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Abstract

Continuum neural field equations model the large scale spatio-temporal
dynamics of interacting neurons on a cortical surface. They have been extensively
studied, both analytically and numerically, on bounded as well as unbounded
domains. Neural field models do not require the specification of boundary
conditions. Relatively little attention has been paid to the imposition of neural
activity on the boundary, or to its role in inducing patterned states. Here we
redress this imbalance by studying neural field models of Amari type (posed on
one- and two-dimensional bounded domains) with Dirichlet boundary conditions.
The Amari model has a Heaviside nonlinearity that allows for a description of
localised solutions of the neural field with an interface dynamics. We show how
to generalise this reduced but exact description by deriving a normal velocity rule
for an interface that encapsulates boundary effects. The linear stability analysis of
localised states in the interface dynamics is used to understand how spatially
extended patterns may develop in the absence and presence of boundary
conditions. Theoretical results for pattern formation are shown to be in excellent
agreement with simulations of the full neural field model. Furthermore, a
numerical scheme for the interface dynamics is introduced and used to probe the
way in which a Dirichlet boundary condition can limit the growth of labyrinthine
structures.

Keywords: neural fields; bounded domain; Dirichlet boundary condition;
interface dynamics; piece-wise constant kernel

1 Introduction
Neural field models are now widely recognised as a natural starting point for mod-

elling the dynamics of cortical tissue. Since their initial inception in the 1970s by

Wilson and Cowan [1, 2], Amari [3, 4], and Nunez [5], they have been extensively

studied in idealised one-dimensional or planar settings, that are typically either

infinite or isomorphic to a torus. This has facilitated both the mathematical and

numerical analysis of spatio-temporal patterns, and much has been learnt about

localised states, global periodic patterns, and travelling waves. Indeed there are

now a number of reviews summarising work to date, such as [6, 7, 8, 9], and how

neural field modelling has shed light on large scale brain rhythms, geometric visual

hallucinations, mechanisms for short term memory, motion perception, binocular

rivalry, and anaesthesia, to list just a few of the more common application ar-

eas. For the most recent perspective on the development and use of neural field

modelling we recommend the book by Coombes et al. [10], which also includes a
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tutorial review on the relevant mathematical methodologies (primarily drawn from

functional analysis, Turing instability theory, applied nonlinear dynamics, pertur-

bation theory, and scientific computation). This substantial body of knowledge is

still expanding with further refinements of the original neural field models to in-

clude other important aspects of cortical neurobiology, including axonal delay [11],

synaptic plasticity [12], and cortical folding [13], as well as rigorous mathematical

results for existence and uniqueness of stationary solutions on bounded subsets of

Rn without regard to imposition of boundary conditions [14], and new numerical al-

gorithms for their evolution and numerical bifurcation analysis [15, 16]. Neural field

models are typically expressed in the form of integro-differential equations, whose

associated Cauchy problems do not require the specification of boundary conditions.

The value attained by the activity variable at the boundary is determined by the

initial condition and by the non-local synaptic input. However, very little work has

been done on the enforcement of boundary conditions in neural fields, or on their

effect on inducing patterned states. An exception to this statement is the work

of Laing and Troy [17], who proposed an equivalent partial differential equation

(PDE) formulation of the neural field equation. While boundary conditions must

be specified in the PDE setting, they are often chosen to ensure the smooth decay

of localised solutions rather than model any biophysical constraint. It is already

appreciated that the continuum neural fields can be extended to include different

properties that can strongly influence the spatio-temporal dynamics of waves and

patterns. For example, heterogeneities may give rise to wave scattering [18] or even

extinction [19]. The topic we address in this paper is to ponder the role that a

boundary can have on spatio-temporal patterning. Given the historical success of

analysing neural fields with a Heaviside firing rate, our first step in this direction

will be taken within the so-called “Heaviside world” of Amari [20]. Amari’s sem-

inal work developed an approach for analysing localised solutions of neural field

models posed on the real line, and has recently been extended to the planar case

by Coombes et al. [21], albeit assuming that the synaptic connectivity can be ex-

pressed in terms of a linear combination of zeroth order modified Bessel functions

of the second kind. This approach is not only able to describe localised stationary

solutions, often called bumps in one dimension and spots in two dimensions, but

also dynamically evolve states such as travelling pulses and their transients as well

as spreading labyrinthine patterns. Since the Amari approach, in either one or two

spatial dimensions, effectively tracks the boundary between a high and low state

of neural activity, where the firing rate switches, we shall refer to it as an inter-

face dynamics. Importantly it gives a reduced description of solutions to a neural

field model without any approximation. On the down side the approach cannot be

generalised to treat smooth firing rate functions, though simulations by many au-

thors have shown that the behaviour of the Amari model is consistent with neural

field models utilising a steep sigmoidal function. Here we show how the interface

dynamics approach can be generalised to include the effects of Dirichlet boundary

conditions for arbitrary choices of synaptic connectivity.

In §2 we introduce a simple scalar neural field model in the form of an integro-

differential equation defined on a finite domain, and discuss natural boundary con-

ditions for neural tissue. Focusing on Dirichlet boundary conditions we develop the
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key mathematical idea in this paper. Namely that the re-formulation of the original

scalar model in terms of the evolution of its gradient allows for an interface de-

scription that respects Dirichlet boundary conditions. To illustrate the effectiveness

of this approach we first treat the example of localised states in a one-dimensional

model in §3. This is a useful primer for the construction of an interface dynamics

in a two-dimensional model, presented in §4. The first part of §4 also shows how to

generalise the original treatment in [21], for infinite domains, to handle arbitrary

choices of the synaptic connectivity function (removing the restriction to combi-

nations of Bessel functions). Localised bump and spot solutions of the interface

dynamics are explicitly constructed and their stability determined. In §5 we extend

this approach to treat Dirichlet boundary conditions, and in §6 we show explicitly

how this approach can be used to handle spots and their azimuthal instabilities.

