Can farmers reliably perform neonatal lamb post mortems and use the results to influence their behaviours?

Emily Gascoigne¹, ²*, Katrine Bazeley¹, ², Fiona Lovatt³, ⁴

¹ Synergy Farm Health Ltd, West Hill Barns, Evershot, Dorset DT2 0LD
² RAFT Solutions Ltd, Mill Farm, Studley Road, Ripon, North Yorkshire HG4 2QR
³ Flock Health Ltd, Balmer House, Balmer Lane, Eggleston, Barnard Castle DL12 0AN
⁴ University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD

*Corresponding Author

Email address: (E. Gascoigne)
emily.gascoigne@synergyfarmhealth.com
Abstract

Neonatal lamb mortality constitutes a significant economic cost and is an important welfare challenge. Despite compelling evidence for reduction strategies and cost benefits associated with it, there has been no documented trend in national reduction since the 1970’s. We aimed to evaluate whether a knowledge exchange solution can be accurately used to define farm specific loss risks by training farmers how to examine neonatal lambs post-mortem and follow a basic framework to record and interpret common causes of mortality. Finally, we used participatory rural appraisal to assess some of the existing challenges to reducing lamb mortality. When considering outcomes for specific post mortem questions, there was 87.5% agreement between veterinary and farmer answers and 82.3% of farmer diagnoses (n=96) agreed with the veterinary conclusions. When merged with farmer performed post-mortems, farm specific mortality pie-charts were developed to highlight the variation between flocks and the necessity for flock specific advice. Common challenges to reducing loss included level of labour, skill set of labour, communication within teams and shepherds generally considered post-mortems to be a valuable tool. We consider that farmer PMs of lambs could be a tool for the veterinary-farmer team, facilitating the communication of farm specific advice and empowering farmers to effect positive change.
Keywords

Knowledge exchange

Lamb mortality

Post-mortem

Farmer
Introduction

Neonatal lamb mortality constitutes a significant economic cost, an obstacle to achieving efficient and sustainable lamb production and is an important welfare challenge (Binns et al., 2002; Sawalha et al., 2007; Dwyer, 2008).

Neonatal lamb mortality is defined as the death of lambs during the first week of life with the predominant risk period being the first 48 hours. Overall lamb mortality between scanning and sale ranges from 10-25% (Mellor and Stafford, 2004) but in the authors experience, it can as high as 30-40% on some farms. Typically 5.9-12.5% of scanned lambs are lost between 0-48 hours old (Binns et al., 2002). Key causes of neonatal lamb mortality include stillbirth, hypoxia due to dystocia, starvation, hypothermia, injury secondary to dystocia or mismothering, infectious disease such as watery mouth (Dwyer, 2008).

Risk factors leading to these causes of deaths include low birth weight, high birth weight, poor maternal body condition, lamb vigour at birth, underlying deficiency i.e. selenium or iodine, dystocia, ewe with poor mothering ability, poor hygiene (Mellor and Stafford, 2004). Multi-level modelling has identified farm and management risk factors which are linked to increased level in lamb mortality such as outdoor lambing, less frequent renewal of bedding in pens, larger flocks and flocks with higher replacement rates. Factors such as housing ewes and supplementing thin ewes were found to be protective (Binns et al., 2002). Experience of the
shepherd, feeding frequency, suckling assistance provided and use of lambing pens were found to be protective in an additional model (Holmoy et al., 2012).

Targets for lamb mortality for a lowland flock should be less than 14% between scanning and sale, made up of 6% from scanning to birth, 6% from birth to turnout and 2% from turnout to sale (EBLEX Manual, 2015).

In 2014 within a large farm animal practice in South West England, a lamb mortality survey of commercial flocks measured total lamb mortality between scanning and weaning, with the practice median recorded as 10.4% (n=30, range= 4.4%-20.8%) (EG personal communication). Losses before turnout i.e. including pre-lambing and peri-lambing mortality represented the largest loss period in most flocks. Few flocks could attribute causes of loss to those lambs not surviving to weaning through their pre-existing recording methods.

The variation in lamb losses demonstrated both in peer reviewed literature and in commercial flocks in this practice-based survey, highlights that low levels of lamb loss are achievable, but despite this and mounting evidence of causes of lamb mortality, compelling evidence for reduction strategies and cost benefits associated with it, there has been no documented trend in national reduction in the past 40 years (Dwyer et al., 2016).
Possible reasons cited for this lack of reduction are suggested in the literature to be (a) lack of farm specific solutions, (b) dismissal of research results by commercial farmers due to use of non-commercial flocks in studies, (c) difficulty in applying the evidence base to commercial flocks given the complex nature of mortality or finally (d) lack of communication of the evidence base by advisors to the farmers (Dwyer et al., 2016).

