we consider. The single-type
branching process is recovered from the two-type branching process we consider
by removing the type-2 individuals in the two-type backward Galton-Watson
branching process by attributing all offspring of a type-2 individual to its parent
(analogously to the method discussed in Section 3.3.2). Both the single-type
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and two-type branching processes have the same extinction probability, but we
consider the two-type branching process for consistency to the work in Chapter 3
and ease of analytical tractability. Note that Ball and Neal define their (network
clump-based) threshold parameter R∗ to be the expected offspring of the single-type
branching process, and is therefore different to our (household-based) definition.

Let zi = 1 − πi, i = 1, 2, so, substituting z = (z1, z2) into equations (4.1),
the final size of a major outbreak in the network and global model is equal to
z1, where z is the largest solution in (0, 1]2 of the set of simultaneous equations

1− z1 = e−λGµIz1 fD(1− pNz2), (4.2a)

1− z2 = e−λGµIz1 fD̃−1(1− pNz2). (4.2b)

Finally, recall that in the network and global model R0 = R∗ (see Section
3.2.3) so R0 is the largest root of the equation

R2
0 −R0

(
λGµI + pNµD̃−1

)
+ λGµIpNµD̃−1 − λGµIpNµD = 0. (4.3)

Remark. The argument we use in Section 3.3 to calculate the final size of a
major outbreak does not hold if λG = 0. Instead, the argument for calculating
the final size of a major outbreak in the standard network model holds by an
alternative argument (see, for example, Newman (2002a)). However, the final
size of a major outbreak in the standard network with degree distribution D and
network infection rate λN is given by z = 1 − fD(1 − pNz2), where z2 is the
largest solution (0, 1] of the equation 1− z2 = fD̃−1(1− pNz2). Thus substituting
λG = 0 in equations (4.2) recovers the equations for the final size of a major
outbreak in the standard network model. Similarly, in the standard network
model R0 = pNµD̃−1, which can be recovered by substituting λG = 0 into equation
(4.3).

Let zH(R0) be the final size of a major outbreak in the homogeneously mixing
model with basic reproduction number R0, (so λG = R0/µI). Then (see, for
example, Bailey (1975)) zH(R0) is the unique solution of the equation

1− zH(R0) = e−R0zH(R0). (4.4)

Thus for fixed R0, zH(R0) is independent of our choice of λG. We now consider
an inequality required for two proofs discussed later in this chapter.
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Lemma 4.1. For R0 > 1,

1−R0 (1− zH(R0)) > 0. (4.5)

Proof. Let g(s) = 1− s− e−R0s, so zH(R0) is the unique root of g(s) in (0, 1].
Then g(zH(R0)) = 0, g′(s) = −1 +R0e−R0s and, substituting equation (4.4) into
g′(zH(R0)), g′(zH(R0)) = −1 + R0(1− zH(R0)). Note that g′(0) = R0 − 1 > 0,
g(0) = 0 and zH(R0) ∈ (0, 1] is the unique root of g(s), so g′(zH(R0)) < 0.
Therefore −1 +R0(1− zH(R0)) < 0 and Lemma 4.1 follows.

4.1.1 Adding a small amount of network structure to the
homogeneously mixing model

Firstly, we note that R0 and the final size of a major outbreak in the network
and global model depend on λG, λN (through pN ), D and I (see equations (4.2)
and (4.3)). Since we choose to compare epidemic models by fixing R0, we can
consider λG to be a value determined by pN(λN), R0, D and I, so we write
λG (pN(λN);R0, D, I). Furthermore the final size of a major outbreak is now
determined by pN(λN), R0, D and µI , so we write

z (pN(λN);R0, D, I) = (z1 (pN(λN);R0, D, I) , z2 (pN(λN);R0, D, I)) ,

where z1 (pN(λN);R0, D, I) is the final size of a major outbreak.

For notational simplicity we write pN = pN(λN), i.e. we drop the ex-
plicit reference to λN , and note that pN(0) = 0. So, for example, we write
λG (pN ;R0, D, I) = λG (pN(λN);R0, D, I). Substituting this notation into equa-
tions (4.2) yields that z (pN(λN);R0, D, I) satisfies the equations

1− z1 (pN ;R0, D, I) = e−λG(pN ;R0,D,I)µIz1(pN ;R0,D,I) fD(1− pNz2 (pN ;R0, D, I)),
(4.6a)

1− z2 (pN ;R0, D, I) = e−λG(pN ;R0,D,I)µIz1(pN ;R0,D,I) fD̃−1(1− pNz2 (pN ;R0, D, I)),
(4.6b)

and, rearranging equation (4.3),

λG (pN ;R0, D, I) =
R0
(
R0 − pNµD̃−1

)
µI
(
R0 + pN

(
µD − µD̃−1

)) . (4.7)
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To investigate the effect of fixing R0 and introducing a small amount of
heterogeneity to the homogeneously mixing model on the final size of a major
outbreak we require knowledge of the derivatives of equation (4.6) with respect
to pN evaluated at pN = 0. Therefore we require expressions for λG (pN ;R0, D, I)
and its derivatives at the origin, which we give in the following lemma.

Lemma 4.2. Consider the network and global model with fixed R0. Then

(i)
λG (0;R0, D, I) = R0

µI
,

(ii)
dλG
dpN

(0;R0, D, I) = −µD
µI

,

(iii)

d2λG
dpN 2 (0;R0, D, I) =

2µD
(

1− σ2
D

µD

)
R0µI

.

Proof. Recall from Section 2.1 that

µD − µD̃−1 = 1− σ2
D/µD. (4.8)

Substituting equation (4.8) into equation (4.7) yields

λG (pN ;R0, D, I) =
R0
(
R0 − pNµD̃−1

)
µI (R0 + pN (1− σ2

D/µD)) , (4.9)

which, evaluated at pN = 0, yields part (i).

Taking the derivative of equation (4.9) with respect to pN and rearranging
yields

dλG
dpN

(pN ;R0, D, I) = −R2
0µD

µI

(
R0 + pN

(
1− σ2

D

µD

))2 , (4.10)

which, evaluated at pN = 0, yields part (ii).

To prove part (iii) we consider the derivatives of equation (4.3). Taking the
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derivative of equation (4.3) with respect to pN yields

0 = −R0

(
µI

dλG
dpN

(pN ;R0, D, I) + µD̃−1

)
+ λGµI(µD̃−1 − µD)

+ dλG
dpN

(pN ;R0, D, I)µIpN(µD̃−1 − µD), (4.11)

Taking the derivative of equation (4.11) with respect to pN yields

0 = −R0µI
d2λG
dpN 2 (pN ;R0, D, I) + 2dλG

dpN
(pN ;R0, D, I)µI

(
µD̃−1 − µD

)
+ d2λG

dpN 2 (pN ;R0, D, I)µIpN(µD̃−1 − µD). (4.12)

Substituting equations (4.8) and (4.10) into equation (4.12) and then evalu-
ating the result at pN = 0 yields part (iii) as required, i.e.

R0µI
d2λG
dpN 2 (0;R0, D, I) = 2dλG

dpN
(0;R0, D, I)µI(µD̃−1 − µD) = 2µD

(
1− σ2

D

µD

)
.

The following theorem is a key result of this section, and states the effect
of introducing a small amount of network heterogeneity to the homogeneously
mixing model if R0 is fixed. The result of this theorem corresponds to considering
the right-hand side of Figure 4.1, i.e. λG = 2.

Theorem 4.1. Let z1 (pN ;R0, D, I) be the final size of a major outbreak in
the network and global model. Assume that z1 (0;R0, D, I) < 1 and p0 < 1
(i.e. P (D = 0) < 1). Then

(i)
z (0;R0, D, I) = (zH(R0), zH(R0)) ,

(ii)
dz1

dλN
(0;R0, D, I) = 0,

(iii)

d2z1

dλN 2 (0;R0, D, I) (1−R0 (1− zH(R0))) =
(

1− σ2
D

µD

) [ 2
R0

+ 3zH(R0)− 2
]

× µDzH(R0)(1− zH(R0))µ2
I ,
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(iv)

sgn
(

d2z1

dλN 2 (0;R0, D, I)
)

= sgn
(

1− σ2
D

µD

)
.

Proof. Recall that z (0;R0, D, I) is the largest solution in (0, 1]2 of equations
(4.6). Evaluating equations (4.6) at pN = 0 and substituting Lemma 4.2(i)
yields

1− z1 (0;R0, D, I) = e−R0z1(0;R0,D,I), (4.13a)

1− z2 (0;R0, D, I) = e−R0z1(0;R0,D,I). (4.13b)

Therefore z1 (0;R0, D, I), z2 (0;R0, D, I) and zH(R0) are all the largest solution
in (0, 1] of equation (4.4), so z1 (0;R0, D, I) = z2 (0;R0, D, I) = zH(R0), as
required for the proof of part (i).

We now consider parts (ii)-(iv). Differentiating equation (4.6a) with respect
to pN and multiplying both sides by −1 yields

dz1

dpN
(pN ;R0, D, I)

=
[
z1 (pN ;R0, D, I) dλG

dpN
(pN ;R0, D, I)

+λG (pN ;R0, D, I) dz1

dpN
(pN ;R0, D, I)

]
× µIfD (1− pNz2 (pN ;R0, D, I))

+
[
z2 (pN ;R0, D, I) + pN

dz2

dpN
(pN ;R0, D, I)

]
× f ′D (1− pNz2 (pN ;R0, D, I)) e−λG(pN ;R0,D,I)µIz1(pN ;R0,D,I). (4.14)

Substituting fD̃−1(s) = f ′D(s)/µD and equations (4.6) into equation (4.14) yields

dz1

dpN
(pN ;R0, D, I) =

[
z1 (pN ;R0, D, I) dλG

dpN
(pN ;R0, D, I)

+λG (pN ;R0, D, I) dz1

dpN
(pN ;R0, D, I)

]
× µI (1− z1 (pN ;R0, D, I))

+
[
z2 (pN ;R0, D, I) + pN

dz2

dpN
(pN ;R0, D, I)

]
× µD (1− z2 (pN ;R0, D, I)) . (4.15)

97



Evaluating equation (4.15) at pN = 0 and applying part (i) and Lemma 4.2(i)
yields

dz1

dpN
(0;R0, D, I) [1− µIλG (0;R0, D, I) (1− z1 (0;R0, D, I))]

= µIz1 (0;R0, D, I) (1− z1 (0;R0, D, I)) dλG
dpN

(0;R0, D, I)

+ µD (1− z2 (0;R0, D, I)) z2 (0;R0, D, I)

= zH(R0)(1− zH(R0))
[
µI

dλG
dpN

(0;R0, D, I) + µD

]
. (4.16)

Clearly zH(R0)(1 − zH(R0)) ≥ 0, and 1 − R0(1 − zH(R0)) > 0 by Lemma 4.1.
Therefore applying Lemma 4.2(ii) to equation (4.16) yields

dz1

dpN
(0;R0, D, I) = 0. (4.17)

Substituting equation (4.17) and p′N (0;R0, D, I) = −µI into

dz1

dλN
(0;R0, D, I) = p′N (0;R0, D, I) dz1

dpN
(0;R0, D, I) ,

yields part (ii).

We now consider the calculation of d2z1
dpN 2 (0;R0, D, I). Differentiating equation
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(4.15) with respect to pN yields

d2z1

dpN 2 (pN ;R0, D, I)

= −
[
z1 (pN ;R0, D, I) dλG

dpN
(pN ;R0, D, I)

+λG (pN ;R0, D, I) dz1

dpN
(pN ;R0, D, I)

]
µI

dz1

dpN
(pN ;R0, D, I)

+ µI(1− z1 (pN ;R0, D, I))
{
z1 (pN ;R0, D, I) d2λG

dpN 2 (pN ;R0, D, I)

+ 2dλG
dpN

(pN ;R0, D, I) dz1

dpN
(pN ;R0, D, I)

+ λG (pN ;R0, D, I) d2z1

dpN 2 (pN ;R0, D, I)
}

− µD
dz2

dpN
(pN ;R0, D, I)

[
z2 (pN ;R0, D, I) + pN

dz2

dpN
(pN ;R0, D, I)

]

+ µD(1− z2 (pN ;R0, D, I))
[
2 dz2

dpN
(pN ;R0, D, I)

+ pN
d2z2

dpN 2 (pN ;R0, D, I)
]
. (4.18)

Evaluating equation (4.18) at pN = 0 and substituting equation (4.17) yields

d2z1

dpN 2 (0;R0, D, I) = µI (1− z1 (0;R0, D, I)) z1 (0;R0, D, I) d2λG
dpN 2 (0;R0, D, I)

+ µIλG (0;R0, D, I) (1− z1 (0;R0, D, I)) d2z1

dpN 2 (0;R0, D, I)

− µD
dz2

dpN
(0;R0, D, I) z1 (0;R0, D, I)

+ 2µD (1− z2 (0;R0, D, I)) dz2

dpn
(0;R0, D, I) . (4.19)

Rearranging equation (4.19) and applying part (i) and Lemma 4.2 yields

d2z1

dpN 2 (0;R0, D, I) [1−R0 (1− zH(R0))] =2µD
(

1− σ2
D

µD

)
zH(R0) (1− zH(R0))

R0

− µD (3zH(R0)− 2) dz2

dpn
(0;R0, D, I) .

(4.20)

To complete the proof of part (iii) we now only require an expression for
dz2
dpn (0;R0, D, I), which we now formulate. Dividing equation (4.6a) by (4.6b)
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yields
1− z1 (pN ;R0, D, I)
1− z2 (pN ;R0, D, I) = µD

GD (1− pNz2 (pN ;R0, D, I))
G′D (1− pNz2 (pN ;R0, D, I)) ,

so

0 = (1− z1 (pN ;R0, D, I)) f ′D (1− pNz2 (pN ;R0, D, I))

− µD (1− z2 (pN ;R0, D, I)) fD (1− pNz2 (pN ;R0, D, I)) . (4.21)

Taking the derivative of equation (4.21) with respect to pN yields

0 = −
[
z2 (pN ;R0, D, I) + pN

dz2

dpN
(pN ;R0, D, I)

]
× (1− z1 (pN ;R0, D, I)) f ′′D (1− pNz2 (pN ;R0, D, I))

− dz1

dpN
(pN ;R0, D, I) f ′D (1− pNz2 (pN ;R0, D, I))

+ µD
dz2

dpN
(pN ;R0, D, I) fD (1− pNz2 (pN ;R0, D, I))

+
[
z2 (pN ;R0, D, I) + pN

dz2

dpN
(pN ;R0, D, I)

]
× µD (1− z2 (pN ;R0, D, I)) f ′D (1− pNz2 (pN ;R0, D, I)) . (4.22)

Evaluating equation (4.22) at pN = 0, applying part (i) and substituting equation
(4.17) yields

zH(R0) (1− zH(R0))G′′D(1) = µD
dz2

dpN
(0;R0, D, I) + µ2

DzH(R0) (1− zH(R0)) ,
(4.23)

and, substituting σ2
D = f ′′D(1) + µD − µ2

D,

µD
dz2

dpN
(0;R0, D, I) = zH(R0) (1− zH(R0)) (f ′′D(1)− µ2

D)

= −zH(R0) (1− zH(R0))µD
(

1− σ2
D

µD

)
. (4.24)

Substituting equation (4.24) into equation (4.20) yields

d2z1

dpN 2 (0;R0, D, I) (1−R0 (1− zH(R0)))

= µDzH(R0) (1− zH(R0))
(

1− σ2
D

µD

) [ 2
R0

+ 3zH(R0)− 2
]
. (4.25)
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Applying the chain rule to d2z1
dλN 2 and substituting equation (4.17) yields

d2z1

dλN 2

∣∣∣∣∣∣
λG=0

=
 d2z1

dpN 2

(
dpN
dλN

)2

+ dz1

dpN
d2pN

dλN 2

 ∣∣∣∣∣∣
λG=0

= µ2
I

d2z1

dpN 2 (0;R0, D, I) ,

and part (iii) immediately follows by substituting equation (4.25).

Finally, applying Lemma 4.1 yields part (iv) if 2/R0 + 3zH(R0) − 2 > 0.
Rearranging equation (4.5) in Lemma 4.1 yields the inequality zH(R0) > 1 −
1/R0 > 0, so

2
R0

+ 3zH(R0)− 2 > 2
R0

+ 3
(

1− 1
R0

)
− 2 = 1− 1

R0
> 0, (4.26)

as required.

The key result from theorem 4.1 is that fixing R0 and introducing a small
amount of network heterogeneity to the homogeneously mixing model increases
the final size of a major outbreak if µD > σ2

D and decreases the final size of a
major outbreak if µD < σ2

D, and is illustrated in the right-hand side of Figure 4.1.

Indeed, examining the model closely shows that a bifurcation occurring
at σ2

D/µD − 1 can be predicted. Recall that the expected number of unin-
fected network neighbours of a type-1 and type-2 individual is given by µD

and µD̃−1 = µD + σ2
D/µD − 1 respectively. Therefore if σ2

D/µD − 1 < 0 then
a type-1 individual is expected to have more uninfected network neighbours
than a type-2 individual, whereas if σ2

D/µD − 1 > 0 then a type-2 individual is
expected to have more uninfected network neighbours than a type-1 individual.
Thus increasing λN at the expense of λG will logically cause a different effect on
the final size of a major outbreak depending on the sign of σ2

D/µD − 1.

Theorem 4.1 also shows that changing R0 > 1 or I will not effect whether
the final size of a major outbreak will increase or decrease when R0 is fixed and
we introduce a small amount of network heterogeneity to the homogeneously
mixing model.
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4.1.2 Independence of some degree distribution param-
eters and the final size of a major outbreak

In contrast to the previous section in which we consider λG to be determined by
our choice of pN , R0, D and I, we now consider λN to be a value determined
by λG, R0, D and I. We now consider the following motivating proposition.
Let zPoi(α)(R0, λG; I), R0 > 1, α > 0, be the final size of a major outbreak
in the network and global model with degree distribution D ∼ Poi(α), basic
reproduction number R0, λG ∈ [0, R0/µI ] and infectious period distribution I.

Proposition 4.1. For R0 > 1, α, β ≥ R0, λG ∈ [0, R0/µI ], λ′G ∈ [0, R0/µI′ ],
zPoi(α)(R0, λG; I) is the largest solution (0, 1] of the equation

1− z = e−R0z, (4.27)

and
zPoi(α)(R0, λG; I) = zPoi(β)(R0, λ

′
G; I ′). (4.28)

Proof. Fix λG ∈ [0, R0/µI ]. Recall from Table 2.2 on page 18 that if D ∼ Poi(α)
then fD(s) = e−α(1−s) and fD̃−1(s) = e−α(1−s). Therefore, substituting fD(s) and
fD̃−1(s) into equations (4.2), by definition (zPoi(α)(R0, λG; I), z2) is the largest
solution in (0, 1]2 of the set of simultaneous equations

1− z = e−(λGµIz+αpNz2), (4.29a)

1− z2 = e−(λGµIz+αpNz2). (4.29b)

Therefore zPoi(α)(R0, λG; I) = z2 and zPoi(α)(R0, λG; I) is the largest solution in
(0, 1] of the equation

1− z = e−z(λGµI+αpN ). (4.30)

Substituting µD = µD̃−1 = α into equation (4.3) yields

R2
0 −R0 (λGµI + pNα) = 0.

We require R0 > 1, so R0 = λGµI + pNα and substituting R0 = λGµI + pNα

into equation (4.30) yields equation (4.27). Then, as required, zPoi(α)(R0, λG; I)
is the largest solution in (0, 1] of the equation

1− z = e−R0z.

Finally, note that equation (4.27) is independent of our choice of α, λG
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and I, so zPoi(α)(R0, λG; I) = zPoi(β)(R0, λ
′
G; I ′) for all λG ∈ [0, R0/µI ] and

λ′G ∈ [0, R0/µI′ ] as required.

Proposition 4.1 proves that the final size of a major outbreak on the network
and global model with a Poisson degree distribution with parameter α depends
only on R0, and not on the balance between λG, λN , α and µI .

We now show that several other degree distributions (including the Binomial
and Negative binomial degree distributions) have a similar property, by which
we mean that the final size of a major outbreak on the network and global model
with fixed R0 is independent of some parameters of the degree distribution.
To classify the distributions which we conjecture share this property we must
first define thinned distributions. For a random variable X with support in
Z+ ∪ {0}, we denote its thinned distribution by XT (p), p ∈ (0, 1], where
XT (p)|X ∼ Bin (X, p). We conjecture that the final size of a major outbreak on
the network and global model with fixed R0 is independent of some parameters
of the degree distribution if the degree distribution is chosen such that all its
thinned distributions belong to the same distribution, although potentially with
different parameters. For example, in Proposition 4.1 we use implicitly use
the result that if D ∼ Poi(α), then DT (p) ∼ Poi(pα), p ∈ (0, 1]. However, a
rigorous proof of this statement has proven to be elusive. We now present two
propositions considering the special cases of a Binomial and Negative Binomial
degree distribution respectively.

Remark. In the standard network model with degree distribution D, the basic
reproduction number R0 = pNµD̃−1, pN ∈ [0, 1]. Therefore fixing R0 and the
degree distribution in the network and global model, imposes constraints on
the range of possible global infection rates, e.g. if R0 > µD̃−1 then there is a
minimum value of λG required to achieve the desired R0.

Let zBin(n,p)(R0, λG; I) be the final size of a major outbreak in the network
and global model with degree distribution D ∼ Bin(n, p) (n ∈ Z+, p ∈ (0, 1]),
global infection rate λG and basic reproduction number R0. To compare the
homogeneously mixing model with the standard network model with this degree
distribution we require that n and R0 are chosen such that there is a positive
probability of a major outbreak for some p ∈ (0, 1], which is satisfied if the
inequality (n− 1) ≥ R0 > 1 holds. Finally, fixing the degree distribution and
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R0 imposes the following restriction upon λG,

λG ∈ [max {0, R0 (R0 − p (n− 1)) / (p+R0)µI} , R0/µI ] . (4.31)

We now show that the final size of a major outbreak on the network and global
model with D ∼ Bin(n, p) and fixed R0 and λG is independent of our choice of
p.

Proposition 4.2. For n ∈ Z+, p, p1 ∈ (0, 1], (n−1) ≥ R0 > 1 and λG satisfying
equation (4.31),

(
zBin(n,p)(R0, λG; I), z2

)
is the largest solution in (0, 1]2 of the

set of simultaneous equations

1− z1 = e−λGµIz1
(

1− z2R0 (R0 − λGµI)
λGµI +R0 (n− 1)

)n
, (4.32a)

1− z2 = e−λGµIz1
(

1− z2R0 (R0 − λGµI)
λGµI +R0 (n− 1)

)n−1

. (4.32b)

Furthermore,
zBin(n,p)(R0, λG; I) = zBin(n,p1)(R0, λG; I).

Proof. The proof of Proposition 4.2 proceeds similarly to that of Proposition 4.1.
Recall from Table 2.2 on page 18 that if D ∼ Bin(n, p) then fD(s) = (1−p+ps)n

and fD̃−1(s) = (1− p+ ps)n−1. Therefore, substituting fD(s) and fD̃−1(s) into
equations (4.2),

(
zBin(n,p1)(R0, λG; I), z2

)
is the largest solution in (0, 1]2 of the

set of simultaneous equations

1− zBin(n,p)(R0, λG; I) = e−λGµIzBin(n,p)(R0,λG;I) (1− ppNz2)n, (4.33a)

1− z2 = e−λGµIzBin(n,p)(R0,λG;I) (1− ppNz2)n−1. (4.33b)

Substituting µD = np and µD̃−1 = (n− 1)p into equation (4.3) yields

R2
0 −R0 (λGµI + (n− 1)ppN)− λGµIppN = 0. (4.34)

Thus, rearranging equation (4.34) for ppN ,

ppN = R0 (R0 − λGµI)
λGµI +R0 (n− 1) . (4.35)

Substituting equation (4.35) into equations (4.33) yields equations (4.32). Thus,
as required,

(
zBin(n,p)(R0, λG; I), z2

)
is the largest solution in (0, 1]2 of the set of
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simultaneous equations

1− z1 = e−λGµIz1
(

1− z2R0 (R0 − λGµI)
λGµI +R0 (n− 1)

)n
,

1− z2 = e−λGµIz1
(

1− z2R0 (R0 − λGµI)
λGµI +R0 (n− 1)

)n−1

.

Finally, equations (4.32) are independent of our choice of p, so the equality
zBin(n,p)(R0, λG; I) = zBin(n,p1)(R0, λG; I) holds as required.

Let zNB(r,p)(R0, λG; I) be the final size of a major outbreak in the network
and global model with degree distribution D ∼ NB(r, p) (r ∈ Z+, p ∈ (0, 1)),
global infection rate λG and basic reproduction number R0 > 1. Fixing the
degree distribution and R0 imposes the following restriction on λG,

λG ∈ [max {0, R0 (R0 (1− p)− p (r + 1)) / (R0 (1− p)− p)µI} , R0/µI ] .
(4.36)

We now show that the final size of a major outbreak on the network and global
model with D ∼ NB(r, p) and fixed R0 and λG is independent of our choice of p.

Proposition 4.3. For r ∈ Z+, p, p1 ∈ (0, 1), R0 > 1 and λG given in equation
(4.31),

(
zNB(r,p)(R0, λG; I), z2

)
is the largest solution in (0, 1]2 of the set of

simultaneous equations

1− z1 = e−λGµIz1
(

1 + z2
R0 (R0 − λGµI)
R0(r + 1)− λGµI

)−r
, (4.37a)

1− z2 = e−λGµIz1
(

1 + z2
R0 (R0 − λGµI)
R0(r + 1)− λGµI

)−(r+1)

. (4.37b)

and
zNB(r,p)(R0, λG; I) = zNB(r,p1)(R0, λG; I). (4.38)

Proof. The proof of Proposition 4.3 proceeds similarly to that of Propositions
4.1 and 4.2. Recall from Table 2.2 on page 18 that if D ∼ NB(r, p) then
fD(s) = ((1− p)/(1− ps))r and fD̃−1(s) = ((1− p)/(1− ps))r+1. Therefore,
substituting fD(s) and fD̃−1(s) into equations (4.2),

(
zNB(n,p1)(R0, λG; I), z2

)
is

the largest solution in (0, 1]2 of the set of simultaneous equations

1− z1 = e−λGµIz1
(

1− p
1− p+ ppNz2

)r
, (4.39a)

1− z2 = e−λGµIz1
(

1− p
1− p+ ppNz2

)r+1

. (4.39b)
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Substituting µD = rp/(1− p) and µD̃−1 = (r + 1)p/(1− p) into equation (4.3)
yields

R2
0 −R0

(
λGµI + (r + 1)ppN

(1− p)

)
− λGµIppN

(1− p) = 0. (4.40)

Thus, rearranging equation (4.40) for ppN/(1− p),

ppN
1− p = R0 (R0 − λGµI)

R0(r + 1)− λGµI
. (4.41)

Substituting equation (4.41) into equations (4.39) yields equations (4.37) as
required. Finally, equations (4.37) are independent of our choice of p, so
zNB(r,p)(R0, λG) = zNB(r,p1)(R0, λG) as required.

4.1.3 Ordering the final size of a major outbreak in the
standard network model by degree distribution

We now use Propositions 4.1, 4.2 and 4.3 to discuss an ordering of the final
size of a major outbreak on the standard network model with various degree
distributions, corresponding to the left-hand side of Figure 4.1, i.e. λG = 0.

Recall that in the standard network model with degree distribution D,
R0 = pNµD̃−1. Therefore, for fixed D we require R0 ∈ (1, µD̃−1]. Furthermore,
if D and R0 are fixed then pN is immediately determined by the equation
pN = R0/µD̃−1.

We reuse the final size notation introduced in Section 4.1.2 with a slight
modification. Since we only consider the case λG = 0 we drop the second pa-
rameter, λG. For example, zBin(n,p)(R0, 0; I) = zBin(n,p)(R0; I) denotes the final
size of a major outbreak in the standard network model with D ∼ Bin(n, p),
basic reproduction number R0 and infectious period distribution I.

To order the final size of a major outbreak on the standard network model
with different degree distributions we introduce the following lemma. Let D1

and D2 be two non-negative random variables with min
(
µD̃1−1, µD̃2−1

)
> 1

and fix R0 ∈
(
1,min

(
µD̃1−1, µD̃2−1

)]
. Let zD1(R0; I) < 1 and zD2(R0; I) < 1

be the final size of a major outbreak in the standard network model with
basic reproduction number R0, infectious period distribution I and degree
distributions D1 and D2 respectively.
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Lemma 4.3. If, for all s ∈ (0, 1),

fD1

(
1− R0s

µD̃1−1

)
< fD2

(
1− R0s

µD̃2−1

)
, (4.42a)

fD̃1−1

(
1− R0s

µD̃1−1

)
< fD̃2−1

(
1− R0s

µD̃2−1

)
, (4.42b)

then
zD1(R0; I) > zD2(R0; I).

Proof. For i = 1, 2, the final size of a major outbreak in the standard network
model with degree distribution Di is given by zDi(R0; I) = 1− fDi

(
1− R0z̄Di

µD̃i−1

)
,

where z̄Di;I ∈ (0, 1] is the largest solution in (0, 1] of the equation

1− z̄Di = fD̃i−1

(
1− R0z̄Di

µD̃i−1

)
.

Since z̄D1 , z̄D2 ∈ (0, 1], applying inequality (4.42b) yields

1− z̄D1 = fD̃1−1

(
1− R0z̄D1

µD̃1−1

)
< fD̃2−1

(
1− R0z̄D2

µD̃2−1

)
= 1− z̄D2 .

Therefore z̄D1 > z̄D2 .

For s ∈ (0, 1), fD1

(
1− R0s

µD̃1−1

)
and fD2

(
1− R0s

µD̃2−1

)
are both decreasing

functions in s. So applying inequality (4.42a) and then the inequality z̄D1 > z̄D2

yields

1− zD1(R0; I) = fD1

(
1− R0z̄D1

µD̃1−1

)

< fD2

(
1− R0z̄D1

µD̃2−1

)

< fD2

(
1− R0z̄D2

µD̃2−1

)
= 1− zD2(R0; I).

Thus zD1(R0; I) > zD2(R0; I) as required.

We now use Lemma 4.3 to prove the following theorem which gives an
ordering for the final size of a major outbreak in the standard network model with
Binomial, Poisson and Negative Binomial degree distributions. The inequalities
in Theorem 4.2 hold for an appropriate choice of R0, by which we mean that in
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an inequality involving the final size of a major outbreak in two standard network
models with degree distributions D1 and D2, R0 ∈

(
1,min

(
µD̃1−1, µD̃2−1

)]
.

Theorem 4.2. For n, i, r, j ∈ Z+, n ≥ 2, α > 0, p1, p2, p3, p4 ∈ (0, 1] and
appropriate choice of R0 > 1 the following inequalities hold.

zBin(n,p1)(R0; I) > zBin(n+i,p2)(R0; I) > zPoi(α)(R0; I),

zPoi(α)(R0; I) > zNB(r+j,p3)(R0; I) > zNB(r,p4)(R0; I).

Proof. The proof of each inequality follows a similar layout. We use Propositions
4.1, 4.2 and 4.3 to remove the dependence of the final size of a major outbreak
on our choice of p1, p2, p3, p4 and then apply Lemma 4.3. However, checking the
constraints required to apply Lemma 4.3 requires slightly different arguments
for each inequality.

Substituting the appropriate probability generating functions of the degree
distributions into equations (4.42) and applying Lemma 4.3 yields that the
inequality zBin(n,p1)(R0; I) > zBin(n+i,p2)(R0; I) holds if, for all s ∈ (0, 1),

(
1− sR0

n− 1

)n
<
(

1− sR0

n+ i− 1

)n+i
(4.43a)

and (
1− sR0

n− 1

)n−1
<
(

1− sR0

n+ i− 1

)n+i−1
(4.43b)

Taking the logarithm of both sides of inequality (4.43b) and Taylor expanding
yields

(
1− sR0

n− 1

)n−1
<
(

1− sR0

n+ i− 1

)n+i−1

⇐⇒ (n− 1) log
(

1− sR0

n− 1

)
< (n+ i− 1) log

(
1− sR0

n+ i− 1

)

⇐⇒ (n− 1)
∞∑
j=1

− (sR0)j

j!(n− 1)j < (n+ i− 1)
∞∑
j=1

− (sR0)j

j!(n+ i− 1)j

⇐⇒ sR0 + s2R2
0

2(n− 1) + . . . > sR0 + s2R2
0

2(n+ i− 1) + . . . . (4.44)

Inequality (4.44) clearly holds for i > 0, so inequality (4.43b) holds. Similarly,
taking the logarithm of both sides of inequality (4.43a) and Taylor expanding
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yields

(
1− sR0

n− 1

)n
<
(

1− sR0

n+ i− 1

)n+i

⇐⇒ n
∞∑
j=1

− (sR0)j

j!(n− 1)j < (n+ i)
∞∑
j=1

− (sR0)j

j!(n+ i− 1)j

⇐⇒ n

n− 1 >
(n+ i)
n+ i− 1 and 1

n− 1 >
1

n+ i− 1 . (4.45)

Inequalities (4.45) clearly hold for i > 0, so inequality (4.43a) holds and
zBin(n,p1)(R0; I) > zBin(n+i,p2)(R0; I).

We next consider the inequality zBin(n+i,p2)(R0; I) > zPoi(α)(R0; I). Substitut-
ing the appropriate probability generating functions of the degree distributions
into equations (4.42), the inequality zBin(n+i,p2)(R0; I) > zPoi(α)(R0; I) follows
directly from Lemma 4.3 if, for all s ∈ (0, 1),

(
1− sR0

n+ i− 1

)n+i
< e−sR0 (4.46a)

and (
1− sR0

n+ i− 1

)n+i−1
< e−sR0 . (4.46b)

Since 1− sR0
n+i−1 ∈ (0, 1), it is clear that inequality (4.46a) holds if inequality

(4.46b) holds. Taking the logarithm of both sides of inequality (4.46b) and
Taylor expanding yields

(
1− sR0

n+ i− 1

)n+i−1
< e−sR0

⇐⇒ (n− 1) log
(

1− sR0

n− 1

)
< −sR0

⇐⇒ (n− 1)
∞∑
j=1

− (sR0)j

j!(n− 1)j < −sR0

⇐⇒ sR0 + s2R2
0

2(n− 1) + . . . > sR0,

which clearly holds. Therefore inequality (4.46b) holds and so, as required,
zBin(n+i,p2)(R0; I) > zPoi(α)(R0; I).

We now turn our attention to the inequality zPoi(α)(R0; I) > zNB(r+j,p3)(R0; I).
Substituting the appropriate probability generating functions of the degree dis-
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tributions into equations (4.42), the inequality zPoi(α)(R0; I) > zNB(r+j,p3)(R0; I)
follows directly from Lemma 4.3 if, for all s ∈ (0, 1),

e−sR0 <

(
1 + sR0

r + j + 1

)−r−j
(4.47a)

and

e−sR0 <

(
1 + sR0

r + j + 1

)−r−j−1

. (4.47b)

Note that, since 1 + sR0
r+j+1 > 1, if inequality (4.47b) holds then inequality

(4.47a) also holds. We therefore need only consider inequality (4.47b) where,
taking logarithms,

e−sR0 <

(
1 + sR0

r + j + 1

)−r−j−1

⇐⇒ −sR0 < (−r − j − 1) log
(

1 + sR0

r + j + 1

)

⇐⇒ sR0

r + j + 1 > log
(

1 + sR0

r + j + 1

)
. (4.48)

Clearly, for x > 0, log(1 + x) < x and, since sR0/(r + j + 1) > 0, inequality
(4.48) holds. Thus zPoi(α)(R0; I) > zNB(r+j,p3)(R0; I).

Finally, consider the inequality zNB(r+j,p3)(R0; I) > zNB(r,p4)(R0; I). Substitut-
ing the appropriate probability generating functions of the degree distributions
into equations (4.42), the inequality zNB(r+j,p3)(R0; I) > zNB(r,p4)(R0; I) follows
directly from Lemma 4.3 if, for all s ∈ (0, 1),

 1
1 + sR0

r+j+1

r+j < (
1

1 + sR0
r+1

)r
(4.49a)

and  1
1 + sR0

r+j+1

r+j+1

<

(
1

1 + sR0
r+1

)r+1

. (4.49b)

Rearranging inequality (4.49a), noting that |1/(1 + sR0/(r + j + 1))| < 1
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and |1/(1 + sR0/(r + 1))| < 1, taking logarithms and then Taylor expanding,

 1
1 + sR0

r+j+1

r+j < (
1

1 + sR0
r+1

)r

⇐⇒
(

r + j + 1
r + j + 1 + sR0

)r+j
<
(

sR0

r + 1 + sR0

)r

⇐⇒
(

1− sR0

r + j + 1 + sR0

)r+j
<
(

1− sR0

r + 1 + sR0

)r

⇐⇒ (r + j) log
(

1− sR0

r + j + 1 + sR0

)
< r log

(
1− sR0

r + 1 + sR0

)

⇐⇒ −(r + j)
∞∑
n=1

1
n

(
sR0

r + j + 1 + sR0

)n
< −r

∞∑
n=1

1
n

(
sR0

r + 1 + sR0

)n
(4.50)

Rearranging inequality (4.50), inequality (4.49a) holds if

∞∑
n=1

1
n

(
sR0

(r + j + 1 + sR0) (r + 1 + sR0)

)n
[j(1 + sR0)] > 0,

which clearly holds. An analogous argument for inequality (4.49b) yields

 1
1 + sR0

r+j+1

r+j+1

−
(

1
1 + sR0

r+1

)r+1

> 0

⇐⇒
∞∑
n=1

(sR0)n
n

(
r + 1 + sR0

r + j + 1 + sR0

)n
[jsR0] > 0,

which again clearly holds, so zNB(r+j,p3)(R0; I) > zNB(r,p4)(R0; I).

Note that the orderings given in Theorem 4.2 are illustrated in the left-hand
side of Figure 4.1, i.e. λG = 0. Furthermore, Theorem 4.2 suggests that, for
fixed R0, increasing σ2

D will decrease the final size of a major outbreak on the
standard network model.

Recall from Theorem 4.1 that in the network and global model with degree
distribution D, if σ2

D < µD then adding a small amount of network heterogeneity
to the homogeneously mixing model will increase the final size of a major
outbreak and if σ2

D > µD then adding a small amount of network heterogeneity
to the homogeneously mixing model will decrease the final size of a major
outbreak. For each of the degree distributions considered in Theorem 4.2, if
σ2
D < µD then the final size of a major outbreak is larger than zH(R0), and

if σ2
D > µD then the final size of a major outbreak is smaller than zH(R0).
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This supports the conjecture that, for the distributions discussed in Theorem
4.2, for fixed R0 there is a monotonic increase or decrease in the final size
of a major outbreak as λG is increased and λN is decreased (as illustrated in
Figure 4.1). Furthermore, whether the final size of a major outbreak is increasing
or decreasing is determined by sgn

(
1− σ2

D

µD

)
.

4.1.4 Analysis of the network and global model with a
constant degree distribution

Investigating the effect of fixing R0 and substantially increasing the network
heterogeneity in the network and global model on the final size of a major
outbreak is mathematically difficult, which is why in Sections 4.1.1 and 4.1.3
we consider the special cases λG = R0/µI and λG = 0 respectively. However, we
now consider the special case of the network and global model with a constant de-
gree distribution and give analytical results for a larger range of λG ∈ (0, R0/µI).

In this section we prove that, for pN and z large enough, fixing R0 and
decreasing λG while increasing λN will increase the final size of a major outbreak
in the network and global model. This result supports the conjecture that fixing
R0 and moving from the homogeneously mixing model to the standard network
model with a constant degree distribution will monotonically increase the final
size of a major outbreak.

Applying the notational style of Section 4.1.1, the final size of a major out-
break on the network and global model z1 (pN ;R0, D, I) = 1− π1 (pN ;R0, D, I),
where π (pN ;R0, D, I) = (π1 (pN ;R0, D, I) , π2 (pN ;R0, D, I)) is the smallest so-
lution to the set of simultaneous equations

π (pN ;R0, D, I) = b (π (pN ;R0, D, I) , pN ;R0, D, I) ,

where

b1 (s, pN ;R0, D, I) = e−λG(pN ;R0,D,I)µI(1−s1)fD (1− pN + pNs2) , (4.51a)

b2 (s, pN ;R0, D, I) = e−λG(pN ;R0,D,I)µI(1−s1)fD̃−1 (1− pN + pNs2) . (4.51b)

Note that since pN = 1 − φI(λN) is monotonically increasing in λN , if

112



z (pN ;R0, D, I) < z (pN + ε;R0, D, I) then, for ε̂ > 0,

z (pN(λN);R0, D, I) < z (pN (λN + ε̂) ;R0, D, I) .

In contrast to the previous sections in this Chapter, where we directly
consider the final size of a major outbreak, in this section we consider an order-
ing for the extinction probabilities of the corresponding branching processes,
from which an ordering on the final size of a major outbreak immediately follows.

Lemma 4.4 makes rigorous the intuitive idea that increasing both of the
probability generating functions of the offspring distributions of a two-type
branching process will decrease the probability of extinction of the branching
process. Note that if the two-type branching process approximates the spread
of an individuals susceptibility set then reducing the extinction probability of
the branching process will increase final size of a major outbreak.

Lemma 4.4. If

∂b1

∂pN
(π (pN ;R0, D, I) , pN ;R0, D, I) < 0, (4.52a)

and
∂b2

∂pN
(π (pN ;R0, D, I) , pN ;R0, D, I) < 0, (4.52b)

then, for ε > 0, π (pN + ε;R0, D, I) < π (pN ;R0, D, I).

Proof. We begin by recalling the following notation and result from Section 2.3.
For i = 1, 2, let

b
(0)
i (s, pN ;R0, D, I) = bi (0, pN ;R0, D, I) ,

and, for n = 1, 2, . . . ,

b
(n)
i (s, pN ;R0, D, I)

= bi
(
b

(n−1)
1 (s, pN ;R0, D, I) , b(n−1)

2 (s, pN ;R0, D, I) , pN ;R0, D, I
)

= bn−1
i (b1 (s, pN ;R0, D, I) , b2 (s, pN ;R0, D, I) , pN ;R0, D, I) .

Furthermore, for i = 1, 2 and any s ∈ [0, 1]2, s 6= (1, 1),

lim
n−→∞

b
(n)
i (s, pN ;R0, D, I) = πi (pN ;R0, D, I) .
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We now give a sufficient condition for π (pN + ε;R0, D, I) < π (pN ;R0, D, I)
to hold, and then prove that the sufficient condition holds given equations (4.52)
hold. For n = 1, 2, . . . , i = 1, 2, if

b
(n)
i (π (pN ;R0, D, I) , pN + ε;R0, D, I) < πi (pN ;R0, D, I) (4.53)

then

πi (pN + ε;R0, D, I) = lim
n−→∞

b
(n)
i (π (pN ;R0, D, I) , pN + ε;R0, D, I)

< lim
n−→∞

πi (pN ;R0, D, I)

= πi (pN ;R0, D, I) .

Therefore to prove Lemma 4.4 it is sufficient to prove that equation (4.53)
holds. We first consider the base case, i.e. for i = 1, 2,

bi (π (pN ;R0, D, I) , pN + ε;R0, D, I) < πi (pN ;R0, D, I)

Applying the limit definition of the partial derivative to equations (4.52) with
respect to pN yields, for i = 1, 2,

bi (π (pN ;R0, D, I) , pN + ε;R0, D, I) < bi (π (pN ;R0, D, I) , pN ;R0, D, I) ,
(4.54)

and the base case follows noting that

bi (π (pN ;R0, D, I) , pN ;R0, D, I) = πi (pN ;R0, D, I) .

For the induction hypothesis assume that, for i = 1, 2, n = 1, 2, . . . ,

b
(n)
i (π (pN ;R0, D, I) , pN + ε;R0, D, I) < πi (pN ;R0, D, I) ,

and consider b(n+1)
i (π (pN ;R0, D, I) , pN + ε;R0, D, I). Applying equation (2.8)

from Section 2.3, noting that bi (s, pN ;R0, D, I) is an increasing function of s,
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applying the induction hypothesis and then applying inequality (4.54) yields

b
(n+1)
i (π (pN ;R0, D, I) , pN + ε;R0, D, I)

= bi
(
b(n) (π (pN ;R0, D, I) , pN + ε;R0, D, I) , pN + ε;R0, D, I

)
< bi (π1 (pN ;R0, D, I) , π2 (pN ;R0, D, I) , pN + ε;R0, D, I)

< bi (π1 (pN ;R0, D, I) , π2 (pN ;R0, D, I) , pN ;R0, D, I)

= πi (pN ;R0, D, I) ,

thus completing the proof of Lemma 4.4.

The following theorem shows that fixing R0 and increasing pN while decreas-
ing λG in the network and global model with a constant degree distribution will
monotonically increase the final size of a major outbreak if pN and the final size
of a major outbreak are large enough.

Theorem 4.3. Let D ∼ Const(d), d ≥ 2. Then, for R0 > 1 and ε > 0, if

0 < π (pN ;R0, D, I) = b (π (pN ;R0, D, I) , pN ;R0, D, I)

and

0 < pN
[
1 + π2 (pN ;R0, D, I) (1− π2 (pN ;R0, D, I))R2

0

]
+R0 [2 +R0 (1− 2π2 (pN ;R0, D, I))] , (4.55a)

0 < p2
N

[
(d− 1) + dπ2 (pN ;R0, D, I) (1− π2 (pN ;R0, D, I))R2

0

]
+ pNR0 [2(d− 1) + dR0 (1− 2π2 (pN ;R0, D, I))]−R2

0, (4.55b)

then
z (pN ;R0,Const(d), I) < z (pN + ε;R0,Const(d), I) .

Proof. Recall that z (pN ;R0, D, I) = 1− π1 (pN ;R0, D, I). So if

π (pN + ε;R0, D, I) < π (pN ;R0, D, I) ,

then z (pN ;R0, D, I) < z (pN + ε;R0, D, I). Therefore, by Lemma 4.4, to prove
Theorem 4.3 it is sufficient to show that, given that the assumptions given in
equation (4.55) hold,

∂b1

∂pN
(π (pN ;R0, D, I) , pN ;R0, D, I) < 0, (4.56a)
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and
∂b2

∂pN
(π (pN ;R0, D, I) , pN ;R0, D, I) < 0. (4.56b)

Substituting fD(s) = sd and fD̃−1(s) = sd−1 into equations (4.51) yields

b1 (s, pN ;R0, D, I) = e−λG(pN ;R0,D,I)µI(1−s1)(1− pN + pNs2)d, (4.57a)

b2 (s, pN ;R0, D, I) = e−λG(pN ;R0,D,I)µI(1−s1)(1− pN + pNs2)d−1. (4.57b)

Thus, considering equations (4.57),

b1 (s, pN ;R0, D, I) = b2 (s, pN ;R0, D, I) (1− pN + pNs2). (4.57c)

Furthermore, substituting µD = d and µD̃−1 = d− 1 into equation (4.3) yields

λG (pN ;R0, D, I) = R0 (R0 − pN(d− 1))
µI(R0 + pN) . (4.58)

Taking the derivative of equations (4.57a), (4.57b) and (4.58), with respect
to pN yields

db1

dpN
(s, pN ;R0, D, I) =

[
−(1− s1)µIλ′G (0;R0, D, I) (1− pN + pNs2)d

− d(1− s2)(1− pN + pNs2)d−1
]

e−λG(pN ;R0,D,I)µI(1−s1),

(4.59a)
db2

dpN
(s, pN ;R0, D, I) =

[
−(1− s1)µIλ′G (0;R0, D, I) (1− pN + pNs2)d−1

− (d− 1)(1− s2)(1− pN + pNs2)d−2
]

× e−λG(pN ;R0,D,I)µI(1−s1), (4.59b)

λ′G (pN ;R0, D, I) = −dR2
0

(R0 + pN)2 . (4.59c)
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Substituting equation (4.59c) into equations (4.59a) and (4.59b) yields

db1

dpN
(s, pN ;R0, D, I) = −

[
(1− s2)− (1− s1)(1− pN + pNs2) R2

0
(R0 + pN)2

]
× de−µIλG(pN ;R0,D,I)(1−s1)(1− pN + pNs2)d−1,

(4.60a)
db2

dpN
(s, pN ;R0, D, I) =

−
[
(1− s2)(d− 1)− (1− s1)(1− pN + pNs2) dR2

0
(R0 + pN)2

]
× e−µIλG(pN ;R0,D,I)(1−s1)(1− pN + pNs2)d−2. (4.60b)

Evaluating equation (4.60a) at π (pN ;R0, D, I) yields the condition
db1
dpN (π (pN ;R0, D, I) , pN ;R0, D, I) < 0 if and only if

0 < 1− π2 (pN ;R0, D, I)

− [1− π1 (pN ;R0, D, I)] [1− pN + pNπ2 (pN ;R0, D, I)] R2
0

(R0 + pN)2 . (4.61)

Evaluating equation (4.57c) at π (pN ;R0, D, I) yields

π1 (pN ;R0, D, I) = π2 (pN ;R0, D, I) [1 + pNπ2 (pN ;R0, D, I)] , (4.62)

and, substituting equation (4.62) into inequality (4.61),

0 < 1− π2 (pN ;R0, D, I)

− [1− π1 (pN ;R0, D, I)] [1− pN + pNπ2 (pN ;R0, D, I)] R2
0

(R0 + pN)2

⇐⇒ 0 <
{

1− [1 + pNπ2 (pN ;R0, D, I)] [1− pN + pNπ2 (pN ;R0, D, I)]

× R2
0

(R0 + pN)2

}
[1− π2 (pN ;R0, D, I)]

⇐⇒ 0 <
{
−R2

0 [1 + pNπ2 (pN ;R0, D, I)] [1− pN + pNπ2 (pN ;R0, D, I)]

+ (R0 + pN)2
} 1− π2 (pN ;R0, D, I)

(R0 + pN)2

⇐⇒ 0 <
{
pN

(
1 + π2 (pN ;R0, D, I) [1− π2 (pN ;R0, D, I)]R2

0

)
+ R0 [2 +R0 (1− 2π2 (pN ;R0, D, I))]

}
pN

1− π2 (pN ;R0, D, I)
(R0 + pN)2 .

(4.63)
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Therefore if the assumption given in equation (4.55a) holds then equation (4.63)
holds and db1

dpN (π, pN ;R0, D, I) < 0.

Finally, we need only show that db2
dpN (π, pN ;R0, D, I) < 0 if equation (4.55b)

holds. Evaluating inequality (4.60b) at π (pN ;R0, D, I) and substituting equa-
tion (4.62) yields

0 > db2

dpN
(π (pN ;R0, D, I) , pN)

⇐⇒ 0 < (d− 1) [1− π2 (pN ;R0, D, I)]

− [1− π1 (pN ;R0, D, I)] [1− pN + pNπ2 (pN ;R0, D, I)] dR2
0

(R0 + pN)2

⇐⇒ 0 <
{
−dR2

0 [1 + pNπ2 (pN ;R0, D, I)] [1− pN (1− π2 (pN ;R0, D, I))]

+ (d− 1) (R0 + pN)2
} 1− π2 (pN ;R0, D, I)

(R0 + pN)2

⇐⇒ 0 <
{
p2
N

[
(d− 1) + dπ2 (pN ;R0, D, I) (1− π2 (pN ;R0, D, I))R2

0

]
+ pNR0 [2(d− 1) + dR0 (1− 2π2 (pN ;R0, D, I))]−R2

0

}
× 1− π2 (pN ;R0, D, I)

(R0 + pN)2 ,

which holds by the assumption given in equation (4.55b), as required for the
proof of Theorem 4.3.

The assumptions required to apply Theorem 4.3 are difficult to visualise.
We now present a Corollary to Theorem 4.3 that gives sufficient conditions for
the assumptions given in Theorem 4.3 to hold, and has a simpler interpretation
for illustrative purposes.

Corollary 4.1. Let D ∼ Const(d), d ≥ 2. Then, for R0 > 1 and ε ∈ (0, 1−pN ),
if

1 > z (pN ;R0, D, I) > 1
2

(
1 + pN

2

)
, (4.64a)

and
pN ≥

R0

2(d− 1) , (4.64b)

then
z (pN ;R0,Const(d), I) < z (pN + ε;R0,Const(d), I) .

