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ABSTRACT 

Global crop production is affected by seasonal and climatic variations in 

temperature, rainfall patterns or intensity and the occurrence of abiotic and 

biotic stresses. Climate change can alter pest and pathogen populations as well 

as pathogen complexes that pose an enormous risk to crop yields and future 

food security. Crop simulation models have been validated as an important tool 

for the development of more resilient agricultural systems and improved 

decision making for growers. The Agricultural Production Systems Simulator 

(APSIM) is a software tool that enables sub-models to be incorporated for 

simulation of production in diverse agricultural systems. Modification of 

APSIM to incorporate epidemiological disease model for crop growth and 

yield under different disease intensities has few attempts in the UK or 

elsewhere. The overall aim of this project is to model disease impact on wheat 

for improved food security in two different agro-ecological zones.  

The incidence of wheat diseases between 2009 and 2014 in two different agro-

ecological zones, UK and Oman were compared. Most of the fields surveyed in 

Oman and UK were found to have at least one disease. Leaf spot was the most 

prevalent foliar disease found in Omani fields while Septoria was the most 

common foliar disease in the UK. Fusarium followed by eyespot and ear blight 

represents the most common diseases of stem and ears in UK winter wheat 

between 2009 and 2014. However, in Omani wheat Fusarium causing stem 

base and loose smut of ears were the most common. Eyespot was not found in 

Omani winter wheat and this may relate to the high temperature during winter 



ABSTRACT 

II 

 

in Oman. This study discussed the first work on the occurrence of fungal 

diseases and their pathogens in Oman and the influence of agronomy factors. 

Large numbers of pathogenic fungi causing symptoms were found to be 

prevalent in wheat fields in Oman. Isolation from six symptomatic wheat 

varieties resulted in 36 different fungal species. Alternaria alternata was the 

most frequently isolated pathogen followed by Bipolaris sorokiniana, 

Setosphaeria rostrata, and Fusarium equiseti. Results also showed some 

agronomic practices influenced disease incidence. Mechanical sowing method 

and time of urea application were found to influence leaf spot disease. 

An investigation into the recovery of treatment cost for eyespot control through 

yield and the effect of fungicide treatment on risk showed that all fungicides 

apart from (epoxiconazole) Opus at 1 L ha-1 were found to be worth the costs, 

either under high disease pressure (inoculated sites) or naturally infected sites. 

For the risk averse manger fungicide treatment would be worth the cost as it 

would reduce the higher level of disease and consequently minimise associated 

yield losses. 

In this work, disease models were built to predict the disease development and 

yield loss in relation to crop phenology using results from previous literature 

on conditions favouring sporulation, infection and disease development and 

severity. Analysis of 461 data sets showed that climatic conditions and 

agronomic factors significantly influenced disease development either 

positively or negatively in all models. The application of a range of fungicides 

at GS31/32 reduced disease significantly at GS39 in comparison to 
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epoxiconazole alone. Disease severity at GS39 decreased yield only slightly by 

2.2% whilst only (prothioconazole) Proline 275 increased yield significantly 

with almost 30% yield increase.  

The performance of the APSIM wheat model to simulate phenology, leaf area 

index, biomass and grain yield of two winter wheat varieties (Okley and 

Cashel) was evaluated under UK conditions and the previously developed 

eyespot disease were linked with APSIM. Generally, APSIM poorly predicted 

the phenology, LAI, biomass and yield of winter wheat grown under UK 

conditions. The linked eyespot disease models with APSIM simulated an 

adequate level of disease predication at GS12/13 (9.6%), GS31/32 (1.3%) and 

GS39 (12%). 

Overall, the link between eyespot epidemiological disease models and crop 

growth model has successfully provided the basis for further development of 

the model and enhance crop growth simulation. Moreover identification of 

main diseases threatening wheat production in Oman can help to plan for future 

research, to assess the economic importance and to contrast environment 

models for yield loss.  

 

 



ACKNOWLEDGEMENT 

IV 

 

ACKNOWLEDGEMENT 

The successful completion of this study has involved considerable assistance 

from many people through the planning, research, analysis and thesis up. The 

efforts of the following people are gratefully acknowledged.  

This study was funded by Ministry of higher education in Oman under his 

Majesty scholarship fund for higher studies. This scholarship allows me to 

concentrate full time on my study. Their fund was the main core to the 

completion of this work.   

I am particularly grateful to my supervisor, Dr. Rumiana Ray for having 

confidence in me from the start, for her academic guidance and for her 

enthusiasm and encouragement throughout this study journey. I would also like 

to thank my second supervisor Dr. Stephen Ramsden for his academic 

guidance and always being willing and available to help in particular with 

eyespot economic chapter of this study.  

Special thanks and appreciation should be due to my co-supervisor Dr. Didier 

Leibovici for a great many things. He provided advice on field data collection. 

Collaborated with me during APSIM model calibration and disease model 

development and reviewed my work many times.  

I would like to sincerely thank all people in Dr. Rumiana Ray group for help 

and support as well as their friendship during this study. I would like to thank 

all my friends at SB, especially Afaf Rashed for valuable help, friendship and 

support. Also thanks should be due to Dr. Said Jaboob for valuable help and 



ACKNOWLEDGEMENT 

V 

 

support to understand R statistical analysis and always encouragement during 

this study.   

I would also like to thank Dr. Ahmed Al-Bakri for being always willing to help 

and all the assistance and facility to conduct the survey in Omani wheat field. I 

am also very grateful to technicians in pathology Lab at Jimah Research 

Station, Ministry of Agriculture and Fisheries, Oman, Masoud Al-Rabani and 

Mahmood Al-Shukili for Oman survey field assistance and disease assessments 

in the lab. I would additionally like to thank Yahya Al Suleimani for soil 

sampling and analysis during the survey in Oman. I would like to acknowledge 

and thanks the contribution of Dr. Abdullah Al-Sadi, Hamed Al-Nadabi and 

Manal Al-Alwai at crop science department, Sultan Qaboos University for their 

assistance, advice and help in particular with molecular and pathogenicity parts 

in Oman chapter.  

On a different note, I would like to thank my mother for her prays and always 

support, my father and all my brothers and sisters in particular Ahmed and Said 

for everything they have done for me. And finally, I will always be grateful to 

my wife Badriya and my six children for encouraging me to embark on this 

PhD, and for their understanding and support over the past four years.  

 

 

 



ABBREVIATIONS 

VI 

 

ABBREVIATIONS 

AHDB-HGCA    Home-Grown Cereals Authority 

 
AIC    Akaike’s Information Criterion 

 
APSIM       Agricultural Production Systems Simulator  

 
AUSM Cropping system model for operational research 
BIC                     Bayesian Information Criterion  

 
BPMN Business Process modelling Notation, bpmn.org 
CERE-Wheat      Model of the growth, development, and yield of spring and winter 

wheat  

 
CH4    Methane  

 
CMP Common Modelling Protocol  

 
CO2   Carbon dioxide  

 
CROPGRO Crop components and growth change based on farming system and 

climatic conditions 

CV     Coefficient of variation 

 
DDM    Disease development model 

 
df   Degrees of freedom 

 
DI Disease incidence/index 

 
DNA Deoxyribose nucleic acid  

 
DSM      Disease severity model  

 
DUL        Drained Upper Limit  

 
DYMEX Computer software that allows the user to build and run computer 

models which describe the lifecycles and management of biological 
organisms 

 
EcoCrop FAO-EcoCrop database model  

 
exp    Exponential value 
FAO Food and Agriculture Organisation of the United Nations 
AquaCrop Water defects crop model  

 
FG Fungicides treatments  

 
FHB Fusarium head blight  

 
GAI Green area index 

 
GLAM General large area model  

 
GLMs Generalised linear models 
GPS General position system 
GRAZPLAN Pasture and animal production  

 
GS   Plant growth stage (Zadok's) 
ha   Hectares 

 
HI Harvest index 

 



ABBREVIATIONS 

VII 

 

IP Infection potential 

 
IPM Infection potential model  

 
ITS Internal transcribed spacer region of the ribosomal DNA   

 
kg kilograms 

 
KL Rate of maximum daily water uptake per day 

 
LAI Leaf area index  

 
L Liters 

 
LL15 Water content at 15 bar 
LSD Least significant difference 

 
MAF Ministry of Agriculture and Fisheries  

 
MBC Methyl benzimidazole  

 
MSE Mean squared error 
NaOCl Sodium hypochlorite  

 
NCBI National Centre for Biotechnology Information   

 
ND Number of days  

 
NO2 Nitrous oxide  

 
ns   Not significant  

 
OA Oculimacula acuformis 

 
OY Oculimacula yallundae 
P Probability value 

 
PAWC Plant Available Water Capacity  

 
PCR Polymerase chain reaction 

 
PDA Potato dextrose agar  

 
PERFECT Productivity, Erosion and Runoff Functions To Evaluate 

Conservation Techniques  

 
REML   Residual maximum likelihood REML 

 
RH Relative humidity 

 
S.S     Sum of square 
SAT Saturation point 

 
SDs   Standard deviations  

 
SDW Sterile distilled water 
SED Average standard error of difference 

 
SEM Standard error of the mean 

 
SI     Severity incidence/index 

 
 SMD  Soil moisture deficit 

 
SMN Soil mineral nitrogen 

 
Soil-N    Model nitrogen model that balance available soil carbon and 

nitrogen as well as their dynamics 

 
Soil-Wat    Model  Water balance model that distributes water throughout 

the soil profile 



ABBREVIATIONS 

VIII 

 

t   Tones 
TAG The Arable Group research  

 
𝑇!                Mean daily temperature 
Tdmax Daily maximum temperature  

 
Tdmin Daily minimum temperature 

 
TGW Thousand grain weight 

 
TR Total rainfall  

 
TT   Thermal time 

 
UKCIP02 Scenarios predicting UK temperature/rainfall under high- and low-

CO2 emission 

 
VensimTM     Weed seed bank model  

 
WS Wald statistics  

  

 

                  

           

           

    

     

. 

            

     

                    

 

 



TABLE OF CONTENTS  

IX 

 

TABLE OF CONTENTS 

ABSTRACT ....................................................................... I	
ACKNOWLEDGEMENT ...................................................... IV	
ABBREVIATIONS ............................................................. VI	
TABLE OF CONTENTS ...................................................... IX	
LIST OF FIGURES ........................................................ XIII	
LIST OF TABLES .......................................................... XVII	
Chapter 1 ....................................................................... 1	
1.	 INTRODUCTION AND LITERATURE REVIEW .................... 1	

	 FOOD SECURITY IN GLOBAL AGRICULTURE ................ 2	1.1.
	 CHALLENGES TO FUTURE FOOD SECURITY ................. 3	1.2.
	 INCREASING GLOBAL POPULATION FOLLOWING THE 1.2.1

GREEN REVOLUTION .............................................. 4	
	 CLIMATE CHANGE .................................................. 6	1.2.2
	 SCARCITY AND COST OF RESOURCES ....................... 8	1.2.3
	 PESTS AND DISEASES .......................................... 10	1.2.4

	 ECONOMIC PERSPECTIVES ..................................... 13	1.3.
	 SIMULATION OF CROP PRODUCTION AND MODELLING 1.4.

OF LOSSES DUE TO PESTS AND PATHOGENS ........... 14	
	 AIMS AND OBJECTIVES .......................................... 18	1.5.

Chapter 2 ..................................................................... 20	
2.	 THE OCCURRENCE OF FUNGAL DISEASES IN OMAN AND 
UK BETWEEN 2009 AND 2014 AND CHARACTERISATION OF 
THE PATHOGENS IN OMANI WHEAT ................................. 20	

	 INTRODUCTION .................................................... 21	2.1.
	 MATERIALS AND METHODS ..................................... 24	2.2.
	 COLLECTION OF AGRONOMIC DATA AND SAMPLING . 24	2.2.1
	 DISEASE ASSESSMENTS AND IDENTIFICATION ....... 29	2.2.2
	 ISOLATION OF FUNGAL SPECIES FROM SYMPTOMATIC 2.2.3

SAMPLES ............................................................ 30	
	 PATHOGEN CHARACTERISATION ............................ 31	2.2.4
	 PATHOGENICITY TEST .......................................... 32	2.2.5

	 RESULTS .............................................................. 33	2.3.
	 DISEASE INCIDENCE AND SEVERITY BETWEEN 2009 2.3.1

AND 2014 IN OMAN AND UK .................................. 33	



TABLE OF CONTENTS  

X 

  

	 DISEASE INCIDENCE AND SEVERITY IN 2014 .......... 40	2.3.2
	 FUNGAL PATHOGENS ASSOCIATED WITH WHEAT ..... 41	2.3.3
	 PHYLOGENETIC ANALYSIS ..................................... 46	2.3.4
	 PATHOGENICITY .................................................. 50	2.3.5

	 DISCUSSION ........................................................ 52	2.4.
Chapter 3 ..................................................................... 61	
3.	 ECONOMIC LOSSES DUE TO EYESPOT DISEASE AND 
MODELLING OF PROFITABILITY AND UNCERTAINTY ........... 61	

	 INTRODUCTION .................................................... 62	3.1.
3.1.1	 LOSSES ASSOCIATED WITH EYESPOT DISEASE ....... 63	
3.1.2	 RISK ASSESSMENT AND DECISION MAKING ............ 64	
3.1.3	 GROSS MARGIN IMPORTANCE ............................... 67	
3.2	 AIM AND OBJECTIVES: ............................................ 68	
3.3	 METHODOLOGY ...................................................... 68	
3.3.1	 DATA COLLECTION ............................................... 68	
3.3.2	 FINANCIAL ANALYSIS DATA .................................. 69	
3.3.3	 DATA ANALYSIS ................................................... 73	
3.4	 RESULTS ............................................................... 73	
3.4.1	 YIELD MEANS OF INOCULATED AND NATURAL 

INFECTED TRIALS 2004-2014 ................................ 73	
3.4.2	 GROSS MARGIN MEANS OF INOCULATED AND 

NATURALLY INFECTED TRIALS 2004 - 2014 ............. 76	
3.4.3	 THE EFFECT OF VARIOUS FUNGICIDE TREATMENTS ON 

EYESPOT DISEASE INDEX AT GS70/80 IN INOCULATED 
AND NATURALLY INFECTED TRIALS ........................ 79	

3.4.4	 THE EFFECT OF VARIOUS FUNGICIDE TREATMENTS ON 
YIELD IN INOCULATED AND NATURALLY INFECTED 
TRIALS ............................................................... 82	

3.4.5	 THE EFFECT OF VARIOUS FUNGICIDE TREATMENTS ON 
GROSS MARGIN IN INOCULATED AND NATURALLY 
INFECTED TRIALS ................................................ 84	

3.5	 DISCUSSION ......................................................... 87	
Chapter 4 ..................................................................... 94	
4.	 EYESPOT DISEASE MODELLING FOR UK ...................... 94	

	 INTRODUCTION .................................................... 95	4.1.
	 EYESPOT DISEASE – EPIDEMIOLOGY AND LOSSES IN 4.1.1

WHEAT ............................................................... 96	



TABLE OF CONTENTS  

XI 

 

	 EYESPOT DISEASE SYMPTOMS ............................... 96	4.1.2
	 DISEASE CONTROL METHODS ............................. 104	4.1.3
	 ASSESSMENT OF THE DISEASE ............................ 107	4.1.4
	 EYESPOT DISEASE RISK MODELS ......................... 108	4.1.5

	 AIM AND OBJECTIVES .......................................... 110	4.2.
	 MATERIALS AND METHODS ................................... 110	4.3.
	 FIELD SITES AND AGRONOMY OF EXPERIMENTS ON 4.3.1

FUNGICIDE EFFECTIVENESS AGAINST EYESPOT 
DISEASE IN UK .................................................. 110	

	 CROP SAMPLING IN 2012/13 AND 2014/15 FOR CROP 4.3.2
SIMULATION MODEL .......................................... 112	

	 DISEASE ASSESSMENT ....................................... 113	4.3.3
	 YIELD MEASUREMENT ......................................... 114	4.3.4
	 THERMAL TIME CALCULATION ............................. 114	4.3.5
	 CONCEPTUAL DISEASE MODELLING ..................... 115	4.3.6
	 INFECTION	POTENTIAL	MODEL	(IPM)	......................................................................	117	4.3.6.1
	 DISEASE	DEVELOPMENT	MODEL	(DDM)	.................................................................	118	4.3.6.2
	 DISEASE	SEVERITY	MODEL	(DSM)	............................................................................	119	4.3.6.3
	 YIELD	REDUCTION	MODEL	(YIELD	LOSS)	..................................................................	120	4.3.6.4
	 MODEL ESTIMATIONS ......................................... 121	4.3.7

	 RESULTS ............................................................ 124	4.4.
4.4.1.	 EYESPOT DISEASE MODEL DEVELOPMENT ............. 124	

	 INFECTION POTENTIAL MODEL (IPM) .................... 125	4.3.9
	DISEASE DEVELOPMENT MODEL (DDM) ................ 128	4.3.10
	DISEASE SEVERITY MODEL (DSM) ....................... 131	4.3.11
	YIELD REDUCTION MODEL (YIELD LOSS) .............. 133	4.3.12
	YIELD LOSS SCENARIO USING ESTIMATED 4.3.13
PARAMETERS .................................................... 135	

	 DISCUSSION ...................................................... 137	4.5.
Chapter 5 ................................................................... 145	
5.	 CROP GROWTH SIMULATION USING APSIM WITH 
EYESPOT DISEASE MODELLING FOR WINTER WHEAT IN UK
 145	

	 INTRODUCTION .................................................. 146	5.1.
	 OVERVIEW OF APSIM ........................................... 147	5.2.
	 LINKING DISEASE AND CROP SIMULATION MODELS 149	5.3.
	 AIMS AND OBJECTIVES ........................................ 151	5.4.



TABLE OF CONTENTS  

XII 

 

	 MATERIALS AND METHODS ................................... 152	5.5.
	 EXPERIMENTAL SITES AND BIOMASS DATA ........... 152	5.5.1
	 METHODS OF APSIM CALIBRATION AND VALIDATION5.5.2

 153	
	 INTEGRATING EYESPOT DISEASE MODEL WITH APSIM5.5.3

 156	
	 RESULTS ............................................................ 161	5.6.
	 APSIM CALIBRATION AND VALIDATION ................ 161	5.6.1
	 DISEASE MODELS LINKED WITH APSIM ................ 170	5.6.2

	 DISCUSSION ...................................................... 170	5.7.
Chapter 6 ................................................................... 178	
6.	 GENERAL DISCUSSION ............................................ 178	

	 GENERAL DISCUSSION ........................................ 179	6.1.
6.2       Future studies .................................................. 188	
REFERENCES ............................................................... 191	
7.	 APPENDIX ............................................................. 217	
8.	 APPENDIX ............................................................. 223	

	 Agriculture and Climate Change - Adapting Crops to 8.1.
Increased Uncertainty (AGRI 2015 Conference) ...... 223	

 



LIST OF FIGURES  

XIII 

 

LIST OF FIGURES 

Figure	1-1:	Historical	and	projection	population,	cereals	and	meat	production	in	developing	

countries	(adapted	from	van	der	Mensbrugghe	et	al.,	2009).	......................................	5	

Figure	1-2:	Historical	and	projected	population,	cereals	and	meat	production	in	developed	

countries	(adapted	from	van	der	Mensbrugghe	et	al.,	2009).	......................................	5	

Figure	1-3:	Challenges	of	climate	change	and	interactions	of	water,	food	and	energy	by	2030	

(adapted	from	Islam	et	al.	2012).	................................................................................	9	

Figure	2-1:	Omani	provinces	with	field	surveyed	indicated	by	numbers.	.............................	25	

Figure	2-2:	Incidence	of	disease	in	Oman	wheat	field	assessed	at	GS55-69	between	2009	and	

2014	Bars=1±SEM,	assesses	by	multiple	regression.	..................................................	34	

Figure 2-3: Incidence of disease in the UK wheat field assessed between 2009 and 2014.	36	

Figure 2-4: Incidence of diseases in Omani wheat crop assessed at GS39-51, GS55-69, and 

GS71-87. Bars=1±SEM, analysed by residual maximum likelihood (REML).	........	41	

Figure	2-5:	A	phylogram	showing	the	relationship	of	B.	sorokiniana	to	B.	sorokiniana	from	

GenBank	and	to	three	other	Bipolaris	species	based	on	the	ITS	rDNA	sequences.	......	48	

Figure	2-6:	A	phylogram	showing	the	relationship	of	Alternaria	alternata	to	other	isolates	

and	species	of	Alternaria	from	GenBank	based	on	the	ITS	rDNA	sequences.	..............	49	

Figure	2-7:	A	phylogram	showing	the	relationship	of	Fusarium	equiseti	to	other	isolates	and	

species	of	Fusarium	based	on	the	ITS	rDNA	sequences.	.............................................	49	

Figure	2-8:	Percentage	of	the	wheat	leaf	area	covered	with	chlorotic	symptom	as	a	result	of	

inoculated	fungi	in	two	different	wheat	varieties	in	Oman	Bars=1±SEM.	...................	51	



LIST OF FIGURES  

XIV 

 

Figure	2-9:	Percentage	of	the	wheat	leaf	area	covered	with	necrotic	symptom	as	a	result	of	

inoculated	fungi	in	two	different	wheat	varieties	in	Oman	Bars=1±SEM.	...................	51	

Figure	3-1:	Yield	means	for	treated	and	untreated	eyespot	disease	inoculated	trials	between	

2004	and	2012	(±2	SDs).	............................................................................................	75	

Figure	3-2:	Yield	means	for	eyespot	disease	naturally	infected	trials	between	2007	and	2010	

(±2	SDs).	....................................................................................................................	76	

Figure	3-3:	Gross	margin	means	for	treated	and	untreated	inoculated	trials	between	2004	

and	2012	(±2	SDs).	.....................................................................................................	78	

Figure	3-4:	Gross	margin	means	for	treated	and	untreated	naturally	infected	trials	between	

2007	and	2010	(±2	SDs).	............................................................................................	79	

Figure 3-5: Disease index at GS70/80 means of different fungicides used at GS 31 in 

inoculated trials between 2004 and 2014 (±2 SDs).	..................................................	81	

Figure	3-6:	Disease	index	means	at	GS70/80	of	different	fungicides	used	at	GS	31	in	natural	

disease	infection	trials	between	2007	and	2010	(±2	SDs).	..........................................	82	

Figure 3-7: Yield means of different fungicide treatments in inoculated trials between 

2004 and 2014 (±2 SDs).	...........................................................................................	83	

Figure	3-8:	Yield	means	of	different	fungicide	treatments	in	natural	infection	trials	between	

2007	and	2010	(±2	SDs).	............................................................................................	84	

Figure	3-9:	Gross	margin	means	of	different	fungicide	treated	and	untreated	inoculated	

trials	between	2004	and	2014	(±2	SDs).	.....................................................................	86	

Figure	3-10:	Gross	margin	means	of	different	fungicide	treated	and	untreated	natural	

disease	infection	trials	between	2007	and	2010	(±2	SDs).	..........................................	87	



LIST OF FIGURES  

XV 

 

Figure	4-2:	The	life	cycle	of	Oculimacula	spp.,	showing	asexual	cycle	with	conidia	and	sexual	

cycle	with	apothecia	and	ascospores	with	climatic	condition	influencing	its	severity	

(Adapted	from	Lucas	et	al.,	2000).	...........................................................................	104	

Figure	4-3:	Conceptual	disease	model	representing	different	stages	of	disease	development.

	...............................................................................................................................	116	

Figure	5-1:	Structure	of	the	epidemiological	disease	model	and	crop	simulation	model	(Al-

Azri	et	al.,	2014).	.....................................................................................................	148	

Figure	5-2:	Eyespot	disease	crop	growth	workflow	integration	(Al-Azri	et	al.,	2014).	........	156	

Figure	5-3:	Growth	stages	of	the	wheat	crop	and	those	of	Oculimacula	spp.,	on	different	

stages	from	GS12/13	to	the	harvest	(Al-Azri	et	al.,	2014).	........................................	158	

Figure	5-4:	Mechanistic	diagram	of	APSIM	crop	model	incorporated	with	epidemiological	

disease	and	yield	reduction	model	in	relation	to	crop	growth	stages	(Al-Azri	et	al.,	

2014).	......................................................................................................................	159	

Figure	5-5:	APSIM	script	with	different	disease	files.	........................................................	160	

Figure	5-6:	Script	of	kill	crop	disease	file	in	APSIM.	...........................................................	160	

Figure	5-7:	Script	of	KL	factor	disease	in	APSIM.	...............................................................	161	

Figure	5-8:	Script	of	Grain	kill	fraction	in	APSIM.	..............................................................	161	

Figure	5-9:	Model	performance	for	total	above	ground	biomass	against	healthy	and	

diseased	biomass	using	measurements	data	2012/13	of	Oakley	variety.	.................	163	

Figure	5-10:	Model	performance	for	total	above	ground	biomass	against	healthy	and	

diseased	biomass	using	measurements	data	2014/15	of	Cashel	variety.	..................	164	



LIST OF FIGURES  

XVI 

 

Figure	5-11:	Model	performance	for	LAI	against	healthy	and	diseased	LAI	using	observed	

data	2012/13	of	Oakley	variety.	..............................................................................	165	

Figure	5-12:	Model	performance	for	LAI	against	healthy	and	diseased	LAI	using	observed	

data	2014/15	of	Cashel	variety.	...............................................................................	166	

Figure	5-13:	Model	performance	for	yield	against	healthy	and	diseased	yield	using	2012/13	

observed	data	of	Oakley	variety.	.............................................................................	168	

Figure	5-14:	Model	performance	for	yield	against	healthy	and	diseased	yield	using	2014/15	

observed	data	of	Cashel	variety.	.............................................................................	169	



LIST OF TABLES  

XVII 

 

LIST OF TABLES 

Table	2-1:	Number	of	fields	and	their	areas	surveyed	in	Oman	between	2009	and	2014.	....	25	

Table	2-2:	Management	practices	and	their	level	gathered	during	the	field	survey	in	Oman.

	.................................................................................................................................	28	

Table	2-3:	Multiple	regression	models	on	incidence	(%)	of	Leaf	Spot,	Stem	base,	loose	smut	

and	yellow	rust	diseases	assessed	at	GS55-69	in	Omani	wheat	fields	2009-2014,	No.	of	

fields	=468,	Total	d.f=467	..........................................................................................	37	

Table	2-4:	Predictions	of	incidence	(%)	from	multiple	regression	models	of	leaf	spot,	loose	

smut,	yellow	rust	and	stem	base	diseases	assessed	at	GS55-69	in	Omani	wheat	fields	

2009-2014,	No.	Of	fields	=468,	Total	d.f=467.	............................................................	38	

Table	2-5:	Geographical	distribution,	growth	stage	(GS),	tissues	and	wheat	hosts	“variety”	of	

fungi	recovered	from	stem-base,	leaf	and	ears	of	wheat	in	Oman	2013/2014.	..........	42	

Table	2-6:	Mixed	model	restricted	maximum	likelihood	(REML)	analysis	on	disease	index	of	

leaf	spot,	stem	base	&	loose	smut	assessed	at	GS25-51,	GS55-69	&	GS71-87	in	Omani	

wheat	fields	2014,	No.	of	fields	=45,	Total	d.f=44.	.....................................................	45	

Table	2-7:	Predictions	of	incidence	(%)	analysed	by	residual	maximum	likelihood	(REML)	of	

leaf	spot,	stem	base	&	loose	smut	assessed	at	GS25-51,	GS55-69	&	GS71-87	in	Omani	

wheat	fields	2014,	No.	of	fields	=45,	Total	d.f=44.	.....................................................	45	

Table	3-1:	Fungicides	trade	names,	active	ingredients	and	price	per	litre	for	2015.	.............	69	

Table	3-2:	Fungicides,	their	rate	of	application	and	cost	per	hectare.	.................................	71	

Table	3-3:	Other	variables	and	its	prices	(ABC,	2014)	..........................................................	73	



LIST OF TABLES  

XVIII 

 

Table	4-1:	Active	ingredients	and	product	name	of	some	fungicides	used	in	UK.	..............	107	

Table	4-2:	Category	of	eyespot	disease	(Scott	and	Hollins,	1974).	.....................................	108	

Table	4-3:	Agronomy	factors	influencing	final	disease	outcome	(from	Burnett	et	al.	2012).

	...............................................................................................................................	111	

Table	4-4:	Variable	names	and	the	related	expressions	when	predicting.	.........................	117	

Table	4-5:	Variable	names	and	the	related	expressions	when	predicting.	.........................	118	

Table	4-6:	Variable	names	and	the	related	expressions	when	predicting	SI.	......................	119	

Table	4-7:	Variable	names	and	the	related	expressions	when	predicting	yield	loss.	..........	120	

Table	4-8:	Environmental	and	epidemiological	parameters	from	previous	published	

experiments	on	eyespot	disease.	............................................................................	124	

Table	4-9:	Poisson	regression	output,	showing	the	effect	explanatory	variables	have	upon	

disease	infection	potential	at	GS12/13	using	data	of	UK	inoculated	winter	wheat	

experiments	obtained	from	different	locations	between	2004	and	2014.	................	125	

Table	4-10:	Poisson	regression	output,	showing	the	effect	explanatory	variables	have	upon	

disease	development	at	GS31/32	using	data	of	UK	inoculated	winter	wheat	

experiments	obtained	from	different	locations	between	2004	and	2014.	................	129	

Table	4-11:	Poisson	regression	output	showing	the	effect	explanatory	variables	have	upon	

disease	severity	index	at	GS39	using	data	of	UK	inoculated	winter	wheat	obtained	

from	different	locations	between	2004	and	2014.	...................................................	131	



LIST OF TABLES  

XIX 

 

Table	4-12:	Gaussian	regression	output,	showing	the	effect	of	explanatory	variables	on	yield	

using	trial	data	of	inoculated	winter	wheat	obtained	from	different	locations	between	

2004	and	2014.	........................................................................................................	134	

Table	4-13:	Disease	development	and	yield	loss	prediction	performed	using	multiple	

variables	in	the	model.	............................................................................................	135	

Table	5-1	:	Details	of	the	experimental	datasets	used	to	validate	APSIM	for	UK	wheat	.....	153	

Table	5-2:	Experimental	soil	parameters	used	in	APSIM.	..................................................	155	

Table	7-1	Historical	data	used	in	this	study	collected	through	previous	research	projects	on	

fungicide	efficacy	against	eyespot	disease	by	the	University	of	Nottingham,	Harper	

Adams	University,	as	well	as	The	Arable	Group	research	(TAG).	..............................	217	

Table	7-2	Experimental	field	locations	and	their	GPS	coordination’s	.................................	220	

Table	7-3	Trials	of	eyespot	disease	inoculated	and	natural	infection	between	2004	and	2014.

	...............................................................................................................................	221	

Table	7-4	Different	fungicides	products	and	their	active	ingredients	used	in	the	trials.	.....	222	

 

 



CHAPTER 1 

1 

 

 

  

 

Chapter 1 

 

 

 

1. INTRODUCTION AND LITERATURE REVIEW 

  



CHAPTER 1 

2 

 

 FOOD SECURITY IN GLOBAL AGRICULTURE 1.1.

Food security is predicted to be a serious future challenge due to increasing 

global population and income per capita in developing countries as well as 

scarcity of natural resources such as land and water (Duveiller et al., 2007). 

According to James (1998), at the beginning of 1990s there were more than 

800 million people among various regions of the globe unable to obtain 

sufficient food to satisfy their nutritional needs. This number increased to 1.02 

billion people in 2009 due to reduced availability of adequate food 

(Anonymous, 2010). Indeed, von Braun and Torero (2009) linked food security 

with access to sufficient safe food more recently as a result of the spike in the 

prices of the food commodities around the globe in 2007 and 2008. The Food 

and Agriculture Organisation of the United Nations (FAO) (1996) defines food 

security “when all people, at all times, have physical and economic access to 

safe, sufficient, and nutritious food to meet their dietary needs to ensure an 

active and healthy living”.  

The major factors affecting long-term food security are climate change and in 

some cases increased biofuel production from food crops. Population and 

income growth have intensified the pressures on natural resources (Alcamo et 

al., 2005) and factors such as economic recession, political unrest, war, climate 

change, poverty and unemployment can influence food availability and access. 

Individual factors or combinations can thus cause “hotspots” of food insecurity 

around the world (Scholes & Biggs, 2004). Drought and conflicts among the 

communities have been known to cause food insecurity in most developing 
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countries (Brinkman & Hendrix, 2011). On the other hand, rising water 

demand together with increasing population and urbanization also affect food 

production.  

Food is a basic human need and one of the most fundamental human rights is 

access to enough food to enable a healthy and active lifestyle. Food energy 

deficit therefore has been used as a measure of food insecurity. Von Braun 

(2007) demonstrated that economically poor countries have inadequate social, 

institutional and cultural systems to adjust to unpredicted disturbances such as 

climate change and water scarcity culminating in severe impact in food 

security. Moreover, climate instability as well as water scarcity, land 

degradation and pests and crop diseases can have direct influence on farm 

production and consequently on food security in developing countries (Parry et 

al., 2004). Thus, in developing countries improving crop production is one of 

the most efficient ways to reduce poverty and increase food security. 

