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ABSTRACT

The floral transition is a developmental process through which some plants
commit to flowering and stop producing leav@sisis controlled bychanges

in gene expression ithe shoot apical meristen{fSAM) Many of the genes
involved are known, but theinteractions arausuallyonly studied one by one,

or in small setsWhile itmight benecessary t@roperlyascertain the existence

of regulatory interactiongrom a biological standpoint, @annot really provide
insight n the functioning of the floratransition process as a whole. For this
reason, a modelling approadimas beenusedto integrate knowledge from

multiple studies.

Severabpproaches werapplied starting withordinary differential equation
(ODB models.It revealed in two cases one on rice and one oArabidopsis
thaliana ¢ that the currently available datavere not sufficientto build data
driven ODE modelsThe main issues were the low temporal resolutajrthe
time series the low spatial resolution of the samplingethods used on
meristematic tissugand the lack ofjene expression measurements in studies
of factors affecting the floral transitiomheseissuesnadethe availablegene
expression time series of little use to infer thregulabbry mechansms
involved Therefore another approach based on qualitative data was
investigated. It relie®n data extracted frompublishedin situ hybridization
(ISH)studies and Boolean modellingThe ISH datelearly showed that shoot

apical meristems (SAMjre not homogeneous anaontain multiple spatial
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domainscorresponding to coexistingteadystates of the same regulatory
network. Using genetic programming, Boolean models with the rgjaady
states were successfullygenerated Fnally, the third modellingapproach
builds upon one of the generateBooleanmodels andimplements its logic
into a 3D tissue of SAM As Boolean models naot representquantitative
spatiotemporal phenomena such gmssive transportthe modelhad to be
translated into OD& This modelsuccessfully reproduced the patterning of

SAM genes in a statiissue structure

The main biological conclusisnof this thesisare that the spatial organization
of gene expression in the SAM is a crucial part of the floral transati@hof
the development of inflorescensg and it ismediated by the transport of
mobile proteins and hormone®©n the modelling frontthis work shows that
guantitative ODE modelglespite their popularity cannot beapplied toall
situations. When the data are insufficierdimpler approaches likBoolean
modelsand ODE modelwith qualitatively selected parametersan provide
suitable alternatives and facilitate largescale explorations of the space of

possible modelsdue to their low computational cost.
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1. GENERAL INTRODUCTION

The floral transitions a developmental change wherebgme plants switch
from producing vegetative organs to producing reproductive orgdeece
and Campbell, 2011)This change arises in response to external (e.g.
photoperiod, ambient temperature, ptonged exposure to cold) dnnternal

cues (e.g. agdnormones)(Fornara et al., 2010)

In wild species, the timing of th8oral transition determines reproductive
successplants flowering too early deprive themselves of thpportunity to
grow more and produce more offspring, while plants flowering too late run the
risk of being destroyed by harsh climatic conditibe$orethey can reproduce
(Engelmann and Purugganan, 2Q0B)e controlof the floral transition isalso
important in cultivated species, for agronomic and economic reasons. In
species whose main produare derived from frus (e.g.cerealg, the timing

of the floral transitionaffects yield(Cockram et al., 2007)As the floral
transition marks the end of leaf productionnaearly floral transitionvould

limit the amount of photosynthetisurfaceplants can deployand therefore,

the amount of resources available fiwoduce fruits. However, alate floral
transitionwould exposecultivated species to the same risks as wild species. In
speciescultivated for vegetative partée.g. lettuce, cabbage), proper control

of the floral transition is also relevarfdung and Muller, 2009)ndeed, those
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products are harvested before the floal transition occurs. If the floral
transition were to occur before the harvest, those products wolle
substantiallyaltered (Frugis et al., 20013nd would not be marketable It is
however still desirable that those plants are able to flower under some
conditions, as itenablespropagation through seeds instead of vegetative

methods

The next sectiopresents a snapshot efhat was known about the regulatory
network of the floral transition at the beginning of thighD project which
served as théoundation for the modelling projects presented in the following

chapters

In the model planfA. thaliang the regulatory network of thdloral transition
was reviewedseveral times(Liu et al.,, 2009; Fornara et al.,, 2010he
information reported hereafter about the topologgf the floral transiton
network is drawn from these reviewsunless mentioned otherwisdt is

summarized irFigurel.l.

Functionally,the network can be split into two partsupstream,pathways
dedicated to the perception of various environmental and internal ceash
contributing to the decision to flower or notdownstream, a network

controlling the identities of the cells of the SAMdrian et al., 2009)At the

15



interface between thoséwo subnetworks areFLOWERING LOCUSTand
SUPPRESSOR OF OVEREXPRESSION OF CCBITRN® henes known
as floral integratos, because they integrate the signad$ the cue-sensing

pathwaysinto a decision to flower or ngiSimpson and Dean, 2002)

Upstream of the floral integratorghe cuesensing pathwaymonitor signals
as diverse aphotoperiod, ambient temperatte, prolonged exposure to cold

(vernalizationjand age

The photoperiodpathway (Golembeski et al., 2014hcludes the circadian

clock, which is anodule composedof genes formingthree intedocking
negative feedback loops, wita 24hour-periodic expression patternThe

genes of the circadian clock aRSEUD@®ESPONSE REGULATORRRY,
PRROLATE ELONGATED HYPOQOHYLCIRCADIAN CLOCK ASSOCIATED 1
(CCAY, TIMING OF CAB(TOC) and GIGANTEAG). Late in the day, He
circadian clock activatasSONSTANEQ. CO is an activator &fT, however the

CO protein is degraddd the dark by CONSTITUTIVE PHOTOMORPHOGENIC 1
(COP1l)and in the morningby a pathway triggered by thphotoreceptor
PhytochromeB (PHYB)Therefore,COcan only accumulatand activateFT

under long day (LD) conditions.

The ambient temperatte pathway consists 0SHORT VEGETATIVE PHASE
(SVPR. SVPis a repressor oFTand SOClup-regulated by low temperatures

(Lee et 4., 2007)
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The vernalization pathway consistsFfOWERING LOCUSEILQY, a repressor
of FTand SOCZEilenced by prolonged exposure to cold, &RIGIDAFR), its

activator(Amasino, 2004)

The agig pathway consists ainiRL56, an indirectinhibitor of SOC1APland

LFYthat gets downregulated by agingWwang et al.2009)

Finally,SOC1s also upregulated by the gibberellic acid hormddeng et al.,

2012)

Downsteam of the floral integrators are the meristem identity genes, whose
expression determinghe architecture of the inflorescence aritle fates of
meristematic cellsvegetative, inflorescence or flordAdrian et al., 2009;
Simon et al., 1996NVegetative identity genes includEERMINAL FLOWER 1
(TFL)Y, which is expressedin the pretransition SAM, but alsan the
inflorescencepart of the posttransition SAM (Conti and Bradley, 2007;
Liliegren ¢ al., 1999) Inflorescencegenes also includ8OChand AGAMOUS
LIKE 24AGL24, whichconstitute a positive feedback lodhiu et al., 2008, p.
1). SCC1is directly activated by the FHD dimerFloral identity genes include
LEAFYLFY and APETALA (APJ, which also forma positive feedback loop
(Liljegren et al., 199 andel et al., 1992; Mandehd Yanofsky, 1995; Weigel
et al., 1992; Weigel and Nilsson, 199B)eLFYAP1loop can be activated on
the LFYsideby SOC1 if AGL24asopresent(Lee et al.2008, p. 1)It might

also be activatedy FTirom the AP1side however this=FAP1linteraction is

17



controversial(Benlloch et al., 2011)inally, loth LFYand APlare repressed

by TFLland APZXepresses inflorescence gend$-(1SOChndAGL2J

Gibberellic acid H Prolonged cold exposure, m Ambient temperature, Circadian clock H Long days

o o] [

A

Soc1

4

i
W

AGL24 TFL1

Figurel.1l. Simplifiedtopology of the floral transition network.Rectangles
aregenes (with the exception of miR156, which is a micro RiNK)e ellipses
represent abstract concepts.-¥nd Fshaped arrowheads on edges indicate

activating and repressing regulatory interactgymespectively.

The floral transition was studied most extensivelyAinthalianadue to its
status as a model plant. However, the floral transition has la¢ssn studied in

other species.

1.2.2. In other species

Aside fromA. thaliang the network of the floral transition has mainly been
studied in PoaceagColasanti and Coneva, 2009; Higgins et al., 201@some

information is also availabli@& other species. Most atably, FTis known to be

18



conserved n all sequenced angiosperms&nd is even present in some
gymnospermgKlintenas et al., 2012)t isthought to have acquired its functio
as a floral regulator early ithe history of angiosperm@allerini and Kramer,

2011; Klintenas et al., 2012)

Concerning thesignalsensing pathwaysipstream of FT, the photoperiod
pathway seems conserved in cereatéomologs ofGl and COhave been
identified in cereal speciesincluding rice(Oryza sativy barley (Hordeum
vulgare and wheat (Triticum aestivurp (Colasanti and Coneva, 2009)
Photoreceptorand circadian cloafenesalso haveknownhomologsn rice and
barley (Higgins et al., 2010)Yet, cespite the conservation ofmany
components ofthe photoperiod pathway across specidhge effect of the
whole pathwayon flowering variedrastically Most notably, n rice, Heading
date 1(Hd2J), an ortholog of CQ hasthe effect oppositeof COin A. thaliana

(Hayama et al., 2003)

Some varieties of wheaind barley have a vernalization pathwéynctionally
similar to that ofA. thaliana However, the genes involved do not seem related

to FRIor FLgColasanti and Coneva, 2009)

Downstream ofFT some A. thaliana meristem identity genesalso have
homologs in cereal specietn rice, SOClis homologous toOryza sativa
MADS500sMADS50(Leeet al., 2004) LFYto RICE FLORICULA/LE@FYL
(Kyozuka et al., 1998nd AP1to OsMADS1%and OsMADS14Kyozuka et al.,

2000) In maize,LFYis homologous tazea floricaula/leafy1(zfll) and zfl2

19



(Bomblies et al., 2003Pespite these homologiesflorescence architecturse

in cereals differ quite stronglyfrom that of A. thaliana The A. thaliana
inflorescence isimplycomposed of an inflorescence meristem (on the main
shod) and lateral floral meristems, while rice and maize have intermediate
types of meristem between the infloseence meristem and the floral
meristems(branch meristems in rice, spikelet pair meristems in maize, and

spikelet meristems in both(Liu et al., 2009; Tanaka et al., 2013)

As shown above, the network of the floral transition is quite extenditrie aim

of this thesis ishereforeto model the regulatory network controlling the floral
transition, in order to better understand how this process takes place and
identify potential gaps in biological knowledgélhe insights granted by
modellingare expected to provide guidander plant breeding, potentially

resulting inyield improvements

Mathematical models have long been used in plant biology, and themre
over 160 models of plant systenas of Janug 2015(Hodgman and Ajmera,
2015) Since then,6 modelsrelated to Viridiplantae (greenalgae and land
plantg have beenadded to the curated BioModels databagehelliah et al.,
2015; Le Novere et al., 2006; Li et al., 20265 43 more have been updated
Mathematical models of plant systensescribe systems as diverse @ant

architecture (Prusinkiewicz, 2007growth mechanicsBoudon et al., 2015)
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intercellular exchangeglonsson et al., 200@nd generegulatory networks
(Espinos&boto et al., 2004)using a wide variety of formalismBvenwithin
regulatorynetwork models several kinds oformalismscan beused such as
Bayesian networks,ODE models, PDE models, Boolean netwoaksl
stochastic modelg¢de Jong, 2002)There exist a few models describitige

regulatory networkof the floral transition Theyare reviewed heredér.

Welch and colleagues developed a modble to predict flowering time for
variousA. thalianamutants,at several temperature@~igurel.2) (Welch et al.,
2003) Itis based ona neural network,where neuronsrepresent genegrom
the photoperiod and autonomous pathwayBheconnectiondetween nodes
were derived from know generegulatoryinteractions.This modelshowever
focused on the timing of the floral transiticend does notim atpredictng
gene expression levelnone of the pos#Tgenes are represented in this

model).

One of the authors also proposed an ODE modethef same pathways
(photoperiod and autonomous), pIBOCHNd LFY(Figurel.3) (Dong, 2003)
In addition to gene expression levelsis model also predictBowering time

based on the expression bFYParameters were fitted tdlowering time data,
with the constraint that predicted gee expression levels shoutgialitatively
match the overall shape opublished expression time serie$he use of
expression time series is an improvement over the previous modeltHaut

model uses a now outdated regulatory network topology as its base.
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Jaeger and colleagues have proposedEnodel ofthe post-FTpart of the
network of the floral transitior{Figurel.4) (Jaeger et al., 2013} involves five
genesFT FD LFYAPland TFL]1each of whom stands far cluster of similarly
regulated genes. Expression levels are not fitted to experimental, datg to
flowering times, measured in number of leaves formed before and during the

floral transition

Finally, Dong and colleagues have proposed a si@plEmodel of the floral
transition in maiz€Figurel.5) (Dong et al., 2012t involves four geas:VGTL,
ID1, DLFland ZMM4. However,ZMM4 s the only gene modelled, the other
are simply used as binary input variabl@he model is fitted toZMM4

expression data and to flowering time measurements.

In conclusion, existing models of the floral transitiare mainly models of
flowering time, andareaccordinglymostly based on flowering time dataven
thoughthey do modelsomegene expression levels internalljhose that do
make use of gene expression data do it in a very limited (oaly for a few
genes orwith no actual parametefitting). It therefore seems that developing
new modelsbased on ugo-date biologicalknowledgeand fitted to gene
expression datavould result in more accuratenodels from a mechanistic
point of view thereby furthering the current understanding of the floral

transition.
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respectively. Arrows represent regulatory interactions.
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nodes denote genes and abstract concepts, respectively. V, T ahdged
arrowheads represent activations, inhibitions and contdgpendent

regulatory interactions, respectively.

ID1 DLF1 VGT1
\ ) /
ZMM4

Figurel5¢® ¢ 2LJ2f 23& 2F 52y 3 (DongRt aQ2012)S | 3 dzS &
Rectangular and elliptic nodes denote genes and abstract concepts,

respectively. Arrows represent regulatory interactions.

1.4. THESIS OUTLINE

The core of this thesis tBvided into 4 chaptersnumbered 2 to 5Chapter 4s
an atempt at modelling the regulation of flowering in rice, a crop species with
directrealworld applications but alsoa model for cerealdue to its relatively

small genomeHowever, despite the benefits of studying crop species, there
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are still little dataavailable about rice. This is wihapters 3 to 5 focus oA.

thalianainstead, as it is thele factomain modelorganismof plant biology.

Chapter 3was carried out during a secondment at the University of
Wageningen (Netherlands). It consist@n analysis of a previously developed
model of the floral transition developed by partners from Wageningen, in
addition to lab experiments and modelling work to integrate the effect of
vernalezation into a model of the floral transition. Chapter 3 raisggestions
concerning the relevance of models of the floral transition that completely

ignore the spatial myanisation of gene expression.

This is why Chapter, 4vhose content was submitteds an articleto PL0S
Computational Biologyis about modelling theloral transitionseparatelyin
variousdomainsof the SAM, as well as the transitions of cells between these
domainsduring developmentDue to thequalitative nature of the data used,
Chapter 4 departs from the ODE formalism and uses Boolean modetaahst

It shows that commonly used networks of the floral transition lack negative
feedback loops that are crucial to the proper spatial organisation of the SAM.
In Chapter 4, space is however not represented in a continuous coordinate

system but only as aset of compartments

Chapter 5 attempts to lift that limitation, byranslating a Boolean model of
Chapter 4 into theODEformalism which is more suited to the modelling of

spatial,gradientgenerating phenomena, such edercellular transport

Finally,a sixth chaptediscusses theesults of the main four chapters.
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2. MIXEDEFFECTS MOLEOF FLORIGEN REGUOAT IN

ITALIAN RICE CULTR&A

The floral integrator FTwhich triggers flowering iA. thaliangis conserved in
all sequenced species of angiosper(dntenads et al., 2012)Rice(Oryza
sativg), a model organism of cereal species, has two kn&Wrorthologs:
Heading date 3a(Hd33 and RICE FLOWERING LOCUS(RFIL Hd3a
promotes flowering under short day conditions, wHRETXHoessounder long
day conditions(Komiya et al., 2009)The regulation of these genes has
however never been described quantitativelfherefore, the possibility of
developingmathematicalmodels of the floral transitiometwork in rice was

investigated.

Other genes are conserved betwedhe floral transition networks ofA.
thaliana and rice, including regulators & EARLY FLOWERINEBFR Gl
and CO(OsELF30sGland Hd1in rice, respectively). The radef OsELFand
OsGlare similar tothose of theirA. thalianahomologs howeverCOand Hd1
have diverged functionalljddlisindeed not only able to activateld3aand

RFT1n SD, but also to repress them in LD.

Although part of the floral transition network is conserved betweéernhaliana
and rice,some genes of the rice network have no homologAn thaliang
includingEarlyheading date 12 and 3 (Ehdl Ehd2 Ehd3, Grain yield, plant

height and heading datéand8 (Ghd7 andGhd), OsMADS5andOsMADS56
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Ehd1lis an activator oHd3aand RFT1Ehd2is an activator oHd1and Ehd1
Ehd3is an activator oEhdl and Ghd7is a repressor oEhd1l Some of these
rice-specific genes also have different behaviours depending on the
photoperiodic conditionsUnder LD conditions$jdlis a repressor dfild3aand
RFT1 Ghd8 is a repressor of Ehdl OsMADS50s an activator ofEhdl
OsMADS5®& a repressor dEhd1 andEhd3isadditionallya repressoof Ghd7
Under SDHd1switches to beingnactivatorof Hd3aandRFT1Ghd8to being
an activator ofEhdl, OsMADS5@nd OSMADS560 longeraffect Endl and

Ehd3has no effect orcGhd7

The network of the floral transition in rice under LD conditiomehi¢h
correspondsta€Cl 6 A2 C2 NJ I NI Qa RIFigure2.13Baimbillar & a dzY Y| NRA T S

and Fornara, 2013; Koo et al., 2013)
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OsMADS56 OsMADSS50 Ghd8 Ehd3 OsELF3 Ehd2 PRR37

Ghd7 OsGl
Y
Ehd1 Hd1
RFT1 Hd3a

Figure 2.1. Floral transition pathwayof rice (O. sativg in LD Rectangular
nodes of the graph represent genes. Edges represent known regulatory
interactions (V¥shaped arrowheads: activations;-shaped arrowheads:
repressions). Genes for which gPCR measurements or genotypic information
were available in this chapteradepicted in orange and yellow, respectively.

Other genes are depicted in blu€he green ellipse represents flowering.

Based ordata providedby FabioFornara and & team (University of Milan,
Italy), two modellingopportunities were identified. The fist wasto predict

florigen expression leveldased orthoseof their regulators using dynamic or
regression modelsThe secondwvas to predict flowering time for several

varieties of rice, based aheir gene expression profiles
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Geneexpression data have been provided BgbioC2 N I NI Q& (GSIY 2y
varieties of rice grown ia fieldlocated near Milan in 201&6mezAriza et al.,

2015) The varieties are: Augusto, Balilla, Carnaroli, Eolo, Fragrance, Gladio,

[ AR2X [202% bSY02Z DbALILRYOGINBS tFyRIX
Thaibonet, Vialone Nano and Volano. The gene expressieaisurements

come from leaf tissue samplesllected from March to June, which meahg

plants were grown undekDconditions.For all varieties except Nipponbare,

leaf tissue was sampled from 40 to 110 days after geation, at 14day

intervals. Nippobare is a latdlowering cultivar, so additional samples were

taken at time points 126, 140 and 184ys The mRNA levels of gen&hdl

(Figure2.2), PRR37Figure2.3), Hd3a(Figure2.4) andRFT1Figure2.5) were

measured byquantitative reverse transcription polymerase chain reaction

(QRFPCR and normalized usinggbiquitin (Ubqg) as the reference gend-or

each variety, the functionality of thallelesof someregulatorsof Hd3g RFT1

and Hd1 (Hd1, Ghd8and Ghd7 wasalso assessed through sequencirtpe

alleles were considered functionaltifeir sequenceslid not exhibit any early

STOP codons or readirgme shifts.Given thatmany of thesealleles are not

functional by these standardsthis genotypic profiing was meant to be a

cheaper¢ albeit coarser¢ way to measure thdnter-varietal variability of

30
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genetic expression in the floral transition pathway and complement the gRT

PCR data.

As the plants were grown under LD conditions afidwering is mostly

controlled byRFTlnder LD the florigen modelling work focused &FT1
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Figure2.2. Time series oEhdlexpression irthe 17 ricevarieties. Each curve

colourrepresents a different variety.
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Figure2.3. Time serieof PRR3&xpression irthe 17 rice varietiesEach curve

colourrepresents a different variety.
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2.2.2. Flowering time data

The plants were also scored for flowering time, i.e. the day when they started

to flower was determined visually and recorded for each var{etgure2.6).
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Figure 2.6. Flowering times of thel7 rice varieties. Error bars represent

standard deviation.

2.2.3. Choosing a modelling formalism for the regulation BFT1

Among the genesvhose expression or functionality has been measured in
Fabio Forna@a R | wereSvib XnovinkegiNafors oRFT1Ehd1and
Hd1l Among these two, onlf{ehdlwas measured quartttively, and there
seemed to be a strong linear dependency betwégdland RFT1To assess
whether alinearregression model muld besufficientto modelRFTlalinear

regression modgEquation?2.1) and an ODE modé&Equation2.2) with variety-
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specific parameterswvere fitted to the data, and theircorrected Akaike

information criteria AIC3 were compared.

TheAlCc(Cavanaugh, 19973 a penalized likelihoodriterion likethe Akaike
information criterion AIQ (Akaike, 1973)used to select models that offer a
good fit to the data(i.e. models with a high likelihood)while avoiding
overfitting by penalizing overlgomplex models(i.e. models with many
parameters;Equation2.3). Unlike the AIC, it does not only apply to cases
where the number of observations is much higher thdre number of
parameters. Concretely, the AICc has an additional penalty for extra
parameters, which helps with preventing overfittifigr smaller numbers of
observations Thereexistother model selectiorcriteria with heavier penalties
for extra parametes, such as theBayesian information criterionBIQ
(Schwarz, 1978put the Al was selected because it converges towards the
AIC for large numbers of observations, and the ASysnptoticallyoptimal

for selecting the model with the least mean squared error, under the
assumption that the true model is notgluded in the candidaterang, 2005)
Asthe general aim of this study was make the best predictions poskdiiea

verylimited set ofinput variablesthis was a desirable property.

The regression model was fitted with the bdiit Im function of RThe ODE
model starts at t=40, which corresponds to the earliest measuremeénigs
simulated with the deSolve package fofJ®etaert et al., 2016and was fitted
using the NeldeMead algorithm(Nelder and Mead, 1965)leSolverelies on

solvers from the ODEPACK collect{ptindmarsh, 1982)deSolve was used
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with its default solver LSODA, which solves systems of the ferm "Q

switching automatically between a method foon-stiff systems (Adams) and

a method for stiff systems (BDHhe NeldeiMead algorithm is an algorithm
for multidimensional unconstrained optimization without derivativéis main
principle is that it starts from a simpléa convex hull delimited by R+vertices

in the kdimensional parameter space) and minimizes the target function at its
verticesby replacinghe worstvertexat each iterationthrough expansion or

contractionof the simplex

The coefficient of determinatioR? (Equation2.4) was also computed for both
modelsto provide insight into the percentage of the variability in the data
accounted for by the modgbutit was not used to determine which fioralism

to retain.