This work also suggested that farmers felt ‘powerless’ to effect change and reduce losses within the 48 hours of life in lambs and prefer to divert resources to latter stages of production where their efforts may be perceived as more effective (Dwyer et al., 2016). Other challenges to loss reduction could be perceived size of investment in labour and resource necessary to reduce losses and lack of perception of the pre-existing scale and cost of lamb mortality to a sheep business.

The variation in losses observed in the 2014 practice based survey suggested that generic lamb mortality advice has limited value when applying to sheep flocks, given (a) the range in diverse systems and (b) the diversity in main causes and timings of lamb losses. For example, not all flocks examined experienced peak lamb loss in the neonatal period and with post-turnout losses more significant for some flocks.

Data collection on farm or lack thereof is often cited as a challenge for quantifying level of and causation of lamb mortality at all stages of production. The practice survey examined scanning and
movement record data to compare potential lambs available for sale and actual number sold or retained within the flock. Mid production cycle figures such as first numbers at first gather may enable crude assessment of specific phases of loss, but suspected cause of death is often challenging to obtain from flocks unless there is pre-existing farmer motivation to record. Furthermore, in our experience, unless there is a substantial increase in the level of morbidity and mortality in lambs, veterinary surgeons are rarely asked to routinely examine neonatal lambs post-mortem, presumably because of (a) cost, (b) logistics and time of taking lambs to a collection centre and/or (c) lack of perceived benefit.

We hypothesised that equipping sheep farmers with skills and resources to enable them to define the specific causes of neonatal mortality on their own units can lead to engagement and empowerment of sheep farmers to effect change and appropriate targeting of advice by their advisor and channelling of resources to reducing neonatal mortality.

The objectives of this study were:

1. To evaluate whether a knowledge exchange solution can be accurately used to define loss risks by training farmers how to examine neonatal lambs post-mortem and follow a basic framework to record common causes of mortality

2. To work with farmers and using the results to build up a farm specific picture of causes of mortality
3. To enable farmers to use this evidence to make changes that reduce the risk leading to avoidance lamb mortality.

We measured our success in achieving these objectives by answering the following questions:

a) Once trained by a veterinary surgeon, can sheep farmers accurately diagnose common causes of mortality in neonatal lambs?

b) What were the common causes of lamb loss on each farm and how did these differ between units?

c) Did the farmers involved in the project use their findings to effect change?

d) How has the programme changed attitudes and motivation?

Materials and methods

Flocks

Five flocks were recruited to participate in the project. The flocks were convenience selected based on an expressed interest by the shepherds to target lamb morality as one of their annual key performance indicators, proximity to a central veterinary practice (within 40 miles of Synergy Farm Health Ltd), defining themselves as commercial sheep flocks i.e. lamb sales were a significant portion of farm revenue and lambing in Springtime. Four of the flocks were within Dorset and the fifth was in Somerset.
Ewe numbers in the flocks ranged from 250-2500 with a range of breeds and systems i.e. entirely outdoor lambing Romney flocks, indoor/outdoor composite units based on Mules with twins outdoors, triplets and singles indoors to facilitate wet fostering and finally, entirely indoor lambing units lambing Lleyns (see table 1). The flocks were visited between three and six times over lambing depending on their duration and peaks in lambing.

Study design

The five shepherds participated in a one day practical course delivered by veterinary surgeon investigator and one of the authors (EG) who has recognised training qualifications (Foundation Certificate in Staff Development and Certificate in Training & Occupational Learning). The farmer training course covered the background to lamb mortality including its common causes and financial implication, common zoonotic challenges when working with lambing sheep and relevant additional health and safety risks associated with performing a post-mortem (PM) examination of peri-natal lambs i.e. pre-natal abortions or post-natal losses. Control of Substances Hazardous to Health (COSHH) datasheets were presented for recommended disinfectants.