Proof. This proof proceeds by showing that equations (4.64) are sufficient
conditions to apply Theorem 4.3. We begin by showing that inequality (4.64a)
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implies inequality (4.55a). Note that inequality (4.55a) immediately holds if
π2 (pN ;R0, D, I) < 1/2, and recall that z (pN ;R0, D, I) = 1− π1 (pN ;R0, D, I).
Then, substituting equation (4.62),

z (pN ;R0, D, I) > 1
2

(
1 + pN

2

)
=⇒ π1 (pN ;R0, D, I) < 1

2

(
1− pN

2

)
=⇒ π2 (pN ;R0, D, I) [1− pN + pNπ2 (pN ;R0, D, I)] < 1

2

(
1− pN

2

)
=⇒ π2 (pN ;R0, D, I) ∈

(
−2− pN

2pN
,
1
2

)
.

Since π2 (pN ;R0, D, I) ∈ [0, 1), if z (pN ;R0, D, I) > 1/2 + pN/4 then the in-
equality π2 (pN ;R0, D, I) < 1/2 holds and inequality (4.64a) implies inequality
(4.55a). Therefore to complete this proof we need only show that inequality
(4.64b) implies inequality (4.55b). Note that, since π2 (pN ;R0, D, I) < 1/2,
inequality (4.55b) clearly holds if pNR02(d − 1) − R2

0 ≥ 0. Furthermore the
inequality pNR02(d − 1) − R2

0 ≥ 0 is a rearranged form of inequality (4.55b).
Thus inequality (4.64b) implies inequality (4.55b) as required.

Previously we conjectured that in the network and global model with a
binomial degree distribution, fixing R0 and increasing pN while decreasing λG
causes a monotonic increase the final size of a major outbreak for all pN ∈ (0, 1)
for which z (pN ;R0, D, I) < 1, as illustrated in Figure 4.1 on page 92. Theorem
4.3 is an analytic proof of this conjecture for the special case of a constant
degree distribution and a subsection of pN and z (pN ;R0, D, I). The difficulty in
extending Theorem 4.3 to encompass all values of pN and z (pN ;R0, D, I) arises
from the limitations of Lemma 4.4, i.e. we require both partial derivatives of
the probability generating functions evaluated at the stationary points to have
the same sign. In contrast, the difficulty in extending Theorem 4.3 to consider
general degree distributions arises from the reliance of the proof on equation
(4.57c), i.e. f1(s, pN) = f2(s, pN)(1 − pN + pNs2), which is a property of few
distributions (although we note that Theorem 4.3 can therefore be extended to
consider a binomial degree distribution). However, we note that Lemma 4.4 can
be applied to general degree distributions, if its requirements are met.
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4.1.5 Analysis of the network and global model with a
logarithmic degree distribution

In this section we investigate the final size of a major outbreak on the network
and global model with a logarithmic degree distribution. We consider a loga-
rithmic degree distribution with parameter p because the final size of a major
outbreak on the network and global model can be written explicitly as a simple
function of R0 and p, which allows analytical analysis. Furthermore, we give a
proof of the key result that fixing R0 and increasing the network heterogeneity
does not always have a monotonic effect on the final size of a major outbreak.
Thus the effect of introducing a small amount of network heterogeneity to
the homogeneously mixing model is not necessarily the same as the effect of
introducing more network heterogeneity to an already heterogeneous model.

Let zLog(p)(R0, λG; I) be the final size of a major outbreak in the network
and global model with degree distribution D ∼ Log(p) (p ∈ (0, 1)), global
infection rate λG ∈ [0, R0/µI ], basic reproduction number R0 and infectious
period distribution I. We begin by noting some properties of the logarithmic
degree distribution. Let D ∼ Log(p), then

µD = −p
(1− p) log(1− p) , (4.65a)

σ2
D = −p(p+ log(1− p))

(1− p)2(log(1− p))2 , (4.65b)

1− σ2
D

µD
= −p (1 + log(1− p))

(1− p) log(1− p) , (4.65c)

µD̃−1 = p

1− p. (4.65d)

In Proposition 4.4 we consider the following. In part (i) we consider the effect
of introducing a small amount of network heterogeneity (with a logarithmic
degree distribution) to the homogeneously mixing model, in part (ii) we consider
the final size of a major outbreak on the standard network model with a
logarithmic degree distribution and in part (iii) we prove that the final size of
a major outbreak on the standard network model with a logarithmic degree
distribution is always smaller than the final size of a major outbreak in the
homogeneously mixing model. Recall that in the standard network model we
require R0 ∈ (1, µD̃−1], so if D ∼ Log(p) then we require R0 ∈ (1, p/(1 − p)],
and that if λG = R0/µI then λN = 0.
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Proposition 4.4. Consider the network and global model with D ∼ Log(p) and
R0 > 1.

(i)

sgn
(

d2zLog(p)(R0, R0/µI ; I)
dλN 2

)
≥ 0 ⇐⇒ 1− e−1 ≥ p.

(ii) For R0 ≤ p/(1− p),

zLog(p)(R0, 0; I) = − log(R0)
log(1− p) . (4.66)

(iii) For R0 ≤ p/(1− p),

zLog(p)(R0, 0; I) < zH(R0).

Proof. Part (i) immediately follows by applying Theorem 4.1(iv) and substitut-
ing equation (4.65c).

To prove part (ii) we consider the standard network model with a logarithmic
degree distribution. Recall from Table 2.2 that fD(s) = log(1− ps)/ log(1− p)
and fD̃−1(s) = (1 − p)/(1 − ps). Therefore, substituting fD(s), fD̃−1(s) and
pN = R0/µD̃−1 (with µD̃−1 given in equation (4.65d)) into equations (4.2),
zLog(p)(R0, 0; I) satisfies the equation

1− zLog(p)(R0, 0; I) = log (1− p+ z2R0(1− p))
log(1− p) , (4.67a)

where z2 is the unique solution in (0, 1] of

1− z2 = 1− p
1− p+ z2R0(1− p) . (4.67b)

Rearranging equation (4.67b) yields

1− z2 = 1− p
1− p+ z2R0(1− p)

⇐⇒ 1− z2 = 1
1 + z2R0

⇐⇒ 0 = z2 (z2R0 −R0 + 1) . (4.68)

Thus, since z2 is the unique solution in (0, 1] of equation (4.68), z2R0 = R0 − 1.
Rearranging equation (4.67a) and substituting z2R0 = R0 − 1 yields part (ii),
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i.e.

zLog(p)(R0, 0; I) = 1− log ((1− p) (1 + z2R0))
log (1− p) = − log(1 + z2R0)

log(1− p)

= − log(R0)
log(1− p) .

Finally we consider the proof of part (iii). Let

g(zH(R0)) =
(

1− log(1− zH(R0))
zH(R0)

)zH(R0)

+ log(1− zH(R0))
zH(R0) . (4.69)

We first show that if g(zH(R0)) ≥ 0 then zLog(p)(R0, 0; I) ≤ zH(R0). Finally we
prove that g(zH(R0)) ≥ 0, which completes the proof of part (iii).

Recall that in the standard network model with D ∼ Log(p), R0 ≤ p/(1−p),
and

R0 ≤ p/(1− p) ⇐⇒ 1
log(1 +R0) ≥ −

1
log(1− p) . (4.70)

Substituting inequality (4.70) into part (ii) yields

zLog(p)(R0, 0; I) = − log(R0)
log(1− p) ≤

log(R0)
log(1 +R0) .

Therefore to prove zLog(p)(R0) ≤ zH(R0) it is sufficient to show that

log(R0)
log(1 +R0) ≤ zH(R0). (4.71)

Furthermore,

log(R0)
log(1 +R0) ≤ zH(R0)

⇐⇒ log(R0) ≤ zH(R0) log(1 +R0)

⇐⇒ R0 ≤ (1 +R0)zH(R0) (4.72)

Recall that zH(R0) is the unique solution in (0, 1] of 1 − z = e−R0z, so R0

and zH(R0) satisfy

R0 = − log(1− zH(R0))
zH(R0) . (4.73)

Substituting equation (4.73) into inequality (4.72), it is clear that to prove
part (iii) it is sufficient to show that g(zH(R0)) ≥ 0, where g(zH(R0)) is defined in
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equation (4.69). Substituting the Taylor series log(1−x)/x = −∑∞n=0 x
n/(n+1)!

into equation (4.69) yields g(0) = 0 and g(1) = 1. Furthermore,

g′(zH(R0)) =
[

−1
zH(R0)(1− zH(R0)) + log(1− zH(R0))

zH(R0)2

]

× zH(R0)
(

1− log(1− zH(R0))
zH(R0)

)zH(R0)−1

+ 1
zH(R0)(1− zH(R0)) −

log(1− zH(R0))
zH(R0)2

= 1
zH(R0)(1− zH(R0))

1− zH(R0)
(

1− log(1− zH(R0))
zH(R0)

)zH(R0)−1


− log(1− zH(R0))
zH(R0)2

1− zH(R0)
(

1− log(1− zH(R0))
zH(R0)

)zH(R0)−1
 .

Thus for zH(R0) ∈ (0, 1), − log(1−zH(R0)) > 0 and so g′(zH(R0)) ≥ 0. Therefore
g(s) is an increasing function in (0, 1) and, since g(0) = 0 and g(1) = 1,
g(zH(R0)) ≥ 0 as required for the proof of part (iii).

Corollary 4.2 proves two results. Firstly, we show that, for the given param-
eters and fixed R0, the final size of a major outbreak on the standard network
model with a logarithmic degree distribution is smaller than the final size of a
major outbreak on the homogeneously mixing model. We then prove (under the
same parameters and fixed R0) that increasing λN at the expense of λG in the
homogeneously mixing model will increase the final size of a major outbreak.
Therefore Corollary 4.2 proves that fixing R0 and adding network heterogeneity
to the homogeneously mixing model does not always have a monotonic effect
on the final size of a major outbreak, and therefore the important result that
the effect of introducing a small amount of network heterogeneity to the homo-
geneously mixing model is not necessarily the same as the effect of introducing
more network heterogeneity to an already heterogeneous model.

Corollary 4.2. For R0 ∈ (1, e− 1) and p ∈ [R0/(R0 + 1), 1− e−1],

zLog(p)(R0, 0; I) < zH(R0), (4.74a)

and

sgn
d2zLog(p)(R0, R0/µI)

dλN 2

∣∣∣∣∣∣
λN=0

 ≤ 0. (4.74b)

Proof. If p ≤ 1− e−1 then equation (4.74b) holds by Proposition 4.4. Also by
Proposition 4.4, equation (4.74a) holds if R0 ≤ p/(1 − p), which holds if and
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only if p ≥ R0/(R0 + 1). Finally, the constraint R0 ∈ (1, e− 1) is required for
[R0/R0 + 1, 1− e−1] to be a positive interval.

Remark. We can also consider the case D ∼ Geo+(p) to prove that fixing
R0 and adding network heterogeneity to the homogeneously mixing model does
not always have a monotonic effect on the final size of a major outbreak. The
argument follows analogous arguments to those in the proof of Proposition 4.4
and Corollary 4.2.

4.2 Household and global model

In this section we investigate the effect of our choice of infection rates (λG
and λH) on the final size of a major outbreak for fixed R0 and household
size distribution. Although our analytical results for the final size of a major
outbreak and R0 allow for general household size distributions, requiring only
σ2
H < ∞, for the numerical work in this section we focus on household size

distributions with a finite maximal household size, since in practical applications
households generally contain few individuals. We now introduce three household
size distributions we consider. Let H2001 be a distribution with

(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) = (0.13, 0.3, 0.23, 0.18, 0.09, 0.03) ,

which is used as a household size distribution by Fraser (2007) and is based on
UK census data from 2001. Let H1961 be a distribution with

(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) = (0.29, 0.34, 0.16, 0.14, 0.05, 0.02) ,

which is used as a household size distribution by Ball and Shaw (2015) and is
based on UK census data from 1961. Finally, let HM be a distribution with
(ρ1, ρ2, ρ3, ρ4) = (0.74, 0.13, 0.1, 0.03), which is chosen for its moment properties
discussed in Remark 4.1.

Figure 4.2 plots the final size of a major outbreak in the household and global
model against the household infection rate, λH , as the global infection rate, λG,
is reduced to keep R0 = 2 fixed, for a range of household size distributions. So
for a given value of λH each household size distribution has a different global
infection rate, λG. To avoid numerical issues (see Section 7.6.1), in Figure
4.2 we condition the household size distribution H ∼ Poi+(3) on the maximal
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Figure 4.2: Effect of the household size distribution on the final size of a major
outbreak in the household and global model for a range of household size
distributions. Other parameters are R0 = 2 and I ∼ Const(1).

household size being at most 15.

We now discuss the numerical results from our investigations. Firstly, the
effect of fixing R0 and introducing a small amount of household heterogeneity
to the homogeneously mixing model is not necessarily the same as the effect of
introducing more household heterogeneity to an already heterogeneous model,
as illustrated in Figure 4.2 by the bottom line corresponding to the household
size distribution HM . Indeed, even ‘simple’ household size distributions such
as H ∼ Const(4) do not have a monotonic response in the final size of a major
outbreak as λH is increased, as illustrated in the top line in Figure 4.2 which
has a stationary point near λH = 1.56. We conjecture that, for each household
size distribution, as λH −→∞ the final size of a major outbreak converges to
an asymptotic limit. Finally, we note that even relatively simple household size
distributions, such as those in Figure 4.2, do not admit a simple ordering in the
final size of a major outbreak which holds for all λH .

In the following section we use analogous arguments to those in Section 4.1.1
to investigate the effect on the final size of a major outbreak of fixing R0 and
introducing a small amount of household heterogeneity to the homogeneously
mixing model. We then consider the final size in the household and global
model with a saturated household infection rate, i.e. λH = ∞. However, we
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now introduce the notation for the household and global model required in the
later sections. By Ball et al. (1997), the probability generating function for the
offspring distribution of the backward Galton-Watson branching process in the
household and global model, b(s), is given by

b(s) = e−λGµI(1−s)fM(n)

(
e−λGµI(1−s)

)
.

Let z be the final size of a major outbreak in the household and global model.
Then z = 1− π1, where π1 is the smallest solution to the equation b(s) = s.

Similarly to Section 4.1.1, we adjust our notation to reflect the depen-
dencies in the model. So for the rest of this chapter we write z(λH ;R0, H, I),
λG(λH ;R0, H, I), fM(n)(s, λH ; I) and µ(n)

i−1(λH ; I) for the quantities z, λG, fM(n)(s)
and µ(n)

i−1 respectively. Therefore, z(λH ;R0, H, I) is the largest solution in (0, 1]
of the equation

1− z(λH ;R0, H, I) = e−λG(λH ;R0,H,I)µIz(λH ;R0,H,I)

×
∞∑
n=1

ρ̃nfM(n)

(
e−λG(λH ;R0,H,I)µIz(λH ;R0,H,I), λH ; I

)
.

(4.75)

Furthermore, by Pellis et al. (2012), λG(λH ;R0, H, I) satisfies

λG(λH ;R0, H, I)µI
∞∑
i=1

1
Ri

0

∞∑
n=i

ρ̃nµ
(n)
i−1(λH ; I) = 1. (4.76)

4.2.1 Adding a small amount of household structure to
the homogeneously mixing model

We now consider the effect of fixing R0 and adding a small amount of household
heterogeneity to the homogeneously mixing model, and give a similar result to
Theorem 4.1. The results in Theorem 4.4 correspond to the gradients of the
lines on the left-hand side of Figure 4.2, i.e. λH = 0.

Theorem 4.4. Let z be the final size of a major outbreak on the household and
global model with household size distribution H. Assume that z(0;R0, H, I) < 1,
R0 > 1 and ρ1 < 1. Then

(i)
z(0;R0, H, I) = zH(R0),
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(ii)
dz

dλH
(0;R0, H, I) = 0,

(iii)

d2z

dλH2 (0;R0, H, I) (1−R0 (1− zH(R0)))

= µ2
IzH(R0) (1− zH(R0))

( 2
R0

+ 3zH(R0)− 2
)

×
(
E[H̃]2 + E[H̃]− E[H̃2]− 1

)
,

(iv)

sgn
(

d2z

dλH2 (0;R0, H, I)
)

= sgn
(

E
[
H2
] (

1 + E [H2]
E [H]

)
− E

[
H3
]
− E [H]

)
.

The proof of Theorem 4.4 follows a similar argument to the proof of Theorem
4.1. However, the proof of Theorem 4.4 involves calculating the derivatives of
the probability generating functions of the final size of household susceptibility
set’s and Gontcharoff polynomials with respect to λH and evaluated at λH = 0.
Therefore the computations are far more involved while not substantially chang-
ing the flow of the proof so we postpone the proof of Theorem 4.4 to Section
B.3.

Theorem 4.4 is the key analytic result in our investigation of the household
and network model, and proves that the effect of fixing R0 and introducing a
small amount of household heterogeneity to the homogeneously mixing model
on the final size of a major outbreak is determined by a function of the first
three moments of the household size distribution. In contrast, Theorem 4.1
shows that (for fixed R0) the effect of introducing a small amount of network
heterogeneity to the homogeneously mixing model on the final size depends
on the first two moments of the degree distribution. We conjecture that the
difference in moments required to understand the effect of introducing a small
amount of heterogeneity arises from the difference in moments required to
calculate the household size distribution and the degree distribution of a globally
contacted individual, which we now explore.

Firstly consider the network and global model. A globally contacted individ-
ual (i.e. type-1) in the backward branching process has degree distribution D
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and the second derivative of the final size of a major outbreak with respect to
λN , evaluated at λN = 0, is a function of the first two moments of D. However,
an individual contacted via the network (i.e. type-2) in the backward branching
process has degree distribution D̃, where fD̃ = sf ′D(s)/µD, and the second
derivative of the final size of a major outbreak (starting with a single type-2
individual) with respect to λN , evaluated at λN = 0 (which can be calculated
by differentiating equation (4.22) in the proof of Theorem 4.1), is a function of
the first three moments of D.

Next consider the household and global model. An individual in the backward
branching process has household size distribution H̃ and the second derivative
of the final size of a major outbreak with respect to λH , evaluated at λH = 0,
is a function of the first three moments of H. Clearly each derivative of the
final size of a major outbreak with respect to λH , evaluated at λH = 0, requires
knowledge of an additional moment.

In general, Theorem 4.4 shows that if the household size distribution has a
small variance then introducing a small amount of household heterogeneity to
the homogeneously mixing model is likely to increase the final size of a major
outbreak. Similarly, by Theorem 4.1 if the degree distribution of the network
and global model has a small variance then introducing a small amount of
network heterogeneity to the homogeneously mixing model increases the final
size of a major outbreak.

Remark 4.1. An example of a household size distribution for which the final
size will decrease with the addition of a small amount of household heterogeneity
to the homogeneously mixing model is given by HM , as illustrated in Figure
4.2. Examples of household size distributions for which the final size of a major
outbreak will increase are given by H ∼ Const(n), for n = 2, 3, . . . .

4.2.2 Considering a saturated household infection rate

We now simplify the analysis of the household and global model by assuming that
the household infection rate is saturated, i.e. λH =∞, similarly to Becker and
Utev (1998). Therefore we consider an ordering of the lines on the right-hand
side of Figure 4.2. For the rest of this section we assume that the household
infection rate is saturated.
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We now give a sufficient condition for an ordering of the final sizes of major
outbreaks on household and global models with a saturated household infection
rate. Let H1 and H2 be two distributions with support in the non-negative
integers and size-biased distributions H̃1 and H̃2 respectively. Furthermore, let
z (λH , H1;R0, I) and z (λH , H2;R0, I) be the final size of a major outbreak in
the household and global model with basic reproduction number R0, household
infection rate λH , infectious period distribution I and household size distribution
H1 and H2 respectively.

Proposition 4.5. Assume that R0 > 1.

(i) If, for all s ∈ (0, 1],

fH̃1

exp
− R2

0s

R0 + E
[
H̃1
]
− 1

 < fH̃2

exp
− R2

0s

R0 + E
[
H̃2
]
− 1


(4.77)

then z (∞, H2;R0, I) < z (∞, H1;R0, I).

(ii) If, for all s ∈ (0, 1],

fH̃1

exp
− R2

0s

R0 + E
[
H̃1
]
− 1

 < e−R0s (4.78)

then zH(R0) < z (∞, H1;R0, I).

Proof. Recall the mean number of cases in each generation of a household
epidemic, µ(n)

i−1(λH , I), n = 1, 2, . . . , i = 1, 2, . . . , n, discussed in Section 3.2.3.
Clearly, in the limit λH −→ ∞, a single infected individual will infect all
household neighbours with probability 1 during its infectious period. Therefore,
for n = 1, 2, . . . , µ(n)

0 (∞, I) = 1, µ(n)
1 (∞, I) = n − 1 and µ

(n)
i−1(∞, I) = 0 for

i = 3, 4, . . . , n. Therefore, for a household size distribution H, considering
equation (4.76) in the limit λH −→∞ yields

1 = λG(∞;R0, H, I)µI
(
R−1

0

∞∑
n=1

ρ̃n +R−2
0

∞∑
n=2

ρ̃n (n− 1)
)

= λG(∞;R0, H, I)µI
1
R2

0

(
R0 + E

[
H̃
]
− 1

)
, (4.79)

so
λG(∞;R0, H, I)µI = R2

0

R0 + E
[
H̃
]
− 1

. (4.80)
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Taking the limit λH −→ ∞ of equation (4.75) and substituting equation
(4.80) implies that z (∞, H1;R0, I) and z (∞, H2;R0, I) satisfy

1− z (∞, H1;R0, I) =
∞∑
n=1

ρ̃ne−nλG(∞;R0,H,I)µIz(∞,H1;R0,I)

= fH̃1

exp
−R2

0z (∞, H1;R0, I)
R0 + E

[
H̃1
]
− 1

 (4.81a)

and

1− z (∞, H2;R0, I) =
∞∑
n=1

ρ̃ne−nλG(∞;R0,H,I)µIz(∞,H2;R0,I)

= fH̃2

exp
−R2

0z (∞, H2;R0, I)
R0 + E

[
H̃2
]
− 1

 (4.81b)

respectively. For z(∞, H;R0, I) ∈ (0, 1], the right-hand side of both equations
(4.81) are decreasing functions. Therefore if there exists s ∈ (0, 1] such that
1 − s < fH̃2

(
exp

(
− R2

0s

R0+E[H̃2]−1

))
, then z (∞, H2;R0, I) < s. Therefore, to

prove part (i) we need only show that

1− z (∞, H1;R0, I) = fH̃1

exp
−R2

0z (∞, H1;R0, I)
R0 + E

[
H̃1
]
− 1


< fH̃2

exp
−R2

0z (∞, H1;R0, I)
R0 + E

[
H̃2
]
− 1

 ,
which holds by the assumption given in equation (4.77).

Now consider part (ii). Recall that zH(R0) satisfies 1− zH(R0) = e−R0zH(R0)

and, following an analogous argument to part (i), we need only show that

1− z(∞, H1;R0, I) = fH̃1

exp
−R2

0z (∞, H1;R0, I)
R0 + E

[
H̃1
]
− 1


< e−R0z(∞,H1;R0,I)

to prove part (ii), which holds by the assumption given in equation (4.78).

A simple application of Proposition 4.5 immediately yields an ordering of
zH(R0) and the final size of a major outbreak in the household and global model
with a constant household size distribution.
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Figure 4.3: The effect of the household size distribution on the final size of
a major outbreak in the household and global model for a range of constant
household size distributions, along with the line z = zH(R0) for comparison.
Other parameters are R0 = 2 and I ∼ Const(1).

Corollary 4.3. If H1 ∼ Const(n1) and H2 ∼ Const(n2), 1 < n1 < n2 and
z (∞, H2;R0, I) < 1, then, for R0 > 1,

zH(R0) < z (∞, H1;R0, I) < z (∞, H2;R0, I) .

Corollary 4.3 is illustrated in the right-hand side of Figure 4.3, in which
the final size of a major outbreak appears to converge to a limiting value
as λH −→ ∞, which is ordered with larger households having larger major
outbreaks in the limit λH −→∞.

4.3 Concluding remarks

In this chapter we consider the effect of network and household heterogeneity
on the final size of a major outbreak while R0 is kept fixed, with the majority
of our analytical focus on the extreme values of λG, i.e. considering the effect of
fixing R0 and introducing a small amount of network or household heterogeneity
to the homogeneously mixing model, or considering an ordering of the final size
of a major outbreak on the standard network model with R0 kept fixed.
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We show that fixing R0 and introducing a small amount of network hetero-
geneity (with degree distribution D) to the homogeneously mixing model, by
increasing the network infection rate while decreasing the global infection rate,
will increase the final size of a major outbreak if 1− σ2

D/µD > 0, and decrease
the final size of a major outbreak if 1 − σ2

D/µD < 0. However, fixing R0 and
introducing a small amount of household heterogeneity (with household size
distribution H) to the homogeneously mixing model, by increasing the household
infection rate while decreasing the global infection rate, will increase the final
size of a major outbreak if E [H2]

(
1 + E[H2]

E[H]

)
−E [H3]−E [H] > 0, and decrease

the final size of a major outbreak if E [H2]
(

1 + E[H2]
E[H]

)
− E [H3] − E [H] < 0.

Furthermore, we give an ordering for the final size of a major outbreak in
the standard network model with a range of degree distributions, and in the
household and global model with a saturated infection rate and some constant
household size distributions.

Importantly, we prove that fixing R0 and introducing network or household
heterogeneity to the homogeneously mixing model does not always have a mono-
tonic effect on the final size of a major outbreak. Therefore the effect of fixing R0

and introducing a small amount of heterogeneity to the homogeneously mixing
model is not necessarily the same as the effect of introducing more heterogeneity
to an already heterogeneous model.

A major difficulty in evaluating the difference final size of a major outbreak
in network and global models is that we need to compare the extinction proba-
bilities of multiple two-type branching processes. This is a complicated problem,
although we feel that further progress could be made by generalising Lemma
4.4 in Section 4.1.4 to allow for two partial derivatives to have opposite signs.
Although analysis of the household and global model only requires knowledge of
single-type branching processes, we find ourselves limited in our investigations
by the complicated expressions determining the size of a household susceptibility
set and the mean number of cases in each generation of a single household
epidemic.

The results in Chapter 4 show that transmitting the disease through global
contacts or a network structure have different effects on the final outcome of
the epidemic.
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4.4 Table of common notation introduced in
Chapter 4

Symbol Meaning Page
zH(R0) The final size of a major outbreak in the homo-

geneously mixing model with basic reproduction
number R0.

93

z1 (pN(λN);R0, D, I) The final size of a major outbreak in the network
and global model with degree distribution D,
basic reproduction number R0, network infection
rate λN and infectious period distribution I.

94

zPoi(α)(R0, λG; I) The final size of a major outbreak in the net-
work and global model with degree distribu-
tion D ∼ Poi(α), basic reproduction number R0,
global infection rate λG and infectious period I.

102

zBin(n,p)(R0, λG; I) The final size of a major outbreak in the net-
work and global model with degree distribution
D ∼ Bin(n, p), basic reproduction number R0,
global infection rate λG and infectious period I.

104

zNB(r,p)(R0, λG; I) The final size of a major outbreak in the net-
work and global model with degree distribution
D ∼ NB(r, p), basic reproduction number R0,
global infection rate λG and infectious period I.

105

zLog(p)(R0, λG; I) The final size of a major outbreak in the net-
work and global model with degree distribu-
tion D ∼ Log(p), basic reproduction number R0,
global infection rate λG and infectious period I.

120

z (λH , H;R0, I) The final size of a major outbreak in the house-
hold and global model with basic reproduction
number R0, household infection rate λH , infec-
tious period distribution I and household size
distribution H.
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5. Effect of global contacts on the
acquaintance vaccination strategy

In this chapter we introduce three vaccination strategies on the network and
global model: the acquaintance vaccination strategy, the uniform vaccination
strategy and the optimal vaccination strategy. Under all three vaccination
strategies we vaccinate individuals with a perfect vaccine after the network
has been constructed but before the first infection occurs. We assume that
individuals vaccinated with a perfect vaccine always become immune, with this
immunity never waning, and immune individuals do not play any part in the
epidemic, i.e. they cannot become infected, susceptible or removed.

First we consider the acquaintance vaccination strategy introduced by Ball
and Sirl (2013) and Ball and Sirl (2017), in which neighbours of individuals
sampled uniformly at random from the population are chosen for vaccination.
Acquaintance vaccination is based on the acquaintance vaccination strategy
introduced by Cohen et al. (2003) and further developed by Britton et al. (2007),
which we refer to as the ‘single-neighbour’ acquaintance vaccination strategy.
Under the single-neighbour vaccination strategy we sample individuals uniformly
at random from the population and vaccinate a single neighbour chosen uni-
formly at random from the set of all possible neighbours. Both the acquaintance
vaccination and single-neighbour acquaintance vaccination strategies tend to
vaccinate individuals with larger degrees using only local knowledge of the
network. This makes them a powerful tool in preventing the spread of epidemics
since it is well-known that vaccination strategies that target individuals with
large degrees often increase the effectiveness of vaccination (see, for example,
Dezső and Barabási (2002)). However, we do not investigate the single-neighbour
acquaintance vaccination strategy, since even the vaccination coverage does
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not admit a simple closed form expression. Furthermore, the extension of the
single-neighbour acquaintance vaccination strategy to the generalised vaccine
reaction of Becker and Starczak (1998), assuming a non-perfect vaccine, requires
a branching process with countably many types (see Ball and Sirl (2013)).

Next we contrast the acquaintance vaccination strategy with the uniform
vaccination strategy, in which individuals are chosen uniformly at random for
vaccination, and optimal vaccination, in which we use global knowledge of the
network to order individuals by their degree and vaccinate individuals in de-
scending order of degree to the required vaccination coverage. We give conditions
under which, for a fixed vaccination coverage, the acquaintance vaccination
strategy performs worse than the uniform vaccination strategy. For each vacci-
nation strategy we numerically investigate the convergence of the final size of
a major outbreak in finite populations to the asymptotic calculations. Finally,
we discuss how the addition of global contacts affects the final size of a major
outbreak and the critical vaccination coverage of the three vaccination strategies.

This chapter is laid out in the following way. In Sections 5.1 - 5.3 we analyse
the acquaintance, uniform and optimal vaccination strategy respectively. In each
case we determine a post-vaccination threshold parameter and expected relative
final size of a major outbreak. In the context of acquaintance vaccination we also
address the issue of choosing the parameters of the vaccination selection process.
In Section 5.4 we compare the acquaintance and uniform vaccination strategies,
giving conditions under which acquaintance vaccination strategy performs worse
than the uniform vaccination strategy. In Section 5.5 we present numerical
results, discussing the convergence of the final size of a major outbreak in finite
populations to their asymptotic limits for the optimal, acquaintance and uniform
vaccination strategies in Section 5.5.1, and the effect of global contacts on the
critical vaccination coverage for the three vaccination strategies in Section 5.5.2.
Finally we give our concluding remarks in Section 5.6 and a table of common
notation introduced in this chapter in Section 5.7.
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5.1 Acquaintance vaccination on the network
and global model

5.1.1 Description of acquaintance vaccination

Before proceeding with the details of the acquaintance vaccination strategy we
define the vaccination coverage and critical vaccination coverage. The vacci-
nation coverage, c, of a vaccination strategy is the proportion of individuals
in the population vaccinated, and the critical vaccination coverage, c∗, is the
proportion of the population we need to vaccinate to reduce the basic reproduc-
tion number of the model under vaccination to 1. We now give a description of
acquaintance vaccination and useful definitions and distributions required for
further calculations, which are also given in Ball and Sirl (2013).

Recall that the network and global model is discussed in Section 4.1. Un-
der the acquaintance vaccination strategy each individual in the population is
sampled independently with probability pS and each network neighbour of a
sampled individual is independently chosen for vaccination with probability pC .
Finally, any individual which has been chosen for vaccination at least once is
vaccinated with the perfect vaccine. Note that for this vaccination strategy to be
applied we require an underlying network structure, i.e. to apply acquaintance
vaccination we require p0 < 1, which we assume for the rest of this Chapter.
Note that if p0 > 0 then the maximum vaccination coverage that can be achieved
will be less than 1.

Under the acquaintance vaccination strategy, for an individual i to be chosen
for vaccination by a given network neighbour j, j must be sampled, occurring
with probability pS, and choose i for vaccination, occurring with conditional
probability pC . Therefore the probability that an individual is not chosen for
vaccination by a given network neighbour is 1− pSpC . Thus, since an individual
i chosen uniformly at random from the population has D network neighbours,
each of whom does not choose i for vaccination independently with probability
1− pSpC , the probability that an individual chosen uniformly at random from
the population is vaccinated is

pV = 1−
∞∑
k=0

pk(1− pSpC)k = 1− fD(1− pSpC). (5.1)
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Note that, by definition, pV is also the vaccination coverage of the vaccination
strategy.

By restricting our attention to a perfect vaccine we need only consider a
two-type forward and backward branching process as in the network and global
model. In the forward branching process, used to calculate the threshold param-
eter R0, individuals are typed by whether they were infected by a global (type-1)
or network (type-2) contact. In the backward branching process, used to calcu-
late the final size of a major outbreak, individuals are typed by whether they join
an individuals susceptibility set by a global (type-1) or network (type-2) contact.
Before considering a threshold parameter and final size of a major outbreak for
this model, we calculate the degree distributions of an unvaccinated individual
chosen uniformly at random from the population, i.e. a type-1 individual, and
an unvaccinated individual contacted via the network, i.e. a type-2 individual.

Consider an unvaccinated individual, i say, that has been globally contacted,
and denote their degree distribution by DU . Let U be the event that an
individual is unvaccinated. Then a priori i’s degree is distributed according to
D and i is vaccinated with probability pV , given in equation (5.1). Thus DU is
given by

P(DU = d) = P(D = d)P(U |D = d)
P(U) = pd(1− pSpC)d

1− pV
, d = 0, 1, . . . . (5.2)

Next consider an unvaccinated individual contacted via the network, i say,
and denote their degree distribution by D̃U . Then i has unconditional degree
distribution D̃, and we know that i avoids vaccination by all of its neighbours.
Note that we do not count i’s parent in the branching process, which must not
vaccinate i by definition (leading to the d− 1 term in equation (5.3)). Therefore

P(D̃U = d) = P(D̃ = d, U)
P(U) = p̃d(1− pSpC)d−1

1− p̃V
, d = 1, 2, . . . . (5.3)

where
p̃V =

∞∑
i=2

p̃i(1− (1− pSpC)i−1) = 1− fD̃−1(1− pSpC) (5.4)

is the a priori probability that i is vaccinated.

Finally, we denote by IS the event that an individual is sampled, and note
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that we know that an individual contacted via the network does not choose its
parent in the branching process for vaccination. Therefore the probability that
an individual contacted via the network is sampled, given that they did not
choose their parent in the branching process for vaccination, is given by

p̃SU = P (IS|does not choose parent) = pS(1− pC)
pS(1− pC) + 1− pS

= pS(1− pC)
1− pSpC

.

(5.5)

5.1.2 Threshold parameter

We now calculate the threshold parameter, RA
0 , which determines whether or

not the forward Galton-Watson branching process can have infinite progeny and
therefore, by definition, whether or not a major outbreak can occur (see Section
3.2.1). Since the network and global model does not contain any household
structure, RA

0 is the largest eigenvalue of the mean next-generation matrix MA

given in Theorem 5.1, so

RA
0 =

mA
11 +mA

22 +
√

(mA
11 −mA

22)2 + 4mA
12m

A
21

2 . (5.6)

Theorem 5.1. The next-generation matrix MA is given by

MA =
λGµI(1− pV ) pN(1− p̃V ) (1− pSpC) E [DU ]
λGµI(1− pV ) pN(1− p̃V ) (1− p̃SUpC) E

[
D̃U − 1

] . (5.7)

Proof. This proof uses similar arguments to the work in Ball and Neal (2008)
and Ball and Sirl (2013), and we follow similar notation to that introduced in
Section 3.2.2.

First consider the expected number of infectious global contacts made by
type-1 and type-2 individuals. Note that the number of global contacts made
by an individual is independent of its network degree, so the distribution of the
number of global contacts made by an infected individual does not depend on
its type, thus mA

11 = mA
21.

Let CGG be the number of infectious global contacts made by a single
infected individual who was contacted globally. An infectious individual makes
global contacts at rate λG throughout an infectious period I with mean µI ,
and these global contacts are made with distinct individuals chosen uniformly
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at random from the population. An individual chosen uniformly at random
from the population is unvaccinated with probability 1 − pV . Therefore the
total number of global contacts an infectious individual makes has a Poisson
distribution with parameter λGµI and, conditional on the number of global
contacts an infectious individual makes, CP

GG, the number of infectious global
contacts follows a Binomial distribution with CP

GG trials and success probability
(1− pV ). Thus

mA
11 = E [CGG] = λGµI(1− pV ) = mA

21. (5.8)

Next we consider the number of infectious network contacts. Let CGN and
CNN be the total number of infectious network contacts made by a typical
type-1 and type-2 individual, respectively. The expectations of both CGN and
CNN can be determined by conditioning on the individual’s infectious period, I,
and the number of uninfected neighbours it has in the network, which is DU

for a type-1 individual and D̃U − 1 otherwise. All infectious periods have the
same distribution, I, and note that a type-1 or type-2 individual is sampled
with probability pS or p̃SU respectively, and otherwise unsampled.

Consider a type-1 individual i. Conditional on i’s infectious period, i makes
infectious contact with a given network neighbour, j, if all of the following hold:
j is not chosen for vaccination by i, occurring with probability 1−pSpC ; j is not
already vaccinated by another network neighbour, occurring with probability
1− p̃V ; and j is contacted, occurring with probability

(
1− e−λN Ii

)
. Thus

CGN |I,DU ∼ Bin
(
DU ,

(
1− e−λN I

)
(1− p̃V ) (1− pS + pS(1− pC))

)
and, recalling that an individual’s infectious period is independent of its degree
distribution,

mA
12 = pN(1− p̃V ) (1− pSpC) E [DU ] . (5.9)

The same calculations hold for mA
22 if DU and pS are replaced by D̃U − 1 and

p̃SU respectively. Therefore

mA
22 = pN(1− p̃V ) (1− p̃SUpC) E

[
D̃U − 1

]
. (5.10)

Equations (5.8), (5.9) and (5.10) yield the entries of the next-generation
matrix MA as required.
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5.1.3 Final size of a major outbreak

We define the expected relative final size of a major outbreak in a population that
contains vaccinated individuals to be the fraction of initially susceptible individ-
uals that are ultimately infected by the epidemic in a major outbreak when there
was a single initial infective chosen uniformly at random from the population.
Therefore to recover the proportion of ultimately infected individuals among
the entire population, including the vaccinated individuals, we must multiply
the final size of a major outbreak by 1− c. In this chapter we refer to the ex-
pected relative final size of a major outbreak as the final size of a major outbreak.

To calculate the final size of a major outbreak in the network and global
model under the acquaintance vaccination strategy we consider a backwards
Galton-Watson branching process that approximates the spread of an indi-
vidual’s susceptibility set, similarly to Section 3.3. Let BGG and BNG be the
number of individuals that join the susceptibility set of a typical type-1 and
type-2 individual respectively through a direct global contact. Similarly, let
BGN and BNN be the number of individuals that join the susceptibility set of a
typical type-1 and type-2 individual respectively via a network contact.

Let the probability generating functions for the offspring distribution of a
type-1 and type-2 individual in the backward branching process be given by
b1(s1, s2) and b2 (s1, s2), (s1, s2) ∈ [0, 1]2, respectively, so b1 (s1, s2) = E

[
sBGG1 sBGN2

]
and b2 (s1, s2) = E

[
sBNG1 sBNN2

]
. Let b (s1, s2) = (b1 (s1, s2) , b2 (s1, s2)).

By similar arguments to those given in Section 3.3, the final size of a major
outbreak is z = 1− π1, where π = (π1, π2) is the smallest solution to the set of
simultaneous equations π = b(π).

Theorem 5.2. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

b1 (s1, s2) = e−λGµI(1−pV )(1−s1)fDU [1− pN(1− p̃V ) (1− pSpC) (1− s2)] ,

b2 (s1, s2) = e−λGµI(1−pV )(1−s1)fD̃U−1 [1− pN(1− p̃V ) (1− p̃SUpC) (1− s2)] .

Proof. The proof of Theorem 5.2 proceeds similarly to the proof of Theorem
3.6. Since the calculations of b1 (s1, s2) and b2 (s1, s2) are similar, we write BAG

and BAN , where A ∈ {G,N}.
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Consider an individual i in the population. All infectious contacts made to
i, both global and via the network, are made by different individuals. Therefore
all infectious contacts made to i are made by individuals with independent and
identically distributed infectious periods, I. Furthermore, we know that the
number of global contacts made to individual i, the degree distribution of i, the
probability that a given unvaccinated network neighbour contacts i and whether
i is sampled are all mutually independent. So BAG and BAN are independent
and, since the only difference between a type-1 individual and a type-2 individual
is the network degree of the individual, we know that BGG

D= BNG.

A given network neighbour, j, of i can only make infectious contact with
i if j: is not chosen for vaccination by i, is not already vaccinated by another
neighbour and contacts i. Thus if i is a type-1 individual then j contacts i
with probability (1− pSpC) (1 − p̃V )pN , and if i is a type-2 individual then j
contacts i with probability (1− p̃SUpC) (1− p̃V )pN . Conditioning on the number
of network neighbours of i, which is distributed as DU or D̃U for a type-1 or
type-2 individual respectively, yields

BGN |DU ∼ Bin (DU , pN(1− p̃V ) (1− pSpC)) (5.11a)

and
BNN |D̃U ∼ Bin

(
D̃U − 1, pN(1− p̃V ) (1− p̃SUpC)

)
. (5.11b)

So, applying the independence of BAG and BAN to b1 (s1, s2) and b2 (s1, s2)
and using equations (5.11),

E
[
sBGG1 sBGN2

]
= E

[
sBGG1

]
E
[
sBGN2

]
,

= E
[
sBGG1

]
E
[
E
[
sBGN2

∣∣∣DU

]]
= E

[
sBGG1

]
fDU [1− pN(1− p̃V ) (1− pSpC) (1− s2)] , (5.12a)

and

E
[
sBNG1 sBNN2

]
= E

[
sBNG1

]
fD̃U−1 [1− pN(1− p̃V ) (1− p̃SUpC) (1− s2)] .

(5.12b)
Finally, since BGG

D= BNG we need only calculate E
[
sBGG1

]
. Consider a

population containing N individuals and, for a specified individual, i say, let N ′i
be the number of individuals in the population excluding those belonging to i’s
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local susceptibility set. Then, for any of the N ′i individuals, j say,

P(j is unvaccinated and j globally contacts i) =
(
1− E

[
e−λGI/N

])
(1− pV )

= (1− φI (λG/N)) (1− pV ).

Recall that an individual i’s local susceptibility set is the set of indi-
viduals that, were they to become infected, would contact i via a chain of
contacts made via the network (see Section 3.3.1). Denote by W

(N)
i the

number of individuals that contact i globally in a population of size N , ex-
cluding i’s local susceptibility set which contains N − N ′i individuals, and
clearly W (N)

i ∼ Bin [N ′i , (1− φI (λG/N)) (1− pV )]. Since σ2
D <∞, in the limit

N −→∞ the probability that a member of i’s local susceptibility set will glob-
ally contact i is 0, so W (N)

i
D−→ BGG as N −→ ∞. Thus, following analogous

arguments to those in the proof of Theorem 3.6 (i.e. considering the Poisson
approximation of the Binomial distribution), BGG ∼ Poi (λGµI(1− pV )).

Substituting E
[
sBGG1

]
= e−λGµI(1−pV )(1−s1) and E

[
sBNG1

]
= e−λGµI(1−pV )(1−s1)

into equations (5.12) yields the joint probability generating functions given in
Theorem 5.2.

5.1.4 Balance between pS and pC for a fixed vaccination
coverage

The acquaintance vaccination strategy has two parameters, the probability of
sampling an individual (pS) and the probability a given network neighbour is
chosen for vaccination (pC), which control the allocation of the vaccine. Further-
more, the vaccination coverage depends only on the product pSpC . Therefore, in
this section we use the same methodology as Ball and Sirl (2013) to investigate
the trade-off between pS and pC for a fixed (expected) vaccination coverage.

We begin by rearranging the next-generation matrixM into a form amendable
to investigation. Consider the quantities E [DU ] and E

[
D̃U − 1

]
. Substituting

equation (5.2) into the definition of E [DU ] and then applying the formula
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fD̃−1(s) = f ′D(s)/µD yields

E [DU ] =
∞∑
d=0

dP(DU = d)

= 1
1− pV

∞∑
d=0

dpd(1− pSpC)d

= 1− pSpC
1− pV

f ′D(1− pSpC). (5.13)

Similarly, substituting equation (5.3) into the definition of E
[
D̃U − 1

]
yields

E
[
D̃U − 1

]
=
∞∑
d=0

dP(D̃U − 1 = d)

= 1
1− p̃V

∞∑
d=0

dp̃d+1(1− pSpC)d

= 1− pSpC
1− p̃V

f ′D̃−1(1− pSpC). (5.14)

Recall that the vaccination coverage satisfies c = 1− fD(1− pSpC), so, for a
fixed degree distribution, the vaccination coverage only depends on the product
pSpC and so we write p′ = pSpC . Substituting equations (5.1), (5.4), (5.13) and
(5.14) into the next-generation matrix MA given in Theorem 5.1 yields

MA =

λGµIfD(1− p′) pN
((1−p′)f ′D(1−p′))2

µDfD(1−p′)

λGµIfD(1− p′) pN(1− 2p′ + p′pC)f ′
D̃−1(1− p′)

 .
Note that, for a fixed vaccination coverage, mA

11, mA
12 and mA

21 are constant as
pC is varied and mA

22 is strictly increasing in pC . Recall from Proposition 3.1 on
page 44 that increasing or decreasing a single element of a matrix will increase
or decrease its maximal eigenvalue respectively. Therefore, since RA

0 is the
maximal eigenvalue of the next-generation matrix M , the following proposition
holds by applying Proposition 3.1.

Proposition 5.1. If P(D > 1) > 0 and λN > 0, then, for a fixed vaccination
coverage, RA

0 is strictly increasing in pC. Otherwise, for a fixed vaccination
coverage, RA

0 does not change with pC.

Firstly, Proposition 5.1 shows that if λN = 0 or P (D > 1) = 0, i.e. if type-2
individuals cannot have type-2 offspring, then the exact balance between pS and
pC is not important. This is what we would expect for the case λN = 0, as if there
are no network infections occurring then we are considering the homogeneously
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mixing model with vaccination, and the vaccination allocation strategy is not
important, only the vaccination coverage. Similarly, in the presence of network
contacts we would expect RA

0 to be increasing in pC , for a fixed vaccination
coverage, since intuitively the effect of vaccination under this strategy would
be greater if everyone in the population chose a few individuals to be vacci-
nated, rather than a few individuals choosing all their neighbours for vaccination.

We note that in the case P(D > 1) > 0 and λN > 0 our results coincide
with the results on the standard network model discussed by Ball and Sirl
(2013), i.e. that RA

0 is minimised when (pS, pC) = (1, p′) and maximised when
(pS, pC) = (p′, 1), and that the greatest difference occurs when p′, and therefore
also the vaccination coverage, is large. However, the size of the difference in RA

0

between maximising pS vs pC will be diluted compared to the standard network
model, owing to the inclusion of global contacts.

So far in this section we have only considered the effect of increasing pC on
RA

0 , for a fixed vaccination coverage. We now turn our attention to the effect of
the balance between pS and pC , for a fixed vaccination coverage, on the final size
of a major outbreak. A rearrangement of the probability generating functions
for the offspring of the backwards branching process, given in Theorem 5.2,
similar to the rearrangement of MA, yields

b1 (s1, s2) = e−λGµIfD(1−p′)(1−s1)fD
(
(1− p′)

[
1− pN(1− p′)(1− s2)fD̃−1(1− p′)

])
fD(1− p′) ,

b2 (s1, s2) = e−λGµIfD(1−p′)(1−s1)fD̃−1

(
1− pN(1− 2p′ + p′pC)(1− s2)fD̃−1(1− p′)

)
fD̃−1(1− p′) .

Thus, for a fixed vaccination coverage, b1 (s1, s2) is not affected by the
balance between pS and pC and b2 (s1, s2) is strictly decreasing in pC . To
highlight the dependence of b1 (s1, s2), b2 (s1, s2) and b(s1, s2) on pC we write
b1 (s1, s2, pC), b2 (s1, s2, pC) and b(s1, s2, pC) respectively. Let z± = 1−π±1 , where
π± =

(
π±1 , π

±
2

)
is the smallest solution to the set of simultaneous equations

π± = b(π±, p±C), with 0 ≤ p−C < p+
C ≤ 1.

Theorem 5.3. If P(D > 1) > 0, λN > 0 and 0 < p−C < p+
C ≤ 1 then z− < z+.

Proof. To show that z− < z+ it is sufficient to show that π− > π+, which we
do by following a similar argument to the proof of Lemma 4.4. Therefore, recall
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the following notation and result from Section 2.3. For i = 1, 2, let

b
(0)
i (s, pC) = bi(0, pC),

and, for n = 1, 2, . . . ,

b
(n)
i (s, pC) = bi(b(n−1)

1 (s, pC), b(n−1)
2 (s, pC), pC) = bn−1

i (b1(s, pC), b2(s, pC), pC).

Furthermore, for i = 1, 2 and any s ∈ [0, 1]2, s 6= (1, 1),

lim
n−→∞

b
(n)
i (s, p±C) = π±i .

We now give a sufficient condition for the result π+ < π− which we then
prove by induction. For n = 2, 3, . . . , i = 1, 2, if

b
(n)
i

(
π−, p+

C

)
< π−i (5.15)

then
π+
i = lim

n−→∞
b

(n)
i (π−, p+

C) < lim
n−→∞

π−i = π−i .

Therefore to prove Theorem 5.3 it is sufficient to prove that equation (5.15)
holds. We first show the base case, b(2)

i

(
π−, p+

C

)
< π−i , i = 1, 2. Recall that, for

s ∈ [0, 1]2, s 6= (1, 1), b1
(
s, p−C

)
= b1

(
s, p+

C

)
and b2

(
s, p−C

)
> b2

(
s, p+

C

)
. Thus,

for i = 1, 2, applying equation (2.8) from Section 2.3 and noting that bi (s, pC)
is an increasing function of s,

b
(2)
i

(
π−, p+

C

)
= bi

(
b1
(
π−, p+

C

)
, b2

(
π−, p+

C

)
, p+

C

)
< bi

(
b1
(
π−, p−C

)
, b2

(
π−, p−C

)
, p+

C

)
= bi

(
π−1 , π

−
2 , p

+
C

)
≤ bi

(
π−1 , π

−
2 , p

−
C

)
,

and the base case follows by noting that bi
(
π−1 , π

−
2 , p

−
C

)
= π−i .

For the induction hypothesis, assume that, for i = 1, 2, n = 1, 2, . . . ,

b
(n)
i

(
π−, p+

C

)
< π−i ,

and consider b(n+1)
i

(
π−, p+

C

)
. For i = 1, 2, applying equation (2.8) from Section

2.3 and noting that bi (s, pC) is an increasing function of s, applying the induction

145



hypothesis yields

b
(n+1)
i

(
π−, p+

C

)
= bi

(
b

(n)
1

(
π−, p+

C

)
, b

(n)
2

(
π−, p+

C

)
, p+

C

)
< bi

(
π−1 , π

−
2 , p

+
C

)
≤ bi

(
π−1 , π

−
2 , p

−
C

)
= π−i ,

as required.

Theorem 5.3 proves that, for a fixed vaccination coverage, the final size of a
major outbreak is maximised when pC = 1 and minimised when pS = 1.

5.2 Uniform Vaccination on the network and
global model

5.2.1 Description of uniform vaccination

Under the uniform vaccination strategy, each individual in the population is
vaccinated with the perfect vaccine independently with probability pV . Clearly
this means that the vaccination coverage c = pV . Similarly to the calculations
for the acquaintance vaccination strategy discussed in Section 5.1, we consider
two-type forward and backward branching processes as in the network and
global model. In the forward branching process, used to calculate the threshold
parameter R0, individuals are typed by whether they were infected by a global
(type-1) or network (type-2) contact. In the backward branching process, used
to calculate the final size of a major outbreak, individuals are typed by whether
they join an individual’s susceptibility set by a global (type-1) or network
(type-2) contact.

5.2.2 Threshold parameter

We now give the calculations for a threshold parameter RU
0 . Similarly to

Section 5.1.2, the threshold parameter RU
0 is the largest eigenvalue of the mean

next-generation matrix MU , which is given in the Theorem below.
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Theorem 5.4. The next-generation matrix MU is given by

MU =
λGµI(1− pV ) pN(1− pV )µD
λGµI(1− pV ) pN(1− pV )µD̃−1

 . (5.16)

Proof. This proof proceeds similarly to the proof of Theorem 5.1. The difference
between the proof of Theorems 5.1 and 5.4 is in the probability that a contact
is made with an unvaccinated individual.