 CHALLENGES TO FUTURE FOOD SECURITY 1.2.

Achieving security of food supply under changing climate is a major challenge 

of the 21st century given that an increase in food demand of 70 to 100% is 

projected by 2050, a high percentage of which will need to be met by the main 

staple cereal crops (wheat, rice and maize). Observations and climate 

projections suggest that major threats to cereal production and food security are 

likely to arise through increased frequency and severity of extreme weather 

events. Such events include seasonal variation in temperature and changes in 

rainfall patterns and intensity, which would result in reduction, and possible 
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failure, of crop production (Mishra et al., 2008). This has been demonstrated in 

recent years by the simultaneous occurrences of adverse weather events in 

important agricultural production regions across the world (Lobell & Gourdji, 

2012). These events are implicated as the main causes of increased food supply 

shortages and spikes in food prices (Wheeler & Von Braun, 2013).  

 INCREASING GLOBAL POPULATION FOLLOWING THE 1.2.1

GREEN REVOLUTION 

The world population was estimated as 6.94 billion people in 2011, expected to 

increase to approximately 9 billion by 2050 (Figures 1.1 & 2.1) (van der 

Mensbrugghe et al., 2009). The danger with this rapid increase in the 

population is that food production at subsistence level, mainly in some 

countries in Asia and Africa, is unlikely to keep up with the rate of growth in 

the context of limited natural resources such as water and land (Shiklomanov, 

1991). The growth in population means that more land is required for 

settlement thus limiting the land available for farming. The demand for cereals 

in both developing and developed countries is projected to grow from nearly 

2.1 billion tonnes in 2005 to 3 billion tonnes by 2050. Thus to feed nearly 9 

billion people in 2050, food production will need to grow by almost 70% 

between 2005 and 2050. This suggests that food production in the developing 

countries alone will need to double.  
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Figure 1-1: Historical and projection population, cereals and meat production in 

developing countries (adapted from van der Mensbrugghe et al., 2009). Rapid increase of 

population from just 2000 million persons in 1961 projected to be 9000 million persons by 

2050 accompanied by slow growth in cereal and meat production in developing countries.  

 

 
Figure 1-2: Historical and projected population, cereals and meat production in 

developed countries (adapted from van der Mensbrugghe et al., 2009). The demand for 

cereal and meat in developed countries is projected to grow from nearly (500 cereals, 52 

meat) million tonnes in 1962 to (1200 cereals, 138 meat) million tonnes in 2050.  

The Green Revolution has helped to feed the increasing population of the 

world through the development of high-yielding crop varieties, irrigation 
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infrastructure, innovation of management techniques, distribution of hybrid 

seeds, synthetic fertilizers, and pesticides to farmers (Islam et. al., 2012). 

However, the Green Revolution advancements seem to have been used less in 

helping developing countries to meet the demand for food. In Africa 

agricultural production decreased by 5-10% per capita from 1980 to 1995 

(Sanchez et. al., 1997). In contrast, in the developed countries the wide 

application of biotechnology for plant breeding in agriculture has aided the 

production of plants that can use soil more efficiently and resist constraints like 

disease, drought and salinity (Chen & Kates, 1994). Increased uses of fertilizer 

and pesticides and crop improvement (Ingram et. al., 2008) have had a direct 

effect on crop yields, leading to increased food production (Ainsworth & Long, 

2005). Thus in Europe and in the USA the average yield of maize, rice and 

wheat since the Green Revolution have increased by 61, 54 and 41 kg ha-1 

year1, respectively (Ainsworth & Long, 2005). Moreover, improvements in 

farming practice as well as crop management and better protection against 

pests and diseases have contributed further to a significant rise in wheat 

production over the last 40 years (Chakraborty & Newton, 2011).  

 CLIMATE CHANGE 1.2.2

Changes in climate due to global warming have become a major concern 

among the global organizations and governments. For instance, the weakest 

economic region is the most vulnerable to climate change (Christensen et al., 

2007). Also areas located in the low latitude and less developed regions face 

greater risk to be affected by changing climate. This is mainly based on the 
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social, economic as well as the political constraints that determine the capacity 

and the ability of systems to cope with external stressors and the associated 

food insecurity that would accompany a changing climate (Brown, 2009; 

Cooper et al., 2008). Countries that are dependent on natural resources for food 

production via agriculture, pastoralism and fishing are particularly vulnerable 

to climatic changes regardless of whether they are in the developed or the 

developing world.  

The changes in the climatic conditions, and particularly global warming, have 

led to long periods of drought to the detriment of agricultural activities. 

According to Cooper et al. (2008) and Jones and Thornton (2009), the 

predominance of rain-fed agriculture has resulted in a food system that is 

highly sensitive to the changes in the environmental conditions. The evidence 

of climate change can be clearly seen in the case of Asia, the highest populated 

area in the world, where 25% of the world’s cereal production is projected to 

be affected if changes in rainfall occur that lead to drought or flooding 

(Chakraborty & Newton, 2001). Gulf countries are also likely to be rapidly 

affected by climate change in terms of extreme temperatures since they are 

already in an arid region. Oman for instance, is highly vulnerable to climate 

change, as it is one of the most water scarce countries, and less and more 

erratic precipitation due to changing climate will also effect the balance in 

water supply and demand, which will likely worsen the country drought and 

desertification incident (Mushtaque & Choudri, 2012).  
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Climate change on the other hand is altered by increasing agricultural 

production. Due to increase in the use of fertilizers and pesticides in crop 

cultivation in the last century the concentration of carbon dioxide (CO2), 

nitrous oxide (NO2) and methane (CH4) gases in the atmosphere increased by 

25, 16 and 100% respectively (Chen, 1990; Rosenberg and Scott, 1994; 

Houghton et al., 2001; Hoffert et al., 2002). Several studies have provided 

evidence of the negative impact of global warming on crop production. A study 

about implications of global changes for natural and managed terrestrial 

ecosystems found that wheat cropping duration and yield has decreased with 

increasing global temperature. The same study showed that the rise of one 

temperature degree above 32.8oC would result in a yield reduction of 5% in 

rice (Walker and Steffen, 1999). Kurukulasuriya et al. (2006) investigated the 

impact of climate change on African agriculture and concluded that African 

farms are sensitive to climate change. It was estimated that temperature 

increases of 1.9oC in dry land crops and 0.5oC in irrigated crops will have 

elasticity of response to the farmer’s income. Such increases in temperature 

would reduce crop yields and encourage pests and diseases; thus the costs 

associated with farming would increase and farmer income would decline.  

 SCARCITY AND COST OF RESOURCES 1.2.3

The widespread degradation and the heightened scarcity of land and water 

resources have placed most of the food systems in the world at risk (Figure 

1.3), thus posing a major challenge on the ability of these systems to 

effectively and efficiently feed the growing population of people in the world 
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(Berndes, 2002). Uses of such resources for non-food applications, like urban 

and industrial development as well as production of biofuel, will detract from 

potential world food supply.  

 

Figure 1-3: Challenges of climate change and interactions of water, food and energy by 

2030 (adapted from Islam et al. 2012).  Under climate change challenges in 2030 the 

demand of food is projected to increase by 50% accompanied with 50% increase in 

energy demand and 30% increase in water demand.  

 

Globally, agricultural cultivation only occurs on 12% of the total land (Schultz 

& de Wrachien, 2002). Land degradation due to salinization, desertification, 

soil erosion and deforestation will pose further challenges in increasing food 

production from available arable land. For instance, FAO (2003) reported that 

there has been a reduction of almost 13% of usable agricultural land and 4% of 

pasture in the last 50 years. The high cost of molecular breeding, genetic 

engineering and molecular diagnostic tools has impeded the contribution in 

improving plant yields and consequently reducing hunger in highly populated 
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areas of Asia and Africa (Messer & Heywood, 1990). In addition water scarcity 

has increased across the world, in particular in developing countries. 

Agriculture uses almost 70-80% of the freshwater from the global river system 

(Molden et al., 2007), and growing agricultural needs would further deplete 

this resource. 

 PESTS AND DISEASES 1.2.4

Food security is influenced by climate change, which in turn can affect the 

incidence of pests and diseases in major crops (Gregory et al., 2009). Potential 

yield has been the target in many assessments of climate change effects on 

crops, but actual yield can be impacted highly by pests and pathogens (Gregory 

et al., 1999). Pests and diseases can damage the growth and yield of crops that 

provide food for humans and as such threaten food security. According to 

Oerke and Dehne (2004) insect pests are the most important crop yield 

reducers and are mainly favoured by monoculture and the intensive application 

of fertilizers. Under changing climate pests that usually occur at low densities, 

may be able to spread widely and reach higher more damaging population 

densities. For instance, aphids, the global key pests of agriculture, horticulture, 

and forestry, are likely to respond to climate change because they have low 

temperature threshold for development, short life cycle and high ability to 

spread (Sutherst et al., 2007). 

Climate change can also cause changes in pathogen complexes in turn altering 

the impact on crop yield, safety and quality. Fusarium head blight (FHB) 

disease in wheat is a good example where disease incidence and severity has 
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been altered due to changes in climate (Chakraborty & Newton, 2011). Due to 

prolonged wet weather periods, FHB re-emerged in the northern Great Plains 

and central USA between 1998 and 2000, causing yield loss and grain price 

reduction estimated to total $2.7 billion as a result of reducing grain quality and 

safety (Goswami & Kistler, 2004). Beside yield losses associated with FHB 

infection, economic losses are associated with the production of, trichothecene 

mycotoxins and oestrogenic zearalenone in infected host tissue, which are 

harmful to humans and animals. 

Disease development, host physiology and host resistance can be altered by 

climate change. Plant canopy size and density can increase significantly by 

higher levels of CO2, which in turn results in higher nutritional quality and a 

greater biomass (Manning & Tiedmann, 1995). Such changes to the plant 

however may promote foliar diseases such as rusts, powdery mildews, leaf 

spots and blights, particularly when excessive humidity exists in the canopy 

(Coakley et al., 1999). Furthermore, many pests and diseases are capable of 

relatively rapid genetic changes. Altered environmental conditions that emerge 

due to climate change may enhance their ability to invade new areas or alter 

their seasonal patterns and abundance and as such threaten crops in locations 

which would otherwise not have preventative measures in place (Clements & 

Ditommaso, 2011). Survival, development, reproduction and dispersal of plant 

pathogens are dependent on climate to a certain degree, and accordingly 

shifting weather patterns may influence pathogen epidemiology and undermine 

any crop protection that is currently employed.  
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Despite recent advancements in breeding and integrated pest management, crop 

losses due to pests and diseases are still high, reaching over 50% in the major 

crops under favourable conditions such as high temperature and high rainfall 

(Oerke, 2006). Oerke (2006) analysed losses of 6 major crops between 2001 

and 2003 and found that the average loss in wheat and cotton due to plant 

diseases was 29%, while in potato the loss was 40%. Apart from pre-harvest 

crop losses due to pests and disease there it is estimated that up to 10% further 

loss can occur due to post-harvest diseases (Strange & Scott, 2005). Smil 

(2000) estimated that the overall waste in available food “from field to fork” 

was almost 25-55%, considering the combined pre- and post-harvest losses. 

The variation in loss between locations and seasons is influenced by the 

variation in climate, which in turn influences the incidence and severity of crop 

pests and diseases (Flood, 2010).  

Accurate data on the yield losses caused by disease in developing countries are 

often absent or difficult to obtain. However, this is not the case in developed 

countries, for example in the UK, where more information about disease and 

estimated losses is available. Effects of climate change on plant disease 

epidemics have been investigated less often. More work is required to 

understand the impact of climate change on the interactions between crops and 

diseases, and the outcomes of these interactions on crop production. A recent 

report from the UK Government Office for Science stated that development of 

optimal disease management strategies under predicted climate change 

scenarios are needed for agriculture to consider the impact from future threats 

of plant disease epidemics (Brownlie et al., 2006). The impacts of pests and 
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diseases on yield in current conditions are well known, but the consequences of 

climate change on pests and diseases are complex and, as the preceding 

descriptions attest, are still only imperfectly understood. 

 ECONOMIC PERSPECTIVES  1.3.

Biotic stresses can decrease yield, increase production cost and limit food 

storage and market. In addition, pests and diseases can affect crops and can 

cause large economic losses and threaten food security. The national economy 

of countries dependent on the production of a single crop, which may be 

reduced by pest and disease, are under higher food insecurity (Walker, 1983). 

Therefore, management of disease should not only consider the epidemiology, 

but also the economics of crop protection. Agriculture is characterised by a 

large exposure to risk, high levels of uncertainty in output value and with the 

fact that decision consequences are not always known when management 

decisions are made. Variability in prices and yield is the biggest source of risk, 

whilst technology and policy change also have an impact (Moschini & 

Hennessy, 2001). Furthermore yields are highly variable and can be affected by 

a range of factors, including pests and diseases that can play a major role in 

effecting this outcome.  

For instance, eyespot, a stem base disease of wheat, can cause significant 

economic impact in winter wheat in England and Wales (Hardwick et al., 

2001). This disease gained more attention in Europe after methyl benz-

imidazole (MBC) fungicides were rendered ineffective and the pathogen 

gained resistance to them (Brown et al., 1984; King & Griffin, 1985). It has 
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been difficult to quantify the economic impact of eyespot disease due to 

difficulties in visually diagnosing the disease in the presence of other stem base 

diseases such as brown foot rot and sharp eyespot (Polley & Turner, 1995). 

Potential losses from this disease have been found to vary depending on the 

severity of infection. For example, slight infections have been shown to cause 

little loss in ear weight (Ray et al., 2006), whilst under moderate or severe 

infection, yield has been found to be reduced between 10% and 36% 

respectively (Clarkson, 1991). The values of yield loss vary between 0.5% and 

2.2% of the total national yield (Hardwick et al., 2001). This finding was 

supported by Cook et al. (1991), who investigated yield loss in winter wheat 

between 1985 and 1989 in England and Wales, showing that the national yield 

reduction due to eyespot was over 250,000 tons of wheat per year. 

Management of the disease in the case of eyespot was considered mostly in 

respect to yield loss, but the economics of the treatment cost, or the benefit in 

terms of gross margin have not been fully considered.  

 SIMULATION OF CROP PRODUCTION AND MODELLING 1.4.

OF LOSSES DUE TO PESTS AND PATHOGENS  

Since the 1990s, crop simulation has been an important tool for supporting 

decision making in crop production. Most crop models are blends of 

mechanistic approaches and empirical assumptions, therefore continuous 

research is needed to improve the capture and accuracy of data during extreme 

adverse weather as would be expected due to climate change (Challinor et al., 

2003). Modelling can help to understand better more complex interactions 



CHAPTER 1 

15 

 

between different components in agricultural systems which also aids in 

predicting the appropriateness of management strategies (Challinor et al., 

2003).  

Existing crop models rely on two different approaches. The first approach is to 

quantify crop growth and development as well as climatic conditions, for 

example EcoCrop developed originally by Hijmans et al. (2001), Agricultural 

Production Systems Simulator (APSIM) developed by McCown et al. (1996), 

the general large area model (GLAM) developed by Challinor et al. (2004) and 

the (CROPGRO) model developed by Boote & Jones (1998). The second 

approach is based on an experimental model that is concerned with only one 

variable. Particularly, the basic purpose of different crop simulation models is 

to model how plant growth and yield are affected by changes in the 

environment. Therefore, the predictions generated assist our understanding 

about the future impact of climate change on crop production (Jamieson et al., 

1998). The input data in any model must be of adequate quality, to reduce the 

uncertainty in the output result. Moreover, the clarity of the result and 

explanation will be reduced by excessive complexity of input data (Passioura, 

1996).  

APSIM is one of the most used simulation models for cropping systems in the 

dry lands. APSIM allows integration with other models such as those use for 

pasture and animal production for example GRAZPLAN (Moore et al., 1991), 

utilised in the Mediterranean and temperate regions of Australia (McKeon et 

al., 1990) and used in subtropics and tropics. This integrative function is very 
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important as it facilitates the incorporation of sub-models within APSIM in 

order to make more complex simulations. Thus the model can simulate a 

farming system where there is an uncertain or insufficient rainfall as well as 

decreased soil fertility and soil structure economically impacting future crop 

production. Another crop simulation approach is CROPGRO, which is a 

computerized model that estimates crop components and growth change based 

on farming system and climatic conditions (Boote et al., 1998). This model can 

also simulate soil saturation, organic matter and nitrogen balance. Moreover, it 

can constitute genetic differences among species and cultivars of some legume 

crops, however it is not able to simulate the growth of cereal crops. This model 

is more reliable to identify homogeneous crop region rather than heterogeneous 

as it is less justifiable in spatial aggregation of inputs over heterogeneous land 

because it includes more process of non-linearity (Basso et al., 2001; Jones & 

Barnes, 2000; Guerif & Duke, 2000).  

EcoCrop originally developed as DIVA-GIS created by Hijmans et al. (2001) 

was given this name because it is using the FAO-EcoCrop database (2000). 

This model is more applicable to wider geographical areas rather than a single 

location as it allows spatial analysis of including landscape features; however, 

it requires adequate representation of current climate for optimum spatial 

resolution. FAO-AquaCrop (Steduto et al., 2009; Raes et al., 2009), is used for 

the prediction of the impact of water deficits on crop production for major field 

and vegetable crops using low input data and parameters such as biomass, soil 

evaporation, crop transpiration and final yield (Raes et al., 2009). This model 

provides improved balance between accuracy, simplicity and robustness as 
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well as its parameters are easy to understand and use with clear outputs and 

details. One drawback is that AquaCrop is using harvest index (HI) parameters 

to estimate yield. However, to avoid uncertainty and difficulties, which may 

exist with the separation process, the separation of biomass into organs like 

leaves or roots is not calculated. On the other hand, General large area model 

(GLAM) (Challinor et al., 2004) aims to unite the advantage of modelling 

using low input data over large area (Fischer et al., 2002), a process-based 

approach modelling. Equations and parameter values of different crops have 

been developed within the model to permit operation in larger number of 

annual crops. This highly parameterised model has forty parameters, twenty of 

them being crop specific and the rest of them can vary spatially (Challinor et 

al., 2004).  

Combinations of models that focus on future climate simulation, crop growth 

and empirical disease measurements have been developed for many diseases 

such as phoma stem canker of oilseed rape (Evans et al., 2008) and light leaf 

spot (Welham et al., 2004). UKCIP02 scenarios predicting UK 

temperature/rainfall under high- and low-CO2 emission scenarios for the 2020s 

and 2050s were combined with a crop simulation model for yield of fungicide-

treated winter oilseed rape and weather-based regression models for severity of 

phoma stem canker (Evans et al., 2008) epidemics to investigate crop-disease-

climate interactions (Butterworth et al., 2010). Yields of fungicide-treated 

oilseed rape crops in 2020s and 2050s were predicted with the greatest yield 

increase of 15% in eastern Scotland. The same model predicted that epidemic 

severity of phoma stem canker and climate change will contribute to yield loss 
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of moderately susceptible untreated crops by up to 50% (264,000 t/ha) in 

southern England (Evans et al., 2008; 2010; Butterworth et al., 2010).  

Although a considerable amount of literature has been published on modelling 

approaches that aim to develop crop simulations to understand optimal 

conditions to enhance crop output, few attempts have been taken to modify the 

simulation software to incorporate epidemiological disease modelling on crop 

growth and yield under different disease intensities in the UK or elsewhere. 

APSIM was chosen for the purpose of this study over the Sirius model (that has 

been evaluated to simulate the growth of wheat crop in the UK) (Jamieson et 

al., 1998), because of two important reasons; i) APSIM can simulate wheat 

growth and yields under any crop growing conditions and ii) the multi-point 

features within APSIM that allows it to simultaneously simulate multiple 

points in space and the interactions between them as well as the input and 

output features that simplified communication between multiple models which 

does not exist in the Sirius model. 

 

 AIMS AND OBJECTIVES  1.5.

The overall aim of this project is to model disease impact on wheat for 

improved food security. The main objectives are:  

1) To compare the incidence of wheat diseases between 2009 and 2014 in two 

different agro-ecological zones, the UK and Oman. Also, to identify the 
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main disease threats and quantify their impact on wheat production in 

Oman using data of diseases in Omani wheat collected in a 2014 survey.  

2) To improve economic decision-making relating to different eyespot 

management strategies by i) assessing whether treatment cost of eyespot 

control is recovered through yield response of the crop and ii) to assess the 

effect of fungicide treatment on risk using the same data on eyespot disease 

and fungicide efficacy carried out between 2004 - 2014 in the UK.  

3) To develop conceptual epidemiological disease model for the prediction of 

yield loss in wheat. Collected data from wheat experiments on eyespot 

disease and fungicide efficacy carried out between 2004 and 2014 in the 

UK were used for this work. 

4) To evaluate APSIM for its ability to simulate winter wheat development 

and yield under UK conditions when incorporated with an epidemiological 

model for eyespot disease.  
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2. THE OCCURRENCE OF FUNGAL DISEASES IN OMAN AND UK 

BETWEEN 2009 AND 2014 AND CHARACTERISATION OF THE 

PATHOGENS IN OMANI WHEAT  
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 INTRODUCTION 2.1.

Wheat is one of the most important cereal crops worldwide with a total 

production of 734.2 million tonnes in 2015/16 (FAOSTAT, 2016). Wheat 

production under arid conditions as in Oman is largely limited by water 

availability and domestic consumption exceeds production. The cultivated area 

in 2014 was 660 hectares and the total production was 2100 tonnes (FAOSTAT, 

2015). The average crop yield has increased from 1.2 t/ha to 3.8 t/ha due to the 

introduction and adaption of higher yielding varieties and more efficient 

irrigation systems (Curtis et al., 2002). Whilst major research efforts have 

focussed on improving yields through improved crop breeding and irrigation 

systems, accurate data on yield losses due to pest and diseases in arable crops 

in developing countries is often absent (Kamal et al., 2010). Worldwide it has 

been estimated that up to 29% of wheat yield is lost due to diseases (Oerke, 

2006). However, in Oman there is limited information on the main diseases of 

wheat crops and the pathogens associated with them, while in the UK, 

incidence and severity of diseases of winter wheat have been recorded since 

1970. 

The position of Oman between north eastern Africa and north western Asia, a 

region where in 2007 a new virulent strain of wheat stem rust, race Ug99 

(Singh et al., 2007) was confirmed prompted the first surveys of diseases in 

wheat. Rust caused by Puccinia triticina on wheat was first reported by 

Deadman (2007). Al-Sadi (2010) isolated Bipolaris sorokiniana (Cochliobolus 

sativus) and Alternaria alternata from the seed of two different field grown 



CHAPTER 2 

22 

 

varieties of wheat and investigated the influence of seed-borne B. sorokiniana 

on severity of root and crown rot of wheat and barley.  

There is further lack of information on the agronomy aspect of wheat 

production and its consequence for disease occurrence and pathogen 

predominance within standard farming practices in Oman. Omani wheat is 

cultivated only under irrigated conditions predominantly on sandy loam soils of 

low fertility (MAF, 1993). The crop is grown in rotation with maize, sorghum 

and alfalfa as well as other minor crops. Previous crop residue is usually 

removed for livestock. However, some returns through mixtures with compost 

or manure are practiced in isolation. Residue burning is still practised, whereas 

harvesting is mechanised. Seed treatment is not practiced prior to sowing. Most 

nutrients are supplied as livestock manure prior to sowing although artificial 

nitrogen at 150kg/ha, phosphorus at 90kg/ha and potassium at 60kg/ha are 

typically applied during the growing season (Al-Lawati & Nadaf, 2001). 

Fungicides or insecticides are rarely used.    

Data on the disease occurrence and associated pathogen species on wheat as 

well as the agronomic factors influencing diseases are not available in Oman, 

which is not the case in the UK. This study was conducted to compare the 

disease incidence of winter wheat in two agro-climatic conditions Oman and 

the UK between 2009 and 2014. In addition, this study is the first to identify 

and characterise the pathogenicity of fungal isolates associated with the stem, 

leaf and ear diseases in Omani wheat and model agronomic factors in disease 

occurrence. Long runs of data are essential if trends and major changes in 
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dominance of particular diseases are to be revealed and the probable causes 

identified. New knowledge will provide guidelines for the formulation of 

control practices.  

In this study, 447 fields in five different locations in Oman were assessed for 

stem and foliar disease incidence between 2009 and 2013 at flowering 

growth stage (55-69). In addition, 45 fields were assessed in 2014 at three 

different growth stages GS 39-51, GS 55-69 and GS 71-87. A questionnaire 

was designed and detailed information about agronomic practices and 

disease control was gathered from the growers from all fields sampled and 

in all years. On the other hand, approximately 300 crops were assessed 

annually between 2009-2014 in UK, during the early to medium milk 

development stage (GS73-75). Of them 25 tillers were examined for leaf, 

stem and ear diseases.   

The main aim was to determine the impact of agronomy factors on the 

occurrence of fungal diseases and severity in Omani wheat.  Specifically, the 

objectives were to i) to compare the incidence of wheat diseases in two 

different environment Oman and the UK between 2009 and 2014, ii) to identify 

the main diseases that can potentially cause yield losses in Omani wheat and 

iii) to characterise the pathogen/s associated with them. 
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 MATERIALS AND METHODS 2.2.

 COLLECTION OF AGRONOMIC DATA AND SAMPLING 2.2.1

Qualitative and quantitative information on cultivation practices and 

incidence of foliar diseases was gathered between 2009 and 2013 on 447 

fields in five provinces (Figure 2-1), Buraimai, Thahira, Interior, Sharqia 

and Batainah.  Incidence of leaf spot, ear smut, stem and leaf rusts was 

assessed from winter wheat during the flowering stage (GS 59-69, Zadoks et 

al., 1974). Fields were crossed in W- shape and 30 plants were assessed 

across the field. The number of fields selected from each province was 

different each year based on the proportion to the wheat grown in the 

province (Table 2-1). During 2014 growing season, 45 wheat fields were 

sampled by collecting thirty wheat samples at W- traverse of the field at GS 

39-51, GS 55-69 and GS 71-87. The incidence of foliar, stem base and ear 

blight diseases of UK winter wheat were obtained from the CropMonitor 

(www.cropmonitor.co.uk) disease survey of mainly commercial crops and 

HGCA Recommended List trials, for up to 30 different winter wheat 

cultivars. Data was collected as the percentage of sample affected by each 

disease sampled between 2009 and 2014.  
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Figure 2-1: Omani provinces with field surveyed indicated by numbers. 

  

 

Table 2-1: Number of fields and their areas surveyed in Oman between 2009 and 2014. 

Year Provinces No of fields Field area 

2009 

 

Buraimai 1 < 0.42 ha 

3 >0.5 to < 2 ha 

Thahira 7 < 0.42 ha 

14 >0.5 to < 2 ha 

1 <2.1 to < 4 ha 
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Interior 4 < 0.42 ha 

14 >0.5 to < 2 ha 

Sharqia 

 

5 < 0.42 ha 

2 >0.5 to < 2 ha 

2 > 2.1 to < 4 ha 

2010 Buraimai 8 < 0.42 ha 

13 >0.5 to < 2 ha 

Thahira 26 < 0.42 ha 

31 >0.5 to < 2 ha 

Interior 4 < 0.42 ha 

8 >0.5 to < 2 ha 

3 > 4.1 to < 6 ha 

1 > 6 ha 

Sharqia 

 

3 < 0.42 ha 

11 >0.5 to < 2 ha 

Batinah 4 < 0.42 ha 

3 >0.5 to < 2 ha 

2011 Buraimai 5 < 0.42 ha 

6 >0.5 to < 2 ha 

3 >2.1 to <4 ha 

Thahira 5 < 0.42 ha 

25 >0.5 to < 2 ha 

2 >2.1 to <4 ha 

Interior 3 < 0.42 ha 

7 >0.5 to < 2 ha 

Sharqia 1 < 0.42 ha 

3 >0.5 to < 2 ha 

Batinah 25 < 0.42 ha 
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33 >0.5 to < 2 ha 

1 >2.1 to <4 ha 

2012 Buraimai 4 <0.42 ha 

4 >0.5 to <2 ha 

5 >2.1 to <4 ha 

1 >4.1 to <6 ha 

1 >6 ha 

Thahira 5 <0.42 ha 

14 >0.5 to < 2 ha 

2 >2.1 to <4 ha 

Interior 3 <0.42 ha 

8 >0.5 to < 2 ha 

Sharqia 1 <0.42 ha 

3 >0.5 to < 2 ha 

Batinah 13 <0.42 ha 

33 >0.5 to < 2 ha 

1 >2.1 to <4 ha 

2013 Buraimai 12 < 0.42 ha 

7 >0.5 to < 2 ha 

1 > 6 ha 

Thahira 10 < 0.42 ha 

9 >0.5 to < 2 ha 

1 >2.1 to <4 ha 

Interior 5 < 0.42 ha 

6 >0.5 to < 2 ha 

Sharqia 3 < 0.42 ha 

2 >0.5 to < 2/ha 

1 >6/ha 
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Batinah 6 < 0.42/ha 

2014 Buraimai 5 <0.42/ha 

Thahira 4 < 0.42 ha 

5 >0.5 to < 2 ha 

1 >2.1 to <4 ha 

Interior 3 < 0.42 ha 

6 >0.5 to < 2 ha 

1 >6/ha 

Sharqia 5 < 0.42 ha 

4 >0.5 to < 2 ha 

1 >6/ha 

Batinah 10 < 0.42ha 

 

Coordinated with visual disease assessment, questionnaire was designed and 

growers were surveyed about management practices including sowing time, 

irrigation technique and timing of irrigation, seed source, variety and fertilizer 

type and application and pesticide use (Table 2-2). 

Table 2-2: Management practices and their level gathered during the field survey in 

Oman.  

Management practices Options 

Seed source Farmer or Ministry 

Seed treatment Yes or NO 

Sowing date Between 15-30 October, between1-15 November, between 16-30 

November, between 1-15 December or >16 December  

Tillage Ploughed or mini-tillage 

Sowing method Manual or mechanical 

Previous crop Fallow, wheat, other cereals or legumes 
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Variety Wadi Quriat 226, W.Q. 101, W.Q.308, W.Q. 302, W.Q. 151, 

W.Q.110 local (Saneen, Missani, Humira, Cooly).   

Irrigation system Flood, sprinkler or drip 

Irrigation time Morning or evening  

Use of irrigation /week 1 time, 2-3 times or >4 times 

Fertilizer application Yes or no 

Fertilizer type Manure, urea, NPK, superphosphate or  

Potassium+ ammonium + foliar 

Fertilizer application time Before sowing, 30 days after sowing or 60 days after sowing  

Pesticide application Yes or no 

 

 DISEASE ASSESSMENTS AND IDENTIFICATION  2.2.2

At each GS, collected plants were assessed for leaf, stem-base and ear diseases. 

Rust and powdery mildew were assessed when symptoms were first observed 

from GS71-87. Leaf diseases were recorded as percentage area affected on the 

flag leaf and first leaf of each sample using standard area diagrams (James, 

1971). However, stem-base diseases were recorded as percentage of stems with 

symptoms at the nodes and internodes as well as rot or decay at base that leads 

to stem weakening, following the method described by Clarkson & Polley 

(1981). The incidence of disease from 30 samples was calculated as the 

percentage of stems with visible lesions, where 0 was assigned to symptomless 

plants. Symptoms were scored as slight (1) when lesions covered less than half 

of the circumference of the stem; moderate (2) when lesions occupied more 

than half of the circumference of the stem or severe (3) when the lesions 

girdled and weakened the stem. Head diseases and loose smut were assessed 
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once heads emerged GS55-69 using “Horsfall-Barrett” scales that count the 

infected spikelets and express that as a percentage from the total spikelets of 

the head. Rusts and powdery mildew at GS71-87 were assessed using the 

rating scale from James (1971). Severity of rust and powdery mildew were 

classified into different percentage classes and leaf area affected by disease was 

recorded.  

 ISOLATION OF FUNGAL SPECIES FROM SYMPTOMATIC 2.2.3

SAMPLES 

Symptomatic tissues of stem, leaf or ear were washed using tap water, 

surface sterilized using 10% sodium hypochlorite (NaOCl), washed in 

sterile distilled water (SDW) and then blotted dry on sterile filter paper. 

Three 5-mm pieces of stems, leaves or ears were placed in each Petri-dish 

containing 2.5% potato dextrose agar (PDA, Oxoid, Hampshire, England). 

Two Petri dishes were used for each sample, and the plates were maintained 

at room temperature (22oC ± 2) for 1-3 days. Actively growing mycelia 

from plant tissues was excised and was sub-cultured into fresh PDA plates. 

This was followed by producing pure cultures using mycelium tip culture 

preserved at room temperature in PDA slants amended with 10 mg L-1 

rifampicin and 100 mg L-1 ampicillin to prevent bacterial contamination (Al-

Sa’di et al., 2007). 
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 PATHOGEN CHARACTERISATION  2.2.4

DNA was extracted from mycelium using the method described by Al-Sa’di 

et al. (2007). Freeze dried mycelium was ground, followed by lysis using 

lysis buffer.  Phenol: chloroform: isoamyl alcohol (25:24:1) was added to 

the mix, followed by centrifugation. Then the DNA was precipitated using 

NaAc and isopropanol.  The DNA pellets were washed with 70% ethanol. 

