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Abstract

The work presented in this thesis focuses on solving course timetabling prob-

lems, a variant of education timetabling. Automated timetabling is a popular

topic among researchers and practitioners because manual timetable construc-

tion is impractical, if not impossible, as it is known to be NP-hard.

A two-stage approach is investigated. The first stage involves finding fea-

sible solutions. Monte Carlo Tree Search (MCTS) is utilized in this stage. As

far as we are aware, it is used for the first time in addressing the timetabling

problem. It is a relatively new search method and has achieved breakthrough in

the domain of games particularly Go. Several enhancements are attempted on

MCTS such as heuristic based simulations and pruning. We also compare the

effectiveness of MCTS with Graph Coloring Heuristic (GCH) and Tabu Search

(TS) based methods. Initial findings show that a TS based method is more

promising, so we focus on improving TS. We propose an algorithm called Tabu

Search with Sampling and Perturbation (TSSP). Among the enhancements that

we introduced are event sampling, a novel cost function and perturbation. Fur-

thermore, we hybridize TSSP with Iterated Local Search (ILS).

The second stage focuses on improving the quality of feasible solutions. We

propose a variant of Simulated Annealing called Simulated Annealing with Re-

heating (SAR). SAR has three features: a novel neighborhood examination

scheme, a new way of estimating local optima and a reheating scheme. The rig-

orous setting of initial and end temperature in conventional SA is bypassed in

SAR. Precisely, reheating and cooling were applied at the right time and level,

thus saving time allowing the search to be performed efficiently. One draw-

back of SAR is having to preset the composition of neighborhood structures

for the datasets. We present an enhanced variant of the SAR algorithm called
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Simulated Annealing with Improved Reheating and Learning (SAIRL). We pro-

pose a reinforcement learning based method to obtain a suitable neighborhood

structure composition for the search to operate effectively. We also propose to

incorporate the average cost changes into the reheated temperature function.

SAIRL eliminates the need for tuning parameters in conventional SA as well as

neighborhood structures composition in SAR.

Experiments were tested on four publicly available datasets namely Socha,

International Timetabling Competition 2002 (ITC02), International Timetabling

Competition 2007 (ITC07) and Hard. Our results are better or competitive

when compared with other state of the art methods where new best results are

obtained for many instances.
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Chapter 1

Introduction

1.1 Background and Motivation

Combinatorial Optimization Problems (COP) involve finding the values for a

set of variables from the discrete search space which maximizes or minimizes an

objective function. Examples of these type of problems include vehicle routing

problems [90], traveling salesman problems [98], bin packing problems [125],

minimal spanning tree problems [91] and timetabling problems [43].

Generally, timetabling is the placement of resources in time. The aim is to

maximize profit (which may not be only monetary) where resources are placed

in such a way to optimize utilization (thus decreasing operating costs) and sat-

isfy stakeholders’ requirements.

In fact, there are many types of timetabling problems, including educational

timetabling [155, 104, 11], sports timetabling [105], transportation timetabling

[42, 43, 74, 101], nurse rostering [31] etc. We focus on the methods for solving the

post enrollment course timetabling problem, a variant of education timetabling.

In this context, the timetable is a placement of courses to a finite number of

time slots and rooms, satisfying a set of requirements.

In a university setting, modular course structures allow students to choose

their preferred courses every semester. Hence, the universal minimum require-

ment is to ensure that they can attend their lectures without clashing with
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other lectures taking place at the same time. Essentially, two events attended

by a student cannot be assigned to the same time slot. This scenario is identi-

cal to a graph coloring problem where two nodes connected by an edge cannot

be assigned the same colour. de Werra shows that timetabling is NP-hard by

the reduction of timetabling to graph coloring (known to be NP-hard) [61, 60].

Timetabling construction is also shown to be NP-hard in several other ways

[75, 54].

Course timetable construction is indeed difficult as additional requirements

further complicate the process. The other common requirements may include

the following;

• the room allocated for the course must have enough seating capacity to

cater for the number of students enrolled.

• the room allocated for the course must fulfill the features required.

• only one course should be assigned to one room at any time.

• the assignment of courses has to fulfill the precedence requirement e.g. a

course should be scheduled to occur before and after certain courses.

• courses can only be assigned to some predefined time.

With these requirements, constructing course timetables manually for hun-

dreds of courses and hundreds (possibly thousands) of students is complicated

and time consuming. Usually, course timetabling is automated [20].

It is also a general belief that NP-hard problems cannot be solved optimally

by using exact methods in polynomial time (i.e. it is widely believed P 6= NP).

A guide to NP-completeness can be found in [103]. As an alternative, heuristic

based approximation methods are often used. These methods may not guarantee

optimal solutions, but can produce good solutions in reasonable computational

times.

It is important to have a feasible course timetable as it will prevent clashes

of courses, where lecturers no longer have to conduct extra classes for students

with clashing courses and students will be able to attend all the lectures for

all the courses enrolled. The lecture rooms will have enough seats for all the

enrolled students in addition to all the teaching equipments (OHP, AV, Internet
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connection etc.) required by a specific course. A feasible timetable will allow

courses (possibly related) to be conducted in a certain order. For example, some

courses may have tutorials and require that tutorials be conducted only after

the lectures. In addition, a feasible course timetable may cater to busy lectur-

ers who can only conduct courses at certain times. Furthermore, a high quality

timetable will prevent students from attending more than two lectures consec-

utively as students may have limited concentration [167] thus affecting learning

effectiveness. An efficient timetable will not require students attending only one

lecture on a day, saving commuting costs (time and monetary). Students also

prefer not to have lectures in the last slot of the day so that they may have

more time for extra curricular activities.

1.2 Aims and Objectives

Monte Carlo Tree Search (MCTS) is a relatively new search method. In re-

cent years, it has become the focus of Artificial Inteligence (AI) thanks to its

success and impact in the domain of games, particularly Go. Programs based

on MCTS are now competitive with the best human players which was not

possible before [115, 73, 58]. While MCTS methods are popular in games deci-

sion making, it is rarely used for combinatorial optimization problems. Among

the limited number of applications are job shop scheduling by Runarsson et al.

