Statistics of eigenvectors in the deformed Gaussian unitary ensemble of random matricesTools Truong, K. and Ossipov, A. (2016) Statistics of eigenvectors in the deformed Gaussian unitary ensemble of random matrices. Journal of Physics A: Mathematical and Theoretical, 49 (14). p. 145005. ISSN 1751-8121 This is the latest version of this item. AbstractWe study eigenvectors in the deformed Gaussian unitary ensemble of random matrices $H=W\tilde{H}W$, where $\tilde{H}$ is a random matrix from the Gaussian unitary ensemble and W is a deterministic diagonal matrix with positive entries. Using the supersymmetry approach we calculate analytically the moments and the distribution function of the eigenvectors components for a generic matrix W. We show that specific choices of W can modify significantly the nature of the eigenvectors changing them from extended to critical to localized. Our analytical results are supported by numerical simulations.
Available Versions of this Item
Actions (Archive Staff Only)
|