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ABSTRACT 

The floral transition is a developmental process through which some plants 

commit to flowering and stop producing leaves. This is controlled by changes 

in gene expression in the shoot apical meristem (SAM). Many of the genes 

involved are known, but their interactions are usually only studied one by one, 

or in small sets. While it might be necessary to properly ascertain the existence 

of regulatory interactions from a biological standpoint, it cannot really provide 

insight in the functioning of the floral-transition process as a whole. For this 

reason, a modelling approach has been used to integrate knowledge from 

multiple studies. 

Several approaches were applied, starting with ordinary differential equation 

(ODE) models. It revealed in two cases – one on rice and one on Arabidopsis 

thaliana – that the currently available data were not sufficient to build data-

driven ODE models. The main issues were the low temporal resolution of the 

time series, the low spatial resolution of the sampling methods used on 

meristematic tissue, and the lack of gene expression measurements in studies 

of factors affecting the floral transition. These issues made the available gene 

expression time series of little use to infer the regulatory mechanisms 

involved. Therefore, another approach based on qualitative data was 

investigated. It relies on data extracted from published in situ hybridization 

(ISH) studies, and Boolean modelling. The ISH data clearly showed that shoot 

apical meristems (SAM) are not homogeneous and contain multiple spatial 
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domains corresponding to coexisting steady-states of the same regulatory 

network. Using genetic programming, Boolean models with the right steady-

states were successfully generated. Finally, the third modelling approach 

builds upon one of the generated Boolean models and implements its logic 

into a 3D tissue of SAM. As Boolean models cannot represent quantitative 

spatio-temporal phenomena such as passive transport, the model had to be 

translated into ODEs. This model successfully reproduced the patterning of 

SAM genes in a static tissue structure. 

The main biological conclusions of this thesis are that the spatial organization 

of gene expression in the SAM is a crucial part of the floral transition and of 

the development of inflorescences, and it is mediated by the transport of 

mobile proteins and hormones. On the modelling front, this work shows that 

quantitative ODE models, despite their popularity, cannot be applied to all 

situations. When the data are insufficient, simpler approaches like Boolean 

models and ODE models with qualitatively selected parameters can provide 

suitable alternatives and facilitate large-scale explorations of the space of 

possible models, due to their low computational cost.  
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1. GENERAL INTRODUCTION 

1.1. THE PROPER CONTROL OF THE FLORAL TRANSITION IS IMPORTANT 

BIOLOGICALLY AND AGRONOMICALLY 

The floral transition is a developmental change whereby some plants switch 

from producing vegetative organs to producing reproductive organs (Reece 

and Campbell, 2011). This change arises in response to external (e.g. 

photoperiod, ambient temperature, prolonged exposure to cold) and internal 

cues (e.g. age, hormones) (Fornara et al., 2010). 

In wild species, the timing of the floral transition determines reproductive 

success: plants flowering too early deprive themselves of the opportunity to 

grow more and produce more offspring, while plants flowering too late run the 

risk of being destroyed by harsh climatic conditions before they can reproduce 

(Engelmann and Purugganan, 2006). The control of the floral transition is also 

important in cultivated species, for agronomic and economic reasons. In 

species whose main product are derived from fruits (e.g. cereals), the timing 

of the floral transition affects yield (Cockram et al., 2007). As the floral 

transition marks the end of leaf production, an early floral transition would 

limit the amount of photosynthetic surface plants can deploy, and therefore, 

the amount of resources available to produce fruits. However, a late floral 

transition would expose cultivated species to the same risks as wild species. In 

species cultivated for vegetative parts (e.g. lettuce, cabbage), proper control 

of the floral transition is also relevant (Jung and Müller, 2009). Indeed, those 
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products are harvested before the floral transition occurs. If the floral 

transition were to occur before the harvest, those products would be 

substantially altered (Frugis et al., 2001) and would not be marketable. It is 

however still desirable that those plants are able to flower under some 

conditions, as it enables propagation through seeds instead of vegetative 

methods. 

The next section presents a snapshot of what was known about the regulatory 

network of the floral transition at the beginning of this PhD project, which 

served as the foundation for the modelling projects presented in the following 

chapters. 

1.2. MANY GENES OF THE REGULATORY NETWORK OF THE FLORAL 

TRANSITION ARE KNOWN 

1.2.1. In Arabidopsis thaliana (A. thaliana) 

In the model plant A. thaliana, the regulatory network of the floral transition 

was reviewed several times (Liu et al., 2009; Fornara et al., 2010). The 

information reported hereafter about the topology of the floral transition 

network is drawn from these reviews, unless mentioned otherwise. It is 

summarized in Figure 1.1. 

Functionally, the network can be split into two parts: upstream, pathways 

dedicated to the perception of various environmental and internal cues, each 

contributing to the decision to flower or not; downstream, a network 

controlling the identities of the cells of the SAM (Adrian et al., 2009). At the 
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interface between those two sub-networks are FLOWERING LOCUS T (FT) and 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), two genes known 

as floral integrators, because they integrate the signals of the cue-sensing 

pathways into a decision to flower or not (Simpson and Dean, 2002).  

Upstream of the floral integrators, the cue-sensing pathways monitor signals 

as diverse as photoperiod, ambient temperature, prolonged exposure to cold 

(vernalization) and age. 

The photoperiod pathway (Golembeski et al., 2014) includes the circadian 

clock, which is a module composed of genes forming three interlocking 

negative feedback loops, with a 24-hour-periodic expression pattern. The 

genes of the circadian clock are PSEUDO-RESPONSE REGULATOR 7 (PRR7), 

PRR9, LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 

(CCA1), TIMING OF CAB 1 (TOC1) and GIGANTEA (GI). Late in the day, the 

circadian clock activates CONSTANS (CO). CO is an activator of FT, however the 

CO protein is degraded in the dark by CONSTITUTIVE PHOTOMORPHOGENIC 1 

(COP1), and in the morning by a pathway triggered by the photoreceptor 

Phytochrome B (PHYB). Therefore, CO can only accumulate and activate FT 

under long day (LD) conditions. 

The ambient temperature pathway consists of SHORT VEGETATIVE PHASE 

(SVP). SVP is a repressor of FT and SOC1 up-regulated by low temperatures 

(Lee et al., 2007). 
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The vernalization pathway consists of FLOWERING LOCUS C (FLC), a repressor 

of FT and SOC1 silenced by prolonged exposure to cold, and FRIGIDA (FRI), its 

activator (Amasino, 2004). 

The aging pathway consists of miR156, an indirect inhibitor of SOC1, AP1 and 

LFY that gets down-regulated by aging (Wang et al., 2009). 

Finally, SOC1 is also upregulated by the gibberellic acid hormone (Jung et al., 

2012). 

Downstream of the floral integrators are the meristem identity genes, whose 

expression determine the architecture of the inflorescence and the fates of 

meristematic cells: vegetative, inflorescence or floral (Adrian et al., 2009; 

Simon et al., 1996). Vegetative identity genes include TERMINAL FLOWER 1 

(TFL1), which is expressed in the pre-transition SAM, but also in the 

inflorescence part of the post-transition SAM (Conti and Bradley, 2007; 

Liljegren et al., 1999). Inflorescence genes also include SOC1 and AGAMOUS-

LIKE 24 (AGL24), which constitute a positive feedback loop (Liu et al., 2008, p. 

1). SOC1 is directly activated by the FT-FD dimer. Floral identity genes include 

LEAFY (LFY) and APETALA 1 (AP1), which also form a positive feedback loop 

(Liljegren et al., 1999; Mandel et al., 1992; Mandel and Yanofsky, 1995; Weigel 

et al., 1992; Weigel and Nilsson, 1995). The LFY-AP1 loop can be activated on 

the LFY side by SOC1 if AGL24 is also present (Lee et al., 2008, p. 1). It might 

also be activated by FT from the AP1 side, however this FT-AP1 interaction is 
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controversial (Benlloch et al., 2011). Finally, both LFY and AP1 are repressed 

by TFL1, and AP1 represses inflorescence genes (TFL1, SOC1 and AGL24). 

 

Figure 1.1. Simplified topology of the floral transition network. Rectangles 

are genes (with the exception of miR156, which is a micro RNA), while ellipses 

represent abstract concepts. V- and T-shaped arrowheads on edges indicate 

activating and repressing regulatory interactions, respectively. 

The floral transition was studied most extensively in A. thaliana due to its 

status as a model plant. However, the floral transition has also been studied in 

other species. 

1.2.2. In other species 

Aside from A. thaliana, the network of the floral transition has mainly been 

studied in Poaceae (Colasanti and Coneva, 2009; Higgins et al., 2010), but some 

information is also available in other species. Most notably, FT is known to be 
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conserved in all sequenced angiosperms, and is even present in some 

gymnosperms (Klintenäs et al., 2012). It is thought to have acquired its function 

as a floral regulator early in the history of angiosperms (Ballerini and Kramer, 

2011; Klintenäs et al., 2012). 

Concerning the signal-sensing pathways upstream of FT, the photoperiod 

pathway seems conserved in cereals. Homologs of GI and CO have been 

identified in cereal species, including rice (Oryza sativa), barley (Hordeum 

vulgare) and wheat (Triticum aestivum) (Colasanti and Coneva, 2009). 

Photoreceptor and circadian clock genes also have known homologs in rice and 

barley (Higgins et al., 2010). Yet, despite the conservation of many 

components of the photoperiod pathway across species, the effect of the 

whole pathway on flowering varies drastically. Most notably, in rice, Heading 

date 1 (Hd1), an ortholog of CO, has the effect opposite of CO in A. thaliana 

(Hayama et al., 2003). 

Some varieties of wheat and barley have a vernalization pathway, functionally 

similar to that of A. thaliana. However, the genes involved do not seem related 

to FRI or FLC (Colasanti and Coneva, 2009). 

Downstream of FT, some A. thaliana meristem identity genes also have 

homologs in cereal species. In rice, SOC1 is homologous to Oryza sativa 

MADS50 (OsMADS50) (Lee et al., 2004), LFY to RICE FLORICULA/LEAFY (RFL) 

(Kyozuka et al., 1998) and AP1 to OsMADS15 and OsMADS14 (Kyozuka et al., 

2000). In maize, LFY is homologous to zea floricaula/leafy1 (zfl1) and zfl2 
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(Bomblies et al., 2003). Despite these homologies, inflorescence architectures 

in cereals differ quite strongly from that of A. thaliana. The A. thaliana 

inflorescence is simply composed of an inflorescence meristem (on the main 

shoot) and lateral floral meristems, while rice and maize have intermediate 

types of meristem between the inflorescence meristem and the floral 

meristems (branch meristems in rice, spikelet pair meristems in maize, and 

spikelet meristems in both) (Liu et al., 2009; Tanaka et al., 2013).  

As shown above, the network of the floral transition is quite extensive. The aim 

of this thesis is therefore to model the regulatory network controlling the floral 

transition, in order to better understand how this process takes place and 

identify potential gaps in biological knowledge. The insights granted by 

modelling are expected to provide guidance for plant breeding, potentially 

resulting in yield improvements. 

1.3. MATHEMATICAL MODELS OF THE FLORAL TRANSITION HAVE 

PREVIOUSLY BEEN DEVELOPED 

Mathematical models have long been used in plant biology, and there were 

over 160 models of plant systems as of January 2015 (Hodgman and Ajmera, 

2015). Since then, 6 models related to Viridiplantae (green algae and land 

plants) have been added to the curated BioModels database (Chelliah et al., 

2015; Le Novère et al., 2006; Li et al., 2010), and 43 more have been updated. 

Mathematical models of plant systems describe systems as diverse as plant 

architecture (Prusinkiewicz, 2007), growth mechanics (Boudon et al., 2015), 
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intercellular exchanges (Jönsson et al., 2006) and gene regulatory networks 

(Espinosa-Soto et al., 2004), using a wide variety of formalisms. Even within 

regulatory network models, several kinds of formalisms can be used, such as 

Bayesian networks, ODE models, PDE models, Boolean networks and 

stochastic models (de Jong, 2002). There exist a few models describing the 

regulatory network of the floral transition. They are reviewed hereafter. 

Welch and colleagues developed a model able to predict flowering time for 

various A. thaliana mutants, at several temperatures (Figure 1.2) (Welch et al., 

2003). It is based on a neural network, where neurons represent genes from 

the photoperiod and autonomous pathways. The connections between nodes 

were derived from known gene regulatory interactions. This model is however 

focused on the timing of the floral transition and does not aim at predicting 

gene expression levels (none of the post-FT genes are represented in this 

model). 

One of the authors also proposed an ODE model of the same pathways 

(photoperiod and autonomous), plus SOC1 and LFY (Figure 1.3) (Dong, 2003). 

In addition to gene expression levels, this model also predicts flowering time, 

based on the expression of LFY. Parameters were fitted to flowering time data, 

with the constraint that predicted gene expression levels should qualitatively 

match the overall shape of published expression time series. The use of 

expression time series is an improvement over the previous model, but the 

model uses a now outdated regulatory network topology as its base. 
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Jaeger and colleagues have proposed an ODE model of the post-FT part of the 

network of the floral transition (Figure 1.4) (Jaeger et al., 2013). It involves five 

genes: FT, FD, LFY, AP1 and TFL1, each of whom stands for a cluster of similarly 

regulated genes. Expression levels are not fitted to experimental data, only to 

flowering times, measured in number of leaves formed before and during the 

floral transition. 

Finally, Dong and colleagues have proposed a simple ODE model of the floral 

transition in maize (Figure 1.5) (Dong et al., 2012). It involves four genes: VGT1, 

ID1, DLF1 and ZMM4. However, ZMM4 is the only gene modelled, the others 

are simply used as binary input variables. The model is fitted to ZMM4 

expression data and to flowering time measurements. 

In conclusion, existing models of the floral transition are mainly models of 

flowering time, and are accordingly mostly based on flowering time data, even 

though they do model some gene expression levels internally. Those that do 

make use of gene expression data do it in a very limited way (only for a few 

genes, or with no actual parameter-fitting). It therefore seems that developing 

new models based on up-to-date biological knowledge and fitted to gene 

expression data would result in more accurate models from a mechanistic 

point of view, thereby furthering the current understanding of the floral 

transition. 
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Figure 1.2. Topology of Welch and colleagues’ model (Welch et al., 2003). 

Rectangular and elliptic nodes denote genes and abstract concepts, 

respectively. Arrows represent regulatory interactions. 
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Figure 1.3. Topology of Dong’s model (Dong, 2003). Rectangular and elliptic 

nodes denote genes and abstract concepts, respectively. Arrows represent 

regulatory interactions. 
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Figure 1.4. Topology of Jaeger and colleague’s model. Rectangular and elliptic 

nodes denote genes and abstract concepts, respectively. V, T and O-shaped 

arrowheads represent activations, inhibitions and context-dependent 

regulatory interactions, respectively. 

 

Figure 1.5. Topology of Dong and colleagues’ model (Dong et al., 2012). 

Rectangular and elliptic nodes denote genes and abstract concepts, 

respectively. Arrows represent regulatory interactions. 

1.4. THESIS OUTLINE 

The core of this thesis is divided into 4 chapters, numbered 2 to 5. Chapter 2 is 

an attempt at modelling the regulation of flowering in rice, a crop species with 

direct real-world applications, but also a model for cereals due to its relatively 

small genome. However, despite the benefits of studying crop species, there 
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are still little data available about rice. This is why Chapters 3 to 5 focus on A. 

thaliana instead, as it is the de facto main model organism of plant biology. 

Chapter 3 was carried out during a secondment at the University of 

Wageningen (Netherlands). It consists in an analysis of a previously developed 

model of the floral transition developed by partners from Wageningen, in 

addition to lab experiments and modelling work to integrate the effect of 

vernalization into a model of the floral transition. Chapter 3 raises questions 

concerning the relevance of models of the floral transition that completely 

ignore the spatial organisation of gene expression. 

This is why Chapter 4, whose content was submitted as an article to PLoS 

Computational Biology, is about modelling the floral transition separately in 

various domains of the SAM, as well as the transitions of cells between these 

domains during development. Due to the qualitative nature of the data used, 

Chapter 4 departs from the ODE formalism and uses Boolean models instead. 

It shows that commonly used networks of the floral transition lack negative 

feedback loops that are crucial to the proper spatial organisation of the SAM. 

In Chapter 4, space is however not represented in a continuous coordinate 

system, but only as a set of compartments. 

Chapter 5 attempts to lift that limitation, by translating a Boolean model of 

Chapter 4 into the ODE formalism, which is more suited to the modelling of 

spatial, gradient-generating phenomena, such as intercellular transport. 

Finally, a sixth chapter discusses the results of the main four chapters.  
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2. MIXED-EFFECTS MODELS OF FLORIGEN REGULATION IN 

ITALIAN RICE CULTIVARS 

2.1. INTRODUCTION 

The floral integrator FT, which triggers flowering in A. thaliana, is conserved in 

all sequenced species of angiosperms (Klintenäs et al., 2012). Rice (Oryza 

sativa), a model organism of cereal species, has two known FT orthologs: 

Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Hd3a 

promotes flowering under short day conditions, while RFT1 does so under long 

day conditions (Komiya et al., 2009). The regulation of these genes has 

however never been described quantitatively. Therefore, the possibility of 

developing mathematical models of the floral transition network in rice was 

investigated. 

Other genes are conserved between the floral transition networks of A. 

thaliana and rice, including regulators of FT: EARLY FLOWERING 3 (ELF3), GI 

and CO (OsELF3, OsGI and Hd1 in rice, respectively). The roles of OsELF3 and 

OsGI are similar to those of their A. thaliana homologs, however CO and Hd1 

have diverged functionally. Hd1 is indeed not only able to activate Hd3a and 

RFT1 in SD, but also to repress them in LD. 

Although part of the floral transition network is conserved between A. thaliana 

and rice, some genes of the rice network have no homolog in A. thaliana, 

including Early heading date 1, 2 and 3 (Ehd1, Ehd2, Ehd3), Grain yield, plant 

height and heading date 7 and 8 (Ghd7 and Ghd8), OsMADS50 and OsMADS56. 
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Ehd1 is an activator of Hd3a and RFT1, Ehd2 is an activator of Hd1 and Ehd1, 

Ehd3 is an activator of Ehd1, and Ghd7 is a repressor of Ehd1. Some of these 

rice-specific genes also have different behaviours depending on the 

photoperiodic conditions. Under LD conditions, Hd1 is a repressor of Hd3a and 

RFT1, Ghd8 is a repressor of Ehd1, OsMADS50 is an activator of Ehd1, 

OsMADS56 is a repressor of Ehd1, and Ehd3 is additionally a repressor of Ghd7. 

Under SD, Hd1 switches to being an activator of Hd3a and RFT1, Ghd8 to being 

an activator of Ehd1, OsMADS50 and OSMADS56 no longer affect Ehd1, and 

Ehd3 has no effect on Ghd7.  

The network of the floral transition in rice under LD conditions (which 

corresponds to Fabio Fornara’s data set) is summarized in Figure 2.1 (Brambilla 

and Fornara, 2013; Koo et al., 2013). 
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Figure 2.1. Floral transition pathway of rice (O. sativa) in LD. Rectangular 

nodes of the graph represent genes. Edges represent known regulatory 

interactions (V-shaped arrowheads: activations; T-shaped arrowheads: 

repressions). Genes for which qPCR measurements or genotypic information 

were available in this chapter are depicted in orange and yellow, respectively. 

Other genes are depicted in blue. The green ellipse represents flowering. 

Based on data provided by Fabio Fornara and his team (University of Milan, 

Italy), two modelling opportunities were identified. The first was to predict 

florigen expression levels, based on those of their regulators, using dynamic or 

regression models. The second was to predict flowering time for several 

varieties of rice, based on their gene expression profiles. 
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2.2. MATERIAL AND METHODS 

2.2.1. Gene expression data 

Gene-expression data have been provided by Fabio Fornara’s team on 17 

varieties of rice grown in a field located near Milan in 2012 (Gómez-Ariza et al., 

2015). The varieties are: Augusto, Balilla, Carnaroli, Eolo, Fragrance, Gladio, 

Lido, Loto, Nembo, Nipponbare, Panda, Roma, Sant’Andrea, Selenio, 

Thaibonet, Vialone Nano and Volano. The gene expression measurements 

come from leaf tissue samples collected from March to June, which means the 

plants were grown under LD conditions. For all varieties except Nipponbare, 

leaf tissue was sampled from 40 to 110 days after germination, at 14-day 

intervals. Nipponbare is a late-flowering cultivar, so additional samples were 

taken at time points 126, 140 and 154 days. The mRNA levels of genes  Ehd1 

(Figure 2.2), PRR37 (Figure 2.3), Hd3a (Figure 2.4) and RFT1 (Figure 2.5) were 

measured by quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) and normalized using Ubiquitin (Ubq) as the reference gene. For 

each variety, the functionality of the alleles of some regulators of Hd3a, RFT1 

and Hd1 (Hd1, Ghd8 and Ghd7) was also assessed through sequencing: the 

alleles were considered functional if their sequences did not exhibit any early 

STOP codons or reading-frame shifts. Given that many of these alleles are not 

functional by these standards, this genotypic profiling was meant to be a 

cheaper – albeit coarser – way to measure the inter-varietal variability of 
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genetic expression in the floral transition pathway and complement the qRT-

PCR data. 

As the plants were grown under LD conditions and flowering is mostly 

controlled by RFT1 under LD, the florigen modelling work focused on RFT1. 
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Figure 2.2. Time series of Ehd1 expression in the 17 rice varieties. Each curve 

colour represents a different variety. 

 

Figure 2.3. Time series of PRR37 expression in the 17 rice varieties. Each curve 

colour represents a different variety. 
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Figure 2.4. Time series of Hd3a expression in 17 rice varieties. Each curve 

colour represents a different variety. 

 

Figure 2.5. Time series of RFT1 expression in the 17 rice varieties. Each curve 

colour represents a different variety. 
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2.2.2. Flowering time data 

The plants were also scored for flowering time, i.e. the day when they started 

to flower was determined visually and recorded for each variety (Figure 2.6). 

 

Figure 2.6. Flowering times of the 17 rice varieties. Error bars represent 

standard deviation. 

2.2.3. Choosing a modelling formalism for the regulation of RFT1 

Among the genes whose expression or functionality has been measured in 

Fabio Fornara’s data set, there were two known regulators of RFT1: Ehd1 and 

Hd1. Among these two, only Ehd1 was measured quantitatively, and there 

seemed to be a strong linear dependency between Ehd1 and RFT1. To assess 

whether a linear regression model would be sufficient to model RFT1, a linear 

regression model (Equation 2.1) and an ODE model (Equation 2.2) with variety-
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specific parameters were fitted to the data, and their corrected Akaike 

information criteria (AICc) were compared. 

The AICc (Cavanaugh, 1997) is a penalized likelihood criterion like the Akaike 

information criterion (AIC) (Akaike, 1973), used to select models that offer a 

good fit to the data (i.e. models with a high likelihood), while avoiding 

overfitting by penalizing overly complex models (i.e. models with many 

parameters; Equation 2.3). Unlike the AIC, it does not only apply to cases 

where the number of observations is much higher than the number of 

parameters. Concretely, the AICc has an additional penalty for extra 

parameters, which helps with preventing overfitting for smaller numbers of 

observations. There exist other model selection criteria with heavier penalties 

for extra parameters, such as the Bayesian information criterion (BIC) 

(Schwarz, 1978), but the AICc was selected because it converges towards the 

AIC for large numbers of observations, and the AIC is asymptotically optimal 

for selecting the model with the least mean squared error, under the 

assumption that the true model is not included in the candidates (Yang, 2005). 

As the general aim of this study was make the best predictions possible from a 

very limited set of input variables, this was a desirable property. 

The regression model was fitted with the built-in lm function of R. The ODE 

model starts at t=40, which corresponds to the earliest measurements. It was 

simulated with the deSolve package for R (Soetaert et al., 2016), and was fitted 

using the Nelder-Mead algorithm (Nelder and Mead, 1965). deSolve relies on 

solvers from the ODEPACK collection (Hindmarsh, 1982). deSolve was used 
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with its default solver LSODA, which solves systems of the form 
𝑑𝑦

𝑑𝑡
= 𝑓 , 

switching automatically between a method for non-stiff systems (Adams) and 

a method for stiff systems (BDF). The Nelder-Mead algorithm is an algorithm 

for multidimensional unconstrained optimization without derivatives. Its main 

principle is that it starts from a simplex (a convex hull delimited by k+1 vertices 

in the k-dimensional parameter space) and minimizes the target function at its 

vertices by replacing the worst vertex at each iteration, through expansion or 

contraction of the simplex. 

The coefficient of determination R2 (Equation 2.4) was also computed for both 

models to provide insight into the percentage of the variability in the data 

accounted for by the model, but it was not used to determine which formalism 

to retain. 

Equation 2.1. Simple regression model of RFT1 with variety-specific 

coefficients. 

𝑅𝐹𝑇1𝑖𝑡 = 𝛼𝑖. 𝐸ℎ𝑑1𝑖𝑡 + 𝜖𝑖𝑡 

𝜖𝑖𝑡~𝒩(0, 𝜎2) 

• 𝑅𝐹𝑇1𝑖𝑡: measured RFT1 expression for variety 𝑖 at time 𝑡 

• 𝛼𝑖: sensitivity of RFT1 to Ehd1 in variety 𝑖 

• 𝐸ℎ𝑑1𝑖𝑡: measured Ehd1 expression for variety 𝑖 at time 𝑡 

• 𝜖𝑖𝑡: residual error in the expression of RFT1 for variety 𝑖 at time 𝑡 

• 𝜎2: variance of the residual errors 
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Equation 2.2. Simple ODE model of RFT1 with variety-specific parameters. 

𝑅𝐹𝑇1i
̂ (40) = 0 

𝑑𝑅𝐹𝑇1𝑖
̂

𝑑𝑡
(𝑡) = 𝛼𝑖 . 𝐸ℎ𝑑1𝑖(𝑡) − 𝑑𝑖 . 𝑅𝐹𝑇1𝑖

̂ (𝑡) 

𝑅𝐹𝑇1𝑖𝑡 = 𝑅𝐹𝑇1𝑖
̂ (𝑡) + 𝜖𝑖𝑡  

𝜖𝑖𝑡~𝒩(0, 𝜎2) 

• 𝑅𝐹𝑇1i
̂ (40) : initial predicted value for all varieties at the first 

measurement  

• 
𝑑𝑅𝐹𝑇1𝑖̂

𝑑𝑡
(𝑡): predicted derivative of RFT1 expression for variety 𝑖 at time 

𝑡 

• 𝛼𝑖: sensitivity of RFT1 to Ehd1 in variety 𝑖 

• 𝐸ℎ𝑑1𝑖(𝑡): linear interpolation of the Ehd1 measurements for variety 𝑖 

at time 𝑡 

• 𝑑𝑖: degradation rate of RFT1 in variety 𝑖 

• 𝑅𝐹𝑇1𝑖
̂ (𝑡): predicted RFT1 expression for variety 𝑖 at time 𝑡 

• 𝜖𝑖𝑡: residual error for the expression of RFT1, for variety 𝑖 at time 𝑡 

• 𝜎2: variance of the residual errors 
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Equation 2.3. AICc and log-likelihood for the models of this study. 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿 

ln 𝐿 = ∑ ∑ (ln
1

√2𝜋𝜎2
−

1

2

𝜖𝑖𝑡
2

𝜎2
)

𝑡∈{40,…,𝑇}

𝐼

𝑖=1

 

• 𝑘: number of parameters 

• 𝑛: number of independent data series 

• 𝐿: likelihood 

• 𝑇: date of the last measurement 

• 𝜖𝑖𝑡: residual error for species 𝑖 at time 𝑡 

• 𝜎2: variance of the 𝜖𝑖𝑡 

Equation 2.4. Coefficient of determination R2. 

𝑅2 = 1 −
∑ ∑ (𝑅𝐹𝑇1𝑖𝑡 − 𝑅𝐹𝑇1𝑖𝑡

̂ )
2

𝑡∈{40,…,𝑇}
𝐼
𝑖=1

∑ ∑ (𝑅𝐹𝑇1𝑖𝑡 − 𝑅𝐹𝑇1̅̅ ̅̅ ̅̅ ̅)2
𝑡∈{40,…,𝑇}

𝐼
𝑖=1

 

• 𝐼: number of varieties 

• 𝑇: date of the last measurement 

• 𝑅𝐹𝑇1𝑖𝑡: measured value of RFT1 for variety 𝑖 at time 𝑡 

• 𝑅𝐹𝑇1𝑖𝑡
̂ : predicted value of RFT1 for variety 𝑖 at time 𝑡 

• 𝑅𝐹𝑇1̅̅ ̅̅ ̅̅ ̅: average value of the RFT1 measurements 
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2.2.4. Regression models of the regulation of RFT1 

It was suspected that other measured genes than Ehd1 might also affect the 

expression of RFT1. Therefore, a global linear regression model including all 

possible effects was designed (Equation 2.5). As Ehd1 and PRR37 were the only 

potential regulators for which an expression time series was available and RFT1 

exhibits clear temporal patterns for each variety, it was assumed that these 

temporal patterns should be controlled by at least one of Ehd1 or PRR37. The 

effects of Ehd1 and PRR37 were therefore represented by linear functions in 

the equation of RFT1. The time-independent, binary variables (Hd1, Ghd8 and 

Ghd7) were assumed to modulate the effects of Ehd1 and PRR37 through the 

coefficients of the linear functions. 
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Equation 2.5. Global linear regression model. 