The importance of sample selection was also explained to participants with farmers recommended PM animals with a known clinical history and less than 24 hours deceased. Disposal of carcasses via approved routes i.e. via fallen stock for incineration was recommended. The farmers also took part in a practical session
at a local fallen stock yard (Secanim Ltd, Dorset) where PM techniques were demonstrated on fresh samples and the shepherds examined further lambs whilst being supervised. The framework for PMs used was an adapted version of a lamb PM form (AHDB Beef and Lamb; see supplementary material).

The flocks were then visited weekly throughout lambing up to a maximum of six visits and a single investigator (EG) observed farmer performed PMs on lambs which had died within the previous 24 hours. Both the shepherd and EG completed their PM form in isolation with results discussed after form submission. These results were collated and compared and submitted into Microsoft Excel 2013. The data was checked for errors and then univariate binary analysis was performed in R (R Core Team, 2013) with the significance level set at $p<0.05$.

Shepherds were also asked to perform PMs on lamb in the interval between veterinary visits with the results submitted to the project. After initial analysis of comparative PMs, the veterinary causes of death were combined from “comparison PMs” were combined with the farmer performed PMs (completed in absence of vet between visits) to produce a farm specific pie chart for cause of death.

Participatory Rural Appraisal

Dwyer et al., 2016 considered the obstacles to effecting change in reduction of lamb mortality on farm. Participatory Rural Appraisal (PRA) is a recognised approach using systematic and structured
activities to gain understanding of rural resources and attitudes from the local people (FAO website, Chambers, 1994). It has been used extensively in the developing world by non-government organisations (NGOs) to facilitate delivery of targeted, effective and realistic solutions to local people. PRA by definition is designed to be a flexible interviewing and engagement exercise designed to empower individuals who are likely to effect change, with the aim of arriving at sustainable local actions. Semi-structured interviews (SSIs) are often used to facilitate this (Grandstaff and Grandstaff, 1987, van Teijlingen, 2014). A single investigator (EG) facilitated the SSIs which were recorded and ranged from 30 minutes to 2 hours.

During the SSI, the shepherds were asked to participate in a series of exercises relevant to lamb mortality:

(a) To write a list of the tasks necessary on a typical day during lambing

(b) To place dried beans next to the jobs they felt took the most time.

(c) To rearrange the beans and place then next to the jobs that they felt kept the most lambs alive. This list was also photographed (see figure 1).

They were also questioned during the SSI about their attitudes towards PMs, the challenges for lamb mortality on their own farms and how PMs had influenced practices on farm. Finally, they were asked to rank risks for lamb mortality on their own farm on sliding
scales of 0-10 i.e. 0 no threat to lambs on the unit to 10, a very significant threat to lambs.

Interviews were recorded and transcribed into Microsoft Word 2003. The interviews were analysed using thematic analysis techniques with the transcripts coded, unitized for common concepts and then compared using the constant comparative technique (Maykut and Morehouse, 2001).

Results

Quantitative analysis

A total of 96 lambs were examined by PM across five flocks in the presence of the investigator and an additional 40 lambs examined by farmers directly.

From this table we can see both variation between questions and variation within questions between farmers. When considering specific questions, correct answers per question ranged from 80.2% of answers given up to 97.9% agreement with the veterinary surgeon. Overall, farmers gave 87.5% correct answers to the PM questions.

When considering farmer answers to specific questions there was a high degree of correlation between vet and farmer answers. Noticeably lower correlation values included for flock A agreement with the vet in 72.3% of cases when considering how many lambs had renal fat present and for flock B with agreement of just 71.4% of
answers with the vet when asked if there was evidence of fluid in tissues around the head.

When considering all the questions answered, farmers’ overall scores all ranged from 88.9% of correct answers up to 96.8%.

Ultimate diagnosis and the individual farmer results were considered and are presented in table 3, showing that overall, 82.3% of farmer post-mortems agreed with the veterinary conclusion. One flock achieved 100% of correct diagnosis but there were a small number of comparative PMs performed on this farm.

When looking at type of diagnoses reached, the proportion of correct diagnosis were classified relative to the veterinary confirmed cause of diagnosis (see figure 2). We can see that the largest errors were made when the veterinary verdict was “no diagnosis” (n=16 total) and “starved” (n=21 total).

Common causes of mortality

Given the level of agreement between vet and farmer diagnosis, a pie chart was generated for each flock showing common causes of death. (See figures 3a, b, c, d, and e) and presented to flocks during their semi-structured interviews.

