
Enhancing the Searchability of Page-Image PDF
Documents Using an Aligned Hidden Layer from a Truth

Text

Ian A. Knight
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

ian.knight.1990@gmail.com

David F. Brailsford
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

ABSTRACT
The search accuracy achieved in a PDF image-plus-hidden-
text (PDF-IT) document depends upon the accuracy of the
optical character recognition (OCR) process that produced
the searchable hidden text layer. In many cases recognising
words in a blurred area of a PDF page image may exceed
the capabilities of an OCR engine.

This paper describes a project to replace an inadequate
hidden textual layer of a PDF-IT file with a more accurate
hidden layer produced from a ‘truth text’. The alignment
of the truth text with the image is guided by using OCR-
provided page-image co-ordinates, for those glyphs that are
correctly recognised, as a set of fixed location points between
which other truth-text words can be inserted and aligned
with blurred glyphs in the image. Results are presented to
show the much enhanced searchability of this new file when
compared to that of the original file, which had an OCR-
produced hidden layer with no truth-text enhancement.

CCS Concepts
•Applied computing → Document analysis; Document
searching; Optical character recognition;

Keywords
PDF, OCR, Tesseract, searchability, truth text

1. INTRODUCTION
In a previous paper [3] we presented the first stages of an

effort to provide a computer-assisted framework for tagging
key phrases within a variable-quality PDF document collec-
tion, followed by automated extraction and assembly of the
tagged phrases into standardised summary documents. The
corpus of 20,000 documents used for this work was that held
by the Cochrane Schizophrenia Group’s register of trials.
This corpus is overwhelmingly archived as PDF documents.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DocEng ’16, September 12 - 16, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4438-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2960811.2967157

As a first step in automating the extraction of qualitative
and quantitative data it is vital that all PDF documents in
the collection be as searchable as possible, so that key words
and phrases can be highlighted by the PDF viewer.

PDF supports the rendering of arbitrarily complex text,
in any chosen font, with diagrams being drawn using the cor-
rect arc, line and spline primitives. Bitmapped material such
as photographs (either lossily or losslessly compressed) are
handled by the PostScript/PDF image operator. PDF files
of this quality are nowadays referred to as ‘PDF—Formatted
Text and Graphics’ (PDF-FTG). The key advantage of this
format is that text strings can usually be accurately located
anywhere within the PDF file.

For the most part, the Cochrane collection contains papers
of PDF-FTG quality. However, in the previous paper [3]
we reported that fully one-third of the corpus was not in
searchable format because PDF allows pages to be rendered
simply as (unsearchable) bitmapped page-images (PDF-I).

Since 1994 an extra hybrid format has existed for PDF
files, called ‘PDF Image plus Hidden Text’ (PDF-IT). here
an invisible, searchable, text overlay is created for each page
image. With careful choice of font, type size and inter-word
spacing, in this hidden layer, it is possible to make it be
in exact registration with the perceived words in the page
image.

PDF-IT has the great virtue that searched-for words are
highlighted by illuminating the correct bounding box in the
hidden layer but this manifests itself as a highlight in the
exactly superposed image layer, thereby creating the illusion
of a textually searchable image.

Thus, by using OCR techniques to add a hidden, but
searchable, text overlay to the 6,000 PDF-I documents in the
Cochrane collection, an enhanced degree of searchability was
achieved. However, in many cases poor quality source ma-
terial (often from scanned-in papers) resulted in material
which caused the OCR software enormous problems. It was
decided to investigate whether the OCR process might be
helped if assisted by a truth text for the papers in question.

1.1 Truth texts
A truth text (or ground truth text) is essentially a canoni-

cally correct version of the textual content of a paper. The
characteristic of such a truth text is that it will contain the
correct words in the correct order, but it will not reflect any
of the typesetting or layout decisions made by the publisher
in the final printed version. For example, paragraph breaks
may be altered, hyphens may be introduced and text may

be set in multiple columns or wrapped around figures. As a
consequence, the process of aligning such a truth text with
the PDF document produced from it is complicated.

1.2 Related work
While there is little work on the actual creation of PDF-IT

documents in the manner we describe, there is a large body
of work focused on aligning OCR results with a ground truth
text for the purposes of training. We now give a description
of some recent approaches to the alignment problem.

Several authors [5, 2, 6] describe methods for aligning
ground truth with OCR results. These involve computing
a transformation function that will map the image used as
ground truth onto the OCR results as closely as possible,
so that the results may be matched character for charac-
ter. They presuppose that the ground truth exists in elec-
tronic form, generated from the same typesetting code used
to produce the document undergoing OCR. We find their ap-
proaches to be very useful in terms of attempting to closely
couple the words in the OCR results with their correspond-
ing words in the truth text, but in our case the original code
used for the typesetting will not be available to us.