𝑅𝐹𝑇1𝑖𝑡 = (𝛼 + 𝛼ℎ𝑑1 + 𝛼𝑔ℎ𝑑8 + 𝛼𝑔ℎ𝑑7)𝐸ℎ𝑑1𝑖𝑡

+ (𝛽 + 𝛽ℎ𝑑1 + 𝛽𝑔ℎ𝑑8 + 𝛽𝑔ℎ𝑑7)𝑃𝑅𝑅37𝑖𝑡 + 𝜖𝑖𝑡 

𝜖𝑖𝑡~ 𝒩(0, 𝜎2) 

• 𝑅𝐹𝑇1𝑖𝑡: RFT1 measurement for variety 𝑖 at time 𝑡 

• 𝐸ℎ𝑑1𝑖𝑡: Ehd1 measurement for variety 𝑖 at time 𝑡 

• 𝑃𝑅𝑅37𝑖𝑡: PRR37 measurement for variety 𝑖 at time 𝑡 

• 𝛼: default coefficient of the effect of Ehd1 on RFT1 

• 𝛼ℎ𝑑1: contribution of a non-functional Hd1 allele to the effect of Ehd1 

on RFT1 

• 𝛼𝑔ℎ𝑑8 : contribution of a non-functional Ghd8 allele to the effect of 

Ehd1 on RFT1 

• 𝛼𝑔ℎ𝑑7 : contribution of a non-functional Ghd7 allele to the effect of 

Ehd1 on RFT1 

• 𝛽: default coefficient of the effect of Ehd1 on RFT1 

• 𝛽ℎ𝑑1: contribution of a non-functional Hd1 allele to the effect of PRR37 

on RFT1 

• 𝛽𝑔ℎ𝑑8 : contribution of a non-functional Ghd8 allele to the effect of 

PRR37 on RFT1 

• 𝛽𝑔ℎ𝑑7 : contribution of a non-functional Ghd7 allele to the effect of 

PRR37 on RFT1 

• 𝜖𝑖𝑡: residual error for the expression of RFT1, for variety 𝑖 at time 𝑡 
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All submodels (models including only a subset of these effects) were fitted 

using the lm function of R, scored according to AICc, and the best one was 

retained. The exhaustive assessment of submodels was done with the MuMIn 

package for R (Bartoń, 2016). 

2.2.5. Characterization of the gene expression profile required to trigger the 

floral transition 

The hypothesis tested in the second part of the study is that flowering happens 

a fixed time 𝛿 ≥ 0 after a critical value of Hd3a or RFT1 expression is reached. 

Let 𝐹𝑖 be the flowering time of variety 𝑖, 𝑋𝑖 the function mapping time to Hd3a 

or RFT1 expression for variety 𝑖  (interpolated linearly from the 

measurements), 𝑋𝑖
−1  its inverse function defined as 𝑥 ↦ min

𝑡
{𝑡 / 𝑋(𝑡) = 𝑥}, 

and 𝑥∗ the critical value of Hd3a or RFT1 triggering flowering. Assuming the 

hypothesis is true, this would mean: 

∀𝑖,     𝐹𝑖 = 𝑋𝑖
−1(𝑥∗) + 𝛿 

∀𝑖,    𝐹𝑖 − 𝛿 = 𝑋𝑖
−1(𝑥∗ ) 

∀𝑖,    𝑋𝑖(𝐹𝑖 − 𝛿) = 𝑥∗ 

This implies: 

𝑉𝑎𝑟(𝑋𝑖(𝐹𝑖 − 𝛿)) = 0 

Therefore, there would be a 𝛿  for which 𝑉𝑎𝑟(𝑋𝑖(𝐹𝑖 − 𝛿)) = 0  if the 

hypothesis were true. In practice, the variance is unlikely to be perfectly 0, but 

it might be small. In this context, “small” should be relative to the values of 𝑋𝑖 
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measured at that time, because 𝑋𝑖  varies manifold during the experiment. 

However, variance is not homogeneous with values of 𝑋𝑖 , therefore, the 

standard deviation was compared to the average value of 𝑋𝑖 instead, and the 

value minimizing this quantity is the estimate of the delay between reaching 

the critical expression level and flowering (Equation 2.6). 

Equation 2.6. Estimator of 𝜹 (delay between crossing a threshold of gene 

expression and flowering). 

𝛿̂ = argmin
𝛿

𝑠(𝑋𝑖(𝐹𝑖 − 𝛿))

𝑋𝑖(𝐹𝑖 − 𝛿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

• 𝑠(𝑋𝑖(𝐹𝑖 − 𝛿)) : empirical standard deviation of the 𝑋𝑖  at 𝛿  before 

flowering 

• 𝑋𝑖(𝐹𝑖 − 𝛿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: empirical average of the 𝑋𝑖 at 𝛿 before flowering 

2.3. RESULTS 

The first modelling subproject was about the control of florigen expression. As 

the expression data came from plants grown in LD conditions, this work 

focuses on the regulation of RFT1, which controls flowering in LD. 

2.3.1. Ehd1 and RFT1 are linearly dependent 

Ehd1 is a known regulator of RFT1, and multiple time series seem to indicate a 

strong linear relationship between Ehd1 and RFT1 (Figure 2.7), although this 

might be exaggerated by the scarcity of data points corresponding to medium 

levels of Ehd1 and RFT1. This still suggested that Ehd1 could explain most of 
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the variability of RFT1. However, the slopes of the regressions vary depending 

on the varieties. This seemed to indicate that the sensitivity of RFT1 to Ehd1 

(the slope of the regression) was influenced by other factors. These other 

factors could include genomic sequence differences in the RFT1 promoter, 

Ehd1 DNA-binding site amino acids, or both. Other differences in anatomy, 

physiology and alleles of other genes could also play a part. 

To find out whether linear regression models are suitable or another formalism 

such as ODE models would be a better formalism to capture the relationship 

between Ehd1 and RFT1, a simple ODE model was fitted to the data. 

Parameters values are given in Table 2.1. Both models have R2 coefficients over 

65% (Table 2.2), confirming that Ehd1 has the potential to be a key regulator 

of RFT1. Their AICc values were also compared (Table 2.2), and indicated that 

the gain in goodness of fit resulting from the addition of degradation 

parameters (𝑑𝑖 ) required by the ODE formalism was not worth the extra 

complexity (a two-fold increase in the number of parameters). Therefore, the 

rest of this study on the regulation of RFT1 focuses on regression models. The 

key issue that remained to be addressed was why the apparent sensitivity of 

RFT1 to Ehd1 (the 𝛼𝑖  coefficients) varied across varieties. To answer this 

question, potential effects of the other genes included in the data set were 

investigated. 
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Figure 2.7: Linear regressions of RFT1 expression against Ehd1 expression in 

6 varieties of rice. Some varieties show a clear linear relationship between 

Ehd1 and RFT1 levels (e.g. Panda, Selenio). Others seem compatible with such 

a relationship, but lack intermediate values to fully support this conclusion (e.g. 

Eolo, Lido). 
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Table 2.1. Parameter values for the simple regression and ODE models. 

Variety 

Regression ODE 

𝛼𝑖  𝛼𝑖  𝑑𝑖  

Augusto 0.515 0.478 0.855 

Balilla 0.439 0.122 0.212 

Carnaroli 0.232 0.014 0.026 

Eolo 2.325 1.793 0.751 

Fragrance 8.603 6.614 0.719 

Gladio 1.605 2.330 1.471 

Lido 0.667 1.579 2.624 

Loto 0.342 0.406 1.127 

Nembo 0.660 0.891 1.297 

Nipponbare 2.200 2.542 1.413 

Panda 29.731 21.712 0.669 

Roma 0.159 0.002 -0.032 

Sant Andrea 9.095 27.998 1.196 

Selenio 0.734 1.040 1.452 

Thaibonnet 0.992 0.481 0.487 

Vialone Nano 0.280 0.231 0.733 

Volano 0.249 0.190 0.586 

Table 2.2. Goodness-of-fit and complexity statistics for the simple regression 

and ODE models. 

Model AICc Log-
likelihood 

Number of 
parameters 

R2 

Regression -772.94 408.45 17 65.12% 

ODE -752.52 418.11 34 70.98% 
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2.3.2. Exhaustive analysis of models of RFT1 regulation hint at effects of 

Hd1, Ghd8 and Ghd7 on the sensitivity of RFT1 to Ehd1 

Exhaustive analysis of the submodels of the global model revealed the best 

model (according to the AICc) is the model including the effect of Ehd1, and its 

interactions with Hd1, Ghd8 and Ghd7. Its fit is presented in Figure 2.8, and its 

parameter values, AICc, log-likelihood and R2, as well as those of its own 

submodels, are reported in Table 2.3. Including the three interaction terms 

substantially improves R2 from 26.34% to 42.35%, meaning the sensitivity of 

RFT1 to Ehd1 may be affected by the functionality of Hd1, Ghd8 and Ghd7. 

The maximum R2 achievable by a linear regression model is 65.12% (achieved 

by the model with variety-specific coefficients), meaning there is still room for 

improvement. The variability unexplained by the selected model is not 

explained by the global model (the most complex one) either, which only 

achieves an R2 of 43.44% - barely better than the selected model. This suggests 

that there may be factors affecting the expression of RFT1 that have not been 

measured in this data set. 

Looking at the fits of the selected model (Figure 2.8) and at the distribution of 

the 𝛼𝑖 in the simple regression model with variety-specific coefficients yields 

some insight into the issue (Figure 2.9). It shows three outlying varieties, with 

much higher 𝛼𝑖 that could not be predicted accurately by the selected model 

(Figure 2.8). This indicates that something in the regulation of RFT1 is probably 

different in these varieties. However, there were no additional data to 
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determine what this or these differences might be. Excluding these varieties 

yields an R2 of 49.90%. 

 

Figure 2.8. Fit of the selected model for the 17 studied varieties. Each frame 

represents a variety. Measurements are represented by circles, and the model 

predictions are the green lines. The expression level of RFT1 is predicted 

reasonably well for most varieties, but it is severely underestimated for some 

of them. 
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Table 2.3. Parameters and goodness of fit statistics for the best model and its 

submodels. An empty cell denotes a parameter not included in the model. 

Parameters Statistics 

Ehd1 Ehd1 x 
ghd7 

Ehd1 x 
ghd8 

Ehd1 x 
hd1 

AICc Log-
likelihood 

R2 

0.437 -0.7597 0.7818 0.3428 -753.5 382.1 42.35% 

0.5509 -0.7136 0.9862 
 

-751.1 379.8 39.76% 

0.4391 
 

0.5851 0.3193 -750.6 379.5 39.43% 

0.5455 
 

0.7874 
 

-748.9 377.6 37.18% 

0.4455 
  

0.5416 -745.1 375.7 34.89% 

0.4455 -0.3079 
 

0.5814 -743.9 376.1 35.45% 

0.688 
   

-734.3 369.2 26.34% 

0.6861 0.0328 
  

-732.2 369.2 26.35%     
-677.1 339.6 -29.48% 

 

Figure 2.9. Histogram of the 𝜶𝒊  for the selected model. The 𝛼𝑖  are the 

apparent sensitivities of RFT1 to Ehd1. The most outlying varieties are 

Fragrance, Sant’Andrea and Panda. 
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2.3.3. No pattern consistent across all varieties can be found between 

flowering time and RFT1 or Hd3a levels 

The hypothesis was that flowering occurred once a critical value of Hd3a or 

RFT1 expression was reached, with an optional delay 𝛿 ≥ 0 . Using the 

estimator detailed in Material and methods, 𝛿 was estimated to be 38.67 and 

45.70 days before flowering for RFT1 and Hd3a, respectively (Figure 2.10). 

However, even for these optimal values, the inter-varietal standard deviations 

of expression levels corresponding to these delays are still very high: 76% and 

89% of the average values, respectively. Histograms of the distributions of 

RFT1 (Figure 2.11) and Hd3a values (Figure 2.12) at their respective 𝛿̂ before 

flowering revealed large disparities in their expression levels. For Hd3a, the 

inter-varietal fold-change (
max

𝑖
𝑋𝑖(𝐹𝑖−𝛿̂)

min
𝑖

𝑋𝑖(𝐹𝑖−𝛿̂)
) is over 150, and it is undefined for RFT1 

because of a 0 value. The minimum relative standard deviation of Hd3a looks 

like it might be inflated by an outlier (Figure 2.12). Removing the outlying 

variety (Selenio) makes the inter-varietal fold-change drop to 4.36. As for RFT1, 

excluding the 0 value yields an inter-varietal fold change of 8.68. While 

removing those extreme values results in substantial improvements, the fold-

changes are still too high to infer the existence of a common RFT1 or Hd3a 

threshold triggering flowering in all varieties. The search for a flowering trigger 

shared by all rice varieties was therefore unfruitful. Moreover, it was also 

impossible to propose a trigger for flowering on a per variety basis, as data 
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were only collected during a single growing season. Doing so would require 

inferring a pattern for each variety from a single time series. 

 

Figure 2.10. Relative standard deviation of RFT1 and Hd3a expression levels 

across the 17 rice varieties, as functions of time before flowering. Minima are 

reached at 38.67 and 45.70 days before flowering for RFT1 and Hd3a, 

respectively. 
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Figure 2.11. Distribution of RFT1 expression levels across the 17 rice varieties 

38.67 days before flowering. 

 

Figure 2.12. Distribution of Hd3a expression levels across the 17 rice varieties 

45.70 days before flowering. 
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2.4. DISCUSSION 

This study has shown a strong linear dependency of RFT1 on Ehd1. This is 

consistent with the anterior finding that Ehd1 is a regulator of RFT1 (Doi et al., 

2004). However, it also suggests that other genes may modulate the effect of 

Ehd1. 

2.4.1. Hd1, Ghd7 and Ghd8 seem to modulate the control of RFT1 by Ehd1 

This study suggests that Hd1, Ghd7 and Ghd8 might be able to modulate the 

regulation of RFT1 by Ehd1, however there is no biological evidence supporting 

this so far. Therefore, it might be worth investigating the potential 

involvement of Hd1, Ghd8 and Ghd7 in the regulation of RFT1 by Ehd1 through 

biological experiments. 

Hd1, Ghd8 or Ghd7 might be able to form a protein complex with Ehd1. To 

check for protein-protein interactions, one might use yeast two-hybrid assays 

(Y2H) (Fields and Song, 1989) or bimolecular fluorescence complementation 

(BiFC) (Kerppola, 2008), however the methods might not be able to pick up 

indirect binding. Should that be the case, Förster resonance energy transfer 

(FRET) (Sekar and Periasamy, 2003) might be able to provide an alternative, as 

it does not necessarily require the close proximity of the two proteins. 

There could also be interactions between Hd1, Ghd8 or Ghd7, and the RFT1 

locus. This could be investigated via chromatin-immunoprecipitation-related 

methods (ChIP) (Gade and Kalvakolanu, 2012). 
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Interestingly, it was recently shown that Ghd8 and Hd1 are involved in a 

protein complex binding the promoter of Hd3a (Goretti et al., 2017). Given the 

homology between Hd3a and RFT1, it is possible that they might also be 

involved in complexes binding RFT1. 

2.4.2. Three outlying varieties point to the control of RFT1 by other factors 

There are not enough data to suggest whether there is a common cause to the 

unusually high sensitivities of the three varieties, or multiple causes are 

involved. A possible explanation might be that the real sensitivities of RFT1 to 

Ehd1 in the three outlying varieties are not so different from those of the main 

group, but RFT1 is also responding to another, unknown signal (e.g. an Ehd1 

homolog). That unknown signal may be present in all 17 varieties, meaning 

that its effects would be indiscernible from those of Ehd1 within the main 

group of 14 varieties. However, varieties with lower Ehd1 expression levels – 

like the three outliers – would appear to have higher sensitivities when the 

unknown factor is not accounted for. This hypothesis could be tested by 

screening for genes with temporal expression patterns correlated to those of 

Ehd1 and RFT1, and mutating them. 

Beyond this new insight into the regulation of RFT1 in rice, this study also led 

to an interesting observation about the modelling of gene regulatory networks 

from time series data in general. 
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2.4.3. The low temporal resolution results in the relevance of linear 

regression models 

The amount of experimental work required to measure gene-expression time-

series has resulted in the temporal resolution being rather low. The interval 

between two consecutive measurements was usually 14 days. Compared to 

gene activation delays, which are usually on the scale of a few hours (Rosenfeld 

and Alon, 2003), these intervals are extremely large. This makes it unlikely that 

measurements would capture transient states of the floral transition pathway, 

such as the onset of a gene’s expression. In most cases, measurements will be 

representative of quasi-steady states. Interestingly, this is what the regression 

models used in this study represent. Under the assumption that RFT1 is 

controlled directly only by Ehd1 and in a quasi-steady state, an ODE model can 

become equivalent to a regression model. 

𝑑𝑅𝐹𝑇1

𝑑𝑡
(𝑡) = 𝛼. 𝐸ℎ𝑑1(𝑡) − 𝑘𝑑. 𝑅𝐹𝑇1(𝑡)

𝑑𝑅𝐹𝑇1

𝑑𝑡
(𝑡) → 0

} ⇒ 𝑅𝐹𝑇1(𝑡) →
𝛼

𝑑
𝐸ℎ𝑑1(𝑡) 

A slow-evolving ODE model does therefore not differ much from a simple 

linear regression model in this case. A problem would have arisen if the genetic 

regulation graph had cycles, but in the very simple network studied here, this 

did not occur. This regression approach has the benefit of decreasing the 

number of parameters to be estimated, which is why the AICc chose the 

regression model over ODE model. It is particularly useful to do so, since, as 
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evidenced by the formulae above, parameters 𝛼 and 𝑑 would be difficult to 

separate based on quasi-steady state observations. 

In those formulae and in the selected models, it was assumed that the 

synthesis rate of RFT1 was linear with respect to its activator Ehd1, which is 

different from the convention that gene regulations follow Hill equations. 

However, for a Hill coefficient of 1, the Hill equation is equivalent to the 

Michaelis-Menten equation, which has a nearly linear domain, when the 

concentration of the activator is not saturating. The suitability of a linear 

response of RFT1 to the expression of Ehd1 might therefore indicate that the 

Ehd1 binding sites on the RFT1 promoter are never saturated, and that the Hill 

coefficient of the activation of RFT1 by Ehd1 is close to 1. 

Finally, in addition to the modelling limitations resulting from the temporal 

resolution of the time series, there were also limitations caused by the high 

variability of gene expression across varieties. 

2.4.4. High inter-varietal variability in gene expression levels prevents the 

prediction of flowering time based on genotypic data 

The high inter-varietal variability in gene expression levels prevented the 

second modelling case from being solved, namely, the prediction of flowering 

time for each variety. The main roadblock was that the initiation of flowering 

could not be predicted satisfactorily from florigen expression, because florigen 

expression varies wildly across varieties (Figure 2.4 and Figure 2.5). It is unclear 

whether this variability is real and caused by genetic or physiological 
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variations, or results from issues with the measurements or their 

normalization. In particular, Ubq might not be a good reference gene, if its 

expression level varies between varieties. 

In any case, the inter-varietal variability should be checked using additional 

reference genes and – if needed – new measurements. Should this inter-

varietal variability be confirmed, separate models of the triggering of flowering 

would have to be established for each variety. This would in turn require 

multiple time series of gene expressions to be generated for each variety. 

2.5. CONCLUSIONS  

This work confirmed that Ehd1 has the potential to be a key regulator of RFT1. 

It also suggested that Hd1, Ghd8 and Ghd7 might play a role in the control of 

RFT1 by Ehd1, by modulating the effect of Ehd1. However, in the studied data 

set, the expression levels of all genes – including RFT1 – vary greatly across 

varieties, which is suspicious. It is unclear whether those variations are real or 

come from a problem with the data. This point should be addressed first. 

Assuming the variations are real, the sensitivity of RFT1 to Ehd1 is different for 

each variety. Part of this variability was attributed to the functionality – or not 

– of Hd1, Ghd8 and Ghd7, but part of it remains unexplained. This could be 

addressed by quantitative expression measurements for these three genes or 

other genes involved in the floral transition. Such a data set would also be 

beneficial in identifying the molecular trigger of flowering, as there might be 
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better indicators of flowering than RFT1 – assuming the inter-varietal 

variations of RFT1 expression are real. 

The above observations on the limitations of the data for rice suggest that a 

more widely studied species, for which more data are available, should be 

investigated. This is the subject of the next chapter.  



 

58 

3. QUANTIFICATION OF THE IMPACT OF VERNALIZATION ON THE 

FLORAL TRANSITION PATHWAY IN SF2 FRI COL-0 ARABIDOPSIS 

THALIANA 

3.1. INTRODUCTION 

This chapter was realized in collaboration with Aalt-Jan van Dijk and Gerco 

Angenent’s laboratory, from Wageningen University. 

In A. thaliana, the timing of the floral transition is controlled by multiple 

pathways. One of them is the vernalization pathway, whose function is to lift 

a block preventing plants from flowering when they are exposed to prolonged 

periods of cold (i.e. when they are vernalized). 

The vernalization process has been described at the molecular level by Angel 

and colleagues (Angel et al., 2011), who also provided the only mathematical 

model of vernalization to date. Vernalization comes from the silencing of the 

FLC gene, which is a repressor of SOC1 and FT (two crucial integrator genes of 

the floral transition). Silencing FLC therefore results in an increase in the 

expression of SOC1 and FT. The vernalization-induced silencing of FLC relies on 

epigenetic modifications. At the beginning of a period of cold, the histones of 

a nucleation locus in the FLC gene start being methylated. As the period of cold 

continues, histone methylation spreads from that locus to the rest of the gene. 

When the temperature eventually rises to normal levels again, histone 

methylations prevent FLC from being expressed. Angel and colleagues’ model 

focuses on demonstrating that the silencing of FLC occurs in an all-or-nothing 
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fashion (as can be observed by microscopy and GUS staining), where individual 

cells are only either on or off, and the quantitative aspect of FLC silencing only 

occurs at the tissue level, as a consequence of the proportions of on and off 

cells. Therefore, Angel and colleagues’ model does not study the consequences 

of FLC regulation on the floral transition network. Mathematical models of the 

floral transition network of A. thaliana do exist, as reviewed in Chapter 1 

(Dong, 2003; Jaeger et al., 2013; Welch et al., 2003). However, only Dong’s 

model actually includes FLC. It unfortunately has limitations, as it was based 

on a now outdated network topology and primarily aimed at predicting 

flowering time. As a consequence, it did not aim at predicting gene expression 

accurately, so long as flowering time was predicted accurately. 

The goal of this chapter is therefore to develop gene expression models of the 

floral transition network to quantify the effects of vernalization on the 

expression levels of floral transition genes, with a particular focus on the effect 

of FLC on SOC1 and FT. 

This chapter covers three sub-projects. The first is the modelling of the 

silencing of FLC, as a response to cold exposure. The second is comprised of 

experimental work aimed at gathering suitable data to fit an ODE model of the 

floral transition network including the vernalization pathway. The third is an 

analysis of a new model of the floral transition developed at Wageningen 

University, which was being considered as a candidate to be expanded to 

include the effects of vernalization.  
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3.2. MATERIAL AND METHODS 

3.2.1. Implementation of the ODE model of vernalization 

The ODE model of vernalization was implemented in R, and integration was 

performed using the deSolve package (Soetaert et al., 2016). deSolve is based 

on the ODEPACK solvers (Hindmarsh, 1982) and is a widely used R package for 

the integration of ODEs. More details are available in the Material and 

Methods section of Chapter 2. 

3.2.2. Vernalization experiments 

In this study, experiments were carried out to generate new gene expression 

data for vernalized A. thaliana plants. Not all varieties of A. thaliana are 

vernalization-sensitive: the Col-0 line, which is the most commonly used in 

experiments, is not. This is because Col-0 barely expresses FLC in the first place, 

due to its non-functional allele of the FRI gene (a key activator of FLC). 

To investigate the vernalization pathway in a background comparable to that 

used in other flowering-related experiments, an introgression line created by 

introducing a functional FRI allele from the Sf2 ecotype into a Col-0 background 

(Lee et al., 1994) was used. Seeds were provided by Caroline Dean’s lab (John 

Innes Centre, Norwich). 

Sf2 FRI+ A. thaliana plants were grown according to the following protocol. 

Seeds were sown on cubes of rock wool (five seeds per cube) soaked in a 1g/L 

solution of Hyponex NPK = 7-6-19 fertilizer (HYPONeX JAPAN) and covered in 
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cling film to prevent desiccation. The seeds were then stratified by being 

exposed for 48h to a temperature of 4˚C, in darkness to prevent early 

germination. They were then transferred to a short-day growth chamber (23˚C, 

8h light) for a duration of 2 weeks. The cling film was removed after 4 days, 

when the seedlings were visible. The plants were then sent to a cold room (4˚C, 

12h light) for the cold treatment, except for one batch that went straight to 

the next phase, without cold treatment. The other batches were removed from 

the cold treatment after 1, 2 or 3 weeks, respectively. The final phase was a 

long-day growth chamber (23˚C, 16h light). 

For the whole duration of the experiments, plants were watered two or three 

times a week with a solution of Hyponex (1g/L). Plants were sampled regularly 

at a frequency depending on the stage of the experiment, until they had spent 

2 weeks in the final growth chamber. This duration was chosen based on a 

previous experiment on WT Col-0 plants, where the plants flowered in 12.6 

days, and on the assumption that cold-treated FRI+ Col-0 plants would behave 

similarly to WT Col-0 plants. The sampled plants were dissected, with leaves 

and enriched meristem material being collected separately, except for the two 

earliest time points. As the seedlings were too small, they were not dissected 

but were collected as whole seedlings instead. For each time point, each kind 

of tissue was harvested in triplicates. Five to ten plants were pooled together 

for each sample, depending on the growth stage of the plants. Samples were 

first flash-frozen in liquid nitrogen, before being stored in a -90˚C freezer until 

they were processed for RNA extraction. Each sample was then homogenised 
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by shaking with glass beads, and subjected to an RNA extraction procedure 

using Invitrap® Spin Plant RNA Mini Kits (STRATEC Biomedical). The extracted 

RNA was subjected to a DNase treatment to avoid any contamination by 

genomic DNA, using Ambion® TURBO DNA-free™ DNase Treatment and 

Removal Reagents (Thermo Fisher Scientific), then RNA was quantified using a 

nano-drop. The cDNA was synthesized by Suraj Jamge and Froukje van der 

Waal (Wageningen University) and quantified using a BioMark qRT-PCR 

machine (Fluidigm) at Enza, a partner company of Wageningen University. The 

BioMark system is able to run qRT-PCRs on all combinations of 96 samples and 

96 primers concurrently, while using very little cDNA. This system was selected 

for its efficiency, because the earlier time points of our experiment yielded 

very little RNA, as there was little biological material. The 96 primers used for 

the qRT-PCR were selected from published articles or designed by Suraj Jamge 

(Table 3.1). 

  



 

63 

Table 3.1. 96 primers used for the BioMark qRT-PCR. Compiled by Suraj Jamge. 