First consider the expected number of type-1 offspring of a typical type-1 or
type-2 individual. The probability an individual chosen uniformly at random
from the population, i.e. an individual contacted globally, is unvaccinated is
1− pV , so, applying analogous arguments to those in the proof of Theorem 5.1,

mU
11 = mU

21 = λGµI(1− pV ). (5.17)

We now consider the number of type-2 offspring of a single type-1 or type-2
individual, which we define by CGN and CNN respectively. The probability
that each neighbour of a type-1 or type-2 individual is unvaccinated is 1− pV ,
independently of the event that any other neighbour is unvaccinated. Therefore
analogous arguments to those in the proof of Theorem 5.1 yield

mU
12 = pN(1− pV )µD, (5.18a)

mU
22 = pN(1− pV )µD̃−1. (5.18b)

Equations (5.17) and (5.18) yield the entries of the next-generation matrix
MU as required.

We now comment on the critical vaccination coverage of two network and
global models under the uniform vaccination strategy matched by R0. Consider
the network and global model under no vaccination, i.e. pV = 0 in Theorem
5.4. This model has basic reproduction number R0 and the approximating
forward branching process has mean next-generation matrix M . Then consider
a network and global model with the same parameters except that we apply the
uniform vaccination strategy with each individual in the population vaccinated
with probability pV , which has basic reproduction number RU

0 and mean next-
generation matrix MU . Note that MU = (1− pV )M , so RU

0 = (1− pV )R0 and
thus the critical vaccination coverage under the uniform vaccination strategy
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for the network and global model depends on R0, and not the specific choice of
D, λG or λN , yielding the following remark.

Remark 5.1. Two network and global models matched by R0 have the same
critical vaccination coverage, c∗ = 1 − 1/R0, under the uniform vaccination
strategy.

Remark 5.1 is intuitive, since the critical vaccination coverage under both
the standard network model and the homogeneously mixing model with basic
reproduction number R0 is c∗ = 1− 1/R0 and the network and global model is
an amalgamation of these two models.

5.2.3 Final size of a major outbreak

To calculate the final size of a major outbreak in this model, we consider a
backwards Galton-Watson branching process that approximates the spread of
an individual’s susceptibility set, similarly to Section 3.3. Let BGG and BNG be
the number of type-1 offspring of a type-1 and type-2 individual respectively
in the backwards branching process, and similarly let BGN and BNN be the
number of type-2 offspring of a type-1 and type-2 individual respectively.

Let the probability generating functions for the offspring distribution of a
type-1 and type-2 individual in the backward branching process be given by
b1(s1, s2) and b2 (s1, s2), (s1, s2) ∈ [0, 1]2, respectively, so b1 (s1, s2) = E

[
sBGG1 sBGN2

]
and b2 (s1, s2) = E

[
sBNG1 sBNN2

]
. Furthermore let b (s1, s2) = (b1 (s1, s2) , b2 (s1, s2)).

By similar arguments to those given in Section 3.3, the relative final size of
a major outbreak is z = 1− π1, where π = (π1, π2) is the smallest solution to
the set of simultaneous equations π = b(π).

Theorem 5.5. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

b1 (s1, s2) = e−λGµI(1−pV )(1−s1)fD (1− pN(1− pV ) + pN(1− pV )s2) ,

b2 (s1, s2) = e−λGµI(1−pV )(1−s1)fD̃−1 (1− pN(1− pV ) + pN(1− pV )s2) .

Proof. The proof of Theorem 5.5 proceeds similarly to the proof of Theorem
5.2. Similarly to the proof of Theorem 5.2, we write BAG and BAN , where
A ∈ {G,N}.
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A given network neighbour, j, of i can only make infectious contact with i if
j is not already vaccinated and j contacts i. Thus, regardless of whether i is a
type-1 or type-2 individual, j contacts i with probability pN (1− pV ). Therefore,
conditional on the number of uninfected neighbours of i, which is D or D̃ − 1
for a type-1 or type-2 individual respectively,

BGN |D ∼ Bin (D, pN(1− pV ))

and
BNN |D̃ ∼ Bin

(
D̃ − 1, pN(1− pV )

)
.

Applying similar arguments to those in the proof of Theorem 5.2, we know
that BAG and BAN are independent and BGG

D= BNG. Therefore

E
[
sBGG1 sBGN2

]
= E

[
sBGG1

]
E
[
sBGN2

]
,

= E
[
sBGG1

]
E
[
E
[
sBGN2

∣∣∣D]]
= E

[
sBGG1

]
fD (1− pN(1− pV ) + pN(1− pV )s2) , (5.20a)

and

E
[
sBNG1 sBNN2

]
= E

[
sBNG1

]
fD̃−1 (1− pN(1− pV ) + pN(1− pV )s2) . (5.20b)

Finally, since BGG
D= BNG we need only calculate E

[
sBGG1

]
. Consider a

population containing N individuals. Then, for specified individuals, i and j
say,

P(j is unvaccinated and j globally contacts i) =
(
1− E

[
e−λGI/N

])
(1− pV )

= (1− φI (λG/N)) (1− pV ).

Denote by W (N)
i the number of people that contact individual i globally in a

population of size N . Then W (N)
i ∼ Bin [N, (1− φI (λG/N)) (1− pV )]. Clearly

W
(N)
i

D−→ BGG as N −→ ∞. Thus, following analogous arguments to those
in the proof of Theorem 3.6, i.e. considering the Poisson approximation of the
Binomial distribution, BGG ∼ Poi (λGµI(1− pV )).

Substituting E
[
sBGG1

]
= e−λGµI(1−pV )(1−s1) and E

[
sBNG1

]
= e−λGµI(1−pV )(1−s1)

into equations (5.20) yields the joint probability generating functions given in
Theorem 5.5.
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5.3 Optimal Vaccination on the network and
global model

5.3.1 Description of optimal vaccination

We now extend the work in Ball and Sirl (2013), Appendix B, for the optimal
vaccination strategy in the standard network model to the network and global
model, although limiting our attention to a perfect vaccine. We conjecture that
this vaccination strategy is optimal in the network and global model since the
addition of global contacts, which are equally likely to infect any individual
in the population, are unlikely to change the choice of vertices for optimal
vaccination. Therefore, as in Ball and Sirl (2013), the optimal vaccination
strategy when λN > 0 is to vaccinate individuals with a degree larger than a
cut-off value, the cut-off being determined by the desired vaccination coverage.

Given the desired vaccination coverage, c, let dc be the smallest degree of
an individual which we vaccinate, so dc = max

{
n ∈ Z+ : ∑n−1

k=0 pk < 1− c
}
. We

vaccinate no individuals of degree dc− 1 or lower, all individuals of degree dc + 1
or higher, and some proportion δ ∈ (0, 1] of individuals of degree dc. Clearly we
require c = ∑∞

k=dc+1 pk + δpdc , so δ =
(
c−∑∞k=dc+1 pk

)
/pdc .

Similarly to the calculations for the acquaintance vaccination strategy dis-
cussed in Section 5.1, we consider two-type branching processes as in the network
and global model. In the forward branching process, used to calculate the thresh-
old parameter R0, individuals are typed by whether they were infected by a
global (type-1) or network (type-2) contact. In the backward branching process,
used to calculate the final size of a major outbreak, individuals are typed by
whether they join an individuals susceptibility set by a global (type-1) or network
(type-2) contact.

Let DO
U be the degree distribution of an unvaccinated individual chosen uni-

formly at random from the population. An individual chosen uniformly at ran-
dom from the population has unconditional degree D, so, for k = 0, 1, . . . , dc−1,
P
(
DO
U = k

)
= pk(1− c)−1 and P

(
DO
U = dc

)
= (1− δ)pdc(1− c)−1.

Similarly, let D̃O
U be the degree distribution of an unvaccinated individual

contacted via the network. An unvaccinated individual contacted via the net-
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work will have unconditional degree distribution D̃, so, for k = 0, 1, . . . , dc − 1,
P
(
D̃O
U = k

)
= p̃k(1 − p̃V )−1 and P

(
D̃O
U = dc

)
= (1 − δ)p̃dc(1 − p̃V )−1, where

p̃V = δp̃dc +∑∞
k=dc+1 p̃k is the probability that an individual contacted via the

network is vaccinated.

5.3.2 Threshold parameter

We now give the calculations for a threshold parameter RO
0 . Similarly to

Section 5.1.2, the threshold parameter RO
0 is the largest eigenvalue of the mean

next-generation matrix MO, which is given in the Theorem below.

Theorem 5.6. The next-generation matrix MO is given by

MO =
λGµI(1− pV ) pN(1− p̃V )E

[
DO
U

]
λGµI(1− pV ) pN(1− p̃V )E

[
D̃O
U − 1

] . (5.21)

Proof. As with the proof of Theorem 5.4, this proof proceeds similarly to the
proof of Theorem 5.1, differentiated by the degree distributions of type-1 and
type-2 individuals and the probability that individuals are unvaccinated.

The probability an individual chosen uniformly at random from the popula-
tion, i.e. an individual contacted globally, is unvaccinated is 1− pV , so, applying
analogous arguments to those in the proof of Theorem 5.1,

mO
11 = m21 = λGµI(1− pV ). (5.22)

The degree distribution of a type-1 individual and type-2 individual is given
by DO

U and D̃O
U respectively and, since the vaccination is given to individuals

based on their degree and half-edges are paired uniformly at random, each
neighbour of a type-1 or type-2 individual is independently unvaccinated with
probability 1− p̃V and otherwise vaccinated. Therefore, by similar arguments
to the proof of Theorem 5.1,

mO
12 = pN(1− p̃V )E

[
DO
U

]
, (5.23a)

mO
22 = pN(1− p̃V )E

[
D̃O
U − 1

]
. (5.23b)

Equations (5.22) and (5.23) yield the entries of the next-generation matrix
MO as required.
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5.3.3 Final size of a major outbreak

To calculate the final size of a major outbreak in this model we consider a
backwards Galton-Watson branching process that approximates the spread of
an individual’s susceptibility set, similarly to Section 3.3. Let BGG and BNG be
the number of type-1 offspring of a type-1 and type-2 individual respectively
in the backwards branching process, and similarly let BGN and BNN be the
number of type-2 offspring of a type-1 and type-2 individual respectively.

Let the probability generating functions for the offspring distribution of a
type-1 and type-2 individual in the backward branching process be given by
b1(s1, s2) and b2 (s1, s2), (s1, s2) ∈ [0, 1]2, respectively, so b1 (s1, s2) = E

[
sBGG1 sBGN2

]
and b2 (s1, s2) = E

[
sBNG1 sBNN2

]
. Furthermore let b (s1, s2) = (b1 (s1, s2) , b2 (s1, s2)).

By similar arguments to those given in Section 3.3, the relative final size of
a major outbreak is z = 1− π1, where π = (π1, π2) is the smallest solution to
the set of simultaneous equations π = b(π).

Theorem 5.7. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

b1 (s1, s2) = e−λGµI(1−pV )(1−s1)fDOU (1− pN(1− p̃V ) + pN(1− p̃V )s2) ,

b2 (s1, s2) = e−λGµI(1−pV )(1−s1)fD̃OU−1 (1− pN(1− p̃V ) + pN(1− p̃V )s2) .

Proof. The proof of Theorem 5.7 proceeds similarly to the proofs of Theorem
5.2 and 5.5, differentiated by the degree distributions of type-1 and type-2
individuals and the probability that individuals are unvaccinated. Similarly to
the proof of Theorem 5.2, we write BAG and BAN , where A ∈ {G,N}.

Consider an individual i. A given network neighbour, j say, of i can only
make infectious contact with i if j is not already vaccinated and j contacts i.
Thus, regardless of whether i is a type-1 or type-2 individual, j contacts i with
probability pN(1− p̃V ). Therefore, conditioning on the number of uninfected
neighbours of i, which is DO

U or D̃O
U − 1 for a type-1 or type-2 individual

respectively,
BGN |DO

U ∼ Bin
(
DO
U , pN(1− p̃V )

)
(5.24a)

and
BNN |D̃O

U ∼ Bin
(
D̃O
U − 1, pN(1− p̃V )

)
. (5.24b)
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By the same arguments as Theorem 5.5, BAG and BAN are independent.
Thus, substituting equations (5.24),

E
[
sBGG1 sBGN2

]
= E

[
sBGG1

]
E
[
sBGN2

]
,

= E
[
sBGG1

]
E
[
E
[
sBGN2

∣∣∣DO
U

]]
= E

[
sBGG1

]
fDOU (1− pN(1− p̃V ) + pN(1− p̃V )s2) , (5.25a)

and

E
[
sBNG1 sBNN2

]
= E

[
sBNG1

]
fD̃OU−1 (1− pN(1− p̃V ) + pN(1− p̃V )s2) . (5.25b)

Finally, for analogous arguments to those given in the proof of Theorem 5.5,
we know that BGG

D= BNG and BGGj ∼ Poi (λGµI(1− pV )). Thus substituting
E
[
sBGG1

]
= e−λGµI(1−pV )(1−s1) and E

[
sBNG1

]
= e−λGµI(1−pV )(1−s1) into equations

(5.25) yields the joint probability generating functions given in Theorem 5.7.

5.4 An analytical comparison of the acquain-
tance and uniform vaccination strategies

We might intuitively expect that for a fixed vaccination coverage and a constant
degree distribution the performance of the uniform and acquaintance vaccination
strategies would be similar. However, in this section we show that if the degree
distribution has a small variance and pS < 1 then applying the uniform vaccina-
tion strategy can result in a smaller basic reproduction number than applying
the acquaintance vaccination strategy with the same vaccination coverage, and
consequently the uniform vaccination strategy has a smaller critical vaccination
coverage than the acquaintance vaccination strategy. As a motivating example
we begin by comparing the two vaccination strategies on the standard network
model with a constant degree distribution.

Consider the standard network model with degree distribution D ∼ Const(d),
d = 2, 3, . . . (i.e. the network and global model with λG = 0). Recalling that
p′ = pSpC , the vaccination coverage of the acquaintance vaccination strategy is
equal to pV = 1−fD(1−p′). Therefore we compare the acquaintance vaccination
strategy to the uniform vaccination strategy in which we vaccinate individuals
uniformly at random with probability pV . Then, substituting pV and fD(s) = sd
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into the basic reproduction numbers given in Sections 5.1.4 and 5.2.2,

RA
0 = pN(1− 2p′ + p′pC)(d− 1)(1− p′)d−2,

RU
0 = pN(d− 1)(1− p′)d.

So RU
0 (1−2p′+p′pC) = RA

0 (1−p′)2. Since p′ = pSpC , (1−2p′+p′pC) > (1−p′)2

and thus RU
0 ≤ RA

0 , with equality if and only if pS = 1. Furthermore, since our
choice of pV ∈ (0, 1) is arbitrary, the critical vaccination coverage of the uniform
vaccination strategy is less than or equal to the critical vaccination coverage of
the acquaintance vaccination strategy, with equality if and only if pS = 1. We
conjecture that the difference in critical vaccination coverages is caused by the
acquaintance vaccination strategy with pS < 1 creating clusters of vaccinated
individuals and thus, due to the similarity of an individual’s degree, reducing the
probability that a neighbour of an unvaccinated individual is also unvaccinated.
In other words, conditioned on an individual being unvaccinated under the
acquaintance vaccination strategy with pS < 1 this individual is unlikely to
be sampled and thus less likely to have vaccinated neighbours compared to
an individual in a population which has been vaccinated under the uniform
vaccination strategy.

The underperformance of the acquaintance vaccination strategy with pS < 1
compared to the uniform vaccination strategy is not limited to the case of a
constant degree distribution on the standard network. Figure 5.1 illustrates an
example case for this underperformance on the standard network model with a
degree distribution which has non-zero variance. Furthermore, Figure 5.1 also
shows that partial vaccination can result in the final size of a major outbreak on
the standard network model under the acquaintance vaccination strategy being
larger than the final size of a major outbreak on the standard network model
under the uniform vaccination strategy with the same vaccination coverage. We
now give sufficient conditions under which the acquaintance vaccination strategy
performs better and worse than the uniform vaccination strategy on the network
and global model.
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Figure 5.1: An example case in which the acquaintance vaccination strategy with
pC = 1 has a larger critical vaccination coverage than the uniform vaccination
strategy. The parameters of the model are λG = 0, pN = 0.5, I ∼ Const(1),
P(D = 7) = 1/4, P(D = 8) = 1/2 and P(D = 9) = 1/4. Therefore R0 = 3.5.

Proposition 5.2. Consider the network and global model with degree distribu-
tion D under the acquaintance or uniform vaccination strategy with vaccination
coverage pV = 1− fD(1− p′).

(i) If
(1− p′)f ′D(1− p′) ≤ µDfD(1− p′),

and
(1− 2p′ + p′pC)f ′′D(1− p′) ≤ f ′′D(1)fD(1− p′),

then RA
0 ≤ RU

0 .

(ii) If
(1− p′)f ′D(1− p′) ≥ µDfD(1− p′),

and
(1− 2p′ + p′pC)f ′′D(1− p′) ≥ f ′′D(1)fD(1− p′),

then RA
0 ≥ RU

0 .

Proof. Consider the next-generation matrices MA and MU from Sections 5.1.4
and 5.2.2 respectively. Fixing the vaccination coverage pV = 1− fD(1− p′) and
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recalling that fD̃−1(s) = f ′(s)/µD, so f ′D̃−1(1− p′) = f ′′D(1− p′)/µD, yields

MA =

λGµIfD(1− p′) pN(1− p′)2 (f ′D(1−p′))2

µDfD(1−p′)

λGµIfD(1− p′) pN(1− 2p′ + p′pC)f
′′
D(1−p′)
µD

 , (5.26a)

and

MU =
λGµIfD(1− p′) pNµDfD(1− p′)
λGµIfD(1− p′) pN

f ′′D(1)
µD

fD(1− p′)

 . (5.26b)

Clearly mA
11 = mA

21 = mU
11 = mU

21. Furthermore, recall from Proposition
3.1 on page 44 that increasing or decreasing a single element of a matrix will
increase or decrease its maximal eigenvalue respectively. Therefore if MA ≤MU

then RA
0 ≤ RU

0 and if MA ≥MU then RA
0 ≥ RU

0 . So to prove Proposition 5.2 we
need only compare MA and MU element-wise. Firstly note that if mA

12 = mU
12

and mA
22 = mU

22 then RA
0 = RU

0 , and then consider the following three cases:

1) mA
12 ≤ mU

12 and mA
22 ≤ mU

22,

2) mA
12 ≥ mU

12 and mA
22 ≥ mU

22,

3) Either mA
12 ≤ mU

12 and mA
22 ≥ mU

22 or mA
12 ≥ mU

12 and mA
22 ≤ mU

22.

Firstly note that the requirements mA
12 ≤ mU

12 and mA
22 ≤ mU

22 (Case 1)
correspond to the conditions for part (i) and so, by Proposition 3.1, RA

0 ≤ RU
0

as required for part (i). Secondly note that the requirements mA
12 ≥ mU

12 and
mA

22 ≥ mU
22 (Case 2) correspond to the conditions for part (ii) and so, by

Proposition 3.1, RA
0 ≥ RU

0 .

Note that Proposition 5.2 does not involve Case 3, i.e. if either mA
12 ≤ mU

12

and mA
22 ≥ mU

22 or mA
12 ≥ mU

12 and mA
22 ≤ mU

22. Therefore Proposition 5.2 only
gives sufficient conditions determining whether the ordering between RA

0 and
RU

0 , and not necessary conditions. However, the consideration of Case 3 requires
a direct investigation of RA

0 and RU
0 , which we do not consider in this thesis.

Although Proposition 5.2 gives an ordering between RA
0 and RU

0 for a given
vaccination coverage, we can extend the argument to compare the critical vacci-
nation coverage of the two vaccination strategies. Let c∗A and c∗U be the critical
vaccination coverage under the acquaintance and uniform vaccination strategy
respectively. If the degree distribution satisfies Proposition 5.2 part (i) or (ii)
for all p′ ∈ [0, 1] then the critical vaccination coverages of the acquaintance
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and uniform vaccination strategies are ordered in the same way as the basic
reproduction numbers, i.e. if RA

0 ≤ RU
0 for all p′ ∈ [0, 1] then c∗A ≤ c∗U and if

RA
0 ≥ RU

0 for all p′ ∈ [0, 1] then c∗A ≥ c∗U .

Consider the network and global model withD ∼ Poi(α), α > 0. Substituting
fD(s) = e−α(1−s) and its derivatives into the conditions for Proposition 5.2 part
(i) yields that RA

0 ≤ RU
0 if

(1− p′)αe−αp′ ≤ αe−αp′ , (5.27a)

(1− 2p′ + p′pC)α2e−αp′ ≤ α2e−αp′ . (5.27b)

Inequalities (5.27) clearly hold for all p′ ∈ (0, 1), so in the network and global
model with D ∼ Poi(α) for a fixed vaccination coverage RA

0 ≤ RU
0 and c∗A ≤ c∗U .

Considering the network and global model with D ∼ Geo(p), p ∈ (0, 1] and nu-
merically investigating the conditions in Proposition 5.2 suggests that RA

0 ≤ RU
0

and c∗A < c∗U .

Numerical investigations suggest that the situation c∗A ≥ c∗U only occurs if
σ2
D is small. The acquaintance vaccination strategy was primarily introduced to

target vaccination upon individuals with large degrees in the network using only
local knowledge of the network. Therefore most applications of the acquaintance
vaccination strategy involve models in which the degree distribution has sizeable
variance, which suggests that we satisfy Proposition 5.2(ii). Thus for the remain-
der of this chapter we assume that the degree distribution satisfies the conditions
of Proposition 5.2(ii), so c∗A ≤ c∗U and the acquaintance vaccination strategy
is no worse than the uniform vaccination strategy for a fixed vaccination coverage.

We note that our numerical and analytical investigations suggest that for a
fixed vaccination coverage the acquaintance vaccination strategy can only un-
derperform compared to the uniform vaccination strategy if pS < 1. Indeed, we
conjecture that the critical vaccination coverage of the acquaintance vaccination
strategy with pS = 1 is always less than or equal to the critical vaccination
coverage of the uniform vaccination strategy.

Recall that the acquaintance vaccination strategy is based on the single-
neighbour acquaintance vaccination strategy introduced by Cohen et al. (2003).
Applying an analogous argument to the proof of Proposition 5.2, i.e. com-
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paring the reproduction numbers of the standard network model under the
single-neighbour acquaintance and uniform vaccination strategies with a fixed
vaccination coverage, (with the necessary equations given in, for example, Ball
and Sirl (2013)) yields the following remark.

Remark 5.2. In the standard network model with a constant degree distribution
the single-neighbour acquaintance vaccination strategy has the same critical
vaccination coverage as the uniform vaccination strategy.

Furthermore, numerical investigations suggests that, similarly to the acquain-
tance vaccination strategy with pS = 1, the critical vaccination coverage of the
single-neighbour acquaintance vaccination strategy is always less than or equal
to the critical vaccination coverage of the uniform vaccination strategy. As noted
in Britton et al. (2007), an equivalent version of the single-neighbour acquain-
tance vaccination strategy involves sampling each individual in the population
a random number of times which has a Poisson distribution. Therefore both
the acquaintance vaccination strategy with pS = 1 and the single-neighbour
acquaintance vaccination strategy involves sampling every individual in the pop-
ulation. We conjecture that the acquaintance vaccination strategy with pS < 1
not sampling every individual in the population causes the underperformance
of the vaccination strategy compared to the uniform vaccination strategy.

5.5 Numerical investigations

5.5.1 Convergence of final size of a major outbreak in
finite populations to asymptotic results

In this section we investigate whether the asymptotic results for the final size of
a major outbreak and vaccination coverage under the acquaintance, uniform
and optimal vaccination strategies give a good approximation for the final size
of a major outbreak and vaccination coverage in finite populations, similarly
to Section 3.4.1. To do this we run 1000 simulations of the epidemic in finite
populations and then estimate the final size of a major outbreak empirically,
comparing these results with the asymptotic calculations. The algorithm we
follow for a single simulation is given in pseudo-code in Appendix A.2. Note
that the vaccination coverage of the optimal vaccination strategy on a fixed
population size is not random (and thus remains constant for each simulation),
whereas the vaccination coverage of the acquaintance and uniform vaccination
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strategies is random (and thus varies between each simulation).

Under the uniform and optimal vaccination strategies the asymptotic final
size of a major outbreak is a quite good approximation for a small number of
individuals, as illustrated in Figures 5.2a and 5.2b respectively, although the
accuracy of the approximation is linked to the expected number of susceptibles
in the population after vaccination, rather than the number of individuals in the
population. As for the model with three levels of mixing discussed in Section
3.4.1, we conjecture that if we investigated a degree distribution with heavy-tails
we would find a slower convergence.

Similarly, under the acquaintance vaccination strategy the asymptotic final
size of a major outbreak is a quite good approximation for a small number of in-
dividuals, with the accuracy of the approximation linked to the expected number
of susceptibles in the population after vaccination, as illustrated in Figure 5.3,
and we conjecture that if we investigated a degree distribution with heavy-tails
we would find a slower convergence. However, an unexpected consequence of
the acquaintance vaccination strategy is that the asymptotic calculation for the
final size of a major outbreak no longer acts as an upper bound for the empirical
final size of a major outbreak in finite populations. Instead, the asymptotic
calculation for the final size of a major outbreak underestimates the final size of
a major outbreak in finite populations, suggesting that the asymptotic critical
vaccination coverage actually leads to undervaccination in finite populations.
We conjecture that the underestimation of the final size of a major outbreak
in finite populations is caused by undervaccination under the acquaintance
vaccination strategy causing more frequent and larger major outbreaks. As
evidence for this conjecture we now consider the difference between the effect of
variable vaccination coverage caused by the uniform and acquaintance vaccina-
tion strategies on the final size of a major outbreak.

Firstly, we note that the empirical vaccination coverage of the uniform and
acquaintance vaccination strategies in finite populations follows a symmetric
distribution with mean close to c, independent of the population size, as il-
lustrated in Figures 5.4. We suggest that the slight undervaccination of the
acquaintance vaccination strategy is caused by network imperfections, such as
loops and multiple edges. However, a difference arises between the vaccination
coverage of the uniform and acquaintance vaccination strategies in finite popu-
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(a) Comparing the final size of a major outbreak under the uniform vaccination
strategy in finite populations to asymptotic results. The parameters are
D ∼ Geo(1/16), c = 0.7, λN = 1.5, λG = 1.5 and I ∼ Const(1).

(b) Comparing the final size of a major outbreak under the optimal vaccination
strategy in finite populations to asymptotic calculations. The parameters are
D ∼ Geo(1/9), c = 0.25, λN = 1, λG = 0.85.

Figure 5.2: Comparing empirical calculations for the final size of a major
outbreak with the asymptotic calculations.
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Figure 5.3: Comparing the final size of a major outbreak under the acquaintance
vaccination strategy in finite populations to asymptotic results. The simulations
are run with the parameters D ∼ Geo(1/15), pS = 0.5, pC = 0.15, λN = 2,
λG = 1.8 and I ∼ Const(1). Therefore c = 0.51.

lations when we only consider the simulations in which major outbreaks occur.
When only considering the subset of simulations in which major outbreaks occur
under the uniform vaccination strategy in finite populations the quartiles of the
vaccination coverage have a negligible change compared to the original data (see
Figures 5.4a and 5.5a). However, considering the subset of simulations in which
major outbreak occurs under the acquaintance vaccination strategy in finite
populations the quartiles of the vaccination coverage do substantially decrease
(see Figures 5.4b and 5.5b). Therefore we now consider the relationship between
the vaccination coverage and the probability and final size of a major outbreak
in finite populations. To aid this analysis, let rUc,maj and rUc,z be the sample
Pearson’s correlation coefficient between the vaccination coverage under the
uniform vaccination strategy and respectively the indicator function for whether
a major outbreak occurs and final size of a major outbreak in a population with
m households. Define rAc,maj and rAc,z similarly for the case when we apply the
acquaintance vaccination strategy.

To graphically investigate the correlation between the vaccination coverage
and the indicator function for whether a major outbreak occurs we apply the
following method. For each population size, we order the simulations by vacci-
nation coverage and then group the data into quartiles. So Quartile 1 consists of
the 1000/4 = 250 simulations with the smallest empirical vaccination coverages,
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(a) The uniform vaccination strategy with D ∼ Geo(1/16), c = 0.7, λN = 1.5,
λG = 1.5 and I ∼ Const(1).

(b) The acquaintance vaccination strategy with parameters D ∼ Geo(1/15),
pS = 0.5, pC = 0.15, λN = 2, λG = 1.8 and I ∼ Const(1).

Figure 5.4: Comparing the empirical vaccination coverage under the uniform and
acquaintance vaccination strategies in finite populations with the asymptotic
vaccination coverage.
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(a) The uniform vaccination strategy on the network and global model with
D ∼ Geo(1/16), c = 0.7, λN = 1.5, λG = 1.5 and I ∼ Const(1).

(b) The acquaintance vaccination strategy on the network and global model
with parameters D ∼ Geo(1/15), pS = 0.5, pC = 0.15, λN = 2, λG = 1.8 and
I ∼ Const(1).

Figure 5.5: Comparing the empirical vaccination coverage under the uniform
and acquaintance vaccination strategies in finite populations in which major
outbreaks occur with the asymptotic vaccination coverage.
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m rUc,maj rAc,maj rUc,z rAc,z
200 −0.11 −0.26 −0.32 −0.56
300 −0.08 −0.23 −0.39 −0.57
400 −0.10 −0.26 −0.36 −0.61
500 −0.13 −0.19 −0.31 −0.58
600 −0.05 −0.19 −0.35 −0.63
700 −0.05 −0.09 −0.37 −0.60
800 −0.02 −0.14 −0.35 −0.63
900 −0.06 −0.17 −0.31 −0.59
1000 −0.07 −0.16 −0.36 −0.61

Table 5.1: Correlation coefficients between the vaccination coverage under the
uniform and acquaintance vaccination strategies and the indicator function for
whether a major outbreak occurs and the final size of a major outbreak for a
range of population sizes.

Quartile 2 consists of the 250 simulations with the next lowest empirical vaccina-
tion coverages and so on. Then for each quartile we can calculate an empirical
probability of a major outbreak (which can be compared to the asymptotic prob-
ability of a major outbreak by recalling that pmaj = z if the infectious period is
constant). This breakdown shows that there is a very weak negative correlation
between the vaccination coverage under the uniform vaccination strategy and
the indicator function for whether a major outbreak occurs (rUc,maj ≈ −0.07,
see Table 5.1), i.e. undervaccination has a negligible effect on the probability
that a major outbreak will occur, as illustrated in Figure 5.6a. In contrast,
there is a weak negative correlation between the vaccination coverage under
the acquaintance vaccination strategy and the indicator function for whether a
major outbreak occurs (rAc,maj ≈ −0.19, see Table 5.1), as illustrated in Figure
5.6b. Similarly, the final size of a major outbreak and the vaccination coverage
under the uniform vaccination strategy in finite populations has a weak negative
correlation (rUc,z ≈ −0.35, see Table 5.1), whereas the final size of a major out-
break and the vaccination coverage under the acquaintance vaccination strategy
in finite populations has a strong negative correlation (rAc,z ≈ −0.6, see Table
5.1), as illustrated in Figures 5.7a and 5.7b respectively.

The correlation between the vaccination coverage under the acquaintance
vaccination strategy and the indicator function for whether a major outbreak
occurs and final size of a major outbreak suggest that undervaccination will
lead to more major outbreaks, and furthermore that the major outbreaks which
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(a) The uniform vaccination strategy with D ∼ Geo(1/16), c = 0.7, λN = 1.5,
λG = 1.5 and I ∼ Const(1).

(b) The acquaintance vaccination strategy on the network and global model
with parameters D ∼ Geo(1/15), pS = 0.5, pC = 0.15, λN = 2, λG = 1.8 and
I ∼ Const(1).

Figure 5.6: Investigating the dependence of the probability of a major outbreak
on the vaccination coverage under the uniform and acquaintance vaccination
strategies in finite populations. For each population size we order the simulations
by vaccination coverage and then group the data into quartiles.
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(a) The uniform vaccination strategy with D ∼ Geo(1/16), c = 0.7, λN = 1.5,
λG = 1.5 and I ∼ Const(1).

(b) The acquaintance vaccination strategy on the network and global model
with parameters D ∼ Geo(1/15), pS = 0.5, pC = 0.15, λN = 2, λG = 1.8 and
I ∼ Const(1).

Figure 5.7: Investigating the dependence of the final size of a major outbreak
on the vaccination coverage under the uniform and acquaintance vaccination
strategies in finite populations.
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do occur are more likely to be large. Therefore the correlation between the
vaccination coverage under the acquaintance vaccination strategy and the indi-
cator function for whether a major outbreak occurs and final size of a major
outbreak can explain why the asymptotic final size of a major outbreak in the
network and global model under the acquaintance vaccination strategy is an
underestimate for the final size of a major outbreak in finite populations. In
contrast, since there is negligible correlation between the vaccination coverage
under the uniform vaccination strategy and the indicator function for whether
a major outbreak occurs, the correlation between the vaccination coverage
under the uniform vaccination strategy and the final size of a major outbreak is
cancelled out by the symmetric vaccination coverage distribution, leading to the
usual result that the asymptotic final size of a major outbreak in the network
and global model under the uniform vaccination strategy is an overestimate for
the final size of a major outbreak in finite populations.

An important consideration for further work is understanding why there
is weak negative correlation between the vaccination coverage under the ac-
quaintance vaccination strategy and the indicator function for whether a major
outbreak occurs, whereas there is negligible correlation between the vaccination
coverage under the uniform vaccination strategy and the indicator function for
whether a major outbreak occurs. Recall that in Section 5.4 we show that the
acquaintance vaccination strategy with pS < 1 can underperform compared to
the uniform vaccination strategy, and we conjecture that this is due to the ac-
quaintance vaccination strategy clustering the vaccination in a closely connected
group of individuals. It is possible that when undervaccination occurs under
the acquaintance vaccination strategy the vaccine is also clustered into groups
of individuals, leading to a strong underperformance of the vaccine. However,
further work is required to understand this phenomenon. Indeed, it would be
interesting to investigate whether maximising pS or pC (with a fixed vaccination
coverage) will affect the correlation between the vaccination coverage under
the acquaintance vaccination strategy and the indicator function for whether a
major outbreak occurs and final size of a major outbreak in finite populations.
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5.5.2 Effect of global contacts on the critical vaccination
coverage of vaccination strategies

In this section we investigate the effect of global contacts on the uniform, ac-
quaintance and optimal vaccination strategies. To do this we fix the degree
distribution and match the network and global models without any vaccination
(i.e. c = 0) by either R0 (as in Chapter 4) or by the final size of a major outbreak.
We can then compare the critical vaccination coverages of the three vaccination
strategies in the different the models.

We consider the extreme cases of acquaintance vaccination with either pS = 1
or pC = 1 since, as we discuss in Section 5.1.4, for a fixed vaccination coverage
RA

0 is strictly increasing in pC . However, the difference in critical vaccination
coverage between these two acquaintance vaccination strategies is small, as
illustrated in Figures 5.8, 5.9 and 5.10.

The addition of global contacts (while fixing either R0 or the final size of
a major outbreak) decreases the difference in critical vaccination coverage of
the optimal, acquaintance and uniform vaccination strategies, as illustrated in
Figures 5.8, 5.9 and 5.10. This is as we would intuitively expect; the effect of
vaccination strategies targeting individuals with large degrees will be diluted
when the epidemic depends less upon the network structure. Furthermore, a
larger decrease in the difference between critical vaccination coverages is ob-
served when the network and global model has a heavy-tailed degree distribution.
We also note that with the addition of global contacts the critical vaccination
coverage of the acquaintance vaccination strategy often becomes closer to the
critical vaccination coverage of the optimal vaccination strategy rather than
the critical vaccination coverage of the uniform vaccination strategy, especially
when considering heavy-tailed degree distributions, as illustrated in Figure 5.11.

Consider a network and global model with a given fixed degree distribution,
infectious period and R0 and assume that λG = 0. With the knowledge that
the critical vaccination coverage in the network and global model depends only
on R0 we expect that, as λN is decreased and λG is increased to fix R0, the
critical vaccination coverage under the optimal and acquaintance vaccination
will converge from below to 1− 1/R0. This effect can be observed in Figures 5.8
and 5.9, and occurs regardless of the final size of a major outbreak under no vac-
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(a) λG = 0 and pN = 0.41.

(b) λG = 2 and pN = 0.33.

(c) λG = 4 and pN = 0.23.

Figure 5.8: The effect of global contacts on vaccination strategies on network and
global models matched with R0 = 6.5. The other parameters are I ∼ Const(1)
and D ∼ Geo(1/9).
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(a) λG = 0 and pN = 0.9.

(b) λG = 3.2 and pN = 0.5.

(c) λG = 6.4 and pN = 0.1.

Figure 5.9: The effect of global contacts on vaccination strategies on network and
global models matched with R0 = 7.2. The other parameters are I ∼ Const(1)
and D ∼ Poi(8).
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(a) λG = 0 and pN = 0.9, so R0 = 14.

(b) λG = 0.57 and pN = 0.5, so R0 = 8.3.

(c) λG = 1.75 and pN = 0.1, so R0 = 2.9.

Figure 5.10: The effect of global contacts on vaccination strategies on network
and global models matched by final size, with parameters I ∼ Const(1) and
D ∼ Geo(1/9).

171



(a) λG = 0 and pN = 0.9, so R0 = 78.

(b) λG = 0.6525 and pN = 0.5, so R0 = 44.

(c) λG = 1.75 and pN = 0.1, so R0 = 9.

Figure 5.11: The effect of global contacts on vaccination strategies on network
and global models matched by final size, with parameters I ∼ Const(1) and
D ∼ Pow (8, 3).
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cination. Thus (assuming there is a sizeable variance in the degree distribution
so that the acquaintance vaccination strategy has a smaller critical vaccination
coverage than the uniform vaccination strategy) implementing an acquaintance
vaccination strategy will lead to an underestimation of the required critical vacci-
nation coverage if we have accurately estimated R0 but incorrectly assumed the
epidemic spreads primarily via the network, and instead the epidemic spreads
via global contacts.

In contrast, if models are matched by the final size of a major outbreak the
effect of global contacts on the critical vaccination coverage is less clear, and
we discuss some possible interactions in the following paragraphs. Similarly to
Chapter 4, in which we consider the difference between the final size of a major
outbreak in two network and global models with the same degree distribution
matched by R0, when we match two network and global models with the same
degree distribution by the final size of a major outbreak they are likely to have
different basic reproduction numbers, unless σ2

D = µD.

Since the critical vaccination coverage of the uniform vaccination strategy
depends only on R0, the effect of global contacts on the critical vaccination
coverage under the uniform vaccination strategy when the models are matched
by the final size of a major outbreak is clear: if R0 increases then the critical
vaccination coverage of the uniform vaccination strategy will increase, and if R0

decreases then the critical vaccination coverage will decrease, as illustrated in
Figure 5.10.

Consideration of the optimal and acquaintance vaccination strategies is more
complex. We expect both these strategies to be most effective when there is
sizeable variance in the degree distribution. However, if there is a sizeable
variance in the degree distribution then R0 is generally increasing as the λG is
decreased while pN is increased to maintain the final size of a major outbreak.
This creates a tradeoff, in which the model may require a larger critical vaccina-
tion coverage under the optimal and acquaintance vaccination strategies due to
the increased R0, or a smaller critical vaccination coverage owing to the optimal
and acquaintance vaccination strategies being more effective in the network due
to the large variability in the degree distribution.

When network and global model with a fixed degree distribution are matched
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by the final size of a major outbreak, the critical vaccination coverage under
the optimal or acquaintance vaccination strategy in the model with small λG
can be an overestimate or an underestimate of the critical vaccination coverage
of the vaccination strategy when λG is increased, as illustrated in Figures 5.10
and 5.9. Furthermore, it is possible that the critical vaccination coverage of the
optimal or acquaintance vaccination strategy on the standard network model
is an overestimate of the critical vaccination coverage of the strategy when a
small number of global contacts are introduced (compare Figures 5.11a and
5.11b for the optimal vaccination strategy) but also an underestimate of the
critical vaccination coverage of the vaccination strategy when a large number of
global contacts are introduced (compare Figures 5.11b and 5.11c for the optimal
vaccination strategy).

Finally, recall that the final size of a major outbreak in the network and
global model with a Poisson degree distribution depends on R0 but not the
specific value of λG and pN (see Proposition 4.1). However the specific value
of pN and λG does have an impact on the critical vaccination coverages of the
acquaintance and optimal vaccination strategies, as illustrated in Figure 5.9.

5.6 Concluding remarks

In this chapter we consider three vaccination strategies on the network and
global model, specifically the acquaintance, uniform and optimal vaccination
strategies. For each vaccination strategy, we show how to find a threshold
parameter determining whether a major outbreak can occur and the final size
of a major outbreak.

Under the acquaintance vaccination strategy we prove that, for a fixed vacci-
nation coverage, maximising pC will maximise RA

0 and the final size of a major
outbreak. Under the uniform vaccination strategy, we show that the critical
vaccination coverage of the network and global model is equal to 1−1/R0, where
R0 is the basic reproduction number of the network and global model under no
vaccination. We prove that the critical vaccination coverage of the acquaintance
vaccination strategy is not always smaller than the critical vaccination coverage
of the uniform vaccination strategy, and we give conditions under which the
acquaintance vaccination strategy has a larger critical vaccination coverage than
the uniform vaccination strategy.
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We compare our asymptotic calculations to simulations of the epidemic in
finite populations. Our results are as expected under the optimal and uniform
vaccination strategies, with the asymptotic calculation of the final size of a
major outbreak being an overestimation of the simulated final size of a major
outbreak in finite populations. However, this relationship is reversed under the
acquaintance vaccination strategy, with the asymptotic calculation of the final
size of a major outbreak being an underestimation of the simulated final size
of a major outbreak in finite populations. Further analysis suggests that the
underestimation is caused by the correlation between the vaccination coverage
under the acquaintance vaccination strategy and both the indicator function for
whether a major outbreak occurs and the final size of a major outbreak.

Finally we investigate the effect of global contacts on the critical vaccination
coverage of the optimal, acquaintance and uniform vaccination strategies by
comparing models with either R0 or the final size of a major outbreak kept fixed.
We show that the addition of global contacts will lead to a decreased difference
in critical vaccination coverage between the vaccination strategies, thus diluting
the benefit of the acquaintance vaccination strategy. Furthermore, we show
that the critical vaccination coverage in the standard network model under the
optimal and acquaintance vaccination strategies matched by R0 or the final
size of a major outbreak can be either an underestimate or overestimate of the
critical vaccination coverage when global contacts are added.

Throughout this chapter we assume that we vaccinate individuals with a
perfect vaccine. However, this is an unrealistic assumption in many practical
applications. Some vaccines never result in full immunity, only reducing the
probability of infection, and sometimes vaccinated individuals will not become
immune at all. However, the perfect vaccine assumption allows us to analyse the
network and global model under the three vaccination strategies with two-type
branching processes whereas under the generalised vaccine reaction model we
would require the use of 12-type branching processes, which are more difficult
to analyse. An extension of this model to the generalised vaccine action model
would be an interesting topic for further research.

Although we do not consider the single-neighbour acquaintance vaccination
strategy, we conjecture that global contacts would cause a similar dilution to the
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effects found for the acquaintance vaccination strategy, and thus the acquain-
tance vaccination strategy and the single-neighbour acquaintance vaccination
strategy would provide similar results, as in Ball and Sirl (2013).

Finally, we acknowledge that the acquaintance vaccination strategy pre-
sented here would be very difficult, and indeed potentially morally questionable,
to implement in practice in human populations. However, we note that the
acquaintance vaccination strategy could be very effective in static computer
networks, in which moral questions do not arise. Nevertheless, the study of
acquaintance vaccination is still very useful to understand the impact of vaccina-
tion strategies that target high degree individuals. Furthermore, understanding
exactly why the acquaintance vaccination strategy can underperform compared
to the uniform vaccination strategy and why the asymptotic final size of a major
outbreak in the network and global model under the acquaintance vaccination
strategy is an underestimate for finite populations may result in the construction
of better vaccination strategies that can be applied to human populations.

176



5.7 Table of common notation introduced in
Chapter 5

Symbol Meaning Page
c Vaccination coverage. 136
c∗ Critical vaccination coverage. 136
pS Probability that an individual chosen uniformly

at random from the population is sampled under
the acquaintance vaccination strategy.

136

pC Probability that a given network neighbour of
a sampled individual is vaccinated under the
acquaintance vaccination strategy.

136

pV Probability that an individual selected uniformly
at random from the population is vaccinated.

136

U Event that an individual is unvaccinated. 137
DU Degree distribution of an unvaccinated (by the

acquaintance vaccination strategy) individual
chosen uniformly at random from the popula-
tion.

137

D̃U Degree distribution of an unvaccinated (by the
acquaintance vaccination strategy) individual
contacted via the network.

137

p̃V A priori probability that an individual contacted
via the network is vaccinated unvaccinated (by
the acquaintance vaccination strategy).

137

IS Event that an individual is sampled under the
acquaintance vaccination strategy.

138

p̃SU Probability that an individual contacted via the
network is sampled, given that they did not
choose their parent in the branching process for
vaccination (under the acquaintance vaccination
strategy).

138

RA
0 Basic reproduction number for the network and

global model under the acquaintance vaccination
strategy.

138
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MA Next-generation matrix for the forward branch-
ing process in the network and global model
under the acquaintance vaccination strategy.

138

RU
0 Basic reproduction number for the network and

global model under the uniform vaccination
strategy.

146

MU Next-generation matrix for the forward branch-
ing process in the network and global model
under the uniform vaccination strategy.

146

dc Smallest total degree of an individual which we
vaccinate under the optimal vaccination strategy.

150

δ Proportion of individuals with total degree dc
which are chosen uniformly at random for vacci-
nation under the optimal vaccination strategy.

150

DO
U Degree distribution of an unvaccinated (by the

optimal vaccination strategy) individual chosen
uniformly at random from the population.

150

D̃O
U Degree distribution of an unvaccinated (by the

optimal vaccination strategy) individual con-
tacted via the network.

150

p̃V Probability that an individual contacted via the
network is vaccinated (under the optimal vacci-
nation strategy).

150

RO
0 Basic reproduction number for the network and

global model under the optimal vaccination strat-
egy.

151

c∗U Critical vaccination coverage under the uniform
vaccination strategy.

156

c∗A Critical vaccination coverage under the acquain-
tance vaccination strategy.

156

178



6. The effect of edge-disjoint triangle
clustering on vaccination strategies

In this chapter we introduce a network model with tunable clustering, the
‘rewired edge-triangle’ model. The rewired edge-triangle model consists of the
network model with clustering introduced by Newman (2009) extended with
rewiring, introduced by Miller (2009). We extend the model further by allowing
for partial rewiring, similarly to Ball et al. (2013). Note that Newman (2009)
introduces clustering to the standard network model via the addition of edge-
disjoint triangles. The rewiring process used in the rewired edge-triangle model
allows for a comparison of models differing only in the number of unbroken
triangles, so the effect of clustering upon properties of interest, such as the
critical vaccination coverage of vaccination strategies, can be isolated.

As the mathematical tools available to model the spread of epidemics on
networks evolve there is increasing interest in quantifying the effects of prop-
erties of networks, such as the clustering coefficient, upon the spread of an
epidemic (see, for example, Miller (2009), Gleeson (2009), Ball et al. (2013) and
Coupechoux and Lelarge (2014)). Meanwhile there has also been interest in
vaccination strategies that target high degree individuals in the network using
local knowledge of the network, such as the acquaintance vaccination strategy
discussed in Chapter 5. In networks with zero clustering the acquaintance
vaccination strategies have been shown to be very effective (see Ball and Sirl
(2013)). However, there has been little investigation into the effect of clustering
on the performance of these vaccination strategies. Therefore we introduce three
vaccination strategies with a perfect vaccine on the rewired edge-triangle model:
the acquaintance vaccination strategy, the uniform vaccination strategy and
what we call the ‘optimal’ vaccination strategy. We consider the acquaintance
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vaccination strategy discussed in Chapter 5, first introduced by Ball and Sirl
(2013), in which neighbours of individuals sampled uniformly at random from
the population are chosen for vaccination. Furthermore, we compare the effect
of edge-disjoint triangle clustering (i.e. clustering introduced via edge-disjoint
triangles) on the performance of the acquaintance vaccination strategy and the
uniform vaccination strategy.

This chapter is laid out in the following way. In Section 6.1 we introduce the
rewired edge-triangle model, along with the notation required for further analysis
of the model, and calculate the clustering coefficient. In Sections 6.2, 6.3 and
6.4 we analyse respectively the uniform, acquaintance and optimal vaccination
strategies on the rewired edge-triangle model. In each case we determine a
post-vaccination threshold parameter and the expected relative final size of a
major outbreak. In Section 6.5 we calculate R0 for the rewired edge-triangle
model under no vaccination and in Section 6.6 we numerically compare the
optimal, acquaintance and uniform vaccination strategies and investigate the
effect of edge-disjoint triangle clustering on the performance of the vaccination
strategies. Finally, we give our concluding remarks in Section 6.7 and a table of
common notation introduced in this chapter in Section 6.8.

6.1 The rewired edge-triangle model

The rewired edge-triangle model consists of a finite, closed population of N
individuals. To construct the clustered network we assign each individual in
the population a number of stub half-edges and corners of triangles according
to independent samples from an arbitrary but specified joint probability distri-
bution (S, T ) with P (S = s, T = t) = pst, s, t = 0, 1, 2 . . . . Conditional on the
total number of stub half-edges and corners of triangles being a multiple of 2
and 3 respectively, the stub half-edges are then paired uniformly at random to
construct complete edges and we choose trios of corners of triangles uniformly
at random and join them to form complete triangles. Let pRW , the probability
of rewiring, be a real number satisfying 0 ≤ pRW ≤ 1. Then, independently
for each triangle created by the joining of corners, with probability pRW each
of the three edges in the triangle is broken into two triangle half-edges. We
then pair these triangle half-edges uniformly at random which, along with the
edges constructed by the pairing of stub half-edges and the unbroken triangles,
constructs the network. We say that an individual can have three types of
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network neighbours: stub neighbours, created by the pairing of stub half-edges;
triangle neighbours, created by the construction of triangles; and rewired triangle
neighbours, created by the pairing of broken triangle half-edges. We say that
an individual assigned s stub half-edges and t corners of triangles before the
rewiring process has joint stub and triangle degree (s, t).

Similarly to Section 3.1, the construction of the network may yield imper-
fections in the network, i.e. self-loops and multiple edges. However, if both
S and T have finite variance then, following arguments analogous to those in
Section 3.1, the fraction of such imperfections is negligible as N −→∞ (i.e. the
total number of these imperfections per individual converges in probability to 0
as N −→ ∞) and removing them has no effect on the asymptotic properties
we study in this thesis. Furthermore, if both S and T have finite variance
then (applying analogous arguments to those in Ball et al. (2013)) the fraction
of imperfections created by the rewiring process becomes negligible as N −→∞.

To relate the rewired edge-triangle model to the household and network
model we can view the triangles in the network as households of size 3. Therefore,
in the limit N −→∞, an individual in the population with t triangles can be
said to be part of t households, each of size 3. Furthermore, we can call the
2-regular graph created by a rewired triangle a rewired household, so in the
limit N −→∞ an individual in the population with r rewired triangles can be
said to be part of r rewired households.

We now consider the evolution of the epidemic. Similarly to Chapter 3
we consider an SIR epidemic which starts with a single infectious individual
chosen uniformly at random from the population which is otherwise susceptible.
Throughout an individual’s infectious period it can make infectious contact
with any given network neighbour (i.e. each stub, triangle and rewired triangle
neighbour) at the points of a Poisson process with rate λN . All infectious peri-
ods, Poisson processes and samplings from (S, T ) are assumed to be mutually
independent. In contrast to the previous chapters we assume that each indi-
vidual has a constant infectious period of length 1 to simplify the calculations
of the spread of the epidemic through triangles and rewired triangles. Finally,
we denote the marginal probability that an infected individual infects a given
susceptible neighbour by pN = 1− e−λN .
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Our analysis is of the N −→∞ limiting epidemic process so, similarly to the
model with three levels of mixing discussed in Section 3.2.1, we approximate the
early stages of the epidemic with a forward branching process. We conjecture
that the branching process approximation can be made rigorous similarly to
the proof of Theorem 3.1 given in Section 3.5. Namely that we can construct
the branching process and, for each N = 1, 2, . . . , a realisation of the epidemic
process on a common probability space and use a coupling argument to show
that, as N −→∞, the total number of infected individuals in the epidemic
process converges in distribution to the total progeny of the forward branching
process. Thus whether or not a major outbreak occurs with non-zero probability
is determined by whether or not the forward branching process is supercrit-
ical. Furthermore, we conjecture that if a major outbreak does occur then,
as N −→∞, its expected relative final size converges in distribution to the
survival probability of the backwards branching process which represents the
spread of an individual’s susceptibility set (see Section 3.3.1). We hypothesize
that this argument can be made rigorous by applying similar arguments to
those used for the network and household model in Ball et al. (2009), namely
that we can use the backwards branching process to calculate the probability
that a given individual is infected in the event of a major outbreak and, by an
exchangeability argument, show that this probability is equal to the asymptotic
mean proportion of the population that are ultimately infected by a major
outbreak, i.e. the expected relative final size of a major outbreak.