We work with standard Mexican hat synaptic connectivities, as well as piece-wise

constant caricatures for which calculations simplify. All our theoretical results are

found to be in excellent agreement with direct simulations of the original neural

field model. We also develop a numerical scheme to evolve the interface dynamics

and use this to highlight how a Dirichlet boundary condition can limit the growth

of a spreading pattern arising from the azimuthal instability of a spot. Finally in

§7 we discuss natural extensions of the work in this paper.

2 A neural field model with a boundary condition
Although single neuron models are able to predict dynamical activity of real neu-

rons that have a wide variety of spiking behaviour [22, 23], they are not well suited

to describe the behaviour of tissue on the meso- or macro-cortical scale. To a first

approximation the cortex is often viewed as being built from a dense reciprocally

interconnected network of cortico-cortical axonal pathways [24]. These fibres make

connections within the roughly 3mm outer layer of the cerebrum. Given the large

surface area of the (folded) cortex (∼ 800 − 1500 cm2) and its small depth it is

sensible to view it as a two-dimensional surface. Neural field modelling, on a line or

a surface, is a very well-known framework for capturing the dynamics of cortex at

this coarse level of description [10]. As well as being relevant to large scale electroen-

cephalogram (EEG) and magnetoencephalogram (MEG) neuroimaging studies [8],

the understanding of epileptic seizures [25], visual hallucinations [26, 27], and neural

spiral waves [28, 29], they have also been used to investigate localised states linked to

short term working memory in the prefrontal cortex [30, 31]. In this latter regard the

idealised neural field model of Amari has proven especially advantageous [32]. This

was originally posed on an infinite domain, without regard to the role of boundary

conditions in shaping or creating patterns. However, the neural circuits of the neo-

cortex are adapted to many different tasks, giving rise to functionally distinct areas

such as the prefrontal cortex (for problem solving), motor association cortex (for

coordination of complex movement), the primary sensory cortices (for vision, hear-

ing, somatic sensation), Wernicke’s area (language comprehension), Broca’s Area

(speech production and articulation), etc. . Thus it would seem reasonable to par-

cellate their functional activity by the use of appropriate boundaries and boundary

conditions. Previous work by Daunizeau et al. [33] on dynamic causal modelling

for evoked responses using neural field equations has used Dirichlet boundary con-

ditions. Here we extend the standard Amari model with the inclusion of a finite
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domain with an imposed Dirichlet boundary condition that clamps neural activity

at the boundary to a specific value. Of course other choices are possible, though

this one is a natural way to enforce a functional separation between cortical areas.

The scalar neural field model that we consider is given by

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

dyw(|x− y|)H[u(y, t)− κ], (1)

where Ω is a planar domain Ω ⊆ R2, with x ∈ Ω and t ∈ R+. The variable u

represents synaptic activity and the kernel w represents anatomical connectivity. For

simplicity we shall only consider the case that this depends on Euclidean distance.

The nonlinear function H represents the firing rate of the tissue and will be taken

to be a Heaviside so that the parameter κ is interpreted as a firing threshold. We

assume that a suitable initial condition is specified for (1), and we aim to impose

on the corresponding solution u(x, t) the Dirichlet boundary condition

u(x, t)
∣∣
x∈∂Ω

= uBC, (2)

where uBC is the prescribed boundary activity. For simplicity, we treat the case of

homogeneous boundary conditions.

It was the essential insight of Amari that the Heaviside choice allows the explicit

construction of localised states (stationary bumps and travelling pulses) on infinite

domains, as well as the construction of these on finite domains without a boundary

condition. Our key observation that allows the extension of the Amari approach to

handle the boundary condition (2) is to expose this constraint by writing the state

of the system in terms of a line integral:

u(x, t) = uBC +

∫
Γ(x)

z(y, t) · dy. (3)

Here Γ(x) denotes an arbitrary path that connects a point on the boundary to the

point x within its interior, and z = ∇xu ∈ R2. An evolution equation for z is easily

constructed by differentiation of (1) to give

∂z(x, t)

∂t
= −z(x, t) +

∫
Ω

dy∇xw(|x− y|)H[u(y, t)− κ], (4)

with u given by (3).

We shall now consider equations (3) and (4) as the neural field model of choice,

and in the next sections develop the extension of the Amari interface dynamics.

To set the scene we first consider a one-dimensional spatial model with a focus on

stationary bump solutions.

3 One spatial dimension: a primer
Prior to describing the analysis for a two-dimensional Amari neural field model with

a Dirichlet boundary condition, we first consider the more tractable one-dimensional
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case. This illustrates the main components of our mathematical approach, as well

as delivers new results about stable boundary induced bumps.

The one-dimensional version of (3) and (4) on the finite domain [−L,L] with an

imposed boundary condition takes the explicit form

zt(x, t) = −z(x, t) +

L∫
−L

dy wx(|x− y|)H[u(y, t)− κ], (5)

with

u(x, t) = uBC +

x∫
−L

dy z(y, t). (6)

Here x ∈ [−L,L], t ∈ R+, and uBC denotes a constant boundary value imposed on

the left end of the interval, namely u(−L) = uBC. In passing, we note that u(L)

is determined once u(−L) is fixed, and some choices of uBC will result in an even

bump u(x), for which u(L) = u(−L) = uBC. We now focus on a bump solution

for which R(u) = {u(x) > κ} is a finite, connected open interval. The edges of the

bump xi(t), i = 1, 2, are defined by a level set condition that takes the form

u(xi(t), t) = κ, i = 1, 2. (7)

We shall refer to the two bump edges as the interface, as they naturally separate

regions of high and low firing activity. The differentiation of the level set condition

(7) generates a rule for the evolution of the interface according to

ẋi(t) = − 1

z(xi(t), t)

xi(t)∫
−L

∂tz(y, t) dy, i = 1, 2. (8)

Using the second fundamental theorem of calculus we obtain an expression for the

interfacial velocities

ẋi(t) =
(κ− uBC)− ψ(xi(t), t) + ψ(−L, t)

z(xi(t), t)
, i = 1, 2, (9)

where

ψ(x, t) =

L∫
−L

dy w(|x− y|)H[u(y, t)− κ] =

x2(t)∫
x1(t)

dy w(|x− y|). (10)

A closed form expression for z(x, t) may also be found by integrating (5) using the

method of variation of parameters to give

z(x, t) = η(t)z0(x) +

t∫
0

ds η(t− s) [w(|x1(s)− x|)− w(|x2(s)− x|)] , (11)
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where η(t) = e−tH(t), and H is the Heaviside step function. Equations (9)–(11)

determine the interface dynamics for time-dependent spatially localised bump so-

lutions that respect the Dirichlet boundary condition.