Genes ATG no. Forward primer Reverse primer 

FT AT1G65
480.1 

CTGGAACAACCTTTGGCA
AT 

AGCCACTCTCCCTCTGACA
A 

FD At4G35
900.1 

CACCTCCTGCAACTGTTCT
G 

AGCCTCGAAAGAGGTGTT
GA 

LFY At5G61
850.1 

ATTGGTTCAAGCACCACC
TC 

ACGGACCGAATAGTCCCTC
T 

YLS8 At5G08
290.1 

TTACTGTTTCGGTTGTTCT
CCATTT 

CACTGAATCATGTTCGAAG
CAAGT 

FLC At5G10
140.1 

CGAACTCATGTTGAAGCT
TGTT 

GGAGAGTCACCGGAAGAT
TG 

FLC_CD At5G10
140.1 

GGCTAGCCAGATGGAGA
ATAA 

TCAACCGCCGATTTAAGGT 

SOC1 At2G45
660.1 

AGCTGCAGAAAACGAGA
AGC 

TGAAGAACAAGGTAACCC
AATG 

SVP.1 At2G22
540.1 

GAAGAGAACGAGCGACT
TGG 

GAGCTCTCGGAGTCAACA
GG 

SVP.3 At2G22
540.3 

ACCGGAAAACTGTTCGAC
ATGA 

TTCTTTACTCATTCGGGCGT
GAT 

MAF 1.2 
 

CCTCAATGTTTTGAACTCG
ATC 

TCGACATTTGGTTCTTCAA
GCTTGC 

MAF 1.3 
 

GTCCCTTAAAGAAAAGGT
TAGTG  

CAAGAATCATCATAGCCTA
GA 

MAF 1.4 
 

GATCGTTATGAAATACAA
CATGC 

GTATTCTTTCCCATCTGGCT
AGC 

MAF 1.5 
 

CAGTCCAAAGCAAGCTTG
AAG 

CAGTCCAAAGCAAGCTTGA
AG 

MAF 2.1 
 

AAAACGGTGGGGAAGAA
GAC 

AAAAACTTCTGAATCAGGC
TGT 

MAF 2.2 
 

AGCTCGAGACTGCTCTGT
CC 

TCAACTGATGAATTAGCTT
CAAGA 

MAF 2.3 
 

CGGAGAACTTGCTGAGA
GAAG 

AGCCGTTGATGATGGTGAT
T 

MAF 3.1 
 

GCTTGAAGAATCAAATGT
CGATAATG 

TGAGCAGCGAAAGAGTCT
CC 

MAF 5.1 
 

CAGGATAAGGAGAAGTT
GCTGAA 

ACTTGAGAAGCGGGAGAG
TC 

FUL At5g60
910 

AAGGACAATTAGTCCAAT
GCTCCAA 

CAACTCTCTCCACAAAGCC
ATCTCT 

CAL 
 

GATCGCTCATCAGACTTC
TCCTTTC 

GCCAAGGTAATTGTAAATG
GGTTCA 

AGL24 At4G24
540.1 

CGGAATTGGTGGATGAG
AATAAGAG 

GTTCCACTGTCGTAGCTTG
ACACAT 
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AGL15 AT5G13
790 

GTCAAGCGATTCAGTGAC
AACAAAC 

CAGAGAACCTTTGTCTTTT
GGCTTC 

AGL16 At3g57
230 

ACATGAAAAGGTTTCAGA
GGTCGAG 

AGATGGACATGTTCGTTCG
AGGTAT 

AP1 AT1G69
120 

AAATCCAGCATCCTTACAT
GCTCTC 

CAGTTCGAGATCATTCCTC
CTCATT 

AP2 AT4G36
920 

TGCCGAGTCATCAGGGAA
TCCTAC 

TCCCAAGCTCAAATCGAGG
TTGTG 

STM At1g62
360 

TCTCCGGTTATGGAGAGA
CAGCAA 

TCGACTTCTTCCTCGGATG
ACCCA 

FDP (bzip27) AT2G17
770.1 

AATCAACCACCACCACCA
CCAC 

AAGAGGCAGAGAGCCATA
GAGAGC 

FLD AT3G10
390.1 

GGAAAGCAAGTCTTTGAG
CACAGG 

CACCAACATGTAAGGAACC
ACCAG 

FRI AT4G00
650.1 

AGTCACCGCTGGCATTTA
AAGAAG 

TGCCATCCTGGTAGTTCTTT
CGC 

SPL4 AT1G53
160.1 

TTTCTCTCAGGACTTAACC
AACGC 

CTTGGAGGTCATGAAACCT
ACTGC 

SPL9 AT2G42
200.1 

TGTGGCTGGTATCGAACA
GAGG 

TTCCGGAAGCTGATGAAAC
CTG 

SPL15 AT3G57
920.1 

TCGCTCCATCTCTTTACGG
AAACC 

TGCATCACTGATCTTGCGG
TTG 

AGL12 AT1G71
692.1 

CTCAGATTCGCTCTGCTA
AGATGG 

TGAGGACTCCTTCCTTGTT
CCTC 

AGL23 AT1G65
360.1 

TGACCACTTTCGAGGGTG
TGTTG 

TTCTACTTCCGCCTTCACCT
CAG 

AGL71 AT5G51
870.3 

TCGTATTGTCAGGTCAAG
AAAGGC 

TCTCGTTCAAGAGCTCCCT
CTC 

AGL72 AT5G51
860.1 

ACACGATAAAGCGATACG
CTGAG 

TTCCGGTTATGGACTTCAA
GCAC 

MRG1 At4g37
280 

CTTACCATGGTCCTCGCG
TCTAC 

CGGTATGTTTCAACAATCT
ATCCGC 

MRG2 At1g02
740 

CTTCTGCTACCTGCTCCTC
C 

TTCGTCCCAACTTTTGTTCC 

EFS/SDG8 AT1G77
300  

GTAAGCAAAAGGCGTGC
TTC 

TTCTTCTCCACAACCCAACC 

SDG26 AT1G76
710  

CGGGTTCACGGTAACATT
TC 

CATGCTTCTGAGCGACATT
C 

TFL2/LHP1 AT5G17
690.1 

AGACAATGTCCAGGAAGT
GTTGG 

TGCTTCCTTCCCATCAGACC
TC 

CLF (SDG1) AT2G23
380.1 

TTGTTTGCTAAACGGGAC
TTGCTG 

TTCTTGCAGCTCTTTGGGC
AACC 

SNZ AT2G39
250.1 

TGGGTGCCCATAGTAAAG
GAAATG 

CAACGGCTTCCCATGCAAA
CTC 

SMZ AT3G54
990.1 

AGCAAGTTTATTTGGGCG
GGTTTG 

TGATAGCAGCTCGGTCGTA
AGC 
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TOE1 AT2G28
550.1 

AATAATCCCGCCGAGGGA
AGAG 

AACAATGGTGGTGGTTGT
GGTC 

TOE2 AT5G60
120.1 

TGGAGCAGCTTCATGGAA
ACATGG 

GCTTCCCTTCCCTTCCATTG
TACG 

VRN1 AT3G18
990.1 

GTACCAGCCAACAAAGG
GTATGC 

GGCGTTGGCTCTTCAGCTT
TAAC 

VRN2 AT4G16
845.1 

TCGGGATAGCGAGGATG
AAGTC 

TCCACAAAGTCATCAAGCA
TCTGG 

EMF1 AT5G11
530.1 

GTGGGAGGGATTTGTGC
AGTTC 

CATCTGTTAATCCCTCTGCC
TCAG 

ELF6 AT5G04
240.1 

TGGCATTCCCTGCTGTAG
GTTG 

TCCTTTGCTACGTTGAGCC
ACTG 

SDG2 
(putative) 

AT4G15
180.1 

TGCTTGGTGGGTTGCCAG
ATTG 

CTCGAAATTGATGAACCGG
ACCAG 

GCN5 
(putative) 

AT3G54
610.1 

AATCTCAGGGCTCGTGCC
AAAG 

TTTGAGTCGTCCTGCTTGC
TCCTC 

VIN3 AT5G57
380.1 

GTATGGGATTGGGAGTG
ATGAT 

CAAAACAACCTGAAACCTG
TGA 

COOLAIR (FLC 
antisense) 

 
ACCTTATTCGTGTGAGAA
TTGC 

TTGACAGAAGTGAAGAAC
ACATACA 

UBC AT5G25
760 

CTGCGACTCAGGGAATCT
TCTAA 

TTGTGCCATTGAATTGAAC
CC 

ACT AT3G18
780 

TCCGCTCTTTCTTTCCAAG
CTCA 

CGAAGCGATGATAAAGAA
GAAGTTCG 

SAND AT2G28
390 

CAGACAAGGCGATGGCG
ATA 

GCTTTCTCTCAAGGGTTTCT
GGGT 

UBQ10 AT4G05
320 

GGTTTGTGTTTTGGGGCC
TTG 

CGAAGCGATGATAAAGAA
GAAGTTCG 

TIP41-like AT4G34
270 

CATTTCAGTCTCTATCTGC
GAAAGGGTATCC 

CACCACAATAAGTCAGTGG
AGTAACTCCTTAC 

PP2AA3 At1G13
320 

GCGGTTGTGGAGAACAT
GATACG 

GAACCAAACACAATTCGTT
GCTG 

bZIP29 at4g389
00 

CCAGAGACTTCATTCATCT
TTCGGC 

GCTGATGAGCGGATGAAA
TTAGGG 

bZIP30 At2g21
230 

TCACTTGAATCCTGCTCTT
ATCCGC 

AGTAAGGAGAAATGGGTG
GAATCGG 

bZIP59 At2g31
370 

GTCTTCCTCCTCCATCTCC
ATCAGG 

CCGATGTCCAATCTTCTTA
GGTGGG 

bZIP70 At5g60
830 

AGTGTCCATCGCTCTCATT
GTTTCG 

AAGTCAGTGTTTGGTAGGA
ATGCCG 

bZIP75 At5g08
141 

GAAGACGACGTCCATGTT
CAAGACC 

CGCGTTCTTCTTGCTGATTC
TCG 

SHL AT1G62
360 

ATGCCCAAGCAAAAAGCT
C 

CGGTAGTGGAATTGTACTC
G 

EBS AT4G22
140 

TGGTATCATCCTGCGTGT
GT 

CGCTTCGTTTCCACCTTAAC 
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SPL3 At2g33
810 

TTCAAACCGGGATCTCAC
AC 

CAACGTTTCTGCCAACAAT
G 

SPL5 At3g15
270 

CAGGACAGCATAGAGGG
GACT 

CATCATTCAAGCGACCACA
G 

TEM1 AT1G25
560 

GTCCGGTTCAGACTGTGG
TT 

GATAATCGCCTGCTTCTTG
G 

TEM2 AT1G68
840 

AGAGAAAACCCGGTTCAG
GT 

TATCGCCTGCTTCTTGGAA
C 

GI AT1G22
770 

CTGTTCAGACGTTCAAAG
GC 

TGGTTTCCTCTTGGATTCAT 

GA2ox7 AT1G50
960 

AAACCCTAGCGCCACTTC
TC 

CGTTCACTTGTTTCCCCAGT 

GNL AT4G26
150 

TTTGGAGACCCAGAGCAA
CT 

AACCATTCCGTGCGATAG 
AG 

GNC AT5G56
860 

TGAGGGGTTGAGAAAGA
TGG 

TCTTCCTCGCTTCATCATCA 

TFL1 AT5G03
840 

GCTCTTTCCTTCTTCTGTTT
CCTCC 

CAGCGGTTTCTCTTTGTGC
GT 

BFT AT5G62
040 

ATGTCAAGAGAAATAGA
GCCACTAATA 

TTAATAAGAAGGACGTCGT
CG 

TSF AT4G20
370 

CACCACTGGAAATGCCTT
TGGC 

AACCGTTTGTCTTCCGAGT
TGCC 

MFT AT1G18
100 

ACAATCCAGTGGACCCAT
TC 

CCATTCCGATGAGCTTTAC
A 

MAF 4 AT5G65
070 

TCGCACAAGGAGTTGCTA
GA 

GGGTCTTCACAAGCTCCAT
C  

CO At5g15
840 

AGCTGTGATGCTCAAGTT
CACTCT 

GCAGACCCGGACACGTTTA
T 

PIF4 AT2G43
010 

CCCATCACAGAACGATCT
CGAT 

AGGAGCCACCTGATGAGG
AACT 

PIF5 AT3G59
060 

AATTCCCGGTTATGAACC
GGT 

TACCTAGCGAGCTGCTCCG
ATA 

FCA AT4G16
280 

TGTTCGAACGAGAGCAAC
AG 

AACGGCTGTAATTGGGTCT
G 

FVE (MSI4) AT2G19
520 

ACTGGGCACCAAGATAAT
GC 

GTCCCAATCGTTGTGATGT
G 

AGL14 At4g11
880 

TGCTGATGGAGAAGTGT
GAGATGC 

TGTCGAGTCTCAGGAGGTC
CAATG 

AGL18 At3g57
390 

GCCACTTGACTCCCAGAG
TTATCG 

ACTTCCTTGCAGTTGGGGT
TGTC 

AGL19 At4g22
950 

TGCATCAATGCCTTCTCCA
AGCAA 

TCAGCAAGCGAGAGACGA
AACATC 

AGL21 At4g37
940 

CTTCATGCTGGAGCTTGC
AAAGTC 

AGCTATTCTCTGTGATGCC
GAGGT 

AGL42 AT5G62
165 

AATTGTTCAAGGAGCAGT
TGGAG 

GGCAAACCGATGAATAAG
TCAG 
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AGL17 At2g22
630 

TGCCAGCTCCAGTGTGAA
ATC 

TTGCTCCTCCATCTTAGCCG
T 

miR-156a At2g25
095 

CTCTCCCTCCCTCTCTTTG
ATTC 

AGGCCAAAGAGATCAGCA
CCGG 

miR-172b AT5G04
275 

TTTCTCAAGCTTTAGGTAT
TTGTAG 

TCGGCGGATCCATGGAAG
AAAGCTC 

MIR172a-2 AT2G28
056 

TTTCTCAAGCTTTAGGTAT
TTGTAG 

TCGGCGGATCCATGGAAG
AAAGCTC 

CBF1 AT4G25
490.1 

CCGCCGTCTGTTCAATGG
AATCAT 

TCCAAAGCGACACGTCACC
ATCTC 

CEN (ATC) AT2G27
550 

TCCTGATGTTCCTGGACCT
AGTG 

TCGGTAACAATCCAGTGCA
AGTG 

In addition to the acquisition of these expression time series, flowering time 

was also measured using the leftover plants. Flowering time was measured in 

three ways: as the raw number of days from sowing to the apparition of visible 

flower buds, as the number of warm days (i.e. excluding days in the cold 

chamber), and as the number of rosette leaves at the beginning of flowering. 

3.2.3. Analysis of qRT-PCR results 

Normalized expression values were computed using the Eleven module (Smith, 

2014) for Python, based on the GeNorm algorithm (Vandesompele et al., 

2002). GeNorm enables the ranking of multiple reference genes and the 

normalization of expression data with a set of the best reference genes. 

However, as YELLOW-LEAF-SPECIFIC GENE 8 (YLS8) – the reference gene used 

by Valentim and colleagues in a similar experiment presented below (Valentim 

et al., 2015) – was consistently more stable than any other, it was the only 

reference gene retained for normalization. 
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3.2.4. Data from Valentim and colleagues 

Valentim and colleagues measured time series of the expression of genes 

involved in the floral transition (Figure 3.1 and Figure 3.2) (Valentim et al., 

2015). The biological material comes from A. thaliana Col-0 plants grown in LD 

conditions at 21˚C. Two kinds of tissues were harvested every day, between 5 

and 17 days after germination: plant apices (including the SAM) and leaves. In 

the apices, the expression of SVP, FLC, FD, SOC1, AGL24, LFY and AP1 were 

measured by qRT-PCR and normalized by YLS8. In the leaves, the expression 

levels of SVP, FLC and FT were measured and normalized in the same way. 

They also measured the flowering times of the WT, and various single and 

double mutants grown under LD at 23˚C: soc1-2, soc1-6, agl24-2, ft-10, fd-3, 

flc-3, svp31, svp32, svp41, soc1-2/agl24-2, soc1-2/svp32 and svp41/agl24-2 

(Figure 3.3) (Valentim et al., 2015). These data provide additional insight into 

the functioning of the floral transition network, as they can be used to get an 

idea of what happens when a node of the network is removed (detailed in the 

following section). As this data set did not include a mutant for LFY, a key gene 

of the floral transition, an extra data point was added using published data for 

the lfy-12 mutant (Jaeger et al., 2013). That experiment showed the lfy-12 

mutant flowered 9.24% slower than the WT, which equates to a flowering time 

of 13.80 days in this data set. 
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Figure 3.1. Gene expression measured by Valentim and colleagues for the 

input genes of their model. Data points represent the average measurements 

with their standard deviations. The lines are interpolations used by Valentim 

and colleagues’ model. Reprinted from Valentim et al., 2015 (CC BY 4.0 license: 

https://creativecommons.org/licenses/by/4.0/legalcode). 
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Figure 3.2. Gene expression measured by Valentim and colleagues for their 

modelled genes. Data points represent the average measurements with their 

standard deviations. The lines are the predictions of Valentim and colleagues’ 

model. Reprinted from Valentim et al., 2015 (CC BY 4.0 license: 

https://creativecommons.org/licenses/by/4.0/legalcode). 
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Figure 3.3. Flowering times measured by Valentim and colleagues for various 

mutants. Bars represent the average measurements with their standard 

deviations. Reprinted from Valentim et al., 2015 (CC BY 4.0 license: 

https://creativecommons.org/licenses/by/4.0/legalcode). 

3.2.5. Implementation of the ODE model of the floral transition 

The ODE models of the floral transition were implemented in R, but 

dynamically translate the equations of the model into C++ and compile them 

for extra performance, using the inline package (Sklyar et al., 2015). 

Integration was performed with the deSolve package (Soetaert et al., 2016), 

using the LSODA algorithm. 

Gene expression levels are predicted directly by the integration of the ODEs of 

the models for the Col-0 (WT) genotype. However, the models are also used to 

predict the gene expression levels of mutants. In that case, the initial values of 
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the mutated genes are set to 0 and the ODEs associated with those genes are 

replaced by the zero function. 

The models can also yield another type of output: the flowering time of any 

mutant (or the WT). Flowering times are extrapolated from gene expression 

levels under the assumption used by Valentim and colleagues, i.e. flowering is 

marked by the expression of AP1 above a certain threshold. Therefore, 

flowering was predicted to occur when AP1 expression reached the value 

observed in the Col-0 background at flowering time (0.180 nM). 

The parameters of the ODE models of the floral transition were optimized 

using the Robust Adaptive Metropolis (RAM) algorithm (Vihola, 2012), 

implemented by the adaptMCMC package for R (Scheidegger, 2012).  

RAM is based on the Metropolis algorithm (Metropolis et al., 1953). The 

original Metropolis algorithm enables sampling from a probability distribution 

𝜋: 𝑥 ↦ 𝜋(𝑥)  (e.g. that of a vector of parameters) for which a quantity 

proportional to its function is known, without evaluating it at all nodes of a grid 

covering its definition domain, which would be extremely costly in high-

dimensional spaces. The Metropolis algorithm works as follows: 

1. An initial state 𝑋1 (i.e. a vector of initial parameter in this case) values 

is chosen. 

2. At iteration 𝑛, a proposal state 𝑌𝑛 is picked randomly from a symmetric 

distribution with density function𝑔: 𝑥 ↦ 𝑔(𝑥|𝑋𝑛−1) . This is often a 

normal distribution. 
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3. The proposal is accepted randomly, with an acceptance probability 

𝛼𝑛 = min (1,
𝜋(𝑌𝑛)

𝜋(𝑋𝑛−1)
). If it is accepted, then 𝑋𝑛 = 𝑌𝑛, otherwise 𝑋𝑛 =

𝑋𝑛−1. 

4. Repeat from step 2. 

The effectiveness of the sampling depends on the choice of 𝑔. The variance of 

𝑔 should not be too big, or the algorithm will tend to overshoot and propose 

states likely to result in a large loss of likelihood. Smaller steps have a lower 

risk of resulting in a large loss of likelihood, but if the variance is too small, the 

algorithm will take many steps – and therefore a lot of computational time – 

to explore the parameter space. RAM is an extension of the Metropolis 

algorithm that tackles the issue of choosing an adequate proposal distribution. 

In RAM, the distribution yielding 𝑥′ is not fixed beforehand, but adapts based 

on the acceptance rate of previous proposals. Concretely, the algorithm 

changes as follows: 

1. Initial values are chosen: a state 𝑋1 ∈ ℝ𝑑  (where 𝑑 is the number of 

parameters) and a lower triangular matrix 𝑆1 ∈ ℝ𝑑×𝑑. 

2. At iteration 𝑛, a proposal state 𝑌𝑛 is picked randomly as follows: 𝑌𝑛 =

𝑋𝑛−1 + 𝑆𝑛−1𝑈𝑛, where 𝑈𝑛 follows a spherically symmetric distribution 

(e.g. a normal distribution where the covariance matrix is the identity 

matrix). 

3. The proposal is accepted with probability 𝛼𝑛 = min (1,
𝜋(𝑌𝑛)

𝜋(𝑋𝑛−1)
). If it is 

accepted, 𝑋𝑛 = 𝑌𝑛, otherwise, 𝑋𝑛 = 𝑋𝑛−1. 
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4. Using the Cholesky algorithm, the triangular matrix is updated as the 

lower triangular matrix with positive diagonal elements 𝑆𝑛 satisfying: 

𝑆𝑛𝑆𝑛
𝑇 = 𝑆𝑛−1 (𝐼 + 𝜂𝑛(𝛼𝑛 − 𝛼∗)

𝑈𝑛𝑈𝑛
𝑇

‖𝑈𝑛‖2) 𝑆𝑛−1
𝑇  , where 𝐼 ∈ ℝ𝑑×𝑑  is the 

identity matrix, {𝜂𝑛}𝑛≥1 ∈ (0, 1] is a step size sequence decaying to 0, 

and 𝛼∗ is the target acceptance rate. In adaptMCMC, 𝜂𝑛is of the form 

𝑛𝛾, where 𝛾 ∈ (0.5, 1]. In this chapter, 𝛾 was set to 0.5001 and 𝛼∗ to 

0.234, the asymptotically optimal value for large number of parameters 

(Gelman et al., 1996). 

5. Repeat from step 2. 

Concretely, this means the proposal increments (𝑆𝑛−1𝑈𝑛 ) are not sampled 

from a spherically symmetric distribution like 𝑈𝑛 , but from an elliptically 

symmetric distribution, to account for the correlation of parameters. The 

shape of that ellipsoid is updated at each iteration, by shrinking or expanding 

in the direction of 𝑆𝑛−1𝑈𝑛 , depending on the value of the acceptance rate 

relative to the target rate. 

RAM can be used in a Bayesian way to sample the posterior distribution of the 

parameters of a model. In that case, the 𝜋 function is a function of the joint 

prior distribution of the parameters, of the predictions, and of the data: 

𝑃(𝑋|𝐷) =
𝑃(𝑋 ∩ 𝐷)

𝑃(𝐷)
=

𝑃(𝑋). 𝑃(𝐷|𝑋)

𝑃(𝐷)
 

𝜋(𝑋) = 𝑃(𝑋). 𝑃(𝐷|𝑋) 

𝜋(𝑋) ∝ 𝑃(𝑋|𝐷) 
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Where 𝑋  is the parameter vector, 𝐷  is the data set, 𝑃(𝑋|𝐷)  is the joint 

posterior distribution of the parameters, 𝑃(𝑋) is the joint prior distribution of 

the parameters, 𝑃(𝐷|𝑋) is the likelihood of the errors observed between the 

data and the model, with that combination of parameters, and 𝑃(𝐷) is an 

unknown constant representing the probability of observing this data set. The 

fact that 𝑃(𝐷)  is unknown is not an issue, because 𝜋  simply needs to be 

proportional to the posterior distribution, which is the target. 

In this chapter, the choice for 𝑃(𝑋)  is a product of independent marginal 

distributions. Most marginal distributions are uniform distributions on (0, 𝑀𝑖], 

where the 𝑀𝑖 are chosen depending on the type of parameters they apply to. 

Model equations are built around Hill equations and exponential degradation 

terms and typically look like 
𝑑𝑋

𝑑𝑡
= 𝛽

𝑌𝑛

𝐾𝑛+𝑌𝑛 − 𝑑. 𝑋 , where 𝑋  and 𝑌  are 

modelled species, and 𝛽, 𝐾, 𝑛 and 𝑑 are parameters. The upper bounds for 𝛽, 

 𝐾 and 𝑛 parameters were chosen as 109, 100 times the maximum value of 𝑌, 

and 10, respectively. For 𝑑-type parameters, the upper bound is 109 when the 

parameters are optimized without prior information. In the later models 

though, prior information from a study of mRNA half-lives was taken into 

account (Narsai et al., 2007), leading to the replacement of the uniform prior 

for degradation parameters by a normal distribution 𝒩(1.000, 0.392) 

matching the reported average value and confidence intervals. 

 𝑃(𝐷|𝑋) is a function of the model predictions and the observed data, for two 

types of measurements: gene expression and flowering time. 
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𝑃(𝐷|𝑋) = 𝑃(𝐷𝑔|𝑋). 𝑃(𝐷𝑓|𝑋) 

= (∏ ∏ 𝑃(𝐷𝑔𝑖𝑡
|𝑋)

𝑛𝑡

𝑡=1

𝑛𝑔

𝑖=1

) . ∏ 𝑃 (𝐷𝑓𝑗
|𝑋)

𝑛𝑓

𝑗=1

 

= (∏ ∏ 𝜙0,𝜎𝑔𝑖𝑡
2 (𝐷𝑔𝑖𝑡

− 𝑚𝑔𝑖
(𝐴𝑖𝑡, 𝑋))

𝑛𝑡

𝑡=1

𝑛𝑔

𝑖=1

) ∙ ∏ 𝜙0,𝜎𝑓
2 (𝐷𝑓𝑗

− 𝑚𝑓(𝐵𝑗 , 𝑋))

𝑛𝑓

𝑗=1

 

Where 𝐷𝑔  and 𝐷𝑓  represent the gene expression and flowering time 

measurements, respectively, 𝑛𝑔 is the number of genes, 𝑛𝑡  is the number of 

observations per gene, 𝑛𝑓  is the number of flowering time measurements, 𝜙 

is the normal probability density function, 𝜎𝑔𝑖𝑡
2  and 𝜎𝑓

2 are the variances of the 

 𝐷𝑔𝑖𝑡
 and 𝐷𝑓𝑗

, respectively, 𝑚𝑔𝑖
 and 𝑚𝑓  are functions representing how the 

model computes the expression level of gene 𝑖  and flowering time, 

respectively, and 𝐴𝑖𝑡  and 𝐵𝑗  are input data used to compute the expression 

level of gene 𝑖 at time 𝑡 and flowering time of plant 𝑗, respectively. 

The 𝜎𝑔𝑖𝑡
are derived from the data. 

𝜎𝑔𝑖𝑡
= 𝑠𝑔𝑖𝑡

+ 0.01 ( max
𝑡∈⟦1,𝑛𝑡⟧

𝐷𝑔𝑖𝑡
− min

𝑡∈⟦1,𝑛𝑡⟧
𝐷𝑔𝑖𝑡

) 

Where 𝑠𝑔𝑖𝑡
 is the empirical standard deviation of the data. The added 1% of 

the range of the measurements is to account for measurements where the 

empirical standard deviation is 0 (typically, when the measurements 

themselves are all 0). 

For flowering times, simply using the empirical standard deviations resulted in 

the flowering time data being neglected in favour of the expression data. 
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Therefore, they were replaced by a common 𝜎𝑓  proportional to the range of 

measurements: 

𝜎𝑓 = 0.001 ( max
𝑖∈⟦1,𝑛𝑖⟧

𝐷𝑓𝑖
− min

𝑖∈⟦1,𝑛𝑖⟧
𝐷𝑓𝑖

) 

The 0.001 value was chosen by trial and error. Higher values (e.g. 0.01) also 

resulted in the flowering time data being mostly ignored in favour of minor fit 

improvements on the expression data. This was possibly because low-variance 

gene expression data points had too much weight. 

Using the formula of 𝜙  (where 𝜋  is not a distribution, but the usual 𝜋 =

3.14 …): 

𝜙𝜇,𝜎2(𝑥) =
1

√2𝜋𝜎2
exp (

(𝑥 − 𝜇)2

2𝜎2
) 

It comes that 

𝑃(𝐷|𝑋)

∝ (∏ ∏ exp (
(𝐷𝑔𝑖𝑡

− 𝑚𝑔𝑖
(𝐴𝑖𝑡, 𝑋))

2

2𝜎𝑔𝑖𝑡
2

) 

𝑛𝑡

𝑡=1

𝑛𝑔

𝑖=1

) ∏ exp (
(𝐷𝑓𝑗

− 𝑚𝑓(𝐵𝑗 , 𝑋))
2

2𝜎𝑓
2 ) 

𝑛𝑓

𝑗=1

 

Let  

𝑈(𝑋)

= (∏ ∏ exp (
(𝐷𝑔𝑖𝑡

− 𝑚𝑔𝑖
(𝐴𝑖𝑡 , 𝑋))

2

2𝜎𝑔𝑖𝑡
2

) 

𝑛𝑡

𝑡=1

𝑛𝑔

𝑖=1

) ∏ exp (
(𝐷𝑓𝑗

− 𝑚𝑓(𝐵𝑗 , 𝑋))
2

2𝜎𝑓
2 ) 

𝑛𝑓

𝑗=1
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Based on the formula of 𝑃(𝑋|𝐷), 𝑃(𝑋|𝐷) ∝ 𝑃(𝑋). 𝑈(𝑋). 

Instead of working with 𝑈(𝑋)  as a product of exponentials, it is 

computationally cheaper to work with its logarithm. 

ln 𝑈(𝑋) = ∑ ∑
(𝐷𝑔𝑖𝑡

− 𝑚𝑔𝑖
(𝐴𝑖𝑡, 𝑋))

2

2𝜎𝑔𝑖𝑡
2

𝑛𝑡

𝑡=1

𝑛𝑔

𝑖=1

+ ∑
(𝐷𝑓𝑗

− 𝑚𝑓(𝐵𝑗 , 𝑋))
2

2𝜎𝑓
2

𝑛𝑓

𝑗=1

 

Let 

𝜋′(𝑋) = 𝑃(𝑋). 𝑈(𝑋) 

ln 𝜋′ (𝑋) = ln 𝑃(𝑋) + ln 𝑈(𝑋) 

ln 𝜋′ is the argument expected by the adaptMCMC package. 

3.3. RESULTS 

The first subproject was the possibility of integrating the vernalization pathway 

into an ODE model of the floral transition. 

3.3.1. An ODE model of vernalization was able to reproduce the 

quantitative regulation of FLC expression at the tissue scale 

Angel and colleagues developed a stochastic model of the silencing of FLC 

during vernalization (Angel et al., 2011). This model focused on demonstrating 

that the silencing of FLC at the plant scale resulted from a stochastic process, 

whereby individual cells decided to repress FLC in an independent, all-or-

nothing way. Quantitative variations in the expression of FLC at the plant scale 

therefore depend on the proportions of “on” cells and “off” cells, as opposed 

to synchronous, quantitative variations in the expression levels of all cells. 
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Angel and colleagues modelled the histones of the FLC locus individually. 

During the simulation, histones have probabilities of switching between three 

states: unmodified, methylated and activating. Methylated histones silence 

the expression of FLC, while activating ones enhance it. The methylated and 

activating states can spread, i.e. their presence increases the probabilities of 

other histones to switch to their respective states and away from their 

opposite states, which creates regulatory loops conducive to a bistable system 

at the cell level. The transition probabilities are also affected by whether they 

belong to a special region of the locus or not (the nucleation region) and 

temperature. Initially, most histones are in the activating state, and remain so, 

due to a slight bias of transition probabilities toward activation. When the 

plant is exposed to cold, the probability of histone methylation increases at the 

nucleation region, thereby making the histones of the nucleation region more 

likely to be methylated. When the plant returns to warm conditions, there may 

be enough methylated histones in the nucleation region to shift the bias 

toward methylation in the rest of the locus, resulting in the propagation of 

histone methylation to the whole locus. Therefore, individual cells either 

silence FLC completely or not at all. This stochastic model can however still 

explain the fact that the overall FLC expression of a plant decreases gradually 

with the duration of the exposure to cold, because this duration does affect 

the methylation of the nucleation region and therefore the probability that a 

cell will silence FLC. At the plant or tissue level, the expression of all cells are 
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averaged, so the overall expression level is determined by the proportion of 

silenced cells. 

In order to avoid running stochastic simulations of cell populations to feed 

their results into an ODE model, the possibility of directly modelling the 

silencing of FLC at the plant or tissue level using ODEs was studied. 

An ODE model inspired by the mechanism proposed by Angel and colleagues 

was developed (Equation 3.1). It only considers two histone states: methylated 

and unmodified, as this was sufficient to create a system where methylation 

levels are stable before and after cold treatment. It relies on the following 

principles: 

1. Two regions are considered within the FLC locus: the nucleation site 

and the distal region. At the beginning of the simulation, they are both 

unmethylated (𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 = 0 and 𝑚𝑑𝑖𝑠𝑡𝑎𝑙 = 0). 

2. In warm weather, the histones of both regions remain unmethylated: 

a.  
𝑑(𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛)

𝑑𝑡
= 0, because 𝑐𝑜𝑙𝑑 = 0. 

b. 
𝑑(𝑚𝑑𝑖𝑠𝑡𝑎𝑙)

𝑑𝑡
= 0, because 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛=0. 

3. During a period of cold (𝑐𝑜𝑙𝑑 = 1), the histones of the nucleation site 

get methylated, both spontaneously (due to 𝜖) and as the result of the 

spreading of the methylation marks (due to 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛. (1 −

𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛) ). The spreading term is a logistic function because it 

requires both the presence of methylated and unmethylated histones 

in the nucleation zone to occur. Methylation also starts spreading from 
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the nucleation site to the distal region, which is represented by a 

product of three terms: 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛. (1 − 𝑚𝑑𝑖𝑠𝑡𝑎𝑙). (1 − 𝛽. 𝑐𝑜𝑙𝑑). The 

first two factors are because the spreading of methylation marks from 

the nucleation zone to the distal zone requires both methylated 

histones in the nucleation zone and unmethylated histones in the distal 

zone. and warmth. The third factor is because that spreading is faster 

in warm weather than in cold weather (0 < 𝛽 < 1). 