[154], one player puzzle by Schadd et al. [158], reentrant scheduling problem

by Matsumoto et al. [126] and production management problems by Chaslot

et al. [49]. As far as we are aware, MCTS has never been applied to course

timetabling problems. The success of MCTS in the games domain motivated

us to find out how MCTS would fare in course timetabling problems which are

dominated by local search methods, with regard to a solution methodology. In

addition, Go and timetabling are similar to some extent in terms of moves. In

Go, stones are strategically placed into cells to maximize the number of stones

(black or white) on the board, whereas in timetabling, events are strategically

placed into cells to maximize the number of assigned events. Another consider-

ation is based on the success of Ant Colony Optimization (ACO) approaches on

timetabling. As MCTS and ACO are related in the sense that both are reward

based methodologies (reinforcement learning), therefore we believe MCTS will

be feasible for timetabling problems as well.
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Timetabling algorithms are categorized as one-stage, multi-stage and multi-

stage with relaxation. We concentrate on a multi-stage approach where early

stages focus on finding feasible solutions while later stages focus on improving

the solution quality (soft constraint violations) once a feasible solution is found.

We aim to develop an algorithm that is not only applicable to various course

timetabling problems with reduced tuning requirement of meta-heuristics but

is also competitive or better than the bespoke algorithms found in the scientific

literature.

Our objectives are;

• to apply MCTS for the first time in finding feasible solutions for the course

timetabling problem and propose enhancements where appropriate.

• to compare the effectiveness of MCTS with classical graph coloring heuris-

tics approach (which is widely used for timetabling problems), as well as

the state of the art Tabu Search in finding feasible solutions.

• to identify the weaknesses of the best algorithm in finding feasible solutions

and propose enhancements to further improve it.

• to discover and study the state of the art methods applied in reducing the

soft constraint violations for course timetabling problems. The objective

is to identify drawbacks and propose enhancements.

1.3 Implementation and Computational Exper-

imentation

All algorithms presented in this thesis are coded in the Java Language, using

JCreator as an IDE. The experiments are performed on windows server 2008,

Intel Xeon (3.1 GHz) with 4Gb RAM machines. The computation time limit

allowed by running the benchmark program1 is T=190 seconds for each single

run. Each run will stop when the runtime equivalent to T is reached unless

specified otherwise. A total of n=31 runs were executed for each instance so

that we could carry out a statistical analysis.

1http://www.idsia.ch/Files/ttcomp2002/ Last accessed: June 13, 2017.
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1.4 Scientific Publications

The research reported in this thesis has produced the following publications.

• Say Leng Goh, Graham Kendall, Nasser R. Sabar. Improved local search

approaches to solve post enrolment course timetabling problem. European

Journal of Operational Research, 2017.

• Goh SL, Kendall G, Sabar NR. [date unknown]. A Hybrid Local Search

Approach for Hard Course Timetabling Problem. Information Systems

and Operational Research (INFOR). Under review.

• Goh SL, Kendall G, Sabar NR. [date unknown]. Solving Post Enrolment

Course Timetabling (PE-CTT) Problem using Simulated Annealing with

Improved Reheating and Learning (SAIRL). Journal of Operational Re-

search Society (JORS). Under review.

1.5 Thesis Structure

We have presented the background, motivation, aims, objectives, computational

experimentation and scientific publications. The rest of the thesis is organized

as follows. Chapter 2 provides a review on the educational timetabling (variants

and solution approaches) as well as the utilization of MCTS for combinatorial

optimization problems. Chapter 3 gives a review on course timetabling such as

problem description, formal representation and specific approaches utilized on

the datasets considered in this thesis. In chapter 4, we compare MCTS with

several other approaches in finding feasible solutions. Chapter 5 outlines several

enhancements proposed on TS (the method with the best potential in finding

feasible solutions). Chapter 6 is dedicated to improve the quality of feasible

solutions in terms of soft constraint violations. The SAR algorithm is proposed.

In Chapter 7, we further enhance the SAR algorithm in terms of ease of use

and performance. The SAIRL algorithm is proposed. Chapter 8 wraps up the

thesis where thesis summary and future work are presented.
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Chapter 2

Literature Review:

Educational Timetabling

2.1 Introduction

As manual timetable construction is a daunting task and not practical due to

its complexity, automated timetabling has attracted the focus of researchers

and practitioners alike. This chapter presents the related work in automated

timetabling. The key introduction and surveys on educational timetabling can

be found in [61, 160, 38, 106, 29, 141].

2.2 Variants of Educational Timetabling

Education timetabling is a variant of timetabling and it can be further classified

into three main classes [160]. They are similar in some ways yet different mainly

in terms of stakeholders and constraints involved. The classes are:

2.2.1 School Timetabling

School timetabling is the allocation of class, teacher and room of a school on

weekly basis. Students are usually grouped into classes before timetable con-

struction. The school timetabling problem differs in terms of requirements of

the class, teacher and room. The universal aim is to prevent teachers from at-

tending two or more classes simultaneously. An overview of school timetabling
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can be found in [142]. The third timetabling competition (ITC11) focuses on the

school timetabling problem where 35 of the instances were taken from schools

in 10 countries [143].

2.2.2 Course Timetabling

This involves the scheduling for all lectures of a university on a weekly basis

aiming to prevent students from attending two or more lectures at the same

time. Only one lecture can be conducted per room at the same time. Usually

time slots are fixed for the week. Surveys on university timetabling can be found

in [47, 127].

2.2.3 Examination Timetabling

Examination timetabling is the scheduling for all exams of a university aiming to

prevent students from attending two or more exams at the same time. Usually,

multiple exams can be scheduled in a room at the same time provided the seating

capacity is not exceeded. Time slots are not fixed as in course timetabling.

Students prefer to spread the exams so that they may have enough time for

revision and rest. Another common requirement is for the large exams to be

placed early to allow more time for marking. Surveys can be found in [44, 46,

28, 145].

2.3 Graph Colouring Model of Timetabling

Timetabling problems are closely related to graph colouring problems. Given a

simple and undirected graph, G=(V, E), where V is a set of vertices and E is a

set of edges joining the vertices, the graph colouring problem involves assigning

minimal colours (chromatic numbers) to the vertices such that vertices joined

by common edges are assigned different colours. Finding the chromatic number

is NP-hard. An analogy can be drawn between graph colouring and timetabling

where events correspond to vertices, clashes between events are represented by

the edges, while time slots correspond to colours. In timetabling, we try to assign

clashing events to different time slots. Despite having similarities, timetabling

problems are more complex with additional constraints and a mere reduction

to graph colouring problem is insufficient. However, heuristics extracted from

graph colouring serve as a basis for researchers in solving timetabling problems.
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The heuristics used to order the vertices for colouring a graph are applied to

timetabling to order the events for slot assignment. Among the common heuris-

tics used are;

• Largest Degree (LD): events are ordered based on the number of clashes

with other events. Events are clashing when they are attended by the

same student. Usually, events with a higher clash count are harder to

schedule and therefore should be considered first.