Since it is well known that the Amari model supports a stationary bump solution

when the synaptic connectivity has a Mexican hat shape we now revisit this scenario

and choose

w(x) =
1√
cπ

[
a1√
b1

e−x
2/b1 − a2√

b2
e−x

2/b2

]
, (12)

where b1, b2, c > 0. Moreover, we will focus on the case that the stationary bump

is symmetric about the origin. In this case demanding that the interface velocity is

equal to zero requires that the numerator in (9) vanish. The formula for ψ given

by (10) will also become time independent, and if we denote this by P(x) then we

have that

κ = uBC + P(−∆/2)− P(−L), (13)

where we have set x1 = −∆/2 and x2 = ∆/2 so that the bump width is given by ∆ =

x2 − x1. The formula for P is easily calculated as P(x) = p(x; a2, b2)− p(x; a1, b1),

where

p(x; a, b) =
a

2
√
c

[
erf

(
x1 − x√

b

)
− erf

(
x2 − x√

b

)]
. (14)

Hence, the bump width is determined implicitly by the single equation (13), and

the bump shape, q(x), is calculated from (6) as

q(x) = uBC + P(x)− P(−L). (15)

To determine the stability of the bump solution we can follow the original approach

of Amari and linearise the interface dynamics around the stationary values for xi.

Alternatively we can follow the Evans function approach, reviewed in [34], which

considers perturbations at all values of x (rather than just at the bump edges).

Here we pursue the latter approach, though it is straight forward to check that the

former approach gives the same answer.

To determine the linear stability of a bump we write u(x, t) = q(x) + eλtũ(x)

where ũ � 1. In this case the corresponding change to z is given by z(x, t) =

dq(x)/dx+ eλtz̃(x), where z̃(x) = ∂ũ(x)/∂x. Expanding (5) to first order gives

(λ+ 1)
dũ(x)

dx
=

L∫
−L

dy wx(|x− y|)δ(q(y)− κ)ũ(y). (16)

For the Dirac-delta function occurring under the integral, we can use the formal

identity

δ(q(x)− κ) =
δ(x− x1)

|q′(x1)|
+
δ(x− x2)

|q′(x2)|
, (17)
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and integrate (16) from −L to x and use ũ(−L) = 0 to obtain

(λ+ 1)ũ(x) =
ũ(x1)

|q′(x1)|
[w(|x− x1|)− w(|L+ x1|)]

+
ũ(x2)

|q′(x2|)
[w(|x− x2|)− w(|L+ x2|)] . (18)

Here q′(x) = P ′(x) = w(|x− x1|)− w(|x− x2|).
From (18) we may generate two equations for the amplitudes (ũ(x1), ũ(x2)) by

setting x = x1 and x = x2. This gives a linear system of equations that we can

write in the form [A− (λ+ 1)I](ũ(x1), ũ(x2)) = (0, 0), where

A =


w(0)− w(L+ x1)

|q′(x1)|
w(∆)− w(L+ x2)

|q′(x2)|
w(∆)− w(L+ x1)

|q′(x1)|
w(0)− w(L+ x2)

|q′(x2)|

 . (19)

Requiring non-trivial solutions gives a formula for the spectrum as det[A − (λ +

1)I] = 0, which yields

λ± = −1 +
TrA±

√
(TrA)2 − 4 detA

2
. (20)

Hence a bump solution will be stable provided Reλ± < 0.

In Fig. 1 we plot the bump width as a function of the threshold κ for a neural

field posed on a finite domain (1A) and for the reformulated neural field with an

imposed Dirichlet boundary condition uBC = 0 (1B), using solid (dashed) lines

for stable (unstable) solutions. For the former case we recover the expected Amari

result, namely that there is coexistence between two bumps, the widest of which is

stable. However, when we impose a Dirichlet boundary condition, four coexisting

bumps are found for sufficiently large κ, and two of these bumps are stable. In other

words, the Dirichlet boundary condition induces a new stable bump, whose active

region occupies a large portion of the domain.

4 Two spatial dimensions: infinite domain
Before discussing the extension of §3 to a finite two-dimensional domain with an

imposed boundary condition it is first instructive to consider the problem posed on

R2. An interface description for this case was originally developed in [21], albeit

for a special choice of synaptic connectivity kernel. By exploiting certain properties

of the modified Bessel function of the second kind it was possible to reformulate

integrals over two-dimensional domains in terms of one-dimensional line integrals.

This allowed the interface dynamics to be expressed solely in terms of the shape

of the active region in the tissue, namely a one-dimensional closed curve. Here we

extend this approach to a far more general class of synaptic connectivity kernels,

which include combinations of radially symmetric Gaussian functions (12).

