Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults

Anderson, Carly A. and Wiggins, Ian M. and Kitterick, Pádraig T. and Hartley, Douglas E.H. (2017) Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proceedings of the National Academy of Sciences, 114 (38). pp. 10256-10261. ISSN 1091-6490

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (517kB) | Preview
[img]
Preview
PDF (Supplementary material) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (399kB) | Preview

Abstract

It has been suggested that visual language is maladaptive for hearing restoration with a cochlear implant (CI) due to cross-modal recruitment of auditory brain regions. Rehabilitative guidelines therefore discourage the use of visual language. However, neuroscientific understanding of cross-modal plasticity following cochlear implantation has been restricted due to incompatibility between established neuroimaging techniques and the surgically implanted electronic and magnetic components of the CI. As a solution to this problem, here we used functional near-infrared spectroscopy (fNIRS), a noninvasive optical neuroimaging method that is fully compatible with a CI and safe for repeated testing. The aim of this study was to examine cross-modal activation of auditory brain regions by visual speech from before to after implantation and its relation to CI success. Using fNIRS, we examined activation of superior temporal cortex to visual speech in the same profoundly deaf adults both before and 6 mo after implantation. Patients’ ability to understand auditory speech with their CI was also measured following 6 mo of CI use. Contrary to existing theory, the results demonstrate that increased cross-modal activation of auditory brain regions by visual speech from before to after implantation is associated with better speech understanding with a CI. Furthermore, activation of auditory cortex by visual and auditory speech developed in synchrony after implantation. Together these findings suggest that cross-modal plasticity by visual speech does not exert previously assumed maladaptive effects on CI success, but instead provides adaptive benefits to the restoration of hearing after implantation through an audiovisual mechanism.

Item Type: Article
Keywords: Cochlear implantation; Cross-modal plasticity; Functional near-infrared spectroscopy; Superior temporal cortex; Visual speech; deafness; speech perception; longitudinal
Schools/Departments: University of Nottingham, UK > Faculty of Medicine and Health Sciences > School of Medicine > Division of Clinical Neuroscience
Identification Number: 10.1073/pnas.1704785114
Depositing User: Anderson, Carly
Date Deposited: 04 Sep 2017 09:24
Last Modified: 20 Nov 2017 17:15
URI: http://eprints.nottingham.ac.uk/id/eprint/45177

Actions (Archive Staff Only)

Edit View Edit View