• Saturation Degree (SD) [23]: the next event to be scheduled is the one

with the lowest remaining time slots. It is calculated dynamically one

event after another. Ties are broken on largest degree.

• Largest Weighted Degree (LWD): events are ordered based on largest de-

gree weighted by student enrolment.

• Largest Enrolment (LE): events are ordered by the number of students

registered for the events. Usually, events with more students tend to have

more clashes with other events, thus harder to schedule and therefore

should be considered first.

• Colour Degree (CD): events are ordered by the number clashes with those

already scheduled. It is calculated dynamically after each event is sched-

uled.

• Random Ordering(RO): events are ordered randomly.

Sabar et al. [156] utilized graph colouring heuristics together with a con-

structive hyper-heuristic for examination timetabling problems. The most dif-

ficult exam with the minimum difficulty index (calculated by using hierarchical

hybridizations of four graph colouring heuristics namely LD, SD, CD and LE)

was assigned to time slots selected probabilistically by roulette wheel selection,

where time slots with smaller penalties were more likely to be selected.

Another important concept derived from graph colouring which could be

useful is the identification of cliques. A clique is a collection of vertices that are

mutually adjacent. Vertices in V are adjacent if they are end vertices of some

edge in E. All vertices in a clique must be assigned different colours. Therefore,

if the maximum clique size of a graph colouring problem instance is known to

be x, then x is minimum colors needed to colour the graph. However, finding

22



the maximum clique size is NP-hard. Similarly, all events in a clique have

to be assigned to different time slots and if the maximum clique size can be

determined, it will give us a hint on the minimum number of time slots needed

to assign all the events.

2.4 Timetabling Approaches

Many approaches have been applied to timetabling, including graph colour-

ing based heuristics [26], constraint programming techniques [177] and inte-

ger programming [59]. Lately, meta-heuristics approaches have been popular

among researchers due to its success. A survey by Lewis on meta-heuristics

and timetabling shows that algorithms can generally be classified into three

categories namely, one-stage, multi-stage and multi-stage with relaxation [119].

2.4.1 One-Stage

Algorithms of this category attempt to find solutions satisfying both hard and

soft constraints simultaneously. The approach is achieved through a weighted

sum function of constraints. Having a single objective function is beneficial

as it is applicable to any optimization technique. The drawback is, it is diffi-

cult to set the right weight for each constraint. In static weight setting, hard

constraints are usually given higher penalty than soft constraints which may

limit the search space navigation. Alternatively, dynamic weight setting is used

where appropriate adjustments are made at runtime. Schaerf employed adap-

tive relaxation in solving high school timetabling problems [159]. The weights

of the hard constraints were increased when all previous k moves resulted in

infeasible solutions and decreased when all k moves produced feasible solutions.

The weights were left unchanged when both feasible and infeasible solutions

existed in the k moves. When respecting hard constraints is of primary con-

cern, the search will be less effective as it is distracted by the soft constraints

component. Furthermore, feasibility is not guaranteed at the end of the search.

This approach is suitable for problems where achieving feasibility is easy and

tolerable.
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2.4.2 Multi-Stage

In the initial stage, only hard constraints are considered. Once feasibility is

achieved, the focus is shifted towards optimizing soft constraints without com-

promising feasibility. Thomson and Dowsland applied this approach in address-

ing examination timetabling problems [171]. Feasibility was obtained using

graph colouring heuristics before applying Simulated Annealing to minimize

the soft constraint violations. One obvious advantage is the need for weights

balancing among the hard and soft constraints is eliminated. This approach is

suitable for problems where achieving feasibility is compulsory for the solution

to be usable as the search for feasibility is focused. Gogos et al. utilized a multi-

stage algorithmic process (resembling GRASP) for the examination timetabling

problem [87]. There were six stages in their approach namely preprocessing,

feasibility, Hill Climbing, Simulated Annealing, Integer Programming (IP) sub-

problem and Shaking. Shaking was invoked only when the IP sub-problem stage

failed to improve the current solution. Their method was ranked second among

competitors in ITC07 (examination timetable track).

2.4.3 Multi-Stage Relaxation

In this approach, some aspects of the problem such as feasibility are relaxed

when optimizing certain hard and soft constraints. Relaxation allows better

connectivity of the search space, flexibility and prevents obstacles to achieve

good quality solutions. This algorithmic approach comprises multiple stages.

Some constraints are relaxed while satisfying other constraints initially where

relaxation is then removed later. For example, unassigned events are left aside

while attempting to satisfy soft constraints. Attempts are made to insert the

unassigned events later. Some researchers introduced extra time slots to satisfy

hard and soft constraints and reduced the additional slots later in the pro-

cessing. Cambazard et al. applied the colouring relaxation strategy on course

timetabling [41]. There were four stages in their implementation. First, courses

were assigned to time-slots ignoring room allocation. Second, the soft constraint

violations of the solution were improved. Third, the room relaxation was fixed.

Forth, the soft constraint violations were again improved.
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2.5 Meta-heuristics

Heuristic is defined by Reeves [147] as a

Method which seeks good solutions at a reasonable computation cost

without guarantee on optimality and feasibility.

As heuristics are usually problem dependent, a general guide for the heuristics

is needed to cater for different problems. The term meta-heuristic first used by

Glover and defined by him as [33]

The master strategy that guides and modify heuristics to produce

solutions beyond those normally generated in a quest for local opti-

mality..

Osman and Kelly [66] define meta-heuristic as

An iterative process guiding heurictics to explore and exploit the

search space to find near optimal solutions.

Another definition is provided by Metaheuristics Network (MN), a european

research project as

General algorithmic framework applicable to different optimization

problems with relatively few modifications.

There are five main metaheuristics paradigms mentioned by MN namely; Evolu-

tionary Algorithm (EA), Ant Colony Optimization (ACO), Tabu Search (TS),

Simulated Annealing (SA) and Iterated Local Search (ILS). Rossi-Doria et al.

compared the performance of different metaheuristics on the university course

timetabling problem [153].

2.5.1 Local Search Based

The solution space is explored by iteratively deciding to replace the current

solution with its neighbour with the aim of finding the best solution.

2.5.1.1 Steepest Descent (SD)

Steepest Descent (SD) or best improvement local search is shown in Algorithm

1 (adapted from [33]). All the neighbors of the current solution are explored
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completely. The search is stopped when the candidate solution is worse than

the current.