Feng [1] and Yalniz [8] both present different methods of
aligning ground truth with OCR that do not rely on the
existence of a canonically correct electronic document. In-
stead, both assume their ground truth texts to be in the
form of plain text, typically ASCII. Feng constructs a hid-
den Markov model of the words in the ground truth, using
it to predict the ground truth for each of the OCR results,
while Yalniz solves the problem recursively by dividing the
texts into sections bounded by unique words, and repeatedly
subdividing until the sections are small enough to be easily
aligned word-for-word. These approaches both have advan-
tages in that they do not presuppose any correspondence
between the layout of the ground truth and the layout of the
actual document: they assume the ground truth to contain
only the correct words in the correct order. However, both
approaches require a considerable amount of preprocessing
of one or both texts in order to run. We wished to explore
the possibility of using a similarly unformatted ground truth
text, but without requiring the overhead of constructing a
hidden Markov model or similar.

It is worth emphasising again that we are not concerned
with training the OCR to better recognise words it has diffi-
culty with; instead, we take the possibly flawed OCR output
and use the truth text to establish the locations of corre-
sponding word before inserting the corrected words into the
document as a hidden layer.

1.3 Structure
The rest of the paper is organised as follows. Sec. 2 de-

scribes our method of constructing PDF-IT documents us-
ing OCR results from a PDF-I document and a truth text.
Sec. 3 describes the performance of our method in terms of
the accuracy of the corrected hidden text layer, and Sec. 4
concludes and suggests some avenues for future work.

2. PDF-IT CREATION
In this section we describe our method for constructing

PDF-IT documents from pre-existing PDF-I/IT documents.
The method is divided into three phases: generation of a first
estimate of the hidden text layer using OCR, correction of

the hidden text using the truth text, and inserting the cor-
rected hidden text layer into the PDF. Each of these phases
is described below.

2.1 OCR generation of hidden text
In the first phase we run the page images from the original

PDF through an OCR engine in order to produce an initial
estimate of the pages’ contents. This was done even if the
provided document was already PDF-IT, with some version
of a hidden text layer already present.

The OCR engine we used was Tesseract, an open-source
engine owned by Google that provides a very comprehensive
C++ API. We made use of Tesseract rather than Adobe’s
built-in OCR engine for two reasons: firstly, Tesseract is
freely available whereas access to Adobe’s PDF APIs is ex-
pensive; and secondly, Tesseract makes it very easy to access
not just the strings it identifies but also the bounding boxes
of these strings. This makes the creation of a new hidden
text layer at the end of the process much more straightfor-
ward. Tesseract’s accuracy is broadly comparable to that of
Acrobat Capture, so we felt confident in using Tesseract for
our preliminary investigations.

2.2 Correction of hidden text
In the second phase, we correct the OCR output obtained

previously using the provided truth text. The OCR results
are here represented as a vector O of words O1, O2, . . . , On,
while the words obtained from the truth text are similarly
represented as a vector T of words T1, T2, . . . , Tm. We also
constructed a BK-tree (see Sec. 2.2.3) of the words in the
truth text, denoted BK(T), using edit distance as the dis-
tance metric.

Our approach consists of stepping through both vectors
word by word, attempting to determine which word from
the truth text best matches the current word in the OCR
results. Word matching consisted of two phases: an attempt
to find an exact match to the OCR word in the words near
to our current position in the truth text; and an attempt
to find the best approximate match in the entire truth text,
if no exact match could be found. The method is sum-
marised in Alg. 1. If an exact match was found, no correc-
tion is needed and iteration continues. If no exact match
was found, then the best-guesses of ExactMatch and Ap-
proximateMatch were compared, and the string closest to
the OCR result was used to correct the OCR.

Algorithm 1 Method for OCR correction

1: i← 1; j ← 1
2: while i ≤ n do
3: (j,m)← ExactMatch(i, j)
4: if m 6= 1 then
5: j′ ← ApproximateMatch(i, j)
6: if dA(Oi, Tj′ , Tj) = 1 then
7: j ← j′

8: end if
9: end if

10: Oi ← Tj

11: i← i + 1; j ← j + 1
12: end while

2.2.1 String distance metrics
When finding a match, two distance metrics were used:

Levenshtein (edit) distance, dL, and Jaccard distance, dJ .

The edit distance between two strings is the minimum
number of character insertions, deletions, and substitutions
required to transform one string into another. Jaccard dis-
tance [7] is derived from the Jaccard index, which is a generic
measure of set similarity [4]. The Jaccard index J(A,B) of
two sets is the size of the intersection of the two sets divided
by the size of their union. This yields a real number between
0 and 1; the Jaccard distance dJ(A,B) is then 1− J(A,B).
Jaccard distance may be used as a string distance metric by
taking the two sets A and B to be the sets of bigrams from
the two strings under consideration.