We consider the integro-differential equation given by (1) with Ω = R2. We de-

compose the domain Ω by writing Ω = Ω+ ∪ ∂Ω+ ∪ Ω− where ∂Ω+ represents
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Figure 1 Effect of Dirichlet boundary condition uBC = 0 on the bifurcation diagram of a bump
solution. (A): bump solutions for equation (1) with Ω = [−10π, 10π]. (B) : bumps solutions for
equations (3)–(4) posed on Ω = [−10π, 10π] with Dirichlet boundary condition uBC = 0. Stable
(unstable) solutions are indicated with solid (dashed) lines. The insets show the shapes of the
lower (stable) bumps at κ = 0.7 for q(x) (blue) and z(x) (red). Parameters are a1 = 14, a2 = 13,
b1 = 24, b2 = 150, c = 5.

the level-set which separates Ω+ (excited) and Ω−(quiescent) regions. These do-

mains are given explicitly by Ω+ = {x | u(x) > κ}, Ω− = {x | u(x) < κ}, and

∂Ω+ = {x | u(x) = κ}. We shall assume that ∂Ω+ is a closed contour (or a finite set

of disconnected closed contours). In Fig. 2 we show a direct numerical simulation of

the full space-time model to illustrate that a synaptic connectivity function that is

a radially symmetric difference of Gaussians can support a spreading labyrinthine

pattern. Similar patterns have previously been reported and discussed in [21, 35]

for both Heaviside and steep sigmoidal firing rate functions. A description of the

numerical scheme used to evolve the full space-time model is given in Appendix A.

Differentiation of the level-set condition u(∂Ω+(t), t) = κ gives the normal velocity

rule:

cn ≡ n ·
d

dt
∂Ω+ =

ut(x, t)

∇xu(x, t)

∣∣∣∣
x=∂Ω+(t)

, (21)

where we have introduced the normal vector n = −∇xu/|∇xu| along ∂Ω+(t). We

will now show that cn can be expressed solely in terms of integrals along ∂Ω+(t).

Let us first consider the denominator in (21). The temporal integration of (4), using

variation of parameters, gives

∇xu(x, t) = z(x, t) = η(t)z0(x) +

t∫
0

dt′η(t′)∇xψ(x, t− t′), (22)

where η(t) = e−tH(t), z0(x) = ∇xu(x, 0) denotes gradient information at t = 0,

and

ψ(x, t) =

∫
Ω+(t)

dyw(|x− y|). (23)
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Figure 2 Space time simulations of the field u(x, t) showing a spreading labyrinthine structure in
a 2D Amari model (on a large domain [−L,L]× [−L,L]) with a radially symmetric difference of
Gaussians connectivity, namely w(r) = w(r), with w(r) given by (12). Parameters are κ = 0.03,
a1 = 3.55, a2 = 3, b1 = 2.4, b2 = 3.2, c = 10, and L = 12π.

The term ∇xψ in (22) can be constructed as a line integral using the integral vector

identity:

∇xψ(x, t) =

∫
Ω+(t)

dy∇xw(|x− y|) = −
∮

∂Ω+(t)

dsn(s)w(|x− y(s)|). (24)

Thus the denominator in (21) can be expressed solely in terms of a line integral

around the contour ∂Ω+(t). The representation of the numerator in (21) in terms

of a line-integral rather than a double-integral is more challenging. In previous work

we have shown that this can be achieved for the special case that the weight kernel

is constructed from a linear combination of zeroth order modified Bessel functions

of the second kind [21]. In Appendix B we show that a line-integral representation

can be constructed for a far more general class of anatomical connectivity patterns,

making use of the divergence theorem. Using this result the numerator of (21) can

be written

ut(∂Ω+(t), t) = −κ+ ψ(∂Ω+(t), t), (25)

where

ψ(x, t) =

∮
∂Ω+(t)

dsϕ(|x− γ(s)|) x− γ(s)

|x− γ(s)|
· n(s) +KC, (26)



Gökçe et al. Page 10 of 26

and s is a parametrisation for points on the contour γ ∈ ∂Ω+. Here,

ϕ(r) =
1

r

r∫
∞

xw(x)dx, K =

∫
R2

w(x)dx, and C =


1 if x ∈ Ω+

1/2 if x ∈ ∂Ω+

0 if x ∈ Ω−

. (27)

Hence the normal velocity rule (21) can be expressed solely in terms of one-

dimensional line integrals involving the shape of the active region Ω+ (which is

prescribed by ∂Ω+). This is a substantial reduction in description as compared to

the full space-time model, yet is exact.

As an example of the approach above let us consider a difference of Gaus-

sians with w(r) given by (12). A simple calculation for this choice shows that

K =
√
π/c[a1

√
b1 − a2

√
b2] and

ϕ(r) =
1

2r
√
cπ

[
a2

√
b2e−r

2/b2 − a1

√
b1e−r

2/b1
]
. (28)

In Fig. 3 we show a numerical simulation prescribed by the interface method, with

initial data equivalent to that from the full space-time simulation shown in Fig. 2.

The excellent agreement between the two figures is easily observed. The full de-

-12:

0

12:
t = 0 t = 14.7 t = 29.75 t = 54.95

-12: 0 12:
-12:

0

12:
t = 64.75

-12: 0 12:

t = 74.55

-12: 0 12:

t = 99.75

-12: 0 12:

t = 114.8

Figure 3 A numerical simulation of the interface dynamics for the same scenario as Fig. 2. Here
the threshold condition where u = κ is given by the solid blue line, whilst the green arrows show
the normal velocity of the moving interface. All parameters as in Fig. 2.

tails of our numerical scheme for implementing the interface dynamics are given in

Appendix C.

5 Two spatial dimensions: Dirichlet boundary condition
Using the notation of §4 we now show how to extend the one-dimensional approach

of §3 to develop an interface dynamics for planar Amari models on a bounded
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domain with Dirichlet boundary conditions. For a single active region the dynamics

for z(x, t) is given by (4), which can be written succinctly as

∂z(x, t)

∂t
= −z(x, t) +∇xψ(x, t), (29)

with ψ given by (23), or in terms of ∂Ω+(t), by (26). Using (3) the level set condition

is

κ− uBC =

∫
Γ(∂Ω+(t))

z(r, t) · dr. (30)

Using the identity

d

dt

∫
Γ(∂Ω+(t))

z(r, t) · dr = z(∂Ω+(t), t) · d

dt
∂Ω+(t) +

∫
Γ(∂Ω+(t))

zt(r, t) · dr, (31)

and differentiating (30) with respect to t, we obtain the normal velocity rule

cn ≡ n ·
d

dt
∂Ω+ =

1

|z(x, t)|

∫
Γ(x)

zt(r, t) · dr
∣∣∣∣
x=∂Ω+(t)

. (32)

Here the normal vector is given by n = −z/|z| along the contour ∂Ω+. Using (29)

we may write the numerator in the normal velocity rule (32) as∫
Γ(∂Ω+(t))

zt(r, t) · dr = uBC − κ+ ψ(∂Ω+(t), t)− ψ(ζ(∂Ω+(t)), t), (33)

where ζ : ∂Ω+(t)→ ∂Ω is a mapping from points on the contour ∂Ω+(t) to points

on the boundary ∂Ω.