Algorithm 1

1: procedure Steepest Descent
2: current← initial solution
3: repeat
4: candidate← arg minx∈N(current) f(x)
5: if f(candidate) < f(current) then
6: current← candidate
7: end if
8: until f(candidate) >= f(current)
9: end procedure

2.5.1.2 First Descent (FD)

As SD is time consuming by having to explore all the neighbors completely, First

Descent (FD) serves as an alternative. FD is presented in Algorithm 2 (adapted

from [33]). The first candidate neighbour better than the current solution will

replace the current solution. The search stops when none of the neighbors of

current is better than the current solution.

Algorithm 2

1: procedure First Descent
2: current← initial solution
3: i← 1
4: repeat
5: candidate← xi ∈ N(current), i = 1, . . . , imax

6: if f(candidate) < f(current) then
7: current← candidate
8: i← 1
9: else

10: i← i+ 1
11: end if
12: until i = imax

13: end procedure

2.5.1.3 Tabu Search (TS)

TS was introduced by Glover [85] as an extension to hill climbing to overcome

local optima. TS utilizes a memory to avoid reversal of recent moves. TS is

implemented by maintaining a list of forbidden moves. After each move, the re-
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versal move is added to the end of list while the oldest entry is deleted. The tabu

tenure, indicated by the length of the list, determines the number of iterations

for which the reversal moves remain forbidden. Consequently, some attractive

moves may be prohibited even if they do not incur cycling. An aspiration cri-

teria alleviates the problem by conditionally allowing a tabu move even if it is

tabu. The simplest case is allowing a tabu move if the resulting solution is bet-

ter than the best solution seen so far. Best improvement is the most common

variant of TS which selects the best move (non-tabu or allowed by aspiration)

regardless of whether the move is improving or not [33]. This allows the search

to explore new areas and escape from local optima. A basic TS algorithm is

shown in Algorithm 3 (adapted from [84]). As evaluating every neighbour of

the current solution incurs a computational overhead, only a random sample

of the neighborhood is considered in probabilistic TS. Glover and Laguna [86]

mentioned two important strategies to make the search more effective, namely

intensification and diversification. Intensification involves thoroughly explor-

ing the promising search space by restarting the search from the currently best

known solution and freezing the attractive components. Intensification can also

be applied by increasing sampling size or changing the neighbourhood structure

[33]. Diversification involves examining the rarely or unvisited regions of search

space.

Algorithm 3

1: procedure Tabu Search
2: Tabu list T
3: current← initial solution
4: best← current
5: repeat
6: current← arg minx∈N(current) f(x), x is non-tabu
7: if current < best then
8: best← current
9: end if

10: record the recent move in T (delete the oldest entry if necessary)
11: until stop condition
12: end procedure

TABUCOL is one the best implementations of TS for the graph colouring

problem [97]. It is based on improper k-colouring approach where all vertices

were coloured but may contain clashes. At each iteration, a set of neighbors

were generated by randomly choosing a vertex (with colour i) among the clash-
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ing ones and randomly assigning a colour j where i 6= j. The best neighbour was

determined among the neighbors which were non-tabu or allowed by aspiration.

The best neighbour was applied and a list was maintained where the original

colour was forbidden for the vertex for a certain number of iterations. Variants

of TABUCOL are often used as local search procedure in evolutionary hybrid

heuristics [65, 80, 78].

Another implementation of TS in graph colouring problems is termed as

PARTIALCOL. It uses a partial k -colouring approach where some vertices are

coloured and have no clashes. An initial solution was generated using a greedy

algorithm. A neighbour solution was obtained by colouring an uncoloured ver-

tex u with a colour. As a result, some vertices might clash with the vertex u and

are removed and placed in the uncoloured list. The cost function was defined as

the number of vertices in the uncoloured list. The best neighbour was applied

and a tabu list was maintained. The author also introduced a new reactive tabu

tenure scheme called FOO-scheme. The tenure was increased when the search

was trapped (as indicated when the objective function was stagnant or changed

little for some time) and decreased slowly along the search to alternate between

intensification and diversification.

Schaerf applied TS in high school timetabling problems [159]. An atomic

move consisted of swapping lectures of two different periods or transferring a

lecture to a different period. A double move comprised of a pair of atomic moves,

where the second move repaired the infeasibility created by the first. Random-

ized Non-Ascendant (RNA) was used to generate an initial good solution for TS.

When TS had shown no improvements for a given number of iterations, RNA

was run on the best solution to shake up the solution before TS was restarted.

The cycle was repeated. The author used the simplest aspiration criteria, where

a tabu move was conditionally accepted only if it improved the best solution.

2.5.1.4 Great Deluge (GD)

This algorithm is introduced by Dueck [70]. It accepts all solution with a cost

function below or equivalent to a certain level (defined as the water level). The

level is decreased during the search and bounds the region of the search space.

Worse solutions below the boundary are accepted and this allows the search to

escape from local optima. Meanwhile, solutions with cost function above the
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boundary are always rejected.

Algorithm 4

1: procedure Extended Great Deluge
2: current← initial solution
3: level← f(current)
4: ∆level← (f(current) - expected solution quality) / search time
5: repeat
6: candidate ∈ N(current)
7: if f(candidate) <= f(current) OR f(candidate) <= level then
8: current← candidate
9: end if

10: level← level −∆level
11: until stop condition
12: end procedure

Burke et al. applied GD in examination timetabling [37]. The water level

was decreased by using a decay rate which was computed as the initial solution

quality multiplied by a factor (provided by the user) and divided by the number

of iterations. The method outperformed Hill Climbing, Simulated Annealing,

Tabu Search and graph colouring heuristics.

Burke et al. proposed an extended version of GD on examination and course

timetabling problems where candidate solutions, which were better than the

current one, were also accepted [27]. The extended GD is shown in Algorithm

4. The method reported superior results compared to other methods.

2.5.1.5 Simulated Annealing (SA)

Metropolis [131] introduced the Metropolis algorithm to simulate the evolution

of solid in a heat bath to thermal equilibrium. Kirkpatrick applied the concepts

of annealing to optimization problems [107]. SA is presented in Algorithm 5

(adapted from [1]). It accepts all improving moves or those equivalent to the

current solution. It also accepts worse moves with probability of:

e∆f/T (2.1)

where ∆f is the change in solution quality and T is the temperature. Usually,

T is initialized with a sufficiently high value and gradually reduced as the search

progresses. In practice, the search ends when the temperature exceeds a prede-
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fined end temperature or another stopping condition is met. Generally, larger

deteriorations are accepted with lower probability at any temperature. The

same deterioration is accepted with higher probability at higher temperatures.

