An enhanced scaled boundary finite element method for linear elastic fractureTools Egger, Adrian W., Chatzi, Eleni N. and Triantafyllou, Savvas P. (2017) An enhanced scaled boundary finite element method for linear elastic fracture. Archive of Applied Mechanics, 87 (10). pp. 1667-1706. ISSN 1432-0681 Full text not available from this repository.AbstractA blocked Hamiltonian Schur decomposition is herein proposed for the solution process of the Scaled Boundary Finite Element Method (SBFEM), which is demonstrated to comprise a robust simulation tool for Linear Elastic Fracture Mechanics (LEFM) problems. By maintaining Hamiltonian symmetry increased accuracy is achieved, resulting in higher rates of convergence and reduced computational toll, while the former need for adoption of a stabilizing parameter and, inevitably user-supervision, is alleviated.
Actions (Archive Staff Only)
|