Equation 2.1. Simple regression model oRFT1with variety-specific
coefficients
Y'OpY | 80a»
Pt
1 Y'OPY: measuredrFTExpression for varietitat time 0
1 | :sensitivity oRFTXo Ehd1lin variety’Q
1 O : measuredEhdlexpression for varietifat time o

1 T :residual errorin the expression BFTXor variety'Gat time 0

9 , :variance of the residual errors
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Equation2.2. Simple ODE model &FT Wwith variety-specificparameters
YOPYT oM

QY OBY
Q0 °

&EOa» 0 Q8YOBYO

YOBY  YTOBYO  f
PxToom,

T Y'OpYT 1t: initial predicted value for all varietiesat the first

measurement

0 : predicted derivative oRFTlexpression for varietiat time

1 | :sensitivity oRFTXo Ehd1lin variety’Q
1 O 0: linear interpolation of theehdlmeasurements for varieti

at timeo

=

‘Q: degradation rate oRFT1n variety'Q

Y 'OpY 0 : predictedRFTlexpression for varietiat time o

=

1 T :residual erroifor the expression oRFT 1for varietyat time 0

1 , :variance of the residual errors
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Equation2.3. AlICand loglikelihood for the models of this study

- KoXo!
5 08 G 08 e P
e Qp

506cQ ¢l D

1 JE SN
7 (- Cw
' "Qnumber of parameters

1 ¢&:number of independent dataeries

1 0: likelihood

1 "Y date of the last measurement

1 T :residual error for speci€&t time o

1 , :variance othef

Equation2.4. Coefficient of determinationR.

1 "©Onumber of varieties

1 “Ydate of the last measurement

1 Y'OpY: measured value dRFTXor variety'Cat time 0
1 Y"OYY: predicted value oRFTXor variety'at time 0

1 ‘Y'OpYaverage value ahe RFTIneasurements
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It was suspected that othaneasuredgenesthan Ehd1might alsoaffect the
expression oRFT1Therefore, agloballinear regressionmodel including alll
possible effects wadesigred (Equation2.5). AsEhdlandPRR3Were the only
potentialregulators for which maexpressiotime series was available aRFT1
exhibitsclear temporalpatterns for each variety, it was assumed thhaése
temporalpatterns should be controlled by at least oneklidlor PRR37The
effects ofEhdland PRR3%vere thereforerepresented bylinear functionsin
the equation ofRFT1Thetime-independent,binaryvariablesgHd1, Ghd8 and
Ghd? were assumed to modate the effects oEhdland PRR37Through the

coefficients of the linear functions
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Equation2.5. Globallinear regression model.

YopY || | | Op

Tt I f 0 Yoy T

1 Y'OBY: RFTIneasurement fovariety ‘Gat time 0

1 O» :Ehdlmeasurement fovariety"Gat time 0

0 Y& x: PRR3Measurement fovariety Gt time 0

1 | : defaultcoefficientof the effectof Ehdlon RFT1

7 1 : contribution of a norfunctionalHd1allele to the effect oEhd1
OonRFT1

T 1 . contribution of a nodunctional Ghd8allele to the effect of
EhdlonRFT1

T 1 . contribution of a nodunctional Ghd7allele to the effect of
EhdlonRFT1

1 1 :default coefficient of the effect dEhdlon RFT1

T 1 . contribution of a noAfunctionalHd1allele to the effect oPRR37
onRFT1

91 : contribution of a norfunctional Ghd8allele to the effect of
PRR3DONRFT1

91 : contribution of a norfunctional Ghd7 allele to the effect of
PRR3DONRFT1

1 T :residual error for the expression 8T 1for variety"Gat time o

40



All submodels (models including only a subset of these effettse fitted
using the Im function oR scoredaccording toAIC¢ and the best one was
retained The exhaustive assessment of submodels was done with the MuMIn

packagefor® . | NIi2Z> HAamc O

The hypothesigested inthe second part of thetudyis that flowering happens
afixed timg  mafter a critical value dfld3aor RFTJexpression is reached.
Let"Obe the flowering time of varietii the function mappingime to Hd3a
or RFT1 expressionfor variety "Q (interpolated linearly from the

measurements)® its inverse functiondefined aso™ | EDTO 0w,

andw the critical value oHd3aor RFTltriggering flowering Assuming the

hypothesis is true, thisrould mean

This implies:
Wi O 11t

Therefore, there would be aj] for which @ @i O T if the
hypothesiswveretrue. In practice, the vaanceis unlikelyto be perfectly 0, but

it mightbesmallL y (G KA a O2 yildbE felativedtaithe lvdlueséds & K
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measured atthat time, becaused varies manifold during the experiment
However, variance is not homogeneous with valuesoaf therefore, the
standard deviation was compared the average value @b instead and the
value minimizing this quantity is the estimate of the delay between reaching

the critical expression level and floweri(igguation2.6).

Equation 2.6. Estimator off (delay between crossing a threshold of gene

expression and flowering).
. 4 @0
T AOCHEA——
w O I

T i @ O 1 : empirical standard deviatiorof the @ at] before
flowering

T @ "O 1 :empirical average of th@ at] before flowering

Thefirst modelling subproject wasboutthe control offlorigen expression. As
the expression data came from plantsogvn in LD conditions, this work

focuses on the regulation ®&FT1which controls flowering in LD

Ehdlis a known regulator dRFT1and multiple time series seem to indicate a
strong linear relationship betweekRhdland RFTA(Figure2.7), althoughthis
might be exaggerateby the scarcity of data points corresponding to medium

levels ofEhdland RFT1This still suggested th&hd1 could explainmost of
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the variability ofRFT1However, the slopes of the regressions vary depending
on the varieties. This seemed to indicate that the sensitivitRBT o Ehd1
(the slope of the regressionyas influenced by other factors. These other
factors could include genomic sequence differences in Rk lpromoter,
Ehdl DNAinding site amino acids, or both. Other differences in anatomy,

physiology and alleles of othgenes could also play a part.

Tofind out whether linear regression models are suitable or another formalism
such asODEmModelk would be a better formalism tocapture the relationship
between Ehdl and RFT1 a simple ODE model was fitted to the data
Parameters values are givenTiable2.1. Both models haveRoefficients over
65% Table2.2), confirming thatthdl has the potential to be a key regulator
of RFT1Their AlCcvalues were also comparddable2.2), and indicatedthat

the gain in goodness of fit resulting from the addition dégradation
parameters(Q) required by the ODE fanalism was not worth the extra
complexity(atwo-fold increase in the number of parameterd)herefore, the
rest of this studyon the regulation oRFTXocuses on regression modelhe

key issue thatemainedto be addressedvaswhy the apparentsensitivity of
RFT1to Ehdl(the| coefficients) vaed acrossvarieties. To answer this
guestion, potential effects of the other genes included in the data set were

investigated.
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Figure2.7: Linear regressions dRFTlexpression againsEhdlexpression in

6 varieties of rice.Some varieties show a clear linear relationship between
EhdlandRFTlevels (e.g. Panda, Selenio). Others seem compatible with such
a relationship, but lack intermediate values to fully support this conclusion (e.g.

Eolo, Lido).
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Table2.1. Parameter values for the simple regssion and ODE models.

Regression ODE
Variety | | Q
Augusto 0.515 0.478 0.855
Balilla 0.439 0.122 0.212
Carnaroli 0.232 0.014 0.026
Eolo 2.325 1.793 0.751
Fragrance 8.603 6.614 0.719
Gladio 1.605 2.330 1.471
Lido 0.667 1.579 2.624
Loto 0.342 0.406 1.127
Nembo 0.660 0.891 1.297
Nipponbare 2.200 2.542 1.413
Panda 29.731 21.712 0.669
Roma 0.159 0.002 -0.032
Sant Andrea 9.095 27.998 1.196
Selenio 0.734 1.040 1.452
Thaibonnet 0.992 0.481 0.487
Vialone Nano 0.280 0.231 0.733
Volano 0.249 0.190 0.586

Table2.2. Goodnessof-fit and complexity statistics for the simple regression

and ODE models.

Model AlCc Log Number of| R2
likelihood | parameters

Regression -772.94 408.45 17 65.12%

ODE -752.52 418.11 34 70.98%
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Exhaustive analysis of the submodels of the global modedaled the best
model (according tthe AlCc) is the model including the effectifd] and its
interactions withHd1, Ghd8and Ghd7 Itsfit is presented irFigure2.8, and its
parameter valuesAlCg¢ loglikelihood and R, as well as those of its own
submodels, are reported iffable2.3. Including the three interaction terms
substantially improve$2 from 26.34% to 42.35%neaningthe sensitivity of

RFT1o Ehdlmay beaffected bythe functionality ofHd1, Ghd8and Ghd7

The maximum Rachievable by a linear regression model is 65.12% (achieved
by the model withvariety-specific coefficientg)ymeaninghere is still room for
improvement. The variability unexplained by the selected model is not
explainedby the global model (the most complexne) either, which only
achieves a R of 43.44% barelybetter than the selected modeThissuggests
that there may befactors affecting the expression BT Xhat have not been

measured in this data set.

Looking at thdits of the selected moddFigure2.8) and at thedistribution of
the| in the simple regression model with varietpecific coefficients yields
some insight into the isgu(Figure2.9). It shows three outlying vaaties, with
much higher that could not be predicted accurately by the selected model
(Figure2.8). This indicates that something in the regulatiorRFT1s probably

different in these varieties. However, there were no additional data to
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determine what this or these differences might lexcludinghese varieties

yields anR of 49.90%
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Figure2.8. Fit of the selected modefor the 17 studied varietiesEach frame
represents a varietyMeasurements are represented by circles, and the model
predictions are the green lineShe expression level of RFT1 is predicted
reasonably well for most varieties, but & $everely underestimatefdr some

of them.
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Table2.3. Parameters and goodness of fit statistics for the best model and its

submodels.An empty cell denotes a parameter not included in the model.

Parameters Statistics
Ehd1l Ehd1x Ehd1x Ehd1x AlCc Log R
ghd7 ghd8 hd1l likelihood
0.437 -0.7597 0.7818 0.3428| -753.5 382.1| 42.35%
0.5509| -0.7136 0.9862 -751.1 379.8| 39.76%
0.4391 0.5851| 0.3193| -750.6 379.5| 39.43%
0.5455 0.7874 -748.9 377.6| 37.18%
0.4455 0.5416| -745.1 375.7| 34.89%
0.4455 -0.3079 0.5814| -743.9 376.1| 35.45%
0.688 -734.3 369.2| 26.34%
0.6861 0.0328 -732.2 369.2| 26.35%
-677.1 339.6| -29.48%
(D J—
[D —
=5 —
g
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Figure 2.9. Histogram of the)::for the selectedmodel The| are the

apparent sensitivities oRFT1to Ehdl. The most outlying varieties are
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The hypothesis was thatlowering occurred once a critical value bfd3aor
RFT1lexpressionwas reached with an optional delay 1. Using the
estimator detailed in Material and methods,was estimated to b&8.67 and
45.70 days before flowering fdRFT1land Hd3a respectively Kigure 2.10).
Howevereven for these optimal valuet)e inter-varietalstandard deviations
of expression levelsorresponding to these delayse still very high76% and
89% of the average values, pestively. Histograms of the distributions of
RH1 (Figure2.11) and Hd3avalues Figure2.12) at their respectiveé before

flowering revealeddrge disparitiesn their expression leveld~or Hd3g the

inter-varietalfold-changg——————) isover 15Q and itis undefinedor RFT1

because of a 0 valu&heminimumrelative standard deviatioof Hd3alooks

like it might be inflated by an outlief~{gure2.12). Removing the outlying
variety (Selenio) makes the intgarietal foldchange drop t@t.36. As foRFT1
excludingthe O value yields an intevarietal fold change of 8.68. While
removing those extreme values results in substantial improvemeinésfold-
changes are still too higto infer the existence of a commoRFTlor Hd3a
thresholdtriggering flowering irall varieties. The search foflaweringtrigger
shared by all rice varieties was therefore unfruitful. Moreover, it was also

Impossible to propose a trigger féloweringon a pervariety basis, as data
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were only collected during a single growing seadoaing so would require

inferring a pattern for each varietyom a single time series.
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Figure2.10. Relative standard deviation oRFT1 and Hd3a expression levels
across the 17 rice varieties, as functions of time before floweriMinima are
reached at38.67 and 45.70 days before flowering f&FTland Hd3a

respectively
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Figure2.12. Distribution of Hd3a expression levels across the 17 rice varieties

45.70days beforeflowering.
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This study has shown a strong linear dependencfriét lon Ehd1 This is
consistent withthe anteriorfindingthat Ehd1lis aregulator ofRFTXDoi et al.,
2004) However, f also suggestthat other genes maynodulatethe effect of

Ehdl

This study suggests thétd1, Ghd7and Ghd8might be able tanodulate the
regulation ofRFTby Ehd] however there is no biological evidence supporting
this so far Therebre, it might be worth investigating the potential
involvement ofHd1, Ghd8andGhd7in the regulation oRFTDby Ehd1 through

biological experiments.

Hd1, Ghd8 or Ghd7 might be able to formpeotein complex with Ehd1To
check for proteirprotein interactions, one might use yeast twybrid assays
(Y2H)(Fields and Song, 1988) bimolecular fluorescence complementation
(BiIFC)Kerppola, 2008)however the methods might not be able pock up
indirect binding. Should that be the cad&jrster resonance energy transfer
(FRET(Sekar and Periasamy, 2008ight be able to provide an alternative, as

it does not necessarily requitbe close proximity of the two proteins.

There could also bmteractions between Hd1, Ghd8 or Ghd7, and RiET1
locus This could be investigated via chromaitimimunoprecipitationrelated

methods (ChIR)Gade and Kalvakolanu, 2012)
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Interestingly, 1 was recently shown that Ghd8 and Hd1 are involved in a
protein complex binding the promoter éfd3a(Goretti et al., 2017)Given the
homology betweenHd3a and RFT1 it is possible thathey might also be

involved in complexes bindirgFT1

Therearenot enough data to suggest whether there is a common cause to the
unusually high sensitivities of the three varieties, or multiple causes are
involved A possible explanatiomight be that the real sensitivities &FT 1o
Ehd1lin the three outlying variges are not so different from those of the main
group, butRFT1s also responding to another, unknown sig(alg. anEhd1l
homolog) That unknown signal may be present in all 17 varieties, meaning
that its effects would be indiscernible from those Bhdl within the main
group of 14 varieties. However, varieties with lowehdlexpression levelg

like the three outliersg would appear to have higher sensitivities when the
unknown factor is not accounted foiThis hypothesis could be tested by
screening ér genes with temporal expression patterns correlated to those of

EhdlandRFT1land mutating them.

Beyond this new insight into the regulation RFT1n rice, this studlso led
to an interesting observatioabout the modelling of gene regulatory networks

from time series datan general.
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The amount of experimental work required to measure gempression time
series has resulteth the tempoal resolution being rather low. The interval
between two consecutive measurements was usually 14 days. Compared to
gene activation delays, which are usually on the scale of a few (lRasenfeld

and Alon, 2003)these intervals are ésemely large This makes it unlikely that

measurements would capture transiestiatesof the floral transition pathway

ddzOK & GKS 2y aSsilndstchsesTntesstr@ms wil heLINS &8 & A 2 v

representative of quassteady states. Interestingly, this what the regression
modek used in this studyepresent. Under the assumption th&FTL1lis
controlleddirectly onlyby Ehdland in a quassteady state, an ODE model can

become equivalent to a regression model.
QYQY s v e
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Q'Y @Y )
— 00 T
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A slowevolving ODE model does therefore not differ much from a simple
linear regression model in this case. A problem would have arisen if the genetic
regulation graph had cycles, but in the very simple netwauklied here, this

did not occur. This regression approach has the benefit of decreasing the
number of parameters to be estimated, whiagh why the AlCcchosethe

regression modebver ODE modelt is particularly usefuto do so,since, as
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evidenced by tk formulae above parameters andQwould be difficult to

separate based on quasieady state observations.

In those formulae and in the selected modelé was assumed that the
synthesis rate oRFTIwas linear with respect to its activatéhdl whidc is
different from the convention that gene regulations follow Hill equations.
However, for a Hill coefficient of 1, the Hill equatimequivalent to the
MichaelisMenten equation, which has a nearly linear domain, when the
concentration of the activatois not saturating. The suitability of a linear
response oRFT1o the expression oEhd1might therefore indicate that the
Ehd1binding siteson theRFTpromoterare never saturated, and that the Hill

coefficient of the activation oRFTDby Ehd1 iglose to 1

Finally, in addition to the modelling limitations resulting from the temporal
resolution of the time series, there were also limitations caused by the high

variability ofgene expressioacross varieties.

The high intervarietal variability in gene expression levels prevented the
secondmodelling casérom being solved, namely, the piietion of flowering
time for each variety Themain roadblock was that thmitiation of flowering
could not be predicted satisfactorily from florigen expressioecause florigen
expression varies wildly across varietiegure2.4 andFigure2.5). It is unclear

whether this variability isreal and caused bygenetic or physiologal
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variations or resuls from issues with the measurements or their
normalization. In particularJbg might not be a good reference gene, if its

expression level varies between varieties.

In any case, the intevarietal variability should be checked mgiadditional
reference genes and if needed ¢ new measurements. Should this inter
varietal variability be confirmed, separate models of the triggering of flowering
would have to be established for each variety. This would in turn require

multiple time seies of gene expressions to be generated for each variety.

This workconfirmed that Ehdlhas the potentiato bea keyregulator ofRFT1

It also suggestd thatHd1, Ghd8and Ghd7might play a role in the control of
RFTDby Ehd1 by modulating the effect oEhd1 However, in the studied data

set, the expression levels of all genesncludingRFTIg vary greatly across
varieties, which is suspicious. It is unclear whether those variations are real or

come from a problem with the dat& his point should be addressed first.

Assuming the variations are real, the sensitivityR&fT 2o Ehd1is different for
each varietyPart of this variabilityvas attributedto the functionalityq or not

¢ of Hd1, Ghd8and Ghd7 but part of it remains uexplained. Thigould be
addressediy quantitative expression measurements for these three gemes
other genes involved in the floral transition. Such a data set would also be

beneficial in identifying the molecular trigger of flowering, as there might be
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better indicators of flowering thanRFT1¢ assuming the intewrarietal

variations ofRFTJexpression are real.

The above observations on the limitations of the data for rice suggest that a
more widely studied species, for which more data are availadheuld be

investigated. This is the subject of the next chapter.
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3. QUANTIFICATION OFHHIPACT OF VERNAIIKON ON THE
FLORAL TRANSITIONTPXVAY IN SF2 FRI GDARABIDOPSIS

THALIANA

3.1.INTRODUCTION

This chapter was realized in collaboration wiallt-Jan vanDijk and Gerco

|y 3 Sy S gratddyafrom Wageningen University.

In A. thaliang the timing of the floral transitionis controlled bymultiple
pathways. @e of than is the vernalization pathwayhosefunctionis to lift
a block preventing plants fromoilveringwhenthey areexposed to polonged

periods of cold (i.e. when they avernalized)

The vernalization process has been described at the molecularldgwehgel
and colleaguegAngel et al., 2011Wwhoalsoprovided the only mathematical
model of vernalzation to date Vernalizationcomes from thesilencingof the
FLQyene, whit is a repressor ddOChHNdFT(two crucialintegratorgenes of

the floral transitior). SilencingFLCtherefore results in an increase ithe
expressiorof SOCANdFT The vernalizatioanduced silencing dfLQelies on
epigeneticmodifications At the beginning of a periodf cold, the histones of

a nucleation locus in thELQene start being methylated. Alse periodof cold
continues, histone methylation spreads from that locus to the rest of the gene.
When the temperature eventually rises to normal levels agalmstone
methylatiors preventFLGrom being expressed. y 3Sf 'y R O02ff S| 3dzSaQ Y2

focuses on demonstratinthat the silencing of FLC occurs in aroalhothing
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fashion(as can be observed by microscopy and GUS stajnvhg)e individual

cells are only eithermor off, and the quantitative aspect 6L Gilencingonly

occurs at the tissue leveds a consequence of the proportions of on and off

cellst KSNB T2 NE > |y hedel dbey ot stD@ thé cBrisétjdeScas

of FLGegulation on the floral transitin network.Mathematical nodels of the

floral transition network of A. thalianado exist, as reviewed in Chaptér

(Dong, 2003; Jaeget al., 2013; Welch et al., 2003) 2 s SOSNE 2yf & 5
model actually include&LC It unfortunately has limitations, a$ was based

on a now outdated network topologwnd primaily aimed at predicting

flowering time As a consequence, it did not aim at predicting gene expression

accurately, so longsflowering time wagredicted accurately.

Thegoalof this chapter ishereforeto developgene expressiomodelsof the
floral transition networkto quantify the effects ofvernalization on the
expression levels of floral transition genes, with a particular focus on the effect

of FLON SOChANdFT

This chaptercoversthree subprojects The first is the modelling of the
silencing ofFLCas a response to cold exposufnesecondis comprised of
experimental work aimed at gathering suitable data to fit an ODE nufdbk
floral transition network including the vernalization pathwdyre third is an
analysis of anew model of the floral transitiondeveloped at Wageningen
University which was being considered as a candidate to be expanded

include the effects of vernalization.
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The ODE model of vernalization was implemented in R, and integration was
performed usinghe deSolve packag&oetaert et al., 2016§leSolvas based

on the ODEPACK solv@érindmarsh, 1982andisawidely used R package for
the integration of ODEsMore details are available in the Material and

Methods section of Chapté&Z.

In this study, experiments were carried out to generate rggme expression
data for vernalizedA. thalianaplants. Not all varieties ofA. thalianaare
vernalizationsensitive: the Cel line, which is the most commonly used in
experiments, is not. This is because-Cbhrely expressdsL(n the first place

dueto its nonfunctional allele of thé=Rigene (a key activator ¢iL(.