Acceptance of deteriorating moves enables the algorithm to escape from local

optimum. SA converges asymptotically to a global optimum solution [33]. One

drawback of SA is that, it usually requires parameter tuning (initial tempera-

ture, end temperature, decay rate and Markov chain length) in order to obtain

good quality results.

Algorithm 5

1: procedure Simulated Annealing
2: current← initial solution
3: t← initial temperature
4: l← initial length
5: repeat
6: for i = 1 to l do
7: candidate ∈ N(current)
8: if f(candidate) <= f(current) then
9: current← candidate

10: else
11: if exp(f(current)− f(candidate)/t) > random[0,1) then
12: current← candidate
13: end if
14: end if
15: end for
16: update l
17: update t
18: until stop condition
19: end procedure

Triki et al. studied the behavior of Simulated Annealing [172]. The clas-

sical proposals for SA parameters were discussed. The authors remarked that

temperature decrease in optimal annealing (covergence to optimal solution) [93]

were too slow and only of theoretical interest. They also demonstrated several

classical adaptive cooling schedules proposed in [178, 149, 137] are equivalent

and proposed a new adaptive cooling schedule which performed better than the

best known schedule for TSP.

Suman and Kumar presented a survey of Simulated Annealing as a tool for

single and multi-objective optimization [168]. They reviewed variants of the

30



SA algorithm and its applications. The annealing schedule, such as initial tem-

perature and the cooling schedule were discussed. Suggestions for performance

improvement and future research of SA were also presented.

Battistutta et al. utilized a single stage feature based tuning of SA for exam-

ination timetabling [21]. In preliminary tuning, standard SA parameters were

tuned using F-Race. In addition, the coefficients of features (eg. students, rooms

etc.) were determined, by building a linear regression model in R, and used to

predict the ideal value for the hard constraints weight. The authors noted that

the method could not always find a feasible solution for the harder instances.

Better results were reported compared to the finalist in ITC07. However, they

were inferior to the results by Bykov and Petrovic [40].

Thompson and Dowsland applied simulated annealing for the examination

timetabling problem [170]. The authors mentioned the difficulty of setting

weights in a single phased method. Therefore, a multi-phased method was

used where more important objectives were considered in earlier phases, while

other objectives were considered in later phases. The optimized objectives in

the early phases were considered as binding constraints in later phases. The

authors note that their method is not perfect as the solution space may be dis-

connected. Three ways were introduced to deal with solution space connectivity,

but only two were deemed successful, namely; using different starting solutions

and changing the neighborhood structure (Kempe chain operator).

Abramson, Amoorthy and Dang compared two cooling schedules (geometric

cooling and multiple cooling) and four reheating schemes (geometric reheating,

enhanced geometric reheating, non-monotonic cooling and reheating as cost

function) on randomly generated school timetabling problems [10]. Cost based

reheating was found to be superior in finding global minima and also faster

compared to other schemes.

Some other successful implementation of SA were in school timetabling prob-

lems [9], course timetabling problems [109, 52, 110, 41, 53, 117, 48, 118] and

examination timetabling problems [171].
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2.5.1.6 Iterated Local Search (ILS)

ILS is shown in Algorithm 6 ([123]). The current solution is perturbed producing

an intermediate solution. The intermediate solution is further processed by a

local search function generating a candidate solution. The candidate solution

will be set as the current solution if it is accepted by the acceptance criterion.

Otherwise, the current solution remains unchanged. The acceptance criterion

can be of any type e.g. Hill Climbing, Simulated Annealing, random walk and

restart from a new solution after certain number of idle iterations. Lourenco et

al. [123] defines a good perturbation as one that transforms a solution into an

excellent starting point for a local search. If the perturbation is too strong, ILS

behaves like random restart. Meanwhile if perturbation is too weak, the search

cannot explore effectively. Ideally, the neighborhood used in the perturbation

should be of higher order than the one used in the local search.

Algorithm 6

1: procedure Iterated Local Search
2: current← initial solution
3: repeat
4: intermediate← perturb(current)
5: candidate←localSearch(intermediate)
6: current←acceptanceCriterion(current, candidate)
7: until stop condition
8: end procedure

Fonseca et al. [79] hybridized Simulated Annealing with ILS and became the

winner of ITC11. The Kingston High School Timetabling Engine (KHE) was

used to generate a feasible solution which was further improved by a SA-ILS

approach.

2.5.1.7 Variable Neighbourhood Search (VNS)

VNS is a metaheuristic which exploits the idea of neighbourhood change in

descent to local minima and being able to escape from it [94]. It is simple and

requires few or no parameters. It works based on the following:

• A local minimum for one neighbourhood structure may not be for another.

• A global minimum is a local minimum for all neighbourhood structures

• Local minima are relatively close to one another.
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Variable Neighborhood Descent (VND) is an extension to SD. VND is shown

in Algorithm 7 (adapted from [33]). Multiple neigborhood structures are con-

sidered one by one. If the candidate solution improves the current solution, the

first neighborhood structure will be considered in the next iteration. Otherwise

the next neighborhood structure will be considered. The iteration stops when

all the neighborhood structures are taken into account.

Algorithm 7

1: procedure Variable Neighborhood Descent
2: neighborhood structures Nk, k = 1, . . . , kmax

3: current← initial solution
4: k ← 1
5: repeat
6: candidate← arg minx∈Nk(s) f(x)
7: if f(candidate) < f(current) then
8: current← candidate
9: k ← 1

10: else
11: k ← k + 1
12: end if
13: until k = kmax

14: end procedure

In Reduced Variable Neighbourhood Search (RVNS) as shown in Algorithm

8 (adapted from [95]), a candidate solution is chosen randomly from a neigh-

borhood structure. If it is better than the current solution, the next candidate

solution is generated from the first neighborhood structure. Otherwise, the next

neighborhood structure will be considered. After all neighborhood structures

have been considered, the search restarts with the first neighborhood structure

until the stopping condition is reached.
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Algorithm 8

1: procedure Reduced Variable Neighbourhood Search
2: neighborhood structures Nk, k = 1, . . . , kmax

3: current← initial solution
4: repeat
5: k ← 1
6: repeat
7: candidate ∈ Nk(current)
8: if f(candidate) < f(current) then
9: current← candidate

10: k ← 1
11: else
12: k ← k + 1
13: end if
14: until k = kmax

15: until stop condition
16: end procedure

Basic Variable Neighbourhood Search (BVNS) is shown in Algorithm 9

(adapted from [95]). It is similar to VNS. Local search is applied on the random

candidate solution to obtain the local optimum. When VND is used as the local

search, it is called General Variable Neighborhood Search (GVNS).