6.1.1 Notation

The probability generating functions introduced in this section were given by
Newman (2009) and are used in calculating the properties of the rewired edge-
triangle model. Let fS,T (x, y) = E

[
xSyT

]
be the joint probability generating

function for the stub and triangle distribution. Therefore the probability pk,
k = 0, 1, . . . , that an individual has k network neighbours in total (both via
stubs, through triangles and rewired triangles) is

pk =
∞∑
s=0

∞∑
t=0

pstδk,s+2t, (6.1)

since each stub contributes 1 to the total degree and each corner of a triangle
contributes 2. Let DT be the total degree distribution, so P (DT = k) = pk,
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k = 0, 1, . . . . Then, substituting equation (6.1),

fDT (x) =
∞∑
k=0

pkx
k =

∞∑
k=0

∞∑
s=0

∞∑
t=0

pstδk,s+2tx
k = fS,T (x, x2). (6.2)

To investigate the rewired edge-triangle model we also require two size-
biased distributions: the joint distribution of the number of stubs and corners
of triangles attached to a vertex reached by traversing a stub (including the
traversed stub), which is denoted by qst, and the corresponding distribution for
a vertex reached by traversing a triangle or rewired triangle, which is denoted
by rst. So, for s, t = 0, 1, . . . ,

qst = spst
E [S] and rst = tpst

E [T ] .

Then the probability generating functions for the stub and triangle size-biased
distributions for an individual reached via a stub or triangle (or rewired triangle)
are given respectively by

fS̃S−1,TS(x, y) =
∞∑
s=0

∞∑
t=0

qs+1,tx
syt = 1

E [S]
∂fS,T
∂x

(x, y),

and
fST ,T̃T−1(x, y) =

∞∑
s=0

∞∑
t=0

rs,t+1x
syt = 1

E [T ]
∂fS,T
∂y

(x, y).

To construct the rewired edge-triangle model with a given total degree
distribution we consider the following method. Given the target total degree
distribution, DT , we choose a parameter p ∈ [0, 1] which controls the proportion
of edges allocated to triangles. So, given that an individual has total degree
d, the number of triangles this individual belongs to is binomially distributed
with parameters bd/2c and p. Therefore we say that a model has total degree
distribution DT and triangle allocation distribution Bin (DT , p) if the stub and
triangle distribution (S, T ) is given by, for s, t = 0, 1, . . . ,

P (S = s, T = t) =
(
b(s+ 2t)/2c

t

)
pt(1− p)b(s+2t)/2c−tps+2t. (6.4)

6.1.2 Clustering coefficient and degree correlation

There are several measures of clustering in the literature. For example, Watts
and Strogatz (1998) introduce a local clustering coefficient, measuring how
close a vertex is to being part of a complete graph, and then average the local
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clustering coefficient over all vertices within the network to calculate an overall
clustering measure. However, we use the ‘probabilistic’ measure of clustering
(cf. Trapman (2007)), for which we need the following definitions. We say that
a triplet consists of three connected vertices and that a triplet is closed if the
first and last vertex is the same, i.e. a triangle. Then for a network consisting
of N vertices we define the clustering coefficient of the network, C(N), to be
the number of closed triplets in the network (i.e. three times the number of
triangles) divided by the total number of triplets. Note that C(N) is then the
probability that an ordered triplet of nodes (i, j, k) chosen uniformly at random
from all triplets in the network has the property that i and k are connected
(i.e. that (i, j, k) form a triangle). Finally, we say that the clustering coefficient
of the asymptotic network is given by limN−→∞ C(N).

We now consider the clustering coefficient of the rewired edge-triangle model,
previously given for the case pRW = 1 in Newman (2009). Let C4 be the clus-
tering coefficient in the rewired edge-triangle model and, in a population of size
N , let N (N)

4 and N (N)
3 be the total number of triangles and triplets respectively,

so C(N) = N
(N)
4 /N

(N)
3 and C4 = limN−→∞ C(N).

Before rewiring, for a large population size the strong law of large numbers
implies that the number of triangles in the network per individual is well
approximated by E [T ]. So, since triangles are rewired independently and
uniformly at random with probability pRW , N−1N

(N)
4 is well approximated

by (1 − pRW )E [T ] = (1 − pRW )∂fS,T
∂y

(1, 1). An individual with total degree k
contributes to

(
k
2

)
triplets so, in a large population, the law of large numbers

implies that N−1N3 is well approximated by ∑∞k=0

(
k
2

)
pk = 1

2
d2fDT

dx2 (1). Therefore

C(N) ≈
(1− pRW )∂fS,T

∂y
(1, 1)

1
2

d2fDT
dx2 (1)

.
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This formula becomes exact as N −→∞ so, using equation (6.2),

C4 = (1− pRW )
2

∂fS,T
∂y

(1, 1)
d2fDT

dx2 (1)

= (1− pRW )
2

 ∂fS,T
∂y

(1, 1)
∂2fS,T
∂x2 (1, 1) + 4∂

2fS,T
∂x∂y

(1, 1) + 2∂fS,T
∂y

(1, 1) + 4∂
2fS,T
∂y2 (1, 1)


= (1− pRW )

2

(
E [T ]

E [S (S − 1)] + 4E [ST ] + 2E [T 2] + 2E [T (T − 1)]

)
.

Note that in the limit N −→∞ the network will have non-zero clustering
if and only if pRW < 1 and P (T = 0) < 1. However, although the rewired
edge-triangle model can produce clustered networks, the model cannot produce
networks with a large mean total degree and clustering coefficient (see Wang
et al. (2014)). For example, it is clear that limE[DT ]−→∞ C4 = 0, and this limita-
tion can be problematic when parameterising the rewired edge-triangle model
using real-world data. The limitation of the mean total degree and clustering
coefficient has been mentioned previously in the literature (see, for example,
Gleeson et al. (2010) or Heath and Parikh (2011)) and is caused by the rewired
edge-triangle model over-using edges to create triangles (recall that all triangles
in the rewired edge-triangle model are edge-disjoint). To see this, assume that
pRW = 0 (so that the clustering coefficient is maximised) and consider an indi-
vidual with s stub neighbours who is part of t triangles. Increasing the total
degree of this individual by the addition of another triangle will increase N4 by
1, but the number of triplets will increase by 2s+ 2t+ 1, leading to an overall
decrease in the clustering coefficient.

For example, consider the rewired edge-triangle model with total degree
distribution DT ∼ Geo+(1/2) and triangle allocation distribution Bin (DT , 1).
Then E [DT ] = 2 and if pRW = 0 then C4 = 1/3. However, if DT ∼ Geo+(1/4)
and the triangle allocation distribution is given by Bin (DT , 1) then E [DT ] = 4
and if pRW = 0 then C4 = 1/7. Thus increasing the mean total degree by 2 has
resulted in a greater than 50% reduction in the clustering coefficient.

There are several possible adaptions to the rewired edge-triangle model to
allow for increased mean total degree and clustering coefficient combinations.
For example, Karrer and Newman (2010) propose replacing the addition of
triangles with arbitrary subgraphs, e.g. 4−regular squares (an entirely connected
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graph with 4 vertices), which allow for an increased mean total degree and
clustering coefficient combinations. An alternative suggestion by Gleeson (2009)
is to allow individuals to belong to a single clique of a fixed size, a special case
of the clustered network model we discuss in Chapter 7.

We now briefly remark on another important property of social networks,
the degree correlation. Following Newman (2002b), the degree correlation is
the correlation between the total degrees of the vertices connected to an edge
chosen uniformly at random from all edges in the network. Therefore the
degree correlation lies between −1 and 1, with the degree correlation being
near 1 implying that vertices have similar degrees to their neighbours. Note
that the rewiring process does not change the total degree of any individuals
in the rewired edge-triangle model, and therefore does not change the degree
correlation. Finally, note that if P(T = 0) < 1 and pRW = 1 then the rewired
edge-triangle model with total degree distribution DT will not have the same
properties, such as the threshold parameter and final size of a major outbreak, as
the standard network model with degree distribution DT due to the differences
in degree correlation of the two models.

6.2 Uniform vaccination on the rewired edge-
triangle model

Under the uniform vaccination strategy each individual in the population is
vaccinated with the perfect vaccine independently with probability pV . Clearly
this means that the vaccination coverage c = pV . In the following sections we
consider two-type forward and backward branching processes to calculate the
threshold parameter and final size of a major outbreak respectively.

6.2.1 Threshold parameter

We begin by informally describing the forward branching process used to cal-
culate the threshold parameter RU

T . Unlike the household models previously
discussed in this thesis an individual in the forward branching process corre-
sponds to a single individual in the epidemic process. Similarly to Section
3.2.1 we are interested in the final outcome of the epidemic and not its precise
evolution, so we can think of the process evolving in the following way. First
consider the number of stub network contacts made by the initial infective,
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Figure 6.1: Figure illustrating the branching process terminology.

which we call type-1 individuals in the branching process. Then consider the
epidemic spreading only through the triangles and rewired triangles containing
the initial infective, in which each infected individual corresponds to a type-2
individual in the branching process. We then let each newly infected individual
proceed in the same manner. We call the initial infective the primary infective,
and any subsequent infected individuals in the triangles and rewired triangles
containing the primary infective secondary infectives (as illustrated in Figure
6.1). In the early stages of the epidemic it is likely that each contact will be
with uninfected individuals that, except for the triangles and rewired households
connected to the primary infective, are in edge-disjoint triangles and rewired
households. Note that the offspring distribution of the initial individual (chosen
uniformly at random from the population) will be different to the offspring
distribution of subsequent generations. The backwards branching process is
constructed in an analogous way. Thus for a primary individual, i∗, type-1
individuals are those that would infect i∗ via a stub, were they to become
infected, and type-2 individuals are those that would infect i∗ via a triangle or
rewired triangle containing i∗, were they to become infected.

The spread of the epidemic through the household and network model, see
Ball et al. (2009), is approximated by a single type branching process whereas
we approximate the spread of the epidemic in the rewired edge-triangle model
with a 2-type branching process. The difference in typing is owing to allowing a
single individual to be part of multiple triangles and rewired triangles. In the
single type branching process approximating the early stages of the epidemic in
the household and network model we first consider the spread of the epidemic
throughout the household, and the offspring in the forward branching process
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are individuals that are contacted via the network by all individuals contacted
in the household epidemic. An analogous argument for the rewired edge-triangle
model would be to define a household epidemic to consist of all individuals
contacted via a chain of contacts made solely via the triangle and rewired
triangle edges to the primary infective.

Before calculating the threshold parameter, RU
T , which determines whether

or not the forward branching process can have infinite progeny and therefore, by
definition, whether or not a major outbreak can occur, we briefly comment upon
the properties of RU

T . Firstly note that RU
T is an individual-based reproduction

number, unlike the household-based reproduction number R∗. However, the
spread of the forward branching process through the triangles and rewired trian-
gles means that a generation in the forward branching process differs from the
global generations (see Section 3.2.3) used to calculate the basic reproduction
number R0, thus RU

T 6= R0.

The reproduction number RU
T is the largest eigenvalue of the mean next-

generation matrix MU given below in Theorem 6.1. For notational simplicity
let pNV = pN(1− pV ) and 4E = pNV (3− 2pN) + (1− pV )(1− pN)2 + pV (the
interpretation of these quantities will become clear in the proof).

Theorem 6.1. If pNV < 1 then the mean next-generation matrix MU is given
by

MU = pNV

E
[
S̃S − 1

]
2E

[
T S
] [

(1− pRW )4E + pRW
1

1−pNV

]
E
[
ST
]

2E
[
T̃ T − 1

] [
(1− pRW )4E + pRW

1
1−pNV

] . (6.5)

Proof. We first consider the expected number of type-1 offspring of a type-1
individual, i.e. the expected number of infectious contacts made via a stub by a
type-1 individual. Let C11 be the total number of infectious contacts made via
a stub by a type-1 individual. A type-1 individual, i∗ say, has joint stub and
triangle distribution (S̃S, T S) and i∗ makes infectious contact with a given stub
neighbour, k say, if: k is not vaccinated, occurring with probability 1− pV , and
i∗ contacts k, occurring with probability pN . So i∗ contacts k with probability
(1− pV ) pN = pNV and

C11|S̃S, T S ∼ Bin
(
S̃S − 1, pNV

)
. (6.6)
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Thus, applying equation (6.6),

E [C11] = E
[
E
[
C11

∣∣∣S̃S, T S]] = pNV E
[
S̃S − 1

]
. (6.7)

Similarly, let C21 be the total number of infectious contacts made via a
stub by a type-2 individual. A type-2 individual has joint stub and triangle
distribution (ST , T̃ T ) and analogous arguments to those leading to equation
(6.7) yield

E [C21] = E
[
E
[
C21

∣∣∣ST , T̃ T ]] = pNV E
[
ST
]
. (6.8)

Next we consider the expected number of type-2 offspring of a type-1 indi-
vidual, i.e. the expected number of individuals infected within the triangles and
rewired triangles containing a type-1 individual. Let C12 be the total number of
infectious contacts made via a triangle or rewired triangle by a type-1 individual.
We calculate C12 by conditioning on the joint stub and triangle degree of a
type-1 individual, (S̃S, T S) and then decomposing the total number of infected
individuals into the number of infected individuals within each intact triangle
and rewired triangle. So consider a type-1 individual i∗ with stub and triangle
degree (S̃S, T S) and condition on i∗ being part of R ∈ [0;T S] rewired triangles.
Then

C12 | S̃S, T S, R =
TS−R∑
r=1

CT
12(r) +

TS∑
r=TS−R+1

CR
12(r), (6.9)

where: we have labelled the T S −R triangles containing i∗ 1, 2, . . . , T S −R, we
have labelled the R rewired triangles containing i∗ T S−R+1, T S−R+2, . . . , T S,
CT

12(r) is the number of individuals infected within triangle r and CR
12(r) is the

number of individuals infected in rewired triangle r. Recall that we assume a
constant infectious period and that all triangles and rewired triangles containing
the primary infective i∗ are edge-disjoint. Thus the summands in equation (6.9)
are all mutually independent, and also independent of S̃S, T S and R.

Before completing our calculation of E [C12] we calculate the expected number
of individuals infected within a triangle and rewired triangle epidemic. First
consider the final size of a single triangle epidemic. For both triangle neighbours
of i∗ to become infected we require that both individuals are unvaccinated
(occurring with probability (1−pV )2) and that either the primary infective infects
both neighbours (occurring with probability p2

N), or that the primary infective
infects a single individual who then infects the final triangle member (occurring
with probability 2p2

N (1− pV )). Thus both triangle neighbours of i∗ are infected
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with probability p2
N(1− pV )2 + 2p2

N(1− pN)(1− pV )2 = p2
N(1− pV )2(3− 2pN).

For only a single triangle neighbour of i∗ to become infected we require that
the primary infective infects a single neighbour (occurring with probability
2pN (1−pV )) and that the final triangle neighbour is either vaccinated (occurring
with probability pV ) or unvaccinated and uninfected (occurring with probability
(1− pV )(1− pN)2. So with probability 2pN(1− pV ) [pV + (1− pN)2(1− pV )] a
single triangle neighbour of i∗ becomes infected. Therefore, for 1 ≤ r ≤ T S −R,

E
[
CT

12(r)
]

= 2p2
N(1− pV )2(3− 2pN) + 2pN(1− pV )

[
(1− pN)2 + pV

]
= 2pNV4E. (6.10)

Next consider the spread of the epidemic through a rewired triangle. A
rewired triangle is constructed by pairing rewired triangle half-edges uniformly
at random. Furthermore, as in Ball et al. (2013), in the limit N −→ ∞ the
rewired triangle will be locally tree-like. Since we assume that the rewired
household is locally tree-like in a graph in which every node has degree 2, the
final size of a rewired household epidemic is equal in distribution to the sum
of two independent geometric distributions with support from 0 and success
parameter pNV . Therefore if pNV < 1 then, for T S −R < r ≤ T S,

E
[
CR

21(r)
]

= 2pNV
1− pNV

. (6.11)

We now return to the calculation of E [C12]. Note that each triangle in the
network is independently rewired with probability pRW , so R|S̃S, T S is binomially
distributed with parameters T S and pRW . Therefore substituting equations
(6.10) and (6.11) into equation (6.9) and substituting E

[
R
∣∣∣S̃S, T S] = T SpRW

yields

E [C12] = 2pNV E
[
T S
] [

(1− pRW )4E + pRW
1

1− pNV

]
. (6.12)

Finally, let C22 be the total number of individuals infected within the triangles
and rewired triangles containing a type-2 individual. Then analogous arguments
to those given in the calculation of E [C12] yield

E [C22] = 2pNV E
[
T̃ T − 1

] [
(1− pRW )4E + pRW

1
1− pNV

]
. (6.13)

Note that mU
i,j = E [Cij], i, j = 1, 2, so equations (6.7), (6.8), (6.12) and

(6.13) yield the required entries of MU given in equation (6.5) as required.
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We say that a vaccination strategy can control the epidemic in a model if
the vaccination strategy can prevent a major outbreak from occurring without
vaccinating every individual in the population. Since we assume that both the
stub and triangle distributions have finite variance, each entry in MU is finite
and there exists a constant K ∈ (0, 1) such that RU

T < (1− pV )K. Thus we can
always choose a value of pV < 1 such that RU

T < 1 and a major outbreak cannot
occur, yielding the following remark.

Remark 6.1. The uniform vaccination strategy can always control the epidemic
in the rewired edge-triangle model.

6.2.2 Final size of a major outbreak

As in Chapter 5, we define the expected relative final size of a major outbreak in
a population that contains vaccinated individuals to be the fraction of initially
susceptible individuals that are ultimately infected by the epidemic in a major
outbreak. To recover the proportion of ultimately infected individuals among
the entire population, including the c vaccinated individuals, we must multiply
the expected relative final size of a major outbreak by 1− c. We refer to the ex-
pected relative final size of a major outbreak as the final size of a major outbreak.

In Section 6.1 we hypothesize that if a major outbreak does occur then its
relative final size converges in distribution to the survival probability of the
backwards branching process given informally in Section 6.2.1. For i = 1, 2, let
B̃i =

(
B̃i1, B̃i2

)
be the offspring random vector of a typical type-i individual

in a non-initial generation of the backwards branching process. Similarly, let
B = (B1, B2) be the offspring random vector in the initial generation of the
backwards branching process. Let bB(s), s = (s1, s2) be the joint probability
generating function of B and let bB̃ (s) =

(
bB̃1

(s), bB̃2
(s)
)
where, for i = 1, 2,

bB̃i
(s) is the joint probability generating function of B̃i.

Then the final size of a major outbreak is z = 1− bB(π), where π = (π1, π2)
is the smallest solution to the set of simultaneous equations π = bB̃ (π). Recall
that pNV = pN(1− pV ).
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Theorem 6.2. If pNV < 1 then the joint probability generating functions for
the offspring distributions of the backward Galton-Watson branching process are
given by

bB̃1
(s) = fS̃S−1,TS

1− pNV (1− s1), (1− pRW )b4(s2) + pRW

(
1− pNV

1− s2pNV

)2
 ,

bB̃2
(s) = fST ,T̃T−1

1− pNV (1− s1), (1− pRW )b4(s2) + pRW

(
1− pNV

1− s2pNV

)2
 ,

and

bB(s) = fS,T

1− pNV (1− s1), (1− pRW )b4(s2) + pRW

(
1− pNV

1− s2pNV

)2
 ,

where

b4(s2) = (1− pV )2p2
N(3− 2pN)s2

2 + 2(1− pV )pN
[
(1− pV )(1− pN)2 + pV

]
s2

+ (pV + (1− pV )(1− pN))2 . (6.15)

Proof. We begin by calculating bB(s) and proceed by considering an individual
chosen uniformly at random from the population, i∗ say, and condition on i∗’s
joint stub and triangle distribution, (S, T ). Recall that we assume a constant
infectious period of length 1 and note that, in the limit N −→∞, all infectious
contacts made to i∗ via a stub originate from individuals in edge-disjoint triangles
and rewired triangles which do not contain i∗. Thus, conditioned on (S, T ),
the number of contacts made to i∗ via stubs is independent of the number of
contacts made to i∗ via triangles or rewired triangles so

E
[
sB
]

= E
[
E
[
sB
∣∣∣S, T ]] = E

[
E
[
sB1

1

∣∣∣S, T ]E
[
sB2

2

∣∣∣S, T ]] . (6.16)

We now turn our attention to the calculation of E
[
sB1

1

∣∣∣S, T ]. A given stub
neighbour of i∗, k say, can only make infectious contact with i∗ if k is not
vaccinated and contacts i∗. Thus B1 | S, T ∼ Bin (S, pNV ), and

E
[
sB1

1

∣∣∣S, T ] = (1− pNV (1− s1))S. (6.17)

To calculate E
[
sB2

2

∣∣∣S, T ] we condition on i∗ being part of R ∈ [0;T ] rewired
triangles and decompose B2|S, T,R into the number of contacts made to i∗

192



through each triangle or rewired triangle containing i∗. Hence

B2 | S, T,R =
T−R∑
r=1

BT
2 (r) +

T∑
r=T−R+1

BR
2 (r), (6.18)

where: we have labelled the T−R triangles containing i∗ 1, 2, . . . , T−R, we have
labelled the R rewired triangles containing i∗ T −R+ 1, T −R+ 2, . . . , T , BT

2 (r)
is the number of individuals contacting i∗ through triangle r and BR

2 (r) is the
number of individuals contacting i∗ through rewired triangle r. Recall that we
assume a constant infectious period and that all triangles and rewired triangles
containing the primary individual i∗ are edge-disjoint. Thus the summands in
equation (6.18) are all mutually independent, and also independent of S, T and
R.

To complete the calculation of E
[
sB2

2

∣∣∣S, T ] we consider the size of an indi-
vidual’s triangle and rewired triangle susceptibility set. Let 4 be the size of a
single triangle susceptibility set. Note that, applying similar arguments to those
leading to equation (6.10),

P (4 = 2) = (1− pV )2p2
N(3− 2pN),

P (4 = 1) = 2(1− pV )pN
[
(1− pV )(1− pN)2 + pV

]
,

P (4 = 0) = (pV + (1− pV )(1− pN))2 .

Therefore an expression for b4(s) is given in equation (6.15). We next consider
the spread of the epidemic through a rewired triangle. Let ∠ be the size of a
rewired triangle susceptibility set. A rewired triangle is constructed by pairing
rewired triangle half-edges uniformly at random. Furthermore, as in Ball et al.
(2013), in the limit N −→∞ the rewired triangle will be locally tree-like in a
graph in which every node has degree 2. Therefore ∠ is equal in distribution
to the sum of two independent geometric distributions with success parameter
pNV , and b∠(s) = ((1− pNV )/(1− s2pNV ))2.

Applying the decomposition of equation (6.18) to E
[
sB2

2

∣∣∣S, T,R] and then ap-
plying the independence of BT

2 (r1), BT
2 (r2), BR

2 (r3) and BR
2 (r4) and substituting
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b4(s) and b∠(s) yields

E
[
sB2

2

∣∣∣S, T,R] = E
[
s

∑T−R
r=1 BT2 (r)+

∑T

r=T−R+1 B
R
2 (r)

2

∣∣∣∣∣S, T,R
]

= E
[
(b4(s2))T−R(b∠(s2))R

∣∣∣S, T,R] . (6.19)

Each triangle in the network is independently rewired with probability pRW , so
R|S, T ∼ Bin (T, pRW ) and substituting equation (6.19) into E

[
sB2

2

∣∣∣S, T ] yields
E
[
sB2

2

∣∣∣S, T ] = E
[
E
[
sB2

2

∣∣∣S, T,R]]
= ((1− pRW )b4(s2) + pRW b∠(s))T . (6.20)

Substituting equations (6.17) and (6.20) into equation (6.16) yields bB(s)
given in the statement of the theorem.

Finally, the calculations of bB(s), bB̃1
(s) and bB̃2

(s) differ only in the joint
stub and triangle distributions considered. An individual contacted via a stub
has joint stub and triangle distribution (S̃S, T S) and an individual contacted via
a triangle or rewired triangle has joint stub and triangle distribution (ST , T̃ T ).
Therefore analogous arguments to the calculation of bB(s) yields both bB̃1

(s)
and bB̃2

(s) as required.

6.3 Acquaintance vaccination on the rewired
edge-triangle model

6.3.1 Description of acquaintance vaccination

In this section we consider an extension of the acquaintance vaccination strategy
with a perfect vaccine, introduced in Ball and Sirl (2013), to the rewired edge-
triangle model. Under the acquaintance vaccination strategy each individual in
the population is sampled independently with probability pS and each network
neighbour (i.e. each stub, triangle and rewired triangle neighbour) of a sampled
individual is independently chosen for vaccination with probability pC . Finally,
any individual which has been chosen for vaccination at least once is vaccinated
with a perfect vaccine.

Under the acquaintance vaccination strategy, for an individual i to be chosen
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for vaccination by a given network neighbour j, j must be sampled, occurring
with probability pS, and choose i for vaccination, occurring with conditional
probability pC . Therefore the probability that an individual is not chosen for
vaccination by a given network neighbour is 1−pSpC . Thus, since an individual i
chosen uniformly at random from the population has S+2T network neighbours,
each of whom does not choose i for vaccination independently with probability
1− pSpC , the probability that an individual chosen uniformly at random from
the population is vaccinated is

pV = 1−
∞∑
s=0

∞∑
t=0

pst(1− pSpC))s+2t = 1− fS,T
(
1− pSpC , (1− pSpC)2

)
. (6.21)

By definition, pV is also the vaccination coverage of the acquaintance vaccination
strategy.

In contrast to the branching process used to calculate the post-vaccination
threshold parameter for the uniform vaccination strategy, discussed in Section
6.2.1, we now use a 4-type Galton-Watson branching process to approximate
the early stages of the epidemic. This is due to the acquaintance vaccination
strategy causing a difference in degree distribution between individuals contacted
via a triangle and a rewired triangle, and the final size of a triangle epidemic
being dependent upon the number of sampled and unsampled individuals within
the triangle and the different offspring distributions of sampled and unsampled
individuals. We now give an informal description of the discrete time 4-type
Galton-Watson branching process, i.e. the forward branching process, used to
approximate the early stages of the epidemic. Similarly to Section 6.2.1, an
individual in the forward branching process corresponds to a single individual
in the epidemic process. Furthermore we are interested in the final outcome of
the epidemic and not its precise evolution so, similarly to Section 3.2.1, we can
think of the process evolving in the following way. First consider the number
of infectious stub network contacts made by the initial infective, which we
call type-1 individuals in the branching process. Then consider the epidemic
spreading only through the triangles containing the initial infective, in which each
infected sampled or unsampled individual results in a type-2 or type-3 individual
respectively in the branching process. Finally, consider the epidemic spreading
only through the rewired households containing the initial infective, in which
each infected individual results in a type-4 individual in the branching process.
We then consider each newly infected individual in the same manner. In the
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early stages of the epidemic it is likely that each contact will be with uninfected
individuals that, except for the triangles and rewired households containing the
initial infective, are in edge-disjoint triangles and rewired households. Note that
the offspring distribution of the initial individual (chosen uniformly at random
from the population) will be different to the offspring distribution of subsequent
generations.

Type of individual in
branching process

Corresponding individual in
epidemic process

Type-1 Individual contacted via a stub.
Type-2 Sampled individual contacted via a

triangle.
Type-3 Unsampled individual contacted via

a triangle.
Type-4 Individual contacted via a rewired

household.

Before considering a threshold parameter and the final size of a major out-
break for this model, we calculate the joint stub and triangle distributions of
the following. An unvaccinated individual chosen uniformly at random from the
population, an unvaccinated individual contacted via a stub, an unvaccinated
individual contacted via a triangle and an unvaccinated individual contacted
via a rewired triangle. We note that the calculations in the remainder of this
section are very similar to the work of Ball and Sirl (2013), (2016).

Consider an unvaccinated individual, i say, that has been chosen uniformly
at random from the population. Denote i’s joint stub and triangle distribution
by (SU , TU ). Then a priori i’s joint stub and triangle distribution is distributed
according to (S, T ) and i is unvaccinated with probability 1 − pV , given in
equation (6.21). Let U be the event that an individual is unvaccinated. Then
the probability mass function of (SU , TU) is given by, for s, t = 0, 1, . . . ,

P (SU = s, TU = t) = P (S = s, T = t) P(U | (S = s, T = t))
P(U)

= pst(1− pSpC)s+2t

1− pV
. (6.22)

Next consider an unvaccinated individual contacted via a stub, i say, and
denote i’s joint stub and triangle distribution by

(
S̃SU , T

S
U

)
. Then i has uncondi-

tional joint stub and triangle distribution (S̃S, T S) and we know that i avoids
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vaccination by all of its neighbours. Note that we do not count i’s parent in
the branching process, which must not vaccinate i by definition (leading to the
s− 1 term in equation (6.23)). Therefore, for s = 1, 2, . . . , t = 0, 1, . . . ,

P
(
S̃SU = s, T SU = t

)
=

P
(
S̃S = s, T S = t, U

)
P(U) = qst(1− pSpC)s−1+2t

1− q̃V
, (6.23)

where

q̃V =
∞∑
s=0

∞∑
t=0

qst(1− (1− pSpC)s−1+2t)

= 1− fS̃S−1,TS
(
1− pSpC , (1− pSpC)2

)
(6.24)

is the a priori probability that i is vaccinated.

Next consider an unvaccinated individual contacted via a triangle, i say,
and denote i’s joint stub and triangle distribution by

(
STU , T̃

T
U

)
. Then i has

unconditional joint stub and triangle distribution (ST , T̃ T ) and we know that
i avoids vaccination by all of its neighbours. Note that we do not count the
triangle containing i’s parent in the branching process, which must not vaccinate
i by definition (leading to the t − 2 term in equation (6.25)). Therefore, for
s = 0, 1, . . . , t = 1, 2, . . . ,

P
(
SU = s, T̃ TU = t

)
=

P
(
ST = s, T̃ T = t, U

)
P(U) = rst(1− pSpC)s+2t−2

1− r̃V
, (6.25)

where

r̃V =
∞∑
s=0

∞∑
t=0

rst(1− (1− pSpC)s+2t−2)

= 1− fST ,T̃T−1

(
1− pSpC , (1− pSpC)2

)
(6.26)

is the a priori probability that i is vaccinated.

Finally consider an unvaccinated individual contacted via a rewired triangle,
i say, and denote i’s joint stub and triangle distribution by

(
SRU , T̃

R
U

)
. Then i

has unconditional joint stub and triangle distribution (ST , T̃ T ) and we know
that i avoids vaccination by all of its neighbours. Note that we do not count the
segment of the rewired triangle containing i’s parent in the branching process,
which must not vaccinate i by definition (leading to the t− 1 term in equation
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(6.27)). Therefore, for s = 0, 1, . . . , t = 1, 2, . . . ,

P
(
SRU = s, T̃RU = t

)
=

P
(
ST = s, T̃ T = t, U

)
P(U) = rst(1− pSpC)s+2t−1

1− r̃RV
, (6.27)

where

r̃RV =
∞∑
s=0

∞∑
t=0

rst(1− (1− pSpC)s+2t−1)

= 1− (1− pSpC)fST ,T̃T−1

(
1− pSpC , (1− pSpC)2

)
(6.28)

is the a priori probability that i is vaccinated.

We denote by IS or ICS the events that an individual is sampled or unsampled
respectively, and note that we know that an individual contacted via a stub
or rewired triangle does not choose its parent in the branching process for
vaccination. Therefore the probability that an individual contacted via the
network is sampled, given that they did not choose their parent in the branching
process for vaccination, is given by

p̃SU = P (IS|does not choose parent) = pS(1− pC)
1− pSpC

.

To simplify the calculations of a threshold parameter and final size of a
major outbreak for the rewired edge-triangle model under the acquaintance
vaccination strategy, in the next section we consider the spread of the epidemic
through triangles and through rewired triangles.

6.3.2 The spread of the epidemic through a triangle and
rewired triangle

We begin by considering the spread of the epidemic within a triangle. Let
(4F

SS,4F
SN) be respectively the number of sampled and unsampled individuals

infected within a single triangle epidemic when the primary infective is sampled.
Consider a single triangle containing the primary infective. Then each triangle
neighbour of the primary infective (hereafter referred to as a non-primary indi-
vidual) is independently sampled with probability p̃SU and otherwise unsampled.
Furthermore, conditioned on the number of sampled individuals in the trian-
gle, each non-primary individual is independently vaccinated or unvaccinated.
Consider a triangle in which the primary infective is sampled and there are j,
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j = 0, 1, 2, sampled non-primary individuals. To be unvaccinated, each sam-
pled non-primary individual must avoid vaccination from the sampled primary
infective (occurring with probability (1− pC), the j − 1 other non-primary indi-
viduals (occurring with probability (1− pC)j−1) and its other stub and triangle
neighbours (occurring with probability 1− r̃V ). Therefore, conditioned upon the
triangle containing j non-primary sampled individuals, j = 0, 1, 2, the number
of secondary unvaccinated sampled individuals has a Binomial distribution with
parameters (j, (1− r̃V )(1− pC)j). Analogous arguments yield that, conditioned
upon the triangle containing j non-primary sampled individuals, j = 0, 1, 2,
the number of secondary unvaccinated unsampled individuals has a Binomial
distribution with parameters (2− j, (1− r̃V )(1− pC)j+1). Finally, since we as-
sume a constant infectious period and all Poisson processes are independent, an
infected individual independently contacts each given triangle neighbour with
probability pN . For notational simplicity let r̃′V C = (1− r̃V )(1− pC). Then the
joint probability mass function for (4F

SS,4F
SN) is given by

P
(
(4F

SS,4F
SN) = (2, 0)

)
= p̃2

SU(1− pC)2r̃′2V C(3− 2pN)p2
N , (6.29a)

P
(
(4F

SS,4F
SN) = (0, 2)

)
= (1− p̃SU)2r̃′2V C(3− 2pN)p2

N , (6.29b)

P
(
(4F

SS,4F
SN) = (1, 1)

)
= 2p̃SU(1− p̃SU)(1− pC)r̃′2V C(3− 2pN)p2

N , (6.29c)

P
(
(4F

SS,4F
SN) = (1, 0)

)
= 2p̃SU(1− pC)(1− r̃V ) (1− p̃SUpC)

× [1− (1− pC) r̃′V C (2− pN) pN ] pN (6.29d)

P
(
(4F

SS,4F
SN) = (0, 1)

)
= 2(1− p̃SU)r̃′V C (1− p̃SUpC)

× [1− r̃′V C (2− pN) pN ] pN , (6.29e)

P
(
(4F

SS,4F
SN) = (0, 0)

)
= 1−

∑
i+j>0

P
(
(4F

SS,4F
SN) = (i, j)

)
. (6.29f)

Similarly, let (4F
NS,4F

NN ) be respectively the number of sampled and unsam-
pled individuals infected within a triangle epidemic when the primary infective
is unsampled. Then analogous arguments to those leading to equations (6.29)
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yield

P
(
(4F

NS,4F
NN) = (2, 0)

)
= p̃2

SU r̃
′2
V C(3− 2pN)p2

N

P
(
(4F

NS,4F
NN) = (0, 2)

)
= (1− p̃SU)2(1− r̃V )2(3− 2pN)p2

N

P
(
(4F

NS,4F
NN) = (1, 1)

)
= 2p̃SU(1− p̃SU)r̃′V C(1− r̃V )(3− 2pN)p2

N

P
(
(4F

NS,4F
NN) = (1, 0)

)
= 2p̃SU(1− r̃V ) (1− p̃SUpC)

× [1− r̃′V C (2− pN) pN ] pN
P
(
(4F

NS,4F
NN) = (0, 1)

)
= 2(1− p̃SU)(1− r̃V ) (1− p̃SUpC)

× [1− (1− r̃V ) (2− pN) pN ] pN
P
(
(4F

NS,4F
NN) = (0, 0)

)
= 1−

∑
i+j>0

P
(
(4F

NS,4F
NN) = (i, j)

)
.

Let f4S(s1, s2) and f4N (s1, s2) be the joint probability generating functions for
(4F

SS,4F
SN) and (4F

NS,4F
NN) respectively.

We now consider the spread of the epidemic through a rewired triangle. Since
a rewired triangle is locally tree-like (see the arguments leading to equation
(6.11)) we can approximate the spread of the epidemic through a rewired triangle
with a single-type branching process. Let ∠FS be the final size of a rewired
triangle epidemic belonging to a sampled primary infective and let ∠FN be the
final size of a rewired triangle epidemic belonging to an unsampled primary
infective. Let f∠S(s) and f∠N (s) be the probability generating functions for ∠FS
and ∠FN respectively.

Consider an infected individual i in a rewired triangle. Since we assume
that the rewired household is locally tree-like, if i is the primary infective then i
has 2 possible neighbours to infect and if i is a secondary infective then i has 1
possible neighbour to infect. A given rewired household neighbour of i, j say, is
infected by i if j: is not chosen for vaccination by i, is not already vaccinated by
another neighbour and is contacted by i. So if i is a sampled primary infective
then i contacts j with probability (1− pC)(1− r̃RV )pN , and if i is an unsampled
primary infective then i contacts j with probability (1− r̃RV )pN . A secondary
individual in a rewired household epidemic is sampled with probability p̃SU and
otherwise unsampled, so if i is a secondary individual then i contacts j with
probability(1− p̃SUpC)(1− r̃RV )pN . Thus, by standard branching process theory

200



(Section 2.3),

f∠S(s) =
[
1− pN(1− pC)(1− r̃RV )

(
1− f̂ (3)(s)

)]2
, (6.31a)

f∠N(s) =
[
1− pN(1− r̃RV )

(
1− f̂ (3)(s)

)]2
, (6.31b)

where f̂ (3)(s) is the unique solution in [0, 1] of the equation

f̂ (3)(s) = s
[
1− pN(1− r̃RV )(1− p̃SUpC)

(
1− f̂ (3)(s)

)]
.

Finally, we consider the size of a triangle susceptibility set belonging to
a sampled individual and an unsampled individual, and the size of a rewired
triangle susceptibility set belonging to a sampled individual and an unsam-
pled individual. Let (4B

SS,4B
SN) be respectively the number of sampled and

unsampled individuals contained within a triangle susceptibility set belonging
to a sampled individual and let (4B

NS,4B
NN) be the number of sampled and

unsampled individuals contained within a triangle susceptibility set belonging
to an unsampled individual. Denote by b4S(s1, s2) and b4N(s1, s2) the joint
probability generating functions of (4B

SS,4B
SN) and (4B

NS,4B
NN) respectively.

Similarly, let b∠S(s) and b∠N(s) be the probability generating function for the
size of a rewired triangle susceptibility set with a sampled and unsampled
primary individual respectively. Note that calculating the size of an individual
i’s triangle or rewired triangle susceptibility set corresponds to calculating the
number of individuals that would infect i, were they themselves to become
infected, within the triangle or rewired triangle respectively. Since we assume
a constant infectious period the calculation of the size of a triangle or rewired
triangle susceptibility set is analogous to the calculation of the final size of a
triangle or rewired triangle epidemic, so

b4S(s1, s2) = f4S(s1, s2), (6.32a)

b4N(s1, s2) = f4N(s1, s2), (6.32b)

b∠S(s) = f∠S(s), (6.32c)

b∠N(s) = f∠N(s). (6.32d)

6.3.3 Threshold parameter

The reproduction number RA
T is the largest eigenvalue of the mean next-

generation matrix MA given below in Theorem 6.3.
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Theorem 6.3. The mean next-generation matrix MA =
[
mA
ij

]
is given by


mA

11

mA
21

mA
31

mA
41

 = pN(1− q̃V )


(1− p̃SUpC) E

[
S̃SU − 1

]
(1− pC) E

[
STU
]

E
[
STU
]

(1− p̃SUpC) E
[
SRU
]

 ,

mA

12

mA
22

mA
32

mA
42

 = (1− pRW )



(
p̃SUE

[
4F
SS

]
+ (1− p̃SU)E

[
4F
NS

])
E
[
T SU
]

E
[
4F
SS

]
E
[
T̃ TU − 1

]
E
[
4F
NS

]
E
[
T̃ TU − 1

](
p̃SUE

[
4F
SS

]
+ (1− p̃SU)E

[
4F
NS

])
E
[
T̃RU − 1

]

 ,

mA

13

mA
23

mA
33

mA
43

 = (1− pRW )



(
p̃SUE

[
4F
SN

]
+ (1− p̃SU)E

[
4F
NN

])
E
[
T SU
]

E
[
4F
SN

]
E
[
T̃ TU − 1

]
E
[
4F
NN

]
E
[
T̃ TU − 1

](
p̃SUE

[
4F
SN

]
+ (1− p̃SU)E

[
4F
NN

])
E
[
T̃RU − 1

]

 ,

mA

14

mA
24

mA
34

mA
44

 = pRW



(
p̃SUE

[
∠FS
]

+ (1− p̃SU)E
[
∠FN

])
E
[
T SU
]

E [∠S] E
[
T̃ TU − 1

]
E [∠N ] E

[
T̃ TU − 1

](
p̃SUE

[
∠FS
]

+ (1− p̃SU)E
[
∠FN

])
E
[
T̃RU − 1

]

 ,

where the joint probability distributions for
(
4F
SS,4F

SN

)
and

(
4F
NS,4F

NN

)
are

given in equations (6.29) and (6.30) respectively and the probability generating
functions for ∠FS and ∠FN are given in equations (6.31).

Proof. This proof follows similar arguments to the proof of Theorem 6.1 for
the calculation of MU . We begin by considering the expected number of
offspring of a type-1 individual, i.e. an individual contacted via a stub. Let
C1k, k = 1, 2, 3, 4, be the total number of type-k offspring of a typical type-1
individual, so m1k = E [C1k]. We first consider the calculation of C11. Note that
a type-1 individual, i∗ say, has joint stub and triangle distribution (S̃SU , T SU ) and
is sampled with probability p̃SU and otherwise unsampled. So i∗ makes infectious
contact with a given stub neighbour, j say, if: j is not vaccinated by i∗, occurring
with probability 1 − p̃SUpC ; j is not vaccinated by another stub or triangle
neighbour, occurring with probability 1− q̃V ; and i∗ contacts j, occurring with
probability pN . Therefore i∗ contacts j with probability (1− p̃SUpC)(1− q̃V )pN
and, conditioned on i∗’s stub and triangle distribution S̃SU , T SU ,

C11|S̃SU , T SU ∼ Bin
(
S̃SU − 1, (1− p̃SUpC)(1− q̃V )pN

)
. (6.34)
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Considering E [C11] and applying equation (6.34) yields

E [C11] = E
[
E
[
C11

∣∣∣S̃SU , T SU ]] = (1− p̃SUpC)(1− q̃V )pNE
[
S̃S − 1

]
. (6.35)

Next we consider the calculation of E [C12], i.e. the expected number of
sampled individuals infected within the triangles containing a typical type-1
individual. We calculate E [C12] by conditioning on the joint stub and triangle
degree of a type-1 individual, i∗ say, the number of rewired triangles containing
i∗ and whether i∗ is sampled or unsampled. We then decompose the total
number of sampled individuals infectiously contacted by i∗ via triangles and
rewired triangles into the number of sampled individuals infectiously contacted
within each triangle and rewired triangle. So consider a type-1 individual i∗

with joint stub and triangle degree (S̃SU , T SU ), and condition on i∗ being sampled
(IS) and part of R ∈ [0;T SU ] rewired triangles. Then

C12 | S̃SU , T SU , IS, R =
TSU−R∑
r=1

CST
12 (r), (6.36)

where we have labelled the T SU −R triangles containing i∗ 1, 2, . . . , T SU −R and
CST

12 (r) is the number of sampled individuals infected within triangle r given
that i∗ is sampled. Recall that we assume a constant infectious period and
that all triangles containing the primary infective i∗ are edge-disjoint. Thus the
summands in equation (6.36) are all mutually independent, and also independent
of S̃SU , T SU and R. Furthermore, the number of sampled individuals infected by
a sampled individual through a triangle is distributed according to 4F

SS (see
Section 6.3.2, equations (6.29)), so CST

21 (r) D= 4F
SS, r = 1, 2, . . . , T SU −R. Thus

taking the expectation of equation (6.36) yields

E
[
C12

∣∣∣S̃SU , T SU , IS, R] =
(
T SU −R

)
E
[
4F
SS

]
. (6.37)

Similarly, conditioning on i∗ being unsampled, recalling that the number of
sampled individuals infected by an unsampled individual through a triangle is
distributed according to4NS (given in equations (6.30)) and following analogous
arguments to those leading to equation (6.37) yields

E
[
C12

∣∣∣S̃SU , T SU , ICS , R] =
(
T SU −R

)
E
[
4F
NS

]
. (6.38)

Recall that i∗ is sampled with probability p̃SU and otherwise unsampled
and that each triangle in the network is independently rewired with probability
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pRW , so R|S̃SU , T SU ∼ Bin
(
T SU , pRW

)
. Thus considering the expectation of C12

and substituting equations (6.37) and (6.38) yields

E [C12] = E
[
E
[
C12

∣∣∣S̃SU , T SU , R]]
= E

[
E
[(
T SU −R

) {
p̃SUE

[
4F
SS

]
+ (1− p̃SU)E

[
4F
NS

]}∣∣∣S̃SU , T SU , R]]
= E

[
E
[
T SU (1− pRW )

{
p̃SUE

[
4F
SS

]
+ (1− p̃SU)E

[
4F
NS

]}∣∣∣S̃SU , T SU ]]
= E

[
T SU
]

(1− pRW )
{
p̃SUE

[
4F
SS

]
+ (1− p̃SU)E

[
4F
NS

]}
. (6.39)

We now consider the calculation of E [C13], i.e. the expected number of
unsampled individuals infected within the triangles containing a typical type-1
individual. The calculation of E [C13] follows analogous arguments to those
for the calculation of E [C12], differing only in counting the number of infected
unsampled individuals instead of the number of infected sampled individuals.
Recall that the number of sampled individuals infected by a sampled or un-
sampled individual through a triangle is distributed according to 4SN or 4NN

respectively (see Section 6.3.2, equations (6.29) or (6.30)). Thus

E [C13] = E
[
T SU
]

(1− pRW )
{
p̃SUE

[
4F
SN

]
+ (1− p̃SU)E

[
4F
NN

]}
. (6.40)

Next we consider the calculation of E [C14], i.e. the expected number of
individuals infected within the rewired triangles containing a typical type-1
individual. The calculation of E [C14] follows similar arguments to the calculation
of E [C12], although considering the total number of individuals contacted
through rewired triangle epidemics rather than intact triangle epidemics. So
consider a type-1 individual i∗ with joint stub and triangle degree (S̃SU , T SU ) and
condition on i∗ being sampled and part of R ∈ [0;T SU ] rewired triangles. Then

C14 | S̃SU , T SU , IS, R =
R∑
r=1

CSR
12 (r), (6.41)

where we have labelled the R rewired triangles containing i∗ 1, 2, . . . , R and
CSR

12 (r) is the number of individuals infected within rewired triangle r given
that i∗ is sampled. Recall that we assume a constant infectious period and
that all rewired triangles containing the primary infective i∗ are edge-disjoint.
Thus the summands in equation (6.41) are all mutually independent, and also
independent of S̃SU , T SU and R. Furthermore, CSR

14 (r) D= ∠FS , r = 1, 2, . . . , R, with
∠FS given in equation (6.31a). Thus taking the expectation of equation (6.41)
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yields
E
[
C14

∣∣∣S̃SU , T SU , IS, R] = RE
[
∠FS
]
. (6.42)

Similarly, conditioning on i∗ being unsampled, recalling that the number of
individuals infected by an unsampled individual through a rewired triangle is
distributed according to ∠FN , given in equation (6.31b), and following analogous
arguments to those leading to equation (6.42) yields

E
[
C14

∣∣∣S̃SU , T SU , ICS , R] = RE
[
∠FN

]
. (6.43)

Recall that i∗ is sampled with probability p̃SU and otherwise unsampled
and that each triangle in the network is independently rewired with probability
pRW , so R|S̃SU , T SU ∼ Bin

(
T SU , pRW

)
. Therefore considering the expectation of

C14 and substituting equations (6.42) and (6.43) yields

E [C14] = E
[
E
[
C14

∣∣∣S̃SU , T SU , R]]
= E

[
E
[
R
{
p̃SUE

[
∠FS
]

+ (1− p̃SU)E
[
∠FN

]}∣∣∣S̃SU , T SU , R]]
= E

[
E
[
T SU pRW

{
p̃SUE

[
∠FS
]

+ (1− p̃SU)E
[
∠FN

]}∣∣∣S̃SU , T SU ]]
= E

[
T SU
]
pRW

{
p̃SUE

[
∠FS
]

+ (1− p̃SU)E
[
∠FN

]}
. (6.44)

Since m1j = E [C1j], j = 1, 2, 3, 4, m11, m12, m13 and m14 are given in
equations (6.35), (6.39), (6.40) and (6.44) respectively.

The calculations of mij , i = 2, 3, 4, j = 1, 2, 3, 4, follow analogous arguments
to the calculations of m1j. The calculation of m2j differs to the calculation
of m1j in that a type-2 individual is always sampled and has joint stub and
triangle distribution

(
STU , T̃

T
U

)
. The calculation of m3j differs to the calculation

of m1j in that a type-3 individual is always unsampled and has joint stub
and triangle distribution

(
STU , T̃

T
U

)
. Finally, the calculation of m4j differs to

the calculation of m1j in that a type-4 individual has joint stub and triangle
distribution

(
SRU , T̃

R
U

)
.

6.3.4 Final size of a major outbreak

The backwards branching process approximating the spread of an individual’s
susceptibility set is constructed using similar typing to the forward branching
process described in Section 6.3.1. First consider the number of stub neighbours
that would infect an individual, i∗ say, should they become infected, which
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correspond to the type-1 individuals in the first generation of the backwards
branching process. Then consider the number of sampled or unsampled individ-
uals that would infect i∗, were they to become infected, spreading only through
the triangles containing i∗, and each such sampled or unsampled individual
corresponds respectively to a type-2 or type-3 individual in the first generation
of the backwards branching process. Finally, consider the number of individuals
that would infect i∗, were they to become infected, spreading only through the
rewired households containing i∗, in which each such individual corresponds to
a type-4 individual in the first generation of the backwards branching process.
We then repeat the process to obtain the second generation of the branching
process and so on. Note that the offspring of the initial individual (chosen
uniformly at random from the population) will be different to the offspring of
subsequent generations. We call i∗ the primary individual and any individuals
in the triangles or rewired triangles containing i∗ are called secondary individuals.

Recall from Section 6.1 that we hypothesize that if a major outbreak does
occur then its relative final size converges in distribution to the survival proba-
bility of the above backwards branching process. Let B̃i =

(
B̃i1, B̃i2, B̃i3, B̃i4

)
,

i = 1, 2, 3, 4, be the offspring random vector of a typical type-i individual in
a non-initial generation of the backwards branching process. Similarly, let
B = (B1, B2, B3, B4) be the offspring random vector in the initial generation of
the backwards branching process. Let bB(s), s = (s1, s2, s3, s4) be the joint prob-
ability generating function ofB and let bB̃ (s) =

(
bB̃1

(s), bB̃2
(s), bB̃3

(s), bB̃4
(s)
)
.

Then the final size of a major outbreak is z = 1 − bB(π), where π =
(π1, π2, π3, π4) is the smallest solution to the set of simultaneous equations
π = bB̃ (π).