To investigate the vernalization pathway in a background comparable to that

used in other floweringelated experiments, an introgression line created by
introducing a functionaFREllele from the Sf2 ecotype into a G@background

(Lee et al., 1994)as used. &ds wereprovidedo & / F N2 f Ay S 5SIyQa

Innes Centre, Norwich)

Sf2 FRIA. thaliana plants were grown according to the following protocol.
Seeds were sown on cubes of rock wool (five seeds per cube) soaked in a 1g/L

solution of Hyponex NPK =6719 fertilizer (HYPONeX JAPAN) and covered in
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cling film to prevent desiccation. Theeds were then stratified by being
SEL}2&ASR F2NJ nyK G2 | GSYLISNI Gdz2NB 2 F
germination. They were then transferredtoash&t @ 3INB g K OKIF Yo S
8h light) for a duration of 2 weeks. The cling film was removed aftery4,da

gKSY (KS aSSRftAy3da 6SNB OAarAotftSd ¢KS L
12h light) for the cold treatment, except for one batch that went straight to

the next phase, without cold treatment. The other batches were removed from

the cold treatmentafter 1, 2 or 3 weeks, respectively. The final phase was a

longRI &8 ANRGGIK OKIFIYOSNI 0Hos/ X mMcK fAIKGO

For the whole duration of the experiments, plants were watered two or three
times a week with a solution of Hyponex (1g/L). Plants were sampled regularly
at a frequency depending on the stage of the experiment, until they had spent
2 weeks in the final growth chamber. This duration was chosen based on a
previous experiment on WT CG@0lplants, where the plants flowered in 12.6
days, and on the assumptionahcoldtreated FRI+ Cdl plants would behave
similarly to WT Ceb plants. The sampled plants were dissected, with leaves
and enriched meristem material being collected separately, except for the two
earliest time points. As the seedlings were too snthlty were not dissected

but were collected as whole seedlings instead. For each time point, each kind
of tissue was harvested in triplicates. Five to ten plants were pooled together
for each sample, depending on the growth stage of the plants. Samples wer
first flashfrozen in liquid nitrogen, before being stored indan 6 /  FNB ST SNJ
they were processed for RNA extraction. Each sample was then homogenised
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by shaking with glass beads, and subjected to an RNA extraction procedure
using Invitrap® Spind?it RNA Mini Kits (STRATEC Biomedical). The extracted
RNA was subjected to a DNase treatment to avoid any contamination by
genomic DNA, using Ambion® TURBO -BMS Su 5blaS ¢NBIFGYSyad |y
Removal Reagents (Thermo Fisher Scientific), then RNA was quargifigdhu
nano-drop. The cDNA was synthesized by Suraj Jamge and Froukje van der
Waal (Wageningen University) and quantified using a BioMark-R{ER
machine (Fluidigm) at Enza, a partner company of Wageningen University. The
BioMark system is able to run ¢fRfCRs on all combinations of 96 samples and
96 primers concurrently, while using very little cDNA. This system was selected
for its efficiency, because the earlier time points of our experiment yielded
very little RNA, as there was little biological materide 96 primers used for

the gRTPCR were selected from published articles or designed by Suraj Jamge

(Table3.1).
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Table3.1. 96 primers used for the BioMark gRHCRCompiled by Suraj Jamge.

Genes ATG no.| Forward primer Reverse primer
FT AT1G65] CTGGAACAACCTTTG({ AGCCACTCTCCCTCTG
480.1 | AT A
FD At4G35 | CACCTCCTGCAACTGT AGCCTCGAAAGAGGTG
900.1 G GA
LFY At5G61 | ATTGGTTCAAGCACCA ACGGACCGAATAGTCC
850.1 | TC T
YLS8 At5G08 | TTACTGTTTCGGTTGT| CACTGAATCATGTTCG/
290.1 CCATTT CAAGT
FLC At5G10 | CGAACTCATGTTGAAG GGAGAGTCACCGGAACQ
140.1 | TGTT TG
FLC_CD At5G10 | GGCTAGCCAGATGGA| TCAACCGCCGATTTAA(
140.1 | ATAA
SOC1 At2G45 | AGCTGCAGAAAACGA( TGAAGAACAAGGTAAC
660.1 | AGC AATG
SVP.1 At2G22 | GAAGAGAACGAGCGA GAGCTCTCGGAGTCAA
540.1 | TGG GG
SVP.3 At2G22 | ACCGGAAAACTGTTC( TTCTTTACTCATTCGGG
540.3 | ATGA GAT
MAF 1.2 CCTCAATGTTTTGAAC| TCGACATTTGGTTCTT(
ATC GCTTGC
MAF 1.3 GTCCCTTAAAGAAAAC CAAGAATCATCATAGC(
TAGTG GA
MAF 1.4 GATCGTTATGAAATAC GTATTCTTTCCCATCTG
CATGC AGC
MAF 1.5 CAGTCCAAAGCAAGC| CAGTCCAAAGCAAGCT
AAG AG
MAF 2.1 AAAACGGTGGGGAAG| AAAAACTTCTGAATCACQG
GAC TGT
MAF 2.2 AGCTCGAGACTGCTC] TCAACTGATGAATTAG(
CcC CAAGA
MAF 2.3 CGGAGAACTTGCTGA( AGCCGTTGATGATGGT
GAAG T
MAF 3.1 GCTTGAAGAATCAAAT) TGAGCAGCGAAAGAGT
CGATAATG CcC
MAF 5.1 CAGGATAAGGAGAAG| ACTTGAGAAGCGGGAG
GCTGAA TC
FUL At5g60 | AAGGACAATTAGTCCA CAACTCTCTCCACAAAC
910 GCTCCAA ATCTCT
CAL GATCGCTCATCAGACT GCCAAGGTAATTGTAA/
TCCTTTC GGTTCA
AGL24 At4G24 | CGGAATTGGTGGATG, GTTCCACTGTCGTAGC
540.1 | AATAAGAG ACACAT
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AGL15 AT5G13| GTCAAGCGATTCAGT( CAGAGAACCTTTGTCT]
790 AACAAAC GGCTTC

AGL16 At3g57 | ACATGAAAAGGTTTCA AGATGGACATGTTCGT]
230 GGTCGAG AGGTAT

AP1 AT1G69| AAATCCAGCATCCTTA CAGTTCGAGATCATTC(
120 GCTCTC CTCATT

AP2 AT4G36| TGCCGAGTCATCAGG( TCCCAAGCTCAAATCG/
920 TCCTAC TTGTG

STM Atlg62 | TCTCCGGTTATGGAG/ TCGACTTCTTCCTCGGH
360 CAGCAA ACCCA

FDRbzip27) | AT2G17| AATCAACCACCACCAC AAGAGGCAGAGAGCCA
770.1 | CCAC GAGAGC

FLD AT3G10| GGAAAGCAAGTCTTTC CACCAACATGTAAGGA
390.1 | CACAGG ACCAG

FRI AT4G00| AGTCACCGCTGGCAT] TGCCATCCTGGTAGTT(
650.1 | AAGAAG CGC

SPL4 AT1G53| TTTCTCTCAGGACTTA| CTTGGAGGTCATGAAA
160.1 | AACGC ACTGC

SPL9 AT2G42| TGTGGCTGGTATCGA/ TTCCGGAAGCTGATGA|
200.1 | GAGG CTG

SPL15 AT3G57| TCGCTCCATCTCTTTA| TGCATCACTGATCTTG(
920.1 | AAACC TTG

AGL12 AT1G71| CTCAGATTCGCTCTG( TGAGGACTCCTTCCTT(
692.1 | AGATGG CCTC

AGL23 AT1G65| TGACCACTTTCGAGG( TTCTACTTCCGCCTTCA
360.1 | TGTTG CAG

AGL71 AT5G51| TCGTATTGTCAGGTCA TCTCGTTCAAGAGCTC(
870.3 | AAAGGC CTC

AGL72 AT5G51] ACACGATAAAGCGATA TTCCGGTTATGGACTT(
860.1 | CTGAG GCAC

MRG1 At4g37 | CTTACCATGGTCCTCG CGGTATGTTTCAACAAT
280 TCTAC ATCCGC

MRG2 Atlg02 | CTTCTGCTACCTGCTd TTCGTCCCAACTTTTGT,
740 C

EFS/SDG8 | AT1G77| GTAAGCAAAAGGCGT( TTCTTCTCCACAACCCA
300 TTC

SDG26 AT1G76| CGGGTTCACGGTAAC| CATGCTTCTGAGCGAC
710 TC C

TFL2/LHP1 | AT5G17| AGACAATGTCCAGGA/4 TGCTTCCTTCCCATCAC
690.1 | GTTGG TC

CLF (SDG1) | AT2G23| TTGTTTGCTAAACGGC TTCTTGCAGCTCTTTGC
380.1 | TTGCTG AACC

SNZ AT2G39| TGGGTGCCCATAGTA/ CAACGGCTTCCCATGC
250.1 | GAAATG CTC

SMz AT3G54| AGCAAGTTTATTTGGG TGATAGCAGCTCGGTC
990.1 | GGTTTG AGC
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TOE1 AT2G28| AATAATCCCGCCGAG( AACAATGGTGGTGGTT
550.1 | AGAG GGTC

TOE2 AT5G60| TGGAGCAGCTTCATG( GCTTCCCTTCCCTTCCA
120.1 | ACATGG TACG

VRN1 AT3G18| GTACCAGCCAACAAA( GGCGTTGGCTCTTCAG
990.1 | GTATGC TAAC

VRN2 AT4G16] TCGGGATAGCGAGGA TCCACAAAGTCATCAA(C
845.1 | AAGTC TCTGG

EMF1 AT5G11| GTGGGAGGGATTTGT( CATCTGTTAATCCCTCT
530.1 | AGTTC TCAG

ELF6 AT5G04| TGGCATTCCCTGCTGT TCCTTTGCTACGTTGA(C
240.1 | GTTG ACTG

SDG2 AT4G15] TGCTTGGTGGGTTGC( CTCGAAATTGATGAAC(

(putative) 180.1 | ATTG ACCAG

GCN5 AT3G54| AATCTCAGGGCTCGT( TTTGAGTCGTCCTGCT]

(putative) 610.1 | AAAG TCCTC

VIN3 AT5G57| GTATGGGATTGGGAG| CAAAACAACCTGAAAC(
380.1 | ATGAT TGA

COOLAIFFLC ACCTTATTCGTGTGAC TTGACAGAAGTGAAGA

antisense) TTGC ACATACA

UBC AT5G25| CTGCGACTCAGGGAA| TTGTGCCATTGAATTGA
760 TCTAA CcC

ACT AT3G18| TCCGCTCTTTCTTTCC| CGAAGCGATGATAAAG
780 CTCA GAAGTTCG

SAND AT2G28| CAGACAAGGCGATGG| GCTTTCTCTCAAGGGT]
390 ATA GGGT

UBQ10 ATA4AGO5| GGTTTGTGTTTTGGG({ CGAAGCGATGATAAAG
320 TTG GAAGTTCG

TIP41like ATA4G34| CATTTCAGTCTCTATC| CACCACAATAAGTCAG]
270 GAAAGGGTATCC AGTAACTCCTTAC

PP2AA3 At1G13 | GCGGTTGTGGAGAAC|, GAACCAAACACAATTC(C
320 GATACG GCTG

bZIP29 at4g389| CCAGAGACTTCATTCA GCTGATGAGCGGATGA
00 TTCGGC TTAGGG

bZIP30 At2g21 | TCACTTGAATCCTGCT| AGTAAGGAGAAATGGG
230 ATCCGC GAATCGG

bZIP59 At2g31 | GTCTTCCTCCTCCATC CCGATGTCCAATCTTCI
370 ATCAGG GGTGGG

bzZIP70 At5g60 | AGTGTCCATCGCTCT( AAGTCAGTGTTTGGTA(
830 GTTTCG ATGCCG

bZIP75 At5g08 | GAAGACGACGTCCAT( CGCGTTCTTCTTGCTG/
141 CAAGACC TCG

SHL AT1G62| ATGCCCAAGCAAAAA( CGGTAGTGGAATTGTA
360 C G

EBS ATAG22| TGGTATCATCCTGCGT CGCTTCGTTTCCACCTT
140 GT
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SPL3 At2g33 | TTCAAACCGGGATCT( CAACGTTTCTGCCAAC/
810 AC G

SPLS5 At3g15 | CAGGACAGCATAGAG| CATCATTCAAGCGACC
270 GACT G

TEM1 AT1G25] GTCCGGTTCAGACTG| GATAATCGCCTGCTTC]
560 TT G

TEM2 AT1G68| AGAGAAAACCCGGTT( TATCGCCTGCTTCTTG(
840 GT C

Gl AT1G22| CTGTTCAGACGTTCAA TGGTTTCCTCTTGGATT
770 GC

GA20x7 AT1G50] AAACCCTAGCGCCAC| CGTTCACTTGTTTCCC(
960 TC

GNL AT4G26] TTTGGAGACCCAGAG( AACCATTCCGTGCGAT
150 CT AG

GNC AT5G56| TGAGGGGTTGAGAAA(| TCTTCCTCGCTTCATCA
860 TGG

TFL1 AT5G03| GCTCTTTCCTTCTTCT(| CAGCGGTTTCTCTTTGT
840 CCTCC GT

BFT AT5G62| ATGTCAAGAGAAATAG TTAATAAGAAGGACGT(
040 GCCACTAATA CG

TSF AT4G20| CACCACTGGAAATGC( AACCGTTTGTCTTCCGA
370 TGGC TGCC

MFT AT1G18| ACAATCCAGTGGACC( CCATTCCGATGAGCTT]
100 TC A

MAF 4 AT5G65] TCGCACAAGGAGTTG( GGGTCTTCACAAGCTC
070 GA C

CO At5g15 | AGCTGTGATGCTCAA( GCAGACCCGGACACGT
840 CACTCT T

PIF4 AT2G43| CCCATCACAGAACGAT] AGGAGCCACCTGATGA
010 CGAT AACT

PIF5 AT3G59] AATTCCCGGTTATGAA TACCTAGCGAGCTGCT
060 GGT ATA

FCA AT4G16| TGTTCGAACGAGAGC) AACGGCTGTAATTGGG
280 AG G

FVE (MSI4) AT2G19] ACTGGGCACCAAGAT/ GTCCCAATCGTTGTGA]
520 GC G

AGL14 At4gll | TGCTGATGGAGAAGT( TGTCGAGTCTCAGGAG
880 GAGATGC CAATG

AGL18 At3g57 | GCCACTTGACTCCCA(Q ACTTCCTTGCAGTTGG(
390 TTATCG TGTC

AGL19 At4g22 | TGCATCAATGCCTTCT| TCAGCAAGCGAGAGACQ
950 AGCAA AACATC

AGL21 At4g37 | CTTCATGCTGGAGCTT AGCTATTCTCTGTGAT(
940 AAAGTC GAGGT

AGL42 AT5G62| AATTGTTCAAGGAGCA GGCAAACCGATGAATA
165 TGGAG TCAG
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AGL17 At2g22 | TGCCAGCTCCAGTGT( TTGCTCCTCCATCTTA(QG
630 ATC T

miR156a At2g25 | CTCTCCCTCCCTCTCT AGGCCAAAGAGATCAG
095 ATTC CCGG

miR172b AT5G04| TTTCTCAAGCTTTAGG| TCGGCGGATCCATGGA
275 TTGTAG AAAGCTC

MIR172a2 AT2G28| TTTCTCAAGCTTTAGGH TCGGCGGATCCATGGA
056 TTGTAG AAAGCTC

CBF1 AT4G25] CCGCCGTCTGTTCAAT TCCAAAGCGACACGTC
490.1 | AATCAT ATCTC

CEN (ATC) AT2G27] TCCTGATGTTCCTGGA TCGGTAACAATCCAGT(
550 AGTG AGTG

In addition to the acquisition of these expression time series, flowering time
was also measured using the leftover plants. Flowering time was measured in
threeways: as the raw number of days from sowing to the apparition of visible
flower buds, as the number of warm days (i.e. excluding days in the cold

chamber), and as the number of rosette leaves at the beginning of flowering.

Normalized expression values were computed using the Eleven m(#iui¢h,
2014) for Python based onthe GeNorm algorithm(Vandesompele et al.,
2002) GeNorm enableghe ranking of multiple reference genes and the
normalization ofexpressiondata with a set of the best reference genes.
However, asyELLOVLEAFSPECIFIC GENE'BSB¢ the reference gene used
by Valentim and colleagués a similar experiment presented beldWalentim

et al., 2015)c was consistently more stable than any other, it was the only

reference gene retained for normalization
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Valentim and colleagues measuréithe series ofthe expression ofgenes
involved in the floral transitior{Figure3.1 and Figure3.2) (Valentim et al.,
2015) The biological material coes fromA. thalianaCol0 plants grown in LD
conditionsat 21aC.Two kinds of tissues were harvested every day, between 5
and 17 days after germinatioplant apices (including the SAM) and leavies

the apices, the expression &R FLCFD SOCLAGL24LFYand AP1were
measured by qRPCR and normalized M.S8 In the leavesthe expression

levels ofSVRFLGand FTwere measurednd normalized in the sam&ay.

They also measured the flowering timestbe WT, and varioussingle and
double mutantsgrown under LD at 28 soct2, soc16, agl24-2, ft-10, fd-3,
flc-3, svp3] svp32 svp4l soct2/agl24-2, soct2/svp32 and svpdl/agl242
(Figure3d.3) (Valentim et al., 2015)These data provide additional insight into
the functioning of thefloral transition network, as thegan be used to get an
idea of what happens when a node of the network is removed (detailed in the
following section)As this data set didot include a mutant foL.FY a key gene

of the floral transition, an extra data point was addesing published datéor

the Ify-12 mutant (Jaeger et al., 2013)That experiment showed the Hi2
mutant flowered9.24%slowerthan the WT, which equates to a flowering time

of 13.80 daysn this data set
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Figure3.1. Gene expressin measured by Valentim and colleagues for the

input genes of their modelData points represent the average measurements

with their standard deviations. The lines are interpolations used by Valentim
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Figure3.3. Howering timesmeasured by Valentim and colleagues for various
mutants. Bars represent the average measurements with their standard
deviations. Reprinted from Valentinet al, 2015 (CC BY M.license
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3.2.5. Implementation of the ODE model of the floral transition

The ODE modelof the floral transition were implemented in R,but
dynamically translate the equations of the model into C++ emmipile them
for extra performance using theinline package (Sklyar et al., 2015)

Integration was performed wit the deSolvepackage(Soetaert et al., 2016)

using the LSODA algorithm

Gene expression levels are predicted directly by the integration of the ODEs of
the models for the Ceéd (WT) genotype. However, the models are also used to

predict the gene expression levels of mutants. In that ctieeinitial values of

71



the mutated genes are set to 0 atlle ODEs associated withosegenes are

replaced bythe zero tinction.

The modelsan alsoyield anothertype of output: the flowering time ofany
mutant (or the WT) Flowering times are extrapolated from gene expression
levels under the assumption used by Valentim and colleagues, i.e. flowering is
marked by the expression oAP1l above a certain thresholdTherefore,
flowering was predicted to occur wheAP1expressionreached the value

observed in the Ceéd background at flowering timg.180nM).

The parameters othe ODE model®f the floral transitionwere optimized
using the Robust Adaptive Metropolis (RAM) algorithnfVihola, 2012,

implementedby the adaptMCMC package for(Bcheidegger, 2012)

RAM s based on the Metropolis algorithrfMetropolis et al., 1953)The
original Metropolis algorithnenables samplinffom aprobability distribution
“dom “ w (e.g. that of a vector of parameterdpr which a quantity
proportional to its function is knowrwithout evaluating it at all nodes of a grid
covering its definition domain, which would be extremely costly in high

dimensional space3.heMetropolisalgorithmworksas follows:

1. Aninitial statedd (i.e.a vector of initial parametein this casg values
is chosen.

2. Atiteration &, aproposalstate @ ispicked randomlyrom asymmetric
distribution with density function@pm™ "Q G . This is often a

normal distribution
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3. The proposal isacceptedrandomly, with an acceptance probability

4.

I Elph—— . Ifitis acceptedthen® &, otherwise®
o

Repeat from step 2

The effectiveness of the sampling depends on the choic@ dhe variance of

“(shouldnot be too big, or the algorithm witend to overshootand propose

stateslikely to result in dargeloss of likelihoodSmaller stepfiave a lower

risk of resulting in a large loss of likelihgdulitif the varianceistoo small the

algorithm will takemany steps; and therefore a lot otomputationaltime ¢

to explore the parameter spaceRAMis an extension of the Metropolis

algorithmthat tacklesthe issueof choosing a adequateproposal distribution

In RAM the distributionyieldinga¥ is not fixed beforehand, but adapteased

on the acceptance rate of previous proposalSoncretely,the algorithm

changesas follows:

1.

2.

3.

Initial values are chosen: state® N a (whereQis the number of
parameters) and lower triangularmatrix"Y N 5

At iteration¢&, a proposalstate @ is picked randomly as followax

) "Y "Y,where"Y follows a spherically symmetric distribution
(e.g. a normal distributionvhere the covariance matrix is the identity

matrix).
The proposal is accepted with probability | E Tph—— . Ifitis
accepted(® @, otherwise,® @
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4. Using the Cholesky algorithnhe triangular matrix is updateds the

lower triangular matrix with positive diagonal elemefi¥satisfying:

YY Y O — | | © — Y , where®' 5 is the
identity matrix, — N 7ip is a step size sequence decaying to 0,
and| * is the target acceptance ratén adaptMCMGC- is of the form
¢ , wheref ¥ T@Fp . In this chapter; was set to 0.5001 and’ to
0.234, the asymptotically optimal value for large number of parameters

(Gelman et al., 1996)

5. Repeat from step 2.

Concretely, his means theproposal increments™y Y ) are not sampled
from a spherically symmetric distribution lik&’ , but from an ellptically
symmetric distribution to account for thecorrelation of parametersThe
shape of that ellipsoid is updated at each iteration, by shrinking or expanding
in the direction of'Y Y, depending on thevalue of the acceptance rate

relative to the target rate

RAM can be used in a Baj@sway tosample the posterior distribution dhe
parametersof a model In that case, lte“ function is a function of the joint

prior distribution of the parameters, of the predictions, and of the data

.o 0 O 0O8& oW
0 w0 v -

b O Lo

& Ogh

E:

“ O 0

<)
CA

4 (';)
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Where & is the parameter vectorQ is the data setd &3O is the joint
posterior distribution of the parameters), & is the joint prior distribution of
the parametersp ‘O is the likelihood of the errors observed between the
data and the mdel, with that combination of parameters, and'O is an
unknownconstantrepresentingthe probability of observing this data s@the
fact thatd ‘O is unknown is notan issue, becausé simply needs to be

proportional to the posterior distribution, wikh is the target.

In this chapter,the choicefor 0 & is a product of independentmarginal
distributions. Mostmarginaldistributions are uniform distributions onmt)
where thel are choserdepending on the type of parameters they apply to

Model equations are built around Hill equations and exponential degradation
terms and typically look like— | —— '‘C8d, where ® and @ are

modelled species, arid, U, £ and'Qare parametersThe upper bounds fdr,
0 and& parameterswere chosen ap 1, 100 times the maximum value af
and 10, respectivelfrorQtype parametersthe upper bound ip mwhenthe
parameters areoptimized without prior information In the later models
though, prior information from a study of mMRNA hdilfes was taken into
account(Narsai et al., 2007)eading to the eplacement of the uniform por
for degradation parameters by a normal distribution p8t TH® w ¢

matching the reportecaveragevalue and confidence intervals

0 ‘Ogh is a function of the model predictions and the observed data, for two

types of measurements: gene expression andvéang time.
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% O a O hd O %; O & 6hd

Where O and O represent the gene expression and flowering time
measurements, respectively, is the number of genes, is the number of
observations per gene, is the number of flowering time measurements,

is the normal probability density functiop, and, are the variances dhe

‘O andO , respectivelygt andd& are functions representing how the
model computes the expression level of geifeand flowering time,
respectively, and andd are input data used to compatthe expression

level of gené@t time and flowering time of planiQrespectively.

The, arederivedfrom the data.

, i metp | AgD LEJo

Na N O

[oF

Wherei is the empirical standard deviation of the data. The added 1% of

the range of the measurements is taccount for measurements where the
empirical standard deviation is 0 (typically, when the measurements

themselves are all 0).

For flowering timessimplyusingthe empiricalstandard deviationsesulted in

the flowering time data being neglectedn favour of the expression data.
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Therefore, they were replaced by common, proportional tothe range of

measurements

, mmpl Ag [ EJO

Na a
The 0.001 value was chosen by taald error. Hgher values (e.d).01)also
resulted in the flowering time data being mostly ignored in favoumafor fit

improvements on the expressiatata. This wa possibly because lowariance

gene expressiodata pointshad too much weight

Using the formula ofec(where® is not a distribution, but the usual®

o® 1B):
(‘0 1
%o, W \p_AQB
I/Ic“" Cn
It comesthat
0 'O
o) & 0 O & 6hd
0 Aopb Aob
Co G
Let
Y
@) a 0 hd 0 & 6
Agb c Agpb c
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Based on the formula af 0,0 &0 ¢ 0 G YD .