These two distance metrics were used to compare po-
tential matches from the BK-tree against an OCR result.
Matches were ordered first in ascending order of edit dis-
tance from the OCR result, with Jaccard distance used to
distinguish matches with the same edit distance. We de-
fine the sorting function dA(s, t1, t2), which returns 1 if t1 is
considered closer to s than t2 and 0 if not.

2.2.2 Exact matching
Searching for an exact match was a relatively straightfor-

ward procedure, shown in Alg. 2. We compared the current
word in the OCR results with the words surrounding it in the
truth text, rather than simply comparing with the current
word. In this way we could account for slight discrepancies
in reading order between the OCR and the truth text. The
function returns the index of the truth text word with the
shortest metric distance from the OCR result, and a binary
value indicating whether the match was exact or not.

Algorithm 2 Exact matching

1: function ExactMatch(i, j)
2: k∗ ← 0
3: for k ← 0, 1,−1, 2,−2 do
4: if Oi = Tj+k then
5: return (j + k, 1)
6: else if dA(Oi, Tj+k, Tj+k∗) = 1 then
7: k∗ ← k
8: end if
9: end for

10: return (j + k∗, 0)
11: end function

2.2.3 Approximate matching
If no exact match could be found, we searched the entire

truth text for the best approximate match to the OCR result
using BK(T), following Alg. 3. The truth text string with
the shortest metric distance from the OCR result is found,
and we then find the index of the occurrence of that word
with the smallest difference from our current position in the
truth text to return.

A BK-tree is a tree data structure that organises its nodes
according to their distance from each other according to
some distance metric; in our case, nodes are ordered accord-
ing to their edit distance from the first word in the truth
text. This BK-tree can be used to find all the words in the
truth text that are within a given edit distance of a query
word in O(logn) time in the average case.

2.2.4 Special cases
The approach outlined above, while generally accurate,

required a few specific modifications to cope with situations

Algorithm 3 Approximate matching

1: function ApproximateMatch(i, j)
2: for k ← 1, 2, . . . do
3: ms ← {m : m ∈ BK(T), dL(Oi,m) ≤ k}
4: if ms is not empty then
5: sort ms according to dA
6: return index of ms0 closest to j
7: end if
8: end for
9: end function

where the OCR results contained word breaks not present
in the truth text. Without special consideration, these ad-
ditional word breaks would cause the OCR correction to in-
troduce new errors into the document, even if the two halves
of the split word were in themselves correct.

The first cause of such word breaks was the hyphenation
of long words. This was solved by checking the last character
of an OCR result prior to matching; if the last character was
a hyphen, the word was combined with the one following it
before searching for a correction, and the match was then
divided into two fragments again to correct the OCR.

The second cause was the result of irregular letter spacing
in the page image, causing the OCR engine to insert addi-
tional word breaks. To solve this, an additional step was
inserted into the algorithm after the first check for an exact
match. If exact matching failed, the OCR result was com-
bined with the word following it, and a second search for an
exact match was run using the new word. If a match was
found, the first of the OCR results was expanded to contain
the entire word, and the second of the results was deleted.

2.3 Insertion of hidden text layer
The final phase was to take the corrected OCR results

and use them to construct a new PDF-IT document from
the original page images.

Each separate OCR result was used to construct a PDF
text object, using the provided bounding box coordinates
to position the text on the appropriate page correctly. For
each distinct font in the OCR results, a font object was
inserted into the PDF document, followed by a series of text
streams, each consisting of all the text objects present on a
single page. The page objects themselves were then updated
to refer to these new objects, and the document’s cross-
reference table was updated.

3. PERFORMANCE
In this section we demonstrate the effectiveness of the al-

gorithm described in Sec. 2, by presenting the results of
applying the OCR correction algorithm to four PDF docu-
ments. Truth texts for the documents were created by man-
ually transcribing the documents into plain text files, pre-
serving capitalisation, punctuation, and spelling but omit-
ting text found in the header or footer of the document, such
as page numbers.

Performance was measured simply by counting the num-
ber of errors present in the OCR results before and after cor-
rection, and calculating the percentage change in the number
of errors. An error was defined as any word appearing in an
incorrect place in the OCR results, relative to the original
PDF document, or any word that was found to be missing
in the results. The error rate was then the number of errors

Table 1: No. of errors in OCR results (all text)
Document Errors Change

raw corrected
1 47 49 +4.26%
2 30 24 −20.0%
3 24 14 −41.7%
4 20 25 +25.0%

Table 2: No. of errors in OCR results (body only)
Document Errors Change

raw corrected
1 44 15 −65.9%
2 30 23 −23.3%
3 24 13 −45.8%
4 17 9 −47.1%

in the OCR results divided by the total number of words in
the results.