 Fungi were identified to the species level based on sequences of the internal 

transcribed spacer region of the ribosomal DNA (ITS rDNA) as described 

by Al-Sadi et al. (2011). The universal primers ITS1 (5’-

TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’ 

TCCTCCGCTTATTGATATGC-3’) were used to amplify the ITS rDNA 

region of the fungal isolates (White et al., 1990). The PCR reaction mixture 

consisted of 0.4 µM of each primer, 25 ng of DNA samples, PuReTaqTM 

Ready-To-GoTM PCR beads (GE Healthcare) and Milli-Q water up to a 

final volume of 25 µl. Gel electrophoresis was used to check the 

amplification of the ITS region. The mixture of each reaction of 5 µl was 

then run on a 1.5% agarose gel in 0.5x Tris-borate-EDTA buffer (TBE) at 

100 V for 60 min.  

Samples were sequenced at Macrogen Inc. (Seoul, Korea) using the same 

primers used for amplification. The alignment and edition of ITS sequences for 

each isolate was performed using ChromasPro. A BLAST search was then used 

to compare the representative sequence from each identical set of sequences 

with worldwide collections of sequences deposited at the National Centre for 
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Biotechnology Information (NCBI). Phylogenetic analysis of the sequence data 

was done by comparing sequences obtained in this study with sequences of 

reference isolates from GenBank.  Trees were constructed based on pairwise 

distances obtained using the Kimura 2 parameter evolutionary model (Mega 5) 

(Tamura et al., 2013).  

 PATHOGENICITY TEST 2.2.5

Pathogenicity tests were conducted for the four most common fungal 

species (Alternaria alternata, Bipolaris sorokiniana, Setosphaeria rostrata, 

Fusarium equiseti), associated with foliar diseases of wheat on two wheat 

cultivars, Cooly and WQ226.  Wheat seeds were sown in 15-cm pots, 20 

seeds per pot.  Spore suspension was prepared for each fungal species and 

adjusted to 100 spore’s µl-1. Conidia were applied on the leaves of 2-weeks 

old wheat seedlings. Wheat seedlings were irrigated daily using 50 ml of 

water and covered with polyethylene bag for 24 hr. Three replicate pots 

were used for each fungal species-wheat cultivar combination and the pots 

were kept at 24oC for 14 days after inoculation (dai). Severity of the disease 

was recorded as percentage of the leaf area covered with chlorosis/necrosis 

as described by Al-Sadi (2015). Re-isolations were made from leaves 

developing leaf spot symptoms to confirm Koch’s postulates. Data from 

pathogenicity tests were analysed using Tukey’s Studentized range test, 

using Statistical Analysis Software (SAS Institute Inc., NC, and USA). 
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 RESULTS 2.3.

 DISEASE INCIDENCE AND SEVERITY BETWEEN 2009 AND 2.3.1

2014 IN OMAN AND UK 

The survey was conducted between 2009 and 2014; during this period 492 

fields were examined at growth stages 55-69 for diseases on wheat grown in 

five provinces in Oman (Figure 2-1). The disease incidence data for the UK 

winter wheat were collated from the CropMonitor disease survey of mainly 

commercial crops and HGCA Recommended List trials, for up to 30 different 

winter wheat cultivars (www.cropmonitor.co.uk, Figure2-3). These data were 

recorded as percentage plants affected by different diseases from 300 crops, 

which were sampled during July/August between 2009 and 2014 as part of 

annual surveys.  

The disease incidence of leaf spot in Omani wheat increased from 18% in 

2009 to 42.2% in 2013 and was the predominant disease in wheat crops 

between 2010 and 2013. Loose smut and stem-base diseases predominated 

at 22% and 45%, in 2009 and 2014, respectively. The incidence of powdery 

mildew was highest in 2009 (7%) and lowest in 2012 (1%), (Figure 2-2).  
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Figure 2-2: Incidence of disease in Oman wheat field assessed at GS55-69 between 2009 

and 2014 Bars=1±SEM, assesses by multiple regression. Leaf spot disease increased from 

17% incidence of samples in 2009 to 44% incidence in 2013. Stem base diseases were 

recorded only in 2009 and 2014 with highest incidence in 2014 more than any other 

disease. Stem and yellow rust were recorded only in 2014 with less than 10% incidences. 

Loose smut was common in all years with more than 15% of the samples in the early 

years of the survey then decreased in 2013 and 2014 to less than 9% of the samples. 

Powdery mildew was recorded in less than 8% incidence of the samples in all years of the 

survey. 

Significant Stem base (P=0.005), Loose smut (P=<0.001), Yellow rust (P=<0.001).  
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The predominant disease in the UK winter wheat between 2009 and 2014 

was Septoria disease and it was the most common foliar disease with 99% 

incidence recorded in 2014. The disease incidence of tan spot ranged 

between 6% and 20% of samples infected with the highest incidence 

recorded in 2011, (Figure 2-3). The incidence of stem-base diseases was 

lower than 40% of samples infected in all years with the highest incidence 

(37%) recorded in 2013. Fusarium was most common followed by eyespot 

diseases. Powdery mildew was highest in 2009 (36% incidence) and lowest 

in 2012 (4% incidence), (Figure 2-3).  

Ear blight diseases were recorded the highest in samples infected in 2012 

with incidence of 96%, up from 21% recorded in 2011, which was the 

lowest incidence among the 6 years surveyed. Yellow rust was recorded in 

less than 10% of plant sampled in all years, whilst highest record of brown 

rust was in 2012 with 17% of plant samples and lowest in 2010 with no 

samples infected with this disease. Glume spot disease was recorded highest 

in 2009 with 65% of samples infected while in all following year the 

samples infected with glume spot was less than 60% with lowest recorded in 

2013 (27%), (Figure 2-3).  
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Figure 2-3: Incidence of disease in the UK wheat field assessed between 2009 and 

2014. Septoria was common foliar diseases in all surveyed years and reached its 

highest incidence in 2014 with 99% of the samples. Fusariam was the common disease 

of the stem base ranging from 27% to 37% incidence between 2009 and 2014. Eyespot 

was the second most important of the stem base diseases in all surveyed years. Brown 

rust fluctuated through surveyed years with highest record of 17% incidence of 

sampled crop and no record in 2014. Ear blight recorded in high incidence in most 

years reached its maximum in 2012 with 96% incidence. Glume spot was ranging 

from 65% to 27% incidence during the surveyed years. Tan spot disease was recorded 

in less than 20% and powdery mildew recorded in less than 36 % incidence of the 

crop sampled in all years. The incidence of Yellow rust was low in all years with 6% as 

the highest in 2011 and 1% as the lowest in 2013.  
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leaf spot more than manual method. In addition W.Q. 302 variety was 

associated with higher incidence of leaf spot, while W.Q. 101 had least 

disease.  

Stem-base disease was influenced by year, sowing method and irrigation, 

with year being highly significant (p <0.001), (Table 2-3). Drip irrigation 

was associated with highest stem base disease than other methods. Incidence 

was highest in 2014. Mechanical sowing increased stem-base more than 

manual method. Loose smut disease was influenced by year, sowing 

method, location and variety. W.Q 110 was the variety associated with high 

incidence of loose smut while the lowest incidence was predicted on W.Q. 

151. Loose smut disease was favoured by mechanical sowing much more 

than by manual sowing, (Table 2-4).  

Table 2-3: Multiple regression models on incidence (%) of Leaf Spot, Stem base, loose 

smut and yellow rust diseases assessed at GS55-69 in Omani wheat fields 2009-2014, No. 

of fields =468, Total d.f=467 

 Leaf Spot Stem base Loose Smut  Yellow rust 

Fixed Term s.s      d.f.     p s.s     d.f.    p s.s     d.f.     p  s.s         d.f.    P 

Year  -          -       - 293.3 5   <.001 250.5 5   0.014  1095.3   5     <.001 

Sowing method 296.4  1   0.010 20.3   1   0.005 605.7 1   <.001   623.2    4     <.001 

Provinces 1978.15   <.001    -    -       - 586.4 5   <.001  552.8     4      0.004 

Variety 1196   9   0.002    -    -       - 646    9   <.001     -            -          - 

Irrigation -          -       - 34   2      0.001 -         -       -     -            -           - 

*d.f. =Degree of freedom, S.S= Sum of square.  

Leaf spot disease was influenced significantly by sowing method, location and variety. 

Stem base diseases were influenced significantly by year, sowing method and 

irrigation. Loose smut was influenced by year, sowing method, location and variety. 

Yellow rust was influenced by year, sowing method and location.  
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Table 2-4: Predictions of incidence (%) from multiple regression models of leaf spot, 

loose smut, yellow rust and stem base diseases assessed at GS55-69 in Omani wheat fields 

2009-2014, No. Of fields =468, Total d.f=467.  

 Predicted incidence (%) 

Factor Leaf 

spot 

Loose 

smut 

Yellow 

rust 

Stem 

base  

Years     

2009  2.80 0.00 0.83 

2010  1.13 0.01 0.00 

2011  2.44 0.05 0.04 

2012  2.40 0.09 0.04 

2013  1.40 0.14 0.00 

2014  0.35 4.85 2.67 

SED average  0.75 1.02 0.27 

Provinces     

Buraimai 2.89 2.03 0.29  

Thahira 1.30 0.97 0.00  

Interior 5.94 2.53 2.68  

Sharqia 6.76 3.81 0.00  

Batinah 1.26 1.17 0.20  

SED average 1.71 1.07 1.36  

Sowing method     

Manual  2.96 1.63  0.31 

Mechanical 6.85 6.31  1.61 

SED average 1.65 1.03   0.39 

Variety     

Wadi Quriat 226 3.62 1.01   

Wadi Quriat 308 2.15 1.30   

Wadi Quriat 110 3.49 3.43   
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Cooley 2.25 0.99   

Saneen 2.69 0.71   

Missani 2.05 1.95   

Wadi Quriat 302 15.93 3.31   

Wadi Quriat 101 1.17 2.38   

Humira 4.52 0.98   

Wadi Quriat 151 1.74 0.70   

SED average 2.31 1.45   

Irrigation system     

Flood    0.34 

Sprinkler    0.32 

Drip    1.39 

SED average    0.37 

Sowing date     

Between 15-30 October   0.35  

Between 1-15 November   0.32  

Between 16-30 November   0.25  

Between 1-15 December   5.04  

>16 December   0.00  

SED average   1.72  

*SED= Average standard error of difference 

The incidences of loose smut ranged from 2.8% in 2009 to 0.35 in 2014, while yellow rust ranged 

from 0% in 2009 to 4.9% in 2014. The highest incidence of stem base disease was 2.7% in 2014 

and lowest was 0% in 2010 and 2013. The highest incidence of leaf spot was located in Sharqia 

with 6.8% and lowest incidences located in Batinah with 1.2%. Incidence of loose smut was 

highest in Sharqia with 3.8% and lowest in Thahira with 1% incidence. Yellow rust presence 

was high in Interior with 2.8% and low in Thahira with 0%. Mechanical sowing method 

resulted in high incidences in all diseases. The highest presence of Leaf spot was in Wadi Quriat 

302 variety with 16% incidence and lowest in Wadi Quriat 101 with 1.2% incidence.  Presence 

of Loose smut incidence was high in Wadi Quriat 110 and low in Wadi Quriat 151. Stem base 

disease was present with high incidence in drip irrigation method, while Yellow rust was 

present high in sowing dates between 1and 15 December.  
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 DISEASE INCIDENCE AND SEVERITY IN 2014 2.3.2

Forty-five fields were examined at three different stages (GS39-51, 55-69 

&71-87) in Buramiai, Thahira, Interior, Batinah and Sharqiah provinces. 

The majority of the 45 wheat fields that were surveyed in 2014 were found 

to exhibit symptoms of stem rot and leaf spots and browning and spotting of 

the ears. Leaf spot incidence decreased as the crop matured from 42.2% at 

GS 39-51 to 28.89% at GS71-87, (Figure 5-4). Stem base disease incidence 

increased throughout crop development reaching 46.67% at GS71-87. Ear 

disease was 42.2% at GS55-69 but symptoms were less visible and 

decreased by two-fold as the crop matured by GS71-87. Loose smut was 

recorded at 8.89% at GS71-87 and increased by two fold at GS55-69. Stem 

rust and powdery mildew at GS71-87 occurred in 2.2% and 4.4% of fields, 

respectively. 
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Figure 2-4: Incidence of diseases in Omani wheat crop assessed at GS39-51, GS55-69, and 

GS71-87. Bars=1±SEM, analysed by residual maximum likelihood (REML). Leaf spot 

disease decreased as the crop matured from 42% incidence at GS39-51 to 28% at GS71-

87. Stem base disease increased as the crop matured reaching 44% incidence at GS71-87 

from 31% incidence at GS39-51. Head blight was recorded high at flowering stage with 

42% but decreased to 15% incidence at GS71-87. Incidence of Loose Smut increased 

from 4% at GS55-69 to 8% at GS 71-87.  
Significant Leaf spot (p=0.028), Loose smut (p=0.004).  

 

 FUNGAL PATHOGENS ASSOCIATED WITH WHEAT 2.3.3

Isolations from 45 fields growing 6 different wheat varieties resulted in 36 

fungal species isolations. Alternaria alternata was the most dominant 

pathogen isolated with 18% frequency. The common pathogens from each 

tissue can be found in Table 2.5. With A. alternata, Bipolaris sorokiniana 
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leaf, stem and ears. A. alternata was recovered from (6) wheat varieties and 

provinces surveyed. However, B. sorokiniana was recovered from (3 

varieties, all provinces), S. rostrata (4 varieties, all provinces). The other 33 

fungal species identified from this study varied in frequency from 0.6 to 

7.3%, (Table 2-5).   

Table 2-5: Geographical distribution, growth stage (GS), tissues and wheat hosts 

“variety” of fungi recovered from stem-base, leaf and ears of wheat in Oman 2013/2014. 
Fungal species % 

Recovery 

(GS) 

recovery 

Provinces Recovery 

tissues 

Variety   

(Alternaria 

alternate) 

18 All All All All 

(Bipolaris 

sorokiniana) 

11.3 All All All 1,2,3 

(Setosphaeria 

rostrata) 

10.6 All All All 1,2,3,5 

(Fusarium 

equiseti) 

7.3 All 1,2,3,4 All 1,2,3,4 

(Alternaria 

tenuissima) 

6.6 All All L&S 2,4,3,6 

(Alternaria 

infectoria) 

6 All 1,3,4 L&S 1,2,3,4 

(Marasmius 

nigrobrunneus) 

4.6 All 1,3,4 All 1,2,4 

(Alternaria 

brassicicola) 

4 All 1,4,5 All 1,2,3 

(Cladosporium 

cladosporioides

) 

2.6 55-69/71-

87 

3 L&S 1,2,4 

(Stemphylium 

globuliferum) 

2.6 39-51/71-

87 

1,4 L&S 1,6 

(Puccinia 

triticina) 

2 71-87 3,5 L 2,4,5 

(Stemphylium 2 55-69/71- 1,3,4 L&S 2,4 
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vesicarium) 87 

Rhizopus oryzae 2 39-51 1,4 S 1,2 

(Fusarium 

nygamai) 

1.3 55-69/71-

87 

2,3 S 1,3 

Pleospora allii 1.3 71-87 2 L 4 

(Curvularia 

australiensis) 

1.3 71-87 3,5 S 1,5 

(Alternaria 

arborescens) 

1.3 39-51/55-

69 

3,4                          L&E 2,4 

(Bipolaris 

tetramera) 

1.3 55-69 3,4 L 2,4 

(Fusarium 

oxysporum f. sp) 

1.3 39-51/55-

69 

1,2 S 1 

(Blumeria 

graminis) 

0.6 71-87 1 L 1 

(Fusarium 

nectrioides) 

0.6 39-51 1 S 6 

(Nigrospora 

sphaerica) 

0.6 39-51 1,5 S 3 

(Mucor 

circinelloides) 

0.6 39-51 4 L 2 

Rhizoctonia sp 0.6 55-69 3 L 4 

(Cochliobolus 

australiensis) 

0.6 71-87 1 S 1 

(Epicoccum 

nigrum) 

0.6 55-69 2 S 1 

(Gibberella 

moniliformis) 

0.6 55-69 3 S 3 

(Fusarium 

incarnatum) 

0.6 71-87 4 S 2 

(Pythium rhizo-

oryzae) 

0.6 71-87 5 L 5 

(Fusarium 

acutatum) 

0.6 71-87 5 L 3 

(Pleospora 

herbarum) 

0.6 71-87 3 L 4 
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Alternaria citri 0.6 71-87 3 L 4 

(Epacris 

microphylla) 

0.6 71-87 2 S 2 

(Alternaria 

solani) 

0.6 71-87 2 S 3 

(Puccinia 

graminis f. 

sp. tritici) 

0.6 71-87 1 S 1 

 

 

 

 

 

The main factors influencing leaf spot development in 2014 were location 

(provinces) (P= 0.005) and application time of urea fertilizer (P= 0.013), 

(Table 2-6). Highest leaf spot incidence was in Buramai province with the 

mean of 1.33%, however leaf spot incidence in Sharqia was the lowest with 

0.35%. The application of urea fertilizer after 2 months from sowing was 

found to be the lowest to influence leaf spot incidence (0.29%); whilst urea 

application one month after sowing cause highest leaf spot incidence 

(1.2%). However, applying urea before sowing influencing leaf spot 

incidence with 0.53%, (Table 2-7).    

Stem base diseases influenced by locations (P= 0.010) and urea fertilizer 

application (P= 0.018). The highest incidence of stem base diseases was 

obtained from Thahira province (1.62%), while Batinah had lowest stem 

base incidence (0.37%). The result revealed that fields fertilized with urea 

*(GS)= growth stages (39-51/55-69/71-87), *variety: 1=W.Q.226, 2=W.Q.308, 
3=W.Q.=310, 4=Cooley, 5=Saneen, 6= Humira. *Provinces: 1=Buraimai, 
2=Dhairah,3=Dkliah,4=Batinah,5=Sharqiah.,*Recovery Tissues= L=leaf, S=Stem, 
E=Ear 
All species were identified by culturing then sequencing except yellow leaf rust 
(Puccinia triticina), Stem rust (Puccinia graminis f. sp. tritici) and powdery mildew 
(Blumeria graminis) were sequenced directly.  
Alternaria alternata was the most dominant pathogen isolated from all tissues with 
18% frequency followed by Bipolaris sorokiniana and Setosphaeria rostrata. The other 
33 fungal species isolated varied in frequency from 7.3 to 0.6%.  
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had highest stem base incidence (1.28%), comparing to those fields without 

urea application (0.71%), (Table 2-7). Loose smut disease was influenced 

by application of potassium + ammonium foliar fertilizer only (P= 0.021), 

(Table 2-6).  

Table 2-6: Mixed model restricted maximum likelihood (REML) analysis on disease 

index of leaf spot, stem base & loose smut assessed at GS25-51, GS55-69 & GS71-87 in 

Omani wheat fields 2014, No. of fields =45, Total d.f=44. 

 Leaf Spot   Stem base     Loose smut 

Fixed Term WS       d.f.      p WS        d.f.       p WS     d.f.       p 

Provinces 17.37   4       0.005 15.31    4    0.010   -         -         ns 

Urea application Time  9.78     2      0.013  -           -         ns  -         -         ns 

Foliar application rate 

of potassium + 

ammonium 

 -          -       ns  -           -         ns 5.76  5.76     1     0.021 

Urea application -          -        ns             5.13        1     0.018                                                                          - -                   -         ns 

ns= Not Significant 

Leaf spot diseases were influenced significantly by location and time of urea application. 

Stem base diseases were influenced significantly by location and urea application. Loose 

smut was influenced significantly by the rate of potassium and ammonium application.  

 

 

Table 2-7: Predictions of incidence (%) analysed by residual maximum likelihood 

(REML) of leaf spot, stem base & loose smut assessed at GS25-51, GS55-69 & GS71-87 in 

Omani wheat fields 2014, No. of fields =45, Total d.f=44. 

Predicted incidence (%) 

Factor Leaf spot Stem base Loose smut 

Provinces    

Buraimai 1.33 0.72  

Thahira 0.62 1.62  

Interior 0.68 1.38  
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Sharqia 0.35 0.90  

Batinah 0.38 0.37  

SED average 0.24 0.41  

Urea application Time    

Before sowing 0.53   

30 days after sowing 1.19   

60 days after sowing 0.29   

SED average 0.25   

Foliar application rate of potassium + ammonium    

1-10 grams   1.48 

No application   0.26 

SED average   0.56 

Urea application    

NO  0.71  

Yes  1.28  

SED average  0.35  

*SED= Average standard error of difference 

The highest incidence of leaf spot was located in Buraimai with 1.3% and lowest 

incidences located in Sharqia with 0.35%. Incidence of stem base was highest in 

Thahira with 1.6% and lowest in Batinah with 0.37% incidence. The application of 

urea after 30 days from sowing predicated high incidence among other application 

time reaching to 1.2%. The application rate 1-10 gram of foliar potassium and 

ammonium predicated high incidence of loose smut compared to no application. Urea 

application increased the chance of stem base disease by 1.3%.  

 

 PHYLOGENETIC ANALYSIS 2.3.4

Contiguous sequences were successfully derived from the isolates. The ITS 

rDNA regions of B. sorokiniana, A. alternata and F. equiseti isolated were 

further amplified and sequenced. Analysis of the three isolates revealed high 
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nucleotide similarity to the other sequences from the Genbank. The isolate B. 

sorokiniana showed high nucleotide similarity (99.8%) to isolates (AF158104 

and AF158105; Figure 2-5).  The Omani isolates also clustered with other 

isolates of B. sorokiniana that have been separated from B. heterosptrophus 

and B. victoriae with a very high bootstrap support value (99 and 95% 

respectively). Omani isolates of A. alternata showed (99.8%) nucleotide 

similarity to other sequences of A. alternata from GenBank as shown in Figure 

2.6. There is a 100% identical bootstrap of Omani isolate Fusariam equiseti 

with the isolate (GU934522) from the GenBank as Figure.2-7 showed. F. 

equiseti and F. brachygibbosum sharing same clade though F. solani has 

different ancestor.  
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Figure 2-5: A phylogram showing the relationship of B. sorokiniana to B. sorokiniana 

from GenBank and to three other Bipolaris species based on the ITS rDNA sequences.  

Bootstrap values are displayed in nodes (1000 replications).  The tree is rooted to B. 

peregianensis (AF158111). 
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Figure 2-6: A phylogram showing the relationship of Alternaria alternata to other 

isolates and species of Alternaria from GenBank based on the ITS rDNA sequences. 

 Bootstrap values are displayed in nodes (1000 replications).   

 

 

Figure 2-7: A phylogram showing the relationship of Fusarium equiseti to other isolates 

and species of Fusarium based on the ITS rDNA sequences.   

Bootstrap values are displayed in nodes (1000 replications).   
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 PATHOGENICITY 2.3.5

Two varieties were used to confirm that all isolates are pathogenic on both 

varieties, regardless of whether their resistance is similar. Analysis showed that 

all isolates are pathogenic on both varieties, but it is very likely that the two 

varieties have the same level of resistance to all isolates. The inoculated fungi 

resulted in varying degrees of chlorosis and necrosis on the two wheat cultivars 

however there were no significant differences between the combinations. 

Bipolaris sorokiniana caused 65.63% chlorosis on Cooly variety of wheat but 

on WQ226 variety Alternaria alternata caused 51.25% of chlorosis. However, 

Fusarium equiseti caused smaller chlorotic lesions in both varieties Cooly and 

W.Q.226 with 28% and 19% respectively, compared to Bipolaris and 

Alternaria. chlorotic lesions, (Figure 2-8). Necrotic lesions were smaller than 

chlorotic lesions. B. sorokiniana caused more necrosis (1.88%) in Cooly 

compared to the necrosis caused by W.Q.226 cultivar (1.25%). The other 

pathogens caused less or no necrotic lesions, (Figure 2-9).   



CHAPTER 2 

51 

 

 
Figure 2-8: Percentage of the wheat leaf area covered with chlorotic symptom as a result 

of inoculated fungi in two different wheat varieties in Oman Bars=1±SEM. No significant 

difference was observed in the reaction of wheat varieties to fungal pathogens (P > 0.05; 

Tukey’s Studentized range test, SAS). 

 

 

 
Figure 2-9: Percentage of the wheat leaf area covered with necrotic symptom as a result 

of inoculated fungi in two different wheat varieties in Oman Bars=1±SEM.  No significant 

difference was observed in the reaction of wheat varieties to fungal pathogens (P > 0.05; 

Tukey’s Studentized range test, SAS), except when F. equiseti was used. 
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 DISCUSSION 2.4.

The incidence of wheat diseases in two different environments, Oman and 

the UK, were compared between 2009 and 2014. At flowering growth stage 

(GS 55-69), 447 fields in five different locations were assessed in Oman for 

stem and foliar disease incidence between 2009 and 2014. Most of the fields 

surveyed were found to have at least one disease. Brown to black lesions or 

spot symptoms were observed on the stem, leaf and ears of the plants with 

some rotting in the affected stem. On the other hand, approximately 300 

crops were assessed annually between 2009-2014 in the UK, during the 

early to medium milk development stage (GS73-75). Of them 25 tillers were 

examined for leaf, stem and ear diseases.   

The incidence of diseases in Omani wheat assessed at growth stage (GS55-

69) only between 2009 and 2014 varied. Leaf spot incidence increased 

through the survey years from only 18% in 2009 to 42.2% recorded in 2013 

followed by a decrease to 28% in 2014. However, stem base incidence was 

lowest in 2009 at 7% and highest in 2014 when it was the predominant 

disease with 44%. Loose smut incidence fluctuated through the years of the 

survey between 22% and 8%. Powdery mildew was also recorded through 

the years of the survey but at lower incidence in all years compared to other 

diseases. During the more extensive 2014 survey, the peak of leaf spot 

disease incidence among other diseases was recorded at GS31-59. The most 

prevalent disease was leaf spot followed by loose smut. It seems also that 

leaf spot represents the most important disease as its incidence increased 
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through years and it was recorded with high frequency among other 

diseases. This finding is supported by reports from different parts of the 

world that found leaf spot disease infecting wheat at early growth stages 

(Reamaekers, 1988; Reis, 1991; Schilder & Bergstrom, 1993; Mehta, 1996; 

Shazia & Iftikhar, 2005; Hajihasani et al., 2012). 

In contrast, Septoria disease in UK winter wheat was more widespread than 

any other foliar disease in all years except 2011. It showed wide year-to-year 

variation, with the highest incidence was present in 99% of crops in 2014. 

Powdery mildew levels were the second highest foliar disease in all years 

except 2012 and 2014 followed by tan spot diseases. The incidences of 

powdery mildew ranged between 36% and 4%, while tan spot incidences 

ranged between 20% and 6% of samples infected. Of the stem-base diseases, 

there was little fluctuation between 2009 and 2014 in the percentage of crop 

affected. Fusarium was generally more common than eyespot and sharp spot 

diseases with eyespot always more common in all years than sharp spot. The 

highest incidence of fusarium diseases were recorded in 2013 with 37% 

while the lowest level was 24% recorded in 2009.  

Eyespot severity was highest in 2012, when moderate or severe lesions 

affected 7-3% of the stems. While in 2014 severity were 6-2% of stems 

affected by moderate or severe lesions. It is possible that the survey tended 

to underestimate the severity of eyespot. This may be related to the difficulty 

to assess the lesions at GS73-75 or lesions being subjected to fungicide 

treatments. The incidence of sharp eyespot was always lower than that of 
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eyespot and less severe in all years. The severity of ear blight fluctuated 

among surveyed years with highest incidence recorded in 2012. The 

incidence of yellow rust did not exceed 10% of sampled crop in all years 

and this may be due at GS75 lesions being treated by fungicides or not 

visible. On the other hand, the severity of brown rust apart from moderate 

levels in 2012 did not affect more than 8% in all other years with none 

recorded in 2014. However, glume spot showed wide year-to-year variations 

with highest severity recorded in 2009 then decreased in all other years to 

less than 60% of crop infected.  

The data presented here records the changes that occurred in the disease of 

winter wheat in a 6-year period from 2009 to 2014 in two different climates, 

Oman and the UK. In this six-years period Septoria and powdery mildew were 

the most severe of the foliar diseases in the UK, whereas, leaf spot was the 

most severe of the foliar diseases in Oman. On the other hand, Fusarium and 

eyespot were the most severe of the stem base diseases in the UK. However, 

Fusarium was the most severe of the stem base diseases in Oman; this may be 

due to the introduction of sprinkler irrigation. Clearly there is a difference in 

disease existence and severity and this may be related to the differences in 

climatic conditions and environments in Oman and the UK. Such surveys 

provide continuing insight into how the agricultural community responds to 

change and how this impacts on disease incidence and severity. This assists in 

developing an understanding of how diseases can be managed in a more 

rational and sustainable way.  
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The main diseases causing yield loss in Omani wheat were identified and 

pathogen associated with them were characterised. To our knowledge this is 

the first survey on the occurrence of fungal diseases and characterise the 

pathogens associated with stem, leaf and ear tissues and the influence of 

agronomy factors. Five provinces (Buraimai, Thahira, Interior, Sharqia and 

Batinah) were chosen because of their more intensive wheat growing area in 

Oman. Large numbers of pathogenic fungi causing symptoms were found to 

be prevalent in wheat fields in Oman.   

Isolation from six symptomatic wheat varieties resulted in 36 different 

fungal species. Alternaria alternata was the most frequently isolated 

pathogen followed by Bipolaris sorokiniana, Setosphaeria rostrata, and 

Fusarium equiseti. Alternaria is a leaf blight fungus commonly isolated 

from the infected tissues. Also B. sorokiniana and A. alternata were the 

most virulent in the pathogenicity tests. A. alternata is considered to be an 

important pathogen in wheat; it was more prevalent compared to other fungi 

isolated in this study. Joshi et al. (1986) reported that occurrence of blight 

disease in Pakistan was caused by A. alternata that usually isolated from the 

leaves of the crop during heading stage. In India, this disease represents one 

of the threatening plant diseases and can cause considerable losses in wheat 

crop estimated around 10-25% (Singh & Srivastva, 1997).  

A survey to investigate the prevalence of foliar blight of wheat rotated with 

rice in Punjab revealed that the number of foliar samples with Pyrenophora 

tritici-repentis was less as compared with A. alternata, Stemphylium sp., and 
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B. sorokiniana (Shazia & Iftikhar 2005). In another study Maraite et al. 

(1998) found that B. sorokiniana was associated with 81% of analysed foliar 

samples from infected wheat grown in hot and humid areas. Elsewhere in 

the Golden triangle of Montana, Canada and USA, B. sorokiniana was the 

most widespread crown pathogen of wheat (Moya-Elizondo et al., 2011). 

The findings from this survey in Omani wheat are similar to that found in 

Pakistan and India and the USA in respect to A. alternata and B. 

sorokiniana. In Oman, these fungi have been isolated from seeds of wheat 

and only B. sorokiniana was found to cause root and crown rot in wheat (Al-

Sadi & Deadman, 2010). Both pathogens were recovered from infected 

stems and leaves in all growth stages as well as from all provinces where 

temperature and humidity at the time of the survey is suitable for the fungus 

to grow.  

Among the pathogens that have been recovered with high frequency from all 

growth stages and all locations covered by this survey was Setosphaeria 

rostrata, which was found associated with leaf blight symptoms in wheat. 

This result was supported by a survey that found S. rostrata causing blights, 

spots and blotches in wheat leaves in different growing area in India (Singh 

et al., 2001). In this survey F. equiseti was the only Fusarium species 

recovered from the ear samples. In Europe, this species is one of the 

Fusarium species that cause Fusarium head blight (FHB) and it is known to 

produce diacetoxyscirpenol (DAS) and zearalenone (ZEA) toxins (Slivia & 

Ruth 2010; Thrane 2001; Bottalico & Perrone 2002). Other Fusarium 

species that have been recovered from this study were Fusarium nygamai, 
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Fusarium oxysporum f. sp, Fusarium nectrioides, Fusarium incarnatum and 

Fusarium acutatum.  

All of these species were recovered at low frequency from leaf and stem 

samples. Fusarium species isolated in this study were also reported by other 

analysts as potentially able to blight stem bases, roots, leaves, ears as well as 

kernels (Liggitt et al., 1997; Narkiewicz-Jodko et al., 2003). Besides, it is a 

very important pathogen causing head blight in different areas where wheat 

is grown; Fusarium pathogens were found to cause crown rot and root rot in 

wheat fields in Turkey and USA (Smiley et al., 2005; Tunali et al., 2008). 

Here, in the study, aside from Fusarium spp., various fungi were isolated 

which are considered frequent in soil and stem bases, implying that the soil 

environment is an important source of inoculum. These included Alternaria, 

Pleospora, Botrytis, Cladosporium, Cochliobolus, Mucor, Curvularia, 

Phoma, Rhizopus and other.  