Qualitative analysis

After transcription of the semi-structured interviews, they were coded according to key themes identified during transcription. Key themes identified when considering lamb mortality were: (1)
responsibilities during lambing (2) provision of skilled labour (3)
team dynamics (4) the advantages of PM examination on farm (5)
the challenges of PM examination on farm (6) changes made as a result of PMs.

The responsibilities of lambing

When shepherds were asked to list their task lists during a typical lambing day, there was huge variation between flock types and additional enterprises/responsibilities on farm. Having initially been asked to rank tasks based on their duration, they were then asked to revise the ranking based on how important the relevant task was in keeping lambs alive. This revision highlighted for flocks (a) time-consuming jobs which did help keep lambs alive i.e. teaching students, checking colostrum status, feeding ewes (b) time consuming jobs which did not help keep lambs alive and i.e. tagging and recording lambs, checking cattle (c) jobs not currently consuming a lot of time but which could help keep lambs alive, for example treatment of pre-parturient lame ewes in the lambing shed. Typical statements included:

“In my role we are also talking about coordination of contractors at that time of year we are trying to get corn in the ground.”

“Did we put enough labour to it? There was a lot of stock about. We still had fat
hogs about which needed drawing for abattoir. Should we get to the point of having minimal stock at Spring?”

“It’s surprising how long the dogs take!”

The role of colostrum management in reducing lamb mortality was repeated in multiple interviews. The importance of colostrum management and diagnosis of starvation and mismanagement was also coupled with the importance of stockmanship:

“I check the colostrum of every lamb, but you’ve got to be able to spot how a lamb behave and moves too”.

The desire to have more lambs reared was communicated by all flocks as a key driver of improving margins per ewe. However, how to achieve this divided opinion, for example when considering whether emphasis should be placed on increasing scanning or increasing rearing percentage:

“No I am happy with scanning but I would like to think 1.75 should be doing better than that, lots claim can scan higher. I know that’s not desirable because you end up with lots of triplets and I am not wanting that but, I want to be producing lambs and not keeping sheep for the fun
The way forward is using our building and resources to the best of its ability”.

The drain of time resources that small lambs place on the shepherds was observed and discussed in all systems. They were considered to be unrewarding and where possible, flock health planning and fertility management should be used to avoid small lambs.

“The problem with triplets is every single one needs assistance. It’s not like twins”.

“Breeding these small lambs is a wastage, it’s a wastage of time and resources put into them!”

Provision of skilled labour

Provision of skilled labour and staffing levels was discussed in all five interviews irrespective of indoor or outdoor lambing models.

The role of less experienced veterinary or agricultural students in the lambing sheds was evident from all interviews. However, this leads to challenges that may have contributed to lamb mortality.

“It is frustrating in some cases [student labour] might be a help, because you have those pair of eye, or you have people who feed individual pens. You know, I send people around to check pens, to get sheep up, get lambs up, check they are all ok,
check mouths, just occasionally they might miss something, so you are relying on people who are training to learn, and part of their learning is that they are going to make mistakes that you are going to have to correct which can be to your detriment!”

Availability of skilled relief during lambing was discussed by multiple shepherds as was the challenge of delegating jobs which required an inherent skill and stockmanship level. The lack of such relief either through lack of recruitment to the team or availability in the job market, put pressure on shepherds wishing to delegate aspects of their responsibility lists. Phrases such as ‘not for a novice’, and ‘it’s not the sort of thing I could just get Joe Bloggs to do’ were used.

When asked whether student teaching does save lambs, several participants agreed that it did due to increasing skill levels in those individuals enabling them to facilitate lamb management:

“Communicating to student sometimes does keep lambs alive. I think that’s where I am not spending enough time”.

In general flocks were however sympathetic to the educational needs of students and the role they play in their systems:

“I always say you learn by making mistakes but by seeing good things as well”.
However, an interesting counter-argument presented when discussing levels of supervision and the possibility of over-supervision:

“Well you could argue is too much supervision *chuckles* just lots of disturbance, not like a normal farm-we have kids running around pens, I am trying to think what to call it, unskilled supervision.”

Team dynamics

The challenges of team communication during lambing was a common theme in all five interviews and ranged from mismatched input expectations between managers and assistants to individual participants’ frustration with the lambing period if lambs died during assisted lambing.

The importance of a team strategy prior to lambing was acknowledged by managers:

“My intentions were that full time staff were going to have a sit down and structured talk about what we wanted and what we wanted to achieve and that was important and it didn’t happen.”