Theorem 6.4. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

bB(s) = fSU ,TU (1− pN(1− pSpC)(1− q̃V )(1− s1),

pS [(1− pRW )f4S(s2, s3) + pRW b∠S(s4)]

+ (1− pS) [(1− pRW )b4N(s2, s3) + pRW b∠N(s4)]) ,
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and

bB̃1
(s) = fS̃SU−1,TSU

(1− pN(1− p̃SUpC)(1− q̃V )(1− s1),

p̃SU [(1− pRW )b4S(s2, s3) + pRW b∠S(s4)]

+ (1− p̃SU) [(1− pRW )b4N(s2, s3) + pRW b∠N(s4)]) ,

bB̃2
(s) = fSTU ,T̃TU −1 (1− pN(1− pC)(1− q̃V )(1− s1),

(1− pRW )b4S(s2, s3) + pRW b∠S(s4)) ,

bB̃3
(s) = fSTU ,T̃TU −1 (1− pN(1− q̃V )(1− s1),

(1− pRW )b4N(s2, s3) + pRW b∠N(s4)) ,

bB̃4
(s) = fSRU ,T̃RU −1 (1− pN(1− p̃SUpC)(1− q̃V )(1− s1),

p̃SU [(1− pRW )b4S(s2, s3) + pRW b∠S(s4)] ,

(1− p̃SU) [(1− pRW )b4N(s2, s3) + pRW b∠N(s4)]) ,

where the probability generating functions b4S(s2, s3), b4N(s2, s3), b∠S(s4) and
b∠N(s4) are given in equations (6.32).

Proof. We first consider the calculation of bB(s). Note that an individual chosen
uniformly at random from the population has joint stub and triangle distribution
(SU , TU) and is sampled with probability pS and otherwise unsampled. Recall
that we assume a constant infectious period and that, in the limit N −→ ∞,
all infectious contacts made to i∗ via a stub originate from individuals in edge-
disjoint triangles and rewired triangles which do not contain i∗. Thus the number
of contacts made to i∗ via stubs is independent of the number of contacts made
to i∗ via triangles or rewired triangles so B1|SU , TU is independent of Bk|SU , TU ,
k = 2, 3, 4. Thus, conditioning on whether the primary individual is sampled or
unsampled,

E
[
sB
]

= E
[
pSE

[
sBi

∣∣∣SU , TU , IS]+ (1− pS)E
[
sBi

∣∣∣SU , TU , ICS ]]
= E

[
pSE

[
sB1

1

∣∣∣SU , TU , IS]E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , IS
]

+ (1− pS)E
[
sB1

1

∣∣∣SU , TU , ICS ]E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , ICS
]]
. (6.46)

We now consider the calculation of E
[
sB1

1

∣∣∣SU , TU , IS] and E
[
sB1

1

∣∣∣SU , TU , ICS ].
A given network neighbour of i∗, j say, can only make infectious contact with i∗

if j: is not chosen for vaccination by i∗, is not already vaccinated by another
neighbour and contacts i∗. So if i∗ is sampled or unsampled then j contacts i∗
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with probability (1− pC)(1− q̃V )pN or (1− q̃V )pN respectively. Therefore

B1|SU , TU , IS ∼ Bin (SU , pN(1− pC)(1− q̃V )) . (6.47a)

B1|SU , TU , ICS ∼ Bin (SU , pN(1− q̃V )) . (6.47b)

Next we consider the calculation of E
[∏4

k=2 s
Bk
k

∣∣∣SU , TU , IS] by conditioning
on i∗ being part of R ∈ [0;TU ] rewired triangles and decomposing the vector
(B2, B3, B4) |SU , TU , IS, R into the number of contacts made to i∗ through each
triangle or rewired triangle separately. So

(B2, B3, B4) | SU , TU , IS, R =
TU−R∑
r=1

(
BT

2 (r), BT
3 (r), BT

4 (r)
)

+
TU∑

r=TU−R+1

(
BR

2 (r), BR
3 (r), BR

4 (r)
)
, (6.48)

where: we have labelled the TU −R triangles containing i∗ 1, 2, . . . , TU −R, we
have labelled the R rewired triangles containing i∗ TU−R+1, TU−R+2, . . . , TU ,(
BT

2 (r), BT
3 (r), BT

4 (r)
)
is the number of (type-2, type-3, type-4) offspring in

triangle r and
(
BR

2 (r), BR
3 (r), BR

4 (r)
)
is the number of (type-2, type-3, type-4)

offspring in rewired triangle r. Recall that we assume that all triangles and
rewired triangles containing i∗ are edge-disjoint so all the summands in equation
(6.48) are mutually independent and also independent of SU , TU and R. Fur-
thermore, the spread of i∗’s susceptibility set through a triangle cannot result
in type-4 offspring, so BT

4 (r1) = 0 for r1 ∈ [1;TU − R], and the spread of i∗’s
susceptibility set through a rewired triangle cannot result in type-2 or type-3
offspring, so BT

2 (r3) = BT
3 (r3) = 0 for r3 ∈ [TU −R + 1;TU ].

Recall that the size of a triangle and rewired triangle susceptibility set is
calculated in Section 6.3.2 so, for r1 ∈ [1;TU −R],

(
BT

2 (r1), BT
3 (r1), BT

4 (r1)
)

D=
(
4B
SS,4B

SN , 0
)
, (6.49a)

and, for r3 ∈ [TU −R + 1;TU ],

(
BR

2 (r3), BR
3 (r3), BR

4 (r3)
)

D=
(
0, 0,∠BS

)
, (6.49b)

where the probability generating functions for
(
4B
SS,4B

SN

)
and ∠BS are given in

equations (6.32).
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Applying the decomposition of equation (6.48) to E
[∏4

k=2 s
Bk
k

∣∣∣SU , TU , IS, R]
and using equations (6.49) yields

E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , IS, R
]

= E
[ 4∏
k=2

s

∑TU−R
r=1 BTk (r)+

∑TU
r=TU−R+1 B

R
k (r)

k

∣∣∣∣∣SU , TU , IS, R
]

= E
[
(f4S(s2, s3))TU−R (f∠S(s4))R

∣∣∣SU , TU , IS, R] .
(6.50)

Each triangle in the network is independently rewired with probability pRW so
R|SU , TU ∼ Bin (TU , pRW ) which, applied to equation (6.50), yields

E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , IS
]

= E
[
E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , IS, R
]]

= ((1− pRW )f4S(s2, s3) + pRWf∠S(s4))TU . (6.51)

Considering E
[∏4

k=2 s
Bk
k

∣∣∣SU , TU , ICS ] and applying analogous arguments to
those leading to equations (6.51) yields

E
[ 4∏
k=2

sBkk

∣∣∣∣∣SU , TU , ICS
]

= ((1− pRW )f4N(s2, s3) + pRWf∠N(s4))TU . (6.52)

Substituting equations (6.51) and (6.52) into equation (6.46) and applying
equations (6.47) yields bB(s) in the statement of the theorem.

Finally, we consider the calculation of bB̃k
(s), k = 1, 2, 3, 4. The calculation

of bB̃k
(s) follow analogous arguments to the calculation of bB(s) and requires

only a substitution of the appropriate joint stub and triangle distribution (with
an adjustment to account for the individuals parent) and the probability that
the primary infective is sampled. To calculate bB̃1

(s) or bB̃4
(s) we note that

the primary individual has joint stub and triangle distribution
(
S̃SU , T

S
U

)
or(

SRU , T̃
R
U

)
respectively, and in both cases is sampled with probability p̃SU . To

calculate bB̃2
(s) or bB̃3

(s) we note that the primary individual is sampled with
probability 1 or 0 respectively, and has joint stub and triangle distribution(
STU , T̃

T
U

)
.
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6.4 Optimal vaccination on the rewired edge-
triangle model

6.4.1 Description of optimal vaccination

We now consider the ‘optimal’ vaccination strategy in the rewired edge-triangle
model. Under the optimal vaccination strategy we vaccinate individuals with
a larger total degree than a cut-off value, the cut-off being determined by the
desired vaccination coverage.

Recall that the total degree distribution is given by DT and P (DT = k) = pk,
k = 0, 1, . . . . Then, given the desired vaccination coverage, c, let dc be
the smallest total degree of an individual which we vaccinate. Therefore
dc = max

{
n ∈ Z+ : ∑n−1

k=0 pk < 1− c
}
. We vaccinate no individuals of total

degree dc − 1 or lower and all individuals of total degree dc + 1 or higher. We
then vaccinate some proportion δ ∈ (0, 1] of individuals of total degree dc, which
are chosen uniformly at random. Clearly we require c = ∑∞

k=dc+1 pk + δpdc , so
δ =

(
c−∑∞k=dc+1 pk

)
/pdc . Note that by choosing individuals with total degree

dc uniformly at random for vaccination we make no distinction between individ-
uals with a larger stub or triangle degrees. Therefore the optimal vaccination
strategy we consider is unlikely to be the true optimal vaccination strategy,
which should incorporate the difference in stub and triangle degrees (and the
difference in their effect on the spread of the epidemic), however it is likely to
be a very good vaccination strategy since it targets individuals with large total
degree using global knowledge of the network.

Before considering a threshold parameter and the final size of a major out-
break we calculate the joint stub and triangle distributions of an unvaccinated
individual chosen uniformly at random from the population, an unvaccinated
individual contacted via a stub and an unvaccinated individual contacted via a
triangle or rewired triangle.

Let (SO, TO) be the joint stub and triangle distribution of an unvaccinated in-
dividual chosen uniformly at random from the population. An individual chosen
uniformly at random from the population has unconditional joint stub and trian-
gle distribution (S, T ), however we also know that this individual is unvaccinated.
So, for s, t = 0, 1, . . . such that s+2t < dc−1, P (SO = s, TO = t) = pst(1− c)−1
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and, for s, t such that s+ 2t = dc, P (SO = s, TO = t) = (1− δ)pst(1− c)−1.

Let (S̃SO, T SO) be the joint stub and triangle distribution of an unvaccinated
individual contacted via a stub. Recalling that an individual contacted via a
stub will have unconditional joint stub and triangle distribution (S̃S, T S), for
s = 1, 2, . . . , t = 0, 1, . . . such that s+ 2t < dc − 1

P
(
S̃SO = s, T SO = t

)
= qst(1− p̃SV )−1,

and, for s, t such that s+ 2t = dc

P
(
S̃SO = s, T SO = t

)
= (1− δ)qst(1− p̃SV )−1,

where p̃SV = δ
∑
s+2t=dc qst +∑

s+2t>dc qst is the a priori probability that an indi-
vidual contacted via a stub is vaccinated.

Similarly let (STO, T̃ TO ) be the joint stub and triangle distribution of an
unvaccinated individual contacted via a triangle or rewired triangle. Recalling
that an individual contacted via a triangle will have unconditional joint stub
and triangle distribution (ST , T̃ T ), for s = 0, 1, . . . , t = 1, 2, . . . , such that
s+ 2t < dc − 1,

P
(
STO = s, T̃ TO = t

)
= rst(1− p̃TV )−1,

and, for s, t such that s+ 2t = dc,

P
(
STO = s, T̃ TO = t

)
= (1− δ)rst(1− p̃TV )−1,

where p̃TV = δ
∑
s+2t=dc rst + ∑

s+2t>dc rst is the a priori probability that an
individual contacted via a triangle or rewired triangle is vaccinated.

6.4.2 Threshold parameter

Similarly to the calculations for the uniform vaccination strategy discussed in
Section 6.2.1, we consider a two-type branching process to calculate a threshold
parameter. In the forward branching process, used to calculate the threshold
parameter RO

T , individuals are typed by whether they were infected via a stub
(type-1) or via the spread of the epidemic through the triangles and rewired
triangles containing the primary infective (type-2). The reproduction number
RO
T is the largest eigenvalue of the mean next-generation matrixMO given below
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in Theorem 6.5.

Theorem 6.5. If pN (1− p̃SV ) < 1 then the mean next-generation matrix MO is
given by

MO =

pN(1− p̃SV )E
[
S̃SO − 1

]
2E

[
T S
] [

(1− pRW )4O
E + pRW

pN (1−p̃TV )
1−pN (1−p̃TV )

]
pN(1− p̃SV )E

[
STO
]

2E
[
T̃ T
] [

(1− pRW )4O
E + pRW

pN (1−p̃TV )
1−pN (1−p̃TV )

]
 ,

where

4O
E = pN(1− p̃TV )

[
pN(1− p̃TV )(3− 2pN) + (1− p̃TV )(1− pN)2 + p̃TV

]
.

We omit the proof of Theorem 6.5 since it proceeds analogously to the proofs
of Theorems 6.1 and 6.3.

6.4.3 Final size of a major outbreak

Similarly to the calculations for the uniform vaccination strategy discussed in
Section 6.2.2, we consider a two-type branching process to calculate the final
size of a major outbreak. In the backwards branching process individuals are
typed by whether they join an individual’s susceptibility set via a stub (type-1)
or via the spread of the epidemic through the triangles and rewired triangles
containing the primary individual (type-2).

The final size of a major outbreak is z = 1− fB(π), where π = (π1, π2) is
the smallest solution to the set of simultaneous equations π = bB̃ (π).

Theorem 6.6. The joint probability generating functions for the offspring
distributions of the backward Galton-Watson branching process are given by

bB̃1
(s) = fS̃SO−1,TSO

1− pN(1− p̃SV )(1− s1),

(1− pRW )b4O(s2) + pRW

(
1− pN(1− p̃TV )

1− s2pN(1− p̃TV )

)2
 ,

bB̃2
(s) = fSTO,T̃TO−1

1− pN(1− p̃SV )(1− s1),

(1− pRW )b4O(s2) + pRW

(
1− pN(1− p̃TV )

1− s2pN(1− p̃TV )

)2
 ,
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and

bB(s) = fSOTO

1− pN(1− p̃SV )(1− s1),

(1− pRW )b4O(s2) + pRW

(
1− pN(1− p̃TV )

1− s2pN(1− p̃TV )

)2
 ,

where

b4O(s2) = (1− p̃TV )2p2
N(3− 2pN)s2

2 + 2(1− p̃TV )pN
[
(1− p̃TV )(1− pN)2 + p̃TV

]
s2

+
(
p̃TV + (1− p̃TV )(1− pN)

)2
.

We omit the proof of Theorem 6.6 since it proceeds analogously to the proofs
of Theorems 6.2 and 6.4.

6.5 Calculation of R0 in the rewired edge-triangle
model

Before calculating R0, we define rank generations (see Section 3.2.3) of a single
rewired triangle epidemic and then calculate the mean number of cases in each
rank generation of a single triangle and rewired triangle epidemic.

6.5.1 Mean number of cases in each rank generation of
a single triangle and rewired triangle epidemic

We define the rank generations of a single rewired triangle epidemic analogously
to the definition of a single household epidemic given in Section 3.2.3. Therefore
consider the spread of the epidemic within a single rewired triangle containing n
individuals. We label the initial infective 0 and label the remaining susceptibles
in the rewired triangle 1, 2, . . . . Then construct a directed graph, GRT , with
vertices labelled 0, 1, . . . , in which for any ordered pair of distinct vertices (i, j),
there is a directed edge from i to j if and only if individual i would infect j, if i
became infected. We say that individual 0 has a rank generation 0. Those indi-
viduals that are in 0’s list are then said to have rank generation 1. Individuals
not in individual 0’s list, or individual 0, but who are in a rank generation 1
infective’s list have rank generation 2 and so on. The set of people ultimately
infected within a rewired triangle by the epidemic comprises those individuals
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in GR that have a chain of directed edges leading to them from individual 0 and
the rank generation number of such an infected individual, i say, is the length
of the shortest chain joining 0 to i, where the length of a chain is the number
of edges in it. The rank generation of a single triangle is identical to the rank
generation of a single household of size 3, given in Section 3.2.3.

Denote by µ4i , i = 1, 2, . . . , the mean number of infectives in rank generation
i of a single triangle epidemic. Similarly, denote by µ∠i , i = 1, 2, . . . , the mean
number of infectives in rank generation i of a single rewired triangle epidemic.
Clearly µ4i = 0 for i > 2 and

µ41 = 2p2
N + 2pN(1− pN) = 2pN , (6.54a)

µ42 = 2p2
N(1− pN). (6.54b)

Since the graph created by a rewired triangle is locally tree-like when N is large
(See the arguments leading to equation (6.11)) we can approximate the spread of
the epidemic through a rewired triangle by the spread of the epidemic through
a tree. The initial infective has 2 susceptible neighbours and any subsequent
infective in the rewired triangle has 1 susceptible neighbour. Therefore, since an
infected individual infects any given susceptible neighbour with probability pN ,
for i = 1, 2, . . . , rank generation i of a single rewired triangle epidemic consists
of 2 individuals with probability p2i

N and a single individual with probability
2piN(1− piN). Thus, for i = 1, 2, . . . ,

µ∠i = 2piN . (6.55)

6.5.2 Calculation of R0

We now consider the calculation of R0 in the rewired edge-triangle model under
no vaccination. Recall that we use the definition of R0 introduced by Pellis
et al. (2012), which we discuss in Section 3.2.3 for the model with three levels
of mixing. To calculate R0 we introduce a discrete-time two-type branching
process, which we call the forward R0 branching process, which proceeds in the
following way. First consider the number of stub network contacts made by the
initial infective, which we call type-1 individuals in the branching process. Then
consider the epidemic spreading in multiple generations through the triangles
and rewired triangles containing the initial infective, in which each infected
individual results in a type-2 offspring in the branching process. In the forward
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R0 branching process a time period corresponds to a new generation being
infected and an individual in the forward R0 branching process corresponds
to a single individual becoming infected in the epidemic process, although an
individual will have type-2 offspring at multiple time points as the epidemic
spreads through the triangles and rewired triangles. Similarly to the forward
branching process discussed in Section 6.1, we conjecture that as N −→ ∞
the total number of infected individuals in the epidemic process converges in
distribution to the total progeny of the forward R0 branching process.

Recall from the beginning of Section 3.2.3 that the global generation of an
infective is its generation in the epidemic at large. So the initial infective in
the epidemic, i∗, has global generation 0. Individuals that i∗ would contact,
through either stubs, triangles or rewired triangles, are then global generation 1.
Similarly, individuals which are not members of a previous global generation
that members of generation 1 would infect, through either stubs, triangles or
rewired triangles are then generation 2 and so on. In the forward R0 branching
process we say that an individual’s time of birth is given by the global generation
of the corresponding individual in the epidemic process. An individual in the
forward R0 branching process may reproduce at ages 1, 2, . . . . For a type-i,
i = 1, 2, individual we denote the mean number of type-j, j = 1, 2, offspring at
age i+ 1 by ν(i)

ij .

Then, similarly to Section 3.2.3, R0 is given by the asymptotic (Malthusian)
geometric growth rate of the forward R0 branching process, which is the value
of λ ∈ R+ such that the maximal eigenvalue of V (λ) is 1, where V (λ) is given
by

V (λ) =
∞∑
i=1

ν(i−1)
11 /λi ν

(i−1)
12 /λi

ν
(i−1)
21 /λi ν

(i−1)
22 /λi

 .
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Theorem 6.7. If pN < 1 then, for λ > pN ,

V (λ) =
 v11(λ) v12(λ)
v21(λ) v22(λ)

 ,
where

v11(λ) =E
[
S̃S − 1

] pN
λ
,

v12(λ) =2pNE
[
T S
] {

(1− pRW )
[

1
λ

+ pN(1− pN)
λ2

]
+ pRW

1
λ− pN

}
,

v21(λ) =E
[
ST
] pN
λ
,

v22(λ) =2pNE
[
T̃ T − 1

] {
(1− pRW )

[
1
λ

+ pN(1− pN)
λ2

]
+ pRW

1
λ− pN

}
.

Proof. We begin by calculating v11(λ) and v21(λ). For j = 1, 2, i = 1, 2, . . . ,
let Cj1(i) be the total number of contacts made via a stub of a single type-j
individual in rank generation i. Consider an individual, l say, and let S̄ be the
number of uninfected stub neighbours of l. Conditioned on S̄, individual l makes
contact with each of its S̄ susceptible neighbours independently with probability
pN . Thus, since all contacts made via a stub occur when an individual is at age
1, Cj1(1)|S̄ ∼ Bin

(
S̄, pN

)
, Cj1(i) = 0 for i = 2, 3, . . . , and

E [Cj1(1)] = E
[
E
[
Cj1(1)

∣∣∣S̄]] = E
[
S̄
]
pN .

A type-1 or type-2 individual has S̃S − 1 or ST uninfected stub neighbours
respectively. So ν(1)

j1 = E [Cj1(1)] and

ν
(i)
11 =

E
[
S̃S − 1

]
pN if i = 1,

0 otherwise,

ν
(i)
21 =

E
[
ST
]
pN if i = 1,

0 otherwise.

Furthermore, since vj1(λ) = ∑∞
i=1 ν

(i−1)
j1 /λi,

v11(λ) = E
[
S̃S − 1

] pN
λ
, (6.57a)

v21(λ) = E
[
ST
] pN
λ
. (6.57b)
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Let Cj2(i), j = 1, 2, i = 1, 2, . . . , be the number of individuals infected via
a triangle or rewired triangle of a single type-j individual in rank generation
i. Consider an individual, i∗ say, and let T̄ be the total number of triangles
and rewired triangles containing i∗ and no other infected individuals. Similarly,
let R be the number of rewired triangles containing i∗ and no other infected
individuals. Note that, since each triangle is rewired independently and uniformly
at random with probability pRW , E

[
R
∣∣∣T̄ ] = pRW T̄ . Furthermore, note that

E
[
Cj2(i)

∣∣∣T̄ , R] = (T̄ −R)µ4i +Rµ∠i and, since all triangles and rewired triangles
containing i∗ are edge-disjoint,

E [Cj2(i)] = E
[
E
[
Cj2(i)

∣∣∣T̄ , R]]
= E

[
E
[
(T̄ −R)µ4i +Rµ∠i

∣∣∣T̄ ]]
= E

[
T̄
]

(1− pRW )µ4i + E
[
T̄
]
pRWµ

∠
i . (6.58)

Note that ν(i−1)
j2 = E [Cj2(i)] so, since pN < 1, substituting equations (6.54),

(6.55) and (6.58) into vj2(λ) = ∑∞
i=1 ν

(i−1)
j1 /λi, j = 1, 2 yields

vj2(λ) =
∞∑
i=1

E
[
T̄
] (

(1− pRW )µ4i + pRWµ
∠
i

)
λi

= E
[
T̄
] (

(1− pRW )
∞∑
i=1

µ4i
λi

+ pRW
∞∑
i=1

µ∠i
λi

)

= E
[
T̄
] (

(1− pRW )
(

2pN
λ

+ 2p2
N(1− pN)
λ2

)
+ pRW

∞∑
i=1

2piN
λi

)

= E
[
T̄
] (

(1− pRW )
(

2pN
λ

+ 2p2
N(1− pN)
λ2

)
+ pRW

2pN
λ− pN

)
.

Recall that for a type-1 individual T̄ D= T S and for a type-2 individual
T̄

D= T̃ T − 1, so

v12(λ) = E
[
T S
] (

(1− pRW )
(

2pN
λ

+ 2p2
N(1− pN)
λ2

)
+ pRW

2pN
λ− pN

)
, (6.59a)

v22(λ) = E
[
T̃ T − 1

] (
(1− pRW )

(
2pN
λ

+ 2p2
N(1− pN)
λ2

)
+ pRW

2pN
λ− pN

)
.

(6.59b)

Equations (6.57) and (6.59) yield the entries of V (λ) given in the theorem
as required.

Note that if pN < 1 then every entry in V (λ), given in Theorem 6.7, is finite
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for λ > 0 which yields the following remark.

Remark 6.2. If pN < 1 then R0 <∞ in the rewired edge-triangle model.

6.6 Numerical investigation of the rewired edge-
triangle model

In this section we consider the rewired edge-triangle model as a clustered network
with a fixed total degree distribution and, since changing the probability of
rewiring does not affect the degree correlation, use the probability of rewiring
to investigate the effect of clustering introduced via edge-disjoint triangles on
the performance of vaccination strategies.

Note that two rewired edge-triangle models with the same stub and triangle
distributions and infection rates but varying in pRW will differ in both the final
size of a major outbreak (z) and basic reproduction number (R0). Therefore
in the investigations discussed in this Section we compare models with the
same stub and triangle distribution (and therefore total degree distribution) and
differing in pRW by choosing an infection rate λN to fix either z or R0 in the
rewired edge-triangle model without any vaccination. We choose to fix z because
in applications epidemic models are often parameterised by final size data (see
Becker and Utev (1998)), and we find an investigation of models parameterised
by R0 illuminating.

Similarly to previous investigations of the acquaintance vaccination strategies
(see, for example, Section 5.1.4 or Ball and Sirl (2013)), our numerical work
suggests that for a fixed vaccination coverage the threshold parameter and final
size of a major outbreak are monotonically increasing in pC . In other words, for
a fixed vaccination coverage the effect of vaccination under the acquaintance
vaccination strategy is greater if everyone in the population chooses a few
individuals to be vaccinated rather than a few individuals choosing all their
neighbours for vaccination. Therefore in our numerical investigations of the
acquaintance vaccination strategy we focus on the extreme situations pS = 1 or
pC = 1, which we call the pS = 1 or pC = 1 acquaintance vaccination strategies
respectively. Let c∗U , c∗pS , c

∗
pC

and c∗O be the critical vaccination coverages under
the uniform, pS = 1 acquaintance, pC = 1 acquaintance and optimal vaccination
strategies respectively.
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(a) Models matched with z = 0.5 and fS,T = 0.6t+0.4t2, so E [DT ] = 2.8.

(b) Models matched with z = 0.45, total degree distribution Geo+(1/2)
and triangle allocation distribution Bin (DT , 0.75), so E [DT ] = 2.

Figure 6.2: Figures illustrating that the pS = 1 acquaintance vaccination strategy
outperforms the uniform vaccination strategy.

6.6.1 Comparing the acquaintance and uniform vaccina-
tion strategies

As we would intuitively expect, for a fixed stub and triangle distribution, pRW ,
and vaccination coverage, the pS = 1 acquaintance vaccination strategy performs
at least as well as the uniform vaccination strategy, with equality in performance
occurring when the total degree distribution has zero variance (i.e. Var [DT ] = 0)
and an increasing difference between the two strategies as Var [DT ] increases,
as illustrated in Figure 6.2. Furthermore, the difference between c∗U and c∗pS
remains mostly constant as pRW varies.

In contrast, if Var [DT ] is small then c∗pC > c∗U , so the pC = 1 acquaintance
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vaccination strategy can perform worse than the uniform vaccination strategy.
Recall that in Section 5.4 we prove that in the network and global model the
critical vaccination coverage under the pC = 1 acquaintance vaccination strategy
is larger than the critical vaccination coverage under the uniform vaccination
strategy if the network degree distribution has a small variance. Since setting
P (T > 0) = 0 in the rewired edge-triangle model recovers the standard network
model (a submodel of the network and global model), the result c∗pC > c∗U if
Var [DT ] is small is unsurprising. However, an important result is that the addi-
tion of edge-disjoint triangle clustering when Var [DT ] is small and either z or R0

is fixed increases the difference between c∗pC and c∗U , as illustrated in Figures 6.3a
and 6.3b. Similarly to Section 5.4, we conjecture that the pC = 1 acquaintance
vaccination strategy is clustering the vaccination among groups of individuals
and thus, owing to the similarity of an individual’s total degree, reducing the
probability that the neighbour of an unvaccinated individual is also unvaccinated
compared to the uniform vaccination. Furthermore, as the clustering coefficient
is increased (by decreasing pRW ), for a fixed vaccination coverage the pC = 1
acquaintance vaccination strategy will prevent infectious contacts from occur-
ring along fewer edges in the network than the uniform vaccination strategy,
leading to the increasing difference between c∗pC and c∗U with the addition of edge-
disjoint triangle clustering. To see this note that under the pC = 1 acquaintance
vaccination strategy a sampled individual chooses on average E [S] + 2E [T ]
individuals for vaccination. If pRW = 1 (so the rewired edge-triangle model is
unclustered) then these E [S] + 2E [T ] individuals are edge-disjoint and vaccinat-
ing these individuals is expected to prevent infectious contacts from occurring
along E [S]

(
E
[
S̃S
]

+ 2E
[
T S
])

+ 2E [T ]
(
E
[
ST
]

+ 2E
[
T̃ T
])

edges. However,
if pRW = 0 then these E [S] + 2E [T ] individuals are not edge-disjoint and
vaccinating the same number of individuals will only prevent infectious contacts
from occurring along E [S]

(
E
[
S̃S
]

+ 2E
[
T S
])

+2E [T ]
(
E
[
ST
]

+ 2E
[
T̃ T
]
− 1

)
edges.

Indeed, it is possible to find stub and triangle distributions with small
Var [DT ] for which (fixing either z or R0) if pRW = 0 then c∗pC > c∗U , whereas if
pRW = 1 then c∗pC < c∗U , as illustrated in Figures 6.4a and 6.4b. However, for
larger Var [DT ] the pC = 1 acquaintance vaccination strategy outperforms the
uniform vaccination strategy (fixing either z or R0), as illustrated in Figures
6.5a and 6.5b.

220



(a) Models matched with z = 0.5.

(b) Models matched with R0 = 1.5.

Figure 6.3: The effect of clustering on the difference between the critical
vaccination coverage of the pC = 1 acquaintance and uniform vaccination
strategies with fS,T (s, t) = t2, so E [DT ] = 4.
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(a) Models matched with z = 0.9.

(b) Models matched with R0 = 1.5.

Figure 6.4: The effect of clustering on the difference between the critical
vaccination coverage of the pC = 1 acquaintance and uniform vaccination
strategies with fS,T (s, t) = 1

6 (s2 + t+ 2s2t+ s4t+ t3), as used by Miller (2009),
so E [DT ] = 4 and Var [DT ] = 22

3 .
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(a) Models matched with z = 0.45.

(b) Models matched with R0 = 1.2.

Figure 6.5: The effect of clustering on the difference between the critical vacci-
nation coverage of the pC = 1 acquaintance and uniform vaccination strategies
with DT ∼ Poi+(1.59) and triangle allocation distribution Bin (DT , 0.55), so
E [DT ] = 2.
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6.6.2 The effect of clustering on the optimal, acquain-
tance and uniform vaccination strategies

We find that fixing R0 and increasing the clustering coefficient (by increasing
pRW and adjusting λN) has a negligible effect on c∗U , c∗pS and c∗O, as illustrated
in Figures 6.6 and 6.7. Therefore we conjecture that (for a fixed joint stub and
triangle distribution) c∗U , c∗pS and c∗O depend on R0 and not on the clustering coef-
ficient. Recall that in Section 5.4 we prove that in the network and global model
under the uniform vaccination strategy the critical vaccination coverage depends
upon R0, and indeed the critical vaccination coverage is equal to 1 − 1/R0.
In general, the link between the critical vaccination coverage of the uniform
vaccination strategy and R0 breaks down in networks incorporating household
structure with households larger than 3, see Ball et al. (2016). However, in
the rewired edge-triangle model we do not introduce households larger than 3
(although we do allow for an individual to be part of multiple households) so
the result that c∗U = 1− 1/R0, independent of the clustering coefficient, is an
expected result. However, less expected is that for a fixed joint stub and triangle
distribution both c∗pS and c∗O are determined by R0, and also independent of the
clustering coefficient.

Similarly, we find that fixing z and increasing the clustering coefficient (by
increasing pRW and adjusting λN ) has a negligible effect on c∗U , c∗pS and c∗O unless
pRW is close to 1 and E [DT ] is small, as illustrated in Figures 6.8a, 6.9a, 6.10a
and 6.11. If E [DT ] is small, then as pRW approaches 1 there can be a large
decrease in c∗U , c∗pS and c∗O, as illustrated in Figures 6.8a and 6.9a, which we
conjecture is explained by considering the corresponding change in R0. Recall
that Miller (2009) shows that fixing pN and introducing edge-disjoint triangle
clustering into the network will decrease the final size of a major outbreak.
Therefore, to fix z as pRW is increased we must also decrease pN , and thus
R0 is likely to be changed. Furthermore, if E [DT ] is small then as pRW ap-
proaches 1 the basic reproduction number R0 is decreasing, as illustrated in
Figures 6.8b and 6.9b, resulting in a lower critical vaccination coverage. We
note that as E [DT ] is increased the change in R0 is increasingly decreasing, thus
resulting in a smaller change in critical vaccination coverages, as illustrated in
Figure 6.10b. Therefore we conjecture that the decrease in c∗U , c∗pS and c∗O when
z is fixed, E [DT ] is small and pRW approaches 1 is explained by the change in R0.
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(a) Models matched with R0 = 1.2, DT ∼ Poi+(1.59) and triangle
allocation distribution Bin (DT , 0.55), so E [DT ] = 2.

(b) Models matched with R0 = 1.2, DT ∼ Geo+(1/2) and triangle
allocation distribution Bin (DT , 0.75), so E [DT ] = 2.

(c) Models matched with R0 = 3, DT ∼ Geo+(1/4) and triangle
allocation distribution Bin (DT , 0.85), so E [DT ] = 4.

Figure 6.6: The effect of clustering on the critical vaccination coverage under
various joint stub and triangle distributions and vaccination strategies.
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(a) DT ∼ Poi+(8) and triangle allocation distribution Bin (DT , 0.75), so
E [DT ] = 8.

(b) DT ∼ Geo+(1/8) and triangle allocation distribution Bin (DT , 0.85),
so E [DT ] = 8.

Figure 6.7: The effect of clustering on the critical vaccination coverage under
various vaccination strategies. Models matched with R0 = 7.
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(a) The effect of clustering on the critical vaccination coverage under
various vaccination strategies.

(b) The basic reproduction number R0 in the model without vaccination.

Figure 6.8: Models matched with z = 0.45, DT ∼ Poi+(1.59) and triangle
allocation distribution Bin (DT , 0.55), so E [DT ] = 2.

Finally, for a fixed joint stub and triangle distribution and either R0 or z,
we note that c∗pC can either increase (as discussed in Section 6.6.1) or decrease,
depending on our choice of (S, T ).

6.7 Concluding remarks

In this chapter we consider three vaccination strategies on the rewired edge-
triangle model, specifically the optimal, acquaintance and uniform vaccination
strategies. For each vaccination strategy we show how to find a threshold param-
eter, which determines whether a major outbreak can occur, and the expected
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(a) The effect of clustering on the critical vaccination coverage under
various vaccination strategies.

(b) The basic reproduction number R0 in the model without vaccination.

Figure 6.9: Models matched with z = 0.45, DT ∼ Geo+(1/2) and triangle
allocation distribution Bin (DT , 0.75), so E [DT ] = 2.
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(a) The effect of clustering on the critical vaccination coverage under
various vaccination strategies.

(b) The basic reproduction number R0 in the model without vaccination.

Figure 6.10: Models matched with z = 0.45, DT ∼ Geo+(1/4) and triangle
allocation distribution Bin (DT , 0.85), so E [DT ] = 4.
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(a) DT ∼ Poi+(8) and triangle allocation distribution Bin (DT , 0.75), so
E [DT ] = 8.

(b) DT ∼ Geo+(1/8) and triangle allocation distribution Bin (DT , 0.85),
so E [DT ] = 8.

Figure 6.11: The effect of clustering on the critical vaccination coverage under
various vaccination strategies. Models matched with z = 0.8.
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relative final size of a major outbreak. We find that the rewired edge-triangle
model cannot construct clustered networks with a large mean total degree, owing
to the model only containing edge-disjoint triangles.

Similarly to Section 5.1.4, for a fixed vaccination coverage we find that max-
imising pC maximises the post-vaccination threshold parameter, the final size of
a major outbreak and the critical vaccination coverage under the acquaintance
vaccination strategy in the rewired edge-triangle model. Furthermore, similarly
to Section 5.4 we find that if the variance of the total degree distribution is small
then the critical vaccination coverage under the pC = 1 acquaintance vaccina-
tion strategy is larger than the critical vaccination coverage under the uniform
vaccination strategy. However, as the variance of the total degree distribution
increases then, for a fixed clustering coefficient, the critical vaccination coverage
under the uniform vaccination coverage is larger than the critical vaccination
coverage under the pC = 1 acquaintance vaccination strategy, which is larger
than the critical vaccination coverage under the pS = 1 acquaintance vaccination
strategy, which is then larger than the critical vaccination coverage under the
optimal vaccination strategy, as we expect.

Using the rewiring process to investigate the effect of clustering on the critical
vaccination coverage of the vaccination strategies (fixing either z or R0), we
find that if the total degree distribution has a small variance then the difference
in critical vaccination coverage between the uniform and pC = 1 acquaintance
vaccination strategies increases as the clustering coefficient increases. We con-
jecture that the decreased performance of the pC = 1 acquaintance vaccination
strategy in clustered networks with a small total degree distribution is caused
by the increased vaccination coverage required to form the same number of
‘vaccinated edges’ (by which we mean edges connected to at least one vaccinated
vertex). Indeed, it is possible that further analysis of vaccinated edges may
yield analytical insight as to the difference in critical vaccination coverages in
clustered and unclustered networks under various vaccination strategies, since
vaccination strategies on networks that target high degree vertices (and thus
result in an increased number of vaccinated edges) perform best.

We find that fixing R0 in the unvaccinated model and increasing the cluster-
ing coefficient (by increasing pRW and adjusting λN) has a negligible effect the
critical vaccination coverage of the uniform, pS = 1 acquaintance and optimal
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vaccination strategies. This suggests that for a fixed joint stub and triangle dis-
tribution the critical vaccination coverages of these three vaccination strategies
are determined by R0, and independent of the clustering coefficient (similarly
to the results of House and Keeling (2011)). However, we find that fixing z in
the unvaccinated model and increasing the clustering coefficient does have an
effect on the critical vaccination coverage of the uniform, pS = 1 acquaintance
and optimal vaccination strategies if the mean total degree is small and pRW is
close to 1. We conjecture that fixing z while changing pN and pRW results in
changing the value of the basic reproduction number R0, and thus changes the
critical vaccination coverages of these three vaccination strategies.

These results suggest that if all the triangles in the underlying network are
edge-disjoint, then to calculate the critical vaccination coverage of the uniform,
pS = 1 acquaintance or optimal vaccination strategy we need only know R0

and the network stub and triangle distribution, and not the exact clustering
coefficient.
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6.8 Table of common notation introduced in
Chapter 6

Symbol Meaning Page
(S, T ) Joint stub and triangle distribution. 180
pst P (S = s, T = t). 180
pRW Probability of rewiring. 180
pN Marginal probability that an infected individual

infects a given susceptible neighbour.
181

DT Total degree distribution. 182
pk P (DT = k). 182
qst Probability that an individual reached by

traversing a stub has joint stub and triangle
degree (s, t).

183

rst Probability that an individual reached by
traversing a triangle or rewired triangle has joint
stub and triangle degree (s, t).

183

(
S̃S − 1, T S

)
Joint stub and triangle size-biased distribution
of an individual reached via a stub.

183

(
ST , T̃ T − 1

)
Joint stub and triangle size-biased distribution
of an individual reached via a triangle or rewired
triangle.

183

C4 Clustering coefficient of the rewired edge-triangle
model.

184

RU
T Threshold parameter for the rewired edge-

triangle model under the uniform vaccination
strategy.

186

pNV Marginal probability that an infected individual
infects a given stub neighbour under the uniform
vaccination strategy.

188

4E Expected final size of a triangle epidemic under
the uniform vaccination strategy.

188

B̃i Offspring random vector of a typical type-i in-
dividual in a non-initial generation of the back-
wards branching process.

188
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B Offspring random vector in the initial generation
of the backwards branching process.

188

4 Size of a single triangle susceptibility set. 193
∠ Size of a rewired triangle susceptibility set. 193
pS Probability that an individual chosen uniformly

at random from the population is sampled under
the acquaintance vaccination strategy.

194

pC Probability that a given neighbour of a sampled
individual is vaccinated under the acquaintance
vaccination strategy.

194

(SU , TU) Joint stub and triangle distribution of an unvacci-
nated (by the acquaintance vaccination strategy)
individual chosen uniformly at random from the
population.

196

(
S̃SU , T

S
U

)
Joint stub and triangle distribution of an unvacci-
nated (by the acquaintance vaccination strategy)
individual contacted via a stub.

196

q̃V A priori probability that an individual contacted
via a stub avoids vaccination (by the acquain-
tance vaccination strategy).

197

(
STU , T̃

T
U

)
Joint stub and triangle distribution of an unvacci-
nated (by the acquaintance vaccination strategy)
individual contacted via an intact triangle.

197

r̃V A priori probability that an individual contacted
via a triangle avoids vaccination (by the acquain-
tance vaccination strategy).

197

(
SRU , T̃

R
U

)
Joint stub and triangle distribution of an unvacci-
nated (by the acquaintance vaccination strategy)
individual contacted via a rewired triangle.

197

r̃RV A priori probability that an individual contacted
via a rewired triangle avoids vaccination (by the
acquaintance vaccination strategy).

197

IS Event that an individual is sampled under the
acquaintance vaccination strategy.

198

ICS Event that an individual is unsampled under the
acquaintance vaccination strategy.

198
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(4F
SS,4F

SN) Number of sampled and unsampled individuals
respectively infected within a triangle epidemic
when the primary infective is sampled.

198

(4F
NS,4F

NN) Number of sampled and unsampled individuals
respectively infected within a triangle epidemic
when the primary infective is unsampled.

199

∠FS Final size of a rewired triangle epidemic belong-
ing to a sampled primary infective.

200

∠FN Final size of a rewired triangle epidemic belong-
ing to an unsampled primary infective.

200

(4B
SS,4B

SN) Number of sampled and unsampled individuals
respectively contained within a triangle suscep-
tibility set belonging to a sampled individual.

201

b4S(s1, s2) Joint probability generating function of(
4B
SS,4B

SN

)
.

201

(4B
NS,4B

NN) Number of sampled and unsampled individuals
respectively contained within a triangle suscepti-
bility set belonging to an unsampled individual.

201

b4N(s1, s2) Joint probability generating function of(
4B
NS,4B

NN

)
.

201

b∠S(s) Generating function for the final size of a rewired
triangle epidemic belonging to a sampled pri-
mary individual.

201

b∠N(s) Generating function for the final size of a rewired
triangle epidemic belonging to an unsampled
primary individual.

201

RA
T Threshold parameter for the rewired edge-

triangle model under the acquaintance vacci-
nation strategy.

201

dc Smallest total degree of an individual which we
vaccinate under the optimal vaccination strategy.

210

δ Proportion of individuals with total degree Dc

which are chosen uniformly at random for vacci-
nation under the optimal vaccination strategy.

210
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(SO, TO) Joint stub and triangle distribution of an un-
vaccinated (by the optimal vaccination strategy)
individual chosen uniformly at random from the
population.

210

(
S̃SO, T

S
O

)
Joint stub and triangle distribution of an un-
vaccinated (by the optimal vaccination strategy)
individual contacted via a stub.

211

p̃SV A priori probability that an individual contacted
via a stub is vaccinated (under the optimal vac-
cination strategy).

211

(
STO, T̃

T
O

)
Joint stub and triangle distribution of an un-
vaccinated (by the optimal vaccination strategy)
individual contacted via a triangle or rewired
triangle.

211

p̃TV A priori probability that an individual contacted
via a triangle or rewired triangle is vaccinated
(under the optimal vaccination strategy).

211

RO
T Threshold parameter for the rewired edge-

triangle model under the optimal vaccination
strategy.

211

µ4i Mean number of infectives in rank generation i
of a single triangle epidemic.

214

µ∠i Mean number of infectives in rank generation i
of a single rewired triangle epidemic.

214

c∗U Critical vaccination coverage under the uniform
vaccination strategy.

218

c∗pS Critical vaccination coverage under the pS = 1
acquaintance vaccination strategy.

218

c∗pC Critical vaccination coverage under the pC = 1
acquaintance vaccination strategy.

218

c∗O Critical vaccination coverage under the optimal
vaccination strategy.

218
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7. The effect of household clustering
on vaccination strategies

In this chapter we introduce an alternative network model with tunable clus-
tering, which we call the ‘clustered network’ model. The clustered network
model is very similar to a special case of the model by Ball et al. (2013), i.e. the
household and network model incorporating rewiring. In contrast to the rewired
edge-triangle model discussed in Chapter 6, the clustered network model intro-
duces clustering to the standard network model via the addition of households
and so the triangles in the model need not be edge-disjoint.

The rewiring process used in the clustered network model allows for a com-
parison of models differing only in the number of unbroken households, so the
effect of clustering upon properties of interest, such as the critical vaccination
coverage of vaccination strategies, can be isolated. However, we show that the
rewiring process can introduce undesirable properties into the clustered network
model, such as an infinite basic reproduction number R0.

We are interested in investigating the effect of clustering on the performance
of vaccination strategies, similarly to Chapter 6. We introduce two vaccination
strategies with a perfect vaccine on the clustered network model, the acquain-
tance vaccination strategy and the uniform vaccination strategy. We consider the
acquaintance vaccination strategy discussed in Chapter 5, in which neighbours
of individuals sampled uniformly at random from the population are chosen
for vaccination. We allow a sampled individual to choose any neighbour for
vaccination, i.e. both household and network neighbours of a sampled individual
can be chosen for vaccination. An acquaintance vaccination strategy on the
household and network model has been previously discussed by Ball and Sirl
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(2017), however Ball and Sirl (2017) do not allow a sampled individual to choose
household neighbours for vaccination. Whereas Ball and Sirl (2017) compare the
performance of their acquaintance vaccination strategy to the performance of
household-based vaccination strategies, we are interested in the effect of house-
hold clustering (i.e. clustering introduced by households) on the performance of
vaccination strategies and therefore the household structure is considered to be
part of the network, which is why we allow household neighbours to be chosen
for vaccination.

This chapter is laid out in the following way. In Section 7.1 we introduce
the clustered network model and calculate the clustering coefficient. In Sections
7.2 and 7.3 we analyse respectively the acquaintance and uniform vaccination
strategies on the clustered network model. In each case we determine a post-
vaccination threshold parameter, whether or not the vaccination strategy can
control the epidemic and the expected relative final size of a major outbreak. We
calculate the basic reproduction number R0 in Section 7.4 and give conditions
under which the rewiring process causes R0 to be infinite. In Section 7.5
we introduce three approaches to the rewiring process and give an analytical
comparison of the final size of a major outbreak under the approaches for a fixed
clustering coefficient. In Section 7.6 we numerically compare the acquaintance
and uniform vaccination strategies and investigate the effect of household
clustering on the performance of the vaccination strategies. Finally, we give our
concluding remarks in Section 7.7 and a table of common notation introduced
in this chapter in Section 7.8.

7.1 Overview of the clustered network model

The clustered network model is essentially a special case of the model by Ball
et al. (2013), i.e. the household and network model incorporating tuneable
degree correlation and rewiring, without the tuneable degree correlation and
extended to allow for the probability of rewiring to depend upon household size.
The model is constructed with an analogous method to the construction of the
model with three levels of mixing discussed in Section 3.1, with λG = 0 and
with the addition of a rewiring process (described in the following paragraph)
after the network is constructed via the configuration model. Recall that the
network structure is constructed via the configuration model with network
degree distribution D, and that we set H to be the asymptotic household
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size distribution. Furthermore, we denote the marginal probability that an
infected individual infects a given susceptible network neighbour and household
(or rewired household) neighbour by pN = 1 − φI (λN) and pH = 1 − φI (λH)
respectively.

The rewiring process proceeds in the following way. Label each edge within
a household according to the household size. For n = 1, 2, . . . , let pRW (n) be
a real number satisfying 0 ≤ pRW (n) ≤ 1. Then, for n = 1, 2, . . . and indepen-
dently for each household, with probability pRW (n), the household edges in each
household of size n are each broken into two rewired household stubs which
retain their household size labels. For each n = 2, 3, . . . , the rewired household
stubs with label n are paired uniformly at random which, together with the
network and unbroken households, creates a new network.

Our analysis is asymptotic as the number of households m −→∞ and, as
in Section 3.1, assuming σ2

H <∞ and σ2
D <∞ also means that the fraction of

imperfections (e.g. the total number of household self-loops and multiple edges
per individual) created by the rewiring process becomes negligible as m −→∞
(See, for example, Ball et al. (2013)).

Recall that we denote the size-biased household size distribution by H̃. Then
the total degree distribution of the clustered network model, DT , is given by
DT

D= D + H̃ − 1, i.e. the summation of two independent random variables (see
Ball et al. (2013)). Therefore, assuming P(H = 1) < 1, a given total degree
distribution can be obtained if and only if the total degree distribution is a
convolution of two distributions with support in the non-negative integers. Note
that extending the clustered network model to allow for dependent household
size and network degree distributions would mean that any total degree distri-
bution could be achieved.

Recall from Section 6.1.2 that we define the degree correlation of a network
to be the correlation between the total degrees of the nodes adjacent to an edge
chosen uniformly at random from the population (see Newman (2002b)). Note
that, as in Ball et al. (2013), the rewiring process does not change the distribution
of the total degree of the neighbours of any given individual. Therefore the
rewiring process does not change the degree correlation of the clustered network.
An important consequence of this construction means that if the model is
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fully rewired (i.e. if P (H = 1) < 1 and pRW (n) = 1, n = 1, 2, . . . ) then the
clustered network model will not have the same properties, such as the threshold
parameter and final size of a major outbreak, as the standard network model
with the same total degree distribution due to the difference in degree correlation
of the two models.

7.1.1 Clustering coefficient

We now consider the clustering coefficient of the clustered network model, CH .
Recall from Section 6.1.2 that we define the clustering coefficient to be the
number of closed triplets divided by the total number of triplets in the asymptotic
network (i.e. in the limit m −→∞). Ball et al. (2010) show that, given σ2

D <∞
and E [H3] < ∞, the number of closed triplets and the number of triplets in
the network without rewiring converges almost surely to E [H(H − 1)(H − 2)]
and E [H(D +H − 1)(G+H − 2)] respectively as m −→ ∞. Furthermore,
analogously to Ball et al. (2013), the number of triangles plus self loops created
in the rewiring process has a Poisson distribution whose mean depends only
upon the first two moments of D and three moments of H. Therefore in the
limit m −→ ∞ the number of triangles not within unbroken households, per
individual, tends to 0 and

CH = E [(1− pRW (H))H(H − 1)(H − 2)]
E [H(D +H − 1)(D +H − 2)] . (7.1)

Similarly to the rewired edge-triangle model, discussed in Section 6.1.2, the
clustered network model will have non-zero clustering if P(H ≥ 3) > 0 and
pRW (n) < 1. However, unlike the rewired edge-triangle model, triangles within
the clustered network model are not edge-disjoint, so the clustered network
model can produce networks with both large mean degree and large clustering
coefficient, an important property seen in many social networks (see, for example,
Newman (2003)). We say that a probability distribution is infinitely divisible
if it can be expressed as the sum of an arbitrary number of independent and
identically distributed random variables. Then Ball et al. (2013) show that the
clustered network model with any infinitely divisible total degree distribution
DT may be decomposed so that the clustering coefficient is any rational number
in [0, 1).
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7.2 Acquaintance vaccination on the clustered
network model

7.2.1 Description of acquaintance vaccination

Under the acquaintance vaccination strategy each individual in the population
is sampled independently with probability pS. Each network neighbour of a
sampled individual is independently chosen for vaccination with probability pCG,
and each household or rewired household neighbour of a sampled individual
is independently chosen for vaccination with probability pCH . Finally, any
individual which has been chosen for vaccination at least once is vaccinated
with the perfect vaccine.

Note that setting P(H = 1) = 1 recovers the standard network model
under the acquaintance vaccination strategy with a perfect vaccine, discussed
by Ball and Sirl (2013). Furthermore, setting pCH = 0 recovers the household
and network model under an acquaintance vaccination strategy with a perfect
vaccine discussed by Ball and Sirl (2017).

Under the acquaintance vaccination strategy, for an individual i to be chosen
for vaccination by a given network neighbour j, j must be sampled, occurring
with probability pS, and choose i for vaccination, occurring with conditional
probability pCG. Therefore the probability that an individual is not chosen for
vaccination by a given network neighbour is 1−pSpCG. Similarly, the probability
that an individual is not chosen for vaccination by a given household or rewired
household neighbour is 1− pSpCH . Thus, since an individual i chosen uniformly
at random from the population has D network neighbours and H̃ − 1 household
or rewired household neighbours, the probability that an individual chosen
uniformly at random from the population is vaccinated is

pV = 1−
∞∑
k=0

∞∑
n=1

pkρ̃n(1− pSpCG)k(1− pSpCH)n−1

= 1− fD(1− pSpCG)fH̃−1(1− pSpCH). (7.2)

By restricting our attention to a perfect vaccine we need only consider a
single-type forward and backward branching process. The forward branching
process proceeds similarly to the branching process approximating the model
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with three levels of mixing, discussed in Section 3.2.1, in which the individuals
in the forward branching process correspond to infected households or rewired
households in the epidemic process and the offspring of a given individual in the
branching process are all households and rewired households that are contacted
through the network by members of the household and rewired epidemic. Recall
that we call the initial infective, i∗ say, in a household the primary infective,
and any subsequent infected individuals in the household or rewired household
containing the primary infective secondary infectives. Furthermore, we call
the household neighbours of i∗ non-primary individuals in the household. For
example, an infected household of size n contains 1 primary infective and n− 1
non-primary individuals. Similarly the backwards branching process consists
of considering the household and rewired household susceptibility set (see Sec-
tion 3.3.1) of an individual, i∗ say, and then considering all individuals that
would contact i∗’s household susceptibility set through the network, were they
themselves to become infected. Note that in both the forwards and backwards
branching processes the initial generation has a different offspring distribution
to the following generations since the epidemic starts with an individual chosen
uniformly at random from the population.