There were no significant differences in the pathogenicity tests of four 

different pathogens recovered from this study causing chlorosis and necrotic 

lesions in the leaf of two wheat cultivars Cooly (local variety) and W.Q.226 

(adapted). B. sorokiniana caused the highest chlorotic percentage in leaf of 

local variety (66%) followed by S. rostrata but with no significant 

differences. However, A. alternata caused the highest chlorotic percentage 

(53%) in leaves of adapted variety followed by B. sorokiniana without any 

significant differences. The lowest chlorotic percentage in leaves of both 

varieties was caused by F. equiseti with significant differences. Most 
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diseases were causing very low or no necrotic lesions in the leaves. Among 

the four diseases evaluated, B. sorokiniana was found to cause the highest 

necrotic lesions in the leaves of both varieties (1.3% local and 1.9% 

adapted) however without significant differences. These results support a 

previous study on 81 wheat fields in the USA which reported B. sorokiniana 

as the most frequent pathogen isolated and the most virulent pathogen in the 

greenhouse pathogenicity tests (Strausbaugh et al., 2004).  

The influence of agronomic practices on disease incidence in wheat was 

considered extensively during the 2014 survey. For instance, urea 

application seems to influence disease incidence as the result showed that 

fields receiving urea had higher stem base incidence compared to the fields 

without urea application. Also, foliar application with potassium and 

ammonium influenced the incidence of the loose smut disease. Moreover, 

fields fertilized with urea after 2 months from sowing recorded fewer 

incidences of leaf spot compared to the fields received urea after 1 month 

from sowing. The results support findings stating that urea applied to tomato 

plants resulted in a wilt caused by F oxysporum f. sp. lycopersici and 

increased disease mortality in a bare root Douglas-fir seedling (James 1996). 

In addition, Buramiai province had much higher incidence of Leaf spot 

disease among other provinces (F was significant at p=0.005). While, 

Thahira province had higher incidence of stem base diseases (F was 

significant at p=0.010). The lowest incidence of leaf spot was recorded from 

Sharqia, whilst Batinah had the lowest incidence of stem base disease.  
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On the other hand, although there was less data collected regarding the 

agronomic practices between 2009 and 2013, the available data were added 

to data collected in 2014 and screened with multiple regression models. 

Sowing method has been found to influence leaf spot incidence with the 

field that use mechanical sowing had more leaf spot (6.9%) than the field 

using manual method (3.0%). These results are supported by a study, which 

showed that sowing method and crop rotation have been found to affect the 

occurrence of Fusarium on wheat (Tonev et al., 2008). In addition, province 

was also found to influence the incidence of leaf spot with Sharigia having 

the highest disease incidence (6.7%) and Batinah having the lowest disease 

incidence (1.2%). Variety also influenced leaf spot with W.Q.302 being the 

most susceptible in the field (15.9%); whilst W.Q.101 was the lowest 

susceptible variety, with 1.2% leaf spot disease (1.2%). Interestingly all 

local varieties screened in this study had lowest disease incidence compared 

to adapted variety.  

Stem base diseases were influenced by years, sowing method and irrigation 

during the same period and same growth stage. Fields using drip irrigation 

system had highest stem base incidence with 1.3%, whilst fields irrigated 

with either flood or sprinkler irrigation had almost the same incidence with 

0.33% and 0.32% respectively. Crops under irrigated condition become 

denser.  This can modify the surrounded microclimate, promoting diseases 

development and pathogen sporulation. Work carried out in Canada showed 

that foliar diseases in wheat increased in the presence of sprinkler irrigation 

(Turkington et al., 2004). Fields that use mechanical sowing had highest 
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stem base disease comparing to manual sowing, with 1.6% and 0.31%, 

respectively.  

The distribution and varying degree of severity justifies that there is a slow 

but progressive increase in the disease scenario and this situation may 

change under certain environmental conditions. Result obtained from this 

survey will help to identify the main diseases threatening wheat production 

in Oman. In addition, survey findings can help in determining the priority in 

disease problems, plan for future research to assess the economic 

importance and to contrast environment models for yield loss caused by 

disease as well as developing effective integrated disease management 

strategies. The results from this study demonstrate for the first time the 

influence of the agronomic factors on stem, leaf and ear disease occurrence 

in Omani wheat and pathogens associated with them. 

 

  



CHAPTER 3 

61 

 

 

Chapter 3 

 

 

3. ECONOMIC LOSSES DUE TO EYESPOT DISEASE AND 

MODELLING OF PROFITABILITY AND UNCERTAINTY 
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  INTRODUCTION 3.1.

Eyespot is considered to be the most damaging fungal stem base disease of 

winter wheat, barley and rye in temperate regions (Crous et al., 2003; 

Hardwick et al., 2001; Cook et al., 1991). Wheat is economically the most 

important arable crop occupying approximately 41% of the arable land area in 

2015 (DEFRA, 2015). There are two common pathogens that cause eyespot in 

the UK, Oculimacula yallundae (known as “W” type) and O. acuformis 

(known as “R” type; Crous et al., 2003). Scott et al. (1975) suggested that W-

type (O. yallundae) isolates are more pathogenic to wheat whilst the R-type (O. 

acuformis) isolates are equally pathogenic to all cereal species. Eyespot disease 

symptoms appear as eye-shaped lesions with a diffused brown margin at the 

end of the season. Wheat grain size and final yield are reduced due to the 

pathogens blocking the vascular tissues and impeding water and nutrient 

movement in the plant (Ray et al., 2006).  

Agronomic and environmental factors play important roles in the severity of 

eyespot disease. Rainfall is responsible for spreading the conidia from the soil 

debris to the susceptible coleoptile of the host plants. Once the infection 

plaques are formed by the fungal pathogen on the plant host, mycelium 

penetrates successive leaf sheaths reaching the stem exhibiting by this time 

typical browning and lesions early in the season. Typically, initial inoculum 

and favourable conditions in March and April lead to a peak of sporulation that 

declines as temperature increases, with little sporulation in June and July (Fitt 

et al., 1988).  
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The UK’s mild, wet weather in the winter and cool damp weather in the spring 

favour the disease and commonly crop rotation and late sowing are employed 

as cultural control methods to reduce disease severity in high-risk regions 

(Cook, 1993). An accumulated risk score assessment to predict the 

development of eyespot has been developed by AHDB-HGCA. The assessment 

allows farmers to use cultivation method, sowing date, previous crop, soil type 

and eyespot incidence at stem extension as factors to assess risk of eyespot 

epidemics (Burnett and Hughes, 2004). Introduction of new wheat varieties and 

fungicides to treat for eyespot were later used to improve the risk assessment 

and assess the economic loss due to eyespot disease (Burnett et al., 2012).   

3.1.1  LOSSES ASSOCIATED WITH EYESPOT DISEASE 

Yield loss due to eyespot has been difficult to quantify due to the lack of 

correlation between early disease severity (GS31/32) and disease severity or 

yield at harvest (Scott & Hollins, 1978; Goulds & Fitt, 1991). Furthermore, 

early work on yield loss caused by eyespot between 1970 and 1990 is unclear 

on which fungal species was causing the disease since Oculimacula spp. at this 

time were not shown as taxonomically distinct. However, three years trials 

with a Consort variety showed a significant negative correlation between the 

yield loss and % incidence plant affected of Oculimacula acuformis at GS69 

(Ray et al., 2004). 

A more recent study using single tiller measurements showed that in fact losses 

caused by individual pathogens were similar, 6% and 11% reduction when the 

disease was caused by O. yallundae and O. acuformis, respectively (Ray et al., 
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2006). A study carried out in the UK investigating the importance and control 

of common eyespot in wheat demonstrated that there was a significant 

association between eyespot disease incidence and yield (Burnett & Oxley, 

1996). The same study showed that yield loss was also associated with lodging 

although the correlation was not as strong as eyespot disease and yield, whilst a 

significant correlation between eyespot and lodging was shown.  

3.1.2  RISK ASSESSMENT AND DECISION MAKING 

Risk assessment of eyespot disease has focussed on cost effectiveness of 

disease treatment through early determination of an eyespot threshold level. 

Between the 1970s and 1980s, several disease forecasting and risk assessment 

schemes were developed to predict the occurrence of severe eyespot at a time 

when spray decisions need to be made, based on cropping history, cultivars and 

environmental factors (Fitt et al., 1988). To predict where it would be cost-

effective to apply an eyespot fungicide treatment, a visual threshold of 20% 

affected shoots at stem extension has been used. Use of fungicides in response 

to eyespot in 58 wheat fields in UK during 1980s was investigated (Jones, 

1994). In this study the threshold of disease incidence was set at 20% and crops 

were classified according to their response to prochloraz treatment at GS30/31. 

Therefore, the decision to treat the crop with fungicides was made if more than 

20% of tillers were affected with eyespot. Moreover, a study to investigate the 

accuracy of the assessment using the threshold method concluded that although 

this method could identify correctly those stems that passed the threshold level, 

other diseased stems that did not pass the threshold would be missing and thus 
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the disease would still progress (Hughes et al., 1999). In addition, with the 

change of the cereal varieties in the UK over the last 25 years and the 

dominance of O. acuformis eyespot species over O. yallundae, the use of 

threshold scheme is debatable (Albertini et al., 2003).  

Later research by Burnett and Hughes (2004) has replaced this previous 

approach by developing an accumulated risk score based on a number of risk 

factors. This approach allows farmers to use factors such as previous crop, 

tillage method, sowing date, soil type, expected spring rainfall and level of 

eyespot at stem extension to determine the risk of economically damaging 

eyespot and weather and judge if it is beneficial to treat or not. This risk 

assessment was developed to assess the need of chemical treatment in the 

spring. However, with the introduction of eyespot resistant varieties, and 

introduction of alternative fungicides to cyprodinil, a model to judge the risk of 

eyespot prior to drilling was required. This risk assessment was updated by 

Burnett et al. (2012), by predicting eyespot risk and together with a revenue 

calculator to account for the cost of the treatment, grain price, efficacy of the 

treatment and the yield loss. This two-phase approach to assess the risk of 

eyespot gives the grower options to select prior to drilling, based on the 

eyespot score: either to use an alternative field or to drill a variety of wheat 

with eyespot resistance. In addition, it allows the grower to decide whether to 

apply fungicide treatment in the spring or not, using pre-disease score in 

autumn and information on eyespot incidence at stem extension. 
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From an economic perspective, risk is a measure of uncertainty – the 

uncertainty of outcomes associated with decision-making. Clearly in the case 

of crop diseases, we will be interested in uncertainty of outcomes associated 

with different decisions relating to the management of disease. Risk is always a 

continuing concern to the risk averse farmer; farmers with greater levels of risk 

aversion will wish to manage uncertainty to a greater extent than those who are 

less risk averse (Hardaker et al., 2004).  Generally, risk is less if the farmer has 

an idea about final outcomes (for example, a known yield distribution) but 

greater if the outcome is unknown (Antle, 1983). The lower the variability, the 

lower the risk. However, for farmers who are risk neutral, or who are risk 

takers there will be a tendency to push for a more profitable (on average), but 

more variable outcome. Farmers who are risk averse in their decision will 

choose options (for example, disease management programmes) that lead to 

less variability, even if this choice brings lower average profitability (Moschini 

& Hennessy, 2001).  

Generally, farmers are assumed to be risk averse; however, this is not always 

the case. Wossen et al. (2015) reported that 65.8% of smallholder households 

in Ethiopia were risk averse, with the implication that the remainder were not. 

Assuming risk aversion, a metric such as the standard deviation is useful to 

show the level of variability and thus risk relating to different choices. Risk in 

agriculture is usually ‘high’ as the result of a decision is unclear when the 

decision is made and the expected outcome value often has a high level of 

uncertainty. As well as output variability, farmers face variations in input costs 

(for example, through changing oil prices), although generally variability of 
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profit is influenced most by final yield and output price variability. Other risks 

include those associated with adopting new technology, changes in agricultural 

policy, exchange rate fluctuations, among others (Hardaker, 2006). Crop 

disease, through its effect on yield is clearly suited to risk analysis, as there are 

different methods of management that will have variable outcomes depending 

on a wide range of factors.  

3.1.3  GROSS MARGIN IMPORTANCE 

Disease is only one variable that farmers have to take account of in their 

decision making. One effective way of bringing together these other factors is 

to use what is termed the ‘gross margin’ – the output value (price times yield) 

less the direct variable costs of production: seed, fertiliser and crop protection 

including disease management costs. Where the labour and machinery vary 

with the decision being made, for example, where an agricultural contractor is 

used to complete spraying operations, these contract costs can be included as 

part of the gross margin (Nix, 2010).  

Gross margin is a widely used technique by UK farm managers to plan and 

analyse their farm businesses, at least since the 1970s (Cassey, 1973). In 

addition, the universal language of the gross margin can reduce communication 

problems among researchers and farm managers (Nix, 1979). Furthermore, 

farmers can easily understand and calculate gross margins and the processes 

involved. Gross margins can guide the farm manager to select the right 

enterprises (the mix of different crops, livestock and other enterprises on the 

farm) and compare different technologies. The majority of the research that 
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addresses eyespot disease has mainly considered yield loss, with less attention 

paid to costs and wider output consequences of different treatments. Here we 

use descriptive statistics such as ‘mean’ and ‘standard deviation’ to analyse 

decisions of whether to treat or not to treat for a range eyespot disease trials run 

between 2004 and 2014 in different parts of the UK.   

3.2 AIM AND OBJECTIVES: 

The overall aim of this study is to improve economic decision-making relating 

to different eyespot management strategies.  

 Objectives 

1) To assess if the treatment cost of eyespot control is recovered through yield 

response of the crop.  

2) To quantify the effect of other variables on the final yield and the gross 

margin.   

 

3.3 METHODOLOGY  

3.3.1  DATA COLLECTION 

This study used historical data collected through previous research projects on 

fungicide efficacy against eyespot disease by the University of Nottingham, 

Harper Adams University, as well as The Arable Group research (TAG). Site 

details including trial code, regions, soil type, previous crop, tillage, and 

sowing date were recorded in the database as shown in Table 7.1 in the 

Appendix. 
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Experiments were positioned across various locations between 2004 and 2014. 

Experimental field locations and their GPS coordinations are shown in Table 

7.2 in the Appendix. Data of natural infection or artificially inoculated eyespot 

efficacy trials used in this study is shown in Table 7.3 in the Appendix. 

Moreover, fungicide treatments that have been tested during the period of 2004 

to 2014 as well as field rate per hectare of each fungicide were recorded in the 

database that are presented in Table 7.4 of the Appendix. 

From the database, we can quantify the variables needed to calculate the gross 

margins. The available data to perform gross margin calculation were yield and 

rates of fungicides application; however, other variable costs were provided 

from Agro Business Consultants Ltd. (ABC) as of November 2014.   

3.3.2   FINANCIAL ANALYSIS DATA 

Chemical cost  

BASF and Agrii supplied the 2015 average price of the chemicals assessed in 

all trials. All chemical product names, along with their active ingredients and 

costs, are presented in Table 3.1.  

Table 3-1: Fungicides trade names, active ingredients and price per litre for 2015. 

Chemical Names Active Ingredients Price per litre £/l 
Adexar  Epoxiconazole and 

Fluxapyroxad 

 

35 

Amistar Azoxystrobin 34 

Aviator 235xpro Bixafen and Prothioconazole 42 

Bravo Chlorothalonil 6.5 
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Capalo  Epoxiconazole, 
Fenpropimorph and 
Metrafenone 

 

31 

Ceriax  Epoxiconazole, Fluxapyroxad 
and Pyraclostrobin 

 

27 

Chord Boscalid and Epoxiconazole 

 

26 

Ennobe  Epoxiconazole and  
Prochloraz 

 

18 

Enterprise Boscalid and Epoxiconazole 26 

Flexity Metrafenone 65 

Ignite Epoxiconazole 

 

20 

Imtrex Fluxapyroxad 

 

25 

Keystone Epoxiconazole 40 

Librax  Fuxapyroxad and 
Metconazole 

 

36 

Nebula Boscalid, Epoxiconazole and 
Pyraclostrobin 

 

26 

Opus  Epoxiconazole 20 

Proline  Prothioconazole 50 

Seguris Isopyrazam and 
Epoxiconazole 

42 

Tracker Epoxiconazole and Boscalid 26 

Unix  Cyprodinil 14 

Vertisan  Penthiopyrad 

 

28 

Xemium  Fluxapyroxad 24  
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Application cost 

Chemicals were used in the trials at different rates of application. To calculate 

the cost of fungicide per hectare, the exact rates of application were multiplied 

by the actual cost of the fungicide as shown in Table 3.2.  

Table 3-2: Fungicides, their rate of application and cost per hectare. 

Fungicides Field rate 
(l/ha-1) Price (£/ha-1) 

Adexar  1 35 
Adexar  0.67 23 
Adexar  0.75 26 
Adexar  1.33 47 
Adexar  2 70 
Adexar + Bravo  1+1 42 
Aviator 235 xpro + Bravo  1+1 49 
Aviator 235 Xpro 1 42 
Aviator 235 Xpro 0.42 18 
Aviator 235 Xpro 0.84 35 
Aviator 235 Xpro  1.25 53 
Capalo  1 31 
Ceriax  1 27 
Ceriax  1.5 41 
Chord 1 26 
Ennobe  1 18 
Enterprise  0.83 22 
Enterprise  1 26 
Enterprise  1.675 44 
Enterprise  2.5 65 
Ignite  0.75 15 
Ignite  1 20 
Imtrex  1 25 
Librax + Bravo  1+1 43 
Nebula  0.83 22 
Nebula 1 27 
Nebula  1.675 45 
Nebula  2.5 67 
Opus  0.5 10 
Opus  0.67 13 
Opus  0.75 15 
Opus  1 20 
Opus + Unix  0.5+0.67 19 
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Opus + Flexity  0.5+0.25 26 
Opus + Flexity  0.5+0.5 43 
Opus + Amistar  0.75+0.5 32 
Proline  0.4 20 
Proline   0.54 27 
Proline  0.6 30 
Proline 0.8 40 
Proline 1 50 
Seguris  0.33 14 
Seguris  0.66 28 
Seguris  1 42 
Seguris +Bravo  0.8+1 40 
Tracker   0.5 13 
Tracker  0.75 20 
Tracker 1 26 
Tracker  1.5 39 
Tracker + Bravo  1+1 33 
Tracker + Bravo  1.5+1 46 
Tracker + Adexar  1+1 61 
Tracker + Xemium  0.5+0.5 25 
Unix  0.5 7 
Unix + Opus  0.5+0.5 17 
Unix + Opus  1+0.5 24 
Vertisan + Ignite + Bravo   1+0.75+1 50 
Xemium  0.67 17 
Xemium   1 25 
Xemium  1.33 33 
Xemium   1.5 37 
Xemium  2 49 

 

Other variable costs 

Other variable costs were as farm standard practice and assumed to be the same 

across all trials. Data were obtained from Agro Business Consultants Ltd 

(ABC) as of November 2014 (Table 3.3).  
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Table 3-3: Other variables and its prices (ABC, 2014) 

Other Variable costs        Price (£/ha-1) 

Seed          53 

Nitrogen          165 

Application charge (contractor)           27 

 

Grain prices  

The price of wheat has been derived from Agro Business Consultants Ltd as 

£139/tonne. This is an estimated average ex-farm selling price from the 2015 

harvest.  

3.3.3  DATA ANALYSIS  

Descriptive statistics such as ‘mean’ and ‘standard deviation’ were used to gain 

an overview of the data. From an economic perspective, the mean is the 

expected outcome and the standard deviation is the variation around this 

outcome, our measure of risk. Assuming normal distribution +/-2 standard 

deviations represents 95% of a distribution.  

3.4  RESULTS  

3.4.1  YIELD MEANS OF INOCULATED AND NATURAL 

INFECTED TRIALS 2004-2014 

The yield means for both treated and untreated eyespot disease inoculated trials 

are shown in Figure 3.1. Average yield for the treated trials was 9.2 t/ha-1; for 

the untreated trials was 8.4 t/ha-1. Yield means for the treated and untreated 
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trials were highest in 2004, at 10.8 t/ha-1 and 10.2 t/ha-1 respectively; lowest 

mean yield was 8.5 t/ha-1 in 2006 for treated trials and 7.2 t/ha-1 in 2012 for 

untreated. The highest yield variation was found in treated trials for 2006 with 

and untreated in 2007 showing ±2 SDs of 2.1 t/ ha-1 and 2.6 t/ha-1 respectively. 

All other years of treated trials had ±2 SDs between 0.7 and 1.4 t/ha-1, while 

other years in the untreated trials had ±2 SDs between 0.9 and 1.8 t/ha-1. 

Student t tests showed that the yield of all fungicide treated trials was 

significantly different as compared to untreated trials of the same year except 

the yield year of 2005. The average yield of significant fungicide treated year 

was 9.2 t/ha-1; whilst the average yield of significant untreated year was 8.4 

t/ha-1. Variability was generally lower within individual years in the naturally 

infected trials; however, the high mean yield recorded in 2009 had a relatively 

large variability (Figure 3.2). The average yield of treated naturally infection 

trials was 10.1 t/ha-1, however the average of untreated trials was 9.7 t/ha-1.  



CHAPTER 3 

75 

 

 

Figure 3-1: Yield means for treated and untreated eyespot disease inoculated trials 

between 2004 and 2012 (±2 SDs). Yield means of treated inoculated trials of 2004, 2006, 

2007 and 2012 were significant comparing to untreated inoculated trials in the same 

years. The highest yield was recorded in 2004 in both treated and untreated trials. 

Untreated (n-1), 2004=15, 2005= 15, 2006= 15, 2007=11, 2009= 11 and 2012=11. Treated 

(n-1), 2004= 111, 2005= 143, 2006= 127, 2007=67, 2009=29 and 2012=125.  

*Signifiant codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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Figure 3-2: Yield means for eyespot disease naturally infected trials between 2007 and 

2010 (±2 SDs). Yield means of all treated natural infection trials were higher comparing 

to untreated natural infection trials in the same years. The highest yield was recorded in 

2009 in both treated and untreated trials. 

Treated (n-1), 2007= 67, 2008= 13, 2009= 31, and 2010= 31. Untreated  (n-1), 2007= 11, 

2008= 2, 2009= 7, and 2010= 7.  
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£1254.1 ha-1 and £1203.5 ha-1 respectively. The lowest mean gross margin was 

recorded in 2012 (£913.3 ha-1) for treated trials and also in 2012 (£786.8 ha-1) 

for untreated. Thus, variability is greater between years than within the trials. 

The value of ±2 SDs was used to demonstrate the variation in the results. The 

highest variation was in 2008 (treated) with ±2 SDs of £291.6 ha-1 and 2007 in 

untreated trials with ±2 SDs of £364.4 ha-1. All other years of treated trials had 

±2 SDs between £93 ha-1 and £180.2 ha-1, while the other years in the 

untreated trials had ±2 SDs ranged between £119 ha-1 and £243.3 ha-1. There 

were significant differences in 2005, 2007 and 2012 between treated and 

untreated trials; the average of the significant trials was £973 ha-1 whilst the 

average in the untreated trials was £885 ha-1. The gross margin mean of the 

treated naturally infected trials was £1135.2 ha-1, whilst the gross margin mean 

for the untreated trials was £1130.4 ha-1, as shown in Figure 3.4. The highest 

value was recorded in untreated trials in 2009 at £1366.1 ha-1. The value for ±2 

SDs varied in treated natural infection trials from £74 ha-1 in 2008 to £233 ha-1 

in 2009. However, the ±2 SDs values in untreated natural infection trials vary 

from £79.6 ha-1 in 2008 to £189.5 in 2007 ha-1. There were no significant 

differences between treated and untreated trials in natural infection.  
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Figure 3-3: Gross margin means for treated and untreated inoculated trials between 2004 

and 2012 (±2 SDs). Gross margin means of treated inoculated trials of 2005, 2007 and 

2012 were significant comparing to untreated inoculated trials in the same years. The 

highest gross margin was recorded in 2004 in both treated and untreated trials. 

Untreated (n-1), 2004=15,2005= 15, 2006= 15, 2007=11, 2009= 11, and 2012=11. Treated 

(n-1), 2004= 111, 2005= 143, 2006= 127, 2007=67, 2009=29 and 2012=125. *Significant 

codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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Figure 3-4: Gross margin means for treated and untreated naturally infected trials 

between 2007 and 2010 (±2 SDs). The gross margin of both treated and untreated natural 

infection trials is not significant. The highest gross margin was recorded in 2009 in both 

treated and untreated trials. 

Treated (n-1), 2007= 67, 2008= 13, 2009= 31, and 2010= 31. Untreated  (n-1), 2007= 11, 

2008= 2, 2009= 7, and 2010= 7.  
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disease index decreasing as the dose increased from half to full rate and both 

doses reduced DI compared to the control (no fungicide treatment at GS30/31). 

However, Opus and Proline 275 were not shown to produce a dose response.  

The highest variation was found in Opus at 1 l ha-1 with ±2 SDs of DI 43.5% 

and the lowest ±2 SDs in Tracker 1.5 l ha-1 with DI 34.3%. Tracker at 1.5 l ha-1 

plus Opus at 0.5 l ha-1 significantly reduced the disease index compared to the 

control. A similar pattern was seen with the effect of different fungicide 

treatments on the disease index at natural infection trials. All three fungicides 

reduced DI in the treated trials comparing to the untreated ones as shown in 

Figure 3.6. Proline at 0.6 l ha-1 and Opus at 0.5 l ha-1 significantly reduced the 

DI compared to the untreated control.  
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Figure 3-5: Disease index at GS70/80 means of different fungicides used at GS 31 in 

inoculated trials between 2004 and 2014 (±2 SDs). Tracker at higher dose 1.5 l ha-1 was 

highly significant to decrease DI at GS70/80 compared to control. Opus at 0.5 l ha-1 was 

significant to decrease DI compared to control. Apart from Opus at 1 l ha-1 dose, all other 

fungicides decreased the disease index at GS70/80 insignificantly compared to control.   

*(n-1): Opus 0.5=26, Opus 1=19, Proline 275 0.4= 31, Proline 275 0.8 =55, Tracker 0.5 = 

14, Tracker 1.5= 62, Untreated=111.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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Figure 3-6: Disease index means at GS70/80 of different fungicides used at GS 31 in 

natural disease infection trials between 2007 and 2010 (±2 SDs). Tracker at 1 l ha-1 and 

Proline at 0.6 ha-1 was significant to decrease DI compared to untreated. Opus at 0.5 l ha-1 

reduced DI at GS70/80 insignificant compared to control. 

*(n-1): Opus 0.5=15, Proline 275 0.6=26, Tracker 1= 34, and Untreated = 30.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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average yield of significant treatments was 9.5 t/ha whilst the average of the 

untreated was 8.4 t/ha. The yield in the naturally infected trials was also 

increased due to fungicide treatment as shown in Figure 3.8. However, Opus at 

0.5 l ha-1was the only fungicide that significantly increased yield having an 

average of 11 t/ha compared to 9.5-t/ha average yield of the untreated control.   

 

Figure 3-7: Yield means of different fungicide treatments in inoculated trials between 

2004 and 2014 (±2 SDs). Tracker at higher dose 1.5 l ha-1, Proline 275 at 0.5 and 0.8 l ha-1 

and Opus at 0.5 l ha-1 dose increased yield significantly compared to control.. Opus 0.5 

and Tracker 0.5 increased yield compared to control but not significantly.  

*(n-1): Opus 0.5=26, Opus 1=19, Proline 275 0.4= 31, Proline 275 0.8 =55, Tracker 0.5 = 

14, Tracker 1.5= 62, Untreated=111.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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Figure 3-8: Yield means of different fungicide treatments in natural infection trials 

between 2007 and 2010 (±2 SDs).  Opus at dose of 0.5 l ha-1was the only fungicides to 

increase yield significantly compared to control. Other fungicides increased yield in 

comparison to control but not significantly. 

*(n-1): Opus 0.5=15, Proline 275 0.6=26, Tracker 1= 34 and Untreated = 30.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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average price of £1030.8 ha-1 treatments was found to be worth the cost as 

shown in Figure 3.9. Opus at 0.5 l ha-1 and Proline 275 at 0.4 l ha-1 had the 

most favourable gross margins. The lowest variation was found with Opus at 1 

l ha-1 treatment with risk associated with getting a gross margin of £244.4 ha-1 

whilst the highest variation was found with the untreated control with risk 

associated with getting a gross margin of £407.9 ha-1. Moreover, all fungicides 

except Opus at 1 l ha-1 and Tracker at 0.5 l ha-1 returned significantly different 

gross margins compared to the untreated. At higher dose Tracker returned a 

better gross margin than at the lower dose; however, the lower dose did show 

less variation. On the other hand, a different pattern was seen with fungicide 

treatments in the natural infection trials (Figure 3.10). The lowest gross margin 

was returned from Tracker at 1 l ha-1 treatment with £1080.2 ha-1 whilst the 

highest returned by Opus 0.5 l ha-1 with £1273.3 ha-1.  
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Figure 3-9: Gross margin means of different fungicide treated and untreated inoculated 

trials between 2004 and 2014 (±2 SDs). Tracker at higher dose 1.5 l ha-1, Proline 275 at 

0.5 and 0.8 l ha-1 and Opus at 0.5 l ha-1 dose significantly increased gross margin 

compared to control. Opus 0.5 and Tracker 0.5 increased gross margin compared to 

control but not significantly.   

*(n-1): Opus 0.5=26, Opus 1=19, Proline 275 0.4= 31, Proline 275 0.8 =55, Tracker 0.5 = 

14, Tracker 1.5= 62, Untreated=111.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  
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Figure 3-10: Gross margin means of different fungicide treated and untreated natural 

disease infection trials between 2007 and 2010 (±2 SDs).  Tracker at dose 1 l ha-1 returned 

lowest gross margin while Opus at 0.5 l ha-1 dose returned highest gross margin but not 

significantly compared to other fungicides and untreated. 

*(n-1): Opus 0.5=15, Proline 275 0.6=26, Tracker 1= 34, and Untreated = 30.  

*Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. 
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under high disease pressure whilst under lower dose it reduced DI of eyespot 

significantly under low disease pressure only. A previous study by Ray et al. 

(2004) found Opus to reduce disease index by only 2.6% having a very small 

effect against eyespot. Opus at 1 l ha-1 was shown to be less effective against 

eyespot and was classified as a part of untreated category (Burnett & Hughes, 

2004). In France, a poor control has been noted with Opus against eyespot 

disease; particularly its activity against O. acuformis species was found very 

low (Leroux, 1998).   

In this study, Tracker was found to have a clear dose response; with disease 

index decreasing as the dose increased. This result indicates that at a higher 

dose Tracker, which is a mixture of epoxiconazole and boscalid, achieved 

greater yield and returned better gross margin. Proline (prothioconazole) was 

found to be highly successful in reducing disease index and increasing yield 

previously (Burnett, 2005). Also, Burnett and Hughes (2004) found Proline 

275 to be more effective than Opus and Unix mixtures.  The results in this 

study indicate the effectiveness of Proline 275 to be the same as that found in 

literature. Opus treatment at 0.5 l ha-1 reduced DI significantly and returned 

better gross margin and yield compared to Proline 275 treatment at 0.4 l ha-1, 

and no dose response was identified for either treatment. This was not expected 

for Opus since it has lower activity against eyespot. Also, the results on Proline 

275 are unexpected and in contrast to results from Burnett (2005), although at 

higher doses Proline 275 were most effective in reducing disease index. The 

better gross margin returned by Opus comparing to Proline 275 may be due to 

the rate of Proline 275 at 0.4 l ha-1 – a cost of £20 ha-1 - double the cost of 
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Opus at 0.5 l ha-1. In this study, we only examined the effects of increasing rate 

of treatment in three different fungicides used in inoculated trials. Under these 

conditions only Tracker showed a clear dose response used from 0.5 l ha-1 to 

1.5 l ha-1. It is likely that under natural infection other diseases like Septoria 

and rust may have also been present at higher levels and dose responses may 

not be the same as under inoculation where eyespot disease predominates 

under higher severity. 

Within this study the use of fungicides against eyespot and their economic 

effect upon DI at GS70/80 and related responses in yield and gross margin 

were also considered. It was identified that in both the inoculated and naturally 

infected trials, all fungicide treatments increased yield with most of them 

showing significant increases as compared to control. The gross income was 

calculated by multiplying the yield with grain price of £139 ha-1 as in 2015. 

The price for variables including chemical, fertilizers and contactors were 

subtracted. Gross margin results were quite similar to the results for yield. In 

most years gross margin of treated trials dominated the gross margin from 

untreated trials. A study to estimate the economic benefits of alternative 

pesticides usage scenarios on wheat production in the UK, found that if 

pesticides used were reduced by two thirds, gross margin per hectare would not 

be effected under a grain price of £75 ha-1 (Webster et al., 1999). However, 

gross margin dropped significantly if pesticides were removed completely.  