Algorithm 9

1: procedure Basic Variable Neighbourhood Search
2: neighborhood structures Nk, k = 1, . . . , kmax

3: current← initial solution
4: repeat
5: k ← 1
6: repeat
7: candidate ∈ Nk(current)
8: localOptimum← localSearch(candidate)
9: if f(localOptimum) < f(current) then

10: current← d
11: k ← 1
12: else
13: k ← k + 1
14: end if
15: until k = kmax

16: until stop condition
17: end procedure
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Abdullah et al. applied this approach on course timetabling problem in

[3, 5]. Di Gaspero and Schaerf employed a multi-neighbourhood local search on

course timetabling in [62, 81].

2.5.2 Evolutionary Based

Genetic Algorithm and Ant Colony Optmization are presented here.

2.5.2.1 Genetic Algorithms (GA)

The work of Fraser [13] and Bremermann [24] laid the foundation of genetic

algorithms (GA). Seminal work on GAs and its application can be found in

[89, 99]. In a GA, many terms are borrowed from its biological inspiration.

Chromosomes are solutions, genes are variables and alleles refer to values of

those variables. Solutions to search problems are evolved using the following

steps:

• Population: candidate solutions of certain population size p are created

randomly or heuristically.

• Selection: candidate solutions are evaluated and selected where better

solutions are preferred. Among the common selection methods are roulette

wheel, ranking and tournament.

• Recombination (crossover): Better solutions (offspring) are created from

combination of parts (traits) of parents.

• Mutation: Solution is randomly modified locally. Mutation diversifies the

population.

• Replacement: The parental population is replaced by the offspring created

using replacement methods such as elitist, steady state etc.

The basic GA is shown in Algorithm 10 (adapted from [157]).
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Algorithm 10

1: procedure Genetic Algorithm
2: Population
3: repeat
4: Selection
5: Recombination (crossover)
6: Mutation
7: Replacement
8: until stop condition
9: end procedure

Ross et al. succesfully applied GA on course timetabling [150]. Ross et al. in-

vestigated examination timetabling using a GA [151]. Abdullah et al. employed

memetic algorithm, or simple combination of GA with local search, on course

timetabling problem in [4]. Rossi-Doria and Paechter presented a memetic al-

gorithm for university course timetabling [152]. Turabieh and Abdullah in-

corporated tabu search into a memetic approach in solving course timetabling

problems [174]. Silva and Obit tested non-linear great deluge with GA on course

timetabling problems [114].

2.5.2.2 Ant Colony Optimization (ACO)

A double bridge experiment inspired Dorigo et al. to apply the first ACO

algorithm to the Traveling Salesman Problem (TSP)[64]. In the biological ex-

periment, two branches of different length were connected between the ants and

the food source. It is interesting to observe that the ants took the shorter route

after a while. The explanation for this was that the ants laid pheromone along

the path to guide other ants. The shorter route was preferred as more ants

followed it. It had a larger concentration of pheromone as more trips were made

by the ants using the shorter route. ACO is presented in Algorithm 11 ([130]).

It is an iterative process where ants in each iteration try to find a good solu-

tion through a constructive method. The ant will mark the path (construction

graph) with pheromone to guide other ants in the following iterations. The

pheromone of good solutions are increased. Meanwhile, the pheromone is also

evaporated (decreased) over time to prevent the search becoming too restrictive.
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Algorithm 11

1: procedure Ant Colony Optimization
2: Initialize pheromone values
3: repeat
4: for ant = 1 to m do
5: construct a solution
6: end for
7: for all pheromone values do
8: decrease the value . evaporation
9: end for

10: for all pheromone values of good solutions do
11: increase the value
12: end for
13: until stop condition
14: end procedure

Application of ACO can be found in graph colouring problems [56, 68]. The

approach was also applied in examination scheduling problem [67] and course

timetabling problems [164, 71, 102, 135].

2.6 Hyper-heuristics

Hyper-heuristics aim to provide a general, fast, simple and understandable al-

gorithm for a range of problems. They can be thought of as heuristics to choose

heuristics. They work on a search space of heuristics instead directly with the

solution search space. Hyper-heuristics provide an alternative to meta-heuristics

which are often criticized for intensive parameter tuning, resource intensive de-

velopment, incomprehensible solution arrival and being relatively slow. Inter-

ested readers can refer to [30, 32, 138].

Burke et al. proposed a method called Tabu Search Hyper-Heuristic, which

was applied to course timetabling [35]. Burke et al. [36] presented a Graph

Based Hyper-Heuristic approach for educational timetabling problems. In each

iteration, two events were ordered by a list of heuristics and scheduled. If fea-

sible, the list of heuristics was set tabu for 9 iterations, otherwise the list was

updated as a failed list. At the end of each iteration, steepest descent was used

to improve the solution (exploitation step). The next list was produced by ran-

domly changing two of the heuristics in the previous list. If the new list was

not a failed list and non-tabu, the list was used to schedule another two events.
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The steps were repeated for a predefined number of iterations.

Bai et al. investigated the effect of memory length towards the performance

of Simulated Annealing Hyper-heuristic on course timetabling problems [18].

The algorithm with learning performed better than its counterpart without

learning. Short term memory also performed better than a long term memory

based algorithm. However, the authors remarked that it was difficult to de-

termine the learning rate that performed best for all problem instances. Static

and dynamic (random and incremental) memory length were compared. Results

showed that dynamic incremental memory length was not only comparable to

the best static learning rate but also did not require parameter tuning as the

case for static learning.

Burke et al. investigated Monte Carlo hyper-heuristics for examination

timetabling [34]. Several combination of heuristic selection (simple random

(SR), greedy (GR), choice function (CF), learning scheme (L)) and Monte Carlo

move acceptance (MC, SA, EMCQ) were compared. CF-SA performed the best

among the combinations. The authors remarked that L-SA performed poorly

due to weakness of rewarding mechanism and evaluation of utility values for

heuristic selection.

Soria-Alcaraz et al. utilized an iterated local search based hyper-heuristic

approach to address the course timetabling problem [166]. Two types of learning

were compared for operator selection, namely static (training and execution) and

dynamic (learns on the fly). The dynamic scheme was reported to be better than

the static counterpart.

2.7 Monte Carlo Tree Search (MCTS)

Conceptually, MCTS is a tree built incrementally in an asymmetric manner

based on samplings of the decision space. The tree is traversed in a best first

manner. A decision is made at each state selecting actions based on the values

of the nodes, balancing exploitation of good looking moves and exploration of

bad looking moves (which may turn out to be good in the long run). Unvisited

nodes are added to the tree. A simulation is run towards the end and the out-

come is updated on the traversed nodes. The effect is twofold where the tree
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traversal guides the simulations and improves the quality of sampling while the

selective sampling guides the tree building and traversal.