4. After returning to warm weather (𝑐𝑜𝑙𝑑 = 0), methylation stops at the 

nucleation site, and the level of methylation sustains itself, therefore 

no degradation term was added to the equation of 
𝑑(𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛)

𝑑𝑡
. 

Meanwhile, the spreading of methylation from the nucleation zone to 

the distal zone picks up, as it is facilitated by warmth. However, the 

methylation of the distal zone reaches a steady state that is not always 

complete methylation, but is a non-decreasing function of the duration 

of the exposure to cold. Therefore, a degradation term was added to 

the equation of 
𝑑(𝑚𝑑𝑖𝑠𝑡𝑎𝑙)

𝑑𝑡
. 

The expression of FLC was modelled as inhibited by cold and the methylation 

of the distal region. A delay was introduced into the effect of temperature (1 −

𝑐𝑜𝑙𝑑(𝑡 − 𝛿)), to prevent a transient expression of FLC after returning to warm 

conditions, during the time it takes for methylation marks to spread from the 

nucleation region to the distal region. The effect of distal methylation was 
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raised to the power of 𝑛 ((1 − 𝑚𝑑𝑖𝑠𝑡𝑎𝑙(𝑡))
𝑛

) to sharpen the response of FLC 

expression to variations in 𝑚𝑑𝑖𝑠𝑡𝑎𝑙. 

Similarly to Angel and colleagues’ model, the ODE model was able to capture 

that short cold exposures barely affect the expression level of FLC, but longer 

ones do lead to its repression. The intensity of the repression increases with 

the duration of the exposure, until saturation is reached (Figure 3.4). 



 

83 

Equation 3.1. ODE model of FLC silencing. 

𝑑(𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛)

𝑑𝑡
= 𝑐𝑜𝑙𝑑. (𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛. 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛. (1 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛) + 𝜖) 

𝑑(𝑚𝑑𝑖𝑠𝑡𝑎𝑙)

𝑑𝑡
= 𝛼𝑑𝑖𝑠𝑡𝑎𝑙. 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛. (1 − 𝑚𝑑𝑖𝑠𝑡𝑎𝑙). (1 − 𝛽. 𝑐𝑜𝑙𝑑) − 𝑘. 𝑚𝑑𝑖𝑠𝑡𝑎𝑙 

𝐹𝐿𝐶(𝑡) = (1 − 𝑐𝑜𝑙𝑑(𝑡 − 𝛿)). (1 − 𝑚𝑑𝑖𝑠𝑡𝑎𝑙(𝑡))
𝑛

 

• 𝑚𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛: proportion of methylated histones at the nucleation site 

of FLC 

• 𝑚𝑑𝑖𝑠𝑡𝑎𝑙: proportion of methylated histones in the distal region of FLC 

• 𝑡: time 

• 𝑐𝑜𝑙𝑑 ∈ {0, 1} : whether the current temperature is under a certain 

threshold or not 

• 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 : propagation rate of histone methylation rate at the 

nucleation site in cold weather 

• 𝜖: rate of spontaneous histone methylation at the nucleation site in 

cold weather 

• 𝛼𝑑𝑖𝑠𝑡𝑎𝑙: propagation rate of histone methylation in the distal region 

• 𝛽 ∈ [0, 1] : inhibition coefficient for the propagation of histone 

methylation in cold weather 

• 𝑘: histone demethylation rate in the distal region 

• 𝛿: delay in the effect of temperature on FLC expression (d) 

• 𝑛: coefficient regulating the stiffness of the response of FLC expression 

to the methylation of the distal region 



 

84 

 

Figure 3.4. Gradual silencing of FLC expression in response to varying 

durations of exposure to cold. For short durations of exposure to cold, 

virtually no reduction in FLC expression occurs. As the duration of exposure 

increases, the expression level of FLC after returning to warm temperatures 

decreases, until that effect reaches saturation. Parameter values: 𝜖 = 10−4, 

𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 = 0.07, 𝛼𝑑𝑖𝑠𝑡𝑎𝑙 = 0.05, 𝛽 =0.9, 𝑘 = 0.05, 𝛿 = 1.5 𝑑, 𝑛 = 4. 

This demonstrates that, even though the methylation of histones at the FLC 

locus is a stochastic process in nature, a deterministic ODE model can 

represent it accurately at the tissue level. It is therefore not necessary to model 

vernalization at the cell level to study its effect on the floral transition pathway. 

The original plan was to integrate this model of vernalization into an ODE 

model of the floral transition developed from scratch. However, it appeared 
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through a collaboration with Wageningen University that an ODE model of the 

floral transition in A. thaliana was already being developed by Valentim and 

colleagues, from Aalt-Jan van Dijk’s team (Valentim et al., 2015). The plan 

therefore shifted to expanding Valentim and colleagues’ model to include the 

effects of vernalization. An attempt to generate data suitable to fit such a 

model was part of this effort. 

3.3.2. The measurement of the effects of vernalization on gene expression 

in the floral transition network was affected by repeatability issues 

Samples harvested from plants that had undergone a 3-week cold treatment 

were subjected to qRT-PCR analyses on four separate occasions by Enza, a 

partner company of the University of Wageningen., however the results 

exhibited so much variability that the actual kinetics of genetic expression 

could not be ascertained. The measurements are shown for two genes, FLC 

and SOC1, as examples of the observed variability (Figure 3.5) These genes 

were selected as examples because their theoretical behaviour during and 

after a cold treatment is known: FLC should be silenced by the cold treatment 

and remain silent thereafter, while SOC1 is normally upregulated during the 

floral transition, which should happen after the cold treatment, if at all. As 

these expected behaviours cannot be seen consistently in the results, these 

experiments were considered unsuccessful.  
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8

 

Figure 3.5. FLC and SOC1 expression levels relative to YLS8 in the meristems, 

as measured by four Fluidigm qRT-PCRs. Each line colour corresponds to a 

different experiment. All four qRT-PCRs were carried out by Enza on the same 

biological samples. The cold treatment occurred from day 0 to day 21. After 

day 21, the plants were grown in warm conditions. 

3.3.3. Cold treatment decreases flowering time 

Studying the effect of cold treatments on flowering time is not straight-

forward because a 4˚C cold treatment all but halts the development of 
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seedlings, at least from a morphological point of view. It is unclear whether 

development at the molecular level (gene expression profiles) is affected as 

much as at the macroscopic level (size of the plant and number of leaves), but 

it seems plausible and is commonly accepted, hence the wide-spread practice 

of counting flowering time in number of rosette leaves instead of actual time. 

In this study, the notion of adjusted bolting time was introduced to respond to 

the same concern, while keeping measurements of flowering time in a 

standard time unit. It is defined as the bolting time (from sowing to bolting), 

minus the duration of the cold treatment. 

Results show that increasing durations of cold treatment lead to reductions in 

bolting time and adjusted bolting time (Table 3.2) The cold treatment required 

to saturate the vernalization response does not seem to have been reached, 

and this might be why flowering occurred later than expected. This 

unfortunately resulted in the pool of plants allocated to dissection being 

depleted before flowering could be observed macroscopically, as the number 

of plants to grow for the experiment had been calculated under the 

assumption that the plants undergoing a 3-week cold treatment would flower 

in 49 days at most (i.e. 14 days in the last chamber). Another argument in 

favour of stopping the harvesting was that the floral transition might have 

already occurred at the molecular (gene expression) level. 

While the experiments were being carried out, an analysis of Valentim and 

colleagues’ model was also made. Those results are presented in the next 

section. 
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Table 3.2. Influence of vernalization on the flowering time of FRI+ Col-0 

plants. Bolting time values are given as average ± standard error. 

Cold-
treatment 
(weeks) 

Bolting time 
(days after 
sowing) 

Bolting time 
(days after 
induction) 

Adjusted 
bolting time 
(days) 

Number of 
individuals 

0 90.64 ± 0.70 76.64 ± 0.70 90.64 ± 0.70 45 

1 76.05 ± 1.68 62.05 ± 1.68 69.05 ± 1.68 19 

2 75.25 ± 0.78 61.25 ± 0.78 61.25 ± 0.78 40 

3 68.11 ± 0.22 54.11 ± 0.22 47.11 ± 0.22 90 

3.3.4.  Valentim and colleagues’ model of the floral transition can be 

simplified 

At first glance, Valentim and colleagues’ model (Valentim et al., 2015) seemed 

very complex with respect to its predictions, therefore a complexity reduction 

was attempted. This attempt was supported by the finding in Chapter 2 that 

gene regulation equations can involve very few parameters, while the original 

model (Valentim et al.’s) featured 35 parameters. 

The original model was fitted to two types of data: time series of gene 

expression and flowering time measurements. However, the parameters 

retained by Valentim and colleagues fitted the flowering time data rather 

poorly (Figure 3.6), because AP1 is overestimated (Figure 3.2). Reoptimizing 

the parameters with RAM resulted in better fits (Figure 3.7 and Figure 3.8), but 

also revealed other issues. 
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Figure 3.6. Predicted flowering times using the original model with the 

reported parameters. Flowering time is underestimated for all genotypes. 

 

Figure 3.7. Predicted flowering times using the original model reoptimized 

with RAM. Flowering times are well predicted, except for lfy-12. 
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Figure 3.8. Predicted gene expression using the original model reoptimized 

with RAM. Gene expression is well predicted, except for FT. 
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Figure 3.9. Distribution of the parameters of the original model sampled by 

RAM.  The grey line is the trace of the values sampled by RAM. The black line 

is the kernel estimation of the density. The red line is the optimal value. 
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Table 3.3. Optimal values of the parameters of the original model. 

Parameter Value 

beta1 69.88392 

beta2 262.571 

beta3 90.02974 

beta4 36.38466 

beta5 2144.1 

beta6 7.70E-05 

beta7 75.60066 

beta8 1.024824 

beta9 5.06396 

beta10 0.043398 

beta11 7.49E-05 

beta12 652.836 

d1 0.000122 

d2 0.002795 

d3 0.893741 

d4 0.084881 

d5 0.000333 

d6 0.0436 

K1 0.064031 

K2 0.895105 

K3 333.3299 

K4 11211.01 

K5 2.29E+01 

K6 0.862488 

K7 38.46168 

K8 17808.81 

K9 298.9328 

K10 117.813 

K11 8681.21 

K12 620.6245 

K13 3.35E+00 

K14 0.206951 

K15 2369.714 

K16 557.6477 

n 9.989972 

First, out of the six degradation coefficients, three have near 0 values (Figure 

3.9, Table 3.3). This seems at odds with a study that measured the half-lives of 

several mRNAs including SOC1, which was found to have a degradation 
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coefficient of 1.000 d-1 (95% confidence interval: [0.24, 1.78]) (Narsai et al., 

2007). As none of the other modelled mRNAs were investigated in that study, 

the gene-specific degradation parameters 𝑑𝑖  were replaced by a single 

parameter 𝑑  applying to all genes. A prior distribution 𝒩(1.000, 0.392) 

(corresponding to the reported confidence interval) was used for 𝑑. 

Second, many 𝐾𝑖 coefficients (𝐾3,𝐾12, 𝐾14, 𝐾15 and 𝐾16) of Hill equations for 

activations (𝑥 ↦
𝑥𝑛

𝐾𝑖
𝑛+𝑥𝑛) had values over 8 times the maximum observed value 

of 𝑥. This means those Hill equations actually became quasi-polynomial (or 

quasi-linear if 𝑛=1) in the domain corresponding to the simulation. They were 

therefore replaced by polynomial or linear equations accordingly. 

Third, the 𝐾𝑖  coefficients of some Hill equations for inhibitions (𝑥 ↦
𝐾𝑖

𝑛

𝐾𝑖
𝑛+𝑥𝑛) 

had values resulting in fold changes of less than 1.08 in the range of 𝑥 

observed. This was the case of 𝐾8 and 𝐾9. The corresponding Hill equations 

were therefore replaced by 1. 

Fourth, the distributions of some 𝛽𝑖 parameters are “leaning” on 0, showing 

their associated effects are negligible. This is the case of 𝛽6 (AGL24 → LFY) and 

𝛽11 (FD → AP1). Those effects were therefore removed from the equations. 

Finally, some mutations (flc, agl24 and lfy) have little or no effect on flowering 

time, according to the data. Therefore, LFY was removed from the equation of 

AP1. However, this would make AP1 SOC1-independent, and the soc1 

mutation is known to have a late-flowering effect, so a term similar to the LFY 
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one was reintroduced using SOC1 instead. LFY was also removed from the 

equation of FD, because since LFY was the only regulator of FD, a lfy mutation 

should have resulted in the complete silencing of FD, but the fd mutation has 

a stronger late-flowering effect than the lfy one. As no regulator of FD 

remained, FD was no longer modelled, and interpolated measurements were 

used as inputs for the other equations of the model. As agl24 has nearly no 

effect on flowering time, the effects of AGL24 were removed from the 

equations of SOC1, which is upstream of AP1 (it had already been removed 

from the equation of LFY). Finally, the effect of FLC was removed from the 

equations of FT (it had already been removed from the equation of SOC1). 

However, FT only had one incoming regulation left – a repression by SVP – and 

the SVP measurements in leaves (Figure 3.1) cannot explain the upregulation 

of FT observed in the data. Therefore, a time-dependent term representing 

regulations by unknown species was added to the equation of FT. 

These changes are summarized in Table 3.4. The predictions of Model 1 are 

shown in Figure 3.10 and Figure 3.11. The optimal parameter values 

(likelihood-wise) are in Table 3.5. 
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Table 3.4. Changes between the original model and Model 1. Changes are 

highlighted in red. 

Derivative Original model Model 1 

𝑑𝐹𝑇

𝑑𝑡
 𝛽1

𝐾1

𝐾1 + 𝑆𝑉𝑃𝑙𝑒𝑎𝑓
∙

𝐾2

𝐾2 + 𝐹𝐿𝐶𝑙𝑒𝑎𝑓

− 𝑑1. 𝐹𝑇 

𝛽1

𝐾1

𝐾1 + 𝑆𝑉𝑃𝑙𝑒𝑎𝑓

∙
𝑡𝑛𝑡

𝐾𝑡
𝑛𝑡 + 𝑡𝑛𝑡

− 𝑑. 𝐹𝑇 

𝑑𝐴𝐺𝐿24

𝑑𝑡
  𝛽2

𝑆𝑂𝐶1

𝐾3 + 𝑆𝑂𝐶1
− 𝑑2. 𝐴𝐺𝐿24 

𝛽2. 𝑆𝑂𝐶1 − 𝑑. 𝐴𝐺𝐿24 

𝑑𝑆𝑂𝐶1

𝑑𝑡
 (𝛽3

𝐴𝐺𝐿24

𝐾4 + 𝐴𝐺𝐿24
+ 𝛽4

𝑆𝑂𝐶1

𝐾5 + 𝑆𝑂𝐶1

+ 𝛽5

𝐹𝑇

𝐾6 + 𝐹𝑇

𝐹𝐷

𝐾7 + 𝐹𝐷
)

∙
𝐾8

𝐾8 + 𝑆𝑉𝑃

𝐾9

𝐾9 + 𝐹𝐿𝐶
− 𝑑3. 𝑆𝑂𝐶1  

𝛽4

𝑆𝑂𝐶1

𝐾5 + 𝑆𝑂𝐶1

+ 𝛽5

𝐹𝑇

𝐾6 + 𝐹𝑇

𝐹𝐷

𝐾7 + 𝐹𝐷
− 𝑑. 𝑆𝑂𝐶1 

𝑑𝐿𝐹𝑌

𝑑𝑡
 𝛽6

𝐴𝐺𝐿24

𝐾10 + 𝐴𝐺𝐿24

+  𝛽7

𝑆𝑂𝐶1

𝐾11 + 𝑆𝑂𝐶1

+ 𝛽8

𝐴𝑃1

𝐾12 + 𝐴𝑃1
− 𝑑4. 𝐿𝐹𝑌 

𝛽7

𝑆𝑂𝐶1

𝐾11 + 𝑆𝑂𝐶1
+ 𝛽8. 𝐴𝑃1

− 𝑑. 𝐿𝐹𝑌 

𝑑𝐴𝑃1

𝐴𝑃1
 𝛽9

𝐿𝐹𝑌𝑛

𝐾13
𝑛 + 𝐿𝐹𝑌𝑛

+ 𝛽10

𝐹𝑇

𝐾14 + 𝐹𝑇

+ 𝛽11

𝐹𝐷

𝐾15 + 𝐹𝐷
− 𝑑5. 𝐴𝑃1 

𝛽9

𝑆𝑂𝐶1𝑛

𝐾13
𝑛 + 𝑆𝑂𝐶1𝑛

+ 𝛽10. 𝐹𝑇

− 𝑑. 𝐴𝑃1 

𝑑𝐹𝐷

𝑑𝑡
 𝛽12

𝐿𝐹𝑌

𝐾16 + 𝐿𝐹𝑌
− 𝑑6. 𝐹𝐷 
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Figure 3.10. Flowering times predicted by Model 1. Flowering times are 

overall well predicted, but the effect of the svp mutation are underestimated. 

 

Figure 3.11. Gene expression predicted by Model 1. The predictions are not 

too far from the data points, but the curvatures of the predictions are off. 
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Table 3.5. Optimal parameter values for Model 1. 

Parameter Value 

beta1 0.142997 

beta2 0.748411 

beta4 515.1157 

beta5 200220.1 

beta7 37.20443 

beta8 0.074734 

beta9 1E+09 

beta10 0.067994 

d 0.050156 

K1 73.02524 

K5 8567.636 

K6 81.58542 

K7 1256.276 

K11 6001.799 

K13 597.4586 

Kt 3.95E-10 

n 9.213486 

nt 0.348851 

The simplifications introduced in Model 1 fixed the issue with the flowering 

time of the lfy mutant. However, they also introduced other issues. Gene 

expression fits are overall poorer (Table 3.8), especially for AP1, whose final 

measurement is extremely overestimated due to the steepness of the 

predicted curve, resulting in an NMRSE of 140%. The flowering times of the 

various svp mutants were also overestimated. As the svp mutation results in 

the upregulation of FT, this suggested that the effect of FT was underestimated 

in that context. 

To improve the fit of the AP1 and flowering time predictions, the FT term was 

raised to the power of 𝑛2, to provide more flexibility in the regulation of AP1. 

The effect of AP1 on LFY was removed, as it seemed to negatively affect the 

curvature of the LFY prediction and did not seem required, based on the gene 
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expression and flowering time data. Finally, all remaining 𝐾𝑖 coefficients were 

removed, as they were all over 10 times the maximum expression value 

observed for their respective regulators. All these changes were implemented 

into Model 2. 

The predictions of Model 2 are shown in Figure 3.12 and Figure 3.13. The 

optimal parameter values are in Table 3.7. 

Model 2 only contains 13 parameters, yet rivals the original model in terms of 

goodness of fit (Table 3.8). It therefore appears to be a good replacement. 

Interestingly, it could even be simplified further if flowering time data are 

ignored, as is shown in the following section. 
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Table 3.6. Changes between Model 1 and Model 2. Changes are highlighted 

in red. 

Derivative Model 1 Model 2 

𝑑𝐹𝑇

𝑑𝑡
 𝛽1

𝐾1

𝐾1 + 𝑆𝑉𝑃𝑙𝑒𝑎𝑓
∙

𝑡𝑛𝑡

𝐾𝑡
𝑛𝑡 + 𝑡𝑛𝑡

− 𝑑. 𝐹𝑇 

𝛽1

𝐾1

𝐾1 + 𝑆𝑉𝑃𝑙𝑒𝑎𝑓

∙
𝑡𝑛𝑡

𝐾𝑡
𝑛𝑡 + 𝑡𝑛𝑡

− 𝑑. 𝐹𝑇 

𝑑𝐴𝐺𝐿24

𝑑𝑡
  

𝛽2. 𝑆𝑂𝐶1 − 𝑑. 𝐴𝐺𝐿24 𝛽2. 𝑆𝑂𝐶1 − 𝑑. 𝐴𝐺𝐿24 

𝑑𝑆𝑂𝐶1

𝑑𝑡
 𝛽4

𝑆𝑂𝐶1

𝐾5 + 𝑆𝑂𝐶1

+ 𝛽5

𝐹𝑇

𝐾6 + 𝐹𝑇

𝐹𝐷

𝐾7 + 𝐹𝐷
− 𝑑. 𝑆𝑂𝐶1 

𝛽4. 𝑆𝑂𝐶1 + 𝛽5. 𝐹𝑇. 𝐹𝐷
− 𝑑. 𝑆𝑂𝐶1 

𝑑𝐿𝐹𝑌

𝑑𝑡
 𝛽7

𝑆𝑂𝐶1

𝐾11 + 𝑆𝑂𝐶1
+ 𝛽8. 𝐴𝑃1

− 𝑑. 𝐿𝐹𝑌 

𝛽7. 𝑆𝑂𝐶1 − 𝑑. 𝐿𝐹𝑌 

𝑑𝐴𝑃1

𝐴𝑃1
 𝛽9

𝑆𝑂𝐶1𝑛

𝐾13
𝑛 + 𝑆𝑂𝐶1𝑛

+ 𝛽10. 𝐹𝑇

− 𝑑. 𝐴𝑃1 

𝛽9. 𝑆𝑂𝐶1𝑛1 + 𝛽10. 𝐹𝑇𝑛2

− 𝑑. 𝐴𝑃1 
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Figure 3.12. Flowering time predictions of Model 2. Flowering times are 

overall well predicted, although the effects of the svp mutation is still slightly 

underestimated. 
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Figure 3.13. Gene expression predictions of Model 2. Gene expression is 

overall well predicted, though AP1 is slightly underestimated past 13 days 

(after flowering has occurred). 

Table 3.7. Optimal parameter values for Model 2. 

Parameter Value 

beta1 0.293154 

beta2 0.6502 

beta4 0.043441 

beta5 2.251851 

beta7 0.005528 

beta9 7.30E-08 

beta10 1.46E-01 

d 0.040861 

K1 83.66373 

Kt 4.849048 

n1 3.377892 

n2 9.980918 

nt 9.967795 
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Table 3.8. Normalised root-mean square error (NRMSE) values of modelled 

genes and flowering time, for all fitted models. 

Variable Original 
model with 
reported 
parameters 

Original 
models 
reoptimized 
with RAM 

Model 1 Model 2 

FT 27% 54% 47% 35% 

SOC1 19% 25% 37% 27% 

AGL24 7% 7% 14% 10% 

LFY 7% 7% 15% 15% 

AP1 14% 4% 140% 23% 

Flowering 
time 

42% 6% 7% 5% 

3.3.5. The gene expression time series alone do not contain enough 

information to determine the topology of the regulatory network 

Valentim and colleagues’ model is sensible from a biological point of view. The 

interactions it involves are supported by biological evidence and are modelled 

by Michaelis-Menten or Hill equations to account for the existence of upper 

limits on synthesis rates. However, the fact that it could be simplified 

drastically (from 35 to 13 parameters) while retaining nearly the same 

goodness of fit as the original shows there are not enough data to fit such a 

complex model. The time series are particularly uninformative, since they do 

not exhibit any deceleration of gene expressions and therefore provide no way 

of estimating the parameters associated with the plateaux of the Hill and 

Michaelis-Menten functions. To illustrate this, a deliberately uninformative 
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ODE model, where SOC1, AGL24, LFY and AP1 are each exclusively self-

activated (
𝑑𝑥𝑖

𝑑𝑡
= 𝑎𝑖𝑥𝑖, 𝑎𝑖 ∈ ℝ+), was fitted to their time series. The resulting 

fits were once again good (Figure 3.14), showing that the time series of the key 

floral transition genes are essentially exponential curves and therefore contain 

very little information, as it would be possible to build models with completely 

erroneous topologies if it were not for the prior biological evidence available 

in the literature. One could for instance build a model by picking a random 

activator for each of SOC1, AGL24, LFY and AP1. FT is the only gene that does 

not suffer from this issue. 
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Figure 3.14: Fit of the deliberately uninformative self-activation model. In this 

model, AGL24, SOC1, LFY and AP1 are only up-regulated by themselves, 

resulting in exponential growths of their expression levels. This overly simplistic, 

biology-unrelated model still provides adequate fits, which indicates that the 

time series are not very informative. 

It was apparent in Figure 3.14 that some time series look very similar to each 

other. To assess the matter in a more quantitative way, the correlations for 

each pair of genes were computed (Figure 3.15). 
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Figure 3.15. Correlations of time series in the WT. Background colours indicate 

absolute values of correlation. 

Genes CLV3, STM and TFL1 are not part of any of the models studied, but were 

added to the set for two reasons. STM and CLV3 were included because they 

are meristem markers, and TFL1 is a candidate gene to be included into an 

expanded model, as it is a key repressor of the floral transition. The expression 

of these three genes was measured on the biological samples used by Valentim 

and colleagues. 
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AP1, TFL1, LFY, FLC, SVP, FD, AGL24 and SOC1 form a cluster of mutually highly 

correlated genes. The cause of these correlations is still unclear, however, two 

hypotheses have been proposed: 

1. These genes are genuinely all up-regulated by a common factor. This 

makes sense for meristem genes (SOC1, AGL24, LFY, AP1, TFL1, FD), 

which are all under the control – direct or indirect – of SOC1. However, 

FLC and SVP expression are also correlated to those of the previously 

mentioned genes, which is unexpected, as they are supposed to inhibit 

them. 

2. The correlated time series are artefacts resulting from the method of 

data acquisition. Three reasons have been considered. 

a. YLS8 is unsuitable as a reference gene, because its expression 

level or the size of its expression domain decreases during 

development, causing an apparent increase in the expression 

levels of the genes of interest. 

b. The proportions of the expression domains of the genes of 

interest with respect to the size of the biological tissue sampled 

increases over time. This could be due to the fact that the 

subset of the tissue actually expressing the genes of interest is 

small compared to the total size of the sample, but as the plant 

and its apex grow, harvesting the meristem becomes more 

accurate, causing the fraction of meristematic tissue in the 

sample to increase. However, in truth, the meristem is a highly 
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heterogeneous tissue, and it does not really make sense to talk 

about a ratio of “meristematic tissue” in the sample, as not all 

meristematic genes are expressed in all cells of the “meristem”. 

c. A more generic version of hypothesis 2b is that the composition 

of the sample – in terms of number of cells of each cell type – 

changes over time. This is highly likely for floral identity genes, 

such as LFY and AP1, as they are expressed in floral primordia, 

which are non-existent at the beginning of the time series, 

appear during the floral transition and become more and more 

numerous subsequently. For inflorescence identity genes, this 

is more debatable. The expression domains of STM and AGL24 

seem to spread down the shoot after the floral transition (Geier 

et al., 2008; Michaels et al., 2003), which could contribute to 

the kinetics observed for those genes. The measurements of 

CLV3 – a gene expressed at the very tip of the SAM – do not 

show the same increase as the floral transition-related genes. 

Their values actually decrease over time (Figure 3.16) Assuming 

that the pool of CLV3-expressing cells remains the same size all 

the time due to homeostasis and that the expression level of 

these cells remains constant, this would support the hypothesis 

that the composition of the sample varies over time. However, 

in the case of CLV3, it would be a dilution rather than an 

enrichment. The main limit of this hypothesis is that there is no 
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obvious reason why the large majority of the correlated genes 

should be upregulated proportionally to each other when their 

expression domains have different shapes. A possible 

explanation would be that the SAM has some built-in regularity 

causing the sizes of all expression domains to respect universal 

ratios. This is somewhat plausible, as the SAM has a repetitive 

pattern stemming from the continuous generation of identical 

lateral organs. 

These hypotheses are not mutually exclusive, but there is evidence that 

hypothesis 2c needs to be investigated further. 
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Figure 3.16. Evolution of CLV3 and STM relative concentrations during the 

growth of the WT plants. The measurements of CLV3 seem to decrease over 

time, however it could simply be that CLV3 gets more and more diluted in the 

samples, as the samples (and therefore the reference gene’s expression 

domain) grow in absolute size but the expression domain of CLV3 does not. 

This would create a distortion between what the data show (an apparent 

decrease in CLV3 expression) and the actual variable of interest (the intensity 

of CLV3 expression, presumed to be constant). 

3.4. DISCUSSION 

The modelling work presented in this chapter has shown that, like in the 

previous chapter, genetic expression time series can be modelled with very 

simple models. It also raises important questions about the purposes of 

models. 
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3.4.1. Modelling scale matters 

As shown with the ODE model of vernalization, modelling a process in a 

satisfactory manner at a given scale does not require a model to be accurate 

at smaller scales. 

In this particular case, the behaviour of individual cells was ignored and only 

their aggregate behaviour at the scale of the whole tissue was considered. It 

was possible to ignore the spatial organization of the tissue because the 

location of FLC transcription does not change its effect, as the FLC protein 

diffuses throughout the tissue, spatially averaging its distribution. There is also 

no coordination of FLC expression between cells through intercellular 

exchanges, which might have resulted in hard to predict effects. 

In other cases, however, the spatial distribution of genetic expression can have 

crucial roles. 

3.4.2. The spatial organization of the meristem is important to describe how 

it works 

The expressions of some genes are mutually exclusive in a cell. This is the case 

of AP1 and SOC1, or AP1 and FD. This is because AP1 represses these two 

activators in negative feedback loops (Kaufmann et al., 2010). 

If gene expression is analysed at the tissue level (e.g. by qRT-PCR), AP1 will 

appear to be co-expressed with FD and SOC1, because those three genes are 

expressed in the SAM after the floral transition. However, FD and SOC1 are 

expressed in the inflorescence meristem, and AP1 is expressed in the floral 
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meristems. This leads to a problem when trying to fit a single-compartment 

model (i.e. a model that assumes the meristem is homogeneous) to these data, 

as the single-compartment formalism makes it impossible to reconcile the 

expression levels measured in the whole meristem with the topology of the 

regulatory network (e.g. switches and negative feedback loops) and 

complementary observations, such as in situ hybridization (ISH) studies, which 

are more precise spatially but less precise quantitatively. 

The following chapter of this thesis explores in more detail the benefit of 

modelling heterogeneous tissues like the SAM at a higher spatial resolution, 

taking advantage of sources of data like ISH experiments. 