Most fungicides also significantly improved gross margins with the most 

favourable return from Tracker at the higher dose rate. This is in agreement 
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with the published literature showing that fungicide treatments play an 

important role in increasing yields (Cook, 1980; Ray et al., 2004). In Sweden, a 

single treatment against eyespot at GS31/33 between 1977 and 2005 with 

benzimidazoles in early years and with pyrimidines in later years improved 

yield by 320kg/ha on average due to few years that had severe attack with 

eyespot (Wilk, 2009). In addition, the mean yield response to early treatment 

with eyespot fungicides was higher (1050 kg/ha) when average of eyespot 

index greater than 35%, whilst it was only 190 kg/ ha-1 when eyespot index 

was less than 10% (Wilk, 2009).  

In this study the yield means of treated inoculated and natural infections trials 

dominated the yield means of untreated inoculated and natural infections trials 

during all of the years included in the analysis. As well as the range of standard 

deviation (+/-2) was lower in most years of treated trials except 2006 in 

inoculated trials and 2009 in natural infection trials. Although yield is an 

important consideration for most farmers, it is also important to consider gross 

margins from a management perspective. As with yield, the gross margin 

means for inoculated trials was always higher than the gross margin for 

untreated inoculated trials except for 2005. Moreover, the range of (+/- 2) 

standard deviation of inoculated treated trials was also lower in most years than 

the range of untreated trials except in years 2005 and 2006.  

However, in the situation where the naturally infected data was assessed, 

fungicide control was not shown to be significant in affecting gross margin. 

Nevertheless, treatment with a fungicide on average reduced the level of 
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variation, so although the average gross margin for untreated is competitive, 

treatment would still be worthwhile for the risk averse farm manager so that 

they would not be exposed to a gross margin variation of £189/ha (Standard 

deviation). This result indicates that for those farmers with risk averse 

behaviour, the dominant strategy will be to manage the crop with fungicides. It 

is interesting that all the treatments were increasing yield in both the inoculated 

and the naturally infected trials, however such clear results are not seen when 

assessing gross margins. The reason for this is thought to be because of the 

effect the costs associated with treatment had.  

The reduction in variable cost could be very important because variable costs 

are correlated more directly with output unlike the fixed costs, which, by 

definition, remain constant regardless of output. However, this mainly depends 

on the risk aversion of the farm manger, although in this study the mean benefit 

from the treatment was marginal. However, if the crop was not treated there is 

then a risk of exposure to high disease severity that could cause substantial 

yield loss. This is well noted in the literature: e.g. Fitt et al. (1988) stated that if 

farm mangers decided not to treat against disease, the risk of exposure to more 

than a 78% disease index could be detrimental to yield. Our results showed that 

it is worth spending more on crop management and disease control in order to 

enhance and maintain the yield that will return more income. There is a little 

information on wheat yield and profitability responses of eyespot management 

program that utilize fungicides for purpose than disease control. However, a 

study that considered the outcome of more spending on fungicides to control 

soybean diseases in order to gain better gross margin concluded that soybean 
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seed mass was increased with fungicides application and that returned more 

yield which in turn caused the net return to increase (Henry et al., 2011).  

In addition, the results from this study showed that the level of variation among 

treated trials was reduced: thus, even though the mean gross margin of the 

untreated trials was more competitive, treatment would be still a better choice 

for many risk averse farmers. The relationship between the ultimate of gross 

margin variation and eyespot treatment has not been considered in the past. 

However similar research to determine the pesticide usage for site-specific 

weed management, found that although it was not always worth cost, there 

were often considerable benefits in reducing yield variability (Ritter et al., 

2008). The unexplainable results were gross margin of untreated trials 

dominated the treated one under high disease pressure. As demonstrated within 

the literature review, many factors can affect the incidence of eyespot, crop 

yield, and ultimately the gross margin. Fungicide treatment is one such factor, 

however cultural practices and weather have also been demonstrated to have an 

effect on eyespot severity and yield losses. In addition, that could be because 

disease was not severe enough or other diseases were also present influencing 

the quantification of efficacy against eyespot of particular actives. This is well 

documented in the literature and using a model like the ‘threshold percentage’ 

may lead to incorrect identification of diseased crops that then miss the crop 

which needed treatment, allowing those crops to cause serious infection at later 

stages (Scott & Hollins, 1978; Hughes et al., 1999; Burnett et al., 2000).  
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Overall, not all fungicide treatments of eyespot were worth the cost. Opus at 1 l 

ha-1 was found to be insignificant in all analysis in terms of disease index 

reduction and gross margin benefit. The other fungicides were found to be 

worth the costs, either under high disease pressure (inoculated sites) or 

naturally infected sites. It was most economical to apply Tracker under higher 

dose having the largest disease reduction and financial gain. Whilst with Opus 

and Proline 275 the dose response was absent and did not have any effect. 

When considering the risk averse nature of the farm manager, the choice of 

whether to treat varied, with less risk being carried by treating crops compared 

to missing the treatment. For the risk averse manager fungicide treatment 

would be worth the cost as it would reduce the higher level of disease and 

consequently minimise associated yield losses. It was also found that the 

decision not to treat resulted in an increased gross margin variation as indicated 

by standard deviation compared to the variation of the average fungicides. 
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4. EYESPOT DISEASE MODELLING FOR UK  
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 INTRODUCTION  4.1.

Three factors play an important role in disease epidemics, the susceptibility of 

the host, the presence of inoculum of an aggressive pathogen as well as 

favourable environmental conditions for infection and disease development 

(West et al., 2012). Thus, for the initiation of disease, the spatial and temporal 

dispersal of plant pathogens, affected by environmental conditions, must 

coincide with the susceptible stage of development of the host crop in terms of 

phenology (growth stages). For instance, drier summer conditions reducing the 

breakdown of crop debris may increase inoculum availability of facultative 

pathogens such Oculimacula spp. causing eyespot disease on cereals, whilst 

successful infection of the host may be reliant on extended time and favourable 

environmental conditions for pathogen dispersal and spread during crop 

emergence and seedling development (West et al., 2012). 

Weather forecasting engines can be used to identify optimum environmental 

conditions for the survival, dispersal and spread of plant pathogens to monitor 

disease infection risk and apply appropriate control measures. For example, 

temperatures of 8-20oC and high humidity associated with cloud and light rain 

are most favorable condition for karnal bunt caused by Tilletia indica to infect 

the ears of wheat, rye and triticale in Europe. Sansford et al. (2008) estimated 

the risk of pathogen infection in Europe by applying a published karnal bunt 

disease model based on investigation of specific phases of the pathogen 

lifecycle and its relation to the principal host that is wheat. The simulation 

showed that weather during May and June at the time of heading period or ear 
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emergence was most favorable for disease infection and development across 

Europe. Thus, it is also possible to model the effects of the climate change on 

disease development as well as disease effects on the crop as it develops 

phonologically to avoid unreliable predications (Butterworth et al., 2010, 

Madgwick et al., 2011).  

  EYESPOT DISEASE – EPIDEMIOLOGY AND LOSSES IN 4.1.1

WHEAT 

In the UK, eyespot caused by two closely related fungal species, Oculimacula 

yallundae and O. acuformis (Robbertse et al., 1995) is considered one of the 

most damaging disease on cereal stem-bases (Crous et al., 2003, Cook et al., 

1991). 

 EYESPOT DISEASE SYMPTOMS  4.1.2

The early visible symptom of eyespot is brown smudge on the leaf sheath on 

the stem that is sometimes confused with other stem base diseases such brown 

foot rot caused by Fusarium spp. or sharp eyespot (Rhizoctonia cerealis) 

(Goulds & Polley, 1990, Burnett & Hughes, 2004). According to Blein et al. 

(2009), the disease has a latent period that is around six to eight weeks; often 

by this time symptoms are seen in the infected plant. Later in the season, the 

eye-shaped elliptical lesion does appear usually below the first node and 

symptoms become even clearer (Sheng et al., 2012) (Figure 4.1). At later 

stages of disease development once lesions have established, a central black 

‘pupil’ can be observed (Goulds & Polley, 1990).  Grey mycelium is often 
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found within the stems of colonised plants and whiteheads may appear in the 

severe cases (Jones et al., 1995). At the end of the season under severe 

epidemics, lodging occurs due to softening and rotting of the stems carrying 

the weight of the developing ear (Ray et al., 2006). 

 

 

 

 

 

 

 

 

Survival of Oculimacula spp. 

Oculimacula spp. can survive saprophytically for a period of three years on 

straw debris (Macer, 1961) (Figure 4.2). Garrett in (1975) showed that the 

eyespot pathogens have weak ability to compete with other saprophytes in 

colonizing plant material in the soil. Furthermore, weak saprophytic survival is 

also noted due to slow rate of straw decomposition as resting hyphae is the 

main survival structure (Higgins & Fitt, 1984). Moreover, it is now clear that 

Figure 4-1: Eyespot disease symptom and lesions (Taken by Al-azri, 2015). 
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grasses can harbor Oculimacula spp. pathogenic to wheat (Hocart & 

McNaughton, 1994). Several grass species such as cocksfoot (Dactylis 

glomerata), couch (Elytrigia repens) and annual meadow grass (Poa annua) 

have been found to be a host for Oculimacula spp. and the pathogens have 

been successfully isolated from them (Lucas et al., 2000).  

 

Inoculum production and dispersal of Oculimacula spp. 

Sporulation of Oculimacula spp. occurs on infected crop debris remaining after 

harvest and the inoculum may take a form of conidia or ascospores (Figure 

4.2). According to Fitt et al. (1988) Oculimacula yallundae reaches sporulation 

peak between March and April, when the optimum temperature is between 5-

16oC. However, spore production decreases between June and July when 

temperature is above 20oC (Higgins & Fitt, 1984). In addition, water 

availability is necessary to facilitate sporulation. For instance, laboratory 

experiments in Oregon state university where infested wheat stubble was 

washed in running water and placed in a covered plastic container followed by 

incubation in the dark at 10oC, water absorption by infected debris stimulated 

sporulation (Rowe & Powelson, 1973). The sexual and asexual life cycle of the 

fungi from the previous season results in infectious ascospores or conidia, 

respectively, produced when temperature is above 5oC between late autumn 

and winter (Bateman et al., 2000).  

The quantity of remaining crop residue in the soil determines the inoculum 

potential. In the field conidia are dispersed by rain droplets from infected straw 

(Figure 4.2). Spore production under light rain (<0.3 mm h-1) or during dry 
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periods is low comparing to heavy rain (3-23 mm h-1) when spores can be 

collected in large quantities after an initial period of wetting (Fitt & 

Bainbridge, 1983). A field study demonstrated the ability of Oculimacula spp. 

to spread from the inoculum source of about 1-2 m range, carried mostly by 

large rain droplets 400 µm in diameter (Fitt & Nijman, 1983). Although 

ascospores have the capacity to be dispersed by wind over longer distances, 

only small numbers have been collected from infected debris during rainfall 

(Fitt & Bainbridge, 1983).  

In addition, rainfall has been found to play an important role on eyespot disease 

infection and spread. Above average rainfall during winter and spring was 

found to be strongly associated with eyespot infection (Murray et al., 1991). A 

later study in the Czech Republic identified that when rainfall was higher than 

3mm in the number of days from October to April has an important effect on 

eyespot infection (Matusinsky et al., 2009). However, a study in the UK by 

Burnett and Hughes (2004) found contrasting results; they stated that higher 

rainfall between March and May influenced disease incidence, while rainfall 

from September to February had no effect on eyespot incidence. This 

difference between published literatures indicates that the effect of rainfall is 

still unclear and requires further research. 

 

Infection process 

The most susceptible tissue to the fungal infection by both species is the 

coleoptile during seedling emergence and establishment of wheat (Bateman & 

Taylor, 1976). The coleoptile or outer leaf sheath of the host plant is penetrated 
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by hyphae produced by the germinating conidia. The infection is localized at 

the stem base and is rarely observed above the second node on stem bases and 

colonization of the leaf or root tissue has not been previously reported (Cook, 

1993). The two eyespot species vary in the infection process. After spore 

germination, Oculimacula yallundae grows faster than O. acuformis which has 

a slower initial growth phase (Daniels, 1993). Furthermore, for infection to 

occur moisture must be present. Most inoculation experiments failed without 

moisture (Fitt et al., 1988). Also, at the time of infection humidity is necessary 

for disease development. Soulie et al. (1985) specified that 80-90% of relative 

humidity is required to encourage the infection process, irrespective of the 

ambient temperature.  

Environmental factors enhancing fungal sporulation on plant debris play the 

similar role for the initiation of plant infection. For instance, early sown crops 

have been shown to develop more severe eyespot disease, most likely because 

there is more time under favorable conditions to infect seedlings (Burnett and 

Hughes, 2004). An observed experiment showed that the level of eyespot in a 

crop established through ploughing was much higher than when the crop was 

established under minimum tillage (Jalaluddin & Jenkyn, 1996). This 

observation was supported by Burnett and Hughes (2004), who found 

ploughing was a factor increasing eyespot risk compared to minimum tillage. 

The mechanism of this effect is unclear, however it could be due to the 

increased populations of antagonistic organisms, or due to the ploughing of 

infected straw compared to being left on the surface with minimum tillage. In 
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addition, remaining trash may act as a physical barrier to the splash and 

movement of the spores.  

 

Disease development and severity 

In the UK, disease development is favored by cool damp weather in spring and 

mild, wet weather in winter. Hollins and Scott (1980) showed that disease 

incidence is determined mainly by weather conditions and although wheat 

plants remain susceptible to eyespot infection throughout the season the time 

necessary for the development of severe disease at growth stages beyond stem 

extension is limited. Eyespot lesions have been shown to develop within 

temperature range of 5 to 18oC under controlled environment and glasshouse 

conditions (Scott, 1971; Higgins & Fitt, 1985). Pathogen development within 

the stem of winter wheat in the UK in relation to thermal time was assessed by 

Bock et al. (2009), and the results revealed that severity of stem lesions caused 

by eyespot pathogens increased linearly with thermal time. The same field 

experiment showed that thermal time range of ca. 600-800oC days is required 

for the establishment of stem lesions and stem colonization and ca.1000-

1200oC were needed by the both species of eyespot to reach their maximum 

lesion size (Bock et al., 2009).  

After host penetration, O. yallundae infects the cell wall whereas the O. 

acuformis penetrates through the cell wall. The infection plaques of O. 

acuformis are more compact and symmetrical then the plaques of O. yallundae. 

According to Goulds and Fitt (1990), O. acuformis isolates develop slower on 

leaf sheaths and visual browning and lesions early in the season are not 
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apparent compared to isolates of O. yallundae. However, O. acuformis 

develops faster in stem tissues than O. yallundae (Wan et al., 2005). Yet, these 

differences between species become less apparent towards the end of the 

season (Goulds & Fitt, 1988; Ray et al., 2006). Goulds and Fitt (1990) tested 

eyespot species in controlled environment and in field trials and found that O. 

yallundae is more pathogenic at temperatures between 10-15oC, whilst O. 

acuformis is more pathogenic at temperatures below 7oC. Furthermore, using 

accumulated thermal time (degree-days) revealed that at higher temperatures 

the rate of leaf sheath penetration by O. acuformis is slower than O. yallundae. 

Wan et al. (2005) demonstrated that O. acuformis penetrated leaf sheaths at a 

significantly slower rate of 0.0067 leaf sheaths/degree-day, comparing to the 

penetration of O. yallundae that was at a rate of 0.0102 leaf sheaths/degree-

day.  

An inoculation experiment investigating the effect of inoculum quantity on 

disease severity showed disease indices were significantly higher up to GS39 

in plots inoculated with O. yallundae than in the plots inoculated with O. 

acuformis (Burnett et al., 2012). The same experiment confirmed the consistent 

differences in disease development between species early in the crop growing 

season. In addition, eyespot disease was more severe in the 2008 season and 

resulted in greater yield loss due to the occurrence of lodging and whiteheads.  

The severity of disease is affected by agronomic factors via influencing 

inoculum quantity and the time available for infection. A ten year study by 

Hardwick et al. (2001) showed that eyespot levels varied within years, however 

disease incidence was typically high, with 80-96% of infected samples each 
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year but with less than 1% of samples found to be severe. The trend scenario 

towards increased winter temperatures that was suggested by the latest 

predictions of climate change in the UK could encourage the predominance of 

O. yallundae over O. acuformis (Jenkins et al., 2010).  

 

Yield loss caused by eyespot 

Yield loss caused by eyespot disease in wheat has been found to vary 

depending on the severity of infection. According to Ray et al. (2006), slight 

disease has no effect on ear weight. However moderate or severe disease may 

cause up to 36% yield loss (Clarkson, 1981). Under severe epidemics yield loss 

can be as high as 50% (Fitt & White, 1988). Yield loss is associated with 

lodging at harvest (Scott & Hollins, 1974; Fitt et al., 1988). The estimated loss 

value from a ten year study in UK cereals caused by two species of eyespot has 

been shown to be 0.5% -2.2% of the total national yield (Hardwick et al., 

2001). This finding was supported by a study showing that eyespot reduced 

national yield by almost 250,000 tons of wheat per year (Cook et al., 1991).    
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Figure 4-2: The life cycle of Oculimacula spp., showing asexual cycle with conidia and 

sexual cycle with apothecia and ascospores with climatic condition influencing its severity 

(Adapted from Lucas et al., 2000). 

 

  DISEASE CONTROL METHODS 4.1.3

Apart from environmental conditions, crop management has been shown to 

influence disease incidence. Continuous cereal rotations have been shown to 

increase the risk of eyespot epidemics due to survival and production of 

inoculum on crop debris (Colbach & Meynard, 1995). Eyespot infection could 

be reduced potentially and large yield savings could be achieved if a crop break 
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from cereals is introduced in the rotation (Cook et al., 1991). Colbach and 

Meynard (1995) investigated the effects of previous crop and tillage practice 

on eyespot incidence. They showed that when a non-host crop preceded the 

host crop, host residues were buried by soil inversion, however infected 

residues were returned to the surface when a non-host previous crop followed a 

host crop. This suggests that previous crop could influence eyespot in addition 

to inoculum levels that may be reduced for one year as a result of ploughing, 

but can also be returned though ploughing in the following season. 

A range of soil types was found to influence eyespot disease. Light soil has 

been found to carry lower disease risk compared to heavy soils (Burnett, 2005). 

Burnett et al. (2012), suggested that clay soils are much more conducive to 

eyespot due to their water holding capacity that creates a suitable micro climate 

for the pathogen to reproduce more rapidly. Date of sowing also influences 

disease outcomes. For example, a higher eyespot incidence has been reported 

with early sown cereals (Colbach & Saur, 1998). Moreover, Gutteridge and 

Hornby (2003) found less eyespot infection in the spring with late sown crops. 

It has been suggested that the reason of a higher eyespot infection in the earlier 

sown crop is through extending the period for both infection and disease 

development (Cook et al., 1991; Colbach & Saur, 1998).  

Using resistant cultivars to eyespot can be an effective method as part of 

control strategies against the disease. Wheat varieties may carry resistance to 

eyespot via the function of Pch1 and Pch2 (Cadle et al., 1997). It is thought 

that much of the UK cereal production relies on varieties that contain Pch2 
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gene and these cultivars are considered moderately resistant (Burnett & 

Hughes, 2004). The Pch1 gene derived from Aegilops ventricosa confers more 

robust form of resistance. This gene was incorporated into breeding 

programmes and varieties producing varieties such as Hyperion and Grafton 

(Burnett et al., 2012). However, these resistant varieties are not widely grown 

by farmers due to the lack of other favourable agronomic characteristics. 

Eyespot is controlled with a fungicide spray at early stem extension between 

growth stage (GS) 30 and 32 (Burnett et al., 1997). In the past fungicides such 

as benomyl and carbendazim were commonly used to treat eyespot disease. 

However, in 1981 this group of fungicides were reported to be ineffective in 

controlling the disease and isolates of both species that were resistant to 

benzymidazoles spread across the UK (Brown et al., 1984). Later prochloraz 

was reported to be cost effective and capable of reducing O. yallundae by 30-

60% (Jones, 1994). However, with higher presence of O. acuformis in the early 

1990s, prochloraz effectiveness decreased (Chapman et al., 2009). A study by 

Ray et al. (2004) investigated nine different fungicides against eyespot and 

found that prochloraz was not effective in controlling the O. acuformis. This 

was confirmed by a study that found O. acuformis had low sensitivity to 

prochloraz (Parnell et al., 2008).  

Cyprodinil was later found to reduce eyespot by 82% (Babij et al., 2000). This 

active molecule was also shown to be effective in field experiments where O. 

acuformis predominated (Ray et al., 2004). The most effective and recent 

triazole fungicide, prothioconazole has been shown to be highly effective 
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against both Oculimacula spp. (Hollomon, 2012). Metrafenone launched in 

2004 to control mildew was also found to be moderately active against eyespot 

at high doses (Burnett, 2005). The succinate dehydrogenase inhibitor, Boscalid 

in formulated mixture with epoxiconazole, was shown to give greater eyespot 

control than most fungicides commercially available against the disease 

(Leroux et al., 2007). A list of active fungicides currently used in UK crop 

protection against the disease is shown in Table 4.1.  

Table 4-1: Active ingredients and product name of some fungicides used in UK.  

Fungicide active ingredient  Product name 

boscalid + epoxiconazole Tracker 

prothioconazole Proline 275 / 250 

penthiopyrad Vertisan 

bixafen + prothioconazole Aviator 235 Xpro 

epoxiconazole + fluxapyroxad Adexar 

fluxapyroxad + metconazole Librax 

 

 ASSESSMENT OF THE DISEASE 4.1.4

Decisions to treat against eyespot are made according to an initial disease 

assessment carried out at GS30-32 (Jones, 1994). Visual examinations or the 

Polymerase Chain Reaction (PCR) are the two methods performed to identify 

symptoms or the presence of the fungal organisms causing the disease, 

respectively. Using PCR, the causal organisms in plants can be identified in the 

absence of visible symptoms as well as providing an opportunity to reject any 
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misidentification with other pathogens (Turner et al., 2001). PCR diagnostics is 

a useful tool to accurately identify the pathogens in the stem base complexes 

(Burnett et al., 2012). However, PCR does not help to determine the threshold 

level of eyespot treatment (Turner et al., 2001) and it is an expensive 

technique, which is not economically viable for growers. Visual assessment has 

been used to indicate eyespot severity in this study. Using visual assessment, it 

is possible to calculate the disease index by assessing the eyespot disease 

infection in the trial using one of four classes as shown in Table 4.2.  

Table 4-2: Category of eyespot disease (Scott and Hollins, 1974).  

Category Disease infection symptoms 

Clean No visible symptoms 

Slight Slight eyespot (one or more small lesions occupying in total less 

than half of the circumference of the stem) 

Moderate Moderate eyespot (one or more lesions occupying at least half of 

the circumference of the stem) 

Severe Severe eyespot (stem completely girdled by lesion-tissue softened 

so lodging would occur) 

 

  EYESPOT DISEASE RISK MODELS  4.1.5

Eyespot disease risk assessment was developed to assist growers in making 

decisions for the treatment of crops against the disease. The main objective was 

to identify the diseased crops in need of treatment via determining a threshold 

level of eyespot early in the season at GS31. Weather data has also been used 
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to predict the threshold level of the disease; however, this was not successful 

due to the loss of eyespot lesions failing to penetrate the stem by shedding out 

outer plant leaves (Polley & Clarkson, 1978). Other threshold-based 

assessments have relied on assessment of the number of infected stems at the 

beginning of stem extension and recommending treatment if percentage stems 

with penetrating lesions exceeded 20% (Jones, 1994). However, this threshold 

method is not effective for crops that have not passed the threshold level at the 

start of stem extension but proceed to develop severe infection later in the 

season (Hughes et al., 1999). Furthermore, the forecasting and threshold 

methods appeared to be reasonably effective whilst eyespot disease was caused 

predominantly by O. yallundae. However, the increasing dominance of O. 

acuformis which develops slower, makes it difficult to assess visually at stem 

extension, making the use of forecasting and threshold less effective (Burnett et 

al., 2000).  

The difficulties of detecting infection by O. acuformis before visual symptoms 

develop maybe overcome by using molecular diagnostic tools such as PCR 

(Nicholson and Turner, 2000). Moreover, accumulated degree-days could be 

used to produce an eyespot development scale that can differentiate between 

species and more accurately predict disease severity and the requirements of 

chemical control (Wan et al., 2005). On the other hand, development of 

accumulated risk score later on to predict the risk of economic damage of 

eyespot by Burnett and Hughes (2004) was more accurate than single threshold 

method. The risk assessment was based on data analysis of 341 untreated 

eyespot wheat crops. The crops were assessed in need of treatment based on 
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the level of eyespot incidence at the beginning of the season associated with 

economic yield loss. The six risk factors: soil type, previous crop, tillage, 

sowing date, eyespot at GS31-32 and March/April/May rainfall were identified 

by logistic regression analysis and risk point scores were weighted for each 

level of each factor. Burnett et al. (2012) updated this risk assessment later by 

predicting eyespot risk and calculating treatment cost based on the likely yield 

loss. This latest approach can be modified to suit different situations and can be 

updated with new data on yield losses of eyespot (Burnett et al., 2012).  

 AIM AND OBJECTIVES 4.2.

The overall aim of this study was to develop an epidemiological model for 

eyespot disease. The main objective was to test the eyespot disease model in 

predicting yield loss of wheat using collected data from different wheat 

experiments between 2004 and 2014 in the UK.  

 MATERIALS AND METHODS  4.3.

 FIELD SITES AND AGRONOMY OF EXPERIMENTS ON 4.3.1

FUNGICIDE EFFECTIVENESS AGAINST EYESPOT 

DISEASE IN UK  

This study used historical data collected through previous research projects on 

fungicide efficacy against eyespot disease by the University of Nottingham, 

Harper Adams University, as well as The Arable Group research (TAG). 

Summary of all data is presented in the Table 7.1 of the Appendix. 

Experiments were positioned across various locations between 2004 and 2014. 
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Experimental field locations and their GPS coordination’s are shown in Table 

7.2 in the Appendix. Agronomy for all trials was as standard farm practice. 

Site details including region, soil type, previous crop, tillage and sowing date 

were recorded in the database as known factors that influence the risk of 

eyespot and the final outcome of the disease as shown in Table 4.3. Regions 

were recorded as south, north, east and west to investigate the importance of 

geographical location. Tillage practice, plough or minimal cultivation was also 

recorded. Crop rotation was known and included in the analysis to determine 

the importance of host previous crop for eyespot disease. Trials covered a 

range of soil types including sand and clay loam soils that has also been 

recorded from all trials location. 

Table 4-3: Agronomy factors influencing final disease outcome (from Burnett et al. 2012).  

Agronomy factors Level 

Sowing date <6 October or >6 October 

Tillage Minimum or Plough 

Soil type Light, Medium or Heavy 

Previous crop Non-host, Other cereals and Wheat.  

Region North, East, West, South 

 

Soil K, P and Mg was analysed for each field site prior to sowing. Cultivars 

grown were assigned eyespot resistance score based on their ranking on the 

AHDB-HGCA recommended list published by the Home Grown Cereals 

Authority (2012). The database included trial sites, which were inoculated with 
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Oculimacula spp., and naturally infected presented in Table 7.3 in the 

Appendix. In addition, climatic data were obtained from the official weather 

station at Sutton Bonington campus University of Nottingham for the research 

sites located in Leicestershire county and met office-RAF Shawbury weather 

station for the Newport and Harper Adams research sites located in Shropshire 

county.  

Moreover, fungicide treatments that have been tested during the period of 2004 

to 2014 as well as field rate per hectare of each fungicide were recorded in the 

database that are presented in Table 7.4 of the Appendix. The main indicator of 

eyespot severity was disease index (DI) calculated for GS31-32, GS37-45 and 

GS70-80 (Zadoks et al., 1974) of wheat development (Scott & Hollins, 1974). 

In addition, at GS39 and GS69 pathogen DNA was extracted from plant 

material as described by Ray et al. (2004) and TaqMan probe quantitative 

Real-time assays were used to quantify the fungal biomass (Walsh et al., 2005). 

Grain yield was recorded and corrected to 15% moisture content. 

 CROP SAMPLING IN 2012/13 AND 2014/15 FOR CROP 4.3.2

SIMULATION MODEL  

This fieldwork was carried out at Sutton Bonington campus, University of 

Nottingham during winter wheat growing season for two years 2013 and 2015. 

In order to meet the aims of this study, the development of eyespot in the crop 

was assessed and associated agronomic practices such as previous crop, soil 

type, sowing date, sowing rate, tillage, and biomass data required for 

calibrating crop simulation model were collected. Collections of plant samples 
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in 2013 season were carried out at GS39 and GS69 only; however, in 2015 

season the plots were sampled at GS31, GS39, GS61 and GS75. Using 0.25m2 

quadrat and avoiding the last 0.5m and the outer two rows of each plot, plants 

including tillers were dug out with a small amount of root kept the stem base 

intact for inspection. Each sample was then placed in a plastic bag and 

transferred immediately to the laboratory for further disease assessment and 

biomass measurement.  

  DISEASE ASSESSMENT 4.3.3

Disease assessment was performed immediately after sampling of the plots. 

The incidence of eyespot from 20 main tillers in a sample was calculated as the 

percentage of stems with visible eyespot lesions. Eyespot severity was assessed 

using the scale (0-3) previously described by Scott and Hollins  (1974), where 

0 was assigned to symptomless (clean) plants. Eyespot symptoms were scored 

as slight (1) when lesions covered less than half of the circumference of the 

stem; moderate (2) when lesions occupied more than half of the circumference 

of the stem or severe (3) when the lesions girdled and softened the stem. 

Disease index (DI, %) representing disease intensity (based on incidence and 

severity of the disease) was calculated using the following Equation;  

(𝐷𝐼) =  ( 𝐴 +  2 𝑥 𝐵 +  3 𝑥 𝐶 ) / (3 𝑥 𝑇) 𝑥 100.            Equation (4.1)  

Where, DI = Disease index, A = (number of plants with slight symptoms), B = 

(number of plants with moderate symptoms), C = (number of plants with 

severe symptoms), T = (total number of assessed plants).   
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  YIELD MEASUREMENT 4.3.4

Grain yield was harvested per plot and corrected to 15% moisture content. 

Fertile and non-fertile shoots were first separated and counted from each 

individual sample. Ears of fertile shoots were then separated from the straw. 

After that ears were threshed to separate grain and chaff. The fresh weight of 

grain, straw and chaff of each sample was recorded. To dry the sample, grain, 

straw and chaff were kept in the oven for 48 hours at 70oC. The samples were 

then collected from the oven and the dry weight of each of them was recorded.  

  THERMAL TIME CALCULATION 4.3.5

The mean daily temperature was calculated using the equation: 

𝑻𝒅 =  𝑻𝒅𝒎𝒂𝒙 ! 𝑻𝒅𝒎𝒊𝒏
𝟐

                                            Equation (4.2)      

Where Tdmax is the daily maximum temperature and Tdmin refers to the daily 

minimum temperature, 𝑇!  is the mean daily temperature. 

Accumulated thermal time was also calculated using the method of Bock et al. 

(2009) using the following equation 

𝑻𝑻 = 𝑻𝒅𝒅                                                          Equation (4.3) 

The starting point for calculating the thermal time was from sowing date to 

emergence with first/second leaf unfolded. The time was determined using 

AHDB-HGCA wheat growth guide. The date between sowing to GS11 was 

estimated using AHDB-HGCA depending on sowing time, if crop was sown in 
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September then it takes 11 days, if sowing was in October then emergence will 

be after 15 days. However, if sowing was in November then emergence will 

take 26 days. Therefore, thermal time from sowing to GS12 was accumulated 

when temperature between 5°C and 18°C using the Equation 2.3 if ≤5°C and 

≥18°C. Thermal time for GS31 was also accumulated between 5°C and 18°C 

using Equation 4.3 from sowing to GS31, if ≤5°C and ≥18°C. However, the 

starting point to calculate thermal time of GS39 was the date of GS31 and it 

was accumulated between 8°C and 15°C to the date of GS39 using Equation 

4.3 from GS31 to GS39, if ≤8°C and ≥15°C. 

  CONCEPTUAL DISEASE MODELLING 4.3.6

The hypothesis of this work was that a disease model could be built to predict 

the disease development and yield loss in relation to crop phenology using 

results from previous literature on conditions favouring sporulation, infection 

and disease development and severity. Four disease models are used to follow 

the progress of disease through crop development. The infection potential 

model at GS12 was developed to incorporate the potential of inoculum 

production and quantity under different environmental and agronomy factors 

(Figure 4.3). Once infection occurs at GS 12/13, lesion development (Fitt et al., 

1984; Bateman et al., 2000) is initiated under environmental conditions for 

each site until reaching GS31/32 where DI is predicted fitting with the phase of 

leaf sheath penetration (Scott, 1971, Higgins & Fitt, 1985).  

The disease severity model at GS39 of the crop relates to lesion establishment 

on the true stem (Fitt et al., 1988) and environmental and agronomy parameters 
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together with fungicide treatment are used to predict disease severity at GS39. 

Harvest reduction model to predict the yield loss of the crop uses disease 

severity at GS39 and fungicide treatments (Ray et al., 2006).   