Each node in the tree represents a state and each directed link represents an

action leading to the state. Each node stores information on the average value

and visit count. It generally consists of four steps iterated until a stop condition

is reached [25, 51]. The four steps are:

• Selection: The tree is traversed from the root until an expandable node is

reached (non-terminal and has unvisited children).

• Expansion: Child nodes are added to the tree, according to available ac-

tions. One or more nodes can be added depending on memory limitations.

• Simulation: Simulation is run until a terminal state is reached to produce

a result.

• Backpropagation: The result is propagated through the traversed nodes

where statistics of the nodes are updated.

The general MCTS is shown in Algorithm 12 (adapted from [25]). The

sub-procedures are presented in Algorithms 13-18.

Algorithm 12

1: procedure General MCTS
2: Create root node, noderoot
3: while stop condition do
4: nodelast ← treeGrowth(noderoot)
5: reward← simulation(state(nodelast))
6: backpropagation(nodelast, reward)
7: end while
8: return bestChild(noderoot)
9: end procedure
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Algorithm 13

1: procedure treeGrowth(node)
2: while node is non-terminal do
3: if node not fully expanded then
4: return expansion(node)
5: else
6: node← selection(node)
7: end if
8: end while
9: return node

10: end procedure

Algorithm 14

1: procedure expansion(node)
2: create a child node, nodea for a ∈ action(node)
3: return nodea
4: end procedure

Algorithm 15

1: procedure selection(node)

2: return arg maxi∈children of node valuei +B
√

ln visitp
visiti

3: end procedure

Algorithm 16

1: procedure simulation(state)
2: while state is non-terminal do
3: choose a ∈ action(state)
4: state← f(state, a)
5: end while
6: return reward for state
7: end procedure
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Algorithm 17

1: procedure backpropagation(node, reward)
2: while node is not null do
3: update node.visit
4: update node.value according to reward
5: node ← parent of node
6: end while
7: end procedure

Algorithm 18

1: procedure bestChild(node)
2: return arg maxi∈children of node valuei
3: end procedure

MCTS was first coined by Coulom who proposed to combine Monte Carlo

evalution with tree search [57]. Simulations were iteratively and randomly run

from the root. Nodes close to the root were memorized and updated with

values. As the number of simulations increase, the probability of selecting a

move at random is changed as moves with higher values were selected more

often. In his Crazy Stone’s algorithm, which won the 10th Kiseido Go Server

(KGS) computer Go tournament, nodes were generally selected based on the

probability of being better than the current best. Each move was selected with

probability proportional to

exp(−2.4
v0 − vi√

2(σ2
0 + σ2

i )
) (2.2)

where v0 and σ2
0 were the value and standard deviation of the best move while vi

and σ2
i were the value and standard deviation of the considered move. The re-

searcher also compared several backup values and concluded that mix operator

was overall the best, while mean operator was more accurate when the number

of simulations were low and max operator was more accurate when the number

of simulations were high.

Kocsis and Szepesvari made significant improvement to MCTS by applying

a bandit algorithm, UCB1 on Monte Carlo planning resulting in an algorithm

called UCT [108]. UCB1 was initially used in multi armed bandit problem to

find the right balance between exploitation and exploration. Exploration of
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suboptimal looking alternatives was essential so that no good alternatives are

missed due to early estimation errors. The algorithm was shown to be consistent

where the probability of selecting optimal action converges to 1 when sampling

grows to infinity.

vi + C

√
lnnp
ni

(2.3)

MCTS has been successfully applied mainly in the games domain especially Go.

Programs based on MCTS are now competitive with the best human players

which was impossible before [83, 82]. The program Zen was able to beat a

professional Go player with a handicap of four stones [116]. Google Deepmind

combined MCTS with deep learning in the program AlphaGo and broke the

four stone handicap barrier [162]. In addition, AlphaGo (distributed version)

won all the 495 games when playing with contemporary computer Go programs

like Crazy Stone, Zen, Pachi, Fuego, and GnuGo, with no handicaps. Go is dif-

ficult for a computer as it has large branching factor, deep tree and evaluation

function is inefficient, even if available. Breakthrough achievements in Go have

sparked interests among AI Researchers and they are expecting to see more

application of MCTS in various domains.

While MCTS methods are popular in games decision making, it is rarely used

for combinatorial optimization problems. Runarsson et al. compared greedy,

pilot and MCTS algorithms on Job Shop Scheduling [154]. In pilot setting,

the tree was traversed in an exploratory only strategy and rollout was exe-

cuted deterministically based on heuristics. In MCTS, a single tree exploration

was carried out where tree traversal was based on e-greedy while simulation

was purely random. The author reported that MCTS outperformed the pi-

lot method on small instances, judged by the number of optimal solutions and

averages. MCTS was comparable to pilot method on medium instances. In

addition, MCTS managed to find optimal solutions on medium instances which

were never found by the pilot method. However, the pilot method outperformed

MCTS on large instances. Computation times were higher in pilot compared to

MCTS for the same rollout count.

Schadd et al. proposed an adapted MCTS called Single Player Monte Carlo

Search (SP-MCTS) [158]. SameGame, a one player game (puzzle) was used as

42



test bed as no good evaluation function is available and it fits the specialty of

MCTS which does not require an evaluation function. The author performed

one large search from an initial position to the end. The author added a third

term to the original selection strategy of UCT where moves were chosen maxi-

mizing the formula.

X + C

√
ln t(N)

t(Ni)
+

√∑
x2 − t(Ni) ·X

2
+D

t(Ni)
(2.4)

where t(N) is a visit count of node N, t(Ni) is a visit count of child node Ni, X

is the average value,
∑
x2 is sum of squared results stored so far, C is an explo-

ration constant, D is to ensure rarely explored nodes are considered uncertain.

One node (first encountered position) was added to the tree per simulation.

Simulation was based on heuristic knowledge. Average was used as the back

propagation strategy. The authors highlighted the importance of having a deep

search tree. The authors also claimed that exploitation is good when searching

with limited time while balancing exploitation and exploration is beneficial for

longer searches. They also tested meta search (where the search is restarted

with a different random seed) and observed that doing several small searches

produced better results than one large search.

Matsumoto et al. applied SP-MCTS on reentrant scheduling problems [126].

Strategies for selection, simulation, expansion and backpropagation were iden-

tical. Specific heuristics were used for the problem. The proposed method

obtained better results than the usual methods for all the cases tested.