3.4.3. Ignoring spatial organization in development studies can negatively 

affect the experimental design itself 

One of the premises of the modelling work initially planned for this chapter 

was that the expression levels of all the genes included in the model are 

uniform within the meristem. This is however not the case, as mentioned 

above and detailed in the next chapter. The experiments described in this 

chapter and in the works of other authors (Jaeger et al., 2013; Valentim et al., 

2015) were built on that premise, since they model the SAM as a single 

compartment. This consequently compromises their accuracy and 

interpretability. 

The incorrectness of this premise has consequences beyond the formalism 

used for modelling. It also impacts data acquisition methods. In the study 
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carried out by Valentim and colleagues, the model was fitted to qRT-PCR data. 

qRT-PCR requires raw measurements to be normalized to control for variations 

in the quantities of cDNA in the sample. This is usually done by comparing the 

expression levels of the genes of interest to those of housekeeping genes, and 

works fine when the number of cells expressing the gene of interest is 

proportional – or equal – to the number of cells in the sample, across all 

samples. It is however not the case in the SAM during the floral transition, as 

the composition of the sampled tissue varies over time, as a consequence of 

the meristem fulfilling its function: generating new lateral organs. 

Another related issue is that the sampled tissue is larger than just the SAM and 

therefore includes non-meristematic tissue, such as the petioles of the latest 

leaves and the stem of the main shoot, whose ratio is unknown, non-negligible, 

and most likely varying over time. 

qRT-PCR time series are not the only source of data that this work and that of 

Valentim and colleagues were based on. Flowering time data from various 

mutants were also used. However, measuring only flowering time presents 

some issues. 

3.4.4. Flowering time is only one dimension of the floral transition 

In floral transition studies, genes are often characterized as promoters or 

inhibitors of the floral transition, depending on whether the associated 

mutants are late or early flowering. However, flowering genes have more 

functions than simply accelerating or slowing down the timing of flowering, as 
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evidenced by the morphological alterations often accompanying mutations of 

those genes (Irish and Sussex, 1990; Schultz and Haughn, 1991). Fitting models 

of the floral transition primarily on flowering time data therefore seems too 

specific. 

Following on that reasoning, one might question the use of AP1 as a marker of 

the floral transition, as done by Valentim and colleagues. The onset of AP1 

expression empirically marks the completion of the floral transition in WT 

plants, however there is no guarantee that this will apply to mutants. The most 

striking argument, perhaps, is that ap1 mutants still produce flower-like 

structures (although they are devoid of petals, hence the full name of the gene, 

APETALA1). This clearly shows that AP1 is not actually required to produce 

flowers. It suggests that, conversely, mutants could have their AP1 expression 

levels and timing affected, without the timing of their floral transition being 

affected. 

3.4.5. Recommended experimental design for future experiments 

Considering the observations made above, a set of recommendations for 

future experiments was proposed. 

First, with respect to the gene expression measurement method, it appears 

crucial to address the ambiguity regarding whether variations in the measured 

values stem from changes in expression intensity or expression domains. The 

best method to ensure this would probably be to use single-cell measurement 

methods (e.g. single-cell transcriptomics or quantification of fluorescent 
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proteins using confocal microscopy; microscopy might have the added benefit 

of being non-destructive and therefore allow longitudinal studies of the same 

plants). Methods working on subpopulations of cells isolated by micro-

dissection or isolation of nuclei tagged in specific cell types (INTACT) are also 

possible alternatives, although micro-dissection coupled to RNA sequencing 

can lead to highly variable measurements (Torti et al., 2012). However, if 

practical constraints preclude the use of any other method than qRT-PCR on 

crudely dissected samples, it would be very important to identify reference 

genes suitable to normalize measurements while preserving information 

about the intensity of gene expression in the cells of interest. Different 

reference genes could be used for different genes of interest, depending on 

their expression domains. 

The other points address vernalization-specific concerns. First, the cold 

treatments used in this study did not seem to saturate the vernalization 

response of the FRI+ Col-0 plants. According to other sources (Heo and Sung, 

2011), it might require between 30 days of cold treatment, which could not be 

done for this study, due to growth chamber space constraints. Heo and Sung’s 

work also indicates that the reduction in FLC expression levels is highly non-

linear. Cold treatments of 10, 20 and 30 days result result in ~5%, ~50%, ~85% 

reductions in FLC expression, respectively, compared to the pre-treatment 

value. This means the 3-week cold-treated plants probably still had about half 

their normal FLC expression, causing them to flower later than expected. For 

future experiments, it is worth noting that even a saturating cold treatment 
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does not fully suppress FLC expression. There is a residual ~15% FLC 

expression, which may make fully-vernalized FRI+ plants still flower later than 

non-vernalized Col-0 plants. 

An indirect consequence of the unsaturated vernalization response is that the 

gene expression time series acquired after the cold treatment stop before the 

floral transition actually happens. This should be addressed, either by 

increasing the duration of the cold treatment, or extending the gene 

expression measurement window. Doing both would probably be optimal, as 

the former would sharpen the cold-treatment response and the latter would 

enable the capture of the deceleration of the expression of floral transition 

genes. 

3.5. CONCLUSIONS 

An ODE model of the silencing of FLC during the vernalization process has been 

developed, however it was not integrated into Valentim and colleagues’ wider 

model of the floral transition. This is because fundamental flaws in the 

formalism adopted by the pre-existing model were identified. Most notably, 

its single-compartment formalism is not able to model the behaviour of the 

SAM in a biologically relevant way, as it is bound to simulate the joint effects 

of genes that would normally be expressed in spatially disjoint domains. This 

in turn brought to light a flaw in the experiment Valentim and colleagues’ 

model is built on: gene expressions were measured and normalized under the 

assumption that gene expression was uniform in the sampled biological 
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material, however that material is actually comprised of several kinds of 

tissues with different expression profiles and whose ratios are expected to vary 

during development. As a consequence, it is hard to determine from the 

measurements how intensely the genes of interest are expressed, and 

therefore, how they regulate each other. 

The importance of the spatial organization of genetic expression in the SAM 

was probably the main revelation from this study, which is why the next 

chapter is dedicated to its detailed analysis and its exploitation to elucidate the 

structure of regulatory networks.  
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4. THE LOGIC OF THE FLORAL TRANSITION: REVERSE-

ENGINEERING THE SWITCH CONTROLLING THE IDENTITY OF 

LATERAL ORGANS 

4.1. ABSTRACT 

Much laboratory work has been carried out to determine the gene regulatory 

network (GRN) that results in plant cells becoming flowers instead of leaves. 

However, this also involves the spatial distribution of different cell types, and 

poses the question of whether alternative networks could produce the same 

set of observed results. This issue has been addressed through a survey of the 

published intercellular distribution of expressed regulatory genes and 

techniques both developed and applied to Boolean network models. This has 

uncovered a large number of models which are compatible with the currently 

available data. It shows that an exhaustive exploration would be unfeasible 

due to the massive number of alternative models, so genetic programming 

algorithms have also been employed. This approach allows exploration on the 

basis of both data fitting criteria and parsimony of the regulatory processes, 

ruling out biologically unrealistic mechanisms. One of the conclusions is that, 

despite the multiplicity of acceptable models, an overall structure dominates, 

with differences mostly in alternative fine-grained regulatory interactions. The 

overall structure confirms the known interactions, including some that were 

not present in the training set, showing that current data are sufficient to 

determine the overall structure of the GRN. The model stresses the 

importance of relative spatial location, through explicit references to this 

aspect. This approach also provides a quantitative indication of how likely 
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some regulatory interactions might be, and can be applied to the study of 

other developmental transitions. 

4.2. INTRODUCTION 

Computational approaches have become routinely used in the study of gene 

regulatory networks. One of the fundamental key outcomes of gene-network 

activity is specification of the differentiated cell types during development that 

lead to different tissues and organs. To address this particular question, 

computational models have to capture the unfolding, both in time and space, 

of the program embodied by interactions between genes, transcription factors 

and other molecular complexes. This necessity to describe spatio-temporal 

patterns of gene activity entails an important computational cost. In addition, 

the data available to build and assess computational models are typically 

incomplete or ambiguous, since precise spatio-temporal patterns of gene 

expression are seldom available for multiple genes in a single data set. This 

paper proposes tools designed to represent the specification of new cell 

identities during development, and to fit models against incomplete data. This 

work focuses on the floral transition, see below, but the methods aim to be 

applicable to other systems involving cell differentiation and the underlying 

spatial patterning of biological tissues. 

Flowers are the reproductive organs of plants. Therefore, their formation is 

crucial for reproductive success. From a developmental perspective, flower 

formation starts with the triggering of specific pathways in the founder cells of 
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lateral organs (i.e. leaves initially), so that they develop into flowers instead. 

This developmental switch is called the floral transition. It is one of many 

aspects of cell-fate specification in the shoot apical meristem (SAM), which 

comprises multiple tissues, each with their own gene-expression profile but all 

produced from a single stem-cell population. This early specification of cell 

types, through the interactions between genes and hormones, enables newly 

formed tissues to later develop into all the aerial parts of a plant (Adrian et al., 

2009; Simon et al., 1996). The transition goes through three well-characterized 

stages, starting with a vegetative meristem, which produces leaves. Upon the 

trigger by the appearance of the protein FT, this meristem becomes an 

inflorescence meristem, from which floral meristems appear that produce 

flowers.  

While the pathways involved in the floral transitions have been reviewed 

(Fornara et al., 2010; Liu et al., 2009) and modelled using Ordinary Differential 

Equations (ODEs) (Dong, 2003; Jaeger et al., 2013; Valentim et al., 2015) and 

neural network (Welch et al., 2003) formalisms, these studies give little if any 

attention to the spatial organization of the SAM and do not include any 

representation of space. The side effects of this simplification obviously 

include the inability to explain how the spatial organization of the SAM is 

acquired, but also the prediction of unrepresentative gene-expression profiles, 

because the gene expression measurements have come from multiple cell 

types. This potentially leads to the consideration of combinations of regulatory 
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interactions that cannot actually occur in vivo, because the genes involved are 

not, in reality, expressed in the same cells. 

The present study focuses on how the gene-regulatory network of the SAM is 

able to determine the transition of its daughter cells into stem, leaf, flower or 

other cell types, based on environmental and positional cues. To address the 

lack of spatial information found in previously published studies, a novel 

approach was required. We therefore propose a modelling framework which 

includes an explicit representation of space. Regulations known from the 

literature may be ambiguous, so the proposed methodology comprises a 

method for the inference of models, based on experimental data. This entailed 

generating a compendium of published in situ hybridization (ISH) experiments, 

to describe groups of jointly expressed genes. Models deemed plausible had 

to reproduce both the observed patterns of co-expression and the known 

developmental transitions. This offers the potential to explore alternatives to 

current thinking about the regulatory mechanisms and predict novel 

regulatory interactions for laboratory testing.  

If ODE modelling is used, the number of possible alternative regulatory 

interactions, even among a small number of genes, would lead to unfeasibly 

long parameter-estimation times. However, a formalism particularly well 

suited to this task is Boolean modelling, which naturally handles binary (on or 

off) variables that accord with the resolution of the ISH data. For a brief 

introduction to Boolean models, please refer to S1 Text. Even though Boolean 

models are lightweight, the space of possible models for a given set of genes 



 

121 

remains computationally expensive to explore. In simple cases, this “model” 

space can be explored through exhaustive searches, but it quickly becomes 

intractable as the number of possible regulatory interactions increases. In 

more complex cases, heuristic techniques are required. In this work, a genetic 

programming algorithm has been employed to find suitable models that 

explain all observed data.  

Boolean network models have been used successfully to study developmental 

processes, such as floral development (Espinosa-Soto et al., 2004), which 

directly follows the floral transition. By representing genes as binary variables 

influencing each other, they enable us to run simulations and find steady states 

of the system. These steady states can then be interpreted as cell identities or 

expression profiles. The idea of matching biological observations to steady 

states in not new: the logical rules built by Espinosa-Soto and colleagues 

resulted in steady-states matching biological observations. This work describes 

a related process: building up the logical rules from the biological observations. 

It is similar to what has been done by La Rota et al. for the regulatory network 

controlling sepal formation (La Rota et al., 2011). 

Genetic algorithms have previously been used in conjunction with Boolean 

modelling (Kang et al., 2011; Roli et al., 2011). These methods operate on 

Boolean models at the level of truth tables, whereas genetic programming 

operates at the level of equations. While truth tables can always be generated 

from equations and equations can be factorized from truth tables, working on 

equations has several benefits: factorizing equations is more expensive than 
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deriving truth tables, equations are human-readable, and constraints of 

complexity can be enforced on them. 

This work has shown, for the floral transition, that an exhaustive search of all 

possible regulatory interactions is prohibitive. Restricting the search to models 

supported by the published regulatory networks explains the steady states 

but, when attempting to explain the dynamic transitions between them, 

results in many ambiguous regulatory events. Using genetic programming to 

find models that correspond to the ISH data and known cell type transitions 

reduced the ambiguity almost entirely, identified other regulatory interactions 

that have been independently confirmed in other published work. 

4.3. RESULTS 

The most common representation of the core regulatory-network (Fornara et 

al., 2010) is shown in Figure 4.1, though other regulatory components have 

also been reviewed by Liu et al. (Liu et al., 2009). As a necessary first 

verification, one needs to assess whether this topology is sufficient to generate 

the observed patterns of gene expression, or if new regulators or interactions 

are required. As detailed below, a given topology, or regulatory graph, can be 

achieved by a large number of distinct models and one needs to determine 

whether at least one of them is able to generate the required expression 

patterns. In some cases, all the potential models can be listed exhaustively, but 

it will soon become clear that in the general case the space to explore is too 

large to allow for an exhaustive search. 
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Figure 4.1. Common representation of the core regulatory network of the 

floral transition. Nodes represent genes and edges represent regulatory 

interactions. V-shaped and T-shaped arrow heads respectively denote 

activation and repression by the regulatory nodes. 

4.3.1. The cost of running an exhaustive search on the whole space of 

possible models is prohibitive 

Classically, three meristematic identities are distinguished: vegetative, 

inflorescence and floral (Adrian et al., 2009; Simon et al., 1996), and are 

normally defined by five main genes. SOC1 and AGL24 are markers of the 

inflorescence identity, and LFY and AP1 of the floral identity (Mandel et al., 

1992; Mandel and Yanofsky, 1995; Weigel et al., 1992; Weigel and Nilsson, 

1995), while TFL1 inhibits the floral identity (Gustafson-Brown et al., 1994; 
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Weigel et al., 1992) and is a marker of vegetative identity (the inflorescence 

also expresses TFL1 though, which can be attributed to the inflorescence 

conserving some vegetative traits). A sixth gene, FT, encodes a mobile protein 

that is synthesized in leaves, moves to the SAM through the phloem (Jaeger 

and Wigge, 2007) and triggers the transition from the vegetative to the 

inflorescence and floral identities. However, owing to a memory effect, FT is 

not needed to maintain the inflorescence and floral identities after the floral 

transition (Adrian et al., 2009). Using this information, characteristic 

expression profiles can be established for each meristematic identity (Table 

4.1 and Figure 4.2). The question arises of whether or not there are any other 

regulatory combinations of these genes than those reviewed in the literature 

that result in the same set of identities. 
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Table 4.1. The three classical meristematic identities. 

Vegetative TFL1 (Adrian et al., 2009) 

Inflorescence (FT) 

SOC1 (Adrian et al., 2009) 

AGL24 (Adrian et al., 2009) 

TFL1 (Adrian et al., 2009; Pidkowich et al., 1999) 

Floral (FT) 

AP1 (Adrian et al., 2009; Pidkowich et al., 1999) 

LFY (Pidkowich et al., 1999) 

 

Figure 4.2. Expression profiles of the three classical meristematic identities. 

Each row corresponds to a desired steady state, and each column to a gene. 

Black and white cells indicate whether a gene is expressed or not, respectively. 

The number of models to examine is a function of the numbers of input nodes 

(nodes with no inbound regulation) and internal nodes (nodes with inbound 

regulations). As discussed in more detail in S1 Text, a Boolean model is nothing 
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other than a map acting on the set of all possible states (combinations of 

“on”/”off” status of each node) of the system; each state is sent to a 

“successor” state by this map, hence describing dynamical evolution (steady 

states being their own successor). There are 6 nodes in total, so there are 26 =

64 possible Boolean states. To define a model, a successor must be defined for 

each of these 64 states. The behavior of input nodes is fixed, so successors are 

uniquely characterized by the behaviors of the five internal nodes. Looking 

naively at the full set of all Boolean models, there are therefore 25 = 32 

possible choices of successor for each of the 64 states, i.e.  3264 = 2320 ≃

2.1096 potential models. This is more than the estimated number of atoms in 

the observable universe, which is ~1080. Even with a computer able to check 

10 billion models per second, it would still take ~6.1078 years. This quick 

estimate shows that a brute force approach is impractical and that one needs 

to constrain the search space using prior biological knowledge. 

4.3.2. The topology summarized by Fornara et al. can explain the steady 

states but not the dynamic behavior 

The first, obvious, constraint on the search space is to exclude models 

containing regulatory interactions that are not backed by any biological 

evidence. As an added benefit, should solutions be found, this would 

demonstrate that the set of evidence-backed interactions is comprehensive 

enough to explain the behavior of the system. In an attempt to find a 

reasonably sized set of regulatory interactions that can explain the behavior of 
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the system, the Fornara et al. network (Fornara et al., 2010) has been used as 

the main source of prior knowledge, without any additions from Liu et al. (Liu 

et al., 2009) which would require additional genes. This set can be determined 

very cheaply, as it is comprised of all the models whose truth tables follow a 

pattern depending solely on the required steady states and the topology of the 

network (see S2 Text). 

The outcome of this search was a set of 262,144 models compatible with 

Fornara et al.’s topology and exhibiting the required steady states. This 

topology is therefore sufficient to explain the steady states of the system. 

However, it cannot reproduce state transitions undergone by the real 

biological system during development, and, most crucially, does not include 

the activation of SOC1 by FT (see S1 Fig). 

In our modelling framework, we describe transitions as the given of an initial 

steady state I, a perturbation P to be applied to that steady state, and a final 

steady state F, resulting from the spontaneous evolution of the system 

following the perturbation. Both I and F correspond to one of the cell identities 

described in a matrix such as Figure 4.2, built using biological knowledge about 

gene expression domains, and P to the toggling of one or a few variables 

representing the appearance or disappearance of non-cell-autonomous 

factors. P is derived from knowledge about the motion of cells, relative to the 

domains of these factors, during development. The factors toggled by P are 

therefore effectively the triggers of the transitions from the modelling 

perspective. The associated biological interpretation is that non cell-
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autonomous species form spatial patterns in the SAM that are constantly 

perturbed by growth and cell divisions. This causes cells to enter some patterns 

and exit others, as those patterns reorganize. The topology by Fornara et al. 

lacks a trigger with a pattern matching the position of floral primordia. Thus, 

for these reasons, the topology by Fornara et al. cannot explain the dynamic 

behavior of the SAM. 

4.3.3. The addition of two interactions yields models that are able to mimic 

the changes in cell identities  

The failure of this exhaustive search to explain dynamical behavior requires 

the model to be enlarged with two interactions from Liu et al.: AP1 → SOC1 

and Auxin → LFY. These choices were guided by parsimony, the intuitive fact 

that they are likely to counteract the irresponsiveness of SOC1 to FT, and the 

absence of difference between the unsteady states leading to the 

inflorescence and floral identities observed in our first exploration. However, 

this will increase even further the number of possible models. 

Constraining the search space of Boolean models with a defined network 

topology greatly reduces the number of models to explore. The exact figures 

depend on the topology. The Boolean network model formalism dictates that 

the state of any internal node is only dependent on the states of its regulators. 

Therefore, if node 𝑖 has 𝑟𝑖 regulators, its truth table will have 2𝑟𝑖entries. As a 

consequence, there are 22𝑟𝑖
 ways of choosing the truth table of node 𝑖 . 

Building the whole model is equivalent to picking a combination of truth tables 
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for all nodes, so the number of models in the search space is given in Equation 

4.1. 

∏ 22𝑟𝑖

𝑛

𝑖=1

= 2∑ 2𝑟𝑖𝑛
𝑖=1 (4. 1) 

With the topology from Fornara et al. plus the two extra interactions, ∑ 2𝑟𝑖𝑛
𝑖=1  

equals 54. 

As a consequence, there are 254 models in the search space after excluding 

models that do not conform to prior knowledge (down from 2320). Details of 

the calculation are provided in Table 4.2. Furthermore, most of them can be 

ruled out because they are not compatible with the observed steady states 

(see S2 Text). In this case, only 237 solutions presented the required steady 

states (Figure 4.2). As evidenced by the formulae, adding new interactions 

becomes more and more expensive. In particular, the latest two interactions 

added into the data set, AP1→SOC1 and Auxin→LFY, increased the size of the 

search space 24-fold and 216-fold, respectively. This brought the problem close 

to the limit of what was computationally feasible. Performing the exhaustive 

search on this problem takes about 1.5 years with current CPUs, but was 

achieved using a 192-core High-Performance-Computing cluster running for 3 

days. The search returned 1.6 billion suitable models. These solutions were 

used to build an aggregate topology graph of the GRN (Figure 4.3), using the 

methods described in S6 Text. 



 

130 

Table 4.2. Contributions of each gene to the number of models to explore. 

𝑖 𝑟𝑖 2𝑟𝑖 

SOC1 3 8 

AGL24 2 4 

LFY 5 32 

AP1 3 8 

TFL1 1 2 
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Figure 4.3. Aggregate graph of the models generated by exhaustive search on 

Fornara data set with 2 extra interactions. The nodes of the graph represent 

the species of the regulatory network, which are also nodes of the Boolean 

network models. Edges represent regulatory interactions between regulators 

and their targets. Arrowheads are placed on the side of the target species. V-, 

T- and O-shaped arrowheads respectively denote up-regulation, down-

regulation, and interactions that can fall in either category, depending on the 

context and the model. Edge thicknesses and edge labels indicate the 

frequency of occurrence of the associated interactions, across all the models 

generated. Owing to the very large number of models obtained, a frequency 

displayed as 1.000 does not necessarily mean all models. 
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The 1.6 billion models represent networks with mostly similar topologies. 

Among the 14 interactions allowed in the search space, all appear in at least 

some models, and 11 appear in all models. 7 interactions can clearly be 

labelled as positive or negative, but the other 7 remain ambiguous. This 

happens because either an interaction is sometimes positive and negative in 

the same model, depending on which other regulators are present, or it is 

positive in some models and negative in others. 

Figure 4.4 shows the proportions of models in which each interaction is 

positive, negative, ambivalent, and absent. In most models, the interactions 

controlling LFY are ambivalent, meaning that the regulators of LFY can be both 

activators and repressors, depending on the combination of other regulators. 

Such behaviors do not seem very plausible. Instead, it is likely that these 

models are simply artefacts resulting from the high number of regulators of 

LFY and the comparatively small amount of information about the behavior of 

LFY: many combinations of LFY regulators are possible, but the actual behavior 

of LFY is unknown in most of them. 
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Figure 4.4. Distribution of interaction types per interaction across the set of 

models generated by exhaustive search. Each pie chart indicates the 

proportions of models in which the associated interaction is positive (green), 

negative (red), ambivalent (blue) or non-existent (white). 

4.3.4.  A higher resolution description of gene expression during the floral 

transition can be established from in situ hybridization (ISH) data  

A survey of published ISH studies has been carried out for genes AGL24, AP1, 

LFY, SOC1, TFL1 and FD, which interacts with FT (see S4.1 Table). The 
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expression domains of each of these genes were analyzed at various 

developmental stages to establish co-expression maps. For most genes, 

proteins were assumed to be distributed following the same pattern as their 

respective mRNAs, as nothing indicated otherwise. However, in the case of the 

TFL1, there was clear evidence that the TFL1 protein was mobile and had a 

distribution pattern different from that of its mRNA. As well as the three 

classical meristematic identities (Table 4.1), this survey has revealed additional 

identities, and most of them can be matched to zones already characterized in 

studies of SAM development (Clark, 1997), see Figure 4.5 and Figure 4.6. 
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Figure 4.5. Matrix of gene expressions in cell populations identified from ISH 

pictures. Rows correspond to cell populations and columns to chemical species 

or other variables. A black square means a species is present or a variable is on 

in the associated tissue.  
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Figure 4.6. Diagram of gene expression domains in time and space. Green and 

black contours mark the expression domains of the species mentioned in the 

upper left corners of the boxes. A “-“ sign before a gene name means the frame 

marks a hole in the expression domain of that gene. The green species are 

those used as triggers of the transitions between developmental stages. 

Transitions (symbolized by purple arrows) are triggered by toggling the 

variables associated with the green species (i.e. crossing green lines on the 

diagram), which pushes the system towards a new identity, often causing black 

species to also toggle their values (i.e. cross black lines on the diagram). 

Identities are represented as colored areas for clarity, the surface of these 

areas is not representative. The left-hand and the right-hand halves of the 

picture are temporally separate, all other separations are spatial. 
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These zones are described below, and unless stated otherwise, exist in both 

the vegetative and floral phases, although the genes they express change. 

The first zone is the organizing center (OC). It is classically defined as the 

expression domain of WUS, but it also seems to express TFL1 (Conti and 

Bradley, 2007; Liu et al., 2013), which encodes a mobile protein that is 

transported towards the apex. The second zone is the central zone (CZ), which 

contains stem cells and is located at the very apex of the meristem. These cells 

are unable to initiate the formation of a primordium in response to auxin 

(Reinhardt et al., 2000), possibly because their auxin sensitivity has been 

disrupted, as suggested by the expression patterns of some genes of the ARF 

family (Vernoux et al., 2011). The third is the peripheral zone (PZ), vegetative 

or inflorescence, which surrounds the CZ. We define its border as that of the 

diffusion domain of the TFL1 protein (Conti and Bradley, 2007). Within the PZ, 

some cells actually belong to another (fourth) identity: anlagen or founder cells 

of lateral organs. Their defining characteristic is a high concentration of auxin. 

Floral anlagen start expressing LFY (Blazquez et al., 1997). The fifth identity is 

the primordia for anlagen that have gone through the boundary of the TFL1 

protein domain, which express AP1 (Wang et al., 2009; Wigge et al., 2005), but 

not FD (Wigge et al., 2005), SOC1 (Wang et al., 2009) or AGL24 (Michaels et al., 

2003). Finally, the sixth is the meristem flank, which surrounds primordia. 

Compared to the peripheral zone, its differences are that it does not have TFL1 

proteins (Conti and Bradley, 2007) and it is insensitive to auxin treatment 

(Reinhardt et al., 2003). 
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In addition to these known steady states, knowledge of the processes involved 

in plant development has enabled us to generate a list of initial steady states, 

perturbations and resulting steady states (Table 4.3). These steady states and 

transitions were also complemented with information inferred from the 

phenotypes of the tfl1 and the ap1 mutants (see Table 4.4). Studying the ap1 

mutant led us to consider a seventh zone: the floral OC, which does not have 

any counterpart in the vegetative SAM. In WT plants, it is very similar to the 

floral primordium, except that it is located deeper within the meristem, and 

we assume it does not have a high concentration of auxin. In the ap1 mutant, 

this territory is expected to turn into an inflorescence OC instead, paving the 

way for a recursive, cauliflower-like inflorescence architecture. 
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Table 4.3. Developmental transformations in WT 

Initial steady state Perturbation Final steady state 

Vegetative CZ - apex 

- auxin 

Vegetative PZ 

Vegetative PZ - TFL1 protein Vegetative flank 

Vegetative PZ + auxin Vegetative anlagen 

Vegetative anlagen - TFL1 protein Vegetative primordium 

Inflorescence CZ - apex 

- auxin 

Inflorescence PZ 

Inflorescence PZ - TFL1 protein Inflorescence flank 

Inflorescence PZ + auxin Floral anlagen 

Floral anlagen - TFL1 protein Floral primordium 

Floral primordium + inner 

- auxin 

Floral OC 

Vegetative OC + FT Inflorescence OC 

Vegetative CZ + FT Inflorescence CZ 

Inflorescence CZ with FT - apex 

- auxin 

Inflorescence PZ with FT 

Inflorescence PZ with FT - TFL1 protein Inflorescence flank with FT 

Inflorescence PZ with FT + auxin Floral anlage with FT 

Floral anlage with FT - TFL1 protein Floral primordium with FT 

Floral primordium with FT + inner 

- auxin 

Floral OC with FT 
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Table 4.4. Transitions in mutant plants. 

Mutation Initial steady state Perturbation Resulting steady state 

tfl1 Vegetative CZ + FT A state with AP1 

ap1 Floral anlagen - TFL1 protein Floral primordium in ap1 

ap1 Floral primordium 
in ap1 

+ inner 

- auxin 

Inflorescence OC (similar 
to WT) 

ap1 Floral primordium 
in ap1 

+ apex 

+ TFL1 
protein 

Inflorescence CZ (similar 
to WT) 

The additional data provided by ISH were unfortunately shown by exhaustive 

search to be incompatible with the supplemented Fornara topology, as some 

of the observed steady states (Figure 4.5) provide conflicting information 

about the regulation of some genes, implying that the topology is incomplete. 

As a consequence, in order to solve this problem, it is crucial to develop a 

method that can suggest new regulatory edges for the network. One approach 

involves the use of genetic programming. There are two motives for 

developing such an algorithm: the need for simpler over complex/implausible 

regulatory interactions, and a non-exhaustive strategy of exploration of the 

search space should be more cost-effective and allow the solving of complex 

cases that involve more species and interactions. This performance gain can 

also be used to explore models that do not perfectly match prior knowledge, 

and hence potentially identify previously unknown interactions. 
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4.3.5. A genetic programming algorithm proposes Boolean models that 

explain the meristem development during the floral transition 

465 models fitting the observations were generated using the genetic 

programming algorithm. As these results included models that shared the 

same truth table, they could be filtered down to 103 distinct models (i.e. 

models with distinct truth tables). These models can be clearly classified 

according to their fitness values (Figure 4.7; lower is better). The presence of 

clearly separated peaks is due to the way the fitness function was constructed. 

Each peak represents a different number of novel interactions. The number of 

copies per distinct model from the first peak (fitness < -0.18) is plotted in Figure 

4.8. It empirically shows that not all models of approximately equal fitness will 

be found with similar frequencies by the algorithm. 
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Figure 4.7. Distribution of the fitness values of the 103 distinct models 

generated by genetic programming. The formula for this can be found in S5 

Text. Models found by genetic programming spontaneously segregate into 

clusters corresponding to their fitness values. Each cluster corresponds to a 

different number of novel interactions introduced into the regulation network. 