Hence, using the formulas for z and ψ from §4, namely equations (22), (24), and

(26), then all of the terms in the normal velocity rule (32) may be expressed as one-

dimensional line integrals. This yields the interface dynamics for Dirichlet boundary

conditions, and once again we see that it is a reduced yet exact alternative formula-

tion to the full space-time model. In contrast to the interface dynamics on an infinite

domain one needs only develop further numerical algorithms for computing the line

integral in (3). The numerical method for implementing the interface dynamics can

be based upon that for an infinite domain, with a specific choice for the paths Γ

defining this integral. Each of the paths Γ connects a point x in the interior of the

domain to a point on the boundary, and we set ζ(∂Ω+(t)) to be the endpoint of

Γ(∂Ω+(t)) (see Appendix C for details on the numerical scheme).

Note that we do not have to numerically integrate along this path (to determine

the normal velocity), and that we need only to determine the values of ψ(x, t) at

the two endpoints.

Figure 4 shows a direct numerical simulation computed using the evolution of

the gradient z = ∇xu as well as the corresponding interface dynamics. We see

excellent agreement between the two approaches. The obvious advantage of the
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interface dynamics is that one need only evolve the shape of the active region to

fully reconstruct the full space-time dynamics using (3) and (24). We see from Fig. 4

Figure 4 A spreading pattern (C) governed by the space-time model (3) and (4) with a radially
symmetric synaptic connectivity kernel given by (12) and a Dirichlet boundary condition uBC = 0
on a domain of size [−L,L]× [−L,L]. The corresponding interface dynamics is shown in (D).
Rows (A) and (B) show the components of the gradient z in the x and y directions, and these are
used to compute the activity of the neuronal tissue shown in row (C). Parameters are κ = 0.05,
a1 = 3.55, a2 = 3, b1 = 2.4, b2 = 3.2, c = 10, and L = 5π.

that the main effect of the Dirichlet boundary condition is to limit the spread of a

labyrinthine structure and ultimately induce a highly structured stationary pattern,

as expected.

6 Spots in a circular domain: Dirichlet boundary condition

Given the large amount of historical interest in spot solutions of neural field models

on infinite domains, and those on finite domains without incorporating the role of

boundary conditions [36, 37, 35, 38, 39], it is worthwhile to revisit this specific class

of solutions on a finite disc with an imposed Dirichlet boundary condition. We shall

consider radially symmetric synaptic connectivity kernels and a disc of radius D

with a spot (circularly symmetric) solution of radius R. In this case u(r, t) = q(r)

with r = |r| for all t, and q(D) = uBC, with q(R) = κ and q(r) > κ for r < R and

q(r) < κ for R < r < D. We shall denote the corresponding stationary field for ψ

by ψ(r), and this is conveniently constructed from (26).
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6.1 Construction

An implicit equation for the radius of the bump is obtained after setting the normal

velocity to zero. Using (32) and (33) this yields

κ = uBC + ψ(R)− ψ(D). (34)

For the specific choice of a difference of Gaussians given by (12) we may write

this in the form

ψ(r) =
a1√
cπb1

ρ(r; b1)− a2√
cπb2

ρ(r; b2) +KC, (35)

with

ρ(r;α) = −α
2

2π∫
0

dθ
e−Q(θ)2/α

Q(θ)2
R(r cos θ −R), (36)

and Q(θ) =
√
R2 + r2 − 2Rr cos θ. Although (36) is in closed form it is a challenge

to perform the integral analytically. Thus it is also of interest to consider synaptic

connectivity kernels for which more explicit progress can be made. A case in point

is that of piece-wise constant functions.

Let us first consider a Top-hat connectivity defined by

w(r) =

w+ > 0, r ≤ σ
w− < 0, r > σ

. (37)

In this case it is easier to construct ψ(r) directly from (23) as

ψ(r) =

∫
|r′|<R

dr′w(|r − r′|). (38)

For the Top-hat shape (37) we may split the above integral as

ψ(r) = w+

∫
|r′|<R
|r−r′|≤σ

dr′ + w−

∫
|r′|<R
|r−r′|>σ

dr′. (39)

Introducing the area A+(r, σ) as

A+(r, σ) =

∫
|r′|<R
|r−r′|≤σ

dr′, r = |r|, (40)

where A+(R, σ) = κ, the self-consistent equation for a spot (34) takes the form

κ = uBC + (w+ − w−) [A+(R, σ)−A+(D,σ)] . (41)

Following the work of Herrmann et al. [40], we now show how to evaluate the integral

(40) using simple geometric ideas. For example, the area A+(R, σ) can be calculated
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in terms of the area of overlap of two circles, one of center 0 and radius |r| = R,

and the other of center r and radius σ subject to the constraint r = R.

Using the results from Appendix D we have that A+(r, σ) = A(R,φ0(r, σ)) +

A(σ, φ1(r, σ)), where A(r, φ) = r2(φ− sinφ)/2 and

φ0(r, σ) = 2 cos−1

(
R2 − σ2 + r2

2Rr

)
, φ1(r, σ) = 2 cos−1

(
σ2 −R2 + r2

2σr

)
, (42)

with R > D − σ.