Instead of working with "Y® as a product of exponentials it is

computationally cheaper to work with its logarithm

~

O & o6 O a oM

Cn Cn

Let

I T isthe argumentexpected bythe adaptMCM@ackage

Thefirst sulproject was theossibility of integrating the vernalization pathway

into an ODE model of the floral transition.

Angeland colleguesdeveloped a ®chastic model of the silencing &LC
during vernalizatiorfAngel et al., 2011Y hismodelfocused on demonstrating
that the silencing oFLGat the plant scaleesuted from a stochastic process,
whereby individual cellsdecided to represd-LCin an independent,all-or-
nothingway. Quantitative variations in thexpressiorof FLGit the plantscale
therefore depend onthe proportions ofé 2 ¥edlsanda 2 E£ells as opposed

to synchronousquantitative variationsin the expression levels of all cells
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Angel and colleagues modelled the histonasthe FLClocus individually
During the simulation, histones have probabilit@switching between three
states unmodified, methylated and activating. Methylated historgkence
the expression ofFLC while activating ones enhance it. The methylated and
activating statesanspread, i.etheir presenceincrease the probabilities of
other histones to switch to thir respective states and away from their
opposite stateswhich createsegulatoryloopsconducive to a bistable system
at the cell levelThe transition probabilities are also affectedwiether they
belong to a special region difie locusor not (the nucleation regioh and
temperature.Initially, most histones are in the activating staged remain so,
due to aslight bias of transition probabilities toward activationhenthe
plant isexposed to cold, the probability of histone methylation increaasghe
nucleation regionthereby makindhe histones of thenucleation region more
likely to be methylatedWhen the plant retursto warm conditionsthere may
be enough methylated histones in the nucleation region to sthi# bias
toward methylationin the rest of the locusresulting in the propagation of
histone methylationto the whole locus.Therefore, individual cells either
silenceFLCcompletely or not at allThis stochastic model can however still
explain thefact thatthe overallFLGexpresson of a plantdecreasegradually
with the duration of the exposure to cold, becautbes duration does affect
the methylation of the nucleation region and therefoitee probability thata

cellwill silenceFLCAL the plant or tissue level, the expressiohall cells are
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averagedsothe overall expression levéd determinedby the proportion of

silenced cells.

In order to avoidrunning stochastic simulations of cell populatiots feed
their results into an ®E model the possibility ofdirectly modelling the

silencing oFLGat the plant or tissue levelsingODEs was studied.

An ODE modehspired bythe mechanism proposed by Angel and colleagues
was develope@Equation3.1). It onlyconsidergwo histone states: methylated
and unmodified as this was sufficient to create a system wherethylation
levels are stabldefore and after cold treatment. Itelies onthe following

principles:

1. Two regions are consideredgithin the FLOocus: the nucleabn site
and the distal regionAt the beginning of the simulation, they are both
unmethylated ¢ mandd ).

2. In warm weatherthe histanes ofboth regionsremain unmethylated
a. ———— T, because&h ¢ a @&

b. ———— 1 becauseX =0.

3. Duringa periodof cold(® ¢ & ‘@), the histones of theucleation site
get methylated, both spontaneous(gue tof ) and as the result of the
spreading of the methylation markgdue to & 8p
a ). The spreading term is a logistic function because it
requires both the preence of methylated and unmethylated histones

in the nucleation zoné¢o occur.Methylationalsostarts spreading from
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the nucleation site to the distal regiprwhich is represented by a
product of three termsd 8p « 8p 1 & a The
first two factors arebecause the spreading of methylation marks from
the nucleation zone to the distal zone requirésth methylated
histones in the nucleatimzone andinmethylated histone the distal
zone.and warmth.The third factoris becausehat spreading is faster
in warm weather than in cold weathert( | P).

4. After returning to warm weathe(® ¢ & ‘@), methylation stops at the

nucleation siteand the level of methylation sustains itself, therefore
no degradation term was addetb the equation of

Meanwhilg the spreading of methylation frorthe nucleation zone to
the distal zone picks up, as itfecilitated by warmth.However, the
methylation of the distal zone reaches a steady state that is vedys
complete methylation, but ianon-decreasing function of the duration

of the exposure to cold. Therefore, a degradation term was added to

the equation ofF——.

The expression diLGvasmodelled asnhibited by cold and thenethylation

of the distal region. A delay was introducedo the effect of temperaturdp

wé Q] ), to prevent a transient expression Bt Gafter returning to warm
conditions,during the timeit takes for methylation marks to spread from the

nucleation regin to the distal regionThe effect of distal methylation was
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raised to the powerof (p & 0 ) to sharpen the response &LC

expressiorto variations in

{AYAEFENI® G2 'y3st yR (adablStcaurd i Q

that shortcold exposuredarely affect the expression level BEC but longer
onesdo lead to its repressianThe intensity of the repression increases with

the duration of the exposurayntil saturation is reached~gure3.4).
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Equation3.1. ODE model of FLC silengin

®Eé aQ & 8p a i

& 8p a 8p &€ a d®

oLd p OE®QA 8p 4 0

1 & . proportion of methylated histones at the nucleatioites
of FLC

1 & . proportion of methylated histones in the distal region of FLC

1 o time

1 wé & Gfp : whether the current temperature isunder a certain
threshold or not

T 1 . propagation rate ofhistone methylationrate at the
nucleation siten cold weather

1 7 :rate of spontaneousistone methylation at the nucleation site in
cold weather

T 1 . propagation rate ohistone methylation in the distal region

f 1 ~ mp : inhibition coefficient for the propagation of histoa
methylation in cold weather

"Qjhistone demethylation rate in the distal region

=a

=a

1 : delay in the effect of temperature on FLC expres$n
1 &: coefficient regulating the stiffness of the response of FLC expression

to the methylation of the distalegion
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Figure 3.4. Gradual silencing of FLC expression in response to varying
durations of exposure to coldFor short durations of exposure to cold,
virtually no reduction in FLC expression occurs. Adtiration of exposure
increases, theexpression level of FLC after returning to warm temperatures
decreasesuntil that effect reaches saturatioriParameter value$: p 1T,

| T8t X Myl 09'Q ™y pdQE T

This demonstrates that, even though the methylation of histones atRh€
locus is a stochastic process in natuee,deterministic ODE model can
represent it accurately at the tissue levitlis therefore not necessary to model

vernalizatiorat the cell level to study its effect on the floral transition pathway.

The original plan was ttegrate this model of vernalization intan ODE

model of the floral transitiordeveloped from scratchHowever, it appeared
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through a collaboratiomvith WageningeruUniversitythat an ODE model of the
floral transition inA. thalianawasalreadybeingdeveloped by Valentinand
colleaguesfrom AaltJan@ | y  SGear® (Vdkatim et al., 2015)The plan
therefore shifted toexpandng Valentimand colleagusimodel to include the
effects of vernalizationAn attempt to generatedata suitable to fit such a

model was part of this effort

Samples harvested froplants that had undergone a\Beek cold treatment
were subjected to qRPCR analyses on four separate occaslongnza, a
partner ompany of the University of Wageningerhowever the reults
exhibited so much variability that the actual kinetics of genetic expression
could not be ascertained. The measurements are shown for two génes,
and SOCjlas examples of the observed variabiljgigue 3.5) These genes
were selected as examples because their theoretical behaviour during and
after a cold treatment is known: FLC should be silencetthéyold treatment
and remainsilert thereafter, while SOC1 isormally upregulated during the
floral transition, which should happen after the cold treatment, if at AH.
these expected bedviourscannot be seen consistently in the results, these

experiments were considered unsuccessful.
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Figue 3.5. FLGand SOCZExpression levelselative to YLS8n the meristems,

as measuredcby four Fluidigm @RTFPCRsEach line colour corresponds to a
different experiment. All four qRPCRs were carried out by Enza on the same
biological samplesThe cold treatment occurred from day O to day 21. After

day 21, the plants were grown in warm conditions.

3.3.3. Cold treatment deceases flowering time

Studying the effect of cold treatments on flowering time is not straight

~ z
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seedlings, at least from a morphological point of view. It is unclear whether
development & the molecular level (gene expression profiles) is affected as
much as at the macroscopic level (size of the plant and number of leaves), but
it seems plausible and is commonly accepted, hence the-gpiead practice

of counting flowering time in numbesf rosette leaves instead of actual time.

In this study, the notion of adjusted bolting time was introduced to respond to
the same concern, while keeping measurements of flowering time in a
standard time unit. It is defined as the bolting time (from sowiadpolting),

minus the duration of the cold treatment.

Results show that increasing durations of cold treatment lead to reductions in
bolting time and adjusted bolting tim@able3.2) The cold treatment required

to saturate the vernalization response doaot seem to have been reached,
and this might be whyflowering occurred later than expectedThis
unfortunately resulted in the pool of plantallocated to disseatin being
depleted before flowering could be observed macroscopically, as the number
of plants to grow for the experiment had been calculated under the
assumption that the plants undergoing angek cold treatment would flower

in 49 days at most (i.e. 14 gain the last chamber). Another argument in
favour of stopping the harvesting was that the floral transition might have

already occurred at the molecular (gene expression) level.

While the experiments were being carried out, an analysis of Valentim and
cot £ SI3dzSaQ Y2RSt gla taz2 YIRS® ¢K2aS

section.
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Table 3.2. Influence of vernalization on the flowering time of FRI+ @l

plants. Bolting time values are given as averaggandard error.

Cold Bolting time| Bolting  time| Adjusted Number of
treatment (days after| (days after| bolting time| individuals
(weeks) sowing) induction) (days)

0 90.64 + 0.70| 76.64 + 0.70 | 90.64 + 0.70| 45

1 76.05+ 1.68/ 62.05+ 1.68 |69.05+ 1.68| 19

2 75.25+0.78/ 61.25+ 0.78 | 61.25+0.78| 40

3 68.11 +0.22/ 54.11 + 0.22 | 47.11+£0.22| 90

3.3.4. Valentim | YR 02t in&lél 8fddeafloral transition can be
simplified

At first glanceyalentiml Yy R O 2 tnio&el(\AklzthiieDal., 20155eemed

very complexvith respect to itgredictions,therefore a complexity reduction

was attempted This attempt was supported by the finding in ChaRehat

gene regulation equations can involve verywfparameters whilethe original

model6 + | £ Sy (i Aedtur&diB5 pafarde@es 0

The originalmodel was fittedto two types of data: time eries of gene
expression and flowering time measurementdowever, the parameters
retained by Valentim and colleaguestdd the flowering time data rather
poorly Figure3.6), becauseAP1lis overestimated Kigure3.2). Reoptimizing
the parameters with RAM resulted in bettetsf(Figure3.7 andFigure3.8), but

also revealed other issues.

88



20 4

o
z ¥ B Observed
= Q B Predicted
© S
= o 15 4
£ o
5 ]
o 2 ]
5 Z
[ —
= o 10
2 ®
o ==
o [u]
- o = o
o o P 5
£ =
s i)
g ©
] 2 o
$ o =
= - < g“
- £
@ 000 0 oo o
© oo z -5
T =
o [
[
T T T T T -10 =
O ™ O NN O ) ™ [y} d 4 4 ™Y
0 10 20 30 40 T IS E Y e do g -
8888 “5555559%
" - 28
Observed flowering time (days after germination) © Genotype ﬁ [ g
N
sEE
2 o
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Table3.3. Optimal values of the parameters of the originaiodel.

Parameter| Value
betal 69.88392
beta2 262.571
beta3 90.02974
betad 36.38466
beta5 2144.1
beta6 7.70E05
beta7 75.60066
beta8 1.024824
beta9 5.06396
betalO 0.043398
betall 7.49E05
betal2 652.836
di 0.000122
d2 0.002795
d3 0.893741
d4 0.084881
d5 0.000333
dé 0.0436
K1 0.064031
K2 0.895105
K3 333.3299
K4 11211.01
K5 2.29E+01]
K6 0.862488
K7 38.46168
K8 17808.81
K9 298.9328
K10 117.813
K11 8681.21
K12 620.6245
K13 3.35E+0Q
K14 0.206951
K15 2369.714
K16 557.6477
n 9.989972

First out of the six degradation coefficientdyree have near 0 value@-igure
3.9, Table3.3). This seems at odds with a study that measured thelhad§ of

several mMRNAs includin§OC; which was found to have alegradation
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coefficient of 1.000d? (95% confidence interval0[24,1.78)) (Narsai et al.,
2007) As none of the other modelled mRNwereinvestigated in that study,
the genespecific degradation parameter) were replaced by a single
parameter Q applying to all genesA prior distribution”™ p8t T® w ¢

(corresponding tdhe reported confidence intervalyas used foi2

Second, many coefficients(b ,0 ,0 ,0 andy ) of Hill equations for

activations (m ) had values oveB times the maximum observed value

of @ This means those Hill equations actually dmee quasipolynomial 6r
guastlinear ife =1) in the domain corresponding to the simulation. They were

therefore replaed by polynomial or linear equations accordingly.

Third, theb coefficientsof some Hill equations foinhibitions (™

)

had values resulting in fold changes of less thab8in the range ofw
observed. This was the casefand0 . The corresponding Hill equations

were therefore replaced by 1.

Fourth, the distributions of sonfe LJF NI YS G SNA dnBIBhowirigS | y A y 3
their associated effects are negligible. This is the case AGL24HLFY) and

I (FDIbAPL). Thoseffects were therefore removed from the equations.

Finally,some mutationsflc, agl24andIfy) have little or no effecon flowering
time, according to the datarherefore LFYvasremoved fromthe equation of
AP1 However, this would makéAP1l SCCtindependent, and the socl

mutation is known to have a latiowering effect so a term similar to theFY

93



one was reintroducedising SOClinstead LFYwas also removed from the
equation ofFDQ becausesinceLFYwas the only regulator dfD alfy mutation
should have resulted in the complete silencindg=&f but thefd mutation has
a stronger lateflowering effect than thelfy one. As no regulator ofFD
remained,FDwas no longer modelled, and interpolated measurementse
used as inputs for thether equations of the modelAsagl24 has nearly no
effect on flowering time,the effects of AGL24were removed from the
equations of SOClwhichis upstream ofAP1(it had already been removed
from the equation ofLFY. Finally,the effect of FLCwasremoved from the
equations ofFT (it had already been removed from the equation ®OC)L
However FTonly had oneancoming regulation left a repression byVR; and
the SVP measuremenis leavegFigure3.1) cannot explain the upregulation
of FTobserved in the data. Therefora time-dependent term representing

regulations by unknown species was added to the equatidrTof

These changes are sunarized inTable3.4. The predictionsof Model 1 are
shown in Figure 3.10 and Figure 3.11. The optimal parameter values

(likelihoodwise) are inTable3.5.
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Table 3.4. Changes between the original model aModel 1. Changes are

highlighted in red.
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Figure 3.10. Floweringtimes predicted by Model 1.Flowering times are

overall well predicted, but the effect of tr@vpmutation are underestimated.
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96



Table3.5. Optimal parameter values for Model 1.

Parameter| Value
betal 0.142997
beta2 0.748411
beta4 515.1157
beta5 200220.1
beta7 37.20443
beta8 0.074734
beta9 1E+09
betalO 0.067994
d 0.050156
K1 73.02524
K5 8567.636
K6 81.58542
K7 1256.276
K11 6001.799
K13 597.4586
Kt 3.95E10
n 9.213486
nt 0.348851

The simplificationsntroduced in Model Ifixed the issue with the flowering
time of the Ify mutant. However,they also introduced other issue$sene
expression fitsare overall poore(Table3.8), especiallyfor AP1 whose final
measurement is extremely overestimatedue to the steepness of the
predicted curveresulting inan NMRSEf 140% The flowering times of the
varioussvp mutants were also overestimated. As tBep mutation results in
the upregulation ofT, this suggested that the effect BfTwas underestimated

in that context.

Toimprove the fitof the APland flowering time predictionghe FT term was
raised to the power of , to providemore flexibility in the regulgon of AP1
The effect ofAP1lon LFYwas removed, as it seemed to negatively affect the

curvature of theLFYprediction and did not seem required, based on tiene
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expression and flowering time data. Finally, all remainingoefficients were
removed, as they were all over 10 times the maximum expression value
observed for their respective regulators. All these changes were implemented

into Model 2.

The predictions of Model 2 are shown kigure3.12 and Figure3.13. The

optimal parameter values are ihable3.7.

Model 2 only contains 13 parameters, yet rivals theymal model in terms of

goodness of fitTable3.8). It therefore appears to be a good replacement.

Interestingly, it could even be simplified further if floweringné data are

ignored as is shown in the following section
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Table3.6. Changes between Model 1 and Model @hanges are highlighted

in red.
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Figure 3.12. Floweringtime predictions of Model 2.Flowering times are
overall well predicted, although the effects of tkepmutation is still slightly

underestimated.
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Figure 3.13. Gene expression predictions of Model %Bene expression is
overall well predictedthough AP1 is slightly underestimated past 13 days

(after flowering has occurred).

Table3.7. Optimal parameter values for Model 2.

Parameter| Value
betal 0.293154
beta?2 0.6502
beta4 0.043441
beta5 2.251851
beta7 0.005528
beta9 7.30E08
betalO 1.46E01
d 0.040861
K1 83.66373
Kt 4.849048
nl 3.377892
n2 9.980918
nt 9.967795
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Table3.8. Normalisedroot-mean squareerror (NRMSE) values of modelled

genesand flowering time, for all fitted models.

Variable Original Original Model 1 Model 2

model with | models

reported reoptimized

parameters | with RAM
FT 27% 54% 47% 35%
SOC1 19% 25% 37% 27%
AGL24 7% 7% 14% 10%
LFY 7% 7% 15% 15%
AP1 14% 4% 140% 23%
Flowering | 42% 6% 7% 5%
time

3.3.5. The gene expressiontime series alone do not contain enough

information to determine the topology of the regulatory network

+1 £ SYGAY

IyR O2ftf Sl 3dzSaQ puirg ¢t dedw. Thed

a

interactions it involves are supported by biological evidence and are modelled

by MichaelisMenten or Hill equations to account for the existence of upper
limits on synthesis rates. However, the fact that it could be simplified

drasticaly (from 3 to 13 parameters) while retaining nearly the same

goodness of fit as the original shows there are not enough data to fit such a

complex model. The time series are particularly uninformative, since they do

not exhibit any deceleration of genemressions and therefore provide no way
of estimating the parameters associated with the plateaux of the Hill and

MichaelisMenten functions. To illustrate this, a deliberately uninformative
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ODE model, wheresOC1AGL24 LFYand APl are each exclusively self
activated — @w,® N a ), was fitted to ther time series. The resulting

fits were once again godgFigure3.14), showing hat the time series of the key
floral transition genes aressentiallyexponential curveand therefore contain
very little information,as it would be possible to build models with completely
erroneous topologies if it were not for the prior biologicaidance available

in the literature. One could for instance build a model by picking a random
activator for each o60OC1AGL24LFYand AP1 FTis the only gene that does

not suffer from this issue.
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Figure3.14: Fit of the deliberately uninformative seléctivation mockl. In this
model, AGL24, SOC1, LFY and AP1 are orlggulated by themselves,
resulting in exponential growths of their expression levels. This overly simplistic,
biologyunrelated model still provides adequate fits, which indicates that the

time seriesare not very informative.

It was apparentn Figure3.14 that some time series look very similar to each
other. To assess the matter in a more quantitative way, the datigns or

each pair of genes were comput@eigure3.15).
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Correlations between gene expression time series
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Figure3.15. Correlations of time series in the WBadkground colours indicate

absolute values of correlation.

GeneLLLV3STMandTFLlare not part of any of the models studied, but were
added to the set for two reason&TMand CLV3wvere included because they

are meristem markers, an@iFL1lis a candidate gene to be included into an
expanded model, as it is a key repressor of the floral transifibe.expression

of these three genes was measured on the biological samples used by Valentim

and colleagues.
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AP1TFLILFYFLCSVRFD AGL2%4nd SOCZIorm a cluster of mutually highly
correlated gens. The cause of these correlations is still unclear, however, two

hypotheses have been proposed:

1. These genes are genuinely all-tggulated by a common factor. This
makes sense for meristem geneSCC1, AGL24LFY AP TFL1FD,
which are all under the contraldirect or indirect¢ of SOC1However,
FLCand SVPexpression are also correlated to those of the previously
mentioned genes, which is unexpected, as they are supposed to inhibit
them.

2. The orrelated time series are artefacts resulting from the method of
data acquisition. Three reasons have been considered.

a. YLS8s unsuitable as a reference gene, because its expression
level or the size of its expression domain decreases during
development, ausing an apparent increase in the expression
levels of the genes of interest.

b. The proportions of the expression domains of the genes of
interest with respect to the size of the biological tissue sampled
increases over time. This could be due to the fdwttthe
subset of the tissue actually expressing the genes of interest is
small compared to the total size of the sample, but as the plant
and its apex grow, harvesting the meristem becomes more
accurate, causing the fraction of meristematic tissue in the
sample to increase. However, in truth, the meristem is a highly
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heterogeneous tissue, and it does not really make sense to talk
Fo2dzi I NFXdGA2 2F aYSNARAGSYIFGAO (
YSNRAAGSYFGAO 3SySa || NB SELINBaaSR
. A more generic version of hypothesis 2b is that the composition
of the sampleg in terms of number of cells of each cell type
changes over time. This is highly likely for floral identity genes,
such ad. Fyand AP1 as they are expressed in floral prinda,
which are norexistent at the beginning of the time series,
appear during the floral transition and become more and more
numerous subsequently. For inflorescence identity genes, this
is more debatable. The expression domain§®Mand AGL24
seem tospread down the shoot after the floral transiti¢Geier

et al., 2008; Michaels et al., 2003)hich could contribute to
the kineticsobserved forthose genes. The measurements of
CLV3; a gene expressed at the very tip of the SAMo not
show the same increase as the floral transiti@tated genes.
Their valuesctually decrease over timEgure 3.16) Assuming
that the pool of CL\\8xpressing cells remains the same size all
the time due to homeostasis and that the expression level of
these cells remains constant, this would support biypothesis
that the composition of the sample varies ovan&. However,

in the case ofCLV3 it would be a dilution rather than an

enrichment. The main limit of this hypothesis is that there is no
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obvious reason why the large majority of the correlated genes
should be upregulated proportionally to each other whibeir
expression domains have different shapes. A possible
explanation would be that the SAM has some binltegularity
causing the sizes of all expression domains to respect universal
ratios. This is somewhat plausible, as the SAM has a repetitive
pattern stemming from the continuous generation of identical

lateral organs.

These hypotheses are not mutually exclusive, but there is evidence that

hypothesis 2c needs to be investigated further.
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Gene expression, relative to YLS8
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FHgure 3.16. BEvolution of CLV3 and STM relative concentrations during the

growth of the WT plants The measurements of CLV3 seem to decrease over

time, however it could simply be that CLV3 gets more and more diluted in the

al YLX Sazx a (GKS alyYLitSa o6lyR GKSNBTF2I
domain) grow in absolute size but the expression domainLaf3Cdoes not.

This would create a distortion between what the data show (an apparent
decrease in CLV3 expression) and the actual variable of interest (the intensity

of CLV3 expression, presumed to be constant).

3.4.DISCUSSION

The modelling work presented in ih chapter has shown that, like in the
previous chaptergenetic expressiotime series can be modelled with very
simple models It also raises important questions about the purposes of

models.