“I think communication within a big team who might be around when things are...
happening [is important]. They are constantly being told. It’s the starved ones from me which are quite annoying for me!”

It was evidence that the aforementioned availability and skill level of relief labour was often an obstacle when shepherds were trying to achieve targets as was incomplete communication of protocols and expectations within lambing teams.

The advantages of PM examination

On the whole the flocks perceived that there was a value in on farm, farmer delivered PMs generating dynamic information in the midst of mortality threats on farm. There was a consensus between flocks that the knowledge gained by performing PMs could contribute towards improving conditions for lambs. A typical response included:

“Well I suppose in a way, post morteming lambs, doesn’t keep them alive. Well does it? Because we are learning about things, learning about what’s killing them!”

“You could argue that if you did a few more post mortems if might show you what your problems are which are creating your problems during the day”.
The value of PMs as an educational tool for use within teams of shepherding staff and as a visual tool to demonstrate relevance of protocols such as feeding hungry lambs that could be used as an anonymous tool. Finally, its role as a teaching tool for younger inexperienced shepherds was suggested.

The challenges of PM examination

Typical obstacles to conducting PMs were time availability. Flocks were asked about typical time taken to perform a lamb PM on farm. This varied between flocks but ranged between 4-20 minutes. One commented:

“You do get to a point, where to start with I was being quite neat but you get to a point where you cut it open and have a look and then having a think!”

However, an additional consensus was that if often featured lowly in the priorities of the daily ‘jobs lists’ despite the apparent value of the additional information:

“Everything had to come before, all stuff that needing saving”

Furthermore, there was often a desire by flocks to fit in more PMs but finding time was often challenging:
“And then there were often times when I wanted to but sometimes a couple of days went by”.

“The actual physical 30-20 minutes but all of a sudden you have people coming in saying ‘Can you come and help me?’ and then I haven’t [got time]!”

Changes made

Flocks commented that they had made changes to management based on results found doing PMs on farm:

“Anything we changed this year? The biggest single change was having the lamb milk machine going and orphan lambing coming own to either the hot boxed or under the lamps….. there was lot more input directed at orphan lambs this year!”

One flock experienced an infectious lameness outbreak in housed ewes with contagious ovine digital dermatitis (CODD). When discussing their PM results and risk for lamb mortality on their own unit, lameness management was a central theme in the discussion. When asked if infectious lameness management has a positive effect on lamb mortality diagnosed on their farm the impact on ewe health and welfare and subsequent lamb survival was discussed:
Participant 1: “Yes it does a bit doesn’t it, because they produce more milk!”

Participant 2: “Well why didn’t we have any beans on there before we started?”

(Referring to time expenditure in initial exercise)

There were scenarios where despite evidence from the PMs, additional inputs were not possible. For example when asked about how the PM results could be used to influence management practices next year, the responses were:

“We could look around more, but I’d never stop. Ideally we’d employ an extra person but there is a cost!”

“But it is also having a system which allows minimal input and minimal labour to help a lot of sheep that’s the design of the system, watching ewes, pens and turning out, and feeding obviously.”

Whilst dynamic information did enable flocks to monitor ongoing and changing threats to lamb mortality, there was a situation where there may have been over interpretation of results. When asked what was changed as a result of accumulating data:
“And one of the things we changed more this year, was we intervened more with lambing, because of what we had seen...”

Discussion

Dwyer et al. (2016) identified the challenge for commercial sheep flocks in implementing and effecting change on commercial sheep flocks when considering lamb mortality. The lack of progress reported over the past forty years represents a substantial threat to ongoing animal welfare and the profitability of sheep flocks. To the authors’ knowledge, this is the first study on sheep farms to explore farmer’s beliefs about the limitations of their own system and likely effects of change, (although other examples exist in other fields such as bovine lameness (Main et al. 2012)) and represents a novel knowledge transfer based solution to the investigation of lamb mortality.

Our main objective was to assess the reliability of farmer PM results by comparing anonymous farmer and veterinary surgeon completion of a PM report when observing the same lamb. Challenges in obtaining this data included availability of suitable carcasses on dates of visits i.e. due to lack of carcasses, lack of availability of fresh carcasses or predation of outdoor lambs. Additionally farmers commented in the SSI that they had found limited time opportunities during lambing to perform lamb PMs and
had placed more emphasis on ‘living lambs’ although they
recognised the value of the information obtained by PM. In the
authors’ opinion, as many lambs as possible should be examined by
post-mortem as possible in order for results to accurately reflect the
risks to lambs on farm. Other authors have suggested that 10% of
neonatal lamb losses should be examined by post-mortem (Fragkou
et al., 2010).