Another natural piece-wise constant choice is the piece-wise constant Mexican hat

shape given by

w(r) =


w+ > 0, r ≤ σ1

w− < 0, σ1 < r ≤ σ2

0, r > σ2

, σ2 > σ1. (43)

Using a similar argument as for the Top-hat connectivity we find that

κ = uBC+(w+−w−) [A+(R, σ1)−A+(D,σ1)]+w− [A+(R, σ2)−A+(D,σ2)] , (44)

with R > D − σ1.

6.2 Stability

The stability of spots without boundary conditions has been treated by several

authors, and see [38] for a recent overview. Here we extend this approach to treat a

finite domain with an imposed Dirichlet boundary condition following very similar

arguments to those presented in §3.

To determine the linear stability of a spot we write u(r, t) = q(r)+eλt cos(mθ)ũ(r)

where ũ � 1 and m ∈ N. In this case the corresponding change to z is given by

z(r, t) = ∇rq(r) + eλt cos(mθ)z̃(r), where z̃(r) = ∇rũ(r). Expanding (4) to first

order gives

(λ+ 1)z̃(r) =

2π∫
0

dθ cos(mθ)

∞∫
0

r′dr′∇rw(|r − r′|)δ(q(r′)− κ)ũ(r′), (45)

where |r − r′| =
√
r2 + r′2 − 2rr′ cos θ. Using properties of the Dirac-delta distri-

bution we find

∇r

(λ+ 1)ũ(r)− ũ(R)
R

|q′(R)|

2π∫
0

dθ cos(mθ) w(|r − r′|)|r′=R

 = 0. (46)

Since the term in square brackets in (46) is radially symmetric we may integrate in

the radial direction using ũ(D) = 0 to obtain

(λ+1)
ũ(r)

ũ(R)
=

R

|q′(R)|

2π∫
0

dθ cos(mθ)

[
w(|r − r′|)|r′=R − w(|r − r′|)|r′=R

r=D

]
. (47)
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Setting r = R in (47) and demanding non-trivial solutions gives an equation for the

eigenvalues λ in the form Em(λ) = 0, m ∈ N, where

Em(λ) = λ+1− R

|q′(R)|

2π∫
0

dθ cos(mθ)

[
w(|r − r′|)|r′=R

r=R
− w(|r − r′|)|r′=R

r=D

]
. (48)

Thus a spot solution will be stable provided λm < 0 for all m ∈ N where λm is a

zero of Em(λ). Once again the choice of a piece-wise constant connectivity function

considerably simplifies further calculations. For example for the Top-hat function

given by (37) it is simple to show that

q′(R) =
σ(w− − w+)

R

√
4R2 − σ2, (49)

and

2π∫
0

dθ cos(mθ) w(|r − r′|)|
r′=r=R

= 2

(
w+ − w−

m

)
sinmθ∗, (50)

where θ∗ is the smaller of the two roots of the equation R
√

2(1− cos θ) = σ for

θ ∈ [0, 2π). The formula (50) allows for the explicit evaluation of (48) for a piece-wise

constant synaptic connectivity.

Using the above analysis we find that for the smooth Mexican hat function, given

by (12), that for large domains a wide and narrow spot can coexist for a sufficiently

low value of the threshold κ. Moreover, the narrow spots are always unstable (to

modes with m = 0, reflecting uniform changes of size), whilst the wider spots can

develop instabilities to modes with m ≥ 2. We note that the mode with m = 1

is always expected to exist due to rotational invariance (and would give rise to a

zero eigenvalue for all parameter values). This is entirely consistent with previous

results for Mexican hat connectivities on domains where no boundary condition

is used, as reviewed in [38]. However, on a finite size disc and with an imposed

Dirichlet boundary condition further spots can be induced, with sizes commensurate

to that of the radius of the disc. Both of these scenarios are summarised with the

use of Fig. 5. Qualitatively similar behaviour is found for the piece-wise constant

Mexican hat function given by (43) (not shown). Interestingly for the simple Top-

hat connectivity, given by (37), we find similar results for existence, though without

azimuthal instabilities to modes m ≥ 2.

7 Discussion
In this paper we have revisited the seminal work of Amari on neural fields and

shown how to incorporate Dirichlet boundary conditions. We have built on the pre-

vious work of Coombes et al. [21] to develop an interface dynamics approach for the

evolution of closed curves defining pattern boundaries. Compared to the full space-

time model with imposed Dirichlet boundary conditions the interface dynamics is

reduced, yet requires no approximations. The interface framework has been illus-

trated in a number of settings in both one- and two-dimensions, with a focus on



Gökçe et al. Page 16 of 26

Figure 5 Spot radius R as a function of κ for a smooth Mexican hat connectivity given by (12),
with parameters as in Fig. 4. (A): Infinite domain. (B): Finite domain that is a disc of radius
D = 5π, with Dirichlet boundary condition q(D) = uBC = 0. Linear stability analysis shows that
solid (dashed) lines are stable (unstable). Azimuthal instabilities with various modes are indicated
by the mode shapes.

localised states and their instabilities. In all cases we have highlighted the excel-

lent correspondence between results obtained from numerical simulations of the full

space-time model and the interface approach. Moreover, we have also emphasised

that for piece-wise constant synaptic connectivities the interface approach becomes

quasi-analytical, in that many of the terms required for the computation of the nor-

mal velocity of the interface can be calculated by hand rather than have to be found

numerically. For spreading patterns that may arise from the azimuthal instability

of a localised spot, the main effect of a Dirichlet boundary condition has been to

limit the growth of the pattern. This was entirely expected, although the precise

shape of the resulting stationary pattern is of course hard to predict without simu-

lation. However, the induction of other branches of localised states in a neural field

model on a disc was more surprising, even though all near the boundary proved to

be stable. It should be noted that the imposition of different boundary conditions

may effect the spatio-temporal evolution of a pattern and the conditions for its

dynamics instability. For the sake of computational simplicity, the value attained

by the activity variable at the boundary was chosen to be a constant (uBC = 0)

throughout this paper. However, a full analysis which also treats space and time

dependent boundary conditions can be readily developed for the direct numerical

simulations, as well as for the equivalent interface description. There are a number

of natural extensions of the approach that we have presented here to treat other,

more biophysically rich, neural field models which we outline below.

