On the characterisation of polar fibrous composites when fibres resist bending

Soldatos, Konstantinos (2017) On the characterisation of polar fibrous composites when fibres resist bending. International Journal of Solids and Structures . ISSN 0020-7683 (In Press)

[img] PDF - Repository staff only until 4 October 2018. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (493kB)

Abstract

This study aims to initiate research for the invention of methods appropriate for characterisation of fibre-reinforced materials that exhibit polar material behaviour due to fibre bending resistance. It thus focuses interest in the small strain regime, where there are examples of particular deformations for which non-polar linear elasticity fails to distinguish clearly the nature of a fibrous composite or even to account for the presence of fibres. Particular attention is accordingly given to the solution of the polar material version of the pure bending problem of transverse isotropic or special orthotropic plates with embedded fibres resistant in bending. It is seen that pure bending deformation enables polar fibre-reinforced materials to generate constant couple stress-field which, in turn, endorses uniqueness of the solution of the corresponding boundary value problem. In this context, by appropriately extending the validity of Clapeyron’s theorem within the regime of polar linear elasticity for fibre-reinforced materials, it is shown that the solution of well-posed linear elasticity boundary value problems that generate a constant couple-stress field is unique. The well-known uniqueness of solution of conventional, non-polar linear elasticity boundary value problems is, in fact, a particular case in which the generated constant value of the couple-stress field is zero.

Item Type: Article
Keywords: Clapeyron’s theorem; Fibre-reinforced materials; Fibre bending stiffness; Polar linear elasticity; Pure bending; Orthotropic materials; Transverse isotropic materials; Uniqueness of solution.
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Mathematical Sciences
Depositing User: Soldatos, Konstantinos
Date Deposited: 04 Oct 2017 09:53
Last Modified: 18 Oct 2017 17:33
URI: http://eprints.nottingham.ac.uk/id/eprint/46979

Actions (Archive Staff Only)

Edit View Edit View