The algorithm attempts to find models with the fewest novel interactions 

possible, i.e. those with the lowest fitness values. It does however not always 

succeed in finding models with the actual lowest possible number of novel 

interactions, hence the presence of several clusters on the diagram. 
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Figure 4.8. Counts of the distinct models generated by the genetic 

programming algorithm, with fitness < -0.18, in order of increasing fitness 

(lower is better). Models with the same number have the same fitness value. 

The algorithm favors models with lower fitness values, but even at a given 

fitness value (1a-1c, 3a-3d), not all models are found with the same frequency, 

suggesting that some may be easier to find than others. 

As mentioned previously, the topology provided to the algorithm did not allow, 

as is, for any solutions to be found. As a consequence, all solutions proposed 

by the algorithm involve additional interactions that were not part of the prior 

knowledge. An aggregate graph of the topologies of the 103 models is 

presented in Figure 4.9. It reveals numerous novel interactions, many of which 

occur at low frequencies (< 10%). This is because the set includes sub-optimal 

models, as far as the parsimony of new interactions is concerned (i.e. they 
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include models that have more novel interactions than necessary). This can be 

addressed by retaining only the models with lower (i.e. better) fitness values. 
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Figure 4.9. Interactions found in the 103 networks generated by genetic 

programming. Black edges are part of the prior knowledge, red edges are not. 

All edges were allowed in the search, however red edges incur penalties, and 

their inclusion is therefore minimized. Edge labels represent the frequencies 

of their respective edges. Many novel interactions appear in at least some of 

the 103 models, but most of them with low frequencies. The interactions 

involving apex and inner however both have frequencies of 1. This confirms 

that the variables apex and inner, as they were defined, would be able to 

explain the patterning of the auxin signaling pathway and TFL1, respectively, 

although additional work would be needed to explain how apex and inner can 

be defined molecularly. This also shows that no way to substitute apex or inner 

with other variables could be found, unless it would involve substantially more 

novel interactions. 
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In the following, only the best models (fitness values <-0.18) were retained, as 

they are – by construction – the models with the fewest novel interactions (4 

in total). Some are more parsimonious than others in terms of known 

interactions (see section S4.2 Table), but we will consider them equally 

relevant here, as our main focus is the study of minimal sets of novel 

interactions able to complement published networks. The aggregate graph of 

this selection is presented in Figure 4.10. The 12 models selected this way 

suggest: 

● FD is repressed by AP1; this would constitute a negative feedback loop, 

whereby FD activates floral identity genes before indirectly turning 

itself off; 

● SOC1 is not necessarily repressed directly by AP1; the results of the 

exhaustive search had shown that a negative feedback loop was 

necessary, but it might be the same as that of FD; 

● AP1 is not necessarily activated directly by FT; an indirect activation 

pathway through SOC1 and LFY is sufficient; 

● TFL1 is upregulated by a non-modelled factor present in the inner 

tissue of the meristem, or a modelled factor with unknown interactions 

occurring in the inner tissue of the meristem; 

● The auxin pathway is disrupted by TFL1 and a non-modelled factor 

present in the CZ, or a modelled factor with unknown interactions 

occurring in the CZ of the meristem. 



 

147 

 

Figure 4.10. Interactions found in the 12 networks in the first peak of fitness. 

This shows the repressions of FD by AP1 and of the auxin pathway by TFL1 are 

the most straightforward additions required to make the network consistent 

with the data. This also shows that some interactions are not required to 

explain the data, namely FT → AP1, FD → AP1 and AP1 → SOC1. 

In this subset of solutions, only one interaction (AGL24 → LFY) is of undefined 

nature in the aggregate of the 12 models. This interaction is however never 

undefined within any given model (Figure 4.11), instead there are some 

models where it is positive, and some where it is negative. This shows that this 
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method is able to avoid complex models. The equations of the 12 models are 

given in S4.2 Table.  

 

Figure 4.11: Breakdown of the type of the AGL24 → LFY interaction across 

the subset of 12 models. The pie chart indicates the proportion of models in 

which the associated interaction is positive (green), negative (red), or non-

existent (white). 

Among these 12 distinct models, 5 interactions are not present in all models: 

● TFL1 protein → LFY; 

● FD → AP1; 

● SOC1 → LFY; 

● AGL24 → LFY; 

● AP1 → AGL24. 

Principal component analysis (PCA) was carried out to determine the number 

of degrees of freedom in the set of 12 models (S6 Text). It showed this set was 

really 5-dimensional, but 91% of variance could be explained by the first three 
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components (Table 4.5). The first component only covers interactions SOC1 → 

LFY and AGL24 → LFY, with opposite coefficients, showing the SOC1 and AGL24 

nodes can play similar roles in the regulation of LFY in the generated models. 

The second component is mostly composed of AP1 →  AGL24, probably 

because it is not necessary for a model to fit the observations: the most concise 

models generated do not include that interaction at all (see S4.2 Table). 

Table 4.5. Principal components of the variability in the subset of 12 models. 

The three main components explain 91% of the variance. The first component 

indicates that SOC1 and AGL24 can play similar roles in the regulation of LFY in 

the generated models. The second component is strongly influenced by AP1 

→ AGL24, an interaction that is highly optional in the set of 12 models.  

Component TFL1 
protein 

→ LFY 

FD → 
AP1 

SOC1 

→ LFY 

AGL24 

→ LFY 
AP1 → 
AGL24 

Percentage 
of variance 
explained 

#1 -0.000 0.000 0.707  - 0.707  0.000 0.366 

#2 -0.357 0.362 0.190 0.190 0.819 0.295  

#3 0.622 -0.259 -0.350 -0.350 0.548 0.253 

Looking at combinations of interactions model per model provides additional 

insight. Noticeably, LFY is always upregulated by SOC1, AGL24 or both, in each 

of the proposed solutions (Table 4.6). It highlights the importance of an 

activation path from inflorescence genes (SOC1 and AGL24) to the floral 

identity gene LFY, and confirms that one such path is theoretically sufficient. 

However, if only one of them activates LFY, the algorithm is not able to suggest 

which one from the available data. 
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Interestingly, none of the configurations reported in Table 4.6 involves all of 

the five interactions, even though they do all feature in the topology reviewed 

by Fornara et al. However, the missing interactions can be either of the five. 

This shows there is not only redundancy between SOC1 and AGL24, but also at 

a higher level. 

Table 4.6. Combinations of interaction types in the best cluster of models 

generated by genetic programming and their numbers of occurrence in the 

12-model set. Empty cells denote the absence of the associated interactions. 

TFL1 protein 

→ LFY 
FD → 
AP1 

SOC1 → 
LFY 

AGL24 → 
LFY 

AP1 → 
AGL24 Occurrences 

-1  1   2 

-1   1 -1 2 

-1   1  2 

-1  1  -1 2 

 -1 1 -1 -1 1 

-1  1 1  1 

  1 -1  1 

-1  1 1 -1 1 

4.4. DISCUSSION 

Even though Boolean models are simple and cheap to simulate, they are still 

very flexible. The downside of this flexibility is that, for most model reverse-

engineering applications, it is impractical to test all possible models 

exhaustively to find those that fit observations. This work shows that this can 

be improved by constraining the search space to models that conform to a 

given topology, which is not helpful when the network topology is unknown. 
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The genetic programming method used here is able to handle incomplete 

topologies. Unlike exhaustive search approaches, it is also able to favor models 

with simple Boolean equations. These are more likely to represent biological 

regulatory mechanisms, because a given regulator rarely changes from being 

an activator to a repressor. However, like any method, the validity of its results 

depends on the quality of the input data. 

A large part of the input data in this work has been extracted from in situ 

hybridization experiments. This shows the locations the mRNA of the studied 

genes, but not their proteins, which is an issue for mobile proteins, such as FT 

and TFL1. Although the greatest care was taken when interpreting ISH pictures, 

comparing plants of different ages at different times, and grown in different 

conditions may be a source of errors. Confocal imaging of multiple fluorescent 

fusion proteins could help with both matters, as it provides a way of tracing 

proteins and studying how they co-localize. Following the development of the 

same plant through time is also possible with this technique. 

4.4.1. Lack of mutant data 

The core of our approach is based on the use of ISH data to approach 

expression profiles at single-cell resolution to infer regulatory interactions. 

Unfortunately, this kind of data is usually not available for mutants. This has 

consequences for the models that can be generated. Indeed, real biological 

regulatory networks are usually robust to mutations, as regulators are often 

encoded by a family of related genes, providing redundancy. However, our 
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genetic programming algorithm aims at generating models as simple as 

possible, and as we have little data about expression profiles in mutants, the 

algorithm has no reason to try to replicate the robustness of the real network. 

This means the algorithm will build models featuring little – if any – 

redundancy. 

4.4.2. Applicability of the method 

This method, based on co-expression profiles and genetic programming, has 

been successfully applied to the case of the network controlling cell identity in 

the SAM. Although it has not been tested on other biological networks, it 

should be applicable to other networks providing appropriate data sets are 

available. It would be interesting to see how well the method performs on 

other cases, and, in particular, if the trade-off between computation time and 

quality of the output models is satisfactory across all cases. It is entirely 

possible that this trade-off could be improved using a different set of 

parameters for the genetic-programming algorithm, both as default values and 

as problem-specific values. This is because little optimization has been carried 

out in this area, due to the high computational cost associated with it. 

4.4.3. Roles of AP1 and TFL1 

This work suggests that AP1 represses FD. While this was not reported by Liu 

et al. or Fornara et al., it has since been published (Kaufmann et al., 2010). The 

genetic programming output also suggested AP1 does not necessarily need to 

directly down-regulate SOC1, as this would be redundant with an indirect 
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repression via FD. This might be tested experimentally in an FD-overexpressing 

plant. If SOC1 is not down-regulated in floral primordia, it would confirm that 

the repression of SOC1 by AP1 goes through FD. Alternatively, it is possible that 

both regulatory features occur and this is a case of feed-forward repression. 

One of the aims of this work is to investigate the place of TFL1 in the regulation 

of cell identity in the SAM. To make this possible, variables inner and apex were 

introduced for the following reasons. First, very little is known about the 

regulation of TFL1, which makes it difficult to produce models where TFL1 is 

expressed in the right conditions. The patterning of TFL1 is, however, very 

similar to that of WUS, for which a patterning mechanism combining inhibition 

in outer tissues and sensitivity to activation in inner tissues has been proposed 

(Chickarmane et al., 2012). An “inner” node was added to the network to 

enable similar models for TFL1. Second, TFL1 seems to affect the identity of 

CZs. Indeed, floral meristems, which are usually determinate, become 

indeterminate and generate recursive cauliflower-like patterns in the ap1/cal 

mutants, where TFL1 is expressed ectopically. Conversely, the SAM becomes 

determinate in tfl1 mutants, as the meristem turns into a flower after the floral 

transition. Since the apices of the SAM and floral meristems appear to have 

similar behaviors in some genetic backgrounds, we postulated that those 

apices share some unknown properties responsible for this shared behavior, 

and introduced a variable called “apex” accordingly.  

It is not clear which molecular species correspond to the spatial information 

implied by variables inner and apex, but some genes exhibit the relevant 
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expression patterns. Inner seems to correlate with AHK4 (Chickarmane et al., 

2012) and apex to CLV3 (Geier et al., 2008). Interestingly, these two genes are 

involved in the WUSCHEL-CLAVATA negative feedback loop. As WUS and TFL1 

share similar expression patterns and their expression levels are correlated, it 

seems likely that TFL1 and genes of this loop are somehow connected. Should 

it not be the case, the patterns of AHK4 and CLV3 still prove that genes with 

patterns appropriate to explain those of inner and apex do exist. 

4.4.4. Extension to quantitative modelling 

Inferring a quantitative model of the floral transition – such as an ODE or PDE 

model - by genetic programming might be possible. The major challenges, 

however, are that it would add a parameter optimization problem for each 

system of equations to assess, and the simulations of ODE models are more 

expensive than those of Boolean models. However, instead of trying to infer a 

quantitative model directly, another approach could be to convert the Boolean 

models into ODE models using predefined methods (Mendoza and Xenarios, 

2006; Wittmann et al., 2009). These quantitative models could then be simulated 

in a spatially explicit context, such as a 3D tissue mesh, which would enable 

the simulation of transitions in a more explicit way (growth, cell division, 

diffusion, transport). The main limitation of such developments is the lack of 

any nondestructive experimental method to measure quantitatively the gene 

expression patterns of cells in situ in organs, so that the quantitative outputs 
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of differential models would have no experimental counterpart for 

comparison. 

4.5. CONCLUSION 

In this paper we have described a succession of approaches aiming to build 

Boolean models able to reproduce a set of spatio-temporal gene expression 

patterns, whilst complying with prior knowledge on the regulatory topology. 

Starting from a brute force approach exhaustively enumerating a list of 

candidate models, we have been led to more sophisticated developments 

based on genetic programming. The latter were required by this case study. It 

seems likely that other systems involving cell differentiation and tissue 

patterning would require similar refinements, but it might be, in cases where 

prior biological knowledge is detailed enough, that the simplest approach 

leads to relevant conclusions. Therefore, the results have included all the 

different steps with some details, as summarized now. 

The most naïve search strategy, exhaustive search, can only be carried out on 

very simple models, though it can be improved upon by restricting the search 

space to models conforming to a predetermined network topology. This 

drastically simplifies the problem, however, it might still not be enough if the 

network topology is too complex. Another issue is that it requires a sufficiently 

comprehensive network topology, which might not be available. However, 

even if these two problems do not arise, solutions generated this way may not 
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be satisfying, as they are likely to involve complex, unlikely regulation 

mechanisms. 

These three problems are addressed by the genetic programming algorithm 

used here. The family of genetic algorithms is known to be efficient at 

exploring high-dimensional spaces, such as the space of all Boolean models 

involving a set of nodes. Genetic programming has the added benefit of being 

able to generate Boolean equations directly, which makes it easier to target 

models involving simpler, more plausible regulatory interactions. This 

algorithm has successfully been applied to the regulatory network controlling 

cell identity in the SAM, resulting on the formulation of several plausible 

models and the suggestion of novel regulatory interactions absent from the 

starting network topology, but confirmed by independent laboratory work. 
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4.6. MATERIAL AND METHODS 

4.6.1. Data 

4.6.1.1. Classical 3-identity model. There are traditionally three 

characterized identities for cells constituting the SAM: vegetative, 

inflorescence and floral (Adrian et al., 2009). Some genes are commonly 

considered as characteristic of these profiles (Table 4.1). The vegetative 

profile represents any cell of the vegetative (pre-transition) SAM, as 

they do not seem to differ in the expression of any of the considered 

genes. The inflorescence profile represents cells of the main shoot of 

the inflorescence meristem (i.e.: primordia are excluded). The floral 

profile represents cells of the floral primordia. FT is necessary to induce 

the shift from vegetative to inflorescence in the OC and CZ, but once the 

inflorescence identity of CZ cells is acquired, FT is no longer required 

(memory effect). 

4.6.1.2. Developmental transformations. The development of the SAM 

is assumed to take place through the occurrence of perturbations 

making the system transition from one steady state to another (Table 

4.3). 
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4.6.1.3. Mutant phenotypes. In tfl1 mutants, a terminal flower develops 

at the apex of the meristem. Another interesting case is the ap1/cal 

double mutant. CAL is a close homolog of AP1. When both are knocked 

out, the inflorescence develops into a cauliflower shape, where 

meristem primordia turn into inflorescence meristems and recursively 

generate new primordia. This information is summarized in Table 4.4. 

4.6.2. Genetic programming 

Three criteria come into play in the fitness function, listed below in order of 

priority. 

1. 𝑛𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑: the sum of the XOR distances between the required 

end steady states and the end steady states reached by the model, for 

the species deemed relevant (lower is better, always 0 for solutions to 

the problem); For each (I, P, F, C, M) transition (see S3 Text), 

attractor(P(I)) is calculated. If the latter is a steady state, the distance 

between attractor(P(I)) and F is the number of non-zero values in (P(I) 

XOR F) AND C. Otherwise, if attractor(P(I)) is a cycle, the model is 

rejected and the distance is set to the number of non-zero values in C; 

2. 𝑛𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠: the number of novel (i.e. not present in the data, 

see details below) interactions in the model (lower is better). For 

efficiency reasons, this is based on the equations of the model rather 

than its truth table. A novel interaction 𝑖𝑗 is considered included in a 
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model if and only if 𝑖 appears in the equation of j and interaction 𝑖𝑗 is 

not in the prior knowledge. 

3. 𝑛𝑡𝑒𝑟𝑚𝑠 : the number of terms in the equations (including 

operators, lower is better). It is given by the number of nodes in the 

tree of the model. In order to optimize the fitness function, genetic 

programming algorithms produce successive generations of offspring. 

The formula of the fitness function is presented in Equation 4.2. 

𝑛𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 −
1

1 + 𝑛𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 −
1

1 + 𝑛𝑡𝑒𝑟𝑚𝑠

 (4. 2) 

This function does not allow any kind of trade-off: criteria with lower ranks 

always have priority over those with higher ranks. 

As genetic algorithms can potentially get stuck in local minima of fitness 

functions, the scheme devised here mitigates this issue by running the 

algorithm multiple times and introducing transition data both progressively 

and in a different order each time. Each run follows the following process: 

1. Establish a dataset D of known transitions; 

2. Create an empty dataset D’; 

3. Pick a transition in D randomly, and move it into D’; 

4. Run the genetic programming algorithm until a solution that does not 

violate any transition in D’ is found or the algorithm times out (i.e. no 

solutions could be found in a preset number of generations after the 
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latest transition was added). Repeat from step 3 until D is empty and a 

solution compatible with D’ is found (unless a time-out occurs); 

5. If such a solution is found, keep running the genetic programming 

algorithm for a fixed number of iterations to come up with a simplified 

form. Save the best individual as a solution. 

Running this algorithm multiple times generates different solutions. 
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4.7. SUPPORTING INFORMATION 

 

S1 Fig. Aggregate graph of the models generated by exhaustive search on the 

topology reported by Fornara and colleagues. Nodes are genes. Edges 

represent regulatory interactions. Edge labels and edge thicknesses denote the 

occurrence frequencies of the associated interactions. V-, T- and O-shaped 

arrowheads indicate positive, negative and ambiguous interactions, 

respectively. 
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S4.1 Table. List of the genes and time points extracted from in situ 

hybridization images, and their sources. Dates are expressed as days after 

germination (dag), days after induction (dai) or as developmental stages when 

no other information was available (vegetative, transition or inflorescence). 

Genes and times Reference 

FD (6, 8, 10 dag) 

SOC1 (6, 10 dag) 

(Searle et al., 
2006) 

TFL1 (7, 14, 17 dag; inflorescence) 

AP1 (inflorescence) 

LFY (inflorescence) 

(Liu et al., 2013) 

FD (0, 4, 5, 6 dai) 

AP1 (0, 4, 5, 6 dai) 

(Wigge et al., 
2005) 

TFL1 (12 dag) 

TFL1 protein (12, 16 dag) 

(Conti and 
Bradley, 2007) 

AP1 (inflorescence) 

SOC (inflorescence) 

(Liu et al., 2007) 

SOC1 (0, 1, 3, 5 dai) 

AP1 (0, 3, 5 dai) 

(Wang et al., 
2009) 

AGL24 (inflorescence) (Michaels et al., 
2003) 

LFY (inflorescence) (Blazquez et al., 
1997) 

S1 Text. Boolean modeling. 

Boolean networks 

Boolean network models represent genes as binary variables (either on or off) 

that influence each other dynamically, following a specified set of logical rules 

that can be written using combinations of the AND, OR and NOT operators 
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(Kauffman, 1969). The state of the network (i.e.: of each gene) at a given time 

point depends on the state of the network at the previous time point. The 

function that yields the next state of the model when given any state as an 

input is called the successor function, and that next state is called the successor 

of the state given as input. 

As the number of states of a network is finite, a chain of successors starting at 

any state will sooner or later include at least one state more than once and 

initiate a periodic pattern. That periodic pattern constitutes an attractor. If the 

chain ends with the repetition of a single successor, this attractor is a steady 

state. If the chain ends with the repetition of multiple states, this attractor is a 

cycle. 

Another consequence of the number of states being finite is that it is possible 

to establish an exhaustive list of states and their successors, for any model (or 

part of a model). This list is usually presented as a truth table, which is a table 

divided into a left-hand side and a right hand side. The left hand side lists all 

the possible states of the regulators of the genes of interest, while the right-

hand side contains the matching states of the genes of interests at the 

following time step. 

Updating scheme 

Synchronous updating (i.e.: multiple variables can change their values per time 

step) was chosen over asynchronous updating (i.e.: only one variable can 

change its value per time step). Asynchronous updating is generally considered 
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more realistic, as, in reality, time is continuous, so multiple genes are unlikely 

to change their states at once. However, asynchronous updating has a 

drawback: when multiple genes might change their states at once, the Boolean 

states typically have multiple potential successors, leading to non-

deterministic outcomes. Furthermore, steady states are independent of the 

updating scheme. 

S2 Text. Exhaustive search. 

Since each model is characterized by a truth table, exhaustive search works by 

enumerating all possible truth tables. Truth tables with empty right-hand sides 

are first generated for each internal node of the regulatory network. The right-

hand sides of these truth tables are then filled as much as possible with 

information extracted from the steady states, using the fact that, for a steady 

state A, successor(A) = A (i.e. if the left side of a row matches A, then its right 

side should also match A). At this stage, an incompatibility between two steady 

states can occur (i.e. the left side of a row matches two steady states A and B, 

however the right side cannot match A and B at the same time), in which case 

the search problem has no solution. If all steady states are compatible, we 

proceed to iterate over all possible values for the empty cells of the truth 

tables, and record the models that have all the required transitions as valid, if 

any have been defined. If not, then all models are considered valid. 

S3 Text. Verifying if a model can explain a transition. 

Transitions are implemented as tuples (I, P, F, C, M) where: 
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● I is an initial steady state 

● P is a perturbation to be applied to I. The resulting state is P(I). 

● F is the steady state that P(I) is supposed to lead to, if it is left to evolve 

spontaneously. For a given model m, if attractorm(P(I)) = F, then the 

model can explain this transition. If attractorm(P(I)) is a cycle, model m 

is rejected, even if attractorm(P(I)) contains F. 

● C is a certainty mask used to modulate the comparison between 

attractorm(P(I)) and F. It is a Boolean vector of the same size as I and F. 

1 values in C indicate the associated variables in attractorm(P(I)) and F 

should be taken into account for the comparison, 0 values mean they 

should not. This means model m can explain the transition if all 

variables in (attractorm(P(I)) XOR F) AND C are 0. 

● M is a list of mutations. If it is not empty, the transition should apply to 

a “mutant variant” of model m (instead of applying to model m 

directly). 

S4 Text. Modeling of mutants. 

Let 𝑓 be the successor function of a WT model, and 𝑓𝑖 the function giving its 𝑖-

th component. Let 𝑓𝑗  be the successor function of the same model, with a 

knock-out mutation of species 𝑗 , and 𝑓𝑖
𝑗  the function yielding its 𝑖 -th 

component. Let 𝑋 be a state of the system. 

∀𝑖 ≠ 𝑗, ∀𝑋, 𝑓𝑖
𝑗(𝑋) = 𝑓𝑖(𝑋) 

𝑓𝑗
𝑗(𝑋) = 0 
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S5 Text. Genetic programming. 

Genetic programming is a method to generate structured sequences like 

computer code or mathematic equations using a genetic algorithm. We 

applied this method to the generation of Boolean models using the DEAP 

module (Fortin et al., 2012) in Python. 

Structured sequences can be written as a tree. In the case of equations, a node 

is a function, and the children of that node are its arguments. 

In genetic programming, the nodes of the trees are called primitives. 

Primitives 

In our case, the leaf primitives are the nodes of the GRN. They can be combined 

into Boolean expressions using AND, OR and NOT nodes. Finally, at the top 

level, Boolean expressions are aggregated into a list of Boolean expressions 

(one expression for each state variable of the model). 

Primitive Type Arguments 

List maker List 6 bools 

And Bool 2 bools 

Or Bool 2 bools 

Not Bool 1 bool 

Nodes of the GRN Bool None 
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Offspring generation 

At each iteration of the algorithm, for a population of 𝑛 individuals, 𝑛 offspring 

individuals are generated and added to the population. Each of the offspring 

individual is generated randomly by either mutation, mating or reproduction. 

The respective probabilities of these events were chosen arbitrarily, and are 

given below, as well as descriptions of the processes. 

Mutation 

A branch of the tree is replaced with a random branch. This occurs with 

probability 0.4. 

Mating 

Exchange of branches of the tree related to the same genes. This occurs with 

probability 0.4. 

Reproduction 

An individual is copied as-is. This occurs with probability 0.2. 

Constraint on the trees 

The maximal depth of the tree is capped to 11 in order to avoid bloat. Lower 

values reduce the size of the search space, but if they are too low, they can 

prevent solutions from being found. 
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Selection 

𝑛 individuals are selected out of the 𝑛 original individuals and their 𝑛 offspring 

indivuals using 𝑛  2-invidual tournaments. The whole population is split 

randomly into 𝑛 pairs, and the better individual of each pair is selected to be 

part of the next generation. 

S6 Text. Model analysis. 

Adjacency matrix 

For each state of the model, the effect of switching on inactive genes one at a 

time was recorded in an adjacency matrix whose values (-1, 0, 1 or 2) indicate 

the type of each regulatory interaction. 

Let 𝑛 be the number of species in the model. Let 𝐴 be a 𝑛 × 𝑛 matrix. Let 𝑋 =

(𝑋1, … , 𝑋𝑖 , … , 𝑋𝑛)  be a model state. Let 𝑋𝑖
∗ = (𝑋1, … , 1, … , 𝑋𝑛)  be a state 

derived from 𝑋  by setting the value of the 𝑖 -th node to 1. Let 𝑓  be the 

successor function of the model. Let 𝑌 = 𝑓(𝑋) = (𝑌1, … , 𝑌𝑗 , … , 𝑌𝑛) and 𝑌𝑖
∗ =

𝑓(𝑋𝑖
∗) = (𝑌𝑖

∗
1

, … , 𝑌𝑖
∗

𝑗
, … , 𝑌𝑖

∗
𝑛

). 

For each (𝑖, 𝑗) pair: 

• If, for all 𝑋, 𝑌𝑗 = 𝑌𝑖
∗

𝑗
, then 𝐴𝑖𝑗 = 0 

• Else, if, for all 𝑋, 𝑌𝑗 ≤ 𝑌𝑖
∗

𝑗
, then 𝐴𝑖𝑗 = 1 

• Else, if, for all 𝑋, 𝑌𝑗 ≥ 𝑌𝑖
∗

𝑗
, then 𝐴𝑖𝑗 = −1 

• Else, 𝐴𝑖𝑗 = 2 
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Aggregation of multiple models 

The following method was used to aggregate the adjacency matrices of a set 

of models K into a single matrix. 

Let A be the aggregated adjacency matrix and 𝐴𝑘  the adjacency matrix of 

model 𝑘. 

• If ∀𝑘 ∈ 𝐾, 𝐴𝑖𝑗
𝑘 = 0, then 𝐴𝑖𝑗 = 0. 

• If ∀𝑘 ∈ 𝐾, 𝐴𝑖𝑗
𝑘 ∈ {0, 1}, then 𝐴𝑖𝑗 = 1. 

• If ∀𝑘 ∈ 𝐾, 𝐴𝑖𝑗
𝑘 ∈ {−1, 0}, then 𝐴𝑖𝑗 = −1. 

• If ∃𝑘 ∈ 𝐾, 𝐴𝑖𝑗
𝑘 = −1 and ∃𝑘′ ∈ 𝐾, 𝐴𝑖𝑗

𝑘′ = 1, then 𝐴𝑖𝑗 = 2. 

• If ∃𝑘 ∈ 𝐾, 𝐴𝑖𝑗
𝑘 = 2, then 𝐴𝑖𝑗 = 2. 

Graph representation 

Let A be the adjacency matrix of a model and 𝐺its graph. 

• If 𝐴𝑖𝑗 ≠ 0, 𝐺 includes the regulatory edge 𝑖 → 𝑗. 

• If 𝐴𝑖𝑗 = 1, 𝑖 is an activator of 𝑗. 

• If 𝐴𝑖𝑗 = −1, 𝑖 is a repressor of 𝑗. 

• If 𝐴𝑖𝑗 = 2, the effect of 𝑖 on 𝑗 is ambiguous. 

Principal components analysis (PCA) 

PCA was carried out on sets of models to assess their diversity. 

First, a matrix of Boolean values was built, where: 
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● Each row is a row vector of Boolean variables indicating which 

interactions are present in a model; 

● Each column corresponds to a directed interaction edge in the GRN. 

Only interactions that vary in the set of models are retained (the 

variance of the column vector is greater than 0). 

PCA was then performed using the Scikit-learn module (Pedregosa et al., 2011) 

for Python. 

S4.2 Table. Equations and graphs of the twelve best models from the genetic 

programming search. 