109



As shown with the ODE model of vermalion, modelling a process in a
satisfactory manner at a given scale does not require a model to be accurate

at smaller scales.

In this particular case, the behaviour of individual cells was ignored and only
their aggregate behaviour at the scale of thlale tissue was considered. It
was possible to ignore the spatial organization of the tissue because the
location of FLCtranscription does not change its effect, dee FLCprotein
diffuses throughout the tissue, spatially averagitsglistribution. Thee is also

no coordination of FLC expression between cells through intercellular

exchanges, which might have resulted in hard to predict effects.

In other cases, however, the spatial distribution of genetic expression can have

crucial roles.

The expressions obme genes are mutually exclusiwvea cell This ighe case
of APland SOClor APland FD This $ because AP1 represst®ese two

activators in negative feedback los(Kaufmann et al., 2010)

If gene expression is analysed at the tissue level (e.gRBPCR, AP1will
appear to be ceexpressed witiHFDand SOClbecause those three genes are
expressed in the SAM after the floral transitidtiowever,FDand SOClare

expressed in the inflorescence meristem, alB1lis expressed in the floral
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meristems.This leads to a problewhen trying to fit a singleompartment
model(i.e. a modelthat assumethe meristem is homogeneous) thesedata,
as the singlecompartment formalism makes impossible to reconcilehe
expression levels measured in the whole meristem with the topology of the
regulabry network (e.g. switches and negative feedback loopskand
complementary observations, suchiasitu hybridization [SH studies which

are moreprecise spatially but less precise quantitatively

The following chapter of this thesis explores in more detail the benefit of
modelling heterogeneous tissues like the SAM at a higpeatialresolution,

taking advantage of sources of data liHexperiments

One of thepremises of the modelling workinitially planned forthis chapter

was that the expression levels of all the genes included in the model are
uniform within the meristem.This is however not the casas mentioned
above anddetailed in the next chapter The expaments describedin this
chapterand in the works of other authordaeger et al., 2013; Valentim et al.,
2015) were built on that pemise, since they model the SAMas a single
compartment This consequently compromises their accuracy and

interpretability.

The incorrectness of this premise has consequences beyond the formalism

used formodelling It also impacts data acquisitiomethods In the study
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carried out by Valentim and colleaguelsetmodel was fitted to R FPCR data.
gRFPCRequires raw measurements be normalizedo control for variations

in the quantities ofcDNA in the sampléThis is usually done by comparing the
expression levels of the genes of interest to thosbaiseke@ing genes, and
works fine when the number of cellexpressing the gene of interest is
proportional ¢ or equal¢ to the number of cells in the sample, across all
samples. It ihowever not the casé the SAM during the floral transitioms
the compositio of the sampled tissuevariesover time, as a consequence of

the meristem fulfilling itfunction: generating new lateral organs.

Anotherrelatedissue is that the sampled tissue is larger than justSAdland
therefore includes nomeristematic tissuesuch as the petioles of the latest
leavesand the stem of the main shopivhose ratio is unknowmon-negligible,

and most likely varying over time.

gRTFPCRime series are not the only source of data thatst workandthat of
Valentimand colleaguesvere based on Howering time data from various
mutants were also used However, measuring only flowering tinpgesent

some issues

In floral transition studies, genes are often characterized asmpiters or
inhibitors of the floral transition, depending on whether the associated
mutants are late or early flowering. However, flowering genes have more

functions than simplyaccelerating or slowing dowthe timing of flowering, as
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evidenced by the morpological alterations often accompaimg mutations of
those geneglrish and Sussex, 1990; Schultz and Haughn, 1$%ting models
of the floral transition primarily on flowering time data therefore seetoe

specific

Followingon that reasoning, one might question the useAR®1as a marker of
the floral transiton, as done by Valentim and colleagud$e onset oAP1
expressionempirically marks the completion of the floral transition in WT
plants, however there is nho guarantee that this will apply to mutafite most
striking argument, perhaps, is thapl mutants still produce flowelike
structures (although they are devoid of petaignce the fulhameof the gene,
APETALAL1This clearly shows tha&P1lis not actually required to produce
flowers. Itsuggestshat, converselymutants could have theiAPlexpression
levels and timingaffected without the timing of ther floral transitionbeing

affected

Considering the observations made aboweset of recommendations for

future experiments waproposed.

First,with respect tothe gene expression measurement methadappears
crucial to address the ambiguity regarding whethariationsin the measured
values stem from changes in expressiotensity or expression domain¥he

best method to engre this would probably be to use singtell measurement

methods (e.g.singlecell transcriptomics orquantification of fluorescent
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proteins using confocal microscgpyicroscopy might have the added benefit
of being nondestructiveand therefore allow lagitudinal studies of the same
plantg. Methods working on subpopulations of cellssolated by micre
dissection ofisolation of nuclei tagged in specific cell tygd#$TACYare also
possible alternativesalthough micredissectioncoupled to RNA sequengn
can lead to highly variable measuremer{i®orti et al., 2012) However, if
practical constraints preclude the use afiy other method than R FPCR on
crudely dissected samples, it would be very important to identify reference
genes suitable to normalize measurements while preserving information
about the intensity of gene expression in tloells of interest Different
reference genes could be uséar different genes of interest, depending on

their expression domains.

The other points address vernalizatispecific concernsFirst, the cold
treatments used in this study did not seem to saturate the vernalization
respon® of theFRT Col0 plants.According to other sourcedieo and Sung,
2011) it might requirebetween 30daysof cold treatment which could not be
donefor this study, due tgrowth chamberspace constraintd. S2 Yy R { dzy 3Qa
work also indicates that the redtion in FLGCexpression levels is highly non
linear.Cold treatments of 10, 20 and 30 days resafiult in~5%, ~50%, ~85%
reductions inFLCexpression, respectively, compared to the fireatment
value.This means the-8/eek coldtreated plants probably still hadbout half
their normalFLGexpression, causing them to flower later than expected. For
future experiments, it is worth noting thagven a saturating cold treatment
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does not fully suppresd=LCexpression. There is a residual ~13%C
expression, which may makelly-vernalizedFRT plants still flower later than

non-vernalized CeD plants

An indirect consequence of the unsaturated vernalization response is that the
gene expression time seriesquired after thecold treatment stop before the
floral transition actually happens. This should be addressed, either by
increasing theduration of the cold treatment,or extending the gene
expressiormeasurement windowDoing both would probably be optimal, as
the former wouldsharpen the coldreatment response and the latter would
enablethe capture of the decelerationf the expression of floral transition

genes.

An ODE model of the silencingfifGluringthe vernalization process has been
developed, however itvasnot integrated intovValentiml y R O 2 twid& | 3 dzS & Q
model of the floral transition.This is becauséundamental flaws inthe

formalism adoptedby the pre-existing modelwere identified.Most notably,

its singlecompartment formalism is not able tmodel thebehaviour of the

SAM in a biologically relevant wags itis bound to simulatehe joint effects

of genes that would normally be expressed in spatially disjoint domdihs

in turn brought o light a flaw in the experimenvalentml y R O2f f S| 3 dz
model is built on: gene expressions were measured and normalized under the

assumption thatgene expression was uniform ithe sampled biological
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material, howeverthat material is actually comprised o$everalkinds of
tissueswith different expression profiles anghose ratios are expected to vary
during developmentAs a consequencdf is hard todetermine from the
measurements how intensely the genes of interest are expissnd

therefore, how they regulate each other.

The importance of the spatial organization of genetic expression in the SAM
was probably the main revelation from th&udy, which is why the next
chapteris dedicated to its detailed analysis and its expkoon to elucidate the

structure ofregulaory networks
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4. THE LOGIC OF THERADTRANSITION: RR®E
ENGINEERING THE SWHICONTROLLING TBENTITY OF
LATERAL ORGANS

Much laboratory work has been carried out to determine the gene regulatory
network (GRN) that results in plant cells becoming flowers instead of leaves.
However, this also involves the spatial distribution of different cell types, and
poses the question oivhether alternative networks could produce the same
set of observed results. This issue has been addressed through a survey of the
published intercellular distribution of expressed regulatory genes and
techniques both developed and applied to Boolean matevmodels. This has
uncovered a large number of models which are compatible with the currently
available data. It shows that an exhaustive exploration would be unfeasible
due to the massive number of alternative models, so genetic programming
algorithms lave also been employed. This approach allows exploration on the
basis of both data fitting criteria and parsimony of the regulatory processes,
ruling out biologically unrealistic mechanisms. One of the conclusions is that,
despite the multiplicity of accepble models, an overall structure dominates,
with differences mostly in alternative firgrained regulatory interactions. The
overall structure confirms the known interactions, including some that were
not present in the training set, showing that curreti&ta are sufficient to
determine the overall structure of the GRN. The model stresses the
importance of relative spatial location, through explicit references to this

aspect. This approach also provides a quantitative indication of how likely
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some regulabry interactions might be, and can be applied to the study of

other developmental transitions.

Computational approaches have become routinely used in the study of gene
regulatory networks. One of the fundamental key outcomes of geetvork
adivity is specification of the differentiated cell types during development that
lead to different tissues and organs. To address this particular question,
computational models have to capture the unfolding, both in time and space,
of the program embodietdy interactions between genes, transcription factors
and other molecular complexes. This necessity to describe spatiporal
patterns of gene activity entails an important computational cost. In addition,
the data available to build and assess computagiomodels are typically
incomplete or ambiguous, since precise spaémporal patterns of gene
expression are seldom available for multiple genes in a single data set. This
paper proposes tools designed to represent the specification of new cell
identities during development, and to fit models against incomplete data. This
work focuses on the floral transition, see below, but the methods aim to be
applicable to other systems involving cell differentiation and the underlying

spatial patterning of biologiddissues.

Flowers are the reproductive organs of plants. Therefore, their formation is
crucial for reproductive success. From a developmental perspective, flower

formation starts with the triggering of specific pathways in the founder cells of
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lateral oragans (i.e. leaves initially), so that they develop into flowers instead.
This developmental switch is called the floral transition. It is one of many
aspects of celfate specification in the shoot apical meristem (SAM), which
comprises multiple tissues, elawith their own genexpression profile but all
produced from a single stewell population. This early specification of cell
types, through the interactions between genes and hormones, enables newly
formedtissues to later develop into all the aerialrpaofa plant(Adrian et al.,
2009; Simon et al., 1996)hetransition goes through three wetlharacterized
stages, starting with a vegetative meristem, which produces leaves. Upon the
trigger by the appearance of the protein FT, this meristem bexoran
inflorescence meristem, from which floral meristems appear that produce

flowers.

While the pathways involved in the floral transitions have been reviewed
(Fornara et al., 2010; Liu et al., 20@®d modelled using Ordinary Differential
Equations (ODEg¢Pong, 2003; Jaeger et al., 2013jeviiim et al., 2015and
neural network(Welch et al., 2003¥prmalisms, these studies give little if any
attention to the spatial organization of the SAM and do not include any
represeriation of space. The side effects of this simplification obviously
include the inability to explain how the spatial organization of the SAM is
acquired, but also the prediction of unrepresentative geng@ression profiles,
because the gene expression meesuents have come from multiple cell

types. This potentially leads to the consideration of combinations of regulatory
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interactions that cannot actually occur vivg because the genes involved are

not, in reality, expressed in the same cells.

The presenstudy focuses on how the gemregulatory network of the SAM is
able to determine the transition of its daughter cells into stem, leaf, flower or
other cell types, based on environmental and positional cues. To address the
lack of spatial information foundn previously published studies, a novel
approach was required. We therefore propose a modelling framework which
includes an explicit representation of space. Regulations known from the
literature may be ambiguous, so the proposed methodology comprises a
method for the inference of models, based on experimental data. This entailed
generating a compendium of publishedsituhybridization (ISH) experiments,

to describe groups of jointly expressed genes. Models deemed plausible had
to reproduce both the obs®ed patterns of ceexpression and the known
developmental transitions. This offers the potential to explore alternatives to
current thinking about the regulatory mechanisms and predict novel

regulatory interactions for laboratory testing.

If ODE modellig is used, the number of possible alternative regulatory
interactions, even among a small number of genes, would lead to unfeasibly
long parametefestimation times. However, a formalism particularly well
suited to this task is Boolean modelling, which matly handles binary (on or

off) variables that accord with the resolution of the ISH data. For a brief
introduction to Boolean models, please refer$ Text Even though Boolean

models are lightweight, the space of possible models for a given set of genes
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space can be explored through exhaustive searches, but it quickly becomes
intractable as the number of possible regulatory interactions increases. In
more complex cases, heuristic techniques are required. In this work, a genetic
programming algorithm has been employed to find suitable models that

explain all observed data.

Boolean network models have been used successfully to study developmental
processes, such as floral developméiispinoseésoto et al., 2004)which
directly folows the floral transition. By representing genes as binary variables
influencing each other, they enable us to run simulations and find steady states
of the system. These steady states can then be interpreted as cell identities or
expression profiles. Thielea of matching biological observations to steady
states in not new: the logical rules built by Espin@sdo and colleagues
resulted in steadystates matching biological observations. This work describes
a related process: building up the logical ruiesn the biological observations.

It is similar to what has been done by La Rettal.for the regulatory network

controlling sepal formatiorfLa Rota et al., 2011)

Genetic algorithms have previously been used in conjunction with Boolean
modelling (Kang et al., 2011; Roli et al., 201These methods operate on
Boolean models at the level of truth tables, whereas genetic programming
operates at the level of equations. While truth tables can always be generated
from equations ad equations can be factorized from truth tables, working on

equations has several benefits: factorizing equations is more expensive than
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deriving truth tables, equations are humaeadable, and constraints of

complexity can be enforced on them.

This work las shown, for the floral transition, that an exhaustive search of all
possible regulatory interactions is prohibitive. Restricting the search to models
supported by the published regulatory networks explains the steady states
but, when attempting to explai the dynamic transitions between them,
resultsin many ambiguous regulatory events. Using genetic programming to
find models that correspond to the ISH data and known cell type transitions
reduced the ambiguity almost entirely, identified other regulatorieractions

that have been independently confirmed in other published work.

The most common representation of the core regulatostwork (Fornara et

al., 2010)is shown inFigure4.1, though other regulatory components have
also been reviewed by Liu et gLiu et al., 2009) As a necessary first
verification, oneneeds to assess whether this topology is sufficient to generate
the observed patterns of gene expression, or if new regulators or interactions
are required. As detailed below, a given topology, or regulatory graph, can be
achieved by a large number of distt models and one needs to determine
whether at least one of them is able to generate the required expression
patterns. In some cases, all the potential models can be listed exhaustively, but
it will soon become clear that in the general case the spacexplore is too

large to allow for an exhaustive search.
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Figure4.1. Common representation of the core regulatory network of the
floral transition. Nodes represent genes and edges represent regulatory
interactions. Vshaped and -Bhaped arrow heads respectively denote

activation and repression by the regulatory nodes.

4.3.1. The cost of running an exhaustive search on the whole space of

possible models is prohibitive

Classically, three meristematic identities amfistinguished: vegetative,
inflorescence and flora{Adrian et al., 2009; Simon et al., 199@énd are
normally defined by five main geneSOCland AGL24are markers of the
inflorescence identity, andlFYand AP1of the floral identity(Mandel et al.,
1992; Mandel and Yafisky, 1995; Weigel et al., 1992; Weigel and Nilsson,

1995) while TFL1inhibits the floral identity(GustafsorBrown et al., 1994;
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Weigel et al., 19923nd is a marker of vegetative identity (the inflorescence
also expresse3FL1though, which can be attributed to the infloresace
conserving some vegetative traits). A sixth g&fEencodes a mobile protein
that is synthesized in leaves, moves to the SAM through the phidaeger
and Wigge, 2007)xand triggers the transition from the vegetative to the
inflorescence and floral identities. However, owing to a memory effeé€ts
not needed to maintain the inflorescence and floral identities after the floral
transition (Adrian et al.,, 2009) Using this information, characteristic
expression profiles can be established for eavkristematic identity Table
4.1 andFigure4.2). The question arises of whether not there are any other
regulatory combinations of these genes than those reviewed in the literature

that result in the same set of identities.
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Table4.1. The three classical meristematic identities.

Vegetative TFLI1(Adrian et al., 2009)

Inflorescence | (FT)

SOCIAdrian et al., 2009)

AGI24 (Adrian et al., 2009)

TFLI(Adrian et al., 2009; Pidkowich et al., 1999)
Floral (FT)

AP1(Adrian et al., 2009; Pidkowich et al., 1999)
LFY(Pidkowich et al., 1999)

4 AGL24

{FT
{soc1
LFY
{AP1
TFL1

Vegetative

Inflorescence

Floral

Inflorescence with FT

Floral with FT

Figure4.2. Expression profiles of the three classical meristematic identities
Each row corresponds to a desired steady state, and each column to a gene.

Black and white cells indicate whether a gene is expressed or not, respectively.

The number of models to examine is a function of the numbers of input nodes
(nodes with no inboundegulation) and internal nodes (nodes with inbound

regulations). As discussed in more detalbirmext a Boolean model is nothing
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other than a map actingn the set of all possible states (combinations of
G2y ékeée2FFéE altladza 2F SIFOK y2RS0 27
6adz00S&aa2NE aidlraGS o6& (GKAA YILE KSyOoS
states being their own successor). There are 6 nodasta, 5o there arey

T yoossible Boolean states. To define a model, a successor must be defined for

each of these 64 states. The behavior of input nodes is fixed, so successors are
uniquely characterized by the behaviors of the five internal nodes. Lgokin
naively at the full set of all Boolean models, there are therefgfe x ¢
possible choices of successor for each of the 64 statesyi.p¥ ¢f ?E

(03] jE""potential models. This is more than the estimated number of atoms in
the observable universe, which +16° Even with a computer able to check

10 billion models per second, it would still take ~8%@ears. This quick
estimate shows that a brute force approach is impractical and that one needs

to constrain the search space using prior biological kndgee

The first, obvious, constraint on the search space is to exclude models
containing regulatory interactions that are not backed by any biological
evidence. As an added benefit, should solutions be found, this would
demonstrate that the set of evidendeacked interactions is comprehensive
enough to explain the behavior of the system. In an attempt to find a

reasonably sized set of regulatory interactiadhat can explain the behavior of
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the system, the Fornara et al. netwofikornara et al., 2010)as been used as
the main source oprior knowledge, without any additions from Liu et @liu

et al., 2009Wwhich would require additional genes. This set can be determined
very cheaply, as it is comprised of all the models whose truth tables follow a
pattern depending solely on the required steady states and the topology of the

network (seex2 Texy.

The outcome of this search was a set of 262,144 models compatible with

Forh N Sd | foQa G2LRft238&8 |yR SEKAOAGAY
topology is therefore sufficient to explain the steady states of the system.
However, it cannot reproduce state transitions undergone by the real
biological system during development,dgmrmost crucially, does not include

the activation ofSOCby FT(seeSlL Fig.

In our modelling framework, we describe transitions as the givileanainitial
steady state |, a perturbation P to be applied to that steady state, and a final
steady state F, resulting from the spontaneous evolution of the system
following the perturbation. Both | and F correspond to one of the cell identities
describedn a matrix such aBigure4.2, built using biological knowledge about
gene expression domaingnd P to the toggling of one or a few variables
representing the appeaance or disappearance ofon-cellautonomous
factors P iderived from knowledg@bout the motion of cellsrelative to the
domains of thesdactors during developmentThefactorstoggledby Pare
therefore effectively the triggers of the transitions from the modelling

perspective. The associated biological interpretation is that non- cell
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autonomous species form spatial patterns in the SAM that are constantly
perturbed by growth and cell divisis. This causes cells to enter some patterns
and exit others, as those patterns reorganize. The topology by Fornara et al.
lacks a trigger with a pattern matching the position of floral primordia. Thus,
for these reasons, the topology by Fornara et ahrzzt explain the dynamic

behavior of the SAM.

The failure of this exhaustive search to explain dynamical behavior requires
the model to be enlarged withwto interactions from Liu et alAP1f SOC1

and Auxinf LFY These choices were guided by parsimony, the intuitive fact
that they are likely to counteract the irresponsivenessS@C1o FT, and the
absence of difference between the unsteady states leadiog the
inflorescence and floral identities observed in our first exploration. However,

this will increase even further the number of possible models.

Constraining the search space of Boolean models with a defined network
topology greatly reduces the numbef models to explore. The exact figures

depend on the topology. The Boolean network model formalism dictates that
the state of any internal node is only dependent on the states of its regulators.

Therefore, if nodé&hasi regulators, its truth tablewill haveg entries. As a
consequence, there ar¢ ways of choosing the truth table of nod@

Building the whole model is equivalent to picking a combination of truth tables
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for all nodes, so the number of models in the search space is giEguiation

P.

¢ c° P

With the topology from Fornara et al. plus the two extra interactiddis, ¢

equals 54.

As a consequence, thereeaf®* models in the search space after excluding
models that do not conform to prior knowledge (down frorff%. Details of

the calculation are provided ifable4.2. Futhermore, most of them can be
ruled out because they are not compatible with the observed steady states
(see X Texd. In this case, only*2solutions presented the required steady
states (Figure4.2). As evidenced by the formulae, adding new interactions
becomes more and more expensive. In particular, ldtest two interactions
added into the data setA\P¥ SOCHhNnd Auxii LFYincreased the size of the
search space*old and 2¢-fold, respectively. This brought the problem close

to the limit of what was computationally feasible. Performing the exhaustive
search on this problem takes about 1.5 years with current CPUs, but was
achieved using a 19@re HighPerformanceComputing cluster running for 3
days. The search returned 1.6 billion suitable models. These solutions were
used to build an aggregate tomgy graph of the GRNFigure4.3), using the

methods described i Text
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Table4.2. Contributions of each gene to the number of models to explore.

Q i C
SOC1 3
AGL24 2 4
LFY 5 32
AP1 3 8
TFL1 1 2
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Figure4.3. Aggregate graph of the models generated by exhaustive search on
Fornara data set with 2 extra interactiond:he nodes of the graph represent
the species of the regulatory network, which are also nodes of the Boolean
network models. Edges represent regulatory interactions between regulators
and their targets. Arrowheads are placed on the side of the target spe¥,

T- and Oshaped arrowheads respectively denote -tggulation, down
regulation, and interactions that can fall in either category, depending on the
context and the model. Edge thicknesses and edge labels indicate the
frequency of occurrence of thesaociated interactions, across all the models
generated. Owing to the very large number of models obtained, a frequency

displayed as 1.000 does not necessarily mean all models.
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The 1.6 billion models represent networks with mostly similar topologies.
Amongthe 14 interactions allowed in the search space, all appear in at least
some models, and 11 appear in all models. 7 interactions can clearly be
labelled as positive or negative, but the other 7 remain ambiguous. This
happens because either an interacticmsometimes positive and negative in
the same model, depending on which other regulators are present, or it is

positive in some models and negative in others.

Figure 4.4 shows the proportions of models in which each interaction is
positive, negative, ambivalent, and absent. In most models, the interactions
controllingLFYare ambivalent, meaning that the regulatorsld¥Ycan be both
activators and repressors, depending on the combination of other regulators.
Such behaviors do not seem very plausible. Instead, it is likely that these
models are simply artefacts resulting from the high number of regulators of
LFYand the canparatively small amount of information about the behavior of
LFYmany combinations diFYegulators are possible, but the actual behavior

of LFYls unknown in most of them.
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Figure4.4. Distribution of interaction types per interaction across the set of
models generated by exhaustive searclicach pie chart indicates the
proportions of models in which the associated interaction is positive (green),

negative (red), ambivalent (blue) or n@xistent (white.