Before considering a threshold parameter and the final size of a major out-
break for this model, we calculate the household size label (i.e. the household
size or number of rewired household neighbours of an individual) and network
degree distributions of an unvaccinated individual chosen uniformly at random
from the population and an unvaccinated individual contacted via the network.
These calculations are very similar to the work in Ball and Sirl (2013), (2016).
We also consider the distribution of the number of sampled and unsampled
secondary individuals within a household of size n, n = 1, 2, . . . .

Consider an unvaccinated individual, i∗ say, chosen uniformly at random
from the population. Note that i∗ has unconditional household size label H̃ and
degree distribution D, however we also know that i∗ is unvaccinated. Therefore
let H̃U and DU be i∗’s household size label and degree distribution respectively.
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Then, applying Bayes’ theorem, for n = 1, 2, . . . , k = 0, 1, . . . ,

P(H̃U = n,DU = k) = P(H̃ = n,D = k)P(U |H̃ = n,D = k)
P(U)

= ρ̃npk(1− pSpCH)n−1(1− pSpCG)k∑∞
k=0

∑∞
n=1 pkρ̃n(1− pSpCG)k(1− pSpCH)n−1

= ρ̃npk(1− pSpCH)n−1(1− pSpCG)k
fH̃−1(1− pSpCH)fD(1− pSpCG)

= ρ̃n(1− pSpCH)n−1

fH̃−1(1− pSpCH)
pk(1− pSpCG)k
fD(1− pSpCG) .

Thus H̃U and DU are independent and

P(H̃U = n) = ρ̃Un = ρ̃n(1− pSpCH)n−1

fH̃−1(1− pSpCH) , n = 1, 2, . . . ,

P(DU = k) = pk(1− pSpCG)k
1− pV G

, k = 0, 1, . . . ,

where pV G = 1− fD(1− pSpCG) is the a priori probability that an individual
with degree D is vaccinated through the network.

Similarly, we now consider the distribution of the household size label and
degree distribution of an individual, i say, contacted via the network, denoted
by H̃D

U and D̃U respectively. An individual contacted via the network has
unconditional household size label H̃ and degree distribution D, however we
also know that i avoids vaccination from all of its neighbours. Note that we do
not count i’s parent in the branching process, which must not vaccinate i by
definition (leading to the k− 1 term in the equation below). So, for n = 1, 2, . . . ,
k = 1, 2, . . . ,

P(H̃D
U = n, D̃U = k) = P(H̃ = n, D̃ = k)P(U |H̃ = n, D̃ = k)

P(U)

= ρ̃np̃k(1− pSpCH)n−1(1− pSpCG)k−1

fH̃−1(1− pSpCH)fD̃−1(1− pSpCG)

= ρ̃n(1− pSpCH)n−1

fH̃−1(1− pSpCH)
p̃k(1− pSpCG)k−1

fD̃−1(1− pSpCG) .

Thus H̃D
U and D̃U are independent, H̃D

U
D= H̃U and

P(D̃U = k) = p̃k(1− pSpC)k−1

fD̃−1(1− pSpCG) , k = 1, 2, . . . .
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Let p̃V = 1− fH̃−1(1− pSpCH)fD̃−1(1− pSpCG) be the a priori probability that
an individual contacted via the network is vaccinated.

Consider a primary infective in an intact household in the forward branching
process, i∗ say. Note that, since individuals are independently sampled, whether
i∗ is sampled or unsampled is independent of the number of sampled non-primary
individuals within the household. However, the number of sampled non-primary
individuals within the household is dependent on the knowledge that i∗ is
unvaccinated. So, similarly to Section 5.1.1, let p̃DSU = pS(1− pCG)/(1− pSpCG)
and p̃HSU = pS(1 − pCH)/(1 − pSpCH) be the probabilities that an individual
infected via the network and rewired household respectively is sampled given
that it did not vaccinate its parent in the branching process. Furthermore, let
p̃

(n,α)
SU , n = 1, 2, . . . , α = 0, 1, . . . , n − 1, be the probability that a household
of size n contains α sampled non-primary individuals given that the primary
infective in the household is unvaccinated. So

p̃
(n,α)
SU =

(
n−1
α

)
pαS(1− pCH)α(1− pS)n−1−α

(1− pSpCH)n−1 . (7.3)

7.2.2 The spread of the epidemic through a household
and rewired household

We now consider the spread of the epidemic within a single household or rewired
household. We first consider the expected number of sampled and unsampled
individuals within a household and rewired household epidemic in which the
primary infective is sampled or unsampled. Then we consider the distribution
of the number of sampled and unsampled members of an individual’s household
susceptibility set in which the primary individual is sampled or unsampled.
Finally we consider the distribution of the total number of members of an
individual’s rewired household susceptibility set in which the primary individual
is sampled or unsampled.

We begin by defining a distribution required for the results in this sec-
tion. For a random variable X, we write X ∼ HGeo(n,M,K), M = 0, 1, . . . ,
n = 0, 1, . . . ,M , K = 0, 1, . . . ,M , if X has a hypergeometric distribution where
P(X = k) is the probability that there are k successes in n draws without re-
placement from a finite group of size M containing exactly K successes. Recall
(from Sections 2.2 and 3.3.1 respectively) that the final size of a household
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epidemic and the size of a household susceptibility set in a household of size n
are given by T (n) and M (n) respectively.

Consider a household of size n, n = 1, 2, . . . , containing α, α = 0, 1, . . . , n−1,
sampled non-primary individuals and assume that the primary infective is
sampled. Let I(n,α)

SS and I(n,α)
SN be the number of sampled and unsampled non-

primary individuals which are vaccinated respectively. Furthermore, let T (n,α)
SS

and T (n,α)
SN be respectively the number of infected sampled and unsampled non-

primary individuals within a household epidemic in which the primary infective
is sampled. Define I(n,α)

NS , I(n,α)
NN , T (n,α)

NS and T (n,α)
NN similarly for the case when

the primary infective is unsampled.

Proposition 7.1. For A ∈ {S,N}, n = 1, 2, . . . , α = 0, 1, . . . , n− 1,

E
[
T

(n,α)
AS

]
=

α∑
α̃=0

n−1−α∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

) α− α̃
n− 1− α̃− β̃

E
[
T (n−α̃−β̃)

]
,

and

E
[
T

(n,α)
AN

]
=

α∑
α̃=0

n−1−α∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

) n− 1− α− β̃
n− 1− α̃− β̃

E
[
T (n−α̃−β̃)

]
,

where

I
(n,α)
SS ∼ Bin (α, 1− (1− pV G)(1− pCH)α) , (7.4a)

I
(n,α)
SN ∼ Bin

(
n− 1− α, 1− (1− pV G)(1− pCH)α+1

)
, (7.4b)

I
(n,α)
NS ∼ Bin

(
α, 1− (1− pV G)(1− pCH)α−1

)
, (7.4c)

I
(n,α)
NN ∼ Bin (n− 1− α, 1− (1− pV G)(1− pCH)α) . (7.4d)

Proof. Consider a household of size n containing α sampled non-primary individ-
uals and let α̃ ∈ [0;α] and β̃ ∈ [0;n−1−α] be the number of vaccinated sampled
and unsampled non-primary individuals respectively within the household. Then,
conditioned upon the final size of the household epidemic, T (n) (i.e. the total
number of sampled and unsampled non-primary individuals infected), the prob-
ability that k ∈ [0;α− α̃] of the sampled non-primary individuals are infected
is equal to the probability that there are k successes in T (n−α̃−β̃) draws without
replacement from a finite population of size n− 1− α̃− β̃ containing exactly
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α− α̃ successes. Therefore, for A ∈ {S,N},

T
(n,α)
AS | I(n,α)

AS = α̃, I
(n,α)
AN = β̃, T (n−α̃−β̃) ∼ HGeo

(
T (n−α̃−β̃), n− 1− α̃− β̃, α− α̃

)
,

and

T
(n,α)
AN |

(
I

(n,α)
AS = α̃, I

(n,α)
AN = β̃, T (n−α̃−β̃), T

(n,α)
AS

)
= T (n−α̃−β̃) − T (n,α)

AS .

Therefore, since if X ∼ HGeo(n,M,K) then E [X] = nK/M ,

E
[
T

(n,α)
AS

]
= E

[
E
[
T

(n,α)
AS

∣∣∣I(n,α)
AS = α̃, I

(n,α)
AN = β̃, T (n−α̃−β̃)

]]
= E

α−k∑
α̃=0

n−1−α−j∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

) α− α̃
n− 1− α̃− β̃

T (n−α̃−β̃)


=

α−k∑
α̃=0

n−1−α−j∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

) α− α̃
n− 1− α̃− β̃

E
[
T (n−α̃−β̃)

]

and

E
[
T

(n,α)
AN

]
=

α−k∑
α̃=0

n−1−α−j∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

) n− 1− α− β̃
n− 1− α̃− β̃

E
[
T (n−α̃−β̃)

]
.

Finally we consider the distributions of I(n,α)
SS , I(n,α)

SN , I(n,α)
NS and I(n,α)

NN . Con-
sider a non-primary individual, j say, within the household of size n. Then to be
unvaccinated j needs to avoid vaccination from all network neighbours of j, the
sampled secondary individuals in j’s household and the primary infective. Recall
that j avoids vaccination from all network neighbours with probability 1− pV G
and from α sampled non-primary individuals with probability (1−pCH)α. If the
primary infective is sampled or unsampled then j avoids vaccination from the
primary infective with probability 1− pCH or 1 respectively. Therefore, since
conditioned upon the number of sampled individuals within the household each
non-primary individual is chosen for vaccination independently of any other,
I

(n,α)
SS , I(n,α)

SN , I(n,α)
NS and I(n,α)

NN are all binomially distributed with the parameters
as given in equations (7.4).

Let T̂ (n)
S and T̂ (n)

N be the final size of a rewired household epidemic, i.e. the
total number of infected sampled and unsampled individuals, with household size
label n, n = 1, 2, . . . , in which the primary infective is sampled and unsampled
respectively. For notational simplicity let p̃H(n) = (1− pV G)(1− p̃HSUpCH)n−1pH ,
and note that the following proposition is an extension of Ball et al. (2013)
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Equation (34) to allow for individuals within the rewired household to be
vaccinated by the acquaintance vaccination strategy.

Proposition 7.2.

E
[
T̂

(1)
N

]
= 0,

E
[
T̂

(2)
N

]
= pH(1− pV G),

and, for n ≥ 3,

E
[
T̂

(n)
N

]
=


(n−1)(1−pV G)(1−p̃HSUpCH)n−2pH

1−(n−2)p̃H(n) if p̃H(n) < 1
n−2 ,

∞ if p̃H(n) ≥ 1
n−2 .

Finally, for n = 1, 2, . . . ,

E
[
T̂

(n)
S

]
= (1− pCH)E

[
T̂

(n)
N

]
.

Proof. A rewired household with household size label n is constructed by pairing
rewired household stubs with the label n uniformly at random. Therefore the
spread of the epidemic through a rewired household is a special case of the
spread of the epidemic on the standard network model in which every individual
in the population has degree n, and acquaintance vaccination on the standard
network model has been previously studied (see, for example, Section 5.1 or Ball
and Sirl (2013)). If N is large then the rewired household is locally tree-like, and
we can approximate the spread of the epidemic through a rewired household
with a branching process.

Note that T̂ (1)
S = T̂

(1)
N = 0 since households of size 1 contain no non-primary

individuals. Households of size 2 contain a single non-primary individual, j
say, who is infected by the primary infective if: j is contacted by the primary
individual, j is not vaccinated by the primary individual and j is not vaccinated
by its network neighbours. So

E
[
T̂

(2)
S

]
= pH(1− pCH)(1− pV G),

E
[
T̂

(2)
N

]
= pH(1− pV G).

Finally, consider a primary individual i and a non-primary individual k in a
rewired household of size n ≥ 3. Since we assume that the rewired household
is locally tree-like, i has n− 1 uninfected rewired household neighbours and k
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has n − 2 uninfected rewired household neighbours. The primary individual
i will only infect a given rewired household neighbour, j say, if j: is not
chosen for vaccination by i, is not already vaccinated by another network
neighbour, is not already vaccinated by another of its n− 2 rewired household
neighbours and is contacted by i. Thus if i is sampled then i infects j with
probability (1− pCH)(1− pV G)(1− p̃HSUpCH)n−2pH and if i is unsampled then i
contacts j with probability (1− pV G)(1− p̃HSUpCH)n−2pH . Applying analogous
arguments and noting that k is sampled with probability p̃HSU and otherwise
unsampled, k infects a given rewired household neighbour l with probability
(1− p̃HSUpCH)(1− pV G)(1− p̃HSUpCH)n−2pH . Thus in the (single-type) branching
process which gives the size of successive generations of infectives in the rewired
household epidemic with household size n, the initial ancestor has offspring mean
(n−1)(1−pCH)(1−pV G)(1−p̃HSUpCH)n−2pH or (n−1)(1−pV G)(1−p̃HSUpCH)n−2pH ,
depending on whether the ancestor is sampled or not, and all subsequent
individuals have (n−2)(1− p̃HSUpCH)(1−pV G)(1− p̃HSUpCH)n−2pH = (n−2)p̃H(n)
mean offspring. Thus, for n ≥ 3,

E
[
T̂

(n)
N

]
=


(n−1)(1−pV G)(1−p̃HSUpCH)n−2pH

1−(n−2)p̃H(n) if p̃H(n) < 1
n−2 ,

∞ if p̃H(n) ≥ 1
n−2 ,

and E
[
T̂

(n)
S

]
= E

[
T̂

(n)
N

]
(1− pCH) as required.

We now turn our attention to the distribution of the number of sampled
and unsampled individuals within an individual’s household susceptibility set in
which the primary individual is sampled or unsampled. For n = 1, 2, . . . and
α = 0, 1, . . . , n− 1 let M (n,α)

SS and M (n,α)
SN be respectively the number of sampled

and unsampled non-primary individuals within a household susceptibility set
in which the primary individual is sampled. Define M (n,α)

NS and M (n,α)
NN similarly

for the case when the primary individual is unsampled. Note that Proposition
7.3 is an extension of Ball et al. (2013) Equations (35) and (36) to allow for
individuals within the rewired household to be vaccinated by the acquaintance
vaccination strategy.
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Proposition 7.3. For A ∈ {S,N}, n = 1, 2, . . . , α = 0, 1, . . . , n − 1, k =
0, 1, . . . , α, j = 0, 1, . . . , n− 1− α,

P
(
M

(n,α)
(AS) = k,M

(n,α)
(AN) = j

)
=

α−k∑
α̃=0

n−1−α−j∑
β̃=0

P
(
I

(n,α)
AS = α̃

)
P
(
I

(n,α)
AN = β̃

)
P
(
M (n−α̃−β̃) = k + j

)

×

(
α−α̃
k

)(
n−1−α−β̃

j

)
(
n−1−α̃−β̃

k+j

) .

We omit the proof of Proposition 7.3 since it follows analogous arguments
to the proof of Proposition 7.1. The difference arises in considering the spread
of an individual’s household susceptibility set, rather than the spread of an
individual’s household epidemic. Therefore the proof of Proposition 7.3 follows
by conditioning on the size of an individual’s susceptibility set, which is denoted
by M (n) for an individual within a household of size n, instead of the final size

of a household epidemic. For A ∈ {S,N}, let f (n,α)
MA

(s1, s2) = E
[
s
M

(n,α)
(AS)

1 s
M

(n,α)
(AN)

2

]
.

Finally, we consider the size of a rewired household susceptibility set. Let
M̂

(n)
S and M̂ (n)

N be the final size of a rewired household susceptibility set with
household size label n in which the primary individual is sampled and unsampled
respectively.

Proposition 7.4. For n = 1, 2, . . . , s ∈ [0, 1],

f
M̂

(n)
S

(s) =
(
1− pH(1− pCH)(1− p̃HSUpCH)n−2(1− pV G)(1− f̂ (n)(s))

)n−1
,

f
M̂

(n)
N

(s) =
(
1− pH(1− p̃HSUpCH)n−2(1− pV G)(1− f̂ (n)(s))

)n−1
,

where f̂ (n)(s) is the unique solution in [0, 1] of the equation

f̂ (n)(s) = s
(
1− pH(1− p̃HSUpCH)n−1(1− pV G)(1− f̂ (n)(s))

)n−2
.

Proof. Similarly to the proof of Proposition 7.2, we approximate the spread of
an individual’s rewired susceptibility set through a rewired household with a
branching process.

Note that M̂ (1)
S = 0 and M̂

(1)
N = 0 since households of size 1 contain no

non-primary individuals. Households of size 2 contain a single non-primary
individual, j say, who joins the rewired household susceptibility set if j: contacts
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the primary individual, is not vaccinated by the primary individual and is not
vaccinated by it’s network neighbours. So

f
M̂

(2)
S

(s) = 1− pH(1− pCH)(1− pV G)(1− s),

f
M̂

(2)
N

(s) = 1− pH(1− pV G)(1− s).

Finally, consider a primary individual i and a non-primary individual k in
a rewired household of size n ≥ 3. We assume that the rewired household is
locally tree-like so all infectious contacts made to i via the rewired household
are made by distinct individuals who are unconnected if i is removed from the
network. Therefore all infectious contacts made to i via the rewired household
are made by individuals with independent and identically distributed infectious
periods. Similarly, all infectious contacts made to k via the rewired household
are made by individuals with independent and identically distributed infectious
periods. Note that i has n − 1 rewired household neighbours and a given
rewired household neighbour, j, of i can only make infectious contact with i
if j: is not chosen for vaccination by i, is not already vaccinated by a network
neighbour, is not already vaccinated by another of it’s n− 2 rewired household
neighbours and contacts i. Thus if i is sampled then j contacts i with probability
(1 − pCH)(1 − pV G)(1 − p̃HSUpCH)n−2pH and if i is unsampled then j infects i
with probability (1− pV G)(1− p̃HSUpCH)n−2pH . Noting that k is sampled with
probability p̃HSU and otherwise unsampled and applying analogous arguments
yields that k is infected by a given rewired household neighbour l with probability
(1− p̃HSUpCH)(1−pV G)(1− p̃HSUpCH)n−2pH . Therefore standard branching process
arguments (see Section 2.3) yield that, for n ≥ 3, s ∈ [0, 1],

f
M̂

(n)
S

(s) =
(
1− pH(1− pCH)(1− p̃HSUpCH)n−2(1− pV G)(1− f̂ (n)(s))

)n−1
,

f
M̂

(n)
N

(s) =
(
1− pH(1− p̃HSUpCH)n−2(1− pV G)(1− f̂ (n)(s))

)n−1
,

where f̂ (n)(s) is the unique solution in [0, 1] of the equation

f̂ (n)(s) = s
(
1− pH(1− p̃HSUpCH)n−1(1− pV G)(1− f̂ (n)(s))

)n−2
.
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7.2.3 Threshold parameter

Before giving RA
∗ in Theorem 7.1 we introduce the following notation.

µT (n,α) = pN(1− p̃V )E [DU ]
(
(1− p̃DSU)

{
(1− pCG)E

[
T

(n,α)
NS

]
+ E

[
T

(n,α)
NN

]}
+ p̃DSU

{
(1− pCG)E

[
T

(n,α)
SS

]
+ E

[
T

(n,α)
SN

]})
,

(7.11a)

and

µT̂ (n) = pN(1− p̃V )E [DU ] (1− p̃DSUpCG)
[
p̃DSUE

[
T̂

(n)
S

]
+ (1− p̃DSU)E

[
T̂

(n)
N

]]
,

(7.11b)
where E

[
T

(n,α)
SS

]
, E

[
T

(n,α)
NS

]
, E

[
T

(n,α)
SN

]
and E

[
T

(n,α)
NN

]
are given in Proposition

7.1 and E
[
T̂

(n)
S

]
and E

[
T̂

(n)
N

]
are given in Proposition 7.3. Note that µT (n,α)

is the expected number of individuals infected by the non-primary members
of a household epidemic with household size n and α sampled non-primary
individuals, and that µT̂ (n) is the expected number of individuals infected by
the non-primary members of a rewired household epidemic with household size
label n.

Theorem 7.1.

RA
∗ = pN(1− p̃V )E

[
D̃U − 1

] (
1− p̃DSUpCG

)
+
∞∑
n=1

ρ̃Un

{
pRW (n)µT̂ (n) + (1− pRW (n))

n−1∑
α=0

p̃
(n,α)
SU µT (n,α)

}
,

where µT (n,α) and µT̂ (n,α) are given in equations (7.11).

Proof. Consider an unvaccinated individual contacted via the network and let
C̃ be the total number of network infections made by the resulting household
or rewired household epidemic, so RA

∗ = E
[
C̃
]
. We proceed with this proof

by conditioning E
[
C̃
]
on the household size label of the unvaccinated primary

infective and whether the primary infective is in a household or rewired household.
An unvaccinated individual contacted via the network is within a household
of size n with probability ρ̃Un and households are rewired independently and
uniformly at random with probability pRW (n), so

E
[
C̃
]

=
∞∑
n=1

ρ̃Un
[
(1− pRW (n)) E

[
C̃

(n)
H

]
+ pRW (n)E

[
C̃

(n)
R

]]
, (7.12)
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where C̃(n)
H and C̃

(n)
R are the random variable C̃ conditioned on the primary

infective being in a household of size n and a rewired household with household
size label n respectively.

We first consider E
[
C̃

(n)
H

]
, i.e. the expected number of infections made via

the network by the members of a household epidemic with household size n,
when the initial infective was contacted via the network. Conditioning E

[
C̃

(n)
H

]
on the number of sampled secondary individuals in the household and whether
the primary infective is sampled or not yields

E
[
C̃

(n)
H

]
=

n−1∑
α=0

p̃
(n,α)
SU

[
p̃DSUE

[
C̃

(n,α)
HS

]
+ (1− p̃DSU)E

[
C̃

(n,α)
HN

]]
, (7.13)

where C̃(n,α)
HS

(
C̃

(n,α)
HN

)
is the quantity C̃(n)

H conditioned on the primary infective
being sampled (unsampled) and the household containing α sampled non-primary
individuals.

Next we decompose C̃(n,α)
HS and C̃(n,α)

HN into the number of network infections
made by each member of the primary infective’s household epidemic. Therefore
we label the primary infective in the household 0, the α sampled members of the
primary infective’s household 1, 2, . . . , α and the n− 1− α unsampled members
of the primary infective’s household α+ 1, α+ 2, . . . , n− 1−α. Furthermore, let
χSi and χNi be the indicator functions of the events that individual i is infected
by the household epidemic when the primary infective is sampled and unsampled
respectively, i.e. χSi = 1 if i is infected when the primary infective is sampled
and 0 otherwise. Thus

C̃
(n,α)
HS = C̃

(n,α)
HS (0) +

α∑
i=1

χSi C̃
(n,α,S)
HS (i) +

n−1∑
i=α+1

χSi C̃
(n,α,N)
HS (i), (7.14a)

C̃
(n,α)
HN = C̃

(n,α)
HN (0) +

α∑
i=1

χNi C̃
(n,α,S)
HN (i) +

n−1∑
i=α+1

χNj C̃
(n,α,N)
HN (i), (7.14b)

where: C̃(n,α)
HS (0)

(
C̃

(n,α)
HN (0)

)
is the number of contacts made by the sampled

(unsampled) primary infective, C̃(n,α,S)
HS (i)

(
C̃

(n,α,N)
HS (i)

)
is the number of contacts

made by sampled non-primary individual i when the primary infective is sampled
(unsampled) conditioned on i becoming infected and C̃(n,α,N)

HS (i)
(
C̃

(n,α,N)
HN (i)

)
is

the number of contacts made by the unsampled non-primary individual i when
the primary infective is sampled (unsampled) conditioned on i becoming infected.
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The event that an individual i is infected is independent of how many contacts
i would make if i became infected, as whether i is infected in the household
epidemic is independent of i’s infectious period. Therefore, for A ∈ {S,N}, χAi
and C̃

(n,α,S)
HA (i) are independent for i = 1, 2, . . . , α and χAi and C̃

(n,α,N)
HA (i) are

independent for i = α + 1, α + 2, . . . , n− 1− α. Furthermore,
(
C̃

(n,α,S)
HA (i), χAi

)
,

i = 1, 2, . . . , α, have the same distribution and, for i = α+1, α+2, . . . , n−1−α,(
C̃

(n,α,N)
HA (i), χAi

)
have the same distribution. Thus taking the expectation of

equations (7.14) yields

E
[
C̃

(n,α)
HS

]
= E

[
C̃

(n,α)
HS (0)

]
+ E

[
T

(n,α)
SS

]
E
[
C̃

(n,α,S)
HS (1)

]
+ E

[
T

(n,α)
SN

]
E
[
C̃

(n,α,N)
HS (1)

]
,

(7.15a)

E
[
C̃

(n,α)
HN

]
= E

[
C̃

(n,α)
HN (0)

]
+ E

[
T

(n,α)
NS

]
E
[
C̃

(n,α,S)
HN (1)

]
+ E

[
T

(n,α)
NN

]
E
[
C̃

(n,α,N)
HN (1)

]
,

(7.15b)

where T (n,α)
SS and T (n,α)

SN are the number of sampled and unsampled in the pri-
mary infective’s household epidemic when the primary infective is sampled and
T

(n,α)
NS and T

(n,α)
NN are the number of sampled and unsampled in the primary

infective’s household epidemic when the primary infective is unsampled. Recall
that E

[
T

(n,α)
SS

]
, E

[
T

(n,α)
SN

]
, E

[
T

(n,α)
NS

]
and E

[
T

(n,α)
NN

]
are given in Proposition 7.1.

To complete our calculation of E
[
C̃

(n)
H

]
we need only consider the expected

number of infectious network contacts made by a sampled and unsampled
primary infective and the non-primary infectives in the household epidemic.
For A ∈ {S,N}, the expectations of C̃(n,α)

HA (0), C̃(n,α,S)
HA (1) and C̃(n,α,N)

HA (1) can
be determined by conditioning on the individual’s infectious period, I, and the
number of uninfected network neighbours it has, which is DU for a secondary
infective and D̃U − 1 for the primary infective. Consider an infected individual
i∗. Conditional on i∗’s infectious period, i∗ makes infectious contact with a
given network neighbour, j, if all of the following hold: j is not chosen for
vaccination by i∗, j is not already vaccinated by another neighbour and j is
contacted by i∗. Thus if i∗ is sampled then i∗ contacts j with probability
(1 − pCG)(1 − p̃V )

(
1− e−λN Ii

)
and if i∗ is unsampled then i∗ contacts j with
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probability (1− p̃V )
(
1− e−λN Ii

)
. Therefore, for A ∈ {S,N},

C̃
(n,α,S)
HA (1)|DU , I1 ∼ Bin

(
DU ,

(
1− e−λN I1

)
(1− pCG)(1− p̃V )

)
,

C̃
(n,α,N)
HA (1)|DU , I1 ∼ Bin

(
DU ,

(
1− e−λN I1

)
(1− p̃V )

)
,

C̃
(n,α)
HS (0)|D̃U , I0 ∼ Bin

(
D̃U − 1,

(
1− e−λN I0

)
(1− pCG)(1− p̃V )

)
,

C̃
(n,α)
HN (0)|D̃U , I0 ∼ Bin

(
D̃U − 1,

(
1− e−λN I0

)
(1− p̃V )

)
.

Furthermore, since an individual’s infectious period is independent of its degree
distribution,

E
[
C̃

(n,α,S)
HA (1)

]
= E [DU ] pN(1− pCG)(1− p̃V ), (7.17a)

E
[
C̃

(n,α,N)
HA (1)

]
= E [DU ] pN(1− p̃V ), (7.17b)

E
[
C̃

(n,α)
HS (0)

]
= E

[
D̃U − 1

]
pN(1− pCG)(1− p̃V ), (7.17c)

E
[
C̃

(n,α)
HN (0)

]
= E

[
D̃U − 1

]
pN(1− p̃V ). (7.17d)

Substituting equations (7.17) into equation (7.15) yields

E
[
C̃

(n,α)
HS

]
= pN(1− p̃V )

{
(1− pCG)

(
E
[
D̃U − 1

]
+ E

[
T

(n,α)
SS

]
E [DU ]

)
+E

[
T

(n,α)
SN

]
E [DU ]

}
, (7.18a)

E
[
C̃

(n,α)
HN

]
= pN(1− p̃V )

{
E
[
D̃U − 1

]
+ (1− pCG)E

[
T

(n,α)
NS

]
E [DU ]

+E
[
T

(n,α)
NN

]
E [DU ]

}
, (7.18b)

where E
[
T

(n,α)
SS

]
, E

[
T

(n,α)
SN

]
, E

[
T

(n,α)
NS

]
and E

[
T

(n,α)
NN

]
are given in Proposition

7.1. Furthermore, substituting equations (7.18) into equation (7.13) yields

E
[
C̃

(n)
H

]
= pN(1− p̃V )(1− p̃DSUpCG)E

[
D̃U − 1

]
+ µT (n,α) , (7.19)

where µT (n,α) is given in equation (7.11a).

To complete our calculation of RA
∗ we need only calculate E

[
C̃

(n)
R

]
, i.e. the

expected number of network contacts made by the members of a rewired
household epidemic of an individual with household size label n. We begin by
conditioning C̃(n)

R on whether the primary infective is sampled or not, so

E
[
C̃

(n)
R

]
= p̃DSUE

[
C̃

(n)
RS

]
+ (1− p̃DSU)E

[
C̃

(n)
RN

]
, (7.20)
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where C̃(n)
RS and C̃(n)

RN are the random variable C̃(n)
R conditioned on the primary

infective being sampled and unsampled respectively. We then decompose C̃(n)
RS

and C̃
(n)
RN into the number of contacts made by each member of the primary

infective’s rewired household epidemic, were they to become infected, along
with an indicator random variable indicating whether each individual becomes
infected. Furthermore, by analogous arguments to those leading to equation
(7.15), the event that an individual i is infected is independent of how many
contacts i would make if i became infected, and the offspring of each secondary
infective in the rewired household epidemic are identically distributed. Thus

E
[
C̃

(n)
RS

]
= E

[
C̃

(n)
RS (0)

]
+ E

[
T̂

(n)
S

]
E
[
C̃RSU(1)

]
, (7.21a)

E
[
C̃

(n)
RN

]
= E

[
C̃

(n)
RN(0)

]
+ E

[
T̂

(n)
N

]
E
[
C̃RSU(1)

]
, (7.21b)

where: E
[
C̃

(n)
RS (0)

]
and E

[
C̃

(n)
RN(0)

]
are the expected number of infectious net-

work contacts made by a primary infective that is sampled and unsampled
respectively, E

[
C̃

(n)
RSU(1)

]
is the expected number of infectious network contacts

made by a secondary infective in the rewired household epidemic, and E
[
T̂

(n)
S

]
(
E
[
T̂

(n)
N

])
is the expected final size of a rewired household epidemic with house-

hold size label n in which the primary infective is sampled (unsampled).

Furthermore, noting that an individual contacted via the network is sampled
with probability p̃DSU and otherwise unsampled and applying analogous arguments
to those leading to equation (7.17),

E
[
C̃RSU(1)

]
=E [DU ] pN(1− p̃DSUpCG)(1− p̃V ), (7.22a)

E
[
C̃

(n)
RS (0)

]
=E

[
D̃U − 1

]
pN(1− pCG)(1− p̃V ), (7.22b)

E
[
C̃

(n)
RN(0)

]
=E

[
D̃U − 1

]
pN(1− p̃V ). (7.22c)

Substituting equations (7.22) into equations (7.21) and the result into equa-
tion (7.20) yields

E
[
C̃

(n)
R

]
= p̃DSUE

[
C̃

(n)
RS

]
+ (1− p̃DSU)E

[
C̃

(n)
RN

]
= pN(1− p̃V )(1− p̃DSUpCG)E

[
D̃U − 1

]
+ pN(1− p̃V )(1− p̃DSUpCG)E [DU ]µT̂ (n) , (7.23)

where µT̂ (n) is given in equation (7.11b).
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Finally, substituting equations (7.19) and (7.23) into equation (7.12) yields
RA
∗ as given in the statement of the theorem.

In Section 5.1.4 we analytically investigate the trade-off between pS and
pC for a fixed vaccination coverage in the network and global model under the
acquaintance vaccination strategy. We have not carried out a similar analytic
investigation for the trade-off between pS and pC for a fixed vaccination coverage
in the clustered network model, however we conjecture that RA

∗ is strictly
increasing in pC .

7.2.4 Can the acquaintance vaccination strategy control
the epidemic?

An important question to consider in evaluating vaccination strategies is whether
the vaccination strategy can prevent a major outbreak occurring without vacci-
nating every individual in the population and therefore control the epidemic.
In this section we show that RA

∗ can be made arbitrarily small by choosing ap-
propriate pS ∈ (0, 1) and pCH ∈ (0, 1), so the acquaintance vaccination strategy
can control the epidemic.

Proposition 7.5. If pCH > 0, pCG > 0 and pS > 0 then the acquaintance
vaccination strategy can control the epidemic in the clustered network model.

Proof. Note that ∑n−1
α=0 p̃

(n,α)
SU µT (n,α) , n = 1, 2, . . . , is a weighted sum of the

number of sampled and unsampled members of a household epidemic within a
household of size n and is therefore bounded from above by n. Thus applying
the inequalities pN < 1, pCG ≤ 1, p̃DSU < 1, p̃HSU < 1 and ∑n−1

α=0 p̃
(n,α)
SU µT (n,α) < n

to RU
∗ given in Theorem 7.1 yields the inequality

RA
∗ ≤ (1− p̃V )

{
E [DU ]

∞∑
n=1

ρ̃Un
(
p̃DSUE

[
T̂

(n)
S

]
+ (1− p̃DSU)E

[
T̂

(n)
N

]
+ n

)
+ E

[
D̃U − 1

]}
. (7.24)

Recall from Proposition 7.2 that E
[
T̂

(1)
N

]
= 0, E

[
T̂

(2)
N

]
= pH(1− pV G) < 1,

for n ≥ 3,

E
[
T̂

(n)
N

]
=


(n−1)(1−pV G)(1−p̃HSUpCH)n−2pH

1−(n−2)p̃H(n) if p̃H(n) < 1
n−2 ,

∞ if p̃H(n) ≥ 1
n−2 ,
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and, for n = 1, 2, . . . ,

E
[
T̂

(n)
S

]
= (1− pCH)E

[
T̂

(n)
N

]
≤ E

[
T̂

(n)
N

]
,

where p̃H(n) = (1− pV G)(1− p̃HSUpCH)n−1pH .

Note that p̃H(n) < (1− p̃HSUpCH)n−1 and limn−→∞(n−2)(1− p̃HSUpCH)n−1 = 0.
Therefore, by ensuring the stationary point of (n− 2)(1− p̃HSUpCH)n−1 occurs at
n ≤ 3, we can choose a value of p̃HSUpCH , p∗ say, such that for all n = 3, 4, . . . ,
p̃H(n) < (1 − p̃HSUpCH)n−1 < 1/(n − 2) and p̃HSUpCH > p∗. Furthermore, if
p̃H(n) < 1/(n− 2) then for all n = 3, 4, . . . there exists a constant K > 0 such
that 1− (n− 2)p̃H(n) > K. Therefore, for p̃HSUpCH > p∗ > 1− e−1 and n ≥ 3,

E
[
T̂

(n)
S

]
≤ E

[
T̂

(n)
N

]
= (n− 1)(1− pV G)(1− p̃HSUpCH)n−2pH

1− (n− 2)p̃H(n)

<
(n− 1)(1− p̃HSUpCH)n−2

K
. (7.25)

Applying inequality (7.25) to inequality (7.24) yields

RA
∗ ≤ (1− p̃V )

{
E [DU ]

∞∑
n=3

ρ̃Un

(
2(n− 1)(1− p̃HSUpCH)n−2

K
+ n

)
+ E

[
D̃U − 1

]}
(7.26)

We assume σ2
H <∞ and σ2

D <∞, so ∑∞n=3 ρ̃n(n− 1)(1− p̃HSUpCH)n−2 <∞
by the ratio test and ∑∞n=3 ρ̃

U
nn ≤ E

[
H̃U

]
. Therefore, for p̃HSUpCH > p∗, there

exists a constant K∗ such that RA
∗ ≤ (1− p̃V )K∗. So RA

∗ can be made arbitrarily
small by choosing appropriate pS, pCH and pCG as required.

The proof of Proposition 7.5 requires pCH > 0 to control the spread of the
epidemic through large rewired households. Indeed, we note that the vaccination
strategy investigated by Ball and Sirl (2017) (i.e. pCH = 0) cannot control the
spread of the epidemic in the clustered network model if for all k ∈ Z+ there
exists an n ≥ k such that ρnpRW (n) > 0.

7.2.5 Final size of a major outbreak

Let B be the offspring random variable for the initial individual in the backwards
branching process and let B̃ be the offspring random variable for subsequent
generations in the backwards branching process. Let b(s) and b̃(s) be the
probability generating functions of B and B̃ respectively. Then the final size
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of a major outbreak is z = 1 − b(π), where π is the smallest solution to the
equation π = b̃(π). Before giving the probability generating functions b(s) and
b̃(s) we introduce the following notation. Let

GS
D̃U

(s) = fD̃U−1 (1− pN(1− pCG)(1− p̃V )(1− s)) , (7.27a)

GN
D̃U

(s) = fD̃U−1 (1− pN(1− p̃V )(1− s)) , (7.27b)

GS
DU

(s) = fDU (1− pN(1− pCG)(1− p̃V )(1− s)) , (7.27c)

GN
DU

(s) = fDU (1− pN(1− p̃V )(1− s)) , (7.27d)

GSU
DU

(s) = fDU
(
1− pN(1− p̃HSUpCG)(1− p̃V )(1− s)

)
, (7.27e)

GDU (s) =
(
GS
DU

(s), GN
DU

(s)
)
. (7.27f)

Theorem 7.2. The probability generating functions for the initial and subsequent
offspring distributions of the backward Galton-Watson branching process are
given by

b(s) =
∞∑
n=1

ρ̃Un

{
(1− pRW (n))

n−1∑
α=0

p̃
(n,α)
SU

[
pSG

S
D̃U

(s)f (n,α)
MS

(GDU (s))

+ (1− pS)GN
D̃U

(s)f (n,α)
MN

(GDU (s))
]

+ pRW (n)
[
pSG

S
D̃U

(s)f
M̂

(n)
S

(
GSU
DU

(s)
)

+ (1− pS)GN
DU

(s)f
M̂

(n)
N

(
GSU
DU

(s)
)]}

and

b̃(s) =
∞∑
n=1

ρ̃Un

{
(1− pRW (n))

n−1∑
α=0

p̃
(n,α)
SU

[
p̃DSUG

S
D̃U

(s)f (n,α)
MS

(GDU (s))

+ (1− p̃DSU)GN
D̃U

(s)f (n,α)
MN

(GDU (s))
]

+ pRW (n)
[
p̃DSUG

S
D̃U

(s)f
M̂

(n)
S

(
GSU
DU

(s)
)

+ (1− p̃DSU)GN
D̃U

(s)f
M̂

(n)
N

(
GSU
DU

(s)
)]}

,

where f
(n,α)
MS

(s1, s2) and f
(n,α)
MN

(s1, s2) are defined below Proposition 7.3 and
f
M̂

(n)
S

(s) and f
M̂

(n)
N

(s) are given in Proposition 7.4.

Proof. We first consider the calculation of b̃ (s) and begin by conditioning on
the household size label of the unvaccinated primary individual, distributed
according to H̃U , and whether the primary individual is in a household or rewired
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household. Households of size n are rewired independently and uniformly at
random with probability pRW (n), so

E
[
sB̃
]

=
∞∑
n=1

ρ̃Un

[
(1− pRW (n))E

[
sB̃

(n)
H

]
+ pRW (n)E

[
sB̃

(n)
R

]]
, (7.29)

where B̃(n)
H and B̃

(n)
R are the random variable B̃ conditioned on the primary

individual being in a household of size n and a rewired household with household
size label n respectively.

We now consider E
[
sB̃

(n)
H

]
by conditioning on the number of sampled non-

primary individuals in the household and whether the primary individual is
sampled or not. The primary individual is sampled with probability p̃DSU and
otherwise unsampled and with probability p̃(n,α)

SU , α = 0, 1, . . . , n− 1, there are
α secondary sampled individuals within a household of size n. So

E
[
sB̃

(n)
H

]
=

n−1∑
α=0

p̃
(n,α)
SU

[
p̃DSUE

[
sB̃

(n,α)
HS

]
+ (1− p̃DSU)E

[
sB̃

(n,α)
HN

]]
, (7.30)

where B̃(n,α)
HS

(
B̃

(n,α)
HN

)
is the quantity B̃

(n)
H conditioned on the primary indi-

vidual being sampled (unsampled) and the household containing α sampled
non-primary individuals.

Next we decompose B̃(n,α)
HS and B̃(n,α)

HN into the number of contacts made to
each member of the primary individual’s household susceptibility set. Label
the primary infective 0. Then if the primary individual is sampled we label
the sampled and unsampled members of the primary individual’s household
susceptibility set 1, 2, . . . ,M (n,α)

SS and 1, 2, . . . ,M (n,α)
SN respectively. If the pri-

mary individual is unsampled we label the sampled and unsampled members
of the primary individual’s household susceptibility set 1, 2, . . . ,M (n,α)

NS and
1, 2, . . . ,M (n,α)

NN respectively. Thus

B̃
(n,α)
HS = B̃

(n,α)
HS (0) +

M
(n,α)
SS∑
i=1

B̃
(n,α,S)
HS (i) +

M
(n,α)
SN∑
i=1

B̃
(n,α,N)
HS (i), (7.31a)

B̃
(n,α)
HN = B̃

(n,α)
HN (0) +

M
(n,α)
NS∑
i=1

B̃
(n,α,S)
HN (i) +

M
(n,α)
NN∑
i=1

B̃
(n,α,N)
HN (i), (7.31b)

where: B̃(n,α)
HS (0)

(
B̃

(n,α)
HN (0)

)
is the number of contacts made to the primary in-
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dividual, B̃(n,α,S)
HS (i)

(
B̃

(n,α,S)
HN (i)

)
is the number of contacts made to the sampled

non-primary individual i and B̃(n,α,N)
HS (i)

(
B̃

(n,α,N)
HN (i)

)
is the number of contacts

made to the unsampled secondary individual i.

Consider a primary individual i∗ in a household of size n. By analogous
arguments to those leading to equation (3.32), all infectious contacts made
to the members of i∗’s household susceptibility set are made by individuals
with independent and identically distributed infectious periods, I. Furthermore,
the number of contacts made to each member of i∗’s household susceptibility
set are independent so the summands in equation (7.31a) are all mutually
independent, and also independent of M (n,α)

A1A2 , A1, A2 ∈ {S,N}. Furthermore,
applying analogous arguments to those leading to equation (5.11) yields

B̃
(n,α)
HS (0)|D̃U ∼ Bin

(
D̃U − 1, pN(1− pCG)(1− p̃V )

)
,

B̃
(n,α)
HN (0)|D̃U ∼ Bin

(
D̃U − 1, pN(1− p̃V )

)
,

B̃
(n,α,S)
HA (1)|DU ∼ Bin (DU , pN(1− pCG)(1− p̃V )) ,

B̃
(n,α,N)
HA (1)|DU ∼ Bin (DU , pN(1− p̃V )) ,

and, applying the notation from equation (7.27),

E
[
sB̃

(n,α)
HS (0)

∣∣∣∣D̃U

]
= GS

D̃U
(s), (7.33a)

E
[
sB̃

(n,α)
HN (0)

∣∣∣∣D̃U

]
= GN

D̃U
(s), (7.33b)

E
[
sB̃

(n,α,S)
HA (1)

∣∣∣∣DU

]
= GS

DU
(s), (7.33c)

E
[
sB̃

(n,α,N)
HA (1)

∣∣∣∣DU

]
= GN

DU
(s). (7.33d)

Considering the probability generating function of B̃(n,α)
HS , given in equation

(7.31a), applying the independence of B̃(n,α)
HS (0), B̃(n,α,N)

HS (i) and B̃(n,α,S)
HS (j), con-

ditioning on M (n,α)
SS and M (n,α)

SN and the appropriate degree distributions and
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substituting equations (7.33) yields

E
[
sB̃

(n,α)
HS

]
= E

sB̃(n,α)
HS (0)

M
(n,α)
SS∏
i=1

sB̃
(n,α,S)
HS (i)

M
(n,α)
SN∏
i=1

sB̃
(n,α,N)
HS (i)


= E

[
sB̃

(n,α)
HS (0)

]
E

E

M
(n,α)
SS∏
i=1

sB̃
(n,α,S)
HS (1)

M
(n,α)
SN∏
i=1

sB̃
(n,α,N)
HS (1)

∣∣∣∣∣∣∣M (n,α)
SS ,M

(n,α)
SN




= E
[
sB̃

(n,α)
HS (0)

]
E
E

[
sB̃

(n,α,S)
HS (1)

]M(n,α)
SS

E
[
sB̃

(n,α,N)
HS (1)

]M(n,α)
SN


= GS

D̃U
(s)E

[[
GS
DU

(s)
]M(n,α)

SS
[
GN
DU

(s)
]M(n,α)

SN

]
(7.34a)

Similarly, considering the probability generating function of B̃(n,α)
HN , given in equa-

tion (7.31b), applying the independence of B̃(n,α)
HN (0), B̃(n,α,N)

HN (i) and B̃(n,α,S)
HN (j),

conditioning on M (n,α)
NS and M (n,α)

NN and the appropriate degree distributions and
substituting equations (7.33) yields

E
[
sB̃

(n,α)
HN

]
= GN

D̃U
(s)E

[[
GS
DU

(s)
]M(n,α)

NS
[
GN
DU

(s)
]M(n,α)

NN

]
. (7.34b)

Recall that, for A ∈ {S,N}, the joint distribution of
(
M

(n,α)
(AS) ,M

(n,α)
(AN)

)
is

given in Proposition 7.3 and, for A ∈ {S,N}, f (n,α)
MA

(s1, s2) = E
[
s
M

(n,α)
(AS)

1 s
M

(n,α)
(AN)

2

]
.

Substituting f (n,α)
MA

(s1, s2) into equations (7.34) and recalling from equations
(7.27) that GDU (s) =

(
GS
DU

(s), GN
DU

(s)
)
yields

E
[
sB̃

(n,α)
HS

]
= GS

D̃U
(s)f (n,α)

MS
(GDU (s)) , (7.35a)

E
[
sB̃

(n,α)
HN

]
= GN

D̃U
(s)f (n,α)

MN
(GDU (s)) . (7.35b)

Substituting equations (7.35) into equation (7.30) yields

E
[
sB̃

(n)
H

]
=

n−1∑
α=0

p̃
(n,α)
SU

[
p̃DSUG

S
D̃U

(s)f (n,α)
MS

(GDU (s))

+ (1− p̃DSU)GN
D̃U

(s)f (n,α)
MN

(GDU (s))
]
. (7.36)

To complete our calculation of b̃ (s) we need only calculate E
[
sB̃

(n)
R

]
, n =

1, 2, . . . , i.e. the probability generating function for the number of network
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contacts made to the rewired household susceptibility set of an individual with
household size label n. Applying a similar decomposition to that leading to
equations (7.30) and (7.31) yields

B̃
(n)
R = p̃DSU

B̃(n)
RS(0) +

M̂
(n)
S∑
i=1

B̃
(n)
RS(i)

+ (1− p̃DSU)

B̃(n)
RN(0) +

M̂
(n)
N∑
i=1

B̃
(n)
RN(i)

 ,
(7.37)

where B̃(n)
RS(0)

(
B̃

(n)
RN(0)

)
is the number of contacts made to the primary individ-

ual, B̃(n)
RS(i)

(
B̃

(n)
RN(i)

)
is the number of contacts made to non-primary individual

i and M̂ (n)
S and M̂ (n)

N are respectively the total number of sampled and unsam-
pled members of the primary individual’s rewired household susceptibility set.

By analogous arguments to those leading to equation (7.33), the summands
in equation (7.37) are all mutually independent and also independent of M̂ (n)

S

and M̂ (n)
N . Furthermore, applying similar arguments to those leading to equation

(7.33) and the notation from equation (7.27),

E
[
sB̃

(n)
RS (0)

∣∣∣∣D̃U

]
= GS

D̃U
(s), (7.38a)

E
[
sB̃

(n)
RN (0)

∣∣∣∣D̃U

]
= GN

D̃U
(s), (7.38b)

E
[
sB̃

(n)
RA(i)

∣∣∣∣DU

]
= GSU

DU
(s). (7.38c)

Thus applying the independence of B̃(n)
RA(0), B̃(n)

RA(i) and B̃(n)
RA(j), i 6= j, to

the probability generating function of equation (7.37), conditioning on M̂
(n)
S

and M̂ (n)
N and the appropriate degree distributions and substituting equations

(7.38) yields

E
[
sB̃

(n)
R

]
= p̃DSUE

sB̃(n)
RS (0)

M̂
(n)
S∏
i=1

sB̃
(n)
RS (i)

+ (1− p̃DSU)E

sB̃(n)
RN (0)

M̂
(n)
N∏
i=1

sB̃
(n)
RN (i)


= p̃DSUE

[
sB̃

(n)
RS (0)

]
E

E

M̂
(n)
S∏
i=1

sB̃
(n)
RS (i)

∣∣∣∣∣∣∣M̂ (n)
S




+ (1− p̃DSU)E
[
sB̃

(n)
RN (0)

]
E

E

M̂
(n)
N∏
i=1

sB̃
(n)
RN (i)

∣∣∣∣∣∣∣M̂ (n)
N




= p̃DSUG
S
D̃U

(s)E
[(
GSU
DU

(s)
)M̂(n)

S

]
+ (1− p̃DSU)GN

D̃U
(s)E

[(
GSU
DU

(s)
)M̂(n)

N

]
.

(7.39)
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Recall that the probability generating functions for M̂ (n)
S and M̂ (n)

N , denoted by
f
M̂

(n)
S

(s) and f
M̂

(n)
N

(s) respectively, are given in Proposition 7.4 which, substituted
into equation (7.39), yields

E
[
sB̃

(n)
R

]
= p̃DSUG

S
D̃U

(s)f
M̂

(n)
S

(
GSU
DU

(s)
)

+ (1− p̃DSU)GN
D̃U

(s)f
M̂

(n)
N

(s)
(
GSU
DU

(s)
)
.

(7.40)
Substituting equations (7.36) and (7.40) into equation (7.29) yields b̃(s) as

given in the statement of the theorem.

The calculation of b(s) follows analogous arguments to the calculation of
b̃(s), noting that the primary individual is sampled with probability pS instead
of p̃DSU and has degree distribution DU instead of D̃U . Therefore making the
appropriate substitutions into equations (7.30), (7.33), (7.37) and (7.38) yields
b(s) as required.

Recall that an acquaintance vaccination strategy on the household and
network model is investigated by Ball and Sirl (2017), differing from our ac-
quaintance vaccination strategy in that Ball and Sirl (2017) do now allow
sampled individuals to choose household neighbours for vaccination. The key
differences in extending the acquaintance vaccination strategy to allow for vacci-
nating household neighbours as well as network neighbours is the dependence of
the following: the event that a primary individual is unvaccinated, the number
of sampled secondary individuals within the household and the number of vacci-
nated sampled and unsampled individuals within the household. Unfortunately
the resulting expression for the number of sampled and unsampled individuals
within a household susceptibility set relies on the hypergeometric distribution,
and consequently has no known simple closed form expression. Therefore we
note that if pRW (n) < 1, n = 1, 2, . . . , then the acquaintance vaccination strat-
egy with pCH > 0 is more computationally intensive than the acquaintance
vaccination strategy with pCH = 0.
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7.3 Uniform vaccination on the clustered net-
work model

7.3.1 Description of uniform vaccination

Under the uniform vaccination strategy each individual in the population is
vaccinated with the perfect vaccine independently with probability pV , so the
vaccination coverage c = pV . Similarly to the calculations for the acquaintance
vaccination strategy discussed in Section 7.2 we consider household-based single-
type forward and backward branching processes to calculate the threshold
parameter and the final size of a major outbreak.

7.3.2 Threshold parameter

The threshold parameter RU
∗ is given in Theorem 7.3 below.