When performing comparative PMs, farmers often queried
outcomes or unusual presentations after submission of individual
PM reports and therefore there is likely to be a contribution of this
continued knowledge exchange throughout the project in
comparison to the situation where farmers are not routinely visited
by a veterinarian through the lambing period. The effect of this
cannot be easily quantified due to small numbers of PMs and the
variation of presentations at each visit.

Signalment, accurate weights and history of dead lambs was not
considered in our analysis and was often absent on the farmer-
derived PM reports accumulated in the absence of a vet. Many
preferred to include small, medium or large when assessing lamb
size. In our opinion this does not negate the value of the PMs but
may limit the accurate assessment of pathogenies of lesions, for
example where no age at death is available for a lamb that died as a
result of neonatal scouring. Likewise, it may limit interpretation of
the success of interventions.
When examining farmer accuracy in answer specific questions about an individual lamb, they were largely consistent and successful (see table 3). Some parameters proved more challenging than others and in our opinion the subjective nature of some questions led to these errors. For example meconium staining was the subject of debate and its relevance for ultimate diagnosis is not apparent. Secondly there were disagreements on presence and absence of peri-renal fat (see figure 4). This brown fat is typically considered to have disappeared within 6 hours of birth but there were older lambs where this was still apparent. As a consequence, some farmers may have been dissuaded from concluding that starvation was the cause of death, especially where time of death had not been recorded. This may account for the errors observed in this diagnosis category (see figure 2).

The largest proportion of errors occurred when examining the navel for evidence of dryness which is not likely to be significant for drawing ultimate diagnoses. However, missing the evidence of broken ribs and clots is likely to skew diagnosis (see figure 5 showing free blood in abdomen secondary to liver rupture, figure 6 showing broken ribs).

The disagreements between lungs floating and not, in the investigators’ opinion, is likely to be a recording-related error rather than misinterpretation. The phrasing of the question on the original and adapted questionnaire is ambiguous and would need to be
revised before making available to farmers for ongoing recording purposes.

When considering final diagnosis, 82.3% of farmer PMs reached the same diagnosis as the veterinary surgeon and individual farmers ranged from 79.2-100% correct. It should be noted that the farmer achieving 100% did the smallest number of post-mortems. The largest errors were in “no diagnosis” i.e. where farmers stated a cause of death but the veterinary surgeon did not think that one was apparent, and secondly for ‘starvation’. High errors in assessing remaining brown fat levels may account for flocks failing to treat starved lambs. In our opinion the farmers were successful in diagnosing cause of death in lambs but that ongoing validation is necessary to ensure common diagnoses are not being overlooked.

Our second objective was to evaluate common causes of death in neonatal lambs and to observe how these varied between different units. This was achieved by merging the veterinary diagnoses from joint PMs and farmer diagnoses from PMs performed without supervision. The combined results reflect previous PM work in the UK (Green and Morgan, 1993) with common diagnoses featuring such as ruptured liver, broken ribs and “hung lambs” with oedema of the neck having presented with an anterior, dorsal presentation with no forward presented legs. We can see clearly in figure 3 that there is significant variation in cause of lamb deaths between indoor and outdoor units. There is also variation in causes of death
between similar units i.e. the two indoor lambing flocks with traumatic injuries such as broken ribs and ruptured livers more significant in flock A than flock E. The infectious disease profile e.g. presence of watery mouth also varied between units. A clear difference is the significance of starvation for the entirely outdoor lambing flocks in comparison with other systems.

This variation in causes of death in lambs between units supports previous suggestions that generic lamb mortality advice is not appropriate for flocks (Dwyer et al., 2016). For composite flocks i.e. indoor and outdoor lambing, it was not possible to establish whether lambs were indoor and outdoor in origin and therefore it is likely that both contribute to the flock pie charts. We suggest that when focusing specific investigations, origins of the lamb is essential information for such flocks and should be recorded.

Our third objective was to consider whether results obtained could be used to effect change on participating flocks and to consider owner attitudes and motivations for change. When asking farmers to comment on the combined diagnosis during the semi-structured interviews, resource availability both for (a) fitting in PMs or (b) implementing change, was often a limiting factor and varied between farms. This supports Dwyer et al. (2016) emphasis on the importance of flock specific advice based on known farm specific risks.