4.3.4. A higher resolution description of gene expression during the floral

transition can be established fronm situ hybridization (ISH) data

A survey of published ISH studless been carried out for gendsGL24AP]

LFY SOCL1 TFL1and FOQ which intera¢s with FT (see $4.1 Table. The
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expression domains of each of these genes waralyzed at various
developmental stages to establish -egpression mag For most genes,
proteins were assumed to be distributed followitttge samepattern as their
respective mRNAss nothing indicated otherwisélowever,n the case of the
TFL] there was clear evidence that the TFL1 protein wasileand had a
distribution pattern different from that of its mMRNAAs well as the three
classical meristematic identitie3 &ble4.1), this survey has revealed additional
identities,andmost of themcan be matched taones already characterized in

studies d SAM developmeniClark, 1997)seeFigure4.5 and Figure4.6.
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TFL1 protein
Auxin pathway
FD
SOC1

1AGL24

FT
Auxin
inner
apex
LFY
{ap1
TFL1

Vegetative OC | :
Vegetative CZ
Vegetative PZ :

...................

Vegetative flank

Vegetative anlage

Vegetative primordium
Inflorescence OC

Inflorescence CZ

Inflorescence PZ

Inflorescence flank 5

Floral anlage

Floral primordium
Floral OC

Inflorescence OC with FT

Inflorescence CZ with FT

Inflorescence PZ with FT

Inflorescence flank with FT

Floral anlage with FT

Floral primordium with FT

Floral OC with FT .

Floral primordium in apl . """""

Floral primordium in apl with FT

Vegetative CZ in tfll -

Figure4.5. Matrix of gene expressios in cell populations identified from ISH
pictures.Rows correspond to cell populations and columns to chemical species
or other variables. A black square means a species is present or a variable is on

in the associated tissue.
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FT), SOC1, AGL24

FD, Auxin sensitivity
TFL1 protein

-Auxin sensitivity
inner, - EE1

Auxin
apex

_LFY

AP1, -50C1
-AGL24 -FD.

i

Before floral transition < o After floral transition

1 Vegetative meristem " Inflorescence meristem " Floral meristem

Figure4.6. Diagram of gene expression domains in time and spdéeeen and
black contours mark the expression domains of the species mentioned in the
dzLJLIS NI £ STiG 02 NJaS NME 33/F o B SR NBasths fadey'!'S &/ | Y S
marks a hole in the expression domain of that gene. The green species are
those used as triggers of the transitions between developmental stages.
Transitions (symbolized by purple arrows) are triggered by toggling the
variables associated Whitthe green species (i.e. crossing green lines on the
diagram), which pushes the system towards a new identity, often causing black
species to also toggle their values (i.e. cross black lines on the diagram).
Identities are represented as colored areas &tarrity, the surface of these
areas is not representative. The Kfand and the righhand halves of the

picture are temporally separate, all other separations are spatial.
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These zones are described below, amlessstated otherwise, existin both

the vegetative and floral phasealthough the genes they express change.

The firstzoneis the organizing center (OC). It is classically defined as the
expression domain ofWUS but it also seems to expres&-L1(Conti and
Bradley, 2007; Liu et al., 2013)hich encodesa mobile protein that is
transported towards the apexthe secon@oneis the central zone (CZ), wh
contains stem cells and is located at the very apex of the meristem. These cells
are unable to initiate the formation of a primordium in response to auxin
(Reinhardt et al., 200Q)possibly because their auxin sensitivity has been
disrupted, as suggested by the expression patterns of some genes 8RRe
family (Vernoux et al., 2011)he third is the peripheral zone (PZ), vegetative
or inflorescence, which surrounds the CZ. We define its bordenatsof the
diffusion domain of the TFL1 protei@onti and Bradley, 200'A)Vithin the PZ,
some cells actually belong to another (fourth) identity: anlagen or founder cells
of lateral organs. Their defining characteristic is a high concentration of auxin.
Floral anlagen start expressihY(Blazquez eal., 1997) The fifth identity is

the primordia for anlagen that have gone through the boundary of the TFL1
protein domain, which expreg#sP1(Wang et al., 2009; Wigge et al., 20050t

not FD(Wigge et al., 200550CIWang et al., 2009)r AGL24Michaels et al.,
2003) Finally, the sixth is theneristem flank, which surrounds primordia.
Compared to the peripheral zone, its differences are that it does not have TFL1
proteins (Conti and Bradley, 200@nd it is insensitive to auxin treatment
(Reinhardt et al., 2003)
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In addition to these known steady states, knowledge of the processes involved
in plant development has enabled us to generate a list of initial steady states,
perturbations and resulting steady statéBaple4.3). These steady states and
transitions were also complemented with information inferred from the
phenotypes of thefll and theapl mutants (seeTable4.4). Studying theapl
mutant led us to consider a seventh zone: the floral OC, which does not have
any counterpart in the vegetative SAM. In WT plants, it is very similar to the
floral primordiun, except that it is located deeper within the meristem, and
we assume it does not have a high concentration of auxin. Imgiienutant,

this territory is expected to turn into an inflorescence OC instead, paving the

way for a recursive, caulifloweike inflorescence architecture.
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Table4.3. Developmental transformations in WT

Initial steady state Perturbation | Final steady state
Vegetative CZ - apex Vegetative PZ
- auxin

Vegetative PZ

- TFL1 protein

Vegetative flank

Vegetative PZ

+ auxin

Vegetative anlagen

Vegetative anlagen

- TFL1 protein

Vegetative primordium

Inflorescence CZ

- apex

- auxin

Inflorescence PZ

Inflorescence PZ

- TFL1 protein

Inflorescence flank

Inflorescence PZ

+ auxin

Floralanlagen

Floral anlagen

- TFL1 protein

Floral primordium

Floral primordium + inner Floral OC
- auxin
Vegetative OC +FT Inflorescence OC
Vegetative CZ +FT Inflorescence CZ
Inflorescence CZ with FT | - apex Inflorescence PZ with FT
- auxin

InflorescencdPZ with FT

- TFL1 protein

Inflorescence flank with FT

Inflorescence PZ with FT

+ auxin

Floral anlage with FT

Floral anlage with FT

- TFL1 protein

Floral primordium with FT

Floral primordium with FT

+ inner

- auxin

Floral OC with FT
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Table4.4. Transitions in mutant plants

Mutation | Initial steady state | Perturbation | Resulting steady state
tfll Vegetative CZ +FT A state withAP1
apl Floral anlagen - TFL1 protein Floral primordium irapl
apl Floral primordium| + inner Inflorescence OC (similg
in apl - auxin to WT)
apl Floral primordium| + apex Inflorescence CZ (similg
in apl + TEL1 10 WT)
protein

The additional data provided by ISHe unfortunately shown by exhaustive
search to be incompatible with the supplemented Fornara topology, as some
of the observed steady state@igure4.5) provide conflcting information
about the regulation of some genes, implying that the topology is incomplete.
As a consequence, in order to solve this problem, it is crucial to develop a
method that can suggest new regulatory edges for the network. One approach
involves the use of genetic programming. There are two motives for
developing such an algorithm: the need for simpler over complex/implausible
regulatory interactions, and a neexhaustive strategy of exploration of the
search space should be more cestective and allow the solving of complex
cases that involve more species and interactions. This performance gain can
also be used to explore models that do not perfectly match prior knowledge,

and hence potentially identify previously unknown interactions.
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465 models fitting the observations were generated using the genetic
programming algorithm As these results included models that shared the
same truth table, they could be filtered down to 103 distinct models (i.e.
models with distinct truth tables). These models can be clearly classified
according to theifitness valuesKigure4.7; lower is bettej. The presence of
clearly separated @aks is due to the way the fitness function was constructed.
Each peak represents a different number of novel interactions. The number of
copies per distinct model from the first peak (fithes9<8) is plottedn Figure

4.8. ltempirically shows that not all models of approximately equal fitness will

be found with similar frequencies by the algorithm.
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Figure 4.7. Distribution of the fitness values of the 103 distinct models
generated by genetic programming he formula for this can be found &b

Text Models found by genetic programming spontaneously segregate into
clusters corresponding to their fithess values. Each cluster corresponds to a
different number of novel interactionstroduced into the regulation network.

The algorithm attempts to find models with the fewest novel interactions
possible, i.e. those with the lowest fitness values. It does however not always
succeed in finding models with the actual lowest possible nemdf novel

interactions, hence the presence of several clusters on the diagram.
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Figure 4.8. Counts of the distinct models generated by the genetic
programmingalgorithm, with fitness <-0.18, in order of mcreasing fitness
(lower is better).Models with the same number have the same fithess value.
The algorithm favors models with lower fitness values, but even at a given
fitness value (1d.c, 3a3d), not all models are found with the same frequency,

suggesting that some may be easier to fthdn others.

As mentioned previously, the topology provided to the algorithm did not allow,
as is, for any solutions to be found. As a consequence, all solutions proposed
by the algorithm involve additional interactions that were not part of the prior
knowledge. An aggregate graph of the topologies of the 103 models is
presented inFigure4.9. It reveals numerous novel interactions, nyaof which
occur atlow frequencies (< 10%). Thidmscause the set includes swptimal

models, as far as the parsimony of new interactions is concerned (i.e. they
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include models that have more novel interactions than necessary). This can be

addressed by retaining only threodels with lower (i.e. better) fitness values.
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~(C Auxin pathway

Figure 4.9. Interactions found in the 103 networks generated by genetic
programming.Black edges are part of the prior knowledge, red edges are not.
All edgeswere allowed in the search, however red edges incur penalties, and
their inclusion is therefore minimizededge labels represent the frequencies
of their respective edges. Many novel interactions appear in at least some of
the 103 models, but most of #&m with low frequencies. The interactions
involving apex and inner however both have frequencies of 1. This confirms
that the variables apex and inner, as they were defined, would be able to
explain the patterning of the auxin signaling pathway a1 respectively,
although additional work would be needed to explain how apex and inner can
be defined molecularly. This also shows that no way to substitute apex or inner
with other variables could be found, unless it would involve substantially more

novel irteractions.
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In the following, only the best models (fithess valued X8) were retained, as

they areq by constructiong the models with the fewest novel interactions (4

in total). Some are more parsimonious than others in terms of known

interactions (seesection $4.2 Tablg, but we will consider them equally

relevant here, as our main focus is the study of minimal sets of novel

interactions able to complement published networks. The aggregate graph of

this selection igresented inFigure4.10. The 12 models selected this way

suggest:

O«

O«

FDis repressed by AP1; this would constitute a negative feedback loop,
whereby FD activates floral identity genes before indirectly turning
itself off;

SOCl1s not necessarily repressed directly by AP1; the results of the
exhaustive search had shown that a negative feedback loop was
necessary, but it might be the same as that of FD;

AP1lis not necessarily activated directly by FT; an indiestivation
pathway through SOC1 and LFY is sufficient;

TFL1is upregulated by a nemodelled factor present in the inner
tissue of the meristem, or a modelled factor with unknown interactions
occurring in the inner tissue of the meristem;

The auxin pathways disrupted by TFL1 and a nomodelled factor
present in the CZ, or a modelled factor with unknown interactions

occurring in the CZ of the meristem.
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Auxin pathway

Figure4.10. Interactions found in the 12 networkin the first peak of fitness.

This shows the repressionsiebby AP1 and of the auxin pathway by TFL1 are
the most straightforward additions required to make the network consistent
with the data. This also shows that some interactions are not required to

explain the data, namelyT¢ AP1FDf APlandAP1li SOC1

In this subset of solutions, only one interactiohGL24 LFY is of undefined
nature in the aggregate of the 12 models. This interaction is however never
undefined within any given modeFigure 4.11), instead there are some

models where it is positive, and some where it is negative. This shows that this
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method is able to avoid complex models. The equations of the 12 models are

given in4.2 Table

AGL24 -> LFY

Figure4.11: Breakdown of the type of theAGL24I'HLFYinteraction across
the subset of 12 modelsThe pie chart indicates the proportion of models in
which the associated interaction is positive (green), negative (red), of non

existent (white).

Among these 12 distinct models, 5 interactions are not present in all models:

(@]

TFL1 proteiri  LFY

FDf APZ

O«

0 SOCI LFY
0 AGL24 LFY
0 API1f AGL24

Principal component analysis (PQvss carried out to determine the number
of degrees of freedonn the set of 12 model§ Texy). It showed thisetwas

really5-dimensiona) but 91% of varianceouldbe explained by the first three
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components Table4.5). The first componendnly covers interactionSOCZ
LFYandAGL24 LFYwith opposite coefficients, showirthe SOCAndAGL24
nodescanplay similar roles in the regulation afFYin the generated models

The second component is mostly composedAR®1f AGL24 probably
because itis not necessary for a model to fit the observations: the most concise

models generated do not include that interaction at all (§4e Table.

Table4.5. Principal component®f the variability in the subset of 12 models.
The three main components explain 91% of the variance. The first component
indicatesthat SOChAnd AGL24an play similar roles in the regulationld¥¥in

the generated modelsThe second component is strongly influencedABL

f AGL24an interaction that is highly optional in the set of 12 models.

Component TFL1 |FD f |SOC1 | AGL24 | AP1f | Percentage
protein | AP1 f LFY |f LFY | AGL24 | of variance
f LFY explained

#1 -0.000 |0.000 |0.707 |-0.707 |0.000 |0.366

#2 -0.357 [0.362 |0.190 |0.190 |0.819 |0.295

#3 0.622 |-0.259 |-0.350 |-0.350 |0.548 |0.253

Looking at combinations of interactions model per model provides additional
insight. Noticeably, LFYabvaysupregulated bySOC1AGL2%r both, in each

of the proposed solutionsT@able 4.6). It highlights the importance of an
activation path from inflorescence geneSQ@Cland AGL2) to the floral
identity geneLFY and confirms that one such pathtlseoreticallysufficient
However, if only one of them activatéd-Ythe algorithm is not able to suggest

which one from the available data.
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Interestingly,none of the configurations reported ihable4.6 involves all of
the five interactionseven though theylo all feature in the topology reviewed
by Fornara et alHowever, the missing interactions can be either of the five.
This shows there isot onlyredundancybetweenSOChnd AGL24butalsoat

a higher level

Table4.6. Combinations of interaction types in the best cluster of models
generatedby genetic programmingnd their numbers ofoccurrence in the

12-model set Empty cellglenote theabsence of the associated interactions

TFL1 protein | FDf SOCt*t AGL24 | AP1f

f LFY AP1 LFY LFY AGL24 Occurrences

-1 1 2

-1 1 -1 2

1 1 2

-1 1 -1 2

-1 1 -1 -1 1

-1 1 1 1

1 -1 1

-1 1 1 -1 1

4.4. DISCUSSION

Even though Boolean models are simple and cheap to simulate, they are still
very flexible. The downside of this flexibility is that, for most model reverse
engineering applications, it is impractical to test all possible models
exhaustively to find thosenhtat fit observations. This work shows that this can
be improved by constraining the search space to models that conform to a

given topology, which is not helpful when the network topology is unknown.
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The genetic programming method used here is able to kamacomplete
topologies. Unlike exhaustive search approaches, it is also able to favor models
with simple Boolean equations. These are more likely to represent biological
regulatory mechanisms, because a given regulator rarely changes from being
an activador to a repressor. However, like any method, the validity of its results

depends on the quality of the input data.

A large part of the input data in this work has been extracted fiansitu
hybridization experiments. This shows the locations the mRNAeo$tudied
genes, but not their proteins, which is an issue for mobile proteins, such as FT
and TFL1. Although the greatest care was taken when interpreting ISH pictures,
comparing plants of different ages at different times, and grown in different
conditions may be a source of errors. Confocal imaging of multiple fluorescent
fusion proteins could help with both matters, as it provides a way of tracing
proteins and studying how they docalize. Following the development of the

same plant through time ilgo possible with this technique.

The core of our approach is based on the use of ISH data to approach
expression profiles at singtll resolution to infer regulatory interactions.
Unfortunately, this kind of data is usually not aghile for mutants. This has
consequences for the models that can be generated. Indeed, real biological
regulatory networks are usually robust to mutations, as regulators are often

encoded by a family of related genes, providing redundancy. However, our
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gendic programming algorithm aims at generating models as simple as
possible, and as we have little data about expression profiles in mutants, the
algorithm has no reason to try to replicate the robustness of the real network.
This means the algorithm will Bd models featuring littleg if any ¢

redundancy.

This method, based on eexpression profiles and genetic programming, has
been successfully applied to the case of the network controlling cell identity in
the SAM. Although ihas not been tested on other biological networks, it
should be applicable to other networks providing appropriate data sets are
available. It would be interesting to see how well the method performs on
other cases, and, in particular, if the trad# between computation time and
quality of the output models is satisfactory across all cases. It is entirely
possible that this tradeff could be improved using a different set of
parameters for the genetiprogramming algorithm, both as default values and
as poblem-specific values. This is because little optimization has been carried

out in this area, due to the high computational cost associated with it.

This work suggests th#&PlrepressedD While this was not reported by Liu
et al.or Fornara et al., it has since been publisiigdufmann et al., 2010)The
genetic programming output also suggested AP1 does not necessarily need to

directly downregulate SOCl as this would be redundant with an indirect
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repression vid&D This might be tested experimentally in BB-overexpressing
plant. IfSOC1s not downregulated in floral primordia, it would confirm that
the repression o8OCbyAP1goes through-D Alternatively, it is possible that

both regulatory features occur and this is a case of fedard repression.

One of the aims of this work is to investigate the place of TFL1 in the regulation

of cell identity in the SAM. To male$ possible, variables inner and apex were
introduced for the following reasons. First, very little is known about the
regulation of TFL1 which makes it difficult to produce models wheFeLlis

expressed in the right conditions. The patterningTdiLlis, however, very

similar to that ofWUS for which a patterning mechanism combining inhibition

in outer tissues and sensitivity to activation in imtissues has been proposed
(Chickarmane et al., 201®) ! y GAYYSNE y2RS ¢4l a | RRS
enable similar models foFFL1 SecondTFL1seems to affect the identity of

CZs. Indeed, floral meristems, which are usually determinate, become
indeterminate and generate recursive cauliflowie patterns in theapl/cal

mutants, whereTFL1is expressed ectopically. Conversely, the SAM becomes
determinate intfl1 mutants, as the meristem turns into a flower after the floral
transition. Since the apices of the SAM and floral meristems appear to have
similar behaviors in some genetic backgrounds, we postulated that those

apices share some unknownqgperties responsible for this shared behavior,

YR AYUiNRRdzOSR | GFINAIFo6fS OFffSR al LISE
It is not clear which molecular species correspond to the spatial information

implied by variables inner and apex, but some genes exhibit the relevant
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expression patterns. Inner seems to correlate waAlkiK4(Chickarmane et al.,
2012)and apexto CLV3Ceier et al., 2008) Interestingly, these two genes are
involved in theWUSCHECLAVATAegative feedback loop. AF§USand TFL1
share similar expression patterns and their expression levels are correlated, it
seems likely thaTFLJ1and genes of this loopre somehow connected. Should

it not be the case, the patterns éfHK4and CLV3till prove that genes with

patterns appropriate to explain those of inner and apex do exist.

Inferring a quantitative model of the flor&dansition¢ such as an ODE or PDE
model - by genetic programming might be possible. The major challenges,
however, are that it would add a parameter optimization problem for each
system of equations to assess, and the simulations of ODE models are more
expensive than those of Boolean models. However, instead of trying to infer a
guantitative model directly, another approach could be to convert the Boolean
models into ODE models using predefined meth@dsndoza and Xenarios,
2006; Wittmann et al., 2009 hese quantitative models could then be simulated

in a spatially explicit context, such as a 3D tissue mesh, which would enable
the simulation of transitions in a more explicitay (growth, cell division,
diffusion, transport). The main limitation of such developments is the lack of
any nondestructive experimental method to measure quantitatively the gene

expression patterns of cells situin organs, so that the quantitative tputs
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of differential models would have no experimental counterpart for

comparison.

In this paper we have described a succession of approaches aiming to build
Boolean models able to reproduce a set of spagimporal gene expression
patterns, whist complying with prior knowledge on the regulatory topology.
Starting from a brute force approach exhaustively enumerating a list of
candidate models, we have been led to more sophisticated developments
based on genetic programming. The latter were need by this case study. It
seems likely that other systems involving cell differentiation and tissue
patterning would require similar refinements, but it might be, in cases where
prior biological knowledge is detailed enough, that the simplest approach
leads to relevant conclusions. Therefore, the results have included all the

different steps with some details, as summarized now.

The most naive search strategy, exhaustive search, can only be carried out on
very simple models, though it can be improved upmynrestricting the search
space to models conforming to a predetermined network topology. This
drastically simplifies the problem, however, it might still not be enough if the
network topology is too complex. Another issue is that it requires a suffigient
comprehensive network topology, which might not be available. However,

even if these two problems do not arise, solutions generated this way may not
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be satisfying, as they are likely to involve complex, unlikely regulation

mechanisms.

These three probles are addressed by the genetic programming algorithm
used here. The family of genetic algorithms is known to be efficient at
exploring highkdimensional spaces, such as the space of all Boolean models
involving a set of nodes. Genetic programming has tided benefit of being
able to generate Boolean equations directly, which makes it easier to target
models involving simpler, more plausible regulatory interactions. This
algorithm has successfully been applied to the regulatory network controlling
cell identity in the SAM, resulting on the formulation of several plausible
models and the suggestion of novel regulatory interactions absent from the

starting network topology, but confirmed by independent laboratory work.
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There are traditionally three
characterized identities for cells constituting the SAM: vegetative,
inflorescence and florgAdrian et al., 2009)Some genes are commonly
considered as characteristic of these profil€aljle4.1). The vegetative
profile represents any cell of the vegetative (gransition) SAM, as
they do not seem to differ in the expression of any of the considered
genes. The inflorescence profile represents cells of the main shoot of
the inflorescence meristem (i.e.: primordia are ext#d). The floral
profile represents cells of the floral primordia. FT is necessary to induce
the shift from vegetative to inflorescence in the OC and CZ, but once the
inflorescence identity of CZ cells is acquired, FT is no longer required

(memory effect)

The development of the SAM
Is assumed to take place through the occurrence of perturbations
making the system transition from one steady state to anothieable

4.3).
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Intfl1l mutants, a terminal flower develops
at the apex of the meristem. Another interesting case is épd/cal
double mutant.CALs a close homolog &P1 When both are knocked
out, the inflorescene develops into a cauliflower shape, where
meristem primordia turn into inflorescence meristems and recursively

generate new primordia. This information is summarizedable4.4.

Three criteria come into play in the fitness function, listed below in order of

priority.

1. ¢ : the sumof the XOR distances between the required
end steady states and the end steady states reached by the model, for
the species deemed relevant (lower is better, always 0 for solutions to
the problem); For each (I, P, F, C, M) transition (S3eTexd,
attractor(P(l)) is calculated. If the latter is a steady state, the distance
between attractor(P(l)) and F is the number of reero vales in (P(1)
XOR F) AND C. Otherwise, if attractor(P(l)) is a cycle, the model is
rejected and the distance is set to the number of reero values in C;

2. ¢ : the numberof novel (i.e. not present in the data,
see details below) interactions in the model (lower is better). For
efficiency reasons, this is based on the equations of the model rather

than its truth table. A novel interactio®i€considered included in a
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model if and only ifGappears in the equation of j and interactiédi®
not in the prior knowledge.