Theorem 7.3.

RU
∗ = pN(1− pV )E [D]

∞∑
n=1

ρ̃n

{
(1− pRW (n))

[
n∑
v=0

(
n

v

)
pvV (1− pV )n−vµT (n−v)

]

+ pRW (n)µT̂ (n)

}
+ pN(1− pV )E

[
D̃ − 1

]
,

where µT (n), given in equation (2.5), is the expected final size of the household
epidemic amongst the secondary individuals in a household of size n and

µT̂ (1) = 0,

µT̂ (2) = pH(1− pV ),

and, for n = 3, 4, . . . ,

µT̂ (n) =


(n−1)pH(1−pV )

1−(n−2)pH(1−pV ) if pH(1− pV ) < 1
n−2 ,

∞ if pH(1− pV ) ≥ 1
n−2 ,

is the expected final size of a rewired household epidemic conditioned on the
primary infective having household size label n.

Note that if pRW (n) = 0, n = 1, 2, . . . , we recover the household and network
model with individuals chosen uniformly at random for vaccination discussed
in, for example, Ball and Sirl (2017). Furthermore, the spread of a rewired
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household epidemic within a household of size n can be approximated by the
spread of the epidemic on the standard network model in which every individual
has degree n and is vaccinated independently with probability pV , which is a
special case of Section 5.2.3. Therefore, since the investigation of the clustered
network model can be considered as an amalgamation of well-studied models,
we omit the proof of Theorem 7.3.

7.3.3 Can the uniform vaccination strategy control the
epidemic?

Similarly to Section 7.2.4 we now investigate whether the uniform vaccination
strategy can control the epidemic. We show that the uniform vaccination
strategy can prevent a major outbreak occurring with pV < 1 only if the house-
hold size distribution has finite support or there exists a k ∈ Z+ such that
ρnpRW (n) = 0 for all n ≥ k.

Proposition 7.6. If the household size distribution has finite support or if
there exists a k ∈ Z+ such that ρnpRW (n) = 0 for all n ≥ k then the uniform
vaccination strategy can control the epidemic in the clustered network model.
Otherwise, the uniform vaccination strategy cannot control the epidemic in the
clustered network model.

Proof. Recall that µT (n) is the expected final size of the household epidemic
amongst the secondary individuals in a household of size n so µT (n−i) < n,
i = 0, 1, . . . , n− 1. Therefore

n∑
v=0

(
n

v

)
pvV (1− pV )n−vµT (n−v) <

n∑
v=0

(
n

v

)
pvV (1− pV )n−vn = n. (7.42)

Substituting inequality (7.42) into RU
∗ , given in Theorem 7.3, yields

RU
∗ ≤ (1− pV )

{
E [D]

∞∑
n=1

ρ̃n (n+ µT̂ (n)) + E
[
D̃ − 1

]}
. (7.43)

Now consider µT̂ (n) . Recall from Theorem 7.3 that µT̂ (n) is the expected
final size of a rewired household epidemic conditioned on the primary infective
having household size label n and, for n ≥ 3,

µT̂ (n) =

(n− 1)pH(1− pV ) (1− (n− 2)pH(1− pV ))−1 if pH(1− pV ) < 1
n−2 ,

∞ if pH(1− pV ) ≥ 1
n−2 .
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If H has finite support or there exists a k ∈ Z+ such that ρnpRW (n) = 0
for all n ≥ k then ∑∞n=1 ρ̃n (n+ µT̂ (n)) <∞ and, since E [H2] E [D2] <∞, there
exists a constant K such that RU

∗ < K(1 − pV ). Therefore we can choose a
value of pV < 1 such that RU

∗ < 1 and the uniform vaccination strategy can
control the epidemic on the clustered network model.

Now assume that for all k ∈ Z+ there exists some n ≥ k such that
ρnpRW (n) > 0 and fix pH and pV < 1. Then we can always find an n∗ such that
pH(1− pV ) ≥ 1/(n− 2) for n > n∗, so limn−→∞ µT̂ (n) =∞. Thus RU

∗ =∞ for
pV < 1 and the uniform vaccination strategy cannot control the epidemic on
the clustered network model.

Recall that the uniform vaccination strategy can always control the epidemic
in the rewired edge-triangle model (see Remark 6.1). However, Proposition 7.6
shows that rewiring large households drastically changes the performance of the
uniform vaccination strategy.

7.3.4 Final size of a major outbreak

Before considering the final size of a major outbreak in the clustered network
model under the uniform vaccination strategy we introduce the following notation.
Let

GV
D̃(s) = fD̃−1 (1− pN(1− pV )(1− s)) ,

GV
D(s) = fDU (1− pN(1− pV )(1− s)) .

The final size of a major outbreak z = 1 − b(π), where π is the smallest
solution to the equation π = b̃(π), and b(s) and b̃(s) are given below in Theorem
7.4.

Theorem 7.4. The probability generating functions for the initial and subsequent
offspring distributions of the backward Galton-Watson branching process are
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given by

b(s) = GV
D(s)

∞∑
n=1

ρ̃n

{
(1− pRW (n))

n∑
v=0

(
n

v

)
pvV (1− pV )n−vfM(n−v)

(
GV
D(s)

)
+ pRW (n)fM̂(n)

(
GV
D(s)

)}
,

b̃(s) = GV
D̃(s)

∞∑
n=1

ρ̃m

{
(1− pRW (n))

n∑
v=0

(
n

v

)
pvV (1− pV )n−vfM(n−v)

(
GV
D(s)

)
+ pRW (n)fM̂(n)

(
GV
D(s)

)}
,

where fM̂(1)(s) = 1 and, for n = 2, 3, . . . ,

fM̂(n)(s) =
(
1− pH(1− pV )

(
1− f̂ (n)

U (s)
))n−1

,

and f̂ (n)
U (s) is the unique solution in [0, 1] of the equation

f̂
(n)
U (s) = s

(
1− pH(1− pV )

(
1− f̂ (n)

U (s)
))n−2

.

Since the investigation of the clustered network model under the uniform
vaccination strategy can be considered as an amalgamation of well-studied
models (see Section 7.3.2) we omit the proof of Theorem 7.4.

7.4 Analysis of R0 in the clustered network

7.4.1 Calculation of R0

Before calculating R0 in the clustered network model under no vaccination we
consider the forward R0 branching process used to calculate R0 and the mean
rank generation sizes of a single rewired household epidemic. Note that we
define the rank generations of a single rewired household epidemic in an identical
manner to the rank generations of a rewired triangle epidemic, given in Section
6.5.

The forward R0 branching process is constructed analogously to the forward
individual-based branching process discussed in Section 3.2.3, used to calculate
R0 in the model with three levels of mixing. Recall that the global generation of
an infective is its generation in the epidemic at large (see Section 3.2.3). Each
‘individual’ in the forward R0 branching process consists of an infected household
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or rewired household. We consider the infections in the household or rewired
household epidemic occurring in multiple generations as the infection spreads
throughout the household or rewired household. A time period corresponds to
a new generation being infected, so in the forward individual-based branching
process an individual’s age is which generation of the household or rewired
household epidemic it is in. Thus an individual in this branching process may
have offspring at multiple time points, as the epidemic spreads through the
household or rewired household. We hypothesise that, as m −→∞, the total
number of infected households infected in the epidemic process on m households
will converge in distribution to the total progeny of the forward R0 branching
process, similarly to the forward Galton-Watson branching process in Section
3.2.1.

In the forward R0 branching process we say that an individual’s time of
birth is given by the global generation of the corresponding household primary
case in the epidemic process. An individual in this branching process may
reproduce at ages 1, 2, . . . . We denote the mean number of offspring at age
i+ 1 by a household and a rewired household by ν(i)

H and ν(i)
R respectively. Note

that if pRW (n) = 0, n = 1, 2, . . . , then ν(i)
H = ν

(i)
NN , as calculated in Theorem 3.3.

Furthermore, including the probability of rewiring,

ν
(i−1)
H =

pNµD̃−1
∑∞
n=1 ρ̃n (1− pRW (n)) if i = 1,

pNµD
∑∞
n=i ρ̃nµ

(n)
i−1 (1− pRW (n)) if i = 2, 3, . . . ,

(7.46)

where µ(n)
i−1 is the mean number of infectives in rank generation i of a single

household epidemic in a household size of n, given in Section 3.2.3.

We assume that a rewired household has a locally tree-like structure, so to
calculate ν(i)

R we consider a branching process which gives the size of successive
generations of infectives in the rewired household epidemic with household size
label n, n = 2, 3, . . . . Note that, conditioned on the primary infective being in
a rewired household with household size label n, the primary infective has n− 1
rewired household neighbours and the expected number of individuals in the first
rank generation of a rewired household of size n is pH(n− 1). Furthermore, a
secondary infective in a rewired household has n−2 rewired household neighbours,
each infected with probability pH . Thus, by standard branching process theory,
the expected number of individuals in the ith rank generation of a rewired
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household with household size label n is given by pH(n − 1) (pH(n− 2))i−2.
Therefore, noting that a primary infective in a rewired household has household
label n with probability ρ̃n,

ν
(i−1)
R =

pNµD̃−1
∑∞
n=1 ρ̃npRW (n) if i = 1,

pNµDpH
∑∞
n=2 ρ̃n(n− 1) (pH(n− 2))i−2 pRW (n) if i = 2, 3, . . . ,

(7.47)

Proposition 7.7. The basic reproduction number R0 is given by the asymptotic
(Malthusian) geometric growth rate of the forward R0 branching process, which
is the unique solution in (0,∞) of λ such that V (λ) = 1, where

V (λ) =
∞∑
i=1

ν
(i−1)
H + ν

(i−1)
R

λi
,

with ν(i−1)
H and ν(i−1)

R given in equations (7.46) and (7.47) respectively.

7.4.2 The effect of the rewiring process on R0

Proposition 7.8. If the household size distribution H has finite support or
there exists a k ∈ Z+ such that ρnpRW (n) = 0 for all n ≥ k, then R0 < ∞.
Otherwise the forward R0 branching process has a faster than geometric growth
rate and we say that R0 =∞.

Proof. Recall that µ(n)
i , i = 0, 1, . . . , n− 1, are the mean number of infectives

in rank generation i of a single household epidemic in a household size of n so
µ

(n)
i (1− pRW (n)) ≤ n and consequently

∞∑
i=1

ν
(i−1)
H

λi
= pNµD̃−1

∑∞
n=1 ρ̃n (1− pRW (n))

λ
+
∞∑
i=2

pNµD
∑∞
n=i ρ̃nµ

(n)
i−1 (1− pRW (n))
λi

≤
pNµD̃−1

λ
+
∞∑
i=2

pNµD
∑∞
n=i ρ̃nn

λi

≤
pNµD̃−1

λ
+
∞∑
i=2

pNµDE
[
H̃
]

λi
(7.48)
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We now consider ∑∞i=1
ν

(i−1)
R

λi
. Note that

∞∑
i=1

ν
(i−1)
R

λi
= pNµD̃−1

∑∞
n=1 ρ̃npRW (n)
λ

+
∞∑
i=2

pNµDpH
∑∞
n=2 ρ̃n(n− 1) (pH(n− 2))i−2 pRW (n)

λi

= pNµD̃−1
∑∞
n=1 ρ̃npRW (n)
λ

+ pNµDpH

∑∞
i=2

∑∞
n=2 ρ̃n(n− 1) (pH(n− 2))i−2 pRW (n)

λi

= λ−1pNµD̃−1

∞∑
n=1

ρ̃npRW (n)

+ pNµDλ
−2

∞∑
n=2

ρ̃n(n− 1)pRW (n)
∞∑
i=2

(
pHλ

−1(n− 2)
)i−2

. (7.49)

Firstly, note that since E [H2] E [D2] <∞ the right-hand side of equation
(7.48) can be made arbitrarily small by choosing sufficiently large λ. Further-
more, if H has finite support or there exists a k ∈ Z+ such that ρnpRW (n) = 0
for all n ≥ k then the right-hand side of equation (7.49) can also be made
arbitrarily small. Therefore if H has finite support or there exists a k ∈ Z+ such
that ρnpRW (n) = 0 for all n ≥ k then V (λ) can be made arbitrarily small by
choosing sufficiently large λ. Thus the equation V (λ) = 1 always has a solution
λ∗ <∞ and R0 = λ∗.

Next consider the case that for all k ∈ Z+ there exists some n ≥ k such
that ρnpRW (n) > 0. Note that ∑∞i=2 (pHλ−1(n− 2))i−2

< ∞ if and only if
pHλ

−1(n−2) < 1, i.e. n < 2+(λ/pH). However, since for all k ∈ Z+ there exists
some n ≥ k such that ρnpRW (n) > 0, for fixed pH and λ <∞ there exists some
n∗ ≥ k such that ρnpRW (n∗) > 0 and n∗ > 2 + (λ/pH). Therefore V (λ) = ∞
for all λ <∞ and thus R0 =∞.

It is clear from the proof of Proposition 7.8 that it is very large rewired house-
holds that cause R0 to become infinite. Furthermore, large rewired households
significantly affect the ability of the uniform vaccination strategy to prevent a
major outbreak on the clustered network model (see Proposition 7.6). To make
the clustered network model more applicable, and to allow for a comparison of
the uniform and acquaintance vaccination strategies, we introduce a rewiring cap,
κ say, which is the size of the largest household which has a positive probability
of rewiring. Note that by Proposition 7.8 if κ = max {n : ρnpRW (n) > 0} <∞
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then R0 < ∞. Furthermore, it is clear that we can always choose κ large
enough such that a given positive clustering coefficient can be achieved (see
equation (7.1)). Finally, note that the rewiring cap means that the uniform
vaccination strategy can always control the epidemic (see Proposition 7.6).

7.5 Rewiring approaches for the clustered net-
work model

Consider the clustered network model with household size distribution H and
network degree distribution D. Then CHmax, the maximum clustering coefficient
possible for a given household size and network degree distribution, is achieved
by setting pRW (n) = 0, n = 1, 2, . . . in equation (7.1). Note that for a given
target clustering coefficient CH ∈

(
0, CHmax

)
there are infinitely many choices

of pRW (n), n = 1, 2, . . . . In this section we investigate the effect of the choice
of pRW (n), n = 1, 2, . . . , on the final size of a major outbreak in the clustered
network model with a fixed clustering coefficient. We focus on three approaches
to selecting pRW (n) for a given a target clustering coefficient: equal rewiring,
in which pRW (n) = pRW for n = 1, 2, . . . ; rewiring from 1, in which we rewire
the households in order from the smallest household size to the largest until
we reach the desired clustering coefficient; and rewiring from ∞, in which we
rewire the households in order from the largest size to the smallest until we
reach the desired clustering coefficient. Note that equal rewiring corresponds
to the rewiring process introduced by Ball et al. (2013). Before comparing the
rewiring from 1 and rewiring from ∞ approaches we introduce the following
preliminary work.

Firstly note that under the rewiring from 1 approach

pRW (n) =


1 if n < c1,

p1
RW if n = c1,

0 if n > c1,

(7.50)

where c1 ∈ Z+ and p1
RW ∈ [0, 1] are predetermined by the target clustering

coefficient. The clustering coefficient under the rewiring from 1 approach, CH1 ,
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is calculated by substituting equation (7.50) into equation (7.1), so

CH1 =
∑∞
n=c1+1 ρnn(n− 1)(n− 2) + (1− p1

RW )ρc1c1(c1 − 1)(c1 − 2)
E [H(D +H − 1)(D +H − 2)] . (7.51)

Let b1(s) and b̃1(s) be the resulting probability generating functions for the
initial and subsequent offspring distributions of the backwards Galton-Watson
branching process. So, substituting pV = 0 and equation (7.50) into Theorem
7.4,

b1(s) = fD(1− pN + pNs)
[
c1−1∑
n=1

ρ̃nfM̂(n) (fD(1− pN + pNs))

+
∞∑

n=c1+1
ρ̃nfM(n) (fD(1− pN + pNs))

+ p1
RW ρ̃c1fM̂(c1) (fD(1− pN + pNs)

+ (1− p1
RW )ρ̃c1fM(c1) (fD(1− pN + pNs))

 ,
(7.52a)

b̃1(s) = fD̃−1(1− pN + pNs)
[
c1−1∑
n=1

ρ̃nfM̂(n) (fD(1− pN + pNs))

+
∞∑

n=c1+1
ρ̃nfM(n) (fD(1− pN + pNs))

+ p1
RW ρ̃c1fM̂(c1) (fD(1− pN + pNs)

+ (1− p1
RW )ρ̃c1fM(c1) (fD(1− pN + pNs))

 .
(7.52b)

Secondly note that under the rewiring from ∞ approach

pRW (n) =


0 if n < c∞,

p∞RW if n = c∞,

1 if n > c∞,

(7.53)

where c∞ ∈ Z+ and p∞RW ∈ [0, 1] are predetermined by the target clustering
coefficient. The clustering coefficient under the rewiring from ∞ approach, CH∞,
is calculated by substituting equation (7.53) into equation (7.1), so

CH∞ =
∑c∞−1
n=0 ρnn(n− 1)(n− 2) + (1− p∞RW )ρc∞c∞(c∞ − 1)(c∞ − 2)

E [H(D +H − 1)(D +H − 2)] . (7.54)
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Let b∞(s) and b̃∞(s) be the resulting probability generating functions for the
initial and subsequent offspring distributions of the backwards Galton-Watson
branching process. So, substituting pV = 0 and equation (7.50) into Theorem
7.4,

b∞(s) = fD(1− pN + pNs)
[
c∞−1∑
n=1

ρ̃nfM(n) (fD(1− pN + pNs))

+
∞∑

n=c∞+1
ρ̃nfM̂(n) (fD(1− pN + pNs))

+ p∞RW ρ̃c∞fM̂(c∞) (fD(1− pN + pNs)

+ (1− p∞RW )ρ̃c∞fM(c∞) (fD(1− pN + pNs))
 ,

(7.55a)

b̃∞(s) = fD̃−1(1− pN + pNs)
[
c∞−1∑
n=1

ρ̃nfM(n) (fD(1− pN + pNs))

+
∞∑

n=c∞+1
ρ̃nfM̂(n) (fD(1− pN + pNs))

+ p∞RW ρ̃c∞fM̂(c∞) (fD(1− pN + pNs)

+ (1− p∞RW )ρ̃c∞fM(c∞) (fD(1− pN + pNs))
 .

(7.55b)

Let bd(s) = (b1(s)− b∞(s)) /fD(1−pN +pNs), and note that b̃1(s)− b̃∞(s) =
bd(s)fD̃−1(1 − pN + pNs). Therefore, comparing equations (7.52) and (7.55),
sgn (bd(s)) = sgn (b1(s)− b∞(s)) = sgn

(
b̃1(s)− b̃∞(s)

)
.

Finally, let R1
∗ and R∞∗ be the threshold parameters for the clustered network

model under no vaccination and applying the approach of rewiring from 1 and∞
respectively, where the clustered network model has household size distribution
H, network degree D, network infection rate λN , household infection rate λH
and clustering coefficient CH . Similarly, let z1 and z∞ be the final size of a major
outbreak on this clustered network model applying the approach of rewiring
from 1 and ∞ respectively.
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7.5.1 Comparing the final size of a major outbreak under
the rewiring from 1 and ∞ approaches

To compare the final size of a major outbreak on the clustered network model
under the rewiring from 1 and ∞ approaches we fix the clustering coefficient of
the model. We first consider a trivial case which highlights the drastic effect
that rewiring large households can have on the properties of the model.

Proposition 7.9. If for all k ∈ Z+ there exists some n ≥ k such that ρn > 0
and R1

∗ < 1 then z∞ > z1 = 0.

Proof. If R1
∗ < 1 then by standard branching process theory the probability of

extinction of the approximating branching process is 1, so z1 = 0. However, since
for all k ∈ Z+ there exists some n ≥ k such that ρn > 0, applying Proposition
7.8 yields R∞∗ > 1, so, by standard branching process, z∞ > 0 and Proposition
7.9 immediately follows.

We now show that if we only rewire a fraction of households of size 3 under
the rewiring from 1 approach and pH = 1 then z1 > z∞.

Proposition 7.10. If R1
∗ > 1, pH = 1, c∞ > 3, c1 = 3, p1

RW > 0 and ρ̃3 > 0
then z1 > z∞.

Proof. We begin by showing that at pH = 1, bd(s) < 0, s ∈ (0, 1]. We then show
that bd(s) < 0 is a sufficient condition for the result z1 > z∞.

Since we require both models to have equal clustering coefficients, considering
the equation CH1 = CH∞, substituting equations (7.51) and (7.54), c1 = 3 and
ρn = nρ̃n/µH , n = 1, 2, . . . , yields

CH1 = CH∞

⇐⇒ 6p1
RWρ3 =

∞∑
n=c∞+1

ρnn(n− 1)(n− 2) + ρc∞p
∞
RW c∞(c∞ − 1)(c∞ − 2)

⇐⇒ 2p1
RW ρ̃3 =

∞∑
n=c∞+1

ρ̃n(n− 1)(n− 2) + ρ̃c∞p
∞
RW (c∞ − 1)(c∞ − 2). (7.56)

Substituting equations (7.52), (7.55) and c1 = 3 into bd(s) = b1(s)−b∞(s)/fD(1−
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pN + pNs) yields

bd(s) = ρ̃3p
1
RW [fM̂(3) (fD(1− pN + pNs)))− fM(3) (fD(1− pN + pNs))]

+
∞∑

n=c∞+1
ρ̃n [fM(n) (fD(1− pN + pNs))− fM̂(n) (fD(1− pN + pNs))]

+ ρ̃c∞p
∞
RW [fM(c∞) (fD(1− pN + pNs))− fM̂(c∞) (fD(1− pN + pNs))] .

(7.57)

For n ≥ 3, if pH = 1 then fM(n)(s) = sn−1 and fM̂(n)(s) = 0 (since a rewired
household with household size label n ≥ 3 contains infinitely many individuals)
which, substituted into equation (7.57), yields

bd(s) = −ρ̃3p
1
RWfD(1− pN + pNs))2

+
∞∑

n=c∞+1
ρ̃nfD(1− pN + pNs)n−1

+ ρ̃c∞p
∞
RWfD(1− pN + pNs)c∞−1. (7.58)

Substituting equation (7.56) into equation (7.58) and noting that fD(s) ≤ 1 for
s ∈ [0, 1] yields

bd(s) = ρ̃c∞p
∞
RW

[
fD(1− pN + pNs)c∞−1 − (c∞ − 1)(c∞ − 2)

2 fD(1− pN + pNs)2
]

+
∞∑

n=c∞+1
ρ̃n

[
fD(1− pN + pNs)n−1 − (n− 1)(n− 2)

2 fD(1− pN + pNs)2
]

= ρ̃c∞p
∞
RWfD(1− pN + pNs)2

[
fD(1− pN + pNs)c∞−3 − (c∞ − 1)(c∞ − 2)

2

]

+
∞∑

n=c∞+1
ρ̃nfD(1− pN + pNs)2

[
fD(1− pN + pNs)n−3 − (n− 1)(n− 2)

2

]

≤ ρ̃c∞p
∞
RWfD(1− pN + pNs)2

[
1− (c∞ − 1)(c∞ − 2)

2

]

+
∞∑

n=c∞+1
ρ̃nfD(1− pN + pNs)2

[
1− (n− 1)(n− 2)

2

]
. (7.59)

We assume that c∞ > 3, so 1− (n− 1)(n− 2)/2 < 0 for n ≥ c∞. Furthermore,
since E [D2] <∞, P(D =∞) < 1 and so fD(1− pN + pNs) > 0 unless pN = 1
and s = 0. Thus bd(s) < 0 for s ∈ (0, 1] which implies b1(s) < b∞(s) and
b̃1(s) < b̃∞(s) for s ∈ (0, 1].

By definition z1 = 1 − b1(π1), where π1 is the smallest solution to the
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equation π1 = b̃1(π1), and z∞ = 1− b∞(π∞), where π∞ is the smallest solution
to the equation π∞ = b̃∞(π∞). Therefore, since for s ∈ [0, 1], b̃∞(s) is a strictly
increasing function, if s < b̃∞(s) then s < π∞. Thus, since b̃1(s) < b̃∞(s) for
s ∈ (0, 1] and we assume that z1 < 1 (i.e. π1 > 0), π1 = b̃1(π1) < b̃∞(π1) and
so π1 < π∞. Analogous arguments yield b1(π1) < b∞(π∞) and z1 > z∞ as
required.

We now show that if we rewire all households except for a positive proportion
of households of size 3 under the rewiring from ∞ approach and pH = 1 then
z1 > z∞.

Proposition 7.11. If R1
∗ > 1, pH = 1, c1 > 3, c∞ = 3, p∞RW > 0 and ρ̃3 > 0,

then z1 > z∞.

Proof. The proof of Proposition 7.11 follows analogous arguments to the proof
of Proposition 7.9, so we only outline the key equations of the proof. Since
we require both models to have identical clustering coefficients, considering
the equation CH1 = CH∞, substituting equations (7.51) and (7.54), c∞ = 3 and
ρn = nρ̃n/µH , n = 1, 2, . . . , yields

CH1 = CH∞

⇐⇒ 2ρ̃3(1− p∞RW ) =
∞∑

n=c1+1
ρ̃n(n− 1)(n− 2) + ρ̃c1(1− p1

RW )(c1 − 1)(c1 − 2).

(7.60)

Substituting equations (7.52), (7.55) and c∞ = 3 into bd(s) yields

bd(s) = ρ̃3(1− p∞RW ) [fM̂(3) (fD(1− pN + pNs)))− fM(3) (fD(1− pN + pNs))]

+
∞∑

n=c1+1
ρ̃n [fM(n) (fD(1− pN + pNs))− fM̂(n) (fD(1− pN + pNs))]

+ ρ̃c1(1− p1
RW ) [fM(c1) (fD(1− pN + pNs))− fM̂(c1) (fD(1− pN + pNs))] .

(7.61)

For n ≥ 3, if pH = 1 then fM(n)(s) = sn−1 and fM̂(n)(s) = 0 which, substituted
into equation (7.61), yields

bd(s) = −ρ̃3(1− p∞RW )fD(1− pN + pNs))2

+
∞∑

n=c1+1
ρ̃nfD(1− pN + pNs)n−1

+ ρ̃c1(1− p1
RW )fD(1− pN + pNs)c1−1. (7.62)
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Substituting equation (7.60) into equation (7.62) and applying analogous argu-
ments to those leading to equation (7.59) yields

bd(s) ≤ ρ̃c1(1− p1
RW )fD(1− pN + pNs)2

[
1− (c1 − 1)(c1 − 2)

2

]

+
∞∑

n=c1+1
ρ̃nfD(1− pN + pNs)2

[
1− (n− 1)(n− 2)

2

]
.

Therefore, by analogous arguments to those below equation (7.59), bd(s) < 0
for s ∈ (0, 1] and thus z1 > z∞ as required.

Although the restriction z1 < 1 may appear restrictive, we note that if
P(D = 0) > 0 and P(H = 1) > 0 then z1 < 1.

Our numerical investigations suggest that if the clustered network model has
very small or near maximum clustering coefficient then, as Propositions 7.10
and 7.11 suggest, z1 > z∞. Indeed, if pH is large then z1 > z∞ regardless of the
clustering coefficient, as illustrated in Figure 7.1a. However, as pH decreases
then the ordering flips and z1 < z∞, as illustrated in Figure 7.1b.

7.6 Numerical investigation of the clustered net-
work model

7.6.1 Instability of Gontcharoff polynomials

In applications of the household-based epidemic models it is often assumed
that households are relatively small (see, for example, Ball and Shaw (2015)
or Fraser (2007)). However, in this chapter we are primarily interested in
using the household structure as a method of creating a clustered network. A
common assumption in modelling social networks is assuming that the total
degree distribution has support in the non-negative integers, e.g. a power law
distribution (see, for example, Barabási and Albert (1999)). Furthermore, if
the total degree distribution has support in the non-negative integers then the
clustering coefficient of the clustered network model is non-zero if and only if
the household size distribution also has support in the non-negative integers.
However, calculating the final size of a household epidemic or susceptibility set
within large households becomes numerically difficult. See, for example, Demiris
and O’Neill (2006) or House et al. (2012).
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(a) pH = pN = 0.14.

(b) pH = pN = 0.13.

Figure 7.1: The effect of the rewiring from 1 and ∞ approaches on the final
size of a major outbreak. The parameters are H ∼ Poi+(6), D ∼ Poi(4) and
I ∼ Const(1).
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To consider household size distributions which require the investigation of
very large households we bound the final size of a household epidemic or the size
of a susceptibility set from above and below in the following way. To calculate
a lower bound for the final size of a household epidemic we ignore all within-
household infections not emanating from the primary infective. To calculate
an upper bound for the final size of a household epidemic we assume that the
primary infective immediately infects all unvaccinated household neighbours
with probability 1. For example, let E

[
T

(n)
L

]
and E

[
T

(n)
U

]
be the lower and

upper bounds on E
[
T (n)

]
respectively, where E

[
T (n)

]
is the expected final size

of a household epidemic in a household of size n. Then E
[
T

(n)
L

]
= (n− 1)pH

and E
[
T

(n)
U

]
= (n − 1). Similarly, to calculate a lower bound for the size of

a household susceptibility set we ignore all within-household infections not
directly leading to the primary individual and to calculate an upper bound for
the size of a household susceptibility set we assume that the primary individual is
immediately contacted by all unvaccinated household neighbours with probability
1. However, we omit the upper and lower bounds in the figures given in the
following section because the bounds are too close together to decipher.

7.6.2 The effect of clustering on the vaccination strate-
gies

In this section we investigate the effect of household clustering on the performance
of the acquaintance and uniform vaccination strategies, in contrast to Section
6.6 in which we investigate the effect of edge-disjoint triangle clustering on the
performance of the acquaintance and uniform vaccination strategies by consid-
ering the rewired edge-triangle model. Since changing pRW (n), n = 1, 2, . . . ,
does not affect the degree correlation we can change pRW (n) to investigate
the effect of household clustering on the performance of the vaccination strate-
gies. Recall that we let κ be the size of the largest household to be rewired (so
ρnpRW (n) = 0 for n > κ, see Section 7.4) which ensures that R0 <∞ (see Propo-
sition 7.8) and that the uniform vaccination strategy can control the epidemic
(see Proposition 7.6). Since we are interested in the clustered network model as
a method of including clustering into the model, we set λH = λN and pCH = pCG.

Note that two clustered network models with the same household size distri-
bution, degree distribution, infectious period, κ and infection rates, thus varying
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only in pRW (n), n = 1, 2, . . . , will have different final sizes of major outbreaks.
Therefore, since in applications epidemic models are often parameterised by
final size data (see, for example, Becker and Utev (1998)) in this section we
compare models with the same household size distribution, degree distribution,
infectious period and infection rates and differing in pRW (n) by choosing an
infection rate λN to fix the final size of a major outbreak (z) in the clustered
network model without any vaccination.

Similarly to previous investigations of the acquaintance vaccination strategies
(see, for example, Section 5.1.4 or Ball and Sirl (2013)), our numerical work
suggests that for a fixed vaccination coverage the threshold parameter and final
size of a major outbreak are monotonically increasing in pC . Therefore, similarly
to Section 6.6, in this section we focus on the extreme situations pS = 1 or
pCH = pCG = 1, which we call the pS = 1 or pC = 1 acquaintance vaccination
strategies respectively. Let c∗U , c∗pS and c∗pC be the critical vaccination coverages
under the uniform, pS = 1 acquaintance and pC = 1 acquaintance vaccination
strategies respectively.

In the clustered network model with a fixed network degree distribution,
household size distribution, pRW (n) and vaccination coverage, the pS = 1
acquaintance vaccination strategy performs at least as well as the uniform
vaccination strategy, with equality in performance when the household size and
degree distributions have zero variance and an increasing difference between
the two strategies as the variance of the household size and degree distribu-
tions increases. We find that fixing z and increasing the clustering coefficient
decreases c∗U and c∗pS , as illustrated in Figures 7.2a and 7.3a. However, as
Var [DT ] increases the difference between c∗U and c∗pS increases with the clus-
tering coefficient, as illustrated in Figure 7.4. We conjecture that the effect of
fixing z and increasing the clustering coefficient on c∗U and c∗pS can be deter-
mined by considering the change in R0, similarly to the rewired edge-triangle
model in Section 6.6.2. However, due to the numerical difficulty in considering
R0 in the clustered network model we have not performed a similar analysis here.

For each of the vaccination strategies, fixing the clustering coefficient yields
that the critical vaccination coverage of the strategy is largest if we follow
the rewiring from ∞ approach and smallest if we follow the rewiring from 1
approach, as illustrated in Figures 7.2b and 7.2c. Since rewiring large households
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can significantly change the effect of vaccination strategies upon the network
(e.g. preventing the uniform vaccination from controlling the epidemic, see
Section 7.3.3), we conjecture that this ordering in critical vaccination cover-
ages under the three approaches is caused by the rewiring of large households.
Furthermore, this suggests that although the acquaintance vaccination strat-
egy can always control the epidemic (see Section 7.2.4), the presence of large
households does hinder the performance of the acquaintance vaccination strat-
egy. For a fixed vaccination coverage and both the pC = 1 acquaintance and
uniform vaccination strategies, increasing Var [DT ] has a negligible effect on
the critical vaccination coverages between following the rewiring from 1 and ∞
approaches (as illustrated in Figures 7.2b, 7.3b, 7.2c and 7.3c). However, for
moderate rewiring, increasing Var [DT ] increases the difference between the crit-
ical vaccination coverage of the pS = 1 acquaintance vaccination strategy under
the rewiring from 1 and∞ approaches, as illustrated in Figures 7.2c, 7.3c and 7.4.

We find that if Var [DT ] is small then c∗pC > c∗U and the final size of a
major outbreak under the pC = 1 acquaintance vaccination strategy is larger
than the final size of a major outbreak under the uniform vaccination strategy.
Furthermore, there is an increasing difference between the two strategies as
the clustering coefficient increases, as illustrated in Figures 7.5a and 7.5b.
Similarly to Section 6.6, in which we find that the addition edge-disjoint triangle
clustering increases the difference in critical vaccination coverage under the
pC = 1 acquaintance and uniform vaccination strategies in the rewired edge-
triangle model, we note that, for a fixed vaccination coverage, increasing the
clustering coefficient will lead to the pC = 1 acquaintance vaccination strategy
preventing infectious contacts from occurring along fewer edges in the network
than the uniform vaccination strategy. This results in the pC = 1 acquaintance
vaccination strategy underperforming compared to the uniform vaccination
strategy when Var [DT ] is small. However, as Var [DT ] increases the pC = 1
acquaintance vaccination strategy outperforms the uniform vaccination strategy
for a fixed vaccination coverage (as illustrated in Figures 7.2a and 7.4).
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(a) Investigating the effect of clustering on the critical vaccination
coverage of the uniform, pC = 1 and pS = 1 acquaintance
vaccination strategies under the equal rewiring approach.

(b) Investigating the effect of clustering on the critical vaccination
coverage of the uniform vaccination strategy under the rewiring
from ∞, equal rewiring and rewiring from 1 approaches.

(c) Investigating the effect of clustering on the critical vaccina-
tion coverage of the pC = 1 and pS = 1 vaccination strategies
under the rewiring from ∞, equal rewiring and rewiring from 1
approaches.

Figure 7.2: The models are matched with z = 0.7 and the other parameters are
H ∼ Poi+(6), D ∼ Poi(4), I ∼ Const(1) and κ = 25 so E [DT ] = 10.
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(a) Investigating the effect of clustering on the critical vaccination
coverage of the uniform, pC = 1 and pS = 1 acquaintance
vaccination strategies under the equal rewiring approach.

(b) Investigating the effect of clustering on the critical vaccination
coverage of the uniform vaccination strategy under the rewiring
from ∞, equal rewiring and rewiring from 1 approaches.

(c) Investigating the effect of clustering on the critical vaccina-
tion coverage of the pC = 1 and pS = 1 vaccination strategies
under the rewiring from ∞, equal rewiring and rewiring from 1
approaches.

Figure 7.3: The models are matched with z = 0.5 and the other parameters are
fH(s) = 1

4 (s7 + 2s8 + s9), fD(s) = 1
4 (s2 + 2s3 + s4), I ∼ Const(1) and κ = 10,

so E [DT ] = 10.
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Figure 7.4: Investigating the effect of clustering on the critical vaccination
coverage of the uniform, pC = 1 and pS = 1 acquaintance vaccination strate-
gies. The models are matched with z = 0.7, and the other parameters are
H ∼ Geo+(9/40), D ∼ Geo+(1/3), I ∼ Const(1) and κ = 35 so E [DT ] = 10.

7.7 Concluding remarks

In this chapter we consider two vaccination strategies on the clustered network
model, specifically the acquaintance and uniform vaccination strategies. For
each vaccination strategy, we show how to find a threshold parameter, which
determines whether a major outbreak can occur, and the expected relative final
size of a major outbreak.

The rewiring process contained within the clustered network model is used
to investigate the effect of clustering upon the variables of interest, such as the
critical vaccination coverage of vaccination strategies. We find that rewiring
large households can drastically affect the performance of the epidemic. For
example, if the household size distribution has support in the non-negative
integers and we rewire a positive fraction households of all sizes, then the
basic reproduction number is infinite and the uniform vaccination strategy can
only prevent a major outbreak from occurring by vaccinating every individual
within the population. Note that the rewired edge-triangle model discussed in
Chapter 6 does not contain large households so the rewired edge-triangle model
always has a finite basic reproduction number and the uniform vaccination
strategy can control the epidemic.
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(a) Investigating the effect of clustering on the final size of a major outbreak
of the pC = 1 acquaintance and uniform vaccination strategies.

(b) Investigating the effect of clustering on the critical vaccination coverage
of the pC = 1 acquaintance and uniform vaccination strategies.

Figure 7.5: The models are matched with z = 0.5 and the other parameters are
H ∼ Const(7), D ∼ Const(3) and I ∼ Const(1) so E [DT ] = 9.
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We consider three approaches to select the rewiring probabilities, for a given
clustering coefficient in the clustered network model: rewiring from ∞, equal
rewiring and rewiring from 1. We find that if the household infection rate
is large or the model is extremely rewired or not rewired then, for a given
clustering coefficient, the final size of a major outbreak under the rewiring from
1 approach is larger than the final size of a major outbreak under the rewiring
from ∞ approach. However, if the household infection rate is small or there is
moderate rewiring then the final size of a major outbreak under the rewiring
from 1 approach is smaller than the final size of a major outbreak under the
rewiring from ∞ approach. If the final size of a major outbreak is fixed in
the unvaccinated model then for each of the vaccination strategies fixing the
clustering coefficient yields that the critical vaccination coverage of the strategy
is largest if we follow the rewiring from ∞ approach and smallest if we follow
the rewiring from 1 approach.

Similarly to Sections 5.1.4 and 6.6.1, we find that, for a fixed vaccination
coverage, maximising pC = pCH = pCG maximises the post-vaccination thresh-
old parameter, the final size of a major outbreak and the critical vaccination
coverage under the acquaintance vaccination strategy in the clustered network
model. Furthermore, similarly to Section 5.4 we find that if the variance of the
total degree distribution is small then the critical vaccination coverage under the
pC = 1 acquaintance vaccination strategy is larger than the critical vaccination
coverage under the uniform vaccination strategy. Similarly to Section 6.6.1,
we find that if the final size of a major outbreak is fixed and the total degree
distribution has a small variance then the difference in critical vaccination
coverage between the uniform and pC = 1 acquaintance vaccination strategies
increases as the clustering coefficient increases. However, if the variance of
the total degree distribution is large then, for a fixed clustering coefficient, the
critical vaccination coverage under the uniform vaccination coverage is larger
than the critical vaccination coverage under the pC = 1 acquaintance vaccination
strategy, which is larger than the critical vaccination coverage under the pS = 1
acquaintance vaccination strategy.

We find that if the final size of a major outbreak is fixed and the clustering
coefficient is increased then the critical vaccination coverage under the uniform
and pS = 1 acquaintance vaccination strategies will decrease. Furthermore, if
the total degree distribution has a large variance then the difference in critical
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vaccination coverage between the two strategies will increase with the clustering
coefficient, improving the performance of the pS = 1 acquaintance vaccination
strategy compared to the uniform vaccination strategy in clustered networks.
We suggest that investigating that the effect of fixing R0 and increasing the
clustering coefficient on these critical vaccination coverages would be an inter-
esting topic to explore further. Especially since in Section 6.6.2 we find that
fixing R0 and changing the clustering coefficient has a negligible effect on the
critical vaccination coverage of many of the vaccination strategies applied to
the rewired edge-triangle model.

Recently Ball and Sirl (2017) also show that the clustered network model
with pRW (n) = 0, n = 1, 2, . . . , under the acquaintance vaccination strategy
with pCH = 0 can outperform household-based vaccination strategies if the
network degree distribution is heavy-tailed. Therefore another area of further
research is to investigate the difference between the acquaintance vaccination
strategy with pCH = 0 and with pCH > 0. Such research is especially highlighted
owing to the difficulty in calculating the threshold parameter and final size
of a major outbreak on the clustered network model under the acquaintance
vaccination strategy with pCH > 0 due to the dependence between the number
of sampled and unsampled individuals within a contacted household and the
final size of a household epidemic.
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7.8 Table of common notation introduced in
Chapter 7

Symbol Meaning Page
pRW (n) Probability that a household of size n is rewired. 239
CH Clustering coefficient of the clustered network

model.
240

DT Total degree distribution. 239
pS Probability that an individual chosen uniformly

at random from the population is sampled under
the acquaintance vaccination strategy.

241

pCG Probability that a given network neighbour of
a sampled individual is vaccinated under the
acquaintance vaccination strategy.

241

pCH Probability that a given household or rewired
household neighbour of a sampled individual is
vaccinated under the acquaintance vaccination
strategy.

241

H̃U Household size label of an unvaccinated (by the
acquaintance vaccination strategy) individual
chosen uniformly at random from the popula-
tion.

242

ρ̃Un P
(
H̃U = n

)
. 242

DU Network degree distribution of an unvaccinated
(by the acquaintance vaccination strategy) in-
dividual chosen uniformly at random from the
population.

242

pV G A priori probability that an individual with net-
work degree D is vaccinated (by the acquain-
tance vaccination strategy) through the network.

243

D̃U Network degree distribution of an unvaccinated
(by the acquaintance vaccination strategy) indi-
vidual contacted via the network.

243
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p̃V A priori probability that an individual contacted
via the network is vaccinated (by the acquain-
tance vaccination strategy).

244

p̃
(n,α)
SU Probability that a household of size n contains

α sampled non-primary individuals given that
the primary infective in the household is unvac-
cinated.

244

I
(n,α)
SS Number of sampled non-primary individuals

which are vaccinated (by the acquaintance vac-
cination strategy) in a household of size n with
a sampled primary infective and α sampled non-
primary individuals.

245

I
(n,α)
SN Number of unsampled non-primary individuals

which are vaccinated (by the acquaintance vac-
cination strategy) in a household of size n with
a sampled primary infective and α sampled non-
primary individuals.

245

T
(n,α)
SS Number of infected sampled non-primary indi-

viduals which are vaccinated (by the acquain-
tance vaccination strategy) in a household of
size n with a sampled primary infective and α
sampled non-primary individuals.

245

T
(n,α)
SN Number of infected unsampled non-primary in-

dividuals which are vaccinated (by the acquain-
tance vaccination strategy) in a household of
size n with a sampled primary infective and α
sampled non-primary individuals.

245

I
(n,α)
NS Number of sampled non-primary individuals

which are vaccinated (by the acquaintance vac-
cination strategy) in a household of size n with
an unsampled primary infective and α sampled
non-primary individuals.

245
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I
(n,α)
NN Number of unsampled non-primary individuals

which are vaccinated (by the acquaintance vac-
cination strategy) in a household of size n with
an unsampled primary infective and α sampled
non-primary individuals.

245

T
(n,α)
NS Number of infected sampled non-primary indi-

viduals which are vaccinated (by the acquain-
tance vaccination strategy) in a household of
size n with an unsampled primary infective and
α sampled non-primary individuals.

245

T
(n,α)
NN Number of infected unsampled non-primary in-

dividuals which are vaccinated (by the acquain-
tance vaccination strategy) in a household of
size n with an unsampled primary infective and
α sampled non-primary individuals.

245

T̂
(n)
S Final size of a rewired household epidemic with

household size label n and in which the primary
infective is sampled.

246

T̂
(n)
N Final size of a rewired household epidemic with

household size label n and in which the primary
infective is unsampled.

246

p̃H(n) (1− pV G)(1− p̃SUpCH)n−1pH . 246
M

(n,α)
SS Number of sampled non-primary individuals

within a household susceptibility set when the
primary individual is sampled and in a household
in a household of size n containing α sampled
non-primary individuals.

248

M
(n,α)
SN Number of unsampled non-primary individuals

within a household susceptibility set when the
primary individual is sampled and in a household
in a household of size n containing α sampled
non-primary individuals.

248
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M
(n,α)
NS Number of sampled non-primary individuals

within a household susceptibility set when the
primary individual is unsampled and in a house-
hold in a household of size n containing α sam-
pled non-primary individuals

248

M
(n,α)
NN Number of unsampled non-primary individuals

within a household susceptibility set when the
primary individual is unsampled and in a house-
hold in a household of size n containing α sam-
pled non-primary individuals.

248

f
(n,α)
MA

(s1, s2) E
[
s
M

(n,α)
(AS)

1 s
M

(n,α)
(AN)

2

]
, A ∈ {S,N}. 249

M̂
(n)
S Size of a rewired household susceptibility set

with household size label n in which the primary
individual is sampled.

249

M̂
(n)
N Size of a rewired household susceptibility set

with household size label n in which the primary
individual is unsampled.

249

RA
∗ Threshold parameter for the clustered network

model under the acquaintance vaccination strat-
egy.

251

µT (n,α) Expected number of individuals infected by
the non-primary members of a household epi-
demic with household size n and α sampled
non-primary individuals.

251

µT̂ (n) Expected number of individuals infected by the
non-primary members of a rewired household
epidemic with household size label n.

251

RU
T Threshold parameter for the clustered network

model under the uniform vaccination strategy.
264

CHmax Maximum clustering coefficient possible for a
given household size and network degree distri-
bution.

271

CH1 Clustering coefficient of the clustered network
model under the rewiring from 1 approach.

272
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b1(s) Generating function for the initial offspring dis-
tribution of the backwards branching process
used to calculate the final size of a major out-
break of the clustered network model applying
the rewiring from 1 approach.

272

b̃1(s) Generating function for the non-initial offspring
distribution of the backwards branching process
used to calculate the final size of a major out-
break of the clustered network model applying
the rewiring from 1 approach.

272

CH∞ Clustering coefficient of the clustered network
model under the rewiring from ∞ approach.

272

b∞(s) Generating function for the initial offspring dis-
tribution of the backwards branching process
used to calculate the final size of a major out-
break of the clustered network model applying
the rewiring from ∞ approach.

273

b̃∞(s) Generating function for the non-initial offspring
distribution of the backwards branching process
used to calculate the final size of a major out-
break of the clustered network model applying
the rewiring from ∞ approach.

273

bd(s) (b1(s)− b∞(s)) /fD(1− pN + pNs). 273
R1
∗ Threshold parameter for the clustered network

model applying the approach of rewiring from
1.

273

R∞∗ Threshold parameter for the clustered network
model applying the approach of rewiring from
∞.

273

z1 Final size of a major outbreak on the clustered
network model applying the approach of rewiring
from 1.

273

z∞ Final size of a major outbreak on the clustered
network model applying the approach of rewiring
from ∞.

273
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c∗U Critical vaccination coverage under the uniform
vaccination strategy.

280

c∗pS Critical vaccination coverage under the pS = 1
acquaintance vaccination strategy.

280

c∗pC Critical vaccination coverage under the pC = 1
acquaintance vaccination strategy.

280
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8. Conclusion

8.1 Summary of key results

In Chapter 3 we introduce an SIR epidemic model for the spread of an epidemic
among a population of individuals, with a random network of social contacts,
that is partitioned into households and in which individuals also make casual
contacts. This epidemic model is an extension of previous models such as the
households model of Ball et al. (1997), the standard household model, the net-
work and global model of Ball and Neal (2008) and the household and network
model of Ball et al. (2009). We introduce a branching process approximation
for the early stages of the epidemic in Section 3.2, proving that as the number
of households in the population tends to infinity the total number of individuals
infected in the epidemic process converges in distribution to the total progeny
of a branching process, allowing us to calculate a household-based reproduction
number and (in the special case of a constant infectious period) the probability
of a major outbreak. We give a heuristic argument that the final size of a major
outbreak is equal to the probability that a two-type branching process avoids
extinction and thus calculate the expected relative final size of a major outbreak.

In Chapter 4 we set out to investigate the difference in transmitting infections
between households via global contacts and via a configuration model network
structure. To do this we fix R0 and use the models of Ball et al. (2009) and Ball
and Neal (2008) to investigate the effect network and household heterogeneity
on the expected relative final size of a major outbreak. In Section 4.1.1 we
show that fixing R0 and introducing a small amount of network heterogeneity
to the homogeneously mixing model increases the final size of a major outbreak
if the ratio of the variance to the mean of the degree distribution is less than 1,
and decreases the final size of a major outbreak if the ratio of the variance to
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the mean of the degree distribution is greater than 1. In contrast, in Section
4.2.1 we show that the effect of fixing R0 and introducing a small amount of
household heterogeneity to the homogeneously mixing model depends on the
first three moments of the household size distribution. Importantly, fixing R0

and introducing either network or household heterogeneity to the model is likely
to decrease the final size of a major outbreak if the variance in the household
size or degree distribution is large, e.g. if the corresponding distribution has
heavy tails. However, in Section 4.1.5 we use the network and global model
with a logarithmic degree distribution to prove that fixing R0 and introducing
network heterogeneity to the homogeneously mixing model does not always have
a monotonic effect on the final size of a major outbreak.

In Section 4.1.3 we give an ordering for the final size of a major outbreak
for a range of degree distributions on the standard network model with fixed
R0. We conjecture that fixing R0 and homogenising the degree distribution
maximises the expected relative final size of a major outbreak, and increasing
the variance of the degree distributions will decrease the expected relative final
size of a major outbreak.

Therefore the results in Chapter 4 show that transmitting the disease through
global contacts or through a network structure have different effects on the final
outcome of the epidemic. Furthermore, the effect of fixing R0 and introducing
a small amount of heterogeneity to the homogeneously mixing model is not
necessarily the same as the effect of fixing R0 and introducing more heterogeneity
to an already heterogeneous model.

In Chapter 5 we set out to investigate the performance of the uniform,
acquaintance and optimal vaccination strategies applied to the configuration
model when the population is also homogeneously mixing, and how these vacci-
nation strategies perform in finite populations. To do this we consider the three
vaccination strategies applied to the network and global model. Recall that
under the acquaintance vaccination strategy each individual in the population
is sampled independently with probability pS, and each network neighbour of
a sampled individual is independently chosen for vaccination with probability
pC . Similarly to Ball and Sirl (2013), in Section 5.1.4 we prove that under the
acquaintance vaccination strategy with a fixed vaccination coverage maximising
pC will maximise R0 and the final size of a major outbreak. Furthermore, in
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Section 5.4 we prove conditions under which the critical vaccination coverage of
the acquaintance vaccination strategy is less than the critical vaccination cover-
age of the uniform vaccination strategy, namely if the degree distribution has
small variance and pS < 1. We conjecture that if pS < 1 and the degree distribu-
tion has small variance then the acquaintance vaccination strategy clusters the
vaccination among groups of individuals, and thus large groups of unvaccinated
individuals form through which the epidemic can spread unimpeded, causing
the vaccination strategy to underperform compared to the uniform vaccination
strategy.

In Section 5.5.1 our numerical investigations show that under the uniform
or optimal vaccination strategies the asymptotic expected relative final size of a
major outbreak is an overestimate for the expected relative final size of a major
outbreak in finite populations. However, under the acquaintance vaccination
strategy the asymptotic expected relative final size of a major outbreak of the
network and global model is an underestimate for the expected relative final size
of a major outbreak in finite populations. This is a very undesirable property of
the model, since if we vaccinate the asymptotic critical vaccination coverage a
major outbreak can still occur in finite populations. Although the vaccination
coverage of the uniform vaccination strategy is correlated to both the indicator
function for whether a major outbreak occurs and the expected relative final
size of a major outbreak, there is much stronger correlation between the vacci-
nation coverage of the acquaintance vaccination strategy and both the indicator
function for whether a major outbreak occurs and the expected relative final
size of a major outbreak, which we conjecture results in the different behaviour
in finite populations.