Rank Equations Graph 

1a TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(apex, TFL1)) 

FD' =  not(AP1) 

SOC1' =  and(or(AGL24, FT), FD) 

AGL24' =  SOC1 

LFY' =  and(or(AP1, and(SOC1, Auxin)), 
or(not(TFL1 protein), Auxin pathway)) 

AP1' =  and(LFY, not(TFL1 protein)) 

TFL1' =  and(inner, not(AP1)) 

 

1b TFL1 protein' = or(TFL1, TFL1 protein) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  and(or(FT, AGL24), FD) 

AGL24' =  SOC1 

LFY' =  and(or(not(TFL1 protein), Auxin 
pathway), or(and(AGL24, Auxin), AP1)) 

AP1' =  and(LFY, not(TFL1 protein))  
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TFL1' =  and(inner, not(AP1)) 

1c TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  and(or(AGL24, FT), FD) 

AGL24' =  SOC1 

LFY' =  or(AP1, and(and(Auxin, AGL24), 
or(not(TFL1 protein), Auxin pathway))) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 

 

2a TFL1 protein' = or(TFL1, TFL1 protein) 

Auxin pathway' =  not(or(apex, TFL1)) 

FD' =  not(AP1) 

SOC1' =  or(and(FD, FT), and(FD, AGL24)) 

AGL24' =  SOC1 

LFY' =  or(and(or(not(AGL24), Auxin 
pathway), and(SOC1, Auxin)), AP1) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 

 

2b TFL1 protein' = or(TFL1, TFL1 protein) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(and(FD, AGL24), and(FT, FD)) 

AGL24' =  SOC1 

LFY' =  or(and(SOC1, and(Auxin, 
or(not(TFL1 protein), Auxin pathway))), 
AP1) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 
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3a TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(AGL24, and(FT, FD)) 

AGL24' =  and(not(AP1), SOC1) 

LFY' =  or(AP1, and(or(Auxin pathway, 
not(TFL1 protein)), and(SOC1, Auxin))) 

AP1' =  and(LFY, not(TFL1 protein)) 

TFL1' =  and(inner, not(AP1)) 

 

3b TFL1 protein' = or(TFL1, TFL1 protein) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(and(FT, FD), AGL24) 

AGL24' =  and(not(AP1), SOC1) 

LFY' =  and(or(AP1, and(Auxin, AGL24)), 
or(not(TFL1 protein), Auxin pathway)) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 

 

3c TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(AGL24, and(FD, FT)) 

AGL24' =  and(SOC1, not(AP1)) 

LFY' =  or(AP1, and(and(AGL24, or(Auxin 
pathway, not(TFL1 protein))), Auxin)) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 
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3d TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(and(FT, FD), AGL24) 

AGL24' =  and(SOC1, not(AP1)) 

LFY' =  and(or(and(Auxin, SOC1), AP1), 
or(Auxin pathway, not(TFL1 protein))) 

AP1' =  and(LFY, not(TFL1 protein)) 

TFL1' =  and(inner, not(AP1)) 

 

4 TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(apex, TFL1)) 

FD' =  not(AP1) 

SOC1' =  and(FD, or(FT, AGL24)) 

AGL24' =  SOC1 

LFY' =  and(not(not(or(and(Auxin, SOC1), 
AP1))), or(and(AGL24, Auxin pathway), 
not(TFL1 protein))) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 

 

5 TFL1 protein' = or(TFL1 protein, TFL1) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(and(FD, FT), AGL24) 

AGL24' =  and(not(AP1), SOC1) 

LFY' =  or(and(Auxin, or(and(Auxin 
pathway, AGL24), and(SOC1, not(TFL1 
protein)))), AP1) 

AP1' =  and(not(TFL1 protein), LFY) 

TFL1' =  and(inner, not(AP1)) 
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6 TFL1 protein' = or(TFL1, TFL1 protein) 

Auxin pathway' =  not(or(TFL1, apex)) 

FD' =  not(AP1) 

SOC1' =  or(and(FT, FD), AGL24) 

AGL24' =  and(SOC1, not(AP1)) 

LFY' =  and(or(AP1, and(Auxin, SOC1)), 
or(Auxin pathway, not(AGL24))) 

AP1' =  not(and(FD, or(not(LFY), TFL1 
protein))) 

TFL1' =  and(inner, not(AP1)) 
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5. 4D MODEL OF THE FLORAL TRANSITION IN ARABIDOPSIS 

THALIANA 

5.1. INTRODUCTION 

This chapter was realized in collaboration with the Virtual Plants team (Inria, 

CIRAD, University of Montpellier 2), in particular Eugenio Azpeitia and 

Christophe Godin. 

The previous chapter demonstrated the feasibility of designing a set of logical 

rules resulting in the spatial self-organization of a meristem, although space 

was only modelled through proxy variables. In this chapter, the possibility of 

implementing a model in a 3D tissue structure, resulting in the self-

organization of a meristem, was studied. 

The emergence of spatial patterns from homogeneous systems, as a response 

to the diffusion and the reaction of biochemical species in living organisms, has 

famously been theorized by Turing (Turing, 1952). Gierer and Meinhardt later 

proposed equations to describe the mechanisms underlying the formation of 

various patterns, including dots and stripes (Gierer and Meinhardt, 1972; 

Meinhardt and Gierer, 1974). They describe patterns formed by one category 

of Turing mechanism resulting from the interplay between a short-range 

activator and a long-range inhibitor, in a continuous medium. However, it is 

also possible to generate spatial patterns in discrete media, such as a tissue 

with individual cells. In plant systems, Jönsson and colleagues, whose work this 

chapter builds upon, have modelled the polar transport of auxin in the SAM. It 
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belongs to another category of Turing mechanism: substrate depletion 

(Cheong et al., 2010). Auxin is transported from cell to cell by PIN1 

transporters, predominantly towards cells with higher auxin concentrations, 

creating a positive feedback loop, and simultaneously draining auxin away 

from lower concentration areas. Auxin is a prime example of a species whose 

spatial distribution is important to model, because of its role in cell elongation 

(Rayle and Cleland, 1992), and therefore, morphogenesis. As a consequence, 

its patterning has also been studied in other organs, such as roots (Band et al., 

2014). 

Here, the patterning of auxin was studied in conjunction with that of meristem 

identity genes to understand how the spatial organization of the SAM is 

achieved during the floral transition. 

5.2. MATERIAL AND METHODS 

5.2.1. Tissue structure 

The structure used in this model is based on a real inflorescence meristem 

(referenced YR01), imaged by confocal microscopy by Yassin Refahi, Lisa Willis, 

Raymond Wightman and Henrik Jönsson (Sainsbury Laboratory, Cambridge), 

using a protocol described by Willis and colleagues (Willis et al., 2016). It was 

then segmented and meshed by Sophie Ribes and Guillaume Cerutti (Virtual 

Plants, Montpellier). 

As it is an inflorescence SAM structure, it includes all the domains of the post-

floral-transition SAM studied in Chapter 4. Some of these domains are 



 

177 

temporally disjoint for a given cell, but due to the coexistence of cell 

populations of various developmental stages in the SAM, all domains can be 

observed simultaneously across the same SAM. This inflorescence SAM 

structure could also technically be used as a template for simulations of the 

pre-floral-transition SAM, but the vegetative and inflorescence SAM do have 

morphological differences (Liu et al., 2013) that make in-depth interpretations 

of such simulations more difficult. 

5.2.2. Model hypotheses 

The SAM tissue is subdivided into cells, and each cell has its own biochemical 

profile, which can be defined as the given of the concentrations in its modelled 

chemical species. Those concentrations are different for each cell, and vary 

over time due to synthesis, degradation, and intercellular exchanges. For the 

sake of simplicity, the intracellular diffusion of species is modelled as instant 

and unaffected by organelle boundaries, i.e. concentrations are always 

uniform within a cell. This is the usual assumption for such multicellular models 

(Jönsson et al., 2003; Angel et al., 2011; Band et al., 2012). 

5.2.3. Equations of the ODE model 

An ODE model describing the evolution of the quantities of matter of the 

relevant species inside of each cell was developed. The decision to model 

quantities of matter rather than concentrations, as is often the case, was made 

because the cells are of different sizes and mechanistic arguments suggesting 

that gene transcription should scale with cell size are absent. 
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The equations describing the regulatory mechanisms were derived from model 

1a of Chapter 4, which was one of the three best (tied with 1b and 1c in fitness 

values). Model 1a was chosen over model 1b and 1c because it does not 

involve AGL24 in the regulation of LFY. AGL24 is only involved in a positive 

feedback loop with SOC1, therefore it can be removed from the network 

altogether and replaced with a SOC1 self-activation. 

Multiple formalisms were considered for the transformation of Boolean 

equations into ODEs, including SQUAD (Mendoza and Xenarios, 2006; Cara et 

al., 2007) and Odefy (Wittmann et al., 2009). Those had the benefit of being 

implementable in an automated way. They however had the drawback of 

having forms rather far removed from traditional ODE models, especially in the 

way they deal with OR operators. Therefore, the Hill and Shea-Ackers 

formalisms (Hill, 1910; Ackers et al., 1982; Alon, 2006) were used to translate 

the Boolean equations into the synthesis parts of the ODEs, using principles 

presented in Table 5.1. As a general rule, Hill and Shea-Ackers formulae are 

used at the top level of the functions to bound synthesis between 0 and 1, but 

are not used at deeper levels to keep the equations as simple and legible as 

possible. The AND operator is translated using multiplication, while the OR 

operator is translated using addition, as in the Shea-Ackers formula. 

The most complex cases encountered are presented in Table 5.2. More 

complicated cases could theoretically arise and might then be hard to translate 

simply. However, it did not happen in model 1a, most likely because the 

genetic programming algorithm that generated it aimed at providing the 
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simplest equation possible. The deepest level of nesting for AND and OR 

operators is 3, and this only occurs once, in the equation of LFY, so this was not 

a concern. It could also be argued that deeper levels of nesting would anyway 

result in biologically implausible functions, as they would have to involve many 

regulators, or the regulators would have to interact in very irregular (i.e. non-

factorable) ways. The former is limited by the topology of the network. As for 

the latter, the irregularity of the interactions is limited by the physicochemical 

properties of the interacting species. 

Table 5.1. Principles guiding the transformation of Boolean equations into 

ODEs. 

Boolean ODE 

𝑥 𝑥𝑛

𝜃𝑛 + 𝑥𝑛
 

𝑁𝑂𝑇 𝑥 𝜃𝑛

𝜃𝑛 + 𝑥𝑛
 

𝑥 𝑂𝑅 𝑦 𝑥𝑛 + 𝑦𝑛

𝜃𝑛 + 𝑥𝑛 + 𝑦𝑛
 

𝑥 𝐴𝑁𝐷 𝑦 𝑥𝑛

𝜃𝑛 + 𝑥𝑛
.

𝑦𝑛

𝜃𝑛 + 𝑦𝑛
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Table 5.2. Examples of more complicated transformations of Boolean 

equations into ODEs. 

Boolean ODE 

𝑥 𝑂𝑅 (𝑦 𝐴𝑁𝐷 𝑧) 𝑥𝑛 + (𝑦. 𝑧)𝑛

𝜃𝑛 + 𝑥𝑛 + (𝑦. 𝑧)𝑛
 

𝑥 𝐴𝑁𝐷 (𝑁𝑂𝑇 𝑦 𝑂𝑅 𝑧) 𝑥𝑛

𝜃𝑛 + 𝑥𝑛
.

𝜃𝑛 + 𝑧𝑛

𝜃𝑛 + 𝑦𝑛 + 𝑧𝑛
 

The transformation of Boolean equations to ODEs also requires scaling: the 

kind of input functions described in Table 5.1 and Table 5.2 only assume values 

between 0 and 1, but should lead to concentration ranges appropriate as 

inputs (e.g. 𝑥, 𝑦, 𝑧 in that table) of the same functions. For cell autonomous 

species, at the steady state in a cell 𝑖 , the relationship between an input 

function 𝑓 and the concentration 𝑐𝐴𝑖 it leads to is as follows: 

𝑐𝐴𝑖
=

𝐴𝑖

𝑉𝑖
=

𝑎. 𝑓(𝑥, 𝑦, 𝑧, … )

𝑘. 𝑉𝑖
 

• 𝑐𝐴𝑖
: concentrations in species 𝐴 in cell 𝑖 

• 𝐴𝑖: quantity of matter of species 𝐴 in cell 𝑖 

• 𝑉𝑖: volume of cell 𝑖 

• 𝑎: synthesis coefficient 

• 𝑓(𝑥, 𝑦, 𝑧, … ) : value of the input function, which depends on some 

concentrations 𝑥, 𝑦, 𝑧… 

• 𝑘: degradation coefficient 

As a convention, it was decided that higher concentration values should be on 

the order of magnitude of 1, so the 𝜃 parameter, which defines activation or 
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repression thresholds, was set to 0.3 for all species. The 𝑛 parameter, which 

defines the steepness of the activation or repression, also has a single value 

(𝑛=3) for all species. Using only one value per parameter for all equations was 

the most parsimonious option and yielded satisfactory results. The particular 

values of these parameters (and all others) were selected by trial and error and 

are given in Table 5.3. 

For higher concentration values to actually be on the order of magnitude of 1, 

parameters 𝑎  and 𝑘  need to be chosen appropriately. As only the ratio 
𝑎

𝑘
 

matters, 𝑘 was set to 1 for simplicity. 𝑎 therefore has to take into account the 

size of cells. Setting 𝑎  to the volume of the largest cell would ensure no 

concentration is higher than 1. However, there are some outliers in the 

distribution of cell volumes in the tissue (Figure 5.1), which means it would also 

result in most cells always having very high concentrations. This could be 

addressed by using the median volume instead. It would result in some 

concentrations being greater than 1, but the input functions can accommodate 

this, due to their saturating nature. However, another factor to take into 

consideration was the heterogeneity of cell volumes in the tissue. The 

distribution of cell volumes in the L1 is markedly different from the general 

one, with smaller cells on average (Figure 5.1). As this model was mainly aiming 

at predicting the identities of cells on the surface of the SAM (where lateral 

organs are initiated), the value of 𝑎 was chosen to be the median volume of L1 

cells, resulting in the higher concentrations of L1 cells being on the order of 

magnitude of 1. 
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Figure 5.1. Histograms of the distributions of cell volumes in the whole tissue 

and in the L1 layer. The two populations have different numbers of cells, 

therefore the heights of the bars were normalized so that the integral of each 

distribution is 1 (similar to probability distribution functions). 

Other parts of the ODEs had to be written from scratch, because they had no 

counterpart in the Boolean model. This is the case of the transport terms and 

degradation terms. 

In the Boolean model, mobile species such as auxin and the TFL1 protein were 

simply considered as input variables. In a spatio-temporal model, it is however 

possible to model organ-scale transport phenomena explicitly. Passive 

transport between cells was therefore modelled as a diffusion-like process 

occurring through the interfaces between cells, using Fick’s law (Attwood et 
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al., 2006). The interfaces between cells were modelled as membranes of 

uniform thickness, therefore the term describing the thickness of the 

membrane in Fick’s law was assimilated into the diffusion coefficient. In the 

case of auxin, polar transport was computed using a model derived from 

previous work by Jönsson and colleagues (Jönsson et al., 2006). The model 

assumes that auxin is transported actively by a membrane-bound outflux 

transporter (PIN1) whose distribution is dynamic and favours the exportation 

of auxin towards cells with higher auxin concentrations. In the retained variant 

of the models proposed by Jönsson and colleagues, the distribution is not 

modelled explicitly as a state variable. It is assumed at a steady state with 

respect to auxin concentrations, and can therefore be computed directly from 

auxin concentrations. The efflux of auxin through an interface is then 

proportional to the number of PIN1 transporters on that interface and to the 

concentration of auxin in the source cell, following a mass action law. 

Technically, FT is also a mobile species, however its transport was not 

modelled explicitly, as with auxin and the TFL1 protein. Instead, it was kept as 

an input variable, as it is synthesized  outside of the SAM (in leaves), and there 

are no data detailing its distribution in the SAM. Its concentrations were 

therefore modelled as being solely time-dependent, and uniform throughout 

the SAM, at any given time. The activation of FT is represented in the equations 

by a Hill equation whose activator is time. This is to leave time for the auxin 

patterning to establish, which takes about 50 time units, before FT is 

introduced. It is meant to mimic the biological process as closely as possible. 
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This might be particularly important because the floral identity genes (LFY and 

AP1) constitute a positive feedback loop activated (indirectly) by a 

combination of FT and auxin. This means that the activation of LFY and AP1 

might not be reversible if the pattern of auxin changes after FT is introduced. 

In this particular case, using constant concentrations for FT (𝑐𝐹𝑇𝑖
= 1) turned 

out to result in the same patterns as using the Hill equation, but there is no 

guarantee it would apply to other models. 

Finally, degradation terms were simply modelled as exponential decays. 

The resulting equations are described in Equation 5.1, and the associated 

parameters are presented in Table 5.3. 
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Equation 5.1. ODE model derived from Boolean model 1a generated by 

genetic programming. 

𝑑𝐹𝑇𝑖

𝑑𝑡
= 𝑉𝑖

𝑡𝑛

𝑡𝑛  + 𝜏𝑛
 −  𝐹𝑇𝑖 

𝑑𝐹𝐷𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝜃𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛 − 𝐹𝐷𝑖 

𝑑𝑆𝑂𝐶1𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝑐𝑆𝑂𝐶1𝑖

𝑛 + 𝑐𝐹𝑇𝑖

𝑛

𝜃𝑛 + 𝑐𝑆𝑂𝐶1𝑖

𝑛 + 𝑐𝐹𝑇𝑖

𝑛  
𝑐𝐹𝐷𝑖

𝑛

𝜃𝑛 + 𝑐𝐹𝐷𝑖

𝑛 − 𝑆𝑂𝐶1 

𝑑𝐿𝐹𝑌𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝑐𝐴𝑃1𝑖

𝑛 + 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑛 . 𝑐𝑆𝑂𝐶1𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛 + 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑛 . 𝑐𝑆𝑂𝐶1𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑅𝐹𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑅𝐹𝑖

𝑛 + 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

𝑛   

− 𝐿𝐹𝑌𝑖 

𝑑𝐴𝑃1𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝑐𝐿𝐹𝑌
𝑛

𝑖

𝜃𝑛 + 𝑐𝐿𝐹𝑌𝑖

𝑛

𝜃𝑛

𝜃𝑛 + 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

𝑛 − 𝐴𝑃1𝑖 

𝑑𝑇𝐹𝐿1𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝜃𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛  𝐼𝑖𝑛𝑛𝑒𝑟𝑖
− 𝑇𝐹𝐿1𝑖 

𝑑

𝑑𝑡
𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

= 100 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

𝑐𝑇𝐹𝐿1𝑖

𝑐𝑇𝐹𝐿1𝑖
+ 𝜃𝑛

−  𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

+ 𝐷𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑗

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖)

− 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖
) 
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𝑑

𝑑𝑡
𝑎𝑢𝑥𝑖𝑛𝑖

= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1
𝐼𝐿1𝑖

−  𝑎𝑢𝑥𝑖𝑛𝑖

+ 0.1 𝐷𝑎𝑢𝑥𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑎𝑢𝑥𝑖𝑛𝑗
− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

)

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖)

+ 𝐷𝑎𝑢𝑥𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑎𝑢𝑥𝑖𝑛𝑗
− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

)
𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)∩ 𝐿1

+  𝑇𝑎𝑢𝑥𝑖𝑛 ∑ (𝑐𝑎𝑢𝑥𝑖𝑛𝑗

𝑐𝑎𝑢𝑥𝑖𝑛𝑖
𝑆𝑖𝑗

∑ 𝑐𝑎𝑢𝑥𝑖𝑛𝑘
𝑆𝑗𝑘𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑗) ∩ 𝐿1

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)∩ 𝐿1

− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑐𝑎𝑢𝑥𝑖𝑛𝑗
𝑆𝑖𝑗

∑ 𝑐𝑎𝑢𝑥𝑖𝑛𝑘
𝑆𝑖𝑘𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖) ∩ 𝐿1

) 

𝑑𝐴𝑅𝐹𝑖

𝑑𝑡
= 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1

(1 − 𝐼𝑎𝑝𝑒𝑥𝑖
)

𝜃𝑛

𝜃𝑛 + 𝑐𝑇𝐹𝐿1𝑖

𝑛 − 𝐴𝑅𝐹𝑖 

• 𝐹𝑇𝑖 , 𝐹𝐷𝑖 , 𝑆𝑂𝐶1𝑖 , 𝐿𝐹𝑌𝑖 , 𝐴𝑃1𝑖 , 𝑇𝐹𝐿1𝑖 , 𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖 , 𝑎𝑢𝑥𝑖𝑛𝑖 , 𝐴𝑅𝐹𝑖 : 

quantities of matter of FT mRNA, FD mRNA, SOC1 mRNA, LFY mRNA, 

AP1 mRNA, TFL1 mRNA, TFL1 protein, auxin and ARF mRNA, 

respectively, in cell i (arb. unit). 

• 𝑐𝐹𝑇𝑖
, 𝑐𝐹𝐷𝑖

, 𝑐𝑆𝑂𝐶1𝑖
, 𝑐𝐿𝐹𝑌𝑖 , 𝑐𝐴𝑃1𝑖

, 𝑐𝑇𝐹𝐿1𝑖
, 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

,  𝑐𝑎𝑢𝑥𝑖𝑛𝑖
, 𝑐𝐴𝑅𝐹𝑖

: 

concentrations in FT mRNA, FD mRNA, SOC1 mRNA, LFY mRNA, AP1 

mRNA, TFL1 mRNA, TFL1 protein, auxin and ARF mRNA, respectively, in 

cell i (arb. unit). For any species S, 𝑐𝑆𝑖
=

𝑆𝑖

𝑉𝑖
. 

• 𝜃 : threshold concentration used in the Hill functions regulating all 

species (arb. unit). 

• 𝑛 : Hill coefficient used in the Hill functions regulating all species 

(dimensionless). 
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• 𝑉𝑖: volume of cell 𝑖 (arb. unit) 

• 𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1
: median volume of L1 cells (arb. unit) 

• 𝜏: time of the floral transition (arb. unit) 

• 𝐷𝑎𝑢𝑥𝑖𝑛 , 𝐷𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛 : diffusion coefficients of auxin and the TFL1 

protein, respectively (arb. unit) 

• 𝑇𝑎𝑢𝑥𝑖𝑛: active transport coefficient of auxin (arb. unit) 

• 𝐼𝐿1𝑖
, 𝐼𝑖𝑛𝑛𝑒𝑟𝑖

, 𝐼𝑎𝑝𝑒𝑥𝑖
: indicator variables that are 1 if cell 𝑖 is part of the L1 

layer, the “inner” zone, the “apex” zone, respectively, and 0 otherwise. 

• 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖): set of cells adjacent to cell i 

• 𝐿1: set of cells belonging to the L1 layer 

Table 5.3. Parameter values. 

Parameter Value 

𝜏 100 

𝑛 3 

𝜃 0.3 

𝑉𝑚𝑒𝑑𝑖𝑎𝑛𝐿1
 95.15 

𝐷𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛 250 

𝐷𝑎𝑢𝑥𝑖𝑛 1000 

𝑇𝑎𝑢𝑥𝑖𝑛 100000 
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5.2.4. Fixed zones of the tissue 

In order to achieve a plausible auxin pattern, several zones were defined. A 

first zone called L1 defines the outermost layer of cells of the meristem (Figure 

5.2). It is the set of cells among which the active transport of auxin is assumed 

to take place. In reality, polar auxin transport might occur under the L1 as well, 

but it could not be observed (Vernoux et al., 2011). The border of the L1 

constitutes a second zone (Figure 5.3). In this border, auxin concentrations are 

fixed. This is to help the auxin pattern anchor to the geometry of the SAM. 

Without this, auxin maxima are not able to form on the edges of the L1. The 

third zone is the apex. It corresponds to the centre of the L1 (Figure 5.4). Cells 

of this zone do not form lateral organ primordia in response to auxin 

(Reinhardt et al., 2000), possibly due to the absence of some genes of the ARF 

family (Vernoux et al., 2011). The final zone is the inner part of the meristem, 

situated in the centre of the bottom side of the SAM (Figure 5.5). This is where 

TFL1 transcription and translation occur (Conti and Bradley, 2007). 
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Figure 5.2. L1 layer (top view and cross-section). The L1 is where polar auxin 

transport takes place. 

 

Figure 5.3. Border of the L1 layer (top view and cross-section). Those cells are 

on the edge of the imaged section of the SAM. Their auxin concentrations are 

fixed to anchor the auxin pattern to the geometry of the meristem. 
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Figure 5.4. Apex zone (top view and cross-section). This zone is insensitive to 

auxin and cannot form new primordia in WT A. thaliana plants. 

 

Figure 5.5. Inner zone (top view and cross-section). It is where TFL1 is 

expressed. 

5.2.5. Initial concentrations 

All initial concentrations except those of auxin were initialized to 0 plus 

random uniform noise of amplitude 0.001. In the case of auxin, visible 

primordia were marked, and auxin concentrations were defined in primordia 



 

191 

cells following radial, linear concentration gradients centred on each 

primordium (Figure 5.6). 

 

Figure 5.6. Initial auxin concentrations (t=0, top view and cross-section). The 

locations of primordia were marked approximately, and auxin concentrations 

were set according to a linear gradient, decreasing from the centres of 

primordia to their edges. 

5.2.6. Software implementation 

The model was implemented in Python using the Multicell framework, 

developed during this PhD project. Multicell is open source (MIT license) and 

available from Github (Dinh, 2016). 

5.2.6.1. Tissue structure 

Multicell uses tissue structures stored in the Topomesh format defined by 

OpenAlea (Dufour-Kowalski et al., 2007; Pradal et al., 2008; Cokelaer et al., 

2009). 
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5.2.6.2. ODE integration 

The equations presented in Equation 5.1 have to be integrated for each cell of 

the tissue, and the behaviour of each cell is dependent on those of its 

neighbours, due to transport phenomena (both passive and active). This 

results in large systems of ODEs that cannot be integrated independently of 

each other. 

Under the assumption that all cells depend on every other cell, the integration 

of such a system can be done using standard solvers such as LSODA from the 

ODEPACK collection (Hindmarsh, 1982), which is the default solver in the Scipy 

module in Python (Jones et al., 2001) and the deSolve package in R (Soetaert 

et al., 2016). However, using LSODA results in very long simulation times, 

which can be drastically improved by using another solver. The core idea is that 

only cells that are adjacent depend on each other, therefore each ODE only 

depends directly on a few others. ODEPACK includes an efficient solver for this 

type of problems, LSODES, which specialises in systems of ODEs with a sparse 

Jacobian matrix (i.e. systems of ODEs where each ODE only depends directly 

on a few others). A Python wrapper for LSODES was developed by John Fozard 

(formerly University of Nottingham, now John Innes Center, Norwich) (Fozard, 

2015), and is used by Multicell. A simple benchmarking case (passive transport 

of a species from the left-most cell in a row of 1000 cubic cells to the others, 

until homogenization) showed that using LSODES instead of LSODA resulted in 

a 31-fold speed increase. Such a speed-up is particularly relevant in real 

simulations, which already take 4 or more hours with LSODES. 
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5.3. RESULTS 

5.3.1. Induction of FT in WT plants results in the expected expression 

patterns 

The simulation results presented hereafter were obtained after running the 

simulation for 300 time units, which corresponds to an FT concentration of 

0.99. At this time, the patterns of every species have stabilized, and this marks 

the end of the floral transition. 

The objective was to reproduce expression or distribution patterns similar to 

those observed by ISH or other methods in real plants, in published 

experiments. The experimental results used as reference have been adapted 

and are depicted in Figure 5.8, Figure 5.10, Figure 5.12, Figure 5.14, Figure 

5.16, Figure 5.18, Figure 5.20 and Figure 5.22. 

FT concentrations are only time-dependent and simulate an influx of FT 

proteins from the leaves. They are homogeneous across the whole meristem 

(Figure 5.7). FD, the interaction partner of FT, is expressed in the inflorescence 

meristem, but not in the primordia (Figure 5.9). The pattern of SOC1 is similar 

to that of FD (Figure 5.11), but those of LFY and AP1 are opposite (Figure 5.13 

and Figure 5.15). TFL1 is only expressed in the inner zone of the meristem 

(Figure 5.17), but its protein diffuses to a larger zone and forms a concentration 

gradient in the SAM (Figure 5.19). Auxin forms local concentration maxima, 

which match the expression pattern of LFY and AP1, except for the centremost 
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maximum (Figure 5.21). ARF is expressed in all of the L1, except the apex 

(Figure 5.23). 

Overall, the simulated patterns match those observed in the published ISH 

experiments. 

 

Figure 5.7. FT protein concentrations at t=300 (top view and cross-section). 

FT is distributed uniformly across the whole SAM. 
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Figure 5.8. Expression of FD in A. thaliana inflorescence SAM (after Wigge et 

al., 2005). Colours were derived from the original figure and indicate 

expression intensity (darker is more intense). “p” denotes primordia. 

 

Figure 5.9. FD mRNA concentrations at t=300 (top view and cross-section). 

FD is expressed in the inflorescence meristem, but not in the primordia. 
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Figure 5.10. Expression of SOC1 in A. thaliana inflorescence SAM (after Wang 

et al., 2009). Colours were derived from the original figure and indicate 

expression intensity (darker is more intense). “p” denotes primordia. 

 

Figure 5.11. SOC1 mRNA concentrations at t=300 (top view and cross-section). 

SOC1 is expressed in the inflorescence meristem, but not in primordia. 



 

197 

 

Figure 5.12. Expression of LFY in A. thaliana inflorescence SAM (after 

Blazquez et al., 1997). Colours were derived from the original figure and 

indicate expression intensity (expression appears pink, background is blue). “a” 

and “p” denote anlagen and primordia, respectively. 

 

Figure 5.13. LFY mRNA concentrations at t=300 (top view and cross-section). 

LFY is expressed in primordia. 
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Figure 5.14. Expression of AP1 in A. thaliana inflorescence SAM (after Wigge 

et al., 2005). Colours were derived from the original figure and indicate 

expression intensity (darker is more intense). “p” denotes primordia. 

 

Figure 5.15. AP1 mRNA concentrations at t=300 (top view and cross-section). 

AP1 is expressed in primordia. Older primordia exhibit higher concentrations. 
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Figure 5.16. Expression of TFL1 in cross-section of A. thaliana inflorescence 

SAM (after Liu et al., 2013). Colours were derived from the original figure and 

indicate expression intensity (darker is more intense). “p” denotes primordia. 

 

Figure 5.17. TFL1 mRNA concentrations at t=300 (top view and cross-section). 

TFL1 is transcripted in the inner part of the SAM. No TFL1 expression is visible 

from the top. 
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Figure 5.18. Distribution of TFL1 protein in cross-section of A. thaliana 

inflorescence SAM (after Conti and Bradley, 2007). Colours were derived from 

the original figure and indicate protein presence (proteins are black, 

background is blue). “p” denotes primordia. 

 

Figure 5.19. TFL1 protein concentrations at t=300 (top view and cross-

section). The TFL1 protein forms a concentration gradient around its 

expression domain. 
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Figure 5.20. Distribution of auxin in top-view of A. thaliana inflorescence 

SAM (after Vernoux et al., 2011). Colours were derived from the original figure 

and indicate auxin presence (auxin is red, background is green). “p” denotes 

primordia. 

 

Figure 5.21. Auxin concentrations at t=300 (top view and cross-section). 

