Effective spin physics in two-dimensional cavity QED arrays

Minář, Jiří and Söyler, Şebnem Güneş and Rotondo, Pietro and Lesanovsky, Igor (2017) Effective spin physics in two-dimensional cavity QED arrays. New Journal of Physics, 19 . pp. 1-18. ISSN 1367-2630

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (1MB) | Preview

Abstract

We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis–Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya's enumeration theorem.

Item Type: Article
Keywords: cavity arrays, ground states of spin systems, frustrated spin models, quantum Monte Carlo, Dicke, Jaynes–Cummings, Tavis–Cummings models
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Physics and Astronomy
Identification Number: 10.1088/1367-2630/aa753c
Depositing User: Minar, Jiri
Date Deposited: 03 Aug 2017 10:33
Last Modified: 12 Oct 2017 23:27
URI: http://eprints.nottingham.ac.uk/id/eprint/44615

Actions (Archive Staff Only)

Edit View Edit View