When considering changes made during lambing or to be made for subsequent years, one flock acknowledged that investment in
additional labour could reduce their lamb mortality. The role of students in lambing systems was evident and there was acknowledgement of the importance of investing time in training individuals and the benefit they could have in reducing lamb mortality. Many flocks find it challenging that students often arrive on farm at the commencement of the lambing period and leave at the time they have developed necessary stockmanship skills. As a consequence one flock involved was considering hiring a relief shepherd/night lamber during lambing to facilitate improved supervision and availability for student training.

Whilst we were largely satisfied that farmers had correctly diagnosed and interpreted causes of lamb death, we did observe some misinterpretation. One flock recorded multiple lambs with broken ribs and/or liver capsule rupture. As a consequence they opted to intervene more quickly when ewes were lambing, but did not observe a reduction in the presence of pathology. On debriefing, we were concerned that these lambs were being assisted before ewes had had sufficient opportunity to dilate (especially where large single lambs or backwards lambs) and that the preferred action would have been to observe ewes and give them longer prior to intervention with strict standard operating procedures for when and how to intervene. As a consequence of this debrief, such operating procedures are in place for the next lambing. However this highlights the importance that farmer-performed lamb PMs are not used in isolation without technical support and advice from the flock’s routine veterinary surgeon.
We consider that, in conjunction with appropriate supportive advice, that PMs could form a tool for veterinary engagement through training, ongoing support and flock health planning to empower flocks in generating their own reliable, farm specific data. A basic understanding of common causes of lamb mortality such as starvation will enable farmers to have an immediate impact on operating procedures on farm.

It should be acknowledged that this study only examined five flocks with moderate-high veterinary engagement and a pre-existing commitment to reducing lamb mortality. However, it could be considered a novel strategy for flock engagement and mortality investigation.

Conclusions

The role of the veterinary surgeon in sheep enterprises is dynamic and evolving especially with the movement towards flock health and production management. As observed in other areas of farm animal medicine, we must embrace our diverse role as vets and consider what alternative inputs we can have on farm i.e. though training and dynamic interaction with farms.

Veterinary surgeons should not be threatened by this involvement of farmers in the decision tree as is currently embraced in many other aspects of farm animal practice given the lack of protection conferred by the Veterinary Surgeons Act over roles previously
considered the remit of veterinary surgeons alone. For many veterinarians engagement in large numbers of lamb post-mortems in not a reality and pre-existing pro-forma decision trees are available in the public domain (AHDB, 2016). This should be seen as an opportunity for engagement in training and with producers. We consider that farmer PMs of lambs could be a tool for the veterinary-farmer team, facilitating the communication of farm specific advice and empowering farmers to effect positive change.

Conflict of interest

The authors declare they have no competing interests.

Acknowledgements

The work was funded by AHDB’s Fig Grant (Animal Horticultural Development Board Farmer Innovation Grant). We thank all of the farmers who participated in this study. With thanks to Laura Randall (University of Nottingham) for providing statistical advice.

References

FAO (2016) PRA toolbox

http://www.fao.org/docrep/003/x5996e/x5996e06.htm (accessed August 30, 2016)

van TEIJILINGEN (2014) Semi-structured interviews

https://intranetsp.bournemouth.ac.uk/documentsrep/PGR%20Workshop%20Interviews%20Dec%202014.pdf (accessed August 30, 2016)

Table 1: A summary of the flocks recruited to the project including breeds on farms.

Table 2: A table showing the proportion of correct answers by flock to post-mortem specific questions when considering comparative post-mortem examinations.

Table 3: A table to show the percentage agreement in diagnosis between farmers and vet observing the same post-mortem

Figure 1: An image showing a section of a farm produced “jobs” list complete with examples of beans assigned to each task type.

Figure 2: A graph to show proportion of correct diagnosis from farmers, relative to veterinary diagnoses for each diagnosis type.

Figure(s) 3 (a-e): Flock specific pie charts with data merged from farmer-vet comparative PM’s with farmer PM’s. Where comparative PM’s, if farmer and vet disagreed the vet diagnosis was utilised.

Figure 4: An image showing an example of peri-renal fat present in a neonatal lamb

Figure 5: An image showing free blood in the abdomen of a neonatal lamb due to liver capsule rupture.
Figure 6: An image showing unilateral broken ribs in a neonatal lamb.