Although we have focused exclusively on the Amari model with a Heaviside fir-

ing rate, direct numerical simulations (not shown) readily confirm that boundary

induced patterns can also be seen in models with a smooth sigmoidal firing rate.

Thus it would also be of interest to extend the elegant functional analytic treat-

ment of localised states in bounded domains by Faugeras et al. [14] to incorporate

imposed boundary conditions. Some form of spike frequency adaptation (SFA) is

often included in neural field models to mimic a negative feedback process to dimin-

ish sustained firing. This can cause a travelling front to transition to a travelling
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pulse [41], or subserve the generation of planar spiral waves [28]. If this current is

linear, as is often the case [42], or itself described by dynamics involving a Heaviside

switch, as in [43], then the interface approach presented here can be generalised.

Given previous work on equivalent PDE models on bounded domains with SFA that

analyses spiral wave behaviour, the treatment of spiral waves from an interface per-

spective would be an advance as it is not limited to synaptic connectivities with a

rational Fourier structure [44]. Another natural extension of the work in this paper

is to neural fields on feature spaces. For example, in the primary visual cortex (V1),

cells respond preferentially to lines and edges of a particular orientation. A stan-

dard neural field model, that links points at r and r′ (in the plane) with a weight

w(r|r′), should be replaced by a more general form such as w(r|r′) = w(r, θ|r′, θ′),
where θ (θ′) would represent an orientation preference at r (r′). This model has

recently been studied using a neural field dynamics with a Heaviside firing rate

[45], and is thus ripe for a further analysis using an interface approach. Finally it

is worth pointing out the rather pertinent difference between the flat models we

have discussed here and the well known folded characteristic of real cortex, with its

sulci and gyri. Fortunately there is no substantial difficulty in formulating neural

field models on curved surfaces, though to date there has been surprisingly little

analysis of spatio-temporal pattern formation in this context. The exception to this

rule being the simulation studies of Bojak et al. [46], and the recent work of Sato

et al. for growing brains [13].

One obvious caveat to all of the above is that the interface approach is restricted

to Amari style models with a Heaviside firing rate. Nonetheless the qualitative

similarities between Amari models and those with a steep sigmoidal firing rate are

well known. In summary the treatment of neural fields with boundary conditions

is a relatively unexplored area of mathematical neuroscience whose further study

should pay dividends for the understanding of neuroimaging data, and in particular

waves of activity in functionally identified and folded cortices.

Appendix A: Numerical scheme for the full space-time model
The numerical simulation of the full space-time model (1) without boundary con-

ditions was performed by discretising the domain on an N -by-N tensor grid, and

using a Nyström scheme for the spatial discretisation [47]. It is known that the

major costs of this scheme is in the evaluation of the Hammerstein operator oc-

curring on the right-hand side of (1), which on the grid outlined above requires

N4 operations. Owing to the convolutional structure of the operator, it is possi-

ble to decrease considerably the computational cost of each function evaluation by

performing a pseudo-spectral evaluation of the convolution, using a Fast Fourier

Transform (FFT), followed by an inverse Fast Fourier Transform (IFFT). This re-

duces the number of operations to O(N2 logN2) and allows to simulate neural fields

and compute equilibria efficiently. We refer the reader to [16, 21] for further details.

In these calculations we set N = 29 and used Matlab’s in-built ode45 routine, with

standard tolerance settings.

In simulations where the state variable is not periodic, such as the ones where we

enforced boundary conditions (§5) we used a standard matrix-vector multiplication

to evaluate the integral operator. A full matrix was precomputed and stored during
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the initialisation phase of the time stepping and the grid-size was limited to N = 27

points, owing to memory constraints. In this setting, the interface dynamic approach

becomes a viable alternative to the full spatial simulation.

Appendix B: Expressing ψ in terms of contour integrals
In this Appendix, we derive the identities (26) and (27). This allows us to represent

the double integral for the non-local input ψ(x, t) given by (23) as an equivalent

line-integral. We recall divergence theorem for a generic vector field F on a domain

B with boundary ∂B,∫
B

(∇ · F ) dx =

∮
∂B

F · nds, (51)

where n is the unit normal vector on ∂B. We consider a rotationally symmetric two-

dimensional synaptic weight kernel w(x) = w(r) which satisfies
∫
R2

dxw(x) = K, for

some finite constant K, and we introduce a function g(x) : R2 → R such that

w(x) = (∇ · F )(x) + g(x). (52)

Now considering a function ϕ(r) : R+ → R which satisfies the condition

limr→∞ rϕ(r) = 0, the vector field can be written using polar coordinates, that

is F = ϕ(r)(cos θ, sin θ) = ϕ(r)x/|x| with x = r(cos θ, sin θ). Transforming the

expressions K and g into polar coordinates, integrating equation (52), and using

the divergence theorem, yields

K =

∞∫
0

2π∫
0

rw(r, θ) dθdr =

∞∫
0

2π∫
0

r [∇ · F + g] (r, θ) dθdr, (53)

=

∮
F · nds+

∞∫
0

2π∫
0

rg(r, θ) dθdr, (54)

where the line integral is described over a circle of radius R → ∞. Therefore, the

weight kernel can be written in the form

K = 2π lim
R→∞

Rϕ(R) +

∞∫
0

2π∫
0

rg(r, θ) dθdr. (55)

Since the line integral vanishes, we may set g(x) = K δ(x). We can now deduce the

equation for ϕ(r) by writing

w(r) =
∂

∂r
[ϕ(r) cos θ]

∂r

∂x
+

∂

∂θ
[ϕ(r) cos θ]

∂θ

∂x

+
∂

∂r
[ϕ(r) sin θ]

∂r

∂y
+

∂

∂θ
[ϕ(r) sin θ]

∂θ

∂y
,

=
∂ϕ

∂r
(r) +

1

r
ϕ(r), r > 0. (56)
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The integration of (56) yields

ϕ(r) =
1

r

r∫
∞

xw(x)dx. (57)

Using the above results means that (23) can be evaluated as

ψ(x, t) =

∫
Ω+(t)

dyw(|x− y|)

=

∮
∂Ω+(t)

dsF (|x− γ(s)|) · n(s) +K
∫

Ω+(t)

dyδ(x− y)

=

∮
∂Ω+(t)

dsϕ(|x− γ(s)|) x− γ(s)

|x− γ(s)|
· n(s) +KC. (58)

Here γ ∈ ∂Ω+, and the integration over the Dirac-delta function gives C = 1 if x

is within Ω+, C = 0 if x is outside Ω+, and C = 1/2 if x is on the boundary of Ω+.