 

 

Figure 4-3: Conceptual disease model representing different stages of disease 

development. 
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 INFECTION POTENTIAL MODEL (IPM) 4.3.6.1

This model builds from the data available on the environmental parameters 

influencing the infection potential of the disease at the beginning of the season. 

The interactions of thermal time, relative humidity and rainfall were assessed 

together with agronomic factors at GS12/13 and infection potential taken from 

observed data of disease incidence at GS31/32 to develop the model according 

to the following equation: 

𝐼𝑃 = 𝑓(𝑇𝑇!"/!",𝑁𝐷!"/!",𝑅𝐻!"/!",𝑇𝑅!"/!",𝐴𝑔.𝐹)           Equation (4.4), 

Where Table 4.4 shows the names of the variables and the expressions used in 

Equation. 4.4.  

Table 4-4: Variable names and the related expressions when predicting . 

 

 

 

 

 

 

 

 

IP

Variable name Description 

 Infection potential as disease incidence from GS31/GS32 

TT12/13 Thermal time between 5 °C -18 °C from sowing to GS12/13 

ND12/13 Number of days between 8 °C - 9 °C from sowing to GS12/13 

RH12/13 Average relative humidity from sowing to GS12/13 

TR12/13 Total rainfall (mm) from sowing to GS12/13  

Ag.F Region, Previous crop, Soil type, Tillage and Sowing date 

IP



CHAPTER 4 

118 

 

 DISEASE DEVELOPMENT MODEL (DDM) 4.3.6.2

The model is based on data available at GS31 about infection potential from 

GS12/13 to GS31/32. The disease development model (DDM model) at 

GS31/32 is a function of infection potential data and environmental and 

agronomic parameters: 

𝐷𝐼 = 𝑓(𝐼𝑃!"/!",𝑇𝑇!"/!",𝑁𝐷!"/!",𝑅𝐻!"/!",𝑇𝑅!"/!",𝐴𝑔.𝐹)    Equation (4.5), 

Where Table 4.5 introduces the names of the variables and the expressions 

used in Equation 4.5.   

Table 4-5: Variable names and the related expressions when predicting . 

Variable name Description 

 Disease index at GS31/32 

IP12/13 Output from infection potential model at GS12/13 

TT31/32 Accumulated thermal time between 5 °C and 18 °C from sowing to 

GS31/32 

ND31/32 Number of days between 5 °C and 18 °C from sowing to GS31/32 

RH31/32 Average relative humidity from sowing to GS31/32 

TR31/32 Total rainfall (mm) from sowing to GS31/32 

Ag.F Region, Previous crop, Soil type, Tillage and Sowing date 

 

 

DI

DI
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 DISEASE SEVERITY MODEL (DSM) 4.3.6.3

The disease severity model is developed by interactions between the output 

from disease development model and environmental factors including 

fungicide treatment. Here we predict the severity index  using the following 

function:  

𝑆𝐼 = 𝑓(𝐷𝐼!"/!",𝑇𝑇!",𝑁𝐷!",𝑅𝐻!",𝑇𝑅!",𝐴𝑔.𝐹,𝐹𝐺)        Equation (4.6) 

And Table 4.6 shows the descriptions of the variables in Equation 4.6.  

 

Table 4-6: Variable names and the related expressions when predicting SI. 

Variable name Description 

 Disease severity index at GS39 

DI31/32 Output from disease development model 

TT39 Accumulated thermal time between 8 °C - 15 °C from GS31 to GS39 

ND39 Number of days between 8 °C - 15 °C from GS31 to GS39 

RH39 Average relative humidity from GS31 to GS39 

TR39 Total rainfall (mm) from GS31 to GS39 

Ag.F Region, Previous crop, Soil type, Tillage and Sowing date 

FG Fungicide treatments  

  

SI

SI
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 YIELD REDUCTION MODEL (YIELD LOSS) 4.3.6.4

Harvest reduction model was built by using simulated yield taken from a 

random simulation of data representing the same field. The model with 

intercept effect was included in the fungicides factors. Therefore, level of 

severity and yield increase or reduction at GS39 due to the specific fungicides 

is performed via investigating the differences in the fungicide factors. The 

following equation was used to build the model:   

 

, 

𝑌𝑖𝑒𝑙𝑑 = 𝑓 𝑆𝐼39,𝐹𝐺                                         Equation (4.7) 

Table 4.7 shows the descriptions of the variables in Equation 4.7.   

Table 4-7: Variable names and the related expressions when predicting yield loss.  

Variable name Description 

Yield (t/ha) Yield  

SI39 Output from disease severity model 

FG Fungicide treatment  

  

),(~ ymyieldGaussianyield
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 MODEL ESTIMATIONS   4.3.7

Data were analysed using regression analysis with statistical software (R 3.1.2. 

statistical computing and graphics) (Crawley, 2005). Fit of general linear 

models was assessed as the percentage variance accounted (R2) for the disease 

index data (2004-2014) for eyespot from UK field trials, combined with 

historical climatic data.  

In statistical modelling, generalised linear models (GLMs) might be used to 

determine whether a target variable is influenced by one or more variables 

using a linear additive model and a link function generalising the predicted 

mean (see below); more particularly in the inference of the relationship 

between a response variable  (disease in our case) and a set of  independent 

variables (predictors)  (environment and agronomy factors in 

this study) (Davison, 2003). GLMs consist of three elements: 

1. A probability distribution function  from the exponential family. 

2. A linear predictor  . 

3. A link function  such that  , 

Where;  is the expected value of  and  is the mean of the distribution.  

The unknown parameters  can be determined by maximum likelihood, 

maximum quasi likelihood or Bayesian techniques. There are several types of 

link function and their use depends on the type of the response data. For 
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example in the case of a dichotomous outcome variable,  is taken as the 

binomial distribution, defining the binomial family of GLMs. In this case the 

common choices for link functions are: 

• The canonical logit link; , 

• The probit link: , 

• The complementary log-log link:  

But in case of count data such as the data used in this study, Poisson regression 

assumes the response variable Y has a Poisson distribution, and assumes g to 

be the logarithm of its expected value can be modelled by a linear combination 

of unknown parameters, i.e. the link function is g(p) =log (p(z)). This form of 

Poisson regression is sometimes called a log-linear model. 

Fitting the GLMs is using maximum likelihood estimation; the sample 

observations  arising from a probability density function  is known, 

but the vector  is unknown; the likelihood function is the 

conditional probability of observing the sample given , which is

, the log-likelihood function is 

 and by differentiating the likelihood or the log-

likelihood functions we obtain the value of , defined as the maximum 

likelihood estimator  of  (Harell, 2001). 
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Additionally, to assess the statistical significance and measures goodness of fit 

of the models, indicators tests like (LR), Akaike’s Information Criterion” 

(AIC) and Bayesian Information Criterion (BIC) (Harell, 2001; Davison, 

2003; Crawley, 2005). Moreover to determine whether candidate model 

parameters are statistically significant we also need to determine the goodness 

of fit between each incremental form of model and the measured data. To this 

end a number of measures are available to us: 

Nagelkerke’s generalised  

This measures the proportion of explained deviance in a model and it is defined 

by: ,  

Where; LR is the log-likelihood ratio test statistic and  refers to the null 

model. It extends the definition of the proportion of explained variance  

used in linear models to the explained deviance in logistic models. Values of 

 are between 0 and 1, with 0 denoting that the model does not explain any 

variation and 1 denoting that it perfectly explains the observed variation. 

Mean squared error (MSE) 

MSE is the mean of the square of the difference between the actual 

observations and the response predicted by the model. It is defined by

.   
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 RESULTS 4.4.

4.4.1. EYESPOT DISEASE MODEL DEVELOPMENT 

The epidemiological disease model was developed using historical data 

obtained from different locations in the UK (2004 - 2014) and experimental 

data from published literature on epidemiological parameters as shown in 

Table 4-8. 

Table 4-8: Environmental and epidemiological parameters from previous published 

experiments on eyespot disease. 

*Disease development stages and its environmental parameters obtained from literature.  

 

 

 

Epidemiological parameters Environmental parameters     References 

Inoculum production and dispersal  
Temp 5-16 

o

C  

RH= near saturation 

Rainfall 4mm 

(Fitt et al., 
1988,    Fitt, 
Bainbridge, 
1983) 

Infection 
Temp=5-18 

o

C 

RH=80-90% 

( Scott, 1971; 
Fitt et al., 1988) 

Lesion development 
Temp=5-18 

o

C 

RH=80 

(Scott, 1971, 
Higgins and Fitt, 
1985) 

Lesion establishment  
Temp=8-15 

o

C 

RH=80 

(Fitt et al., 
1988) 
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  INFECTION POTENTIAL MODEL (IPM) 4.3.9

The infection potential model was fitted using the following equations:  

, Therefore; 

log 𝑚𝐼𝑃 = 𝑎𝑇𝑇𝟏𝟐/𝟏𝟑 + 𝑏𝑁𝐷𝟏𝟐/𝟏𝟑 + 𝑐𝑅𝐻𝟏𝟐/𝟏𝟑 + 𝑑𝑇𝑅𝟏𝟐/𝟏𝟑 + 𝑒𝑅𝑒𝑔𝑖𝑜𝑛 +

𝑓𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑟𝑜𝑝 + 𝑔𝑇𝑖𝑙𝑙𝑎𝑔𝑒 + ℎ𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 𝑖𝑆𝑜𝑤𝑖𝑛𝑔𝑑𝑎𝑡𝑒    Equation (4.8)                        

Where coefficients a, b, c, d, e, f, g, h, and i are related to the environmental 

and agronomy factors introduced in Table 4.4.   

The agronomy variables used were selected from published literature on the 

prediction of eyespot disease (Burnett et al., 2012).   

Table 4-9: Poisson regression output, showing the effect explanatory variables have upon 

disease infection potential at GS12/13 using data of UK inoculated winter wheat 

experiments obtained from different locations between 2004 and 2014. 

Parameter Coefficients Estimate Std. Error Z value Pr(>|z|) 

 Intercept -1.229e+01 8.865e-01 -13.859 <2e-16*** 

Environmental 

TT12/13  1.640e-02 8.018e-04  20.458 <2e-16*** 

ND12/13 -5.145e-01 5.051e-02 -10.187 <2e-16*** 

RH12/13  1.448e-01 9.490e-03  15.256 <2e-16*** 

TR12/13 -3.097e-02 2.783e-03 -11.127 <2e-16*** 

Region 

Base=East 

West         -2.036e+01  2.1061e-01 -9.667  <2e-16*** 

North        -1.518e+01  9.135e-01 16.618   <2e-16*** 

Soil type 

Base=Medium 

Heavy    -4.023e-01  9.034e-02   -4.453  8.47e-06 *** 

Light   3.179e-01  1.490e-01       2.133  0.0329*  

Previous Crop 

Base=Other 
Cereal 

(Continuou

s Wheat)  
 2.622e+00  1.414e-01    18.546   <2e-16*** 

(Winter -1.485e-01  1.563e-01  -0.950  0.3421     

)(~ mIPPoissonIP
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Wheat) 

(Oil Seed 

Rape) 
-5.215e-02  1.437e-01  -0.363  0.7166     

Legumes  -2.603e+00  2.902e-01   -8.971  <2e-16*** 
Tillage 

Base=plough 

Minimal    1.817e+00  8.121e-02    22.371  <2e-16*** 

Sowing date 

Base=<6 
October 

> 6 October  -8.988e-01  1.667e-01   -5.393  6.94e-08 *** 

*Signifiant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
*TT12/13= Thermal time between 5 °C -18 °C from sowing to GS12/13, ND12/13= Number of days between 8 °C 
- 9 °C from sowing to GS12/13, RH12/13= Average relative humidity from sowing to GS12/13, TR12/13= Total 
rainfall (mm) from sowing to GS12/13.  
*TT & RH increasing disease infection significantly, in contrast ND & TR decreasing disease significantly.  

 

Table 4.9 shows that thermal time and average humidity had a positive 

(increasing) influence on disease potential from sowing to GS12/13, while 

number of days when temperature is between 8°C to 9°C from sowing to GS13 

and total rainfall from sowing to GS13 had a slightly negative effect 

(decreasing). The coefficients of these four environmental factors (thermal 

time, number of days between 8°C to 9°C, relative humidity and total rainfall) 

are highly significant (p-value= <0.001). In fact the majority of the predictors 

or their underlying levels have significant coefficients apart from previous crop 

of winter wheat and oilseed rape. The variable, number of days with 

temperature between 8°C and 9°C from sowing to GS13, has a coefficient of -

0.5145 which means that for each single day increase in this factor, the 

predicted incidence of eyespot at GS12/13 decreases by 40% (as exp (-

0.5145)=0.59779~60%). Similarly, the incident rate for thermal time at 

GS12/13 ‘TT12/13’ is 0.01649. Therefore, IP will increase by 1.66% for every 

single degree-day increase in TT12/13. Total rain at GS12/13 (TR12/13) 
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contributes to decrease of IPM by exp (-0.03097) = 0.9695. (That is 96% so a 

decrease of 3.05%), whilst RH contributes to increase of IPM by exp (0.1448) 

= 1.156. Thus for any increase in total rainfall (mm) at GS12/13 there will be a 

reduction of 3% in prediction of the disease IP while for any % increase in 

average RH there will be an increase of 1.2% in prediction of IP.   

The West and North regions had significantly less IP than the east region 

(P=<0.001). The model predicted the infection potential of the West region to 

be exp (-20.36) (=1.43802e-09) less than the infection potential of the East. 

While the predicted IP in the North region was exp (-15.18) (=2.55511e-07) 

less than the prediction of IP if it is East region. On the other hand, heavy soil 

was predicted to decrease IP significantly (P=<0.001) at GS12/13 by exp (-

0.4023) (=0.67) so there was a 33% decrease of IP than if it was a medium soil. 

In contrast, light soil increased the infection potential significantly (P=<0.05) 

by 1.4 times greater than if it was a medium soil.  

The levels of the five categorical variables used in the model were chosen to 

match the data for 2004-2014 created from data available from the field 

experiments as explained in the methodology section of this chapter. For 

example, five levels explain the previous crop variable and level 5 is the 

reference category that is named in the data “other cereals”. From this model, 

the estimated IP when the previous crop was ‘Winter Wheat’ would be 86.2% 

of that of other cereals whilst for oil seed rape it would be 94.9% of it. 

However, these coefficients were not significant. The predicted IP with legume 

as a previous crop was significantly (P=<0.001) (less exp (-2.603) = 0.074) 
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producing a reduction of 92.6% in relation to prediction for other cereals. The 

output also indicates that the infection potential (IP) for previous crop when it 

is continuous wheat was 13.79 times greater than the infection potential for 

other cereals. Minimal tillage is associated with a significant increase in 

infection potential (P=<0.001), 6.2 times greater than with ploughing. 

However, sowing date after 6 October caused disease infection potential to 

decrease significantly (P=<0.001) by 60% compared to the sowing date when 

it is before 6 October.  

As a measure of goodness of fit for the linear relationship between the 

predictor variables and the response variable the coefficient of determination 

(R2) was used. The result for this dataset shows that 99% (adjusted R2, i.e. 

average R2 per degree of freedom) of the variance in the response variable 

Infection potential (IP) would be explained by the predictor variables 

(agronomic and environmental factors).  

 DISEASE DEVELOPMENT MODEL (DDM) 4.3.10

Disease development model was fitted using the following equation:  

, 

log 𝑚𝐷𝐼 =

 𝐼𝑃!"/!" + 𝑎𝑇𝑇!"/!" + 𝑏𝑁𝐷!"/!" + 𝑐𝑅𝐻!"/!" + 𝑑𝑇𝑅!"/!" + 𝑒𝑅𝑒𝑔𝑖𝑜𝑛 +

𝑓𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑟𝑜𝑝 + 𝑔𝑇𝑖𝑙𝑙𝑎𝑔𝑒 + ℎ𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 𝑖𝑆𝑜𝑤𝑖𝑛𝑔𝐷𝑎𝑡𝑒      Equation (4.9)   

)(~ mDIPoissonDI
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In fact, for simplicity and as introduced previously in the DDM model, 

coefficients IP12/13, a, b, c, d, e, f, g, h, and i are related to the variables 

introduced in Table 4.5.  

Table 4-10: Poisson regression output, showing the effect explanatory variables have 

upon disease development at GS31/32 using data of UK inoculated winter wheat 

experiments obtained from different locations between 2004 and 2014. 

Parameter Coefficients  Estimate  Std. Error  Z value  Pr(>|z|) 

 Intercept        -7.866e+00  1.788e+00  -4.399  1.09e-05***  

Disease 

incidence 
IP12/13   2.572e-02   1.158e-03   22.202   < 2e-16*** 

Environmental 

TT31/32  -8.354e-04  2.042e-04   -4.092  4.28e-05*** 

ND31/32   1.453e-03  1.956e-03  0.743  0.457442  

RH31/32   1.148e-01   1.934e-02    5.935  2.94e-09*** 

TR31/32   3.537e-05  3.755e-04    0.094    0.924952 

Region  

Base= East 

West        -2.908e-01  8.151e-02   -3.567  0.000361*** 

North 5.575e-01   1.324e-01   4.211 2.54e-05*** 

Soil type 

Base= 
Medium 

Heavy  -2.274e-01.   1.284e-01   -1.770  0.076677 

Light  -1.775e-02  1.258e-01  -0.141  0.887801    

Previous crop 

Base=Other 
cereal 

(Continuous 

wheat) 
 1.730e-01   3.392e-02    5.101  3.39e-07*** 

(Winter 

wheat)  
-9.530e-01  1.691e-01   -5.637  1.73e-08*** 

(Oilseed 

rape) 
-8.228e-01  1.445e-01   -5.695  1.23e-08*** 

Legumes  -4.253e+00  4.138e-01  -10.278  < 2e-16*** 

Tillage  

Base= Plough 
Minimal    3.173e-01   7.392e-02    4.292  1.77e-05*** 

Sowing date 

Base=<6 
October 

>6 October  -1.725e-01  9.332e-02   -1.849  0.064497 

*Signifiant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
* IP12/13= Output of disease incidence from infection potential model at GS12/13, TT31/32= Thermal time 
between 5 °C -18 °C from sowing to GS31/32, ND31/32= Number of days between 5 °C - 18 °C from sowing to 
GS31/32, RH31/32= Average relative humidity from sowing to GS31/32, TR31/32= Total rainfall from sowing to 
GS31/32. *ND, RH & TR increasing disease infection significantly, in contrast TT decreasing disease 
significantly.  
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Table 4.10 shows that, disease infection potential predicted by IPM caused the 

disease index of DDM to increase significantly (p=<0.001). So for any unit 

increase in IP, the DDM disease index will increase by 2.6% in. Disease index 

at GS31/32 decreased slightly with greater thermal time. For a one degree-day 

increase in thermal time, the disease index decreased by 1%. On the other 

hand, average relative humidity at GS31/32 increased the disease index 

significantly (P=<0.001) by 12% (exp (0.11480) = 1.12) for each unit. 

Although values for number of days from sowing to GS31/32 (ND31/32) and 

total rainfall from sowing to GS31/32 (TR31/32) were positive, they were not 

found to have a significant effect on disease index. Geographical location was 

found significant with the West associated with less severe disease by 35% 

than East region and North locations were expected to have a DI 1.75 times 

greater than in the East.  

Soil type was not significant; no effect on disease development was predicted 

at GS31/32. All categories of previous crop reduced the disease index in 

comparison to ‘other cereals’ (P=<0.001) apart from ‘continuous wheat’ that 

increased the disease index significantly: 19% greater than the expected disease 

index for other cereals. While legumes caused the greatest disease index 

reduction (98.6%) followed by winter wheat (61.4%), oil seed rape showed a 

56% reduction in comparison to other cereals. Minimal tillage increased 

disease index as it was estimated to be 1.3 times the disease index for 

ploughing. The sowing date variable was near significant (P=0.064), so disease 

index could be affected by this factor, late sowing date reducing the disease 

index by 15%.  
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 DISEASE SEVERITY MODEL (DSM) 4.3.11

Disease severity model was fitted using the following equation:  

 

log 𝑚𝑆𝐼 =

𝐷𝐼!"/!" + 𝑎𝑇𝑇!" + 𝑏𝑁𝐷!" + 𝑐𝑅𝐻!" + 𝑑𝑇𝑅!" + 𝑒𝑅𝑒𝑔𝑖𝑜𝑛 +  𝑓𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑟𝑜𝑝 +

𝑔𝑇𝑖𝑙𝑙𝑎𝑔𝑒 + ℎ𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 𝑖𝑆𝑜𝑤𝑖𝑛𝑔𝐷𝑎𝑡𝑒 + 𝑗𝐹𝐺              Equation (4.10)  

Where coefficients of the prediction DI31/32, a, b, c, d, e, f, g, h, i and j, were 

introduced preciously in Table 4.6.   

Table 4-11: Poisson regression output showing the effect explanatory variables have upon 

disease severity index at GS39 using data of UK inoculated winter wheat obtained from 

different locations between 2004 and 2014. 

Parameter Coefficients Estimate Std. Error z value Pr(>|z|) 

 Intercept 1.314e+00 1.972e-01 6.800 1.05e-11 *** 

Disease DI31/32 -2.231e-03 6.165e-04 -3.618 0.000296 *** 

Environmental 

TT39 -2.192e-04 4.564e-05 -4.803 1.56e-06 *** 

ND39 -1.531e-02 8.817e-04 -17.362 < 2e-16 *** 

RH39 2.412e-02 2.314e-03 10.424 < 2e-16 *** 

TR39 4.459e-03 3.096e-04 14.402 < 2e-16 *** 

Region Base= 
East 

West 6.861e-01 3.902e-02 17.583 < 2e-16*** 

North 1.093e-01 4.172e-02 2.169 0.008818** 

Soil type 

Base= Medium 

Heavy 2.708e-01 4.057e-02 6.675 2.47e-11 *** 

Light -1.374e-01 4.393e-02 -3.127 0.001766 ** 

Previous crop 
Base=Other 
cereal 

(Continuous 

wheat) 
1.105e-01 1.834e-02 6.023 1.71e-09 *** 

),(~ mSIPoissonSI
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Winter wheat -1.218e-01 4.818e-02 -2.528 0.011471 * 

Oil seed rape -3.547e-01 5.134e-02 -6.909 4.88e-12 *** 

Legumes 5.104e-01 2.876e-02 17.745 < 2e-16 *** 

Tillage Base= 
Plough 

Minimal -1.444e-01 3.072e-02 -4.700 2.60e-06 *** 

Sowing date 
Base=<6 
October 

>6 October 6.153e-01 2.368e-02 25.988 < 2e-16 *** 

Fungicides 

Base= 

epoxiconazole 

(bixafen and 
Prothioconazole
) 

-5.239e-01 5.252e-02 -9.976 < 2e-16 *** 

(epoxiconazole 
and 
fluxapyroxad) 

-4.998e-01 6.414e-02 -7.793 6.55e-15 *** 

prothioconazole -1.242e-01 1.403e-02 -8.848 < 2e-16 *** 

(boscalid and 
epoxiconazole) 

-2.037e-01 1.370e-02 -14.869 < 2e-16 *** 

cyprodinil -2.012e-01 1.670e-02 -12.050 < 2e-16 *** 

*Signifiant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
* DI31/32= Output from disease development model at GS31/32, TT39= Thermal time between 8 °C -15 °C 
from GS31/32 to GS39, ND39= Number of days between 8 °C - 15 °C from GS31/32 to GS39, RH39= Average 
relative humidity from GS31/32 to GS39, TR39= Total rainfall from GS31/32 GS39. *TR & RH increasing 
disease infection significantly, in contrast ND & TT decreasing disease significantly.  
 

 

 

The above Table 4-11 shows that disease severity evaluated at GS39 was 

reduced significantly (P=<0.001) by disease index observed at GS31/GS32. 

With any unit increase in DI31/32, the estimated SI39 from this disease 

severity model is seen to decrease by 0.22%. All environmental variables 

linked to humidity and rainfall was associated with slight disease severity 

increase (2.5% and 0.5% respectively) whilst thermal time and number of days 

between 8oC and 15oC from GS32 to GS39 are decreasing the disease severity 

(0.03% and 1.5% for TT and Nb of dry days, respectively).  

In addition, both locations West and North increased SI significantly 

comparing to East, almost two times greater than east for a Western location 
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but only 11% increase when located in the North UK region. Heavy soil 

increased SI, being 1.31 times the SI for medium soil (the reference). In 

contrast light soil was associated with decrease in SI with almost a 13% 

reduction in comparison to medium soil. Interestingly, legumes despite their 

role as disease reduction factor in the earlier models, were increasing the 

disease severity index estimating an index 1.6 times the other cereal index; 

continuous wheat was less influential: 1.1 times the other cereals index; oilseed 

rape was associated with a decrease of 30% and ‘winter wheat’ a decrease of 

12%.  

Unlike the previous models, minimal tillage reduced SI in DSM by almost 

13.5% from ploughing, whilst sowing the crop after 6th October was 

associated with an increase in SI by 85% in comparison to sowing before the 

6th of October. All fungicide treatments which were applied at GS31/32 had a 

significant effect of reducing SI with bixafen and prothioconazole being the 

most effective by reducing SI at around 41% than if just epoxiconazole was 

used. Cyprodinil was least effective associated with reduction of 18% 

compared to the reference of epoxiconazole.  

 

  YIELD REDUCTION MODEL (YIELD LOSS) 4.3.12

Yield reduction model was fitted using the following equation:  

, ),(~ ymyieldGaussianyield
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log 𝑚𝑦𝑖𝑒𝑙𝑑 = 𝑆𝐼!" + 𝐹𝐺                                           Equation (4.11) 

 Where, myield is the yield normal growth and the coefficients of the prediction 

SI39 and FG were introduced in Table 4.12. 

 

Table 4-12: Gaussian regression output, showing the effect of explanatory variables on 

yield using trial data of inoculated winter wheat obtained from different locations 

between 2004 and 2014. 

Parameter Coefficients Estimate Std. Error t value Pr(>|t|)     
 Intercept 10.59824 0.17678 59.952 <2e-16*** 

Disease SI39 -0.02232 0.00241 -9.259 <2e-16*** 

  Fungicides 

Base=epoxiconazole 

prothioconazole 

 

0.26639    0.12932   2.060 0.0397* 

(boscalid and 
Epoxiconazole) 

        

-0.14230 0.13017    -1.093 0.2746 

cyprodinil 0.03257    0.13017    -1.093 0.2746 
*Signifiant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
*SI39= Output from disease severity model, Fungicides= different fungicides factors. * Disease severity at GS39 
decreasing yield slightly, however only prothiconazole chemical increasing yield significantly. 

 

 

Environmental variables were not significant to the 95% confidence level and 

were removed from the final model presented in Table 4.12. As the frequency 

of some fungicides was less than 10 they were also removed from the log-

regression analysis. The above results showed that, SI at DSM is reducing the 

yield but only by 2.2% for each unit increase in SI. Only prothioconazole 

fungicides showed a difference with the reference (epoxiconazole) with a 30% 

increase in yield.  
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 YIELD LOSS SCENARIO USING ESTIMATED 4.3.13

PARAMETERS  

Disease development and yield loss caused by disease can be predicted by 

changing multiple variables from the previous models (Table 4-13). 

 Table 4-13: Disease development and yield loss prediction performed using multiple 

variables in the model. 

Model mIP12/13 mDI31/32 mSI39 YLM* 

Observed data 8.13* 0.92 56 9.4 

Scenario 1 6.0 1.5 46 9.5 

Scenario 2 87 4.1 71 9.0 

Scenario 3 14.1 3.0 82 8.8 

* Observed data of IP12/13 taken from GS31/32 observed data 
* Yield loss depends only on SI39 model.  
 

 

In Table 4-13, the Observed data constitutes the reference scenario with IP, DI, 

SI and yield resulting observation made under the conditions of sowing date 

before 6 October in East region with a medium soil and where the previous 

crop was oil seed rape under minimal tillage, with measured environmental 

variables: TT12/13=152.8, ND12/13=0, RH12/13=80.2 and TR12/13=19.4.  

Scenario 1- changing TT to be two times greater (=305.6 at GS12/13) and ND 

also to be two times greater (=2 at GS12/13) with TR to be three times greater 

(=58.2 at GS12/13), keeping all other factors the same. With scenario 1, 

Infection Potential would be reduced by 25% (IP estimated at 6). Scenario 2 is 

the same as scenario 1 but with previous crop changed to continuous wheat, IP 

is now 14 times greater (87). Scenario 3 is scenario 2 but with minimal tillage 
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changed to ploughing, thus the prediction of IP in scenario 3 now nearly 

doubles to 14.1. This result indicates that environmental variables as well as 

some key agronomical factors such as previous crop and tillage play an 

important role in influencing the potential disease infection at GS12/13. 

Continuous wheat as previous crop increases the disease risk; however, 

ploughing reduces the disease risk, whilst increasing environmental factors 

increasing rate of crop development seem to decrease the disease risk as 

evaluated by the infection potential.      

Applying the scenarios with an estimated IP to the disease development and 

severity models is shown in Table 2-13. At GS31/32, observed data was 

TT31/32=1162.5, ND31/32=129.8, average RH31/32=91.1 and 

TR31/32=337.0 to be TT =2300, ND=128, same RH and TR=1000. DI will 

slightly increase to 1.5. However, when keeping all factors the same changing 

previous crop from oil seed rape to continuous wheat, DI will be four times 

greater than the observed as scenario 2 of DDM shows in Table 2-13, while if 

minimal tillage is replaced with ploughing DI in scenario 3 will decrease to 

3%. Therefore, the worst scenarios that increase the disease risk is previous 

crop as continuous wheat.  

At GS39, the worst scenario in DSM was when minimal tillage changed to 

ploughing that increased SI from 56% observed data to 82% at scenario 3, 

unlike IPM and DSM as showing in Table 4-13. While the best scenario for 

lower disease is when changing TT, ND to double and TR to 3 times as SI 

decreased by almost 10%. The yield loss depends mainly on the disease 
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severity model at GS39 and as results indicated in Table 4-13, yield increased 

slightly by 0.1 t/ha-1 when SI decreased by 10% in scenario 1. However, when 

SI at DSM increased by 15% yield decreased by 0.4 t/ha-1 as in scenario 2. 

Moreover, yield reduction was 0.6 t/ha-1 when SI increased by 26% as shown 

in scenario 3.  

 DISCUSSION 4.5.

The objective of this study was to develop a conceptual eyespot disease model 

predicting yield loss of wheat in the UK. The relative influence of the factors, 

region, soil type, previous crop, tillage, sowing date, weather and fungicides 

were examined. Historical data of surveyed sites in different parts of the UK 

and detailed fungicide trials were investigated to determine the influence on 

eyespot development and build separate disease models. Disease progress was 

assessed visually through sample collection, from 2004 until 2014.  

Analysis of the data sets showed that climatic conditions and agronomic factors 

influenced disease development either positively or negatively in all models. 

Using Poisson regression to predict eyespot disease incidence based on 

different environmental and agronomy predictors accordingly, three different 

models were developed, IPM, DDM and DSM. These statistical sub-models 

were aligned with crop development. In the literature, no direct relationship 

was found between the incidence of plants that developed eyespot and the 

weekly mean value of temperature and rainfall (Fehrmann & Schrodter, 1971). 

They concluded that correlation coefficients were optimal for infection when 
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assessing whether the incidence of eyespot development was related to the 

environmental factors.  

In this investigation, the disease model at three different stages revealed that 

accumulated thermal time influenced disease infection at GS12/13 significantly 

causing incidence to increase slightly. However greater thermal time caused 

slight reduction in DI at DDM and SI at DSM. This is most likely related to 

effects also on crop development not just on pathogen activity. It has been 

shown previously that pathogen activity increased with increasing temperature 

(Scott, 1971). Temperature above 5oC was optimal for eyespot development 

(Matusinsky et al., 2009). Fitt (1985) showed that the rate of penetration by O. 

yallundae increased above temperature of 6oC, which would fit with our DSM. 

Such a result indicates that thermal time is a good measure to assess 

development of monocyclic disease like eyespot (Lovell et al., 2004). In 

addition, relative humidity was found to be positively influencing the disease 

with significant from infection at GS12/13 to severity at GS39. This agrees 

with a study demonstrating that Oculimacula spores were produced abundantly 

on residue or even on the soil surface under warm, damp conditions (Jordan & 

Hutcheon, 2003). Also Murray et al. (2009) demonstrated that disease 

development was influenced by wet, damp conditions over winter.  

The number of days when temperature was between 8°C and 9°C reduced 

disease infection potential at GS12/13 and disease severity at GS39 

significantly. Total rainfall significantly decreased disease infection at 

GS12/13, but it has no effect on disease development at GS31/32. But it caused 
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disease severity to increase significantly at GS39. This result agrees with 

findings from Burnett and Hughes (2004) that higher rainfall between March 

and May influenced disease incidence, while rainfall from September to 

February had no effect on eyespot incidence. On the hand, under a changing 

scenario when environmental factors such as TT and number of days were set 

to be double and total rainfall to triple the amount of the observed. We noted 

that environmental factors caused the disease infection at GS12/13 and disease 

severity at GS39 to decrease slightly, while little increase was seen in disease 

development at GS31/32. This is likely to be related to positive effects of these 

environmental parameters on the rate of crop development, which may have 

negative impact on rate of eyespot leaf sheath penetration and lesion 

establishment on wheat stems.   