3.1 Results
Tables 1 and 2 show the number of errors found in the

OCR results of four PDF documents before and after run-
ning the correction algorithm.

All four documents contained text that was not properly
part of the document itself: page numbers, headers and
footers, handwritten annotations, and other publisher ar-
tifacts. As noted above, such text was excluded from the
prepared truth texts, on the grounds that such text would
not be found in a truth text obtained, say, from an author-
submitted typescript. This caused problems, because the
OCR would generally recognise this extra text well (with
the exception of handwriting), while the truth text would
attempt to ‘correct’ what it saw as invalid text.

For completeness’ sake, we present both sets of results,
with Table 1 showing error count with artifacts included,
and Table 2 showing error count with artifacts excluded.

3.2 Discussion
When publisher artifacts were excluded from the error

count, all four documents saw a significant reduction in the
number of errors in the OCR results. An inspection of the
corrected OCR results indicated that the majority of errors
that remained were the result of words being incorrectly split
into several fragments, so that a string appearing as a single
word to a human was interpreted as three or more separate
words by the OCR. In Sec. 2.2.4 we described a method of
identifying where a word had been split into two, but we do
not attempt to check further for other breaks. In principle
we could extend the solution outlined above to test three-
word or even four-word strings, but it would be difficult to
determine when to stop trying to combine words and instead
to search for an approximate match.

4. CONCLUSIONS
By using a ground truth text containing a canonical ver-

sion of the words found in the document, we were able to
significantly improve the accuracy of the hidden text layer
within a PDF-IT document.

Our method successfully matches the reading order of the
OCR results to the truth text, but is still prone to being
misled. Erroneous word breaks inserted by the OCR engine
can cause the algorithm to attempt to ‘correct’ words that do

not actually exist within the document, and such correction
will alter the algorithm’s perception of its position within
the truth text. Despite this, once a well-recognised word
is found, we are able to recover the correct position in the
text. Our test results show that it is possible to align the
truth text to the page image with a high degree of accuracy
without a large amount of preprocessing of the truth text.

4.1 Future work
We feel very pleased at the success of this preliminary

work but it is clear that some degree of pre-processing, us-
ing document recognition techniques, for recognising head-
ers, footers and figures-with-text would certainly pay divi-
dends. Equally there are certainly better OCR engines than
Tesseract (the commercial alternatives such as Abbyy Fine
Reader and Nuance Omnipage have a strong reputation)

A low-cost possibility to be investigated is whether re-
taining any Adobe-created OCR layer and comparing its
recognition results with those of Tesseract might improve
recognition performance, particularly if the bounding boxes
of glyphs in the Adobe OCR stream could be extracted with
a public domain tool such as PDF Box.

5. ACKNOWLEDGEMENTS
We thank Clive Adams of the Institute for Mental Health,

University of Nottingham, for making available to us PDF
documents from the Cochrane Schizophrenia Group’s collec-
tion, around which this work is based.

6. REFERENCES
[1] S. Feng and R. Manmatha. A hierarchical,

HMM-based automatic evaluation of OCR accuracy
for a digital library of books. In Proceedings of the 6th
ACM/IEEE-CS Joint Conference on Digital Libraries,
2006. JCDL’06., pages 109–118. IEEE, 2006.

[2] J. D. Hobby. Matching document images with ground
truth. International Journal on Document Analysis
and Recognition, 1(1):52–61, 1998.

[3] J. Hughes, D. F. Brailsford, S. R. Bagley, and C. E.
Adams. Generating summary documents for a
variable-quality PDF document collection. In
Proceedings of the 2014 ACM Symposium on
Document Engineering, pages 49–52. ACM, 2014.

[4] P. Jaccard. The distribution of the flora in the alpine
zone. New Phytologist, 11(2):37–50, 1912.

[5] T. Kanungo and R. M. Haralick. Automatic generation
of character groundtruth for scanned documents: a
closed-loop approach. In Proceedings of the 13th
International Conference on Pattern Recognition,
1996, volume 3, pages 669–675. IEEE, 1996.

[6] D.-W. Kim and T. Kanungo. Attributed point
matching for automatic groundtruth generation.
International Journal on Document Analysis and
Recognition, 5(1):47–66, 2002.

[7] M. Levandowsky and D. Winter. Distance between
sets. Nature, 234(5323):34–35, 1971.

[8] I. Z. Yalniz and R. Manmatha. A fast alignment
scheme for automatic OCR evaluation of books. In
2011 International Conference on Document Analysis
and Recognition (ICDAR), pages 754–758. IEEE, 2011.