3. & : the number of terms in the equations (including
operators, lower is better). It is given by the number of nodes in the
tree of the model. h order to optimize the fithess function, genetic

programming algorithms produce successive generations of offspring.

The formula of the fitness function is presented in Equati@n

This function does not allow any kind of trad#: criteria with lower ranks

always have priority over those with higher ranks.

As genéic algorithms can potentially get stuck in local minima of fitness
functions, the scheme devised here mitigates this issue by running the
algorithm multiple times and introducing transition data both progressively

and in a different order each time. Eaain follows the following process:

1. Establish a dataset D of known transitions;
2./ NBIFGS +ty Sywie RFEGFaSid 5QT
33.tA01 | GNYyaAdGA2y Ay 5 NIYyR2Yfe&sx |y
4. Run the genetic programming algorithm until a solution that does not
violate any transition i Q@ A a F2dzy R 2NJ GKS | f 32 NAR

solutions could be found in a preset number of generations after the
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latest transition was added). Repeat from step 3 until D is empty and a

a2t dziAz2zy O2YLI GAO6E S g-dutiokcurs)Q Aa F2dzyR 0 dzy/ft
5. If such a solution is found, keep running the genetic programming

algorithm for a fixed number of iterations to come up with a simplified

form. Save the best individual as a solution.

Running this algorithm multiple times generates different solutions.
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4.7. SUPPRTING INFORMATION

D.750

Sl Fig.Aggregate graph of the models generated by exhaustive search on the
topology reported by Fornara and colleague®Nodes are genes. Edges
represent regulatory interactions. Edge labels and edge thicknesses denote the
occurrence frequencies of the associated interactions. wWand Oshaped
arrowheads indicate positive, negative and ambiguous interactions,

respectivey.
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SA.1 Table. List of the genes and time points extracted frorm situ
hybridization images, and their sourcefates are expressed as days after
germination (dag), days after induction (dai)asrdevelopmental stages when

no other information was available (vegetative, transition or inflorescence).

Genes and times Reference

FD(6, 8, 10 dag) (Searle et al.
SOC16, 10 dag) 2006)

TFLY7, 14, 17 dag; inflorescence) (Liu et al., 2013)

AP1(inflorescence)

LFY(inflorescence)

FD(O, 4, 5, 6 dai) (Wigge et al.,
AP1(0, 4, 5, 6 dai) 2005)
TFL1(12 dag) (Conti and
TFL1 protein (12, 16 dag) Bradley, 2007)
AP1(inflorescence) (Liu et al., 2007)
SO(inflorescence)
SOCI10, 1, 3, 5 dai) (Wang et al,
AP1(0, 3, 5 dai) 2009)
AGL24inflorescence) (Michaels et al.
2003)
LFY(inflorescence) (Blazquez et al.
1997)

Sl Text.Boolean modeling.

Boolean networks

Boolean network models represent genes as binary variables (either on or off)
that influence each other dynamically, following a specified set of logical rules

that can be written using combinations of the AND, OR and NOT operators
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(Kauffman, 1969)Thestate of the network (i.e.: of each gene) at a given time
point depends on the state of the network at the previous time point. The
function that yields the net state of the model when given any state as an
input is called the successor function, and that next state is called the successor

of the state given as input.

As the number of states of a network is finite, a chain of successors starting at
any state wil sooner or later include at least one state more than once and
initiate a periodic pattern. That periodic pattern constitutes an attractor. If the
chain ends with the repetition of a single successor, this attractor is a steady
state. If the chain endsith the repetition of multiple states, this attractor is a

cycle.

Another consequence of the number of states being finite is that it is possible
to establish an exhaustive list of states and their successors, for any model (or
part of a model). This lis$ usually presented as a truth table, which is a table
divided into a lefthand side and a right hand side. The left hand side lists all
the possible states of the regulators of the genes of interest, while the-right
hand side contains the matching state$ the genes of interests at the

following time step.

Synchronous updating (i.e.: multiple variables can change their values per time
step) was chosen over asynchronous updating (i.e.: only one variable can

change its value per time ste@synchronous updating is generally considered
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more realistic, as, in reality, time is continuous, so multiple genes are unlikely
to change their states at once. However, asynchronous updating has a
drawback: when multiple genes might change their statesn@e, the Boolean
states typically have multiple potential successors, leading to -non
deterministic outcomes. Furthermore, steady states are independent of the

updating scheme.

S Text.

Since each maal is characterized by a truth table, exhaustive search works by
enumerating all possible truth tables. Truth tables with empty rigand sides

are first generated for each internal node of the regulatory network. The-right
hand sides of these truth taldeare then filled as much as possible with
information extracted from the steady states, using the fact that, for a steady
state A, successor(A) = A (i.e. if the left side of a row matches A, then its right
side should also match A). At this stage, anmmgatibility between two steady
states can occur (i.e. the left side of a row matches two steady states A and B,
however the right side cannot match A and B at the same time), in which case
the search problem has no solution. If all steady states are cablpatve
proceed to iterate over all possible values for the empty cells of the truth
tables, and record the models that have all the required transitions as valid, if

any have been defined. If not, then all models are considered valid.

3 Text.

Transitions are implemented as tuples (I, P, F, C, M) where:
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0 lis aninitial steady state

0 P is a perturbation to be applied to I. The resulting state is P(l).

0 Fisthe steady state th#(l) is supposed to lead to, if it is left to evolve
spontaneously. For a given model m, if attragi@(l)) = F, then the
model can explain this transition. If attracteiP(l)) is a cycle, model m

is rejected, even if attractai(P(l)) contains F.

O«

C is acertainty mask used to modulate the comparison between
attractorm(P(1)) and F. It is a Boolean vector of the same size as | and F.
1 values in C indicate the associated variables in attra¢®gl)) and F
should be taken into account for the comparisorvdlues mean they
should not. This means model m can explain the transition if all

variables in (attractak(P(l)) XOR F) AND C are 0.

(@4

M is a list of mutations. If it is not empty, the transition should apply to
I aYydzilt yid @FNRARFYyGE 2 Hingh@ RABlEl mY O0AYy

directly).

A Text.

Let"Qbe the successor function of a WT model, &athe function giving it
th component. LetQ be the successor function of the same model, with a
knockout mutation of speciesQ andQ the function yielding itsGth

component. Letobe a state of the system.

QB Jeh Q6 Qo

MO m
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S Text.

Genetic programming is a method to generate structured sequences like
computer code or mathematic equations using a genetic algorithm. We
applied this method to the generation of Boolean models using the DEAP

module(Fortin et al., 2012)n Python.

Structured sequences can be written as a tree. In the case of equations, a node

is a function, and the children of that node are its arguments.

In genetic programming, theades of the trees are called primitives.

In our case, the leaf primitives are the nodes of the GRN. They can be combined
into Boolean expressions using AND, OR and NOT nodes. Finally, at the top
level, Boolean expressions are aggregated intstaof Boolean expressions

(one expression for each state variable of the model).

Primitive Type Arguments
List maker List 6 bools
And Bool 2 bools

Or Bool 2 bools
Not Bool 1 bool
Nodes of the GRN Bool None
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At each iteration of the algorithrior a population o€ individuals £ offspring
individuals are generatednd added to the populationEachof the offspring
individual isgeneratedrandomlyby either mutation, matingr reproduction.
The respective probabilities of these events were chosen arbitranilg, are

given below, as well as descriptions of the processes.
Mutation

A branch of the tree is replaced with a random branch. This occurs with

probability 0.4.
Mating

Exchange of brames of the tree related to the same genes. This occurs with

probability 0.4.
Reproduction

An individual is copied ds. This occurs with probability 0.2.

The maximal depth of the tree is capped to 11 in order to avoid bloat. Lower
values reduce the size of the search space, but if they are too low, they can

prevent solutions from being found.
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¢ individuals are selected out of theoriginal individuals and the# offspring
indivuals usinge 2-invidual tournaments. Thewhole population is split
randomly into¢ pairs, and the better individual of each pair is selected to be

part of the next generation.

b Text.

For each state of the model, the effectsWitching on inactive genes one at a
time was recorded in an adjacency matrix whose valekes), 1 or 2) indicate

the type of each regulatory interaction.

Let¢ be the number of species in the model. bebe a¢ € matrix. Let®
OB R R be a model state. Leld OB fpB hd  be a state
derived from® by setting the value of th&xh node to 1. LetQbe the

successor function of the model. Lt "Qd OB hoB hid and &
QW W My By
For each "@Qpair:

1 If foralld, & & ,thend

1 Else,if, forald, & & ,thend P

{ Else, if, forald,® & ,thend P

1 Elseo C
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The following method was used to aggregé#te adjacency matrices of a set

of models K into a single matrix.

Let A be the aggregated adjacency matrix andthe adjacency matrix of

modelQ

T If1°Qy 0hd  mthend T

f Ifl"Qv 0hd ~ mifp ,thend  p.

 Ifl"v 0hd ~  phit, thend p.

T If7’y OhO pandm@ ~ 0Rd ' p thend  c.

7 I’y 0hd ¢, thend  c.

Let A be the adjacency matrix of a model a@s graph.

1 Ifo T, "Oincludes the regulatory edge® "Q
1 Ifo p, Os an activator oiQ
1 Ifd P, (s a repressor o

1 Ifo ¢, the effect of dn Qs ambiguous.

PCA was carried out on sets of models to assess their diversity.

First, a matrix oBoolean values was built, where:
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0 Each row is a row vector of Boolean variables indicating which
interactions are present in a model,

Each column corresponds to a directed interaction edge in the GRN.

O«

Only interactions that vary in the set of models areaiged (the
variance of the column vector is greater than 0).

PCA was then performed using the Sdidtrn modulg(Pedregosa et al., 2011)

for Python.
SA.2 Table.
Rank| Equations Graph
la | TFL1 protein' ®r(TFL1 protein, TFL1) j@
Auxin pathway' = not(or(apex, TFL1)) | “@—
| Cacn ) (\E>| D)
FD' = not(AP1) SR =R
SOC1' = and(or(AGL24, FT), FD) | /ﬁ’“\ "
’\Zp} J &
AGL24'= SOC1 1 1\’1\% |
LFY' = and(or(AP1, and(SOC1, Auf A\~ | )
or(not(TFL1 protein), Auxin pathway)) w2 ]

AP1' = and(LFY, not(TFL1 protein))
TFL1' = and(innenpt(AP1))

1b | TFL1 protein' = or(TFL1, TFL1 protein) G
Auxin pathway' = not(or(TFL1, apex))
FD'= not(AP1)

SOC1' = and(or(FT, AGL24), FD)
AGL24'= SOC1

LFY' = and(or(not(TFL1 protein), Au
pathway), or(and(AGL24, Auxin), AP1))

AP1' = and(LFNot(TFL1 protein))
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TFL1' = and(inner, not(AP1))

1c

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(TFL1, apex))
FD'= not(AP1)

SOC1' = and(or(AGL24, FT), FD)
AGL24'= SOC1

LFY' = or(AP1, and(and(Auxin, AGL
or(not(TFL1 protein)Auxin pathway)))

AP1' = and(not(TFL1 protein), LFY)
TFL1' = and(inner, not(AP1))

2a

TFL1 protein' = or(TFL1, TFL1 protein)
Auxin pathway' = not(or(apex, TFL1))
FD'= not(AP1)

SOC1' = or(and(FD, FT), and(FD, AGLZ2
AGL24'= SOC1

LFY' = or(and(or(not(AGL24), Aux
pathway), and(SOC1, Auxin)), AP1)

AP1' = and(not(TFL1 protein), LFY)
TFL1' = and(inner, not(AP1))

2b

TFL1 protein' = or(TFL1, TFL1 protein)
Auxin pathway' = not(or(TFL1, apex))

FD' = not(AP1)

SOC1' = or(and(FD, AGL24}(&T, FD))
AGL24' = SOC1

LFY' = or(and(SOC1, and(Au
or(not(TFL1 protein), Auxin pathway)
AP1)

AP1' = and(not(TFL1 protein), LFY)

TFL1' = and(inner, not(AP1))
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3a

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(TFL1, apex))
FD'= not(AP1)

SOC1' = or(AGL24, and(FT, FD))
AGL24' = and(not(AP1), SOC1)

LFY' = or(AP1, and(or(Auxin pathw
not(TFL1 protein)), and(SOC1, Auxin)))

AP1' = and(LFY, not(TFL1 protein))
TFL1' = and(inner, not(AP1))

3b

TFL1 protein' = or(TFL1, Tikdtein)
Auxin pathway' = not(or(TFL1, apex))
FD'= not(AP1)

SOCL1' = or(and(FT, FD), AGL24)
AGL24' = and(not(AP1), SOC1)

LFY' = and(or(AP1, and(Auxin, AGLI
or(not(TFL1 protein), Auxin pathway))

AP1' = and(not(TFL1 protein), LFY)
TFL1 = and(inmenot(AP1))

3c

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(TFL1, apex))
FD'= not(AP1)

SOCL1' = or(AGL24, and(FD, FT))
AGL24' = and(SOC1, not(AP1))

LFY' = or(AP1, and(and(AGL24, or(A
pathway, not(TFL1 protein))), Auxin))

AP1'= and(not(TFL1 protein), LFY)
TFL1' = and(inner, not(AP1))
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3d

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(TFL1, apex))
FD' = not(AP1)

SOC1' = or(and(FT, FD), AGL24)
AGL24' = and(SOC1, not(AP1))

LFY' = and(or(and(Auxin, SOCAR1),
or(Auxin pathway, not(TFL1 protein)))

AP1' = and(LFY, not(TFL1 protein))
TFL1' = and(inner, not(AP1))

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(apex, TFL1))
FD'= not(AP1)

SOCL1' = and(FD, or(FT, AGL24))
AGL24'= SOC1

LFY' = and(not(not(or(and(Auxin, SOC
AP1))), or(and(AGL24, Auxin pathws
not(TFL1 protein)))

AP1' = and(not(TFL1 protein), LFY)
TFL1' = and(inner, not(AP1))

TFL1 protein' = or(TFL1 protein, TFL1)
Auxin pathway' = not(or(TFL1, apex))
FD' =not(AP1)

SOC1' = or(and(FD, FT), AGL24)
AGL24' = and(not(AP1), SOC1)

LFY' = or(and(Auxin, or(and(Au
pathway, AGL24), and(SOC1, not(T
protein)))), AP1)

AP1' = and(not(TFL1 protein), LFY)
TFL1' = and(inner, not(AP1))
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TFL1 protein' = or(TFLIFL1 protein)
Auxin pathway' = not(or(TFL1, apex))
FD' = not(AP1)

SOC1' = or(and(FT, FD), AGL24)
AGL24' = and(SOC1, not(AP1))

LFY' = and(or(AP1, and(Auxin, SO(
or(Auxin pathway, not(AGL24)))

AP1'" = not(and(FD, or(not(LFY), T
protein)))

TFL1' =and(inner, not(AP1))
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5. 4D MODEL OF THE FLORMRANSITION IM\RABIDOPSIS

THALIANA

This chapter was realized in collaboration with the Virtual Plants tdara(
CIRAD, University of Montpellier ,2in particular Eugenio Azpeitia and

Christophe Godin

The previous chaptetemonstrated the feasibility of designing a set of logical
rules resulting in thespatial seHorganizationof a meristem although space
was only modelled through proxy variablda this chapter, the possibility of
implementing a model in a 3D tissue structureresulting in the self

organization of a meristepwas studied

Theemergenceof spatial patterngrom homogeneousystems, as eesponse
to the diffusion and the reactioaf biochemical specias living organismdas
famously been theorized by Turifguring, 1952)Gierer andMeinhardtlater
proposed equations to describe the mechanisms undeg the formation of
various patterns including dots and stripe@Gerer and Meinhardt, 1972;
Meinhardt andGierer, 1974)Theydescribe patterngormed byone category
of Turing mechanismresulting fromthe intemplay between a shorrange
activator anda longrange inhibitor in a continuousmedium However, it is
also possible to generatgpatial patternsin discrete media, such as a tissue
with individual cellsin plant systems]énsson and colleagueshose workhis

chapterbuilds upon have modelled th@olar transportof auxin in the SAMt
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belongs to anothe category of Turingmechanism substrate depletion
(Cheong et al., 2010)Auxin is transportedfrom cell to cellby PIN1
transporters,predominantly towards cells with higher auxin concentrations,
creatinga positive feedback loopand simultaneouslydraining auxin away
from lower concentration areag\uxin is a prime example afspecies whose
spatial distribution is important to model, because of its role in eelhgation
(Rayle and Cleland, 1992)nd therefore, morphogenesiés a consequencge
its patterning has also been studiedather organs, such asots(Band et al.,

2014)

Here, thepatterning of auxin was studied in conjunction with that of meristem
identity genes to understand how the spatial organization of the SAM is

achieved during the floral transition

The structure used in thisrodelis based on a real inflorescence meristem
(referencal YR01)imaged by confocal microscopy ¥gssin Refahi, Lisa Willis,
Raymond Wightman and Henrik Jonsg&ainsbury Ladratory, Cambridge
using a protocol described by Willis and colleag{W8lis et al., 2016)It was
then segmented and eshed by Sophie Ribes and Guillaume Cervitiyal

Plants,Montpellier).

As it is an inflorescence SAM structutencludes all the domains of the pest

floral-transition SAMstudied in Chapterd. Some of these domains are
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temporally disjoint for a given cell, but due to theoexistence of cell
populationsof various developmetal stages in the SAMI domains carbe
observed simultaneoushacrossthe same SAM. This inflorescence SAM
structure could alsotechnicallybe used as a template for simulations of the
pre-floral-transition SAM, but the vegetative and inflorescence Skdvhave
morphologicalifferences(Liu et al., 2013hat makein-depthinterpretations

of such simulationsnore difficult.

The SAMissueis subdivided into cells, and each cell has its ®wachemical
profile, which can be defirtkas the given ahe concentrations irits modelled
chemical species. Those concentrations are different for each cell, and vary
over time due to synthesis, degradation, and intercellular excharfgasthe

sake of simplicity, the intracellular diffusion gffecies is modelled as instant
and unaffected by organelle boundaries, i.e. concentrations are always
uniform within a cellThis is the usual assumption for suchlticellular models

(Jonsson et al., 2003; Angel et al., 2011; Band et al., 2012)

An ODE modetiescribing the evolutiorof the quantities of matter of the
relevant species gide ofeach cellwas developed. The decision to model
guantities of matter rather than concentrations, as is often the case, was made
because the cells are of different sizgsd mechanistic argumentsiggesting

that genetranscriptionshould scale witlcell sizeare absent
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The equations describing the regulatory mechanisms were derived from model
1a of Chapter 4, which was one of the three best (tied with 1b and 1c in fitness
values).Model la was chosen over model 1b and 1c because it does not
involve AGL24in the regulation ofLFY AGL24is only involved in a positive
feedback loop withSOC] therefore it can be removed from the network

altogether and replaced with 8OCXkelfactivation.

Multiple formalisms were considered for the transformation of Boolean
equations into ODEs, including SQUA2ndoza and Xenarios, 2006; Cara et
al., 2007)and Odefy(Wittmann et al., 2009)Those had the benefit of being
implementable in an automated way. They however had the drawback of
having forms rather far removed frotraditional ODE mode]®specially in the
way they deal with OR operatarsTherefore, te Hill and She#ckers
formalisms(Hill, 1910; Ackers et al., 1982; Alon, 8D@ere used to translate
the Boolean equations into the synthesis maof the ODEsusing principles
presented inTable5.1. As a general rule, Hill and Shiekers formulae are
used at the top level of the functions to bound synthesis between 0 and 1, but
are not used at deeper levels to keep the equations as siraptelegible as
possible. The AND operator is translated gsmultiplication, while the OR

operator is translated using addition, as in the Shekers formula.

The most complex cases encountered are presentedrable 5.2. More
complicated cases could theoretically arise and might then be hard to translate
simply. However, it did not happen in model 1a, most likely because the

genetic programming algorithm thhagenerated it aimed at providing the
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simplest equation possible. The deepest level of nesting for AND and OR
operators is 3, and this only occurs once, in the equation of LFY, so this was not
a concern. It could also be argued that deeper levels of ngstiould anyvay

result inbiologicallyymplausiblefunctions as they would have to involve many
regulators or the regulatorswould have to interactn veryirregular(i.e. non
factorable) waysThe formeris limited bythe topology of the networkAs for

the latter, the irregularity of the interactions limited by the physicochemical

properties of theinteractingspecies.

Table5.1. Principles guiding the transformation of Boolean equations into

ODLEs.
Boolean ODE
w w
— ®
00 "™ —
— 0 W
wo 0 '@ W N w
— W — W
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Table 5.2. Examples of more complicated transformations of Boolean

eqguations intoODEs.

Boolean ODE
@0 Yo 0 @ W B
— @ B
®d 0§ 00 b %0 Y @ o, — ¢
— O — W

The transformation of Boolean equations to ODEs also requires scthleng:
kind ofinput functionsdescribed infable5.1 and Table5.2 only assume values
between 0 and 1but shoudl lead to concentrationranges appropriate as
inputs (e.g. @ ain that table of the samefunctions For cell autonomous
species, athe steady statein a cell'Q the relationship betweeran input

function"Qand the concentratiom it leads tois as folbws:

dBQGoB

0
W [¢:\

@

f ® : concentrations in specigsin cell'Q

=a

0 : quantity of matter of species in cell'Q

1 w: volume of cellQ

=

@1 synthesis coefficient
 "Qaiudgh8 : value of the input function, which depends on some
concentrationsy w, X

f "Qdegradation coefficient

As a conventionit was decided thahigher concentrationvalues shouldbe on

the order of magnitude of 1so the —parameter, which defines activation or
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repression thresholdsyas set t00.3 for all speciesThe¢ parameter which
defines the steepness of the activation or repressialsp has ainglevalue
(¢=3) for all pecies.Using only one value per parameter for all equatiores
the most parsimoniousption and yielded satisfactory resulfShe particular
values of these parametefand all othersyvere selected by trial and err@nd

are given infable5.3.

Forhigherconcentrationvalues to actually beon the order of magnitude of 1,
parametersc and Qneed to be chosen appropriatels only the ratio-

matters, Qwas set to 1 for simdity. (therefore has to take into account the
size of cells. Settingto the volume of the largest cell would ensure no
concentration is higher than.lHowever, there are some outliers in the
distribution of cell volumem the tissugFigures.1), which means it would also
result in mostcells always having vetyigh concentratiors. This could be
addressed by usinghe median volumeinstead It would resultin some
concentrations beig greater than 1, but theput functions can accommodate
this, due to their saturating nature-However, aother factor to take into
consideration was the heterogeneity of cell volumes in the tissue. The
distribution of cell volumes in the L1 is markedi§ferent from the general
one, with smaller cells on averagéigureb.1). Asthis model was mainly aiming
at predicting the identities of cells on the surface of &M (where lateral
organs are initiatedthe value oftowas chosen to be the median volume of L1
cells resulting inthe higher concentrations of L1 cells being on the order of

magnitude of 1
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Figure5.1. Histograms of the distributions of cell volumes in tighole tissue
and in the L1 layerThe two populations have different numlseof cells,

therefore the heights of the bars were normalized so that the integral of each
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distribution is 1(similarto probability distribution functions).