Effect of regions on eyespot disease was considered with largest differences 

exerted in the West and North on this study. The conditions under both regions 

at GS12/13 significantly reduced disease infection and West conditions also 

reduced disease development at GS31/32 but both regions influenced disease 

severity at GS 39 to increase significantly. This result agreed with Burnett and 

Hughes (2004) who reported that location played a large role on increasing 

disease risk but it should also be considered with other factors including soil 

and weather. Heavy soil type was found in this study to decrease disease 

infection significantly whilst light soil increased disease infection. The role of 

soil type in disease severity changed at DSM, where heavy soil increased SI 

significantly. At DDM both types of soil had no effect on disease development. 

In the literature light soil has been found to carry lower disease risk compared 
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to heavy soils (Burnett, 2005). In fact, heavy soils are those with a large 

component of clay in them and greater water holding capacity as well as being 

characterised by small pores, which can retain water in their profile much 

longer than soils with large pores (Balck et al., 1970).  This may explain why 

heavy soil influenced the disease at severity stage as soil moisture can have a 

significant impact on lesion development and establishment of eyespot on 

wheat as demonstrated by Fitt (1985). This was also noted by Burnett et al. 

(2012), who suggested that clay soils are much more conductive to eyespot due 

to their water holding capacity that creates a suitable microclimate for the 

pathogen.  

A rotation effect was also considered within the models as a factor affecting 

disease index. Continuous wheat was found to have the largest significant 

positive effect on disease index in all models comparing it with all other crops 

in rotation. However, legumes reduced disease index significantly in both 

infection and development models whilst winter wheat and oilseed rape had no 

significant effects at infection model, though significantly reduced the disease 

than other cereal at DDM and DSM. Such a finding is supported by a study, 

which stated that rotation with host crop was found to be the largest cultural 

factor affecting disease incidence (Colbach et al., 1999). It was also found that 

eyespot was more if wheat was rotated with cereal crop while rotation with 

non-cereal crop was found to reduce eyespot incidence significantly (Cook et 

al., 1991).  
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This result may indicate that crop rotation plays an important role in inoculum 

production and disease development more than disease severity. In this study 

using multiple parameters to test the effect of disease development and yield 

loss under changing variables. The result showed that replacing oilseed rape 

with continuous wheat was increasing disease risk at IPM and DDM. Also 

residue of previous wheat allows plant pathogen inoculum to build up and that 

enhances disease infection in the next wheat crop (Fitt et al., 1990).  

Minimal tillage was found to contribute significantly to higher infection 

potential and disease development but not to severity at GS39 where minimal 

tillage reduced disease significantly in comparison to ploughing. This result 

agreed with Suffert and Sache (2011), who found eyespot caused significant 

infection in tillers if straw was completely incorporated prior to drilling. 

However, cultivation techniques need to be used together with crop rotation to 

be most effective, for instance two years old infected wheat straw can be 

brought back to the surface by ploughing (Coalbach, 1999). In this study 

minimal tillage has been replaced with ploughing under different scenarios and 

it showed that ploughing causes higher disease risk at DSM and also reduced 

yield. This agreed with other risk assessment by Burnett and Hughes (2004), 

where ploughing was found to have greater levels of disease compared to 

minimal tillage.  

Date of sowing also influences disease outcomes significantly at IPM and 

DSM. Sowing date after 6 October was found to reduce disease significantly in 

the disease infection model, with slight reduction in disease development 
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model. In contrast, sowing after 6 October influenced the disease severity to 

increase significantly in the DSM model. This result agreed with Yarham 

(1986) who found eyespot is less likely to be severe in late sown crops.  Also 

with Fitt et al. (1990) have shown the severity of the eyespot infection in late 

sown crop is less due to the lower plant density. Another study has shown 

similar results that demonstrate that a greater eyespot incidence has been 

observed in early sown crop due to more accumulated temperature and 

extensive tiller and large canopy (Smiley, 2009).  

Generally, the majority of the agronomy and fungicide predictors or their 

underlying levels had significant coefficients. The application of all fungicides 

at GS31/32 reduced disease significantly at GS39 in comparison to 

epoxiconazole alone-based fungicide. These results are also consistent with 

previous report on the efficacy of fungicide treatments against eyespot disease. 

Fungicides effective against eyespot disease are well discussed in the literature 

(Cook, 1980; Ray et al., 2004). The lack of effectiveness of epoxiconazole was 

expected, as all other chemical treatments assessed were known to have a 

certain degree of activity against eyespot. A study by Ray et al. (2004) to 

assess the effect of fungicides against eyespot found Opus to have poor activity 

against eyespot, the fungicide reduced disease index by only 2.6%. Burnett and 

Hughes (2004) classified epoxiconazole as similar to the untreated category 

when assessing eyespot chemical control. In France, the poor control by 

triazole fungicides against eyespot has been noted in particular against O. 

acuformis (Leroux, 1998).  
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Other chemicals were found here to cause significant reduction in disease 

severity with cyprodinil (Unix) causing the lowest reduction. Although 

epoxiconazole alone is not effective against eyespot, mixing epoxiconazole 

with boscalid (Tracker) was found to be very effective to control eyespot 

(O’Sullivan et al., 2007), which is in agreement with this study. Disease 

severity at GS 39 decreased yield only slightly by 2.2% per SI unit, whilst only 

prothioconazole increased yield significantly with almost 30% yield increase 

so on average in our data 2 t/ha. A success of fungicides to increase yield is 

well noted in previous studies (Ray et al., 2004). Application of fungicides in 

winter wheat in Southern Sweden was found to increase yield with a response 

of 0. 3t/ha (Wilk, 2009). Also, prothioconazole (Proline 275) was very 

successful in increasing yield and reducing eyespot index as demonstrated by 

Burnett (2005). This chemical has been considered as one of the more effective 

triazole fungicides and has been shown to be more effective than a mixture of 

Unix and Opus (Jorgensen, 2008; Burnett and Hughes, 2004). This fungicide 

operates by inhibiting the mycelium of the fungus and its mode of action is 

very similar to that of other fungicides that act as demethylation inhibitors 

(Baur & Schmitt, 2004).  

Overall this study has shown that the majority of the weather parameters, 

agronomy and fungicides predictors or their underlying levels significantly 

influenced the disease outcome. The significant correlation result between 

yield loss and eyespot severity at GS39 found in this study is contrasted with 

no consistent correlation between yield loss and eyespot severity result found 

by Burnett et al. (2012). This indicated the need of further research to 
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investigate the role of eyespot disease on yield. Reduction of disease under 

scenario of increasing environmental factors in this study implies that under 

future climate change an increase in parameters like temperature and rainfall 

might decrease the distribution and severity of eyespot. 
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5. CROP GROWTH SIMULATION USING APSIM WITH EYESPOT 

DISEASE MODELLING FOR WINTER WHEAT IN UK 
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 INTRODUCTION  5.1.

Crop scientists are facing several challenges to tackle increased frequency of 

weather extremes and uncertainty of climate change (Semenov et al., 2011). 

Therefore, continuous research is needed to stabilise crop yields despite 

extreme adverse weather due to climate change. Crop simulation models 

capable of addressing complex relationships can be used to better understand 

crop development and yield losses associated with climate variability or biotic 

stress. However, it is important to test and validate model performance under 

local conditions to account for specific environment crop interactions (Moore 

et al., 2014).  

Modelling approaches for yield prediction have been developed worldwide for 

specific crops under changing environments. Agricultural Production Systems 

Simulator (APSIM) is a modular framework that simulates various crops 

including wheat and pasture production systems, soil, water and nutrient flow 

and their interactions with climatic conditions (McCown, 1996). It has resulted 

from a combination of two model approaches including Productivity, Erosion 

and Runoff Functions to Evaluate Conservation Techniques (PERFECT) 

(Littleboy et al., 1992) and a cropping system model for operational research 

(APSIM) (McCown & Williams, 1989). PERFECT was utilized to combine the 

existing crop with enhanced soil management, soil water movement and 

erosion. While APSIM implemented the computer simulation model of the 

growth, development, and yield of spring and winter wheat (CERES-wheat) 

model as a crop template to achieve high sensitivity of crop growth, soil water 
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and soil nitrogen (McCown et al., 1996). Adoption of a Common Modelling 

Protocol (CMP) within APSIM framework has simplified APSIM enough to 

allow integration with sub-models to simulate more complex agricultural 

systems (Moore et al., 2007).  

 OVERVIEW OF APSIM   5.2.

APSIM consists of three models categorised as plant, environment and 

management. The models simulate wheat growth under various soil water and 

nitrogen conditions, surface residues and fertilizer applications (Holzworth et 

al., 2014). Thus APSIM simulates crop growth and development, under 

different soil characteristics and management options including various 

cropping systems. Wheat crop growth and development in a daily time step on 

an area basis (per square meter) thus simulating plant populations, rather than 

individual plants. The input variables required by APSIM include 

environmental conditions, soil characteristics, wheat cultivar information and 

management data (Figure 5.1).  

Growth and development of wheat in this model are dependent on environment 

(temperature, humidity, rainfall and solar radiation), plant available water and 

available nitrogen in the soil. Daily meteorological data including temperature, 

a met file interacting with individual models within APSIM provides rainfall 

and radiation. The daily uptake of the soil water and nitrogen by the crop 

model is fed to the Soil-Wat model (water balance model that distributes water 

throughout the soil profile) and to the Soil-N model (nitrogen model that 

balances available soil carbon and nitrogen as well as their dynamics) on a 
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daily basis. Crop cover data is provided to the Soil-Wat model to calculate 

runoff and evaporation rates. At crop maturity, yield is simulated as the output 

of the model.  

 

Figure 5-1: Structure of the epidemiological disease model and crop simulation model 

(Al-Azri et al., 2014).   
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 LINKING DISEASE AND CROP SIMULATION MODELS  5.3.

APSIM is a software tool that enables sub-models to be implemented to 

simulate diverse agricultural systems. APSIM was originally designed for 

research of the dry-land cropping systems in Australia. However, it is now used 

for simulating other more complex systems investigating for example resource 

competition between different organisms. For instance, GRAZPLAN (Moore et 

al., 1991) for pastures and animal production was integrated with APSIM to 

simulate farming systems in the Mediterranean and Temperate regions of 

Australia. In addition, the pasture model Grass production (GRASP) (McKeon 

et al., 1990) was linked with APSIM for use in the Subtropics and Tropic areas 

of Australia. Simulation with APSIM has provided some benefit to the 

agriculture production not only in Australia but also in other countries. For 

example, APSIM-ORYZA (Gaydon et al., 2012), was tested against diverse, 

replicated experimental datasets for rice-based cropping systems, different soil 

types, management practices, crop species, varieties and sequences 

representing three different countries (Australia, Indonesia and Philippines). 

The integrated model was able to simulate rice grain yields even in multi-

season crop sequences.  

One obvious disadvantage of APSIM is that it does not take into account biotic 

effects on final yield. Few attempts have been made to quantify biotic 

constraints on crop yields using the link between a crop simulation model and a 

biotic constraint model. One of the attempts was to integrate weed seed bank 

model VensimTM with APSIM to examine farm management strategies to 
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reduce weed seeds (Smith et al., 2005). The weed resistance in Australian rain-

fed farming system was successfully investigated using the Vensim-APSIM 

seed bank model. However, the restriction number of weed cohorts available in 

VensimTM prevented the model from simulating all possible weed cohorts 

(Thornby & Walker, 2009; Thornby et al., 2010).  

One of the approaches taken to combine conceptually and technically APSIM 

crop growth with disease model was DYMEX-APSIM link. A DYMEX 

(Computer software that allows the user to build and run computer models 

which describe the lifecycles and management of biological organisms) 

(Sutherst & Maywald, 1998) was constructed to simulate the interactions 

between stripe rust caused by Puccinia striiformis and wheat (White et al., 

2004). This model was tested with APSIM to simulate four years of stripe rust 

trials in Wagga Wagga and Yanco, NSW Australia. The primary link between 

DYMEX and APSIM was leaf area index (LAI), APSIM provided LAI from 

the wheat model and DYMEX calculated the reduction in the green leaf area 

caused by disease, which was then returned back to APSIM. Thus the reduction 

of LAI received by APSIM allowed daily adjustment in green leaf area value 

and increased leaf senescence value (Which et al., 2015). Although the 

DYMEX rust model had limited ability to predict the proportion of disease in 

all years examined it demonstrated successful combination between APSIM 

crop model and disease model with the ability to change wheat development in 

response to the rust disease progress. 
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The performance of APSIM to simulate above- and below-ground growth, 

grain yield, water and N uptake, soil water and soil N of wheat crops has been 

previously evaluated in a temperate climate in the Netherlands (Asseng et al., 

2000). The overall simulation showed good consistency where high yields of 

the long-term experiment were achieved, but overestimated lower yields.  

APSIM was chosen for the purpose of this study over the Sirius model 

(Jamieson et al., 1998), because of two important reasons; i) APSIM can 

simulate wheat growth and yields under any crop growing conditions and ii) 

the multi-point features within APSIM that allows it to simultaneously simulate 

multiple points in space and the interactions between them as well as the input 

and output features that simplified communication between multiple models 

which does not exists in the Sirius model. To our knowledge there is no 

previous record in the literature on the use of APSIM within the wheat farming 

systems in the United Kingdom. Since crop simulations require calibration and 

validation under local conditions, the performance of APSIM model to 

simulate wheat growth under UK conditions was first carried out in this study 

using wheat data from field experiments at Sutton Bonington, UK. To facilitate 

disease model implementation with crop yield simulation R scripts were 

executed within the framework of APSIM.  

 AIMS AND OBJECTIVES  5.4.

The overall aim of this chapter was to evaluate APSIM for its ability to 

simulate winter wheat development and yield reduction due to eyespot under 

UK conditions.  
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The main objective was to implement conceptually and computationally the 

epidemiological disease model within a crop simulation to predict yield loss of 

wheat associated with eyespot disease in the UK.  

This chapter comprises of two main areas of work. First, APSIM was evaluated 

for its ability to simulate the growth, development and yield of UK winter 

wheat. Second, the eyespot disease model developed in this study (see chapter 

2) was implemented with APSIM to predict the effect of disease on wheat 

growth and yield.  

 MATERIALS AND METHODS 5.5.

 EXPERIMENTAL SITES AND BIOMASS DATA  5.5.1

Sequential growth analysis was performed on different wheat cultivars in 

2012/13 and 2014/15 at the University of Nottingham, Sutton Bonington 

Campus (52oN, 1oW) (Table 5-1). Analysis was carried out at GS39 and GS69 

in the first year and at GS31, GS39, GS61 and GS75 in the second year. Five 

plants at random were taken from the sampled plants per quadrat (0.25 m2) to 

assess the number of fertile shoots per plant. The strongest, tallest and thickest 

shoot of each of the five plants was then selected and the flag leaf height was 

measured (the start point at the base and end point is at the flag leaf), as well as 

length and width of the flag leaf also measured. The roots of all sampled plants 

within the quadrat (0.25 square meter) were then removed and total fresh 

weight of the plants was recorded. Then, 10% subsample of the plants were 

taken from the total fresh weight to do further growth analysis. The flag, 

second and remaining leaves of the 10% plants were then collected separately 
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and fresh weight of each separate set of leaves was recorded. In addition, the 

total fresh weight of the stems was also recorded. At GS61 and GS75 wheat 

ears were collected separately and their fresh weight was measured. The total 

green area of flag, second and remaining leaves as well as stem and ears were 

measured using LI-3100C area meter manufactured by LI-COR Biosciences, 

USA. Samples of flag, second and remaining leaves as well as stems and ears 

were dried in an oven at 70oC for 48 hours to obtain biomass for individual 

fractions.  

Table 5-1 : Details of the experimental datasets used to validate APSIM for UK wheat  

 Soil 

texture 

Sowing date Harvest 

year 

Treatment Data 

Experiment 1 Clay 

loam 

03/10/12 2013 Seed rates: 250 seeds 

m-2. N applied twice 

and fungicides applied 

at three different stages.  

 

LAI, 

biomass 

and yield 

 

Experiment 2 Sandy 

loam 

15/10/14 2015 Seed rates: 300 seeds 

m-2. N applied three 

times and fungicides 

applied at four different 

stages.  

LAI, 

biomass 

and yield 

      

 

 METHODS OF APSIM CALIBRATION AND VALIDATION 5.5.2

The simulation of the winter wheat phenology, biomass, and yield was 

calibrated and validated using APSIM 7.5 with field measurements from the 

two experiments carried out in 2012/13 and 2014/15. Daily meteorological data 

of minimum and maximum temperature, rainfall, solar radiation, and humidity 
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was collected from an on-site automated weather station. Management details 

of the crop including sowing date, location, fertilizer applications and yield 

were collected as explained in methodology section in chapter 4. The biomass 

data required to create the calibration file was carried out as described in 

section 5.5.1. 

The soil description (e.g. soil texture) and initial values in the APSIM soil 

model were parameterised with measured characteristics of the experimental 

field soil in the 0-30 and 30-90 cm horizons (texture, bulk density, and water 

holding capacity at 0.33 and 15 bar). Soil characteristics below 90 cm were not 

available, and were therefore assumed to be as 30-90 cm horizons. In addition, 

the parameter ‘crop lower limit’ for wheat in APSIM was not available for the 

experimental soil, and was assumed to be equal to LL15 (permanent wilting 

point). Moreover, the standard values for long season wheat used in APSIM 

that represent the maximum rate of water extraction defined for each soil layer 

were used to run the simulation (Table 5-2). Soil nitrogen in APSIM was 

initialised by soil mineral nitrogen measured at the beginning of each field 

experiment. Nitrogen fertiliser was applied in the simulation according to the 

field records for the individual experiment.  

The coefficients for the genotype of the specific cultivar used in the field 

experiment were not available in the model genotypes list. Previously no UK 

winter wheat varieties have been parameterised in APSIM. Thus single winter 

wheat cv. Claire and the basic data of the cultivar coefficients available in the 

model were used to simulate APSIM. However, few alterations were made to 
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the phenology. Some parameters of the leaf size were adjusted based on 

measurements for longer wheat season in New Zealand. Tiller number was also 

modified for higher sowing densities. Grain number was also increased and to 

raise harvest index to highest possible level, together with the amount of stem 

mass that can be retranslated. Adjustment of the cultivar coefficients was 

carried out until measured values were simulated within the main growth and 

phenology of the crop. To analyse the model sensitivity and improve the 

coefficients, observed simulations were made for the growth development 

parameters. 

Table 5-2: Experimental soil parameters used in APSIM. 

Depth (cm) Bulk 
density 
(g cm-3) 

Air dry 
(mm 

mm-1) 

LL15 
(mm 

mm-1) 

DUL 
(mm 

mm-1) 

SAT 
(mm 

mm-1) 

Wheat 
LL 

(mm 
mm-1) 

Wheat 
PAWC 
(mm)# 

Wheat ‘kl’ 
(mm 

mm1d1) 

Clay loam         
0-15 1.16 0.10 0.312 0.380 0.531 0.312 10.2 0.06 
15-30 1.16 0.18 0.312 0.380 0.531 0.312 10.2 0.06 
30-60 1.18 0.18 0.330 0.437 0.525 0.330 32.1 0.04 
60-90 1.18 0.24 0.342 0.476 0.525 0.342 40.2 0.04 
90-120 1.20 0.24 0.342 0.484 0.517 0.342 40.2 0.03 
120-150 1.20 0.24 0.342 0.484 0.517 0.342 40.2 0.02 
150-180 1.20 0.24 0.342 0.484 0.517 0.342 40.2 0.02 
         

#mm equivalent rainfall DUL = Drained Upper Limit, SAT = Saturation point, LL15 = water 

content at 15 bar, PAWC = Plant Available Water Capacity, ‘kl’ = the maximum daily rate of soil 

water extraction.  

To link the disease model and the crop simulation model, the eyespot disease 

model was implemented within the APSIM framework. This technically 

integrated approach was chosen because this workflow uses BPMN standard 

(Business Process modelling Notation, bpmn.org), which is a standard method 

of expressing the workflow. Moreover, it enables the crop simulation start and 
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end at multiple points and allows better interaction between the models. The 

workflow starts with the simulation start button and it finishes at the red button 

as demonstrated in Figure 5-2. It follows the conceptual approach described in 

chapter 4.  

 

Figure 5-2: Eyespot disease crop growth workflow integration (Al-Azri et al., 2014). 

 

 INTEGRATING EYESPOT DISEASE MODEL WITH APSIM 5.5.3

Eyespot disease model was built in R script and APSIM framework allowed 

running R script within its framework. Therefore, disease model components 

were executed with APSIM simulations. Information is then passed between 

the disease model, which accepts data from APSIM during simulation of crop 
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biomass and yield and feeds back disease data such as disease index to the 

other models in the workflows (Figure 5.4). Some modifications were required 

to enable the disease model to run within APSIM framework. Average relative 

humidity is one of the environmental parameters used to build the 

epidemiological eyespot disease model. APSIM climate model did not provide 

this value; therefore, APSIM climate model was modified to include this 

additional variable.   

The workflow presented in Figure 5.4 shows the implementation of APSIM 

with the individual disease models of eyespot developed in Chapter 4. Crop 

biomass is updated and yield reduced due to the disease at each step of the 

growth simulation orchestrated by APSIM. The first solution explored 

computationally was to wrap each of the models, IPM, DDM, DSM and 

APSIM as separate processing that can be called from within a machine-

readable version as shown in Figure 5.4. This is possible using the BPMN 

standard for workflow and an enabling software tool. For example, the e-

GRASP (Leibovici et al., 2017) offers this possibility and uses web services to 

wrap the processing tasks (OGC WPS: http://www.opengeospatial.org). Instead 

of using the e-GRASP workflow capability the second option leading to a 

similar computational organisation was to use the quasi-workflow capability 

within APSIM. APSIM can manage update of inputs in different management 

file after each time step and run a script, which can be written in R as well. 

That script was written to call successively the different models when the GS 

stage was attained as shown in Figure 5.2. Nonetheless, the two workflow 

approaches are based on updating directly the biomass and yield produced after 
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each time step in ASPIM. So first we wanted to manipulate biomass and yield 

but unfortunately these two variables are not ‘settable’ in APSIM. Therefore, 

we could not alter these variables and feed the loop in APSIM. 

To overcome this obstacle, the simulation of IPM, DDM, and DSM disease 

model was to implement the impact directly on the components of the crop 

using specific models, e.g. tiller reduction, reduction due to whiteheads and 

reduction due to lodging models as showed in Figure 5-3. These added extra 

sub-models (Figure 5-4) could now generate updates on variables that can be 

updated in the APSIM scripting part. This offers a more realistic integration, 

however the added extra model (tillers, white heads and lodging reduction 

models) required experimental specific data to be updated to the IPM, DDM 

and DSM. Since this additional data of stem lodging and white heads were not 

available, only rough approximations were performed.  

 

Figure 5-3: Growth stages of the wheat crop and those of Oculimacula spp., on different 

stages from GS12/13 to the harvest (Al-Azri et al., 2014). 
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Figure 5-4: Mechanistic diagram of APSIM crop model incorporated with 

epidemiological disease and yield reduction model in relation to crop growth stages (Al-

Azri et al., 2014). 

Further step has been taken trying to calculate yield reduction due to disease 

within disease-APSIM model simulation. We tried to use a co-efficient, with 

help from the APSIM developer (Neil I. Huth). Three different manager folders 

were created within APSIM including kill crop, kill factor and grain kill 

fraction as presented in Figure 5-5. In the kill crop disease file, tillers of the 

crop were reduced and therefore plant population was reduced by 1% per day 

over a two weeks period, the script is shown in Figure 5-6.  

Since the crop in the model can compensate with new tillers as the simulation 

proceeds final yield loss will not be overly sensitive to tiller mortality unless of 
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high disease severity. Whilst KL factor (rate of maximum daily water uptake 

per day) this used to limit the amount of water available to crop from the soil 

on any day in APSIM simulation. The disease script was written as shown in 

Figure 5-7 with a fraction value between 0.5 and 1. The disease script shown in 

Figure 5-8 was written for the grain. In order to reduce the grain number a 

killing fraction value between 0.1 and 0.01 has been set in the script so that 

yield directly reduced.  

 

 

Figure 5-5: APSIM script with different disease files. 

 

Figure 5-6: Script of kill crop disease file in APSIM. 
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Figure 5-7: Script of KL factor disease in APSIM. 

 

 

 

Figure 5-8: Script of Grain kill fraction in APSIM. 

 

 RESULTS 5.6.

  APSIM CALIBRATION AND VALIDATION  5.6.1

APSIM was used to calibrate and validate field measurements from the two 

experiments carried out in 2012/13 and 2014/15 at Sutton Bonington at the 

University of Nottingham. Generally, APSIM either over predicated or under 

predicated the phenology. In 2012/13 experiments there were 2 observed 
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phenology times at GS39 and GS69. APSIM simulated GS39 8 days earlier 

than observed while it simulated GS69 10 days later than observed. However, 

in 2014/15 where we had measurements of three phenology stages GS31, GS39 

and GS69, APSIM simulation was also not very close with observed data. The 

simulation of GS31 was 17 days later then the observed.  Whilst GS39 and 

GS69 were simulated 5 days and 10 days, respectively earlier then observed. 

The duration of thermal time from anthesis to the start of grain filling, which is 

one of the phenology phases in APSIM, is assumed to be 120oC day, obtained 

from CERES-wheat during its development. This may explain the differences 

between simulated and the observed phenology, which is due to the cultivar 

differences used in this study and in CERES-Wheat.  

On the other hand, the biomass of observed data was lower than the simulated 

values in both experimental years. The predicted biomass of 2012/13 and 

2014/15 is shown in Figure 5-9 and Figure 5-10 respectively. APSIM was 

unable to accurately simulate leaf area index (LAI) in both years. The predicted 

values of the leaf area index (LAI) were overestimated by the model at most 

growth stages of Oakley variety (Figure 5-11 & 5-12), particularly at the end of 

the season. However, LAI was predicated well with Cashel variety. Generally, 

APSIM prediction of the phenology, LAI and biomass was not accurate. This 

result led to the conclusion that APSIM model is not suitable to simulate wheat 

growth and development under the temperate regions of the UK.  
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Figure 5-9: Model performance for total above ground biomass against healthy and 

diseased biomass using measurements data 2012/13 of Oakley variety. APSIM 

overestimated biomass than observed data of healthy and diseased biomass of the Oakley 

variety.  
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Figure 5-10: Model performance for total above ground biomass against healthy and 

diseased biomass using measurements data 2014/15 of Cashel variety. APSIM 

overestimated biomass than observed data of healthy and diseased biomass of the Cashel 

variety.  
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Figure 5-11: Model performance for LAI against healthy and diseased LAI using 

observed data 2012/13 of Oakley variety. APSIM overestimated LAI than observed data 

of healthy and diseased LAI of the Oakley variety.  
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Figure 5-12: Model performance for LAI against healthy and diseased LAI using 

observed data 2014/15 of Cashel variety.  APSIM predicated LAI close to the observed 

data of healthy and diseased LAI of the Cashel variety.  
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APSIM estimated yield accurately in 2012/13 data, the system produce a wheat 

yield of 7.4 t/ha, the same as observed value obtained for the healthy and 6.5 

t/ha for diseased observation, indicating a good agreement between measured 

and predicted values (Figure 5-13). This was not the case with data of 2014/15 

where APSIM under predicted the yield (Figure 5-14). The estimated yield by 

APSIM was almost 11 t/ha that was the same as diseased measured data; whilst 

almost 2 t/ha less than that of healthy yield. Overall, APSIM cannot accurately 

simulate yield of different wheat varieties for UK conditions.  
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Figure 5-13: Model performance for yield against healthy and diseased yield using 

2012/13 observed data of Oakley variety. APSIM Predicated yield accurately as observed 

data of healthy and diseased yield of the Oakley variety.  
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Figure 5-14: Model performance for yield against healthy and diseased yield using 

2014/15 observed data of Cashel variety.  APSIM underestimated yield then the observed 

data of healthy yield of the Cashel variety. 
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   DISEASE MODELS LINKED WITH APSIM 5.6.2

Eyespot disease models developed in chapter 4 of this study were linked with 

APSIM to simulate the loss caused by disease during growth stages and final 

yield. The R2 deviance for IPM, DDM and DSM models was between 0.93-

0.99. IPM prediction was 9.6% disease incidence at GS13, 1.3% disease index 

from DDM at GS32 and 12% disease index from DSM at GS39. However, we 

could not alter biomass and yield to feed the loop in APSIM, therefore yield 

reduction model could not be implemented with disease models and as a result 

yield reduction cannot be simulated.  

Moreover, even after adding extra models to the workflow such as tiller and 

white heads reduction models still yield loss could not be generated using 

APSIM due to the shortage of specific data needed for the models. In addition, 

different disease files were implemented in APSIM where specific input values 

reduce either the number of growing points, water uptake or grains that then 

reduce the yield directly. However due to inconsistency of yield simulation by 

APSIM for the different varieties used in this study, we were not able to test 

these disease files.  

 DISCUSSION 5.7.

Application of crop models to evaluate plant growth requires sufficient details 

of cultivar type, soil, water, fertiliser and management regimes. In this study 

the performance of APSIM wheat model to simulate phenology, leaf area 

index, biomass and grain yield of winter wheat was evaluated under UK 
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conditions for two different field measurements data of Oakley and Cashel 

varieties. Our results showed that APSIM was unable to simulate the date of 

growth stages accurately in both varieties. The differences between the 

observed and simulated phenology was around 5-17 days. Phenology is a 

function of development rate that is controlled by temperature and photoperiod 

(Ritchie, 1991). In APSIM there are 11 phenological stages and accumulated 

thermal time is used to determine the duration of each stage (Robertson et al., 

2002). In fact, accurate prediction of phenological development leads to 

accurate model simulation and determining crop yield is dependent on the 

length of the growing season and flowering time in relation to any stress 

(Stapper & Fischer, 1990). There are no UK winter wheat varieties that have 

been parameterised in APSIM and in this study we used a long season single 

winter wheat, cv. Claire, in the APSIM simulations. This may explain the 

differences in phenology stages between observed and simulations in this 

study, which may be due to the differences in the observed and used variety in 

the simulation.  

All developmental stages were not simulated accurately with APSIM in this 

study in particular GS31. The occurrence of floral initiation and terminal 

spikelet’s is related directly to the leaf appearance due to the fact that apical 

meristem development and leaf appearance are coordinated. Also leaf 

appearance rate and final number of leaves on the stem determines the 

flowering time (Jamieson et al., 1995). Therefore accurate phenology 

simulation is related to the accuracy in simulating the leaf initiation and leaf 

appearance. Bassu et al. (2009) found that using measured phyllochrons from 
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durum wheat grown in variable Mediterranean environment instead of a 

general value, improved the performance of APSIM-wheat model to simulate 

anthesis date and grain yield. The availability of the routine that is sensitive to 

the low temperature conditions of the UK is very important and this could be a 

further study to improve APSIM simulations. In addition, parameterisation of 

UK winter wheat in APSIM is needed to enhance the performance of the 

simulation. 

Moreover, predications of crop biomass and leaf area index were overestimated 

by APSIM in both experimental years. In contrast yield was reasonably 

estimated in 2012/13, while under estimated in 2014/15, the predication was 

close to the yield of the diseased crop of the observed variety in this year. This 

result agreed with implementation of APSIM in temperate region in the 

Netherlands. APSIM simulated LAI poorly and yield was overestimated in 

particular with season of lower observed yield, while biomass simulation 

performed well (Asseng et al., 2000). Moreover, APSIM have been evaluated 

for the crop growth of phenology, LAI, biomass and yield of winter wheat in 

North China Plain (NCP). The model simulation was reasonably good to 

capture biomass, however relatively poor in simulation of LAI and could not 

accurately capture the grain or yield responses to different planting densities 

and sowing dates (Zhang et al., 2012).  

Generally, prediction of the leaf area is more difficult than biomass. This 

problem seems to be common with different models not only APSIM. LAI of 

wheat crop was also overestimated when APSIM performance was evaluated 
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against wider range of field measurements in Western Australia (Asseng et al., 

1998). Overestimation of wheat LAI evaluated in temperate regions was noted 

with APSIM in North West Europe (Asseng et al., 2000). On the other hand, 

other models like ORYZA2000 overestimated the LAI of rice grown under 

different range of N fertilizer condition in the Philippines (Bouman & van 

Laar, 2006). Moreover, a lower estimation of maize LAI was predicted by 

CERES-Maize model in a semi-arid Mediterranean environment (Ben Nouna 

et al., 2000). Winter wheat generally sown in the UK between September and 

November emerges before winter and enters in vernalisation over winter, then 

starts to grow again in February/March. Some leaves may die under extreme 

temperature during long winter period (Zhang et al., 2012). The lack of 

sufficient data about the response of green leaf death rate due to decreasing 

minimum temperature in winter wheat may was the cause to overestimation of 

LAI by APSIM. Further study is needed to quantify the leaf senescence and re-

growth dynamics of winter wheat.   