Appendix C: Numerical scheme for the interface dynamics
Time-stepping for interface dynamics requires a novel integration scheme. We

present here the implementation used in our numerical experiments, which were

found to be in agreement with the full spatio-temporal simulation, and we defer a

numerical analytical study of its properties to a later date.

The method is formed of four constitutive parts: a scheme for approximating a

closed curve (the interface ∂Ω+(t)), a scheme to approximate the instantaneous

normal velocity of the interface, a scheme to propagate the contour according to

the normal velocity, and a strategy to remesh or postprocess the contour, if needed.

Closed contours: We chose a periodic parametrisation

∂Ω+(t) = {x ∈ R2 : x1(t) = ξ1(s, t), x2(t) = ξ2(s, t), s ∈ [0, 2π)},

where ξ1, ξ2 are smooth and 2π-periodic in s for all t, and we approximated

ξ1(s, ·), ξ2(s, ·) spectrally, using evenly spaced points in s. Using FFTs, we

could approximate quickly and accurately the normal and tangent vectors

to ∂Ω+ at each point s, and each time t. We also parametrise the domain

boundary ∂Ω as follows

∂Ω = {x ∈ R2 : x1 = η1(s), x2 = η2(s), s ∈ [0, 2π)},

where ηi are continuous and 2π-periodic. We choose the paths Γ to be straight

lines connecting x to its closest point on the boundary,

Γ(x) =
{
x′ ∈ R2 : x′ = x+ s′η∗, s

′ ∈ [0, 1], η∗ = arg min
s
|x− η(s)|

}
,

and we define ζ using the endpoints of Γ,

ζ : x 7→ x+ η∗, η∗ = arg min
s
|x− η(s)|.
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Normal velocity: To simplify the discussion, let us consider the case where

boundary conditions are not imposed. We compute the normal velocity by

approximating the numerator and denominator of (21). The denominator is

updated at each time step using (22) and (24): this requires the normal to

∂Ω+ at time t, as well as the full history of ∂Ω+(t) in the interval [0, t], in view

of the integral (22). However, since η(t) = e−tH(t), we found that retaining in

memory and using only the last 20-50 time steps was not detrimental for the

accuracy of the solution; we use the trapezium rule for both the integration

along the contour in (24) (which is therefore spectrally accurate) and for the

integral over t′ in (22). The numerator of (21) is computed using (26), for

which a further integration along ∂Ω+ is performed. The integrand is singu-

lar, and can be treated as in [48]. A similar strategy is used for (32) and (33),

in the case of a bounded domain with Dirichlet boundary conditions. In all

cases this step is by far the most time consuming of the algorithm, due to the

large number of integrals which need to be evaluated at each step.

Position update: The contour is propagated in the normal direction, using the

velocity computed at each point of the contour, cn(s, t). To this end we use a

simple Euler update ∂Ω+(t+ ∆t) = ∂Ω+(t) + cn∆t to find the new contour,

given that cn is also computed with O(∆t) accuracy in time. Other choices are

obviously possible, but require more function evaluations and more expensive

quadrature rules. A stepsize of 0.05 or less has been used in our simulations.

Remeshing and postprocessing: The updated contour ∂Ω+(t + ∆t) leads to a

new parametrisation, that is, to an update of the functions ξ1(s, ·), ξ2(s, ·).
Since we need a uniform distribution of the nodes with respect to the variable

s, we redistribute points using standard interpolation [49]. As the pattern

grows or shrinks, points are added or removed so as to keep the arclength

between consecutive points approximately constant.

Appendix D: Geometric formulas for a piece-wise constant kernel
Consider a portion of a disk whose upper boundary is an (circular) arc and whose

lower boundary is a chord making a central angle φ0 < π, illustrated as the shaded

region in Fig. 6A.

The area A = A(r0, φ0) of the (shaded) segment is then simply given by the

area of the circular sector (the entire wedge-shaped portion) minus the area of an

isosceles triangle, namely

A(r0, φ0) =
φ0

2π
πr2

0 −
1

2
r0 sin(φ0/2)r0 cos(φ0/2) =

1

2
r2
0 (φ0 − sinφ0) . (59)

The area of the overlap of two circles, as illustrated in Fig. 6B, can be constructed

as the total area of A(r0, φ0) + A(r1, φ1). To determine the angles φ0,1 in terms of

the centres, (x0, y0) and (x1, y1), and radii, r0 and r1, of the two circles we use the

cosine formula that relates the lengths of the three sides of a triangle formed by

joining the centres of the circles to a point of intersection. Denoting the distance

between the two centres by d where d2 = (x0 − x1)2 + (y0 − y1)2 so that

r2
1 = r2

0 + d2 − 2r0d cos(φ0/2), r2
0 = r2

1 + d2 − 2r1d cos(φ1/2). (60)
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Figure 6 The area of the total shaded segment is r20(φ0 − sinφ0)/2 (A).Overlap of two circles
shows the area of active region (B).

Hence

φ0(d, r1) = 2 cos−1

(
r2
0 + d2 − r2

1

2r0d

)
, φ1(d, r1) = 2 cos−1

(
r2
1 + d2 − r2

0

2r1d

)
. (61)
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