Auxin forms local maxima as a result of polar transport. 
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Figure 5.22. Expression of ARF5 in cross-section of A. thaliana inflorescence 

SAM (after Vernoux et al., 2011). Colours were derived from the original figure 

and indicate expression intensity (darker is more intense). “p” denotes 

primordia. 

 

Figure 5.23. ARF mRNA concentrations at t=300 (top view and cross-section). 

ARF are not expressed at the apex of the SAM. 
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5.3.2. In the absence of FT induction, inflorescence and floral identity genes 

are not expressed 

When FT is not induced (FT=0 for the whole simulation), inflorescence and 

floral identity genes are not expressed, resulting in expression profiles 

reminiscent of a vegetative SAM (Figure 5.24, and Figure 5.26 to Figure 5.28). 

Due to the non-expression of AP1, FD does not get repressed in primordia and 

is therefore expressed throughout the SAM (Figure 5.25). Other species (TFL1, 

TFL1 protein, auxin and ARF) were not affected. 

 

Figure 5.24. FT protein concentrations at t=300 without induction of FT (top 

view and cross-section). FT is not present in the SAM, except for the 

initialization noise. 
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Figure 5.25. FD mRNA concentrations at t=300 without induction of FT (top 

view and cross-section). FD is expressed throughout the meristem, even in 

primordia. 

 

Figure 5.26. SOC1 mRNA concentrations at t=300 without induction of FT (top 

view and cross-section). SOC1 is not expressed in the SAM. 
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Figure 5.27. LFY mRNA concentrations at t=300 without induction of FT (top 

view and cross-section). LFY is not expressed in the SAM. 

 

Figure 5.28. AP1 mRNA concentrations at t=300 without induction of FT (top 

view and cross-section). AP1 is not expressed in the SAM. 

5.3.3. Induction of FT in ap1 and tfl1 mutants results in expression patterns 

compatible with their respective inflorescence architectures 

Simulations were also carried out for the ap1 and tfl1 mutants, which had also 

been studied in Chapter 4, by keeping the initial values of the relevant variables 
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close to 0 and setting the associated ODEs to always return 0. In the ap1 

mutant, SOC1 and FD patterns do not show any holes where the primordia 

should be (Figure 5.29 and Figure 5.30). This can potentially explain why the 

ap1/cal mutant exhibits a recursive, cauliflower-like inflorescence structure, 

where inflorescence meristems generate additional inflorescence meristems 

(Smyth, 1995). In the tfl1 mutant, AP1 expression is observed in the apex zone 

(Figure 5.31). This is consistent with the fact that the inflorescence of the tfl1 

mutant ends with a flower (Shannon and Meeks-Wagner, 1991). 

 

Figure 5.29. FD mRNA concentrations at t=300 in the ap1 mutant. There are 

no holes corresponding to the primordia in the pattern. 
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Figure 5.30. SOC1 mRNA concentrations at t=300 in the ap1 mutant (top view 

and cross-section). There are no holes corresponding to the primordia in the 

pattern. 

 

Figure 5.31. AP1 mRNA concentrations at t=300 in the tfl1 mutant (top view 

and cross-section). AP1 gets expressed in the apex zone. 

5.4. DISCUSSION 

The results of this chapter have shown that the regulatory network proposed 

in Chapter 4 is not only viable as a Boolean model where space is abstracted 
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as a set of compartments differing by the values of their input variables, but 

also as a more realistic ODE model implemented in a 3D tissue structure, 

where the intercellular transport of species is modelled explicitly. This can be 

seen in the patterns generated by the ODE model. 

5.4.1. An ODE model derived from a Boolean model generated by genetic 

programming is able to replicate the patterning of the SAM 

The simulated patterns match the ISH observations reviewed in the previous 

chapter (S4.1 Table). In the WT, they are a result of the interplay between the 

mobile species (FT, auxin and the TFL1 protein) and the species whose patterns 

are affected by the predefined inner and apex zones. FT triggers the expression 

of inflorescence genes (in this model, SOC1). Where SOC1 is accompanied by 

auxin and ARF (i.e. in the primordia), LFY also gets activated. In the apex zone 

however, auxin is present but ARF is absent, therefore LFY is not strongly 

expressed (Figure 5.13). If the concentration in TFL1 protein is low enough, the 

positive feedback loop between LFY and AP1 gets activated, which in turns 

activates the negative feedback of AP1 on FD and SOC1. Figure 5.15 shows that 

AP1 is expressed in the same cells as LFY, but the intensity of AP1 expression 

is higher in the older meristems. This can be attributed to the fact that the TFL1 

protein – an inhibitor of AP1 – is present in higher concentrations in the 

younger primordia, due to the concentration gradient (Figure 5.19). 

In the simulations of the ap1 mutant, AP1 does not get expressed in any of the 

primordia, preventing them from downregulating FD (Figure 5.29) and SOC1 
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(Figure 5.30). The resulting expression profile of primordia is therefore similar 

to that of the inflorescence meristem, which could explain how the recursive 

structure of the cauliflower-like ap1/cal mutant (Kempin et al., 1995) 

establishes. 

In the tfl1 mutant, the auxin maximum in the apex zone is no longer repressed 

by the TFL1 protein, causing it to start expressing AP1 (Figure 5.31). This might 

explain why the inflorescence of the tfl1 mutant loses its indeterminate trait 

and turns into a flower (Liljegren et al., 1999). Surprisingly, however, AP1 

expression in the apex zone is conditioned by the presence of auxin, but is not 

affected by the absence of ARF. Additional experiments would be required to 

determine whether this is biologically relevant or not, but the regulation of 

ARF is known to require additional information, as its proposed inhibitor is the 

TFL1 mRNA, not the TFL1 protein, which would be biologically surprising. 

5.4.2. Updating quantities of matter in the ODEs result in noisy patterns 

The simulated concentrations of cell autonomous species are very noisy. This 

is a consequence of the assumptions made regarding the synthesis and the 

transport of the modelled chemical species. Synthesis is assumed to result in 

the same amount of molecules regardless of the size of the cell where it is 

taking place. Therefore, smaller cells will develop stronger concentrations if all 

other factors are equal. 

Other assumptions could be made. First, synthesis could be proportional to cell 

volume. This is commonly seen in non-spatialized models where 
𝑑𝑐𝑖

𝑑𝑡
=
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𝑓(𝑐1, … , 𝑐𝑛) (as opposed to 
𝑑𝑖

𝑑𝑡
= 𝑓(𝑐1, … , 𝑐𝑛) in this model). While the former 

is simpler, there does not seem to be any biological principle supporting an 

effect of cell size on synthesis rate. Second, the dilution volume used in the 

calculation of concentrations may not be the volume of the whole cell, but the 

volume of one or several organelles, such as the cytoplasm. If the modelled 

chemical species are contained within the cytoplasm, it could then be safe to 

consider that all cells have an equal “volume”, as far as the calculation of 

concentrations is concerned. Indeed, meristematic cells have no vacuoles (only 

prevacuoles), but in mature plant cells, up to 90% of cell volume is taken up by 

the vacuole (Wink, 1993). Therefore, the volume of the cytoplasm might be 

less variable, or even constant. However, the main drawback of using a 

constant volume for all cells comes from the artefacts it generates when 

combined with intercellular passive transport and the hypothesis of instant 

diffusion within cells. It results in mobile species moving abnormally fast 

through large cells, because diffusion from one side of the cell to the other is 

instant, and this is not compensated by the inertia to changes in 

concentrations that a larger cell volume would normally afford. 

To test whether the first hypothesis was plausible, a model updating 

concentrations instead of quantities of matter was implemented. Equations 

are given in Equation 5.2 and parameters are still the same as in the previous 

model (Table 5.3). In practice, concentration updating was not found to affect 

simulation results much (Figure 5.32 to Figure 5.40), although it does reduce 

the variability of concentrations across the SAM. The small extent of the 
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changes is probably due to the fact that the disparities in cell sizes are not too 

pronounced in this tissue structure, although SOC1 concentration is noticeably 

higher in the inner cells of the SAM with the concentration-updating model 

(Figure 5.11 and Figure 5.34). 
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Equation 5.2. Variant of the ODE model with concentration updating. 

𝑑𝑐𝐹𝑇𝑖

𝑑𝑡
=

𝑡𝑛

𝑡𝑛  + 𝜏𝑛
 − 𝑐𝐹𝑇𝑖

 

𝑑𝑐𝐹𝐷𝑖

𝑑𝑡
=

𝜃𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛 − 𝑐𝐹𝐷𝑖
 

𝑑𝑐𝑆𝑂𝐶1𝑖

𝑑𝑡
=

𝑐𝑆𝑂𝐶1𝑖

𝑛 + 𝑐𝐹𝑇𝑖

𝑛

𝜃𝑛 + 𝑐𝑆𝑂𝐶1𝑖

𝑛 + 𝑐𝐹𝑇𝑖

𝑛  
𝑐𝐹𝐷𝑖

𝑛

𝜃𝑛 + 𝑐𝐹𝐷𝑖

𝑛 − 𝑐𝑆𝑂𝐶1𝑖
 

𝑑𝑐𝐿𝐹𝑌𝑖

𝑑𝑡
=

𝑐𝐴𝑃1𝑖

𝑛 + 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑛 . 𝑐𝑆𝑂𝐶1𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛 + 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑛 . 𝑐𝑆𝑂𝐶1𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑅𝐹𝑖

𝑛

𝜃𝑛 + 𝑐𝐴𝑅𝐹𝑖

𝑛 + 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

𝑛   − 𝑐𝐿𝐹𝑌𝑖
 

𝑑𝑐𝐴𝑃1𝑖

𝑑𝑡
=

𝑐𝐿𝐹𝑌
𝑛

𝑖

𝜃𝑛 + 𝑐𝐿𝐹𝑌𝑖

𝑛

𝜃𝑛

𝜃𝑛 + 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

𝑛 − 𝑐𝐴𝑃1𝑖
 

𝑑𝑐𝑇𝐹𝐿1𝑖

𝑑𝑡
= 0.175

𝜃𝑛

𝜃𝑛 + 𝑐𝐴𝑃1𝑖

𝑛  𝐼𝑖𝑛𝑛𝑒𝑟𝑖
− 𝑐𝑇𝐹𝐿1𝑖

 

𝑑𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

𝑑𝑡
= 100

𝑐𝑇𝐹𝐿1𝑖

𝑐𝑇𝐹𝐿1𝑖
+ 𝜃𝑛

− 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

+ 𝐷𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑗

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖)

− 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖
) 
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𝑑𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑑𝑡

= 𝐼𝐿1𝑖
− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

+
1

𝑉𝑖
(0.1 𝐷𝑎𝑢𝑥𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑎𝑢𝑥𝑖𝑛𝑗

− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖
)

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖)

+ 𝐷𝑎𝑢𝑥𝑖𝑛 ∑ 𝑆𝑖𝑗  (𝑐𝑎𝑢𝑥𝑖𝑛𝑗
− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

)
𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)∩ 𝐿1

+  𝑇𝑎𝑢𝑥𝑖𝑛 ∑ (𝑐𝑎𝑢𝑥𝑖𝑛𝑗

𝑐𝑎𝑢𝑥𝑖𝑛𝑖
𝑆𝑖𝑗

∑ 𝑐𝑎𝑢𝑥𝑖𝑛𝑘
𝑆𝑗𝑘𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑗) ∩ 𝐿1

𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)∩ 𝐿1

− 𝑐𝑎𝑢𝑥𝑖𝑛𝑖

𝑐𝑎𝑢𝑥𝑖𝑛𝑗
𝑆𝑖𝑗

∑ 𝑐𝑎𝑢𝑥𝑖𝑛𝑘
𝑆𝑖𝑘𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖) ∩ 𝐿1

)) 

𝑑𝑐𝐴𝑅𝐹𝑖

𝑑𝑡
= (1 − 𝐼𝑎𝑝𝑒𝑥𝑖

)
𝜃𝑛

𝜃𝑛 + 𝑐𝑇𝐹𝐿1𝑖

𝑛 − 𝑐𝐴𝑅𝐹𝑖
 

• 𝑐𝐹𝑇𝑖
, 𝑐𝐹𝐷𝑖

, 𝑐𝑆𝑂𝐶1𝑖
, 𝑐𝐿𝐹𝑌𝑖 , 𝑐𝐴𝑃1𝑖

, 𝑐𝑇𝐹𝐿1𝑖
, 𝑐𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖

,  𝑐𝑎𝑢𝑥𝑖𝑛𝑖
, 𝑐𝐴𝑅𝐹𝑖

: 

concentrations in FT mRNA, FD mRNA, SOC1 mRNA, LFY mRNA, AP1 

mRNA, TFL1 mRNA, TFL1 protein, auxin and ARF mRNA, respectively, in 

cell 𝑖 (arb. unit). 

• 𝜃 : threshold concentration used in the Hill functions regulating all 

species (arb. unit). 

• 𝑛 : Hill coefficient used in the Hill functions regulating all species 

(dimensionless). 

• 𝑉𝑖: volume of cell 𝑖 (arb. unit) 

• 𝜏: time of the floral transition (arb. unit) 
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• 𝐷𝑎𝑢𝑥𝑖𝑛 , 𝐷𝑇𝐹𝐿1𝑝𝑟𝑜𝑡𝑒𝑖𝑛 : diffusion coefficients of auxin and the TFL1 

protein, respectively (arb. unit) 

• 𝑇𝑎𝑢𝑥𝑖𝑛: active transport coefficient of auxin (arb. unit) 

• 𝐼𝐿1𝑖
, 𝐼𝑖𝑛𝑛𝑒𝑟𝑖

, 𝐼𝑎𝑝𝑒𝑥𝑖
: indicator variables that are 1 if cell 𝑖 is part of the L1 

layer, the “inner” zone, the “apex” zone, respectively, and 0 otherwise. 

• 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖): set of cells adjacent to cell i 

• 𝐿1: set of cells belonging to the L1 layer 

 

 

Figure 5.32. FT protein concentrations at t=300 (concentration-updating 

model, top view and cross-section). FT is present across the whole SAM. 
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Figure 5.33. FD mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). FD is expressed throughout the 

inflorescence meristem. It is not expressed in older primordia, but it is at a 

lower level in anlagen. 

 

Figure 5.34. SOC1 mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). SOC1 is expressed in the inflorescence 

meristem and in anlagen, but not in primordia. 
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Figure 5.35. LFY mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). LFY is expressed in anlagen and primordia. 

 

Figure 5.36. AP1 mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). AP1 is expressed in primordia, and – to a 

lesser extent – in anlagen. 
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Figure 5.37. TFL1 mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). TFL1 is expressed in the inner cells of the 

SAM. 

 

Figure 5.38. TFL1 protein concentrations at t=300 (concentration-updating 

model, top view and cross-section). TFL1 diffuses outward from its synthesis 

zone, resulting in a concentration gradient in the SAM. 
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Figure 5.39. Auxin concentrations at t=300 (concentration-updating model, 

top view and cross-section). Auxin is actively transported in polar fashion, 

resulting in the formation of islands of higher concentrations, corresponding 

to anlagen and primordia. 

 

Figure 5.40. ARF mRNA concentrations at t=300 (concentration-updating 

model, top view and cross-section). ARF is expressed throughout the SAM, 

except in the central zone of the L1 layer. It is however partially repressed in 

the inner cells of the SAM. 
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5.4.3. Growth could be integrated into the model 

The ultimate goal of this 4D model of the floral transition was to include 

growth, either kinematically, as a pre-recorded evolution of the geometry of 

the tissue, or dynamically, in response to stimuli like auxin. The dynamic 

approach was pursued using the Sofa modelling framework (Allard et al., 

2007), already used by partners from Inria Montpellier to model sepal 

formation during early flower development (Boudon et al., 2015). One of the 

main benefits of modelling growth dynamically is that it might allow the 

simulation of some mutant phenotypes, such as the fractal, cauliflower-like 

inflorescence of the ap1/cal mutant (Kempin et al., 1995). However, modelling 

the floral transition proved more challenging than sepal formation, as it 

requires cell divisions to prevent growing cells from getting too large. 

Oversized cells lead to issues several natures: geometrical (plausibility of the 

simulated tissue), chemical (over-dilution of modelled species) and mechanical 

(larger cells are weaker than smaller cells). 

5.5. CONCLUSIONS 

A Boolean model generated in the previous chapter could easily be translated 

into an ODE model using Hill and Shea-Ackers functions, due to the simplicity 

of the models generated by genetic programming. The ODE model was 

implemented in a 3D structure of SAM using the Multicell framework, 

developed during this PhD project. It was able to reproduce the establishment 

of the patterns observed in the SAM by ISH with quantitative – though relative 
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– predictions. This confirmed that the regulatory network proposed in 

Chapter 4 was plausible not only in a simple Boolean modelling framework, 

but also in more realistic 3D, ODE modelling framework. 
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6. GENERAL DISCUSSION 

This thesis has explored multiple approaches to model the floral transition and 

understand it in a systemic way. Those approaches fall into two categories: 

those based on quantitative time series of gene expression and those based 

on qualitative data. It stands to reason that, all other things kept equal, 

quantitative data should be superior to qualitative data. However, this work 

has shown that, in practice, qualitative data may be more appropriate, because 

of other characteristics. 

6.1. GENERATING SUITABLE QUANTITATIVE DATA IS DIFFICULT 

Chapters 2 and 3 have both shown that time series of gene expressions are not 

necessarily sufficient to allow for an accurate reconstruction of gene 

regulation dynamics on their own. 

6.1.1. Gene regulatory events are not visible at the time resolution used by 

studies of the floral transition 

Intuitively, one might think that time series contain the necessary information 

to infer gene regulations. For instance, if the expression level of a gene starts 

increasing and is promptly followed by another, it would be reasonable to 

hypothesize the first is an activator of the second. However, the time 

resolution used in floral transition studies is too low to make such 

observations. The delay between the activation of a regulator and that of its 

target is only a few hours (Rosenfeld and Alon, 2003). In the rice data 

presented in Chapter 2, the resolution was one measurement per 14 days, and 
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in the A. thaliana data of Chapter 3, it was one measurement per 1 or 3 days, 

depending on the data set. This is because floral experiments need to span 

over several weeks or months, and acquiring samples every hour would 

require unrealistic amounts of plants and labour. 

However, even if time series of gene expression could be acquired at high 

temporal resolution, they might still present other issues. 

6.1.2. Some phenomena are not observed in the data 

ODE models often make use of saturating functions (Michaelis-Menten or Hill 

functions) (Hill, 1910; Michaelis et al., 2011; Alon, 2006). The intent is to 

acknowledge that there is an upper bound to the synthesis rate of any mRNA, 

no matter how much transcription factors stimulate it, dictated by physical 

limitations, such as the number of RNA polymerases that can fit on a gene and 

the transcription rate of a single polymerase. There is however no guarantee 

that transcription takes place anywhere near these bounds during an 

experiment, as shown in Chapters 2 and 3. When this is the case, the 

parameters of a Hill or Michaelis-Menten function cannot be estimated. 

In Chapters 2 and 3, this problem was circumvented by using linear and 

polynomial (i.e. non-saturating) functions. Although they may not be 

mechanistically accurate, they are suitable approximations of the pre-plateau 

sections of Michaelis-Menten and Hill curves. 
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6.1.3. Some phenomena are not identifiable 

Even when the modelled phenomena do take place in the experiments that 

generated the data, it may not be possible to separate their contributions to 

the observations. As seen in Chapters 2 and 3, this is the case of synthesis and 

degradation. These phenomena both contribute to the variation of observed 

expression levels. As a consequence, their parameters are strongly correlated 

when performing parameter estimation on gene expression time series. In 

practice, this means that changes in degradation rates can be compensated by 

changes in synthesis rates, with little consequences to the fit of the model to 

the data. In Chapter2, this problem was addressed by not modelling synthesis 

and degradation separately. Instead, the concentration of a gene’s mRNA was 

simply represented as a function of the concentrations of its regulators’ 

mRNAs. In Chapter 3, degradation was modelled separately from synthesis, 

but a single parameter was used for all genes, and information from another 

experiment (Narsai et al., 2007), where mRNA abundance was tracked in cells 

treated with transcription inhibitors, was introduced. 

Modelling approaches relying on the available quantitative data were 

therefore not very successful in the case of the floral transition. 

In the particular case of the determination of meristematic identity 

(Chapter 3), it is also likely due to the low spatial resolution of the 

measurement method (i.e. one measurement representative of the whole 

apex). Chapter 4 indeed demonstrated that data acquired at a higher spatial 
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resolution could be used successfully to infer gene regulation networks, 

despite limitations such as a low temporal resolution and the qualitative 

nature of the measurement method (ISH). Chapter 4 thereby also 

demonstrates that qualitative data are useful and should not be hastily 

dismissed. 

6.2. QUALITATIVE DATA CAN BE USEFUL 

Qualitative data, by definition, do not contain as much information as 

quantitative data. However, this can be compensated by other characteristics, 

such as the number of observations available, as qualitative data are often 

easier to acquire. This was illustrated by ISH data. Even though each ISH picture 

is only a snapshot of SAM development at a given time, a single picture actually 

contains observations about multiple parts of the SAM. From there, combining 

knowledge about the stages of SAM development (Traas and Vernoux, 2002; 

Carles and Fletcher, 2003), it is possible to piece together a rough timeline of 

gene regulatory events. However, the sequence of regulatory events is not the 

only valuable information. Their spatial location is important in itself, because 

the spatial organization of a SAM is not constant, but dynamic. Therefore, 

models of the development of the SAM should be able to predict the evolution 

of this spatial organization caused by the floral transition. 

In the case of the floral transition, the spatial organization of the SAM is 

mediated by mobile factors (proteins and hormones). Through passive and 

active transport mechanisms, those factors establish patterns in the SAM, and 
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the ensuing combinations nudge the regulatory network of the floral transition 

towards diverse steady states, leading to the expression patterns observed in 

ISH pictures. 

6.3. ONE MODEL OR MANY MODELS? 

It is natural to aim at finding the model that would match reality perfectly, 

however this goal may be unattainable, due to incomplete data and the 

limitations of modelling formalisms. In that case, it makes sense to generate 

as many models as possible that fit the constraints set by all of the existing 

data. That approach is similar in spirit to Monte Carlo simulations (Harrison, 

2010), as the underlying idea is to sample the variability of the solutions to a 

problem. 

This is the idea behind the genetic programming approach of Chapter 4. It 

implies generating and testing large numbers of models, and was made 

possible due to the simplicity of Boolean models, as their simulation is 

computationally cheap, and they do not require any parameter optimization. 

Where just the parameter optimization of a single ODE model of Chapter 3 

would take several days, testing one Boolean model only takes a fraction of a 

second. Therefore, it is possible to screen many models to find multiple 

suitable ones. 

However, even among suitable models (i.e. models matching all observations), 

there may be some that are more plausible than others. Exhaustive search 

approaches, which iterate over all mathematically possible models, have 
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shown that they can result in models with very complex, unlikely-looking 

regulatory functions. Therefore, minimizing the complexity of regulatory 

functions appears desirable. This was easily implemented in genetic 

programming, because it works directly on equations. Independent runs of the 

algorithm resulted in multiple plausible solutions (Figure 4.8 and S4.2 Table), 

demonstrating that multiple regulatory scenarios are possible with the 

available data. 

6.4. THE NETWORK OF THE FLORAL TRANSITION 

Several topologies of the network of the floral transition have been proposed 

in Chapter 4. As new data become available in the future, this set of proposed 

networks might be narrowed down and provide a more precise picture of the 

real network. In the meantime, it is already possible to draw conclusions based 

on the common features of these networks. They for instance indicate that the 

switch behaviours of the floral transition network can be explained by several 

feedback loops, which are discussed below, in conjunction with other data 

sources. 

6.4.1. The vegetative-inflorescence switch 

The vegetative inflorescence switch needs to be activated by FT-FD dimers, but 

does not require them to remain activated (Adrian et al., 2009). The crucial 

role of FT is backed by the flowering time data used in Chapter 3. ft mutants 

are extremely late flowering (Figure 3.3), however the fact that they do 

eventually flower suggests that there are back-up activation pathways for 
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inflorescence genes. This role might be filled by the aging pathway and by FT 

homologs such as TSF (Yamaguchi et al., 2005), not present in that model. fd 

mutants are not as late flowering as ft mutants (Figure 3.3), even though the 

DNA-binding domains are not located on FT but on FD (Abe et al., 2005). This 

might be due to FDP, an FD paralog (Abe et al., 2005). 

The vegetative inflorescence switch consists of a positive feedback loop 

including at least SOC1, and possibly AGL24. The involvement of AGL24 is not 

supported by flowering time data, as the flowering time of the agl24 mutant 

is not affected, compared to the WT (Figure 3.3). 

6.4.2. The inflorescence-floral switch 

According to Chapter 4, the inflorescence-floral switch consists of two loops: a 

positive feedback loop between LFY and AP1, and a negative feedback loop 

where AP1 downregulates its activators, FD and SOC1. This negative feedback 

loop is consistent with results reported by Kaufmann and colleagues 

(Kaufmann et al., 2010), although they hypothesize that AP1 directly down-

regulates both of FD and SOC1. This would constitute an uncommon, coherent 

type 2 feedforward loop (Alon, 2006), but might result in faster down-

regulation of SOC1. The Boolean models used in Chapter 4 were however not 

able to discern between these scenarios, as they do not represent time 

quantitatively. 

According to the network reviewed by Liu and colleagues (Liu et al., 2009) and 

supported by the modelling work of Chapter 4, the LFY-AP1 loop is activated 
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by a combination of SOC1 and auxin signalling, while AP1 expression is 

repressed by TFL1. The profiles resulting from the superposition of the 

patterns of auxin, its signalling partners (ARF) and TFL1 determine the 

locations of floral primordia. AP1 activation has been confirmed to be LFY-

dependent (Benlloch et al., 2011), but flowering time data seem to conflict 

with that observation, as the flowering time of lfy mutants is not affected 

(compared to the WT; Error! Reference source not found.). A possible 

explanation is that AP1 does not actually get activated in lfy mutants. This 

conflicts with the assumptions made in Chapter 3, but the fact that even the 

ap1 mutant can flower (Irish and Sussex, 1990) indicates AP1 is not actually 

required for flowering. Alternatively, if AP1 does get activated in lfy mutants, 

then it would suggest there is probably a parallel activation pathway for AP1, 

as suggested by the fact that the soc1 mutants are also only moderately late 

flowering. This second explanation corresponds to the ODE model of Chapter 

3, which does not feature the LFY-AP1 loop, but does include the controversial 

activation of AP1 by FT that bypasses SOC1 (Wigge et al., 2005; Benlloch et al., 

2011). 

6.5. FUTURE WORK 

Answering the new questions raised by this work would require additional 

data. The problems with the currently available quantitative data and the 

benefits of spatial qualitative data have already been described previously. 

However, ideally, data should be simultaneously temporal, spatial and 
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quantitative. This can be done using several methods, such as the confocal 

imaging of fluorescent proteins, or single-cell RNA sequencing. These methods 

are at the time of writing still labour-intensive and expensive, but biological 

modelling would surely greatly benefit if they were somehow automated. 

It would also be useful not to limit data generation to a single genetic 

background (typically the WT) and set of growing conditions, but to extend it 

to mutants, across a range of growing conditions. This would enable the 

construction of models that behave correctly in multiple conditions, and are 

therefore likely to be closer to the truth. 

Finally, there needs to be more data about crop species for meaningful real-

world applications. Currently, most of the available data comes from A. 

thaliana, which is a model plant in biology, but a common weed outside of the 

laboratory. A. thaliana, as a Brassicacea, is more closely related to the cabbage 

family than to most crops, therefore knowledge gained on its floral transition 

might transfer to crops such as cauliflower. However, it is quite distant from 

cereal species, which have rather different inflorescence architectures (Tanaka 

et al., 2013). Chapter 2 showed that data are scarce even for rice, which is one 

of the easiest cereal species to work with due to its relatively small genome 

(Jackson, 2016). 

Aside from the generation of new data, the predictions of the 4D model in 

Chapter 5 show promise. The next logical step in the development of this 

model would be to integrate it with growth. Growth is a crucial phenomenon 
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in the establishment of the identity of lateral organs. It is not so much because 

of increases in the size of the SAM, as its domains are able to scale adaptively 

(Gruel et al., 2016), but because it is growth that drives the transitions of SAM 

cells between the identities described in Chapter 4 by pushing older cells away 

from the apex (or moving the apex away from older cells, depending on the 

frame of reference). The growth simulation method developed by Boudon and 

colleagues is a good candidate (Boudon et al., 2015), as Frédéric Boudon 

(Virtual Plants, Montpellier) has recently developed a way to include cell 

divisions in the simulations, thereby removing the previously mentioned 

roadblock. 

In the longer term, Chapter 4 showed data from heterogeneous sources (ISH 

and gene interactions) could be successfully integrated to infer the dynamics 

of regulatory networks. There are however many other types of data available, 

such as qRT-PCRs (even if they only cover a few genes), transcriptomic and 

proteomic data, degradation rate experiments and confocal microscopy 

images. Specifying how they should all connect to each other is an ample task, 

but succeeding would probably result in an even better understanding of the 

floral transition. If not, it would at least have the benefit of formalising how 

raw data are interpreted, thereby making interpretation issues more 

traceable. A possible approach could be a two-level model, where the first 

level decomposes all types of data into collections of single-cell expression 

time-series, and the second level is a regulatory network model to be fitted on 

these time series. Depending on the flexibility required from the second-level 
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model and the availability of data, machine learning algorithms such as 

recurrent support vector machines (SVM) and recurrent neural networks 

(RNN) could be used (Graves, 2012; Schmidhuber et al., 2007). 

6.6. GENERAL CONCLUSIONS 

The goal of this thesis was to provide insight into the floral transition through 

mathematical modelling. In A. thaliana, multiple models were developed 

following different approaches. However, they are not in perfect agreement, 

as the various sources of data used do not seem entirely consistent. Some of 

it can be put down to suboptimal experimental designs (e.g. qRT-PCRs of 

tissues of varying compositions), but it is also possible that some are due to 

misinterpretations of experimental results (e.g. incorrect estimation of the 

importance of a regulatory interaction or improper analysis of ISH pictures). 

Additional data, preferably of better quality, would be useful in resolving those 

conflicts. 

The modelling methods developed in this PhD project are most likely 

applicable to other cases, in particular the automatic generation of ISH-based 

Boolean models using genetic programming, and their translation into 4D ODE 

models.  
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