In Section 5.2.2 we prove that the critical vaccination coverage of the uni-
form vaccination strategy applied to the network and global model is equal to
1− 1/R0, where R0 is the basic reproduction number of the underlying model
under no vaccination strategy. However, in Section 5.5.2 we numerically show
that the critical vaccination coverage of the optimal and acquaintance vacci-
nation strategies on the standard network model (fixing either R0 or expected
relative final size of a major outbreak) can either underestimate or overestimate
the critical vaccination coverage of the strategy in the homogeneously mixing
model, dependent on the variance of the degree distribution. Furthermore, we
show that fixing R0 and increasing the global infection rate leads to a decreased
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difference in critical vaccination coverage between the vaccination strategies,
thus diluting the benefit of the acquaintance vaccination strategy compared to
the uniform vaccination strategy.

In Chapters 6 and 7 we investigate the effect of clustering introduced via
edge-disjoint triangles and households respectively on the performance of vac-
cination strategies. To do so, we introduce two network models with tunable
clustering: the rewired edge-triangle model and the clustered network model.
The rewired edge-triangle model is based on the network model with clustering
of Newman (2009), extended to include a rewiring process to tune the clustering
coefficient, and the clustered network model is based on the model of Ball et al.
(2013), modified to include a general rewiring process. In Section 6.1.2 we
show that the rewired edge-triangle model cannot construct networks with both
large mean total degree and large clustering coefficient due to the network only
containing edge-disjoint triangles. In contrast, the triangles within the clustered
network model need not be edge-disjoint, since the clustered network model
contains households (i.e. complete graphs) that can contain more than 3 individ-
uals, so networks with both large mean degree and clustering coefficient can be
constructed (see Section 7.1.1). We then consider three vaccination strategies
on the rewired edge-triangle model, specifically the optimal, acquaintance and
uniform vaccination strategies, and two vaccination strategies on the clustered
network model, specifically the acquaintance and uniform vaccination strategies.
In Section 7.5 we consider three approaches to calculate the rewiring probabil-
ities (pRW (n), n = 1, 2, . . . ) for a given clustering coefficient on the clustered
network model, specifically rewiring from∞, equal rewiring and rewiring from 1.

The rewiring process contained within both the rewired edge-triangle model
and the clustered network model is used to investigate the effect of cluster-
ing upon the variables of interest, such as the critical vaccination coverage of
vaccination strategies, without changing other properties of the model such as
the degree correlation. However, we find that rewiring large households can
drastically affect the performance of the epidemic on the network. For example,
we prove that if the household size distribution has support in the non-negative
integers and we rewire a positive fraction pRW of households of all sizes then
R0 =∞ (see Section 7.4.2) and that the uniform vaccination strategy can only
prevent a major outbreak from occurring by vaccinating every individual within
the population (see Section 7.3.3). However, the rewired edge-triangle model
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does not contain large households so the rewired edge-triangle model always has
finite R0 (see Section 6.5.2) and the uniform vaccination strategy can always
control the epidemic (see Section 6.2.1).

Recall that applying the acquaintance vaccination strategy to the clustered
network model involves sampling each individual in the population indepen-
dently with probability pS, and then each global network or household neighbour
of a sampled individual is independently chosen for vaccination with probability
pCG or pCH respectively. In Sections 6.6 and 7.6.2 we numerically investigate the
effect of clustering in the rewired edge-triangle and clustered network models
on the performance of the vaccination strategies. We find that, in both models,
maximising pC = pCG = pCH maximises the final size of a major outbreak,
the post-vaccination threshold parameter and the critical vaccination coverage
under the acquaintance vaccination strategy.

As expected from the conclusions in Section 5.4, our numerical investigations
find that in both models if the total degree distribution has small variance and
pS < 1 then the critical vaccination coverage of the acquaintance vaccination
strategy is less than the critical vaccination coverage of the uniform vaccination
strategy. Interestingly, the difference in critical vaccination coverage between
the two vaccination strategies increases as the clustering coefficient increases in
both models. Increasing the clustering coefficient in the rewired edge-triangle or
clustered network model increases the probability that an individuals neighbours
are themselves connected. Therefore, recalling that a sampled individual chooses
its neighbours independently with a given probability for vaccination, increasing
the clustering coefficient increases the probability that two connected individuals
are vaccinated, thus increasing the number of edges joining two vaccinated indi-
viduals and decreasing the performance of the acquaintance vaccination strategy.

Our numerical studies find that fixing R0 and changing the clustering coeffi-
cient in the rewired edge-triangle model via the rewiring process generally causes
a negligible change in the critical vaccination coverage of the uniform, acquain-
tance (with pS = 1) and optimal vaccination strategies. Furthermore, fixing the
expected relative final size of a major outbreak and increasing the clustering
coefficient causes the critical vaccination coverage of these three vaccination
strategies to change with R0 in the underlying model without vaccination. For
example, if increasing the clustering coefficient increases R0, then the critical

298



vaccination coverage of the uniform, acquaintance (with pS = 1) and optimal
vaccination strategies will also increase. Therefore we conjecture that for a
fixed joint stub and triangle distribution the critical vaccination coverages of
the three vaccination strategies are determined by R0, and are independent of
the clustering coefficient. Indeed, we note that this conjecture agrees with the
work of House and Keeling (2011). Similarly, we find that fixing the expected
relative final size of a major outbreak and increasing the clustering coefficient in
the clustered network model via the rewiring process will generally decrease the
critical vaccination coverages of the uniform and acquaintance (with pS = 1)
vaccination strategies. Therefore we conjecture that the addition of clustering to
a network will decrease the critical vaccination coverage of the uniform, optimal
and acquaintance (with pS = 1) vaccination strategies.

8.2 Future research

We have numerically shown that the asymptotic expected relative final size
of a major outbreak of the network and global model under the acquaintance
vaccination strategy is an underestimate for the final size of a major outbreak
in finite populations. Investigating the causes behind the different correlations
between the vaccination coverage and both the indicator function for whether a
major outbreak occurs and expected relative final size of a major outbreak in
the models under the acquaintance and uniform vaccination strategies is a key
area of future research. Indeed, identifying why the acquaintance vaccination
strategy increases the correlation between the vaccination coverage and both the
indicator function for whether a major outbreak occurs and expected relative
final size of a major outbreak may provide insight into ways to further improve
the vaccination strategies. Furthermore, future research involves extending this
analysis to the single-neighbour acquaintance vaccination strategy of Cohen
et al. (2003), to determine whether the undervaccination of the acquaintance
vaccination strategy (and potential underperformance compared to the uniform
vaccination strategy if pS < 1) is owing to the utilisation of acquaintance-based
vaccination schemes, or introduced by the modification of the acquaintance
vaccination scheme to allow an individual to choose multiple neighbours for
vaccination. It is possible that investigating ‘vaccinated edges’ (by which we
mean edges connected to at least one vaccinated vertex) may yield analytical
progress in this area.
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Ball and Sirl (2017) show that the acquaintance vaccination strategy (with
pCH = 0) on the clustered network model with no rewiring (i.e. pRW (n) = 0,
n = 1, 2, . . . ) can outperform household-based vaccination strategies if the
global network degree distribution is heavy-tailed. It would be interesting to
investigate the difference between the acquaintance vaccination strategy with
pCH = 0 and with pCH > 0. Such analysis would be particularly interesting
since the dependence between the number of sampled and unsampled individ-
uals within a contacted household and the final size of a household epidemic
complicates calculations in the acquaintance vaccination strategy we consider
(greatly increasing the computational time required for calculations), and these
dependencies do not occur if pCH = 0 (i.e. in the acquaintance vaccination
strategy of Ball and Sirl (2017)).

Another area of research is to extend the work in Chapter 4 to investigate
the effect of introducing heterogeneity to the homogeneously mixing model on
the expected relative final size of a major outbreak while fixing parameters other
than R0. For example, we might consider fixing the early real-time exponential
growth rate of the epidemic (See Section 1.3). Alternatively, we can consider
the analogous problem of investigating the effect of introducing heterogeneity to
the model on the critical vaccination coverage of various vaccination strategies
(instead of the final size of a major outbreak), similarly to Becker and Utev
(1998).

An assumption we make throughout this thesis is that all vaccination strate-
gies utilize a perfect vaccine, an unrealistic assumption in many practical
applications. Therefore an avenue for future work is to extend the vaccination
strategies to allow for a generalised vaccine reaction, introduced by Becker
and Starczak (1998). Indeed, Ball and Sirl (2017) show that minimising the
threshold parameter under household-based vaccination strategies using an
imperfect vaccine can result in a larger final size of a major outbreak than
the household-based vaccination strategy that maximises the household-based
threshold parameter. Therefore the extension of the vaccination strategies to
allow for imperfect vaccines on the network and global or household and network
models may yield interesting results.

Finally, in the rewired edge-triangle and clustered network models we em-
phasise that the rewiring process does not change the degree correlation of
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the network, since changing the degree correlation can change the properties
of the epidemic such as the final size of a major outbreak (see, for example,
Miller (2009) or Ball et al. (2013)). Therefore investigating the effect of degree
correlation on the performance of vaccination strategies, especially the acquain-
tance vaccination strategy, is another area of future work. Indeed, it is possible
that changes in the degree correlation, rather than variance in the total degree
distribution, are responsible for the pC = 1 acquaintance vaccination strategy
underperforming compared to the uniform vaccination strategy.
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A. Algorithms to simulate the spread
of the epidemic

In this appendix we present pseudo-code algorithms for simulating the spread
of an epidemic in a finite population. The results of these simulations can be
used to empirically calculate the probability and final size of a major outbreak.
In Section A.1 we give the algorithm for the model with three levels of mixing
discussed in Chapter 3. In Section A.2 we give modifications to the algorithm
which allow for the acquaintance, uniform or optimal vaccination strategies to
be applied to the network and global model (see respectively Sections 5.1, 5.2
or 5.3 for the details of these vaccination strategies).

A.1 Model with three levels of mixing

We first give the pseudo-code algorithm for a single simulation. We begin with
the following parameters. The number of households, m; the network degree,
distributed as D; the household size, distributed as H; the infectious period,
distributed as I; the global infection rate, λG; the network infection rate, λN ;
and the household infection rate, λH .

1. For each of the m households take independent samples from H to de-
termine their household size. Note that this process fixes the number of
individuals in the population, N , and determines the number of household
neighbours of each individual.

2. For each of the N individuals take independent samples from D. These
samples are the number of half-edges each individual has. Pair all half-
edges uniformly at random, discarding a single half-edge chosen uniformly
at random if there is an odd total number of half-edges.
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3. Select an unvaccinated individual chosen uniformly at random from the
population to be the initial infective, and list this individual as currently
infected.

4. For each of the N individuals take independent samples from I to be
that individual’s infectious period. So individual i, i = 1, 2, . . . , N , has
infectious period Ii.

5. For each individual in the currently infected list, i say, add each susceptible
household neighbour of i to the next infected list with probability 1−e−IiλH .

6. For each individual in the currently infected list, i say, and each network
edge emanating from i which leads to a susceptible individual, j say, add
j to the next infected list with probability 1− e−IiλN .

7. For each individual in the currently infected list, i say, take an independent
sample from Poi(IiλG), Gi say. Then choose Gi individuals independently
and uniformly at random from the population with replacement. Each
susceptible individual chosen in this way is added to the next infected list.

8. Add the currently infected list to the removed list and then clear the
currently infected list.

9. If there is at least 1 individual in the next infected list, move the individuals
in the next infected list to the currently infected list, clear the next infected
list and go to Step 1. Otherwise continue to Step 10.

10. Note the final size of the epidemic, which is the size of the removed list.
To calculate the relative final size of the epidemic divide the final size of
the epidemic by the total number of individuals in the population, N .

After running the required number of simulations, we determine a cut-off
for whether a particular final size constitutes a major outbreak by inspecting
histograms of the relative final size for our simulations, as described in Section
3.4.1. We can then calculate the empirical probability and final size of a major
outbreak as required.
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A.1.1 Comments on the algorithm

Each simulation begins by sampling from H to construct the households (see
Step 1). Therefore each simulation may have a different total population size, N .

In Step 2 the half-edges are paired uniformly at random, and we do not
prevent multiple edges, self-loops, household self-loops or multiple edges between
households.

The initial infective chosen in Step 3 is in global generation 0 of the epidemic
(see Section 3.2.3). The individuals added to the next infected list in iteration i
of Steps 5 - 7, i = 1, 2, . . . , are in global generation i of the epidemic.

For a currently infected individual, i say, Step 5 considers the household
infections made by i, Step 6 considers the network infections made by i and
Step 7 considers the global contacts made by i. We do not prevent an individual
from contacting another individual multiple times, either through multiple edges
or a combination of global, network and household contacts.

A.2 Network and global model

The majority of the simulation of the spread of the epidemic in the network
and global model proceeds analogously to the model with three levels of mixing
discussed in Section A.1. The key differences being that we do not construct
the household (Step 1), instead starting with N = m individuals, and that no
household infections occur (Step 5). The vaccination strategy is applied after
the network is constructed and before the epidemic starts, i.e. between Steps 2
and 3, and involves constructing a vaccinated list. Individuals in the vaccinated
list are not susceptible, and they are not involved in the calculation of the
final size of the epidemic. Note that vaccination strategies require additional
parameters. If we are applying the uniform vaccination strategy we require
the probability that each individual is vaccinated, pV . If we are applying the
acquaintance vaccination strategy we require the probability of sampling, pS
and the probability of choosing, pC . If we are applying the optimal vaccination
strategy we require the desired vaccination coverage, c.

• Under the uniform vaccination strategy: for each of the N individuals in
the population we sample independently from the Uniform distribution
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and if the sample is smaller than pV add them to the vaccinated list.

• Under the acquaintance vaccination strategy: for each of the N individuals
in the population we sample independently from the Uniform distribution
and if the sample is smaller than pS add them to the sampled list. Then,
for each individual in the sampled list (i say), add each network neighbour
of i to the chosen list with probability pC by sampling from the Uniform
distribution. Finally, each individual in the chosen list at least once is
added to the vaccinated list. Note that under the acquaintance vaccination
strategy we allow for the possibility that an individual chooses itself (via
self-loops) and also the possibility that an individual chooses the same
individual multiple times if they have parallel edges.

• Under the optimal vaccination strategy: we use the empirical degree
distributions to calculate the largest degree of an unvaccinated individual,
d̄c, and the number of individuals of degree d̄c that must be vaccinated,
δN , that results in the desired vaccination coverage c. We then add all
individuals with degree larger than d̄c + 1 to the vaccinated list and add
δN individuals, chosen uniformly at random without replacement from the
individuals with degree d̄c by sampling from the Uniform distribution, to
the vaccinated list.
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B. Proof of Theorem 4.4 and Lemmas
B.1 and B.2

To give the proof of Theorem 4.4 in Section B.3 we require knowledge of the
derivatives of both λG(λH ;R0, H, I) and fM(n)(s, λH). In Section B.1 we discuss
the derivatives of λG(λH ;R0, H, I) with respect to λH , with preliminary results
involving the mean number of cases in each generation of a single household
epidemic and their derivatives in Section B.1.1. In Section B.2 we discuss the
derivatives of the Gontcharoff Polynomials in Section B.2.1, which are required
to calculate the derivatives of fM(n)(s, λH , I) given in Section B.2.2. Finally, we
give the proof of Theorem 4.4 in Section B.2.2.

For formatting reasons we write z(λH), λG(λH), zH(R0), fM(n)(s, λH) and
µ

(n)
i−1(λH) for the quantities z(λH ;R0, H, I), λG(λH ;R0, H, I), zH, fM(n)(s, λH ; I)

and µ(n)
i−1(λH ; I) respectively.

B.1 Preliminary results involving the global in-
fection rate and its derivatives

B.1.1 Calculations involving the mean number of cases
in each generation of a single household epidemic
and their derivatives

To calculate λG(λH) and its derivatives at the origin we must first consider the
mean number of cases in each generation of a single household epidemic and
their derivatives. Recall from Section 3.2.3, with notation adjusted to highlight
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dependence on λH , that, for i = 1, 2, . . . , n,

µ
(n)
i−1(λH) = µ1,n−1,i−1(λH), (B.1)

where, for a = 1, 2, . . . , s = 1, 2, . . . , and k = 1, 2, . . . , s,

µa,s,k(λH) =
s−k+1∑
i=1

Pa (s− i, s, λH)µi,s−i,k−1(λH), (B.2)

with boundary conditions

µa,s,0(λH) = a, (B.3a)

µa,0,k(λH) = 0. (B.3b)

and, for m = 0, 1, . . . , s,

Pa(m, s, λH) =
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
φI (kλH)a . (B.4)

Remark B.1. We can consider µa,s,k(λH) as a multivariate polynomial in
φI (iλH), i = 1, 2, . . . , s, with order less than aksk. So, given µI < ∞ and
φ′′I (0) <∞, dµa,s,k(0)

dλH <∞.

Before considering equations (B.1), (B.2) and (B.4) and their derivatives
with respect to λH , we introduce the following combinatoric identity, whose
proof is given in, for example, Ruiz (1996) Corollary 2.

Proposition B.1. For n > 0, x ∈ R and i = 1, 2, . . . , n,

n∑
j=0

(−1)j
(
n

j

)
(x− j)n−i = 0.

We now consider Pa(m, s, λH), given in equation (B.4), and its derivatives
with respect to λH , evaluated at λH = 0.
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Proposition B.2. For a = 1, 2, . . . , s = 1, 2, . . . , and m = 0, 1, . . . , s,

(i)

Pa(m, s, 0) =

1, if s = m,

0, otherwise.
(B.5)

(ii)

∂Pa(m, s, 0)
∂λH

=


−asµI , if s = m,

asµI , if s−m = 1,

0, otherwise.

(iii)

∂2Pa(m, s, 0)
∂λ2

H

=



a [φ′′I (0) + (a− 1)µ2
I ] s2, if s = m,

−a [φ′′I (0) + (a− 1)µ2
I ] s(2s− 1), if s−m = 1,

a [φ′′I (0) + (a− 1)µ2
I ] s(s− 1), if s−m = 2,

0, otherwise.
(B.6)

Proof. Evaluating equation (B.4) at λH = 0 yields

Pa(m, s, 0) =
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
. (B.7)

Substituting m = s, into equation (B.7) immediately yields

Pa(s, s, 0) = 1. (B.8)

Assume that s ≥ 2 and m = 1, 2, . . . , s − 1. Substituting j = k −m into
equation (B.7) and applying Proposition B.1 with n = s−m and i = n yields

Pa(m, s, 0) =
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)

=
(
s

m

)
s−m∑
j=0

(−1)j
(
s−m
j

)

= 0,

which, along with equation (B.8), yields part (i).
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Taking the derivative of equation (B.4) with respect to λH yields

dPa(m, s, λH)
dλH

= a

(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
kφI (kλH)a−1 φ′I (kλH) , (B.9)

and, evaluating equation (B.9) at λH = 0,

dPa(m, s, 0)
dλH

= aφ′I (0)
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
k. (B.10)

Substituting m = s into equation (B.10) yields

dPa(s, s, 0)
dλH

= −asµI . (B.11)

Substituting m = s− 1 into equation (B.10) yields

dPa(s− 1, s, 0)
dλH

= asµI . (B.12)

Assume that s ≥ 3 and m = 1, 2, . . . , s − 2. Substituting j = k −m into
equation (B.10) and applying Proposition B.1 with n = s−m, i = n− 1 and
x = −m yields

dPa(m, s, 0)
dλH

= aφ′I (0)
(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
k

= aφ′I (0)
(
s

m

)
s−m∑
j=0

(−1)j
(
s−m
j

)
(j +m)

= 0,

which, along with equations (B.11) and (B.12), yields part (ii).

Taking the derivative of equation (B.9) with respect to λH yields

d2Pa(m, s, λH)
dλH2 = a

(
s

m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
k2
[
φI (kλH)a−1 φ′′I (kλH)

+ (a− 1)φI (kλH)a−2 (φ′I (kλH))2]
, (B.13)

and, evaluating equation (B.13) at λH = 0,

d2Pa(m, s, 0)
dλH2 = a

[
φ′′I (0) + (a− 1)µ2

I

] ( s
m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
k2. (B.14)
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Substituting m = s into equation (B.14) yields

d2Pa(m, s, 0)
dλH2 = a

[
φ′′I (0) + (a− 1)µ2

I

]
s2. (B.15)

Substituting m = s− 1 into equation (B.14) yields

d2Pa(m, s, 0)
dλH2 = −a

[
φ′′I (0) + (a− 1)µ2

I

]
s(2s− 1). (B.16)

Substituting m = s− 2 into equation (B.14) yields

d2Pa(m, s, 0)
dλH2 = a

[
φ′′I (0) + (a− 1)µ2

I

]
s(s− 1). (B.17)

Assume that s ≥ 4 and m = 1, 2, . . . , s − 3. Substituting j = k −m into
equation (B.14) and applying Proposition B.1 with n = s−m, i = n− 2 and
x = −m yields

d2Pa(m, s, 0)
dλH2 = a

[
φ′′I (0) + (a− 1)µ2

I

] ( s
m

)
s∑

k=m
(−1)k−m

(
s−m
k −m

)
k2

= a
[
φ′′I (0) + (a− 1)µ2

I

] ( s
m

)
s−m∑
j=0

(−1)j
(
s−m
j

)
(j +m)2

= 0,

which, along with equations (B.15), (B.16) and (B.17) yields part (ii).

We now consider the mean generation final sizes and their derivatives evalu-
ated at λH = 0.

Proposition B.3. For a = 1, 2, . . . , s = 1, 2, . . . , and k = 0, 1, . . . , s,

(i)

µa,s,k(0) =

a, if k = 0,

0, otherwise.

(ii)
dµa,s,k(0)

dλH
=

asµI , if k = 1,

0, otherwise.
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(iii)

d2µa,s,k(0)
dλH2 =


−as [φ′′I (0) + (a− 1)µ2

I ] , if k = 1,

2a2s(s− 1)µ2
I , if k = 2,

0, otherwise.

Proof. Consider part (i). Recall that, from equation (B.3a), µa,s,0(λH) = a, so
µa,s,0(0) = a. Evaluating equation (B.2) at λH = 0 yields

µa,s,k(0) =
s−k+1∑
i=1

Pa (s− i, s, 0)µi,s−i,k−1(0). (B.18)

So, applying Proposition B.2(i) to equation (B.18), for k = 1, 2, . . . , s,

µa,s,k(0) = 0,

which yields part (i).

Taking the derivative of equations (B.3) yields

dµa,s,0(λH)
dλH

= 0, (B.19a)

dµa,0,k(λH)
dλH

= 0. (B.19b)

Taking the derivative of equation (B.2) with respect to λH yields, for k =
1, 2, . . . , s,

dµa,s,k(λH)
dλH

=
s−k+1∑
i=1

[
dPa (s− i, s, λH)

dλH
µi,s−i,k−1(λH)

+ Pa (s− i, s, λH) dµi,s−i,k−1(λH)
dλH

]
, (B.20)

and, evaluating equation (B.20) at λH = 0,

dµa,s,k(0)
dλH

=
s−k+1∑
i=1

[
dPa (s− i, s, 0)

dλH
µi,s−i,k−1(0)

+ Pa (s− i, s, 0) dµi,s−i,k−1(0)
dλH

]
. (B.21)
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Applying Proposition B.2 and Remark B.1 yields

dµa,s,k(0)
dλH

= asµIµ1,s−1,k−1(0),

and, applying part (i), dµa,s,k(0)
dλH = 0 unless k = 1, in which case µ1,s−1,0(0) = 1

and dµa,s,1(0)
dλH = asµI , which, along with equations (B.19), yields part (ii).

Taking the derivative of equations (B.19) with respect to λH yields

d2µa,s,0(λH)
dλH2 = 0, (B.22a)

d2µa,0,k(λH)
dλH2 = 0. (B.22b)

Taking the derivative of equation (B.20) with respect to λH yields, for k =
1, 2, . . . , s,

d2µa,s,k(λH)
dλH2 =

s−k+1∑
i=1

[
d2Pa (s− i, s, λH)

dλH2 µi,s−i,k−1(λH)

+ 2dPa (s− i, s, λH)
dλH

dµi,s−i,k−1(λH)
dλH

+ Pa (s− i, s, λH) d2µi,s−i,k−1(λH)
dλH2

]
, (B.23)

and, evaluating equation (B.23) at λH = 0,

d2µa,s,k(0)
dλH2 =

s−k+1∑
i=1

[
d2Pa (s− i, s, 0)

dλH2 µi,s−i,k−1(0)

+ 2dPa (s− i, s, 0)
dλH

dµi,s−i,k−1(0)
dλH

+ Pa (s− i, s, 0) d2µi,s−i,k−1(0)
dλH2

]
. (B.24)

Applying Proposition B.2 and Remark B.1 to equation (B.24) yields

d2µa,s,k(0)
dλH2 = −a

[
φ′′I (0) + (a− 1)µ2

I

]
s(2s− 1)µ1,s−1,k−1(0)

+ a
[
φ′′I (0) + (a− 1)µ2

I

]
s(s− 1)µ2,s−2,k−1(0)

+ 2asµI
dµ1,s−1,k−1(0)

dλH
. (B.25)
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Applying parts (i) and (ii) to equation (B.25) yields d2µa,s,k(0)
dλH2 = 0 unless k = 1

or k = 2.

If k = 1, then µ1,s−1,k−1(0) = 1, µ2,s−2,k−1(0) = 2 and dµ1,s−1,k−1(0)
dλH = 0, so

d2µa,s,1(0)
dλH2 = −as

[
φ′′I (0) + (a− 1)µ2

I

]
. (B.26)

If k = 2, then µ1,s−1,k−1(0) = 0, µ2,s−2,k−1(0) = 0 and dµ1,s−1,k−1(0)
dλH = a(s− 1)µI ,

so
d2µa,s,2(0)

dλH2 = 2a2s(s− 1)µ2
I . (B.27)

Equations (B.22), (B.26) and (B.27), along with the result d2µa,s,k(0)
dλH2 = 0 for

k ≥ 2, yields part (iii).

Finally, we consider the derivatives of the mean number of cases in each
generation of a single household epidemic and their derivatives.

Proposition B.4. For n = 1, 2, . . . , i = 1, 2, . . . , n,

(i)

µ
(n)
i−1(0) =

1, if i = 1,

0, otherwise.

(ii)
dµ(n)

i−1
dλH

(0) =

(n− 1)µI , if i = 1,

0, otherwise.

(iii)

d2µ
(n)
i−1

dλH2 (0) =


−(n− 1)φ′′I (0) , if i = 1,

2(n− 1)(n− 2)µ2
I , if i = 2,

0, otherwise.

Proof. Evaluating equation (B.1) at λH = 0 and applying Proposition B.4(i)
yields

µ
(n)
i−1(0) = µ1,n−1,i−1(0) =

1, if i = 1,

0, otherwise,

as required for part (i).
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Taking the derivative of equation (B.1) with respect to λH and applying
Proposition B.4(ii) yields

dµ(n)
i−1(0)
dλH

= dµ1,n−1,i−1(0)
dλH

=

(n− 1)µI , if i = 1,

0, otherwise,
(B.28)

as required for part (ii).

Taking the derivative of equation (B.28) with respect to λH and applying
Proposition B.4(iii) yields

d2µ
(n)
i−1(0)

dλH2 = d2µ1,n−1,i−1(0)
dλH2 =


−(n− 1)φ′′I (0) , if i = 1,

2(n− 1)(n− 2)µ2
I , if i = 2,

0, otherwise,

(B.29)

as required for part (iii).

B.1.2 Derivatives of the global infection rate

We now calculate the derivatives of λG(λH) at the origin.

Lemma B.1.

(i)
λG(0) = R0

µI
,

(ii)
λ′G(0) = −

(
E
[
H̃
]
− 1

)
,

(iii)

λ′′G(0) = φ′′I (0)
µI

(
E
[
H̃
]
− 1

)
) + 2µI

R0

{
E
[
H̃
]2
− E

[
H̃2
]

+ E
[
H̃
]
− 1

}
.

Proof. Evaluating equation (4.76) at λH = 0 and applying Proposition B.4(i)
yields part (i),

λG(0) = R0

µI
.
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Taking the derivative of equation (4.76) with respect to λH yields

λ′G(λH)µI
∞∑
i=1

R−i0

∞∑
n=i

ρ̃nµ
(n)
i−1(λH) + λG(λH)µI

∞∑
i=1

R−i0

∞∑
n=i

ρ̃n
dµ(n)

i−1
dλH

(λH) = 0.

(B.30)
Evaluating equation (B.30) at λH = 0 and applying part (i) and Proposition
B.4 yields

0 = λ′G(0)µI
R0

+ µI
R0

∞∑
n=2

ρ̃n(n− 1),

from which part (ii) follows with rearrangement.

Taking the derivative of equation (B.30) with respect to λH yields

0 = λ′′G(λH)µI
∞∑
i=1

R−i0

∞∑
n=i

ρ̃nµ
(n)
i−1(λH) + 2λ′G(λH)µI

∞∑
i=1

R−i0

∞∑
n=i

ρ̃n
dµ(n)

i−1
dλH

(λH)

+ λG(λH)µI
∞∑
i=1

R−i0

∞∑
n=i

ρ̃n
d2µ

(n)
i−1

dλH2 (λH). (B.31)

Evaluating equation (B.31) at λH = 0 and applying parts (i) and (ii) and
Proposition B.4 yields

0 = λ′′G(0)µIR−1
0 − 2µ2

IR
−2
0

(
E
[
H̃
]
− 1

) ∞∑
n=1

ρ̃n(n− 1)

+R0

(
−R−2

0 φ′′I (0)
∞∑
n=2

ρ̃n(n− 1) + 2R−3
0 µ2

I

∞∑
n=3

ρ̃n(n− 1)(n− 2)
)

= µIR
−1
0

[
λ′′G(0)− 2µIR−1

0 (E
[
H̃
]
− 1)

∞∑
n=1

ρ̃n(n− 1)

− 1
µI
φ′′I (0)

∞∑
n=1

ρ̃n(n− 1) + 2µIR−1
0

∞∑
n=1

ρ̃n(n− 1)(n− 2)
]

= µIR
−1
0

[
λ′′G(0)− φ′′I (0)

µI

(
E
[
H̃
]
− 1

)
)

+ 2µI
R0

{
E
[(
H̃
]
− 1

) (
H̃ − 2

)
−
(
E
[
H̃
]
− 1

)2
}]

= µIR
−1
0

[
λ′′G(0)− φ′′I (0)

µI

(
E
[
H̃
]
− 1

)
+2µI
R0

{
E
[
H̃2
]
− E

[
H̃
]2
− E

[
H̃
]

+ 1
}]
,

from which part (iii) follows with rearrangement.
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B.2 Preliminary results involving the size of a
household susceptibility set and its deriva-
tives

To calculate the derivative of fM(n)(s, λH) with respect to λH we first need
expressions for the partial derivatives of the Gontcharoff polynomials.

B.2.1 The Gontcharoff Polynomials

We first introduced the Gontcharoff polynomials in Section 2.2. For Section B.2
we adjust our notation to highlight the dependence on λH in the equations we
consider. Recall that G0 (x | V(λH)) = 1 and, for k = 1, 2, . . . ,

Gk (x | V(λH)) = xk

k! −
k−1∑
j=0

φI ((j + 1)λH)k−j

(k − j)! Gj (x | V(λH)) , (B.32)

where V(λH) = (qi+1(λH), i = 0, 1, . . . ) and qk(λH) = φI (kλH). Note that we
need only consider the case x = 1, see equation (3.29). Furthermore, at λH = 0,
qk(0) = 1, k = 1, 2, . . . , and V(0) = 1 = (1, 1, 1, . . . ).

Proposition B.5.

(i)

Gk (1 | V(0)) =

1, if k = 0,

0, otherwise.
(B.33)

(ii)
∂Gk (1 | V(0))

∂λH
=

µI , if k = 1,

0, otherwise.
(B.34)

(iii)

∂2Gk (1 | V(0))
∂λ2

H

=


−φ′′I (0), if k = 1,

3µ2
I , if k = 2,

0, otherwise.

(B.35)

Proof. We prove all three parts of Proposition B.5 by complete induction. Note
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that the first three Gontcharoff polynomials are equal to:

G0 (x | V(λH)) = 1, (B.36a)

G1 (x | V(λH)) = x− φI(λH), (B.36b)

G2 (x | V(λH)) = x2

2 − φI(2λH)x+ φI(λH)φI(2λH)− φI(λH)2

2 . (B.36c)

G3 (x | V(λH)) = x3

6 −
φI(3λH)x2

2 +
(
φI(2λH)φI(3λH)− φI(2λH)2

2

)
x

+ φI(λH)φI(2λH)2

2 + φI(λH)2φI(3λH)
2

− φI(λH)φI(2λH)φI(3λH)− φI(λH)3

6 . (B.36d)

Consider part (i). For the base cases, substituting x = 1 and λH = 0 into
equations (B.36a) and (B.36b) yields G0 (1 | V(0)) = 1 and G1 (1 | V(0)) = 0
respectively.

Fix k ≥ 2 and, for the induction step, assume the induction hypothesis that,
for i = 1, 2, . . . , k − 1, Gi (1 | V(0)) = 0. Substituting λH = 0 into equation
(B.32) yields, for k = 2, 3, . . . ,

Gk (x | V(0)) = xk

k! −
k−1∑
j=0

1
(k − j)!Gj (x | V(0)) . (B.37)

Evaluating equation (B.37) at x = 1 and applying the induction hypothesis
yields, for k = 2, 3, . . . ,

Gk (1 | V(0)) = 1
k! −

k−1∑
j=0

1
(k − j)!Gj (1 | V(0))

= 1
k! −

1
k!G0 (1 | V(0)) ,

= 0,

so part (i) holds.

Next consider part (ii). Taking the derivative of equations (B.36) with
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respect to λH yields

dG0 (x | V(λH))
dλH

= 0, (B.38a)

dG1 (x | V(λH))
dλH

= −φ′I(λH), (B.38b)

dG2 (x | V(λH))
dλH

= −2φ′I(2λH)x+ φ′I(λH)φI(2λH)

+ 2φI(λH)φ′I(2λH)− φ′I(λH)φI(λH). (B.38c)
dG3 (x | V(λH))

dλH
= −3φ′I(3λH)x2

2 + (2φ′I(2λH)φI(3λH) + 3φI(2λH)φ′I(3λH))x

− 2φ′I(2λH)φI(2λH)x+ φ′I(λH)φI(2λH)2

2
+ 2φI(λH)φ′I(2λH)φI(2λH)

+ φ′I(λH)φI(λH)φI(3λH) + 3φI(λH)2φ′I(3λH)
2

− φ′I(λH)φI(2λH)φI(3λH)− 2φI(λH)φ′I(2λH)φI(3λH)

− 3φI(λH)φI(2λH)φ′I(3λH)− φI(λH)2φ′I(λH)
2 . (B.38d)

Therefore, for the base cases, recalling that φ′I(0) = −µI and substituting x = 1
and λH = 0 into equations (B.38a), (B.38b) and (B.38c) yields

dG0 (x | V(0))
dλH

= 0,

dG1 (x | V(0))
dλH

= µI ,

dG2 (x | V(0))
dλH

= 0.

Fix k ≥ 3 and, for the induction step, assume the induction hypothesis that,
for i = 2, 3, . . . , k − 1, dGi(1|V(0))

dλH = 0. Taking the derivative of equation (B.32)
with respect to λH yields

dGk (x | V(λH))
dλH

=
k−1∑
j=0

[
−(j + 1)φI ((j + 1)λH)k−j−1 φ′I ((j + 1)λH)

(k − j − 1)! Gj (x | V(λH))

− φI ((j + 1)λH)k−j

(k − j)!
dGj (x | V(λH))

dλH

]
(B.39)
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Substituting λH = 0 into equation (B.39) yields, for k = 3, 4, . . . ,

dGk (x | V(0))
dλH

=
k−1∑
j=0

[
(j + 1)µI

(k − j − 1)!Gj (x | V(0))

− 1
(k − j)!

dGj (x | V(0))
dλH

]
(B.40)

Evaluating equation (B.40) at x = 1, applying part (i) and the induction
hypothesis yields, for k = 3, 4, . . . ,

dGk (1 | V(0))
dλH

=
k−1∑
j=0

[
(j + 1)µI

(k − j − 1)!Gj (1 | V(0))

− 1
(k − j)!

dGj (1 | V(0))
dλH

]

= µI
(k − 1)!G0 (1 | V(0))− 1

(k − 1)!
dG1 (1 | V(0))

dλH
= 0,

so part (ii) holds.

Finally, we consider part (iii). Taking the derivative of equations (B.38) with
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respect to λH yields

d2G0 (x | V(λH))
dλH2 = 0, (B.41a)

d2G1 (x | V(λH))
dλH2 = −φ′′I (λH), (B.41b)

d2G2 (x | V(λH))
dλH2 = −4φ′′I (2λH)x+ φ′′I (λH)φI(2λH) + 4φ′I(λH)φ′I(2λH)

+ 4φI(λH)φ′′I (2λH)− φ′′I (λH)φI(λH)− φ′I(λH)2. (B.41c)
d2G3 (x | V(λH))

dλH2 = −9φ′′I (3λH)x2

2 + 4φ′′I (2λH)φI(3λH)x+ 12φ′I(2λH)φ′I(3λH)x

+ 9φI(2λH)φ′′I (3λH)x− 4φ′′I (2λH)φI(2λH)x− 4φ′I(2λH)2x

+ φ′′I (λH)φI(2λH)2

2 + 4φ′I(λH)φI(2λH)φ′I(2λH)

+ 4φI(λH)φ′′I (2λH)φI(2λH) + 4φI(λH)φ′I(2λH)2

+ φ′′I (λH)φI(λH)φI(3λH) + φ′I(λH)2φI(3λH)

− φ′′I (λH)φI(2λH)φI(3λH) + 6φ′I(λH)φI(λH)φ′I(3λH)

+ 9φI(λH)2φ′′I (3λH)
2 − 4φ′I(λH)φ′I(2λH)φI(3λH)

− 6φ′I(λH)φI(2λH)φ′I(3λH)− 4φI(λH)φ′′I (2λH)φI(3λH)

− 12φI(λH)φ′I(2λH)φ′I(3λH)− 9φI(λH)φI(2λH)φ′′I (3λH)

− φI(λH) (φ′I(λH))2 − φI(λH)2φ′′I (λH)
2 . (B.41d)

Therefore, for the base cases, substituting x = 1 and λH = 0 into equations
(B.41) yields

d2G0 (x | V(λH))
dλH2 = 0,

d2G1 (x | V(λH))
dλH2 = −φ′′I (0),

d2G2 (x | V(λH))
dλH2 = 3µ2

I

d2G3 (x | V(λH))
dλH2 = 0.

Fix k ≥ 4 and, for the induction step, assume the induction hypothesis that,
for i = 3, 4, . . . , k − 1, d2Gi(1|V(0))

dλH2 = 0. Taking the derivative of equation (B.39)
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with respect to λH yields

d2Gk (x | V(λH))
dλH2 =

k−2∑
j=0

[
−(j + 1)2φI ((j + 1)λH)k−j−2

(k − j − 2)!

(
(φ′I ((j + 1)λH))2

+ φI ((j + 1)λH)φ′′I ((j + 1)λH)
k − j − 1

)
Gj (x | V(λH))

− 2(j + 1)φI ((j + 1)λH)k−j−1 φ′I ((j + 1)λH)
(k − j − 1)!

dGj (x | V(λH))
dλH

−φI ((j + 1)λH)k−j

(k − j)!
d2Gj (x | V(λH))

dλH2

]

− k2φ′′I (kλH)Gk−1 (x | V(λH))− 2kφ′I (kλH) dGk−1 (x | V(λH))
dλH

− φI (kλH) d2Gk−1 (x | V(λH))
dλH2 . (B.42)

Substituting λH = 0 into equation (B.42) yields, for k = 4, 5, . . . ,

d2Gk (x | V(0))
dλH2 =

k−2∑
j=0

[
2(j + 1)µI

(k − j − 1)!
dGj (x | V(0))

dλH
− 1

(k − j)!
d2Gj (x | V(0))

dλH2

− (j + 1)2

(k − j − 2)!

(
µ2
I + φ′′I (0)

k − j − 1

)
Gj (x | V(0))

]

− k2φ′′I (0)Gk−1 (x | V(0)) + 2kµI
dGk−1 (x | V(0))

dλH

− d2Gk−1 (x | V(0))
dλH2 . (B.43)

Evaluating equation (B.43) at x = 1, applying parts (i) and (ii) and the
induction hypothesis yields, for k = 4, 5, . . . ,

d2Gk (1 | V(0))
dλH2 = −1

(k − 2)!

(
µ2
I + φ′′I (0)

k − 1

)
G0 (1 | V(0))

+ 4µI
(k − 2)!

dG1 (1 | V(0))
dλH

− 1
(k − 1)!

d2G1 (1 | V(0))
dλH2

− 1
(k − 2)!

d2G2 (1 | V(0))
dλH2

= −1
(k − 2)!

(
µ2
I + φ′′I (0)

k − 1

)
+ 4µ2

I

(k − 2)! + φ′′I (0)
(k − 1)! −

3µ2
I

(k − 2)!
= 0,
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so part (iii) holds.

B.2.2 Derivatives of the size of a household susceptibility
set

Recall from equation (3.29),

fM(n)(s, λH) =
n−1∑
k=0

sk
(n− 1)!

(n− 1− k)!φI ((k + 1)λH)n−1−kGk (1|V(λH)) . (B.44)

Considering the derivatives of equation B.44 evaluated at λH = 0 yields the
following Proposition.

Lemma B.2. For n = 1, 2, . . . , s ∈ [0, 1],

(i)
fM(n)(s, 0) = 1,

(ii)
∂fM(n)(s, 0)

∂s
= 0,

(iii)
∂2fM(n)(s, 0)

∂s2 = 0,

(iv)
∂fM(n)(s, 0)

∂λH
= −(1− s)(n− 1)µI ,

(v)

∂2fM(n)(s, 0)
∂λH

2 = (n− 1)
[
φ′′I (0) (1− s) + µ2

I (n− 2)
(
1− 4s+ 3s2

)]
,

(vi)
∂2fM(n)(s, 0)
∂s∂λH

= (n− 1)µI .

Proof. Taking the first and second derivatives of equation (B.44) with respect
to s yields

∂fM(n)(s, λH)
∂s

=
n−1∑
k=1

ksk−1 (n− 1)!
(n− 1− k)!φI ((k + 1)λH)n−1−kGk (1|V(λH))

(B.45a)
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and

∂2fM(n)(s, λH)
∂s2 =

n−1∑
k=2

k(k−1)sk−2 (n− 1)!
(n− 1− k)!φI ((k + 1)λH)n−1−kGk (1|V(λH))

(B.45b)
respectively.

Evaluating equations (B.45) at λH = 0 and applying Proposition B.5(i)
yields parts (ii) and (iii).

For n ≥ 2, taking the derivative of equation (B.44) with respect to λH yields

∂fM(n)

∂λH
(s, λH)

=
n−1∑
k=0

sk
(n− 1)!

(n− 1− k)!φI ((k + 1)λH)n−1−k dGk (1|V(λH))
dλH

+
n−2∑
k=0

sk
(n− 1)!(k + 1)

(n− 2− k)! φI ((k + 1)λH)n−2−k φ′I ((k + 1)λH)Gk (1|V(λH)) .

(B.46)

For n = 1, taking the derivative of equation (B.44) with respect to λH

immediately yields 0. So evaluating equation (B.46) at λH = 0 and applying
Proposition B.5 yields part (iv).

For n ≥ 3, taking the derivative of equation (B.46) with respect to λH yields

∂fM(n)

∂λH
(s, λH)

=
n−1∑
k=0

sk
(n− 1)!

(n− 1− k)!φI ((k + 1)λH)n−1−k d2Gk (1|V(λH))
dλH2

+
n−2∑
k=0

sk
2(n− 1)!(k + 1)

(n− 2− k)! φI ((k + 1)λH)n−2−k φ′I ((k + 1)λH) dGk (1|V(λH))
dλH

+
n−3∑
k=0

sk
(n− 1)!(k + 1)2

(n− 3− k)! φI ((k + 1)λH)n−3−k (φ′I ((k + 1)λH))2
Gk (1|V(λH))

+
n−2∑
k=0

sk
(n− 1)!(k + 1)2

(n− 2− k)! φI ((k + 1)λH)n−2−k φ′′I ((k + 1)λH)Gk (1|V(λH)) .

(B.47)
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For n = 2, taking the derivative of equation (B.46) with respect to λH yields

∂fM(2)(s, λH)
∂λH

=
1∑

k=0
skφI ((k + 1)λH)1−k d2Gk (1|V(λH))

dλH2

+ 2φ′I (λH) dG0 (1|V(λH))
dλH

+ φ′′I (λH)G0 (1|V(λH)) . (B.48)

For n = 1, taking the derivative of equation (B.46) with respect to λH

immediately yields 0. So evaluating equations (B.47) and (B.48) at λH = 0 and
applying Proposition B.5 yields part (v).

Finally, for n ≥ 2, taking the derivative of equation (B.46) with respect to s
yields

∂2fM(n)(s, λH)
∂s∂λH

=
n−2∑
k=0

ksk−1 (n− 1)!(k + 1)
(n− 2− k)! φI ((k + 1)λH)n−2−k φ′I ((k + 1)λH)Gk (1|V(λH))

+
n−1∑
k=0

ksk−1 (n− 1)!
(n− 1− k)!φI ((k + 1)λH)n−1−k dGk (1|V(λH))

dλH
. (B.49)

For n = 1, taking the derivative of equation (B.46) with respect to s

immediately yields 0. So evaluating equation (B.49) at λH = 0 and applying
Proposition B.5 yields part (vi).

B.3 Proof of Theorem 4.4

Recall that for formatting reasons we write z(λH), λG(λH), zH(R0), fM(n)(s, λH)
and µ(n)

i−1(λH) for the quantities z(λH ;R0, H, I), λG(λH ;R0, H, I), zH, fM(n)(s, λH ; I)
and µ(n)

i−1(λH ; I) respectively.

Proof of Theorem 4.4. Part (i) follows from noting that zH is the unique so-
lution in (0, 1] of 1 − zH = e−R0zH . This equation is also satisfied by z ( see
equation (4.75) evaluated at λH = 0 and applying Lemma B.2(i) ) so z(0) = zH.

We now consider parts (ii) and (iii). Taking the derivative of equation (4.75)
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with respect to λH yields

− dz
dλH

(λH) = −µIe−µIλG(λH)z(λH)
[
λG(λH) dz

dλH
(λH) + z(λH)λ′G(λH)

]

×
∞∑
n=1

ρ̃nfM(n)

(
e−µIλG(λH)z(λH), λH

)
+ e−µIλG(λH)z(λH)

∞∑
n=1

ρ̃n

[
dfM(n)

dλH

(
e−µIλG(λH)z(λH), λH

)]
. (B.50)

Rearranging equation (B.50) and substituting equation (4.75) yields

dz
dλH

(λH) = µI (1− z(λH))
[
z(λH)λ′G(λH) + λG(λH) dz

dλH
(λH)

]

−
∞∑
n=1

ρ̃n

{
∂fM(n)

∂λH

(
e−µIλG(λH)z(λH), λH

)
− µIe−µIλG(λH)z(λH)

[
λG(λH) dz

dλH
(λH) + z(λH)λ′G(λH)

]

×∂fM(n)

∂s

(
e−µIλG(λH)z(λH), λH

)}
e−µIλG(λH)z(λH).

(B.51)

Evaluating equation (B.51) at λH = 0 and applying part (i), Lemmas B.2(ii),
B.2(iv), B.1(i) and B.1(ii) yields

dz
dλH

(0) = µI (1− zH)
[
−zH

(
E
[
H̃
]
− 1

)
+ R0

µI

dz
dλH

(0)
]

− e−R0zH
∞∑
n=1

ρ̃n
{
−µI(n− 1)

(
1− e−R0zH

)}
. (B.52)

Recall that 1− zH = e−R0zH , so, rearranging equation (B.52),

dz
dλH

(0) [1−R0 (1− zH)] = −µIzH (1− zH)
(
E
[
H̃
]
− 1

)
+ µIzH (1− zH)

(
E
[
H̃
]
− 1

)
= 0,

from which part (ii) follows by Lemma 4.1, i.e. [1−R0(1− zH)] > 0.
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Taking the derivative of equation (B.51) with respect to λH yields

d2z

dλH2 (λH) = µI (1− z(λH))
[
z(λH)λ′′G(λH) + 2λ′G(λH) dz

dλH
(λH)

+ λG(λH) d2z

dλH2 (λH)
]

− µI
dz

dλH
(λH)

[
z(λH)λ′G(λH) + λG(λH) dz

dλH
(λH)

]

+ e−µIλG(λH)z(λH)
∞∑
n=1

ρ̃n

{
−∂

2fM(n)

∂λH
2

(
e−µIλG(λH)z(λH), λH

)
+ µI

[
λG(λH) dz

dλH
(λH)

+ z(λH)λ′G(λH)
]
∂fM(n)

∂λH

(
e−µIλG(λH)z(λH), λH

)
− 2µ2

Ie−µIλG(λH)z(λH)
[
λG(λH) dz

dλH
(λH)

+ z(λH)λ′G(λH)
]2
∂fM(n)

∂s

(
e−µIλG(λH)z(λH), λH

)
+ µIe−µIλG(λH)z(λH)

[
z(λH)λ′′G(λH) + 2λ′G(λH) dz

dλH
(λH)

+ λG(λH) d2z

dλH2 (λH)
]
∂fM(n)

∂s

(
e−µIλG(λH)z(λH), λH

)
+ 2µIe−µIλG(λH)z(λH)

[
λG(λH) dz

dλH
(λH)

+ z(λH)λ′G(λH)
]
∂2fM(n)

∂s∂λH

(
e−µIλG(λH)z(λH), λH

)
+ µIe−µIλG(λH)z(λH)

[
λG(λH) dz

dλH
(λH)

+ z(λH)λ′G(λH)
]
∂2fM(n)

∂s2

(
e−µIλG(λH)z(λH), λH

)}
.

(B.53)

Next we evaluate equation (B.53) at λH = 0. We begin by recalling that
1−zH = e−R0zH , applying parts (i) and (ii), and Lemmas B.2(ii) and B.2(iii). We
then apply the remaining parts of Lemma B.2 and Lemma B.1 and rearrange,
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yielding part (iii).

d2z

dλH2 (0) [1−R0 (1− zH)]

= µIzH (1− zH)λ′′G(0)

+ (1− zH)
∞∑
n=1

ρ̃n

{
µIzHλ

′
G(0)∂fM(n)

∂λH
(1− zH, 0)

− ∂2fM(n)

∂λH
2 (1− zH, 0)

+2µIzH (1− zH)λ′G(0)∂
2fM(n)

∂s∂λH
(1− zH, 0)

}

= µIzH (1− zH)
(2µI
R0

[
E
[
H̃
]2
− E

[
H̃2
]

+ E
[
H̃
]
− 1

]
+ φ′′I (0)

µI
E
[
H̃ − 1

])

+ (1− zH)
∞∑
n=1

ρ̃n
{
µ2
Iz

2
HE

[
H̃ − 1

]
(n− 1)

− (n− 1)
[
µ2
I (n− 2)

(
1− 4(1− zH) + 3(1− zH)2

)
+ zHφ

′′
I (0)

]
− 2µ2

IzH (1− zH) E
[
H̃ − 1

]
(n− 1)

}
= µ2

IzH (1− zH)
{ 2
R0

[
E
[
H̃
]2
− E

[
H̃2
]

+ E
[
H̃
]
− 1

]
+ zHE

[
H̃ − 1

]2
− (3zH − 2)

[
E
[
H̃2
]
− 3E

[
H̃
]

+ 2
]

− 2 (1− zH) E
[
H̃ − 1

]2}
= µ2

IzH (1− zH)
( 2
R0

+ 3zH − 2
) (

E[H̃]2 − E[H̃2] + E[H̃]− 1
)
.

Finally we consider part (iv). Recall that ρn = nρn/E [H], so

E
[
H̃
]

= E
[
H2
]
/E [H] (B.54a)

E
[
H̃2
]

= E
[
H3
]
/E [H] (B.54b)

E [H] > 0 (B.54c)

Applying the sgn function, Lemma 4.1 and equations (4.26) and (B.54) to
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part (iii) yields

sgn
(

d2z

dλH2 (0)
)

= sgn
(
E[H̃]2 − E[H̃2] + E[H̃]− 1

)

= sgn
(E [H2]

E [H]

)2

− E [H3]
E [H] + E [H2]

E [H] − 1


= sgn
(

E
[
H2
] (

1 + E [H2]
E [H]

)
− E

[
H3
]
− E [H]

)
,

as required for the proof of part (iv).
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