Agreement between field observation of biomass and APSIM simulation was 

relatively good with overestimation in both years. The same result has been 

achieved for APSIM simulation of wheat biomass in the Netherland and 

Western Australia (Asseng et al., 1998; Asseng et al., 2000). Crop model like 

APSIM use crop-specific radiation use efficiency (RUE) to estimate daily 

biomass production and allocating biomass to different organs using stage 

dependent empirical coefficients (Hammer & Muchow, 1994; Sinclair & 

Muchow, 1999). The equation to calculate biomass in APSIM as follows: 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 1− 𝑒𝑥𝑝!!"𝑋 𝑅𝑈𝐸, where; 1-exp-KL= light interception and 
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RUE= radiation use efficiency and the specific RUE value of wheat is 1.24 

(Holzworth et al., 2014). LAI is critical for light interception and 

photosynthesis in the crop model (Ritchie et al., 1985). Therefore, the 

overestimation of biomass in this study is largely attributed to the poor 

prediction of leaf area and leaf area index.  

Yield was under predicted by APSIM comparing to the healthy field 

observation in particular in the 2014/15. However, close simulation prediction 

was observed with diseased data, despite the fact that APSIM assumes no 

competition from weeds, pests or diseases. This result agrees with testing the 

Nwheat and Iwheat of APSIM model that revealed APSIM was not suitable for 

estimating wheat yields and proteins in southwest Queensland (Robinson et al., 

2001). The limit of soil data available for APSIM parameterisation, in 

particular the absence of directly measured ‘crop lower limits’ of water 

extraction, and the absence of measured soil characteristics below 90cm may 

was the reason for the lower estimation of the yield. Therefore, more details 

about UK soil characteristics is highly needed to facilitate crop simulation 

modelling under UK environment.  

In APSIM grain number per plant is estimated using stem dry matter at 

anthesis multiplied by a cultivar parameter “grains-per-gram-stem” with 

default value 25-grain g-1. Grain weight increase is simulated with a potential 

grain growth rate as limited by biomass and translocation from start to end of 

grain filling. Grain number and final grain weight determines the yield 

(Holzworth et al., 2014). Moreover, a linear relation was found between grain 
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per plant and biomass growth during spikelet development stage (the stage 

after jointing and before flowering) (Duggan et al., 2000; Brancourt-Hulmel et 

al., 2003). Inaccurate simulation of phenology and leaf area index may explain 

the lower estimate of yield in this study. Therefore accurate simulation of 

phenology and biomass is needed to predict the yield accurately.  

Generally, APSIM had poor prediction of the phenology, LAI, biomass and 

yield of winter wheat grown under UK conditions. This result led to the 

conclusion that the current version of APSIM model is not efficient to simulate 

wheat growth and development for temperate conditions of UK. Therefore, 

enhancing APSIM parameterisation and adding cultivar coefficients specific 

for UK wheat varieties are very important. Also understanding the APSIM 

simulation and required data and correct measurement from the experimental 

field is essential to obtain accurate predication from crop simulation.  

Farming simulation models that are widely used today have progressed form 

specific crop model or soil model to incorporated soil and crop model (Moore 

et al., 2014). The lack of farming system models utilising biotic constraints 

sub-model is most likely due to the complexity and difficulty of 

parameterization and required knowledge of the models (Colbach, 2010). 

However, development of communications infrastructure allows APSIM to 

communicate with different software languages, simplifying the linking 

process with other models (Holzworth et al., 2010). While, APSIM simulation 

for UK wheat growth was not promising in this study.  
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The Common Modelling Protocol (CMP) in APSIM allows other models to 

integrate and simulate process within the farming system models using 

different language (Moore et al., 2007). This study used eyespot disease index 

data taken from disease inoculated trials observation between 2004 and 2014. 

The eyespot disease models implemented with APSIM simulated an adequate 

level of disease predication at GS13, GS32 and GS39. The IPM model was 

able to predict initial infection at GS13 with about 9.6% disease index. The 

DDM model also was able to predict generally the development of disease 

index at GS32 at about 1.3% and DSM at GS39 with about 12%. The r2 

deviance for IPM, DDM and DSM models was between 0.93-0.99. There have 

been few attempts to link disease models with crop simulation models with 

limited success in quantifying the disease effects on targeted crops. For 

example DYMEX disease was successfully linked with APSIM, however the 

linked models had limited ability to predict the proportions of disease in all 

examined years (Whish et al., 2015).  

Harvest reduction model could not be looped with APSIM due to the un-

settable variables of biomass and yield reduction in APSIM. Further 

development of APSIM to allow such function to be modified by model user is 

highly needed. Unfortunately, less availability of sufficient data prevented 

from testing extra models added to the workflow. Moreover, we were unable to 

use a co-efficient in the reduction files developed by Neil I. Huth, due to the 

yield not being simulated consistently for different varieties by APSIM in this 

study.  
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In fact estimation of specific value of the disease level is difficult due to the 

instability of the disease development and its dependence on environmental 

conditions and the crop host. However, this result demonstrated successful 

implementation of disease model with crop simulation model. Deep 

understanding of disease and crop interactions and the mechanics on how 

disease cause damage to the crop is very important, to allow future link 

between crop and disease model and better simulation of crop growth 

development and yield in response to the disease.   
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 GENERAL DISCUSSION  6.1.

Demand for food will increase with any further increase in population and 

change in consumption pattern. In many developing countries, crop yield is 

low therefore further improvement is necessary to meet future demands. 

Climate is an important component in the food production system and plays a 

key role in crop development and yield formation. Food production depends on 

local climatic conditions such as temperature and rainfall and any change in 

current conditions will result in altered productivity. Thus, producing food 

more efficiently and increasing wheat yields remain high priorities worldwide. 

In the United Kingdom for instance food production will be highly affected by 

unstable weather condition. According to the report (United Kingdom climate 

impacts program, 2011), summers are expected to be warmer in all areas across 

the UK with predicted temperature increases of 1.5 to 2oC. Moreover, change 

in precipitation patterns is expected to cause drier summers and wetter winters 

with predictions that rainfall will increase by 10% to 20% during winter.  

Many pests and diseases are capable of relatively rapid genetic changes. 

Climate change may enhance their ability to invade new areas as well as alter 

their seasonal patterns and abundance (Clements & Ditommaso, 2011). 

Accordingly, survival, development, reproduction and dispersal of plant 

pathogens are dependent on climate to a certain degree. For example, survival 

of some pathogens is increased by mild winters and humid weather. Climate 

conditions can mediate changes to pest and disease populations that pose an 

enormous risk to crop yields and global food security. Change in climate can 
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cause changes in pathogen complexes impacting on crop yield, safety and 

quality. Fusarium head blight (FHB) disease in wheat is a good example of 

these effects (Chakraborty & Newton, 2011). Due to climate change, FHB re-

emerged in the northern Great Plains and central USA between 1998 and 2000 

causing yield loss and grain price reduction estimated by $2.7 as a result of 

reducing grain quality (Goswami & Kistler, 2004). Beside FHB infection, grain 

loss can be also due to production of trichothecene mycotoxins and oestrogenic 

zearalenone in infected host tissue that is harmful to humans and animals.  

Moreover, disease development as well as physiology and resistance of plant 

hosts can be altered by climate change. Plant canopy size and density can be 

increased significantly from higher levels of CO2 that result in a high 

nutritional quality and a greater biomass (Manning & Tiedmann, 1995; Islam et 

al., 2012). However, these promote foliar diseases such as rusts, powdery 

mildew, leaf spots and blights particularly in the situation when excessive 

humidity exists in the canopy (Coakley et al., 1999; Islam et al., 2012). Despite 

the recent advancements in breeding and improvements in integrated pest 

management, crop losses due to pest and diseases are still high and can reach 

over 50% in the major crops and can be even higher under favourable 

conditions such as high temperature and high rainfall (Oerke, 2006). By way of 

illustration, Oerke (2006) analysed losses of 6 major crops between 2001 and 

2003 and found that the average loss in wheat and cotton due to plant diseases 

was 29%, while in potato the loss was 40%.  
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The variation in loss from place to place and season to season is particularly 

due to variation in climate condition that influences the incidence and severity 

of the disease and pest (Flood, 2010). The accurate yield loss data caused by 

diseases on farmer’s fields in the developing countries such as Oman are often 

absent or difficult to obtain. However, this is not the case in developed 

countries, for example in the UK where accurate information about disease and 

estimated losses is available. Modelling is an important tool to increase our 

understanding about the future impact of biotic and abiotic factors on crop 

production. A considerable amount of literature has been published on 

modelling approaches; however, few of these models include crop loss 

components due to disease. Such a component needs to be incorporated in the 

modelling to arrive at a realistic estimate of crop loss because of disease under 

climate change. Therefore, it is important to develop crop models predicting 

the reduction in crop production when attacked by diseases.  

The overall aim of this project was to model disease impact on wheat for 

improved food security. The first objective was to compare the incidence of 

wheat diseases between 2009 and 2014 in two different agro-ecological zones, 

UK and Oman (chapter 2). Also, to identify the main disease threats and 

quantify their impact on wheat production in Oman using data of diseases in 

Omani wheat collected in 2014 survey. The occurrence and the incidences of 

fungal wheat diseases in two different climatic condition Oman and UK were 

compared between 2009 and 2014. In Oman, 447 fields in five different 

locations were assessed for stem and foliar disease incidence between 2009 and 

2014 at GS 55-69, while in the UK almost 300 crops were assessed annually 
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for leaf, stem and ear diseases at the early milk development stage (GS73-75) 

between 2009-2014. 

There was a variation in disease incidence of leaf spot, stem base diseases, 

loose smut and powdery mildew in Omani wheat at GS55-69 between 2009 

and 2014. The predominant disease was leaf spot recorded at all growth stages 

during the 2014 survey as well as recorded with high frequency among other 

diseases and increasing through years. Stem base was the important disease of 

stems and loose smut was important disease of ears. In UK winter wheat the 

most widespread leaf disease between 2009 and 2014 was Septoria. The level 

of powdery mildew in UK wheat was more common and at a higher level than 

that recorded in Omani wheat at the same period. Fusarium was the most 

common disease of stem in UK wheat followed by eyespot. The lower level of 

eyespot recorded during the 6 years period of the survey may be related to the 

fungicide treatments applied at GS31 or difficulty to assess the lesion atGS73-

75. During the 6 years survey in Oman eyespot was not found and this may be 

related to the high temperature during winter in Oman. Loose smut was the 

most common ear disease in Omani wheat while ear blight was the most 

important disease of the ears in UK winter wheat. Introduction of new 

irrigation systems may favour some disease like stem base in Oman that was 

recorded in high frequency in the last year of the survey.  

 

. 
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The pathogens in Omani wheat were characterised and the influence of 

agronomy factors were assessed in five provinces (Buraimai, Thahira, Interior, 

Sharqia and Batinah). Isolations from six symptomatic wheat varieties in 2014 

resulted in 36 different fungal species. The four most frequently isolated 

pathogens from infected tissues were Alternaria alternata, Bipolaris 

sorokiniana, Setosphaeria rostrata, and Fusarium equiseti. These fungi have 

been also been isolated from seeds of Omani wheat and only B. sorokiniana 

was found to cause root and crown rot in wheat (Al-Sadi & Deadman, 2010).  

In this study Setosphaeria rostrata was recovered with high frequency from 

all growth stages and all locations covered by this survey. This result was 

supported by a survey that found S. rostrata causing blights, spots and 

blotches in wheat leaves in different growing area in India (Singh et al., 

2001).  F. equiseti was the only Fusarium species recovered from the ear 

samples from this study. Fusarium species isolated in this study have been 

reported as able to cause disease on stem bases, roots, leaves and ears 

(Liggitt et al., 1997; Narkiewicz-Jodko et al., 2003). Pathogenicity tests of 

A. alternata, B. sorokiniana, S. rostrata and F. equiseti revealed with no 

significant differences in disease caused on two wheat cultivars.  

During 2014 survey agronomic practices on disease incidence on Omani wheat 

was also considered. It was found that stem base disease was influenced 

significantly by urea application. Leaf spot incidence was found to be lower in 

fields fertilized with urea application 2 months from sowing comparing to one 

month from sowing. Whereas, foliar application with potassium and 
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ammonium was influenced the incidence of loose smut diseases. This is 

supported by a study that found urea application to tomato plants influenced 

wilt caused by F. oxysporum f. sp. lycopersici (James, 1996).  Buramiai 

province had the highest incidence of leaf spot disease while, Thahira province 

had higher incidence of stem-base diseases. However, the lowest incidence of 

leaf spot was recorded from Sharqia, whilst Batinah had the lowest incidence 

of stem base disease. It has been found from this study that some agronomic 

practices influenced disease incidence significantly at GS55-69. Leaf spot was 

found to be highest with mechanical sowing method, location (Sharqia 

provience) and variety (W.Q.302). However, years, mechanical sowing method 

and drip irrigation had highest significant influences on stem base diseases.  

These results indicate that some practices influenced diseases of wheat in 

Oman like time and quantity of fertiliser. Also, the method of sowing need to 

be considered as mechanical always influenced the disease occurrence. Overall 

the identification of main disease threats in Oman and its agronomic influencer 

is the basis for further research. To determine the priority in disease problems, 

to assess the economic importance and to contrast environment model for yield 

loss caused by disease. 

The effect of treatment on risk aversion to eyespot disease and cost recovery of 

eyespot treatment through yield response of the crop was assessed in chapter 3 

of this study. The study confirmed that all treatments apart from epixiconazole 

(Opus at 1 l ha-1) reduced eyespot disease at GS39. This study found that only 

boscalid and epoxiconazole (Tracker) fungicide gave a clear dose response 

resulting in greater yield and higher gross margin.  
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In chapter 4, epoxiconazole (Opus at 0.5 l ha-1) returned better gross margin 

and yield compared to prothioconazole (Proline 275 at 0.4 l ha-1) treatment. 

Most likely because epoxiconazole is very effective against other diseases such 

as Septoria and also it is much cheaper than prothioconazole. The yield and 

gross margin increased when fungicide treatments were applied compared to 

the control under both high and low disease pressure. The results in chapter 3 

revealed that the treated trial means of yield and gross margin dominated the 

untreated trial means. In addition, in all years, except 2005 and 2006, treated 

yield and gross margin had lower range of standard deviation (+/-2). This 

indicates that treating the disease is a better choice for the grower; besides it 

reduces the risk of high yield loss due to extreme disease severity. The 

dominant strategy for growers was to apply fungicides. Thus, although the 

mean gross margin of the untreated trials was more competitive, treatment 

would still be a better choice for grower, because there is less uncertainty about 

the outcome and less deviation. Furthermore, fungicide treatment of eyespot 

was found cost effective under high and low disease pressure situations.  

The third objective was to develop an eyespot disease model predicting yield 

loss of wheat in the UK. This study found a significant positive relationship 

between thermal time, average relative humidity and disease infection (Chapter 

4). While increased thermal time caused disease development and severity to 

decrease slightly, relative humidity caused disease development and severity to 

increase significantly. This finding implies that thermal time has different 

effects on the stages of diseases, possibly related on the crop itself. Since 

increased thermal time also results in increased crop development, which is 
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less favourable for disease development and severity, as some inoculum may 

be lost due to increased development through loss of infected leaf sheaths. This 

finding implies that development of monocyclic disease like eyespot can be 

measured by thermal time (Lovell et al., 2004). 

The role of rain seems to be different than that with thermal time. Total rainfall 

from sowing to GS12/13 has negative effect on infection stage of disease, 

while total rainfall between GS31/32 to GS39 had a positive effect on 

penetration and establishment. This result is in agreement with previous work 

that showed eyespot incidence is influenced by high rainfall between March 

and May (Burnett & Hughes, 2004). Region had a major impact on eyespot, 

with the largest difference exerted in the West and North. Furthermore, disease 

infection decreased significantly in heavy soils but increased in light soils.  

Additionally, the effect of previous crop had the largest positive influencing on 

disease index in all models. Non-host such as legumes reduced disease index 

significantly in IPM and DDM. This finding support previous work that 

showed eyespot was more severe if wheat occurred in a rotation with a high 

incidence of other cereals compared to rotations where non-cereal crops were 

regularly grown (Cook et al., 1991). Minimal tillage caused higher infection 

potential and disease development but not severity at GS39 where minimal 

tillage reduced disease in comparison to ploughing. The effect of minimal 

tilling at infection and development stages may be due to the presence of 

higher inoculum on debris left in minimal cultivation. However, at 

establishment stage it could be under min-till there may be other competitors, 
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which may alter disease severity. Late sowing dates after the 6th October also 

reduced disease at IPM and DDM. All fungicides applied at GS31/32 were also 

found to reduce disease significantly at GS39 in comparison to epoxiconazole 

alone. These results agreed with previous studies on fungicide effectiveness 

against eyespot disease (Cook, 1980; Ray et al., 2004). Overall cyprodinil 

(Unix) treatments had the lowest reduction in disease severity, whilst mixture 

of epoxiconazole and Boscalid had highest reduction in disease severity. This 

study found a significant relationship between disease severities at GS39 and 

yields loss. Under different scenario, yield was affected with disease incidence 

increase or decrease. For instance in a scenario were disease severity increase 

by 26%, yield reduced by 0.6 t/ha-1.  

The ability of APSIM to simulate the crop growth of two different winter 

wheat varieties (Oakley and Cashel) under UK conditions was evaluated. The 

development of both varieties was not accurately simulated by APSIM. The 

simulation revealed a significant gap between observed and simulated data, 

particularly at GS31 with a range between 5-17 days in all growth stages. 

Moreover, in both experimental years APSIM predictions of leaf area index 

were overestimated. In contrast, yield was reasonably estimated in 2012/13, 

while under estimated in 2014/15. APSIM simulation of wheat biomass in the 

Netherlands and Western Australia (Asseng et al., 1998; Asseng et al., 2000) 

has also been shown to be inaccurate. The general finding from the work in 

chapter 3 was that the inaccurate simulation of phenology and leaf area index 

might explain the lower estimate of biomass and yield. The poor prediction of 

the phenology, LAI, biomass and yield of winter wheat grown under UK 
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conditions APSIM had in this study led to the conclusion that the current 

version of the APSIM model is not efficient to simulate wheat growth and 

development for temperate conditions of the UK.  

However, eyespot disease models developed in chapter 4 were implemented 

with APSIM and simulated an adequate level of disease prediction at GS13, 

GS32 and GS39. The literature shows that few attempts have been made to link 

APSIM with disease models. APSIM was successfully linked with DYMEX 

disease model but had limited ability to predict the proportions of disease in all 

examined years (Whish et al., 2015). In this work, yield loss could not be 

quantified due to un-settable variables of biomass and yield reduction in 

APSIM prevented from looped harvest reduction model. Thus the developed 

models in the workflow in chapter 4 could not be tested due to insufficient data 

and yield not being simulated consistently for different varieties by APSIM.  

 

6.2       Future studies  

• The main diseases threating wheat production in Oman identified in 

chapter 2 of this study was the first step towards using crop modelling 

approach to aid in enhancing wheat production and quantifying yield loss 

due to diseases. Future study is highly needed to determine the priority in 

disease problems, plan for future research to assess the economic 

importance and to contrast environment model for yield loss caused by 

disease as well as developing effective integrated disease management 

strategies for Omani wheat.  
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• In chapter 4 of this study a significant correlation between yield loss and 

eyespot severity at GS39 has been found that is contrasted with no 

consistent correlation between yield loss and eyespot severity result found 

by Burnett et al. (2012). This indicated the need of further research to 

investigate the role of eyespot disease on yield.  

• Reduction of disease under scenario of increasing environmental factors 

found in chapter 4 of this study implies that under future climate change and 

increase in parameters like temperature and rainfall might decrease the 

distribution and severity of eyespot. Further work is needed to understand 

the relationship between environmental factors under and eyespot disease 

development climate change.  

• Cultivar was not considered within the factor that effect disease 

development models. Further research to include a range of variety 

resistance rating and check their effect upon eyespot disease.  

• Fertiliser application was not considered. Evidence from literature 

considering this factor was contrasting. While Colbach and Saur (1998) 

found significant less eyespot in plots fertilised with ammonium sulphate 

than those fertilised with ammonium nitrate. However, Smith et al. (2000) 

found no response from eyespot with addition of ammonium nitrate at 

different doses. Therefore, fertiliser factor may be included in the model as 

future study to investigate its effect upon eyespot disease and yield.  

• The inaccurate prediction of winter wheat crop growth simulation by 

APSIM under UK condition in chapter 5 of this study implies the need of 

further work in model structure and measurement of field data.  
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• In the model side, availability of the routine that is sensitive to the low 

temperature conditions of the UK is very important and this could be a 

further study to improve APSIM simulations.  

• Enhancing APSIM parameterisation and adding cultivar coefficients 

specific for UK wheat varieties of are very important.  

• The lack of sufficient data about the response of green leaf death rate due to 

decreasing minimum temperature in winter wheat may was the cause to 

overestimation of LAI by APSIM. Further study is needed to quantify the 

leaf senescence and re-growth dynamics of winter wheat.   

• In the field measurement, the limit of soil data available for APSIM 

parameterisation and the absence of measured soil characteristics below 90 

cm was one of the reasons that caused inconsistency of yield simulation. 

More work is needed about UK soil characteristics to facilitate crop 

simulation modelling under UK environment.  

• Understanding APSIM simulation and correct measurement from the 

experimental field is essential to obtain accurate predication from crop 

simulation. Future work to understand the disease and crop interactions and 

the mechanics on how disease cause damage to the crop is very important, 

to allow future link between crop and disease model and to enhance 

simulation of crop growth development and yield in response to the disease.  
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7. APPENDIX 

Table 7-1 Historical data used in this study collected through previous 

research projects on fungicide efficacy against eyespot disease by the 

University of Nottingham, Harper Adams University, as well as The 

Arable Group research (TAG).  
Year Trial code County Region  Tillage Actual sow 

date 

Variety 

name 

Soil 

type 

Rotation 

2004 LO15r Shropshire West Ploughed 03/10/2003 Einstein Sandy 

Loam 

1st WW 

2004 LO15w Shropshire West Ploughed 03/10/2003 Einstein Sandy 

Loam 

1st WW 

2004 LO14r Shropshire West Ploughed 03/10/2003 Einstein Sandy 

Loam 

1st WW 

2004 LO14w Shropshire West Ploughed 03/10/2003 Einstein Sandy 

Loam 

1st WW 

2005 MO17r Shropshire West Ploughed 05/10/2004 Gladiator Sandy 

Loam 

1st WW 

2005 MO17w Shropshire West Ploughed 05/10/2004 Gladiator Sandy 

Loam 

1st WW 

2005 MO18r Shropshire West Ploughed 05/10/2004 Gladiator Sandy 

Loam 

1st WW 

2005 MO18w Shropshire West Ploughed 05/10/2004 Gladiator Sandy 

Loam 

1st WW 

2006 NO16r Shropshire West Ploughed 19/09/2005 Robigus Sandy 

Loam 

1st WW 

2006 NO16w Shropshire West Ploughed 19/09/2005 Robigus Sandy 

Loam 

1st WW 

2006 NO25r Shropshire West Ploughed 19/09/2005 Robigus Sandy 

Loam 

1st WW 

2006 NO25w Shropshire West Ploughed 19/09/2005 Robigus Sandy 

Loam 

1st WW 
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2007 PO12 Shropshire West Ploughed 02/10/2006 Robigus Sandy 

Loam 

1st WW 

2007 PO13 Shropshire West Ploughed 19/09/2006 Alchemy Sandy 

Loam 

1st WW 

2007 PO14 Shropshire West Ploughed 02/10/2006 Robigus Sandy 

Loam 

1st WW 

2007 PO15 Shropshire West Ploughed 19/09/2006 Alchemy Sandy 

Loam 

1st WW 

2007 PO16 Shropshire West Ploughed 19/09/2006 Alchemy Sandy 

Loam 

1st WW 

2007 PO17 Shropshire West Ploughed 02/10/2006 Robigus Sandy 

Loam 

1st WW 

2008 RO21 Shropshire West Ploughed 11/10/2007 Gladiator Clay 

Loam 

1st WW 

2008 RO22 Shropshire West Ploughed 11/10/2007 Gladiator Clay 

Loam 

1st WW 

2008 RO26 Shropshire West Ploughed 18/10/2007 Timber Sandy 

Loam 

1st WW 

2009 N09r Leicestershire East Min-till 01/10/2008 Robigus Clay 

Loam 

1st WW 

2009 N09z Leicestershire East Min-till 01/10/2008 Zebedee Clay 

Loam 

1st WW 

2009 BASFW Leicestershire East Min-till 03/10/2014 Einstein Clay 

Loam 

Grass 

2009 BASFR Leicestershire East Min-till 03/10/2014 Einstein Clay 

Loam 

Grass 

2010 O10p Leicestershire East Ploughed 27/10/2009 Panorama Clay 

Loam 

1st WW 

2010 O10z Leicestershire East Ploughed 27/10/2009 Zebedee Clay 

Loam 

1st WW 

2010 BASF 

Product 

Leicestershire East Ploughed 02/10/2009 Cordiale Clay 

Loam 

1st WW 
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2010 BASF 

Dose 

Leicestershire East Ploughed 02/10/2009 Cordiale Clay 

Loam 

1st WW 

2011 HGCA 

Timing 

Leicestershire East Ploughed 11/10/2010 Gallant  Clay 

Loam 

1st WW 

2011 Syngenta Leicestershire East Ploughed 11/10/2010 Gallant  Clay 

Loam 

1st WW 

2011 BASF 

Product 

Shropshire West Ploughed 30/09/2010 Panorama Sandy 

Loam 

1st WW 

2011 BASF 

Dose 

Shropshire West Ploughed 30/09/2010 Panorama Sandy 

Loam 

1st WW 

2012 Eyespot in 

Oakley  

Leicestershire East Ploughed 26/09/2011 Robigus Clay 

Loam 

Winter 

Oat 

2012 BASF 

Dose 

Leicestershire East Ploughed 05/10/2011 2nd wheat Clay 

Loam 

1st WW 

2012 BASF 

Product 

Leicestershire East Ploughed 05/10/2011 2nd wheat Clay 

Loam 

1st WW 

2013 BASF 

Trials 

Leicestershire East Ploughed 03/10/2012 Scout Clay 

Loam 

1st WW 

2013 Eyespot in 

Oakley  

Leicestershire East Ploughed 19/09/2012 Oakley Clay 

Loam 

1st WW 

2014 BASF 

Product 

Shropshire East Ploughed 01/10/2013 JB Diego Clay 

Loam 

1st WW 
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Table 7-2 Experimental field locations and their GPS coordination’s   
County  Field Location Latitude  Longitude 

Shropshire 

Bayely Hills,HAUC, Newport  52.77063 -2.409847 

Sidlington Field, Newport 52.789008 -2.437077 

30 acre, Newport 52.79486 -2.446175 

Sambrook, Newport 52.816354 -2.428858 

Furniss, Newport 52.797896 -2.433536 

Garden Field, Newport 52.778639 -2.430317 

Upperwood Leasow field, Harper 

Adams Farm,  

52.778885 -2.426741 

Leicestershire 

B1 Field, Sutton Bonington, East 

Midlands 

52.836726 -1.24681 

B2 Field, Sutton Bonington, East 

Midlands 

52.839811 -1.245141 

Bunny Field 2, Sutton Bonington, 

East Midlands 

52.856071 -1.128098 

Watton Estate Field, Sutton 

Bonington, East Midlands 

52.836726 -1.24681 

S24 Field, Sutton Bonington, East 

Midlands 

52.836726 -1.24681 

S31 Field, Sutton Bonington, East 

Midlands 

52.839811 

 

-1.245141 
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Table 7-3 Trials of eyespot disease inoculated and natural infection 

between 2004 and 2014.  

Year Location Inoculation/Natural infection 

2004 Bayely Hills,HAUC, Newport, 
Shropshire 

W+R eyespot species inoculation 

2005 Sidlington Field, Newport, Shropshire W+R eyespot species inoculation 

2006 30 acre, Newport, Shropshire W+R eyespot species inoculation 

2007 Sambrook, Newport, Shropshire Natural infection 

2007 Furniss, Newport, Shropshire W+R Species inoculation 

2008 Garden Field, Newport, Shropshire W+R eyespot species inoculation 

2008 Furniss, Newport, Shropshire Natural infection 

2009 Bunny field 2, Sutton Bonington, East 
Midlands Natural infection 

2009 Bunny field 2, Sutton Bonington, East 
Midlands W+R eyespot species inoculation 

2010 B1 field, Sutton Bonington, East Midlands Natural infection 

2010 B1 field, Sutton Bonington, East Midlands W+R eyespot species inoculation 

2011 S31 field, Sutton Bonington, East Midlands W+R eyespot species inoculation 

2012 S24 & Watton Estate fields, Sutton 
Bonington, East Midlands W+R eyespot species inoculation 

2013 B1 and B2 fields, Sutton Bonington, East 
Midlands W+R eyespot species inoculation 

2014 Upperwood Leasow field, Harper Adams 
Farm, Shropshire  W+R eyespot species inoculation 
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Table 7-4 Different fungicides products and their active ingredients used 

in the trials. 
Active Ingredients Trade Name Manufacturer 

epoxiconazole 

 

Opus BASF plc 

 
Metrafenone 

 

Flexity BASF plc 

 
prothioconazole 

 

Proline 275 Bayer Crop Science 
Limited 

 
boscalid and epoxiconazole 

 

Tracker BASF plc 

 
cyprodinil Unix Syngenta Crop 

Protection UK Limited  

epoxiconazole and  prochloraz 

 

Ennobe BASF plc  

epoxiconazole and fluxapyroxad Adexar BASF plc 

 azoxystrobin Amistar Syngenta Crop 
Protection UK Limited 

 
bixafen and prothioconazole Aviator 235Xpro  

Bayer Crop Science 
Limited 

 

chlorothalonil Bravo Syngenta UK Limited 

 epoxiconazole, fenpropimorph and 
metrafenone 

 

Capalo BASF plc 

 
epoxiconazole, fluxapyroxad and 
pyraclostrobin 

 

Ceriax  

boscalid and epoxiconazole 

 

Chord BASF plc 

 boscalid and epoxiconazole Enterprise BASF plc 

epoxiconazole 

 

Ignite BASF plc 

fluxapyroxad 

 

Imtrex BASF plc 

 fluxapyroxad and metconazole 

 

Librax BASF plc 

 boscalid, epoxiconazole and 
pyraclostrobin 

 

Nebula BASF plc 

 epoxiconazole and Isopyrazam 

 

Seguris Syngenta UK Limited 

 Penthiopyrad 

 

Vertisan Du Pont (UK) Limited 

 fluxapyroxad Xemium BASF plc 
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8. APPENDIX 

  Agriculture and Climate Change - Adapting Crops to Increased 8.1.

Uncertainty (AGRI 2015 Conference) 

Simulating eyespot disease development and yield loss using APSIM for 
UK wheat 

 
M. Al-Azri1, D. Leibovici1, A. Karunaratne2, R. V. Ray1 

1University of Nottingham, Nottingham NG7 2RD, UK 2Crops for the Future Research 
Centre, Jalan Broga, 43500 Semenyih Selangor Darul Ehsan, Malaysia 

stxmsa@nottingham.ac.uk 
 

A Global crop production is affected by seasonal and climatic variations in 
temperature, rainfall patterns or intensity and the occurrence of abiotic and 
biotic stresses. Climate change can alter pest and pathogen populations as well 
as pathogen complexes that pose an enormous risk to crop yields and future 
food security. Eyespot disease caused by Oculimacula yallundae and O. 
acuformis is associated with yield losses in UK wheat estimated in 1998 at £24 
million. Crop simulation models have been validated as an important tool for 
the development of more resilient agricultural systems and improved decision 
making for growers. The Agricultural Production Systems Simulator (APSIM) 
is a software tool that enables sub-models to be incorporated for simulation of 
production in diverse agricultural systems. APSIM-wheat simulates crop 
growth and development, soil and management options. Modification of 
APSIM to incorporate epidemiological disease model for crop growth and 
yield under different disease intensities has not yet been undertaken in UK or 
elsewhere. Thus, the objective of this work was to develop epidemiological 
model for eyespot disease and incorporate it within APSIM for crop simulation 
under a range of disease and environmental conditions. Historical climatic data 
combined with 8 years of observed disease (2004-2012) data on incidence and 
severity of eyespot in UK field trials was used to develop epidemiological 
model, combining infection and severity, for the prediction of disease 
development in relation to crop growth stages. Crop growth characteristics, 
biomass and yield were measured separately and employed for eyespot yield 
loss or biomass reduction model in wheat based on disease severity. Current 
work is focused on modifying APSIM to simulate crop loss through the 
incorporation of the epidemiological disease and yield reduction components 
and further validation to confirm that empirical data were accurately simulated. 
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of the Agriculture and Climate 
Change - Adapting Crops to Increased Uncertainty (AGRI 2015). 
 
Keywords: Oculimacula yallundae, O. acuformis, APS IM 
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