Otherparts of theODEs had to be written from scratch, because they had no

counterpart in the Boolean modeThis is the case of the transport terms and

degradation terms

In the Boolean model, mobile species sashauxin and the TFL1 protein were
simply considered as input variables. In a sp&imporal model, it is however
possible to modelorganscale transport phenomena explicitly Passive
transport between cellswas therefore modellechs a diffusionike process

occurringthrough the interfaces betweencells, dza A y 3 C(At@vdog &t

1400
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al., 20®). The interfaces between cells were modelled as membranes of
uniform thickness, therefore the ternmdescribing the thickness of the
YSYOo NI yS A yas&@dindidted into the diffusion coefficienin the

case of auxin, polar transport wammputed using a model derived from
previous work by Jonsson and colleag@ésnsson et al., 2006The model
assumes hat auxin is transported actively by membranebound outflux
transporter (PIN1)whose distribution igslynamic and favours the exportation

of auxin towardscells withhigher auxin concentrationdn the retained variant

of the models proposed by Jonsson and colleagues, the distribution is not
modelled explicitly as a state variable. It is assumed at a steady state with
respect to auxin concentrations, and can therefore be computed directly from
auxin concentrations.The efflux of auxin through an interfaceis then
proportional to the number of PIN1 transporteos that interfaceandto the

concentration of auxin in the source cell, following a mass action law.

Technically,FT isalso amobile speas, however its transport was not
modelled explicitly, as with auxin and the TFL1 protein. Insteadhs kept as
an input variable, as it is synthesized outside of the SAM (in learas}here
are no datadetailing its distribution in the SAMIts corcentratiorns were
therefore modelled adeingsolelytime-dependent,and uniform throughout
the SAM, at any given tim&he activation of FT is represented in the equations
by a Hill equation whose activator is time. This idetave time for the auxin
patterning to establish, which takesabout 50 time units before FT is
introduced Itis meant to mimic the biological proceascloselyas possible
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Thismight beparticularly important because the floral identity gené$fand
APJ constitute a positivefeedback loop activated (indirectly) by a
combination of FT and auxiithis means that the activation afYand AP1
might not bereversibleif the pattern of auxin changeafter FT is introduced
In this particular case, using constant concentratitorsFT p) turned
out to result in the same patterns as using the HEdluation but there is no

guaranteeit would apply toother models.
Finally, @gradation terms were simply modelled as exponential decays.

The resulting equations are described Eguation 5.1, and the associated

parameters are presented ifiable5.3.
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Equation 5.1. ODE model derived from Boolean model la generated by

genetic programming.

Qo W 0 oY
Qo 0 T
QO —
— W - a
Qo — ®
QY (ipd &) 1) )
L - - - Y
Qo0 — ® W — W v
QOGO | & o & — 6
S w - - - - -
Qo — ® w a» — ® w
0O
Q0 ® o @ — .
Q0 5 = & P
Q Ypu w — (O] Y
Qo — @
'Q.,Y,‘ Sl ED 00
—. I €O
o €1))
p TIGI = YQni €D 'QQ
0 Y ®©
&

185



—wWo &0
(0]

Q
W O Mo &0
™ O YOO @
) Yo ®
v . ® Y
() .
) B . w Y
. o Y
W -
B . w Y
’Q 6 "‘® d) "O - a !m
Q6 P — o

T "OY,"CD,"YOd,0 ®,0 p, YQb, Yqi i ¢d,D0 & D YO
guantities of matter oF TMRNAFDMRNA,SOCINRNA LFYMRNA,
AP1 mRNA, TFL1 mRNA, TFL1 protein, auxin amdRF mRNA,
respectively, in cell i (arb. unit).

concentrations inFTMRNA,FDmMRNA,SOCIMRNA,LFYmMRNA,AP1

MRNATFLINRNA, TFL1 protein, auxin aABFMRNA, respectively, in

cell i (arb. unit). For any speciexs, —.

1 — threshold concentratiorused in the Hillfunctions regulating all
species (arb. unit).
1 €: Hill coefficient used in the Hifunctions regulating all species

(dimensionless).

186



1  : volume of cell(arb. unit)

7 @ : median volume of L1 cel(arb. unit)

1 t:time of the floral transition (arb. unit)

1T O , O . diffusion coefficients of auxin and the TFL1
protein, respectively (arb. unit)

1 Y :active transport coefficient of auxin (arb. unit)

T O,0 ,0O :indicatorvariables that are 1 if c&lls part of the L1
fl18SNE GKS GAYYSNE T2ySs GKS al LISEé

& Q@@ 06 iQiset of cells adjacent to cell i

1 0Op: set of cells belonging to the ldyer

Tableb.3. Parameter values

Parameter Value

t 100

€ 3

— 0.3

W 95.15

0O 250

0 1000

Y 100000
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In order toachieve a plausible auxin pattern, several zones were defined. A
first zone called L1 defines the outermost layer of cells of the meriskéguie

5.2). It is the sebf cells among which the active transport of auxin is assumed
to take place. In reality, polar auxin transport might occur under the L1 as well,
but it could not be observedVernoux et al., 2011)The border of the L1
constitutes a second zon€igure5.3). In this border, auxin concentrations are
fixed. This is to help the auxin pattern anchor to the geometry of the SAM.
Without this, auxin maximare not able to form on the edges of the L1. The
third zone is the apex. It corresponds to the centre of theHigure5.4). Cells

of this zone do not form lateral orga primordia in response to auxin
(Reinhardt etl., 2000) possibly due to the absence of some genes of the ARF
family (Vernoux et al., 2011)he final zone is the inner part of the meristem,
situated in thecentreof the bottom side of the SAM~{gure5.5). This is where

TFLIranscription and translation occyConti and Bradley, 2007)
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Figure5.2. L1 layer fop view and crosssection). The L1 is where polar auxin

transport takes place.
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Figure5.3. Border of the L1 layeftop view and crosssection) Those cells are
on the edge of the imaged section of the SAM. Their auxin concentrations are

fixed to anchor the auxin pattern to the geometry of the meristem.
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Figure5.4. Apex zonetpp view and crosssection). This zone is insensitive to

auxin and cannot form new primordia in VAT thalianaplants.
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Figure 5.5. Inner zone tfop view and crosssection). It is where TFL1is

expressed.

All initial concentrations except those of auxin were initialized to 0 plus
random uniform noise of amplitude 0.001. In the case of auxin, visible

primordia were marked, and auxin concentrationere defined in primordia
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cells following radil, linear concentration gradients centred on each
primordium (Figure5.6).
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Figureb.6. Initial auxin concentrationgt=0, top view and crossection). The
locations of primordia were marked approximately, and auxin concentrations
were set according to a linear gradient, decreasing from the centres of

primordia to their edges.

5.2.6. Software implementation

The model wasimplemented in Pythonusing the Multicellframework,
developed during thi®hD projectMulticell is open source (MIT license) and

available from Githul§Dinh, 2016)

5.2.6.1. Tissue structure

Multicell uses tissue structurestored in the Topomesh format defined by
OpenAlea(DufourKowalski et al., 2007; Pradal et al., 2008; Cokelaer et al.,

2009)
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Theequations preented inEquation 5.1 have to be integrated for each cell of
the tissue and the behaviour of each cell is dependent on those of its
neighbours, due to transport pm®mena (both passive and activelhis
results in large systemsf ODEghat cannot be integrated independentlyf

each other

Under the assumption that adells depend on every other cell, the integration

of such a systerman be done using standaswblvers such as LSOD#&m the
ODEPACK collectigdindmarsh, 1982which is the default solver ithe Scipy
module in Python(Jones et al., 200Bnd the deSolve package in(Roetaert

et al., 2016) However, using LSODAesults in very long simulation timges
which can be drastically improved by using anotb@rer. The core idea is that
only cells that are adjacent depend on each other, therefore each ODE only
depends directly on a few other®DEPACK includes efficient solver for this

type of problemsL.SODES, which specialises in systems of ODEs with a sparse
Jacobian matriXi.e. systems of ODEghere each ODE only depends directly
on a few othery A Pythonwrapper for LSODES was developed by John Fozard
(formerly University of Nottingham, nod@ohn Innes CenteNorwich) (Fozard,
2015) and is used by MulticelA simplebenchmarking case passive transport

of a speciefrom the left-mostcellin a row of 100Ccubiccellsto the others

until homogenizatiofshowed that using LSODES instead ofi/sf(@sulted in

a 3lfold speedincrease.Such a speedp is particularly relevanin real

simulations which already take dr morehourswith LSODES.
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The simulation results presented hereafter were obtained after running the
simulation for 300 time unitswhich corresponds to an FT concentration of
0.99 At this time, the patterns of every species have stabilized, andrihiks

the end of the floral transition

The objective was to reproduce expression or distribution patterns similar to
those observed bylSH or other methods in real plantsn published
experiments The experimental results used as referenicave been adapted
and are depicted inFigure5.8, Figure5.10, Figure5.12, Figure5.14, Figure

5.16, Figure5.18, Figure5.20 and Figureb.22.

FT concentrations are only tirdependent and simulate an influx of FT
proteins from the leaves. They are homogens across the whole meristem
(Figureb.7). FD the interaction partner of FT, is expressed in the inflorescence
meristem, but not in thgrimordia(Figure5.9). The pattern ofSOC1s similar

to that of FD Figure5.11), but thoseof LFYand APlare opposite fFigure5.13

and Figure5.15). TFL1is only expressed in the inner zone of the meristem
(Figureb.17), but its protein diffuses to a larger zone and forms a concentration
gradient in the SAMHKjgure5.19). Auxin foms localconcentration maxima,

which match the expression pattern bFYand AP except for the centremost
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maximum Figure5.21). ARFis expressedn all of thelLl, except the apex

(Figure5.23).

Overall, the simulated patterns match those observed in the published ISH
experiments.
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Figure5.7. FTprotein concentrationsat t=300(top view and crosssection).

FT is distributed uniformly across the whole SAM.
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Figure5.8. Expressiorof FDin A. thalianainflorescenceSAM(after Wigge et
al., 2005) Colours were derived from the original figure and indicate
SELINBaarAz2y AyiGSyaAri(ir¥ oRENRSREABINKFRERA

c FD c FD
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Figure5.9. FDmRNAconcentrationsat t=300 (top view and crosssection)

FDis expressed in the inflorescence meristem, but not in the primordia.
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Figure5.10. Expression c60C1n A. thalianainflorescence SAMafter Wang

et al., 2009) Colours were derived from the original figuend indicate

SELINBaaArzy AyiaSyairide oRFENJISNI A& Y2NB Ayl
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Figure5.11. SOCIRNAconcentrations at t=30@top view and crosssection)

SOC1s expressed in the inflorescence meristem, but not in primordia.
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Figure 5.12. Expression ofLFYin A. thaliana inflorescence SAM(after
Blazquezet al., 1997) Colours were derived from the original figure and

indicate expression intensitgxpression appears pink, background is blae)). €

I YR & L)anldy&vaadipBnordia, respectly.
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Figure5.13. LFYmMRNAconcentrations att=300(top view and crosssection)

LFMYs expressed in primordia.
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Figure5.14. Expression oAP1lin A. thalianainflorescence SAMafter Wigge
et al., 2005) Colours were derived from the ginal figure and indicate
SELINB&aAz2y AyiliSyaride OoRIFINJSNI A& Y2NB AyiSyas
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Figure5.15. APImRNAconcentrations at t=30top view and crosssection)

AP1lis expressed in primordi®lder primordia exhibit higher concentrations.
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Figure5.16. Expression off FL1in crosssection ofA. thalianainflorescence

SAM(after Liu et al., 2013)Colours were derived from theriginal figure and
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Figure5.17. TFLIMRNA concentrationat t=300(top view and crosssection).

TFLIis transcripted in the inner part of the SAMo TFLIexpression is visible

from the top.
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Figure 5.18. Distribution of TFL1 protein in crossection of A. thaliana

inflorescence SAMafter Conti and Bradley, 2007Tolours were derived from

the original figure and indicateprotein presence froteins are back,

ol O1 INRdzy R A&
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Figure 5.19. TFL1 protein concentrations at t=30Qop view and cross

section) The TFL1 protein forms a concentration gradient around its

expression domain.

200

LINA Y2 NRAF ©



Figure5.20. Distribution of auxin in topview of A. thaliana inflorescence
SAM(after Vernoux et al., 2011)Colaurs were derived from the original figure

and indicateauxin presencdauxin is red, background is graernp

primordia.
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Figure 5.21. Auxin concentrations at t=30@top view and crosssection).
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Auxin forms local maxima as a result of polar transport.
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Figure5.22. Expression oARFAN crosssection ofA. thalianainflorescence
SAM(after Vernoux et al, 2011) Colours were derived from the original figure
YR AYRAOIFIGS SELINBaarzy AyiaSyaraide o6RIFNJ SN

primordia.

C_ARF C_ARF

X

—-60 -40 -20 Q0 20 40 6p

: % L 60
3.2

40
2.8
20 2.4
z 2.0
0 16
1.2

-20
0.8
—40 0.4
0.0

#

40 20 9 -20 -40 -60

Figure5.23. ARFmMRNAconcentrations at t=30qtop view and crosssection).

ARFare not expressed at the apex of the SAM.
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5.3.2. In the absence of FT induction, inflorescence and floral identity genes

are not expressed

When FT is not induced (FTf@ the whole simulatiop, inflorescence and
floral identity genes arenot expressed resulting n expression profiles
reminiscent of a vegetative SAMigureb.24, andFigure5.26 to Figureb.28).
Due to the norexpression oAP1 FDdoes not get repressed in primordia and
is therefore expressed throughout the SAMdure5.25). Other speciesTFL1
TFL1 protein, auxin an8iRFf were not affected.
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Figure5.24. FT protein concentrations at t=300 without induction of FT (top
view and crosssection). FT is not present in the SAM, except for the

initialization noise.
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Figure5.25. FDmMRNA concentrations at t=300 without induction of FT (top

view and crosssection).FD is expressed throughout the meristem, even in

primordia.
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Figure5.26. SOCIMRNA concentrations at t=300 without induction of FT (top

view and crosssection).SOCL1 is not expressed in the SAM.
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Figue 5.27. LFYmMRNA concentrations at t=300 without induction of FT (top

view and crosssection).LFY is not expressed in the SAM.
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Figure5.28. APImRNA concentrations at t=300 without induction of FT (top

view and crosssection).AP1 is not expressed in the SAM.

5.3.3. Induction of FT iraplandtfll mutants results in expression patterns

compatible with ther respectiveinflorescence architectures

Simuldions were also carried out for thegplandtfll mutants which had also

been studied in Chaptet, bykeeping the initial values of threlevantvariables
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close to 0 andsetting the associatedODEs to always return. On the apl
mutant, SOCland FD patterns do not show any holes where the primordia
should be(Figure5.29 and Figure5.30). This can potentially explawhy the
apl/cal mutant exhibits a recursive, cauliflowdike inflorescence structure,
where inflorescence meristems generate additioimdlorescence meristems
(Smyth, 1995)In thetfll mutant, APlexpression is observed in the apex zone
(Figure5.31). This is consistent with the fact that the inflorescence of titie
mutant ends with a flowe(Shannon and Meeké/agner, 1991)
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Figure5.29. FDmRNAconcentrations at t=300 in thepl mutant. There are

no holes corresponding to the primordia in the pattern.
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Figure5.30. SOCInRNAconcentrations at t=300 in thapl mutant (top view
and crosssection) There are no holes corresponding to the primordia in the

pattern.
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Figure5.31. AP1mRNAconcentrations at t=300 in théfl1l mutant (top view

and crosssection) AP1lgets expressed in the apex zone.

5.4. DISCUSSION

The results of this chapter have shown that the regulatory network proposed

in Chapter4 is not only viable as a Boolean model where space is abstracted
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as a set of compartments differing by the values of their input variables, but
also as amore realisticODE model implemented in a 3D tissue structure,
wherethe intercellulartransport of sgciesis modelled explicitly This can be

seen in the patterns generated by the ODE model.

Thesimulated patterns matchhe ISHobsenations reviewed in the previous
chapter($4.1 Table. In the WT, hey are a result of the interplay betwedhe
mobile species (FT, auxin and the TFL1 progaid)the species whose patterns
are affected by the predefined inner and apex zarmkéstriggers the expression
of inflorescence genes (in this mod&8IOC)L Where SOC1s accompanied by
auxin andARK(i.e. in the primordia)LFYalso gets activatedn the apex zone
however, auxin is present buARFis absent, thereforeLFYis not strongly
expressedFigure5.13). If the concentration infTFL1 protein is low enougtine
positive feedback loop betweehFYand APlgets activated, which in turns
activates the negative feedback APlon FDand SOCI1Figure5.15shows that
AP1lis expressed in the same cellsl&SY but the intensity of AP1 expression
is higher in the older meristems. This can be attributed to the fact that the TFL1
protein ¢ an inhibitor of AP1¢ is present in higher concentrations in the

younger primordia, due to the concentration gradigRrigure5.19).

In the simulations of theapl mutant, AP1does not get expressed in any of the

primordia, preventing them from downregulatifgD (Figure5.29) and SOC1
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(Figureb.30). The resulting expression profité primordiais therefore similar
to that of the inflorescence meristepwhich could explaihow the recursive
structure of the cauliflowerlike apl/cal mutant (Kempin et al., 1995)

establishes

In thetfll mutant, the auxin maximum in the apex zone is no longer repressed
by the TFL1 protein, causing it to start expresg&iRd.(Figureb.31). This might
explain why the inflorescence of th#1 mutant loses its indeterminatérait

and turns into a flower (Liljegren et al., 1999)Surprisingly however, AP1
expression in the apex zoneasnditioned by the presence of auxin, bunist
affected by the absence &RF Additional experiments would be required to
determine whether this is biologically relevant or ndiut the regulation of
ARHs known to requie additional information, ags proposed inhibitor is the

TFLIMRNA, not the TFL1 protein, which would be biologically surprising

Thesimulatedconcentrations of cell autonomous spece® very noisy. This

is a consequence of thessumptions made regarding the synthesis and the
transportof the modelled chemical specieSynthesis is assumed tesult in

the same amount of molecules regardless of the size of the cell where it is
takingplace. Therefore, smaller cellsll develop stronger concentrationfall

other factors are equal
Other assumptions could be made. Fisstnthesis could be proportional to cell
volume. This is commonly seen imon-spatialized models where—
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"QOM o (as opposed to-  "QGOM o in this mode). While the former

is simpler there does not seem to be arkyologicalprinciple supporting an
effect of cell size on synthesis ratgecond, the dilution volumased in the
calculation ofconcentrationamay not be the volume of the whole cell, but the
volume of one or several organelles, such as the cytopléisthe modelled
chemical species are contained within tbgtoplasm it could then be safe to
consider that all cells have an equal@2 f dzYS¢ = & FIF NJ |
concentrations is concernethdeed, meristematic cells have no vacuoles (only
prevacuoles), but imatureplant cel, up to 90% of cell volume taken up by
the vacuole(Wink, 1993) Therefore, the volumef the cytgplasmmight be
less variable or even constant However, the main drawbackf using a
constant volume for all cellsomes from the artefacts it generates when
combined withintercellular passive transporaind the hypothesis of instant
diffusion within cells.lt results inmobile species moving abnormally fast
through large cells, becauskffusion from one sid®f the cell to the other is
instant, and this is not compensated by the inertta changes in

concentrationghat a largercellvolume would normally afford.

To test whether the first hypothesis was plausible, a model updating
concentrations instead of quantities of matter was implementdgquations
are given irequation5.2 and parametersre still the same as in the previous
model (Tableb.3). In practice concentration updatingvas not found to affect
simulation results mucliFigure5.32 to Figure5.40), although it does reduce

the variability of concentrations across the SAM. The smeire of the
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changes iprobablydue to the fact thathe disparities in cell sizes are not too
pronounced in this tissue structuralthough SOC1 concentration is noticeably
higher in the inner cells of the SAM with the concentratigpdating model

(Figureb.11 andFigureb.34).
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Equation5.2. Variant of the ODE model with concentration updating.
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concentrations inFTMRNA,FDmMRNA,SOCIMRNA,LFYmMRNA,AP1
MRNATFLINRNA, TFL1 protein, auxin ahBRFMRNA, resectively, in
cell"Garb. unit).

—: threshold concentratiorused in the Hill functionsegulating all
species (arb. unit).

1 €& : Hill coefficient used in the Hill functions regulating all species
(dimensionless).

1 : volume of cell(arb. unit)

1 T:time of the floral transition (arb. unit)
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T © , O . diffusion coefficients of auxin and the TFL1

protein, respectively (arb. unit)

1 Y :active transport coefficient of auxin (arb. unit)
T ©,0 ,O :indicator variables that are 1 if célis part of the L1
fl@8SNE GKS aAYyySNE T2ySs G(GKS al
& Q@@ 06 IQiset of cells adjacent to cell i
1 Op: set of cells belonging to the L1 layer
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Figure 5.32. FT protein concentrations at 800 (concentratiorupdating

model, top view and crosssection). FT is present across the whole SAM.
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Figure 5.33. FD mRNA concentrations at t=300 (concentraticnpdating
model, top view and crossection). FD is expressed throughout the
inflorescence meristem. It is not expressed in older primordia, but it is at a

lower level in anlagen.
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Figure 5.34. SOCImRNAconcentrations at t=300 (concentraticnpdating
model, top view and crossection). SOCIs expressed in the inflorescence

meristem and in anlagen, but not in primordia.
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Figure 5.35. LFYmMRNA concentrations at t=300 (concentraticnpdating

model, top view and crossection). LFYs expressed in anlagen and primordia.
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Figure 5.36. AP1 mRNA concentrations at t=300 (concentraticnpdating
model, top view and crossection). AP1 is expressed in primordia, aQtb a

lesser extent; in anlagen.
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Figure 5.37. TFLImRNA concentrations at t=300 @ncentration-updating
model, top view and crossection). TFL1s expressed in the inner cells of the

SAM.
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Figure5.38. TFL1protein concentrations at t=300 (concentrationpdating
model, top view andcrosssection). TFL1 diffuses outward from its synthesis

zone, resulting in a concentration gradient in the SAM.
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Figure5.39. Auxinconcentrations at t=300 (concentraticnpdating model|
top view and cros-section). Auxin is actively transported in polar fashion,
resulting in the formation of islands of higher concentrations, corresponding

to anlagen and primordia.
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Figure 5.40. ARFmRNA concentrations at t=300 (concentraticnpdating
model, top view and crossection). ARFis expressedhroughout the SAM,
except in the central zone of the L1 layer. It is however partially repressed in

the inner cells of the SAM.
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The ultimate goal of this 4D model of the floral transition was to include
growth, either kinematically, as a precorded evolution of the geometry of
the tissue, or dynamicallyin response to stimuli like auxifhe dynamic
approach wa pursued using the Sofa modelling framewd#tlard et al.,
2007) already used by partners from InridMontpellier to model sepal
formation duringearly flower developmen(Boudon et al., 20150ne of the
main benefits of modelling growth dynamically that it might allow the
simulation of some mutant phenotypes, such as the fraatalliflowerlike
inflorescenceof the ap1/cal mutant (Kempin et al., 1995However,modelling
the floral transition proved more challeig than sepal formation as it
requires cell divisiom to prevent growingcells from getting @o large
Oversized cells lead tgsuesseveral naturesgeometrical(plausibility of the
simulated tissue)chemicaloverdilution of modelled speciesind mechanical

(larger cells argveaker than smaller ce)ls

A Boolean model generated in the previous chauteuld easily béranslated
into an ODE modelsing Hill and SheaAckers functios, due to the simplicity

of the models generated by genetic programmirnhe ODE model was
implemented in a 3D structure of SAM using the Multicell framework,
developed during thi®hD projectlt wasable toreproduce theestablishment

of the patterns observed ithe SAMby ISHwith quantitativeq though relative
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