Chaslot et al. applied MCTS on production management problems [49].

The author compared the method with fixed planning heuristics (FPH) and

evolutionary planning heuristics (EPH) where heuristics were generated auto-

matically by a neural network. MCTS performed better and faster on larger

problems. However, it did not fare well on small problems. A few suggestions

for improvement were recommended including playing pseudo-random moves

instead of full random moves.

The application of MCTS on variants of the traveling salesman problems

can be found in [140, 139, 144, 148].
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2.8 Hybrid Algorithms

Hybridization has led to good quality results in previous research (e.g. [146, 19]).

More recent work has validated these earlier findings. For example, [92] hy-

bridized mixed integer linear programming, a greedy heuristic, two local search

strategies and three meta-heuristics for a vehicle routing problem, reporting

positive results.

GA is further extended and combined with local search to become the so

called memetic algorithm. The term memetic was coined by Moscato [133, 132].

The synergy is effective as it combines the explorative capability of evolutionary

algorithms and the exploitive capability of local search. Burke and Silva pre-

sented the design of memetic algorithms for scheduling and timetabling problems

[39]. Zeb et al. [179] hybridized simulated annealing (SA) and a GA. The GA

was used as an exploration operator, SA was used to intensify the search. The

algorithm was evaluated on 35 cell formulation benchmark instances, producing

24 best results, and two new best results. A genetic algorithm was also used in

[122]. Their abstract states “Meta-heuristics still suffers from several problems

that remains open as the variability of their performance depending on the prob-

lem or instance being solved. One of the approaches to deal with these problems

is the hybridization of techniques.” They concluded that their hybridized ap-

proach is the best performing method for instances with high dimensionality.

Ant based implementations are usually hybridized with local search. At each

iteration, events are assigned based on pheromone information. The constructed

solutions are further improved by using a local search procedure (ejection chain,

SA) before the pheromone information is updated. In fact, the local search com-

ponent is acknowledged to play an important role in the good results reported

in [164, 165, 135].

Some authors combined several algorithms into one by passing around the

mode of execution in a cyclic manner when certain bounds or idle iterations are

reached. The authors hope that the algorithms will assist one another when the

search is trapped in a local optima. Examples of this type of hybrid algorithms

can be found in [134, 161].
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Tabu Search is also often hybridized with other local search methods. A

tabu list is used to keep track of the recently visited solutions. Usually, only

moves that are not tabu are accepted. The accepted move is then added to the

list and prohibited for some time. As a result, revisiting of the same solution

is reduced and the search is able to explore the search space better. Interested

readers can refer to [17, 55, 15]. Some authors also used a tabu list to keep under

performing neighborhood structures or heuristics from being selected. Examples

can be found in [174, 35].

2.9 Conclusion

We have reviewed the scientific literature on educational timetabling where key

introduction and surveys are provided. There are three variants of educational

timetabling identified, namely school, course and examination timetabling. We

described how timetabling is closely associated with the graph colouring prob-

lem. The algorithms used to solve timetabling problems can be classified into

one-stage, multi-stage or multi-stage with relaxation. One the most popular ap-

proaches utilized in educational timetabling problems are meta-heuristics which

can be categorized as local search based (SD, FD, TS, GD, SA, ILS, VNS) and

evolutionary based (GA, ACO). Another popular approach is hyper-heuristics

which aim to be generally applicable across optimization problems. In addition,

we presented a review of MCTS for combinatorial optimization problems. As far

as we are aware, MCTS has never been utilized for any timetabling problems.

Finally, we also reviewed the use of hybrid algorithms.
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Chapter 3

Literature Review: Course

Timetabling

3.1 Problem Description

There are many variants of the course timetabling problem, with different re-

quirements expressed as either hard or soft constraints, across institutions of

higher learning around the globe. Different implementations have reported vary-

ing degrees of success. However, it is difficult to compare the effectiveness of

different algorithms if they are executed on different problem instances. Re-

searchers have shared datasets so that algorithm comparison is more objective.

The datasets utilized in this research are publicly available and regarded as the

standard benchmarks:

• Socha (11 instances)1. The instances (5 small, 5 medium and 1 large)

are generated using an algorithm developed by Ben Paechter. In fact,

this benchmark is named after the author. The time limit for the small,

medium, and large instances is set to 90, 900, 9000 seconds respectively

[164]. This is potentially problematical as different machine specifications

means that running for 900 seconds is not a fair comparison. Refer to

Table 3.1 for the benchmark statistics.

• International Timetabling Competition 2002 (ITC02) (20 in-

1http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html Last accessed: June 13,
2017.
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stances)2. This competition was organized by the Metaheuristic Net-

work and the instances were generated by Ben Paechter. The time limit is

benchmarked by running a program on the host machine, which enables

a fair comparison. Refer to Table 3.2 for the benchmark statistics.

• International Timetabling Competition 2007 (ITC07) (24 in-

stances)3. The time limit is benchmarked in the same way as ITC02.

Refer to Table 3.3 for the benchmark statistics. The details of the com-

petition are given in [128].

• Hard (60 instances). The instances (20 small, 20 medium, 20 big)

were created by Lewis and Paechter and were intended to be harder in

terms of feasibility than those used in ITC02. Lewis and Paechter claimed

that existing sequential constructive algorithms were only able to schedule

around 60-80% of the events [120]. The time limit was set to 30, 200, 800s

for the small, medium and big instances respectively. Refer to Table 3.4,

3.5 and 3.6 for statistics.

Instance S M L
# of Events 100 400 400
# of Rooms 5 10 10
# of Features 5 5 10
# of Students 80 200 400

Table 3.1: Statistics for the Socha instances

Instance 1 2 3 4 5 6 7 8 9 10
# of Events 400 400 400 400 350 350 350 400 440 400
# of Rooms 10 10 10 10 10 10 10 10 11 10
# of Features 10 10 10 5 10 5 5 5 6 5
# of Students 200 200 200 300 300 300 350 250 220 200

Instance 11 12 13 14 15 16 17 18 19 20
# of Events 400 400 400 350 350 440 350 400 400 350
# of Rooms 10 10 10 10 10 11 10 10 10 10
# of Features 6 5 6 5 10 6 10 10 5 5
# of Students 220 200 250 350 300 220 300 200 300 300

Table 3.2: Statistics for the ITC02 instances

2http://www.idsia.ch/Files/ttcomp2002/ Last accessed: June 13, 2017.
3http://www.cs.qub.ac.uk/itc2007/ Last accessed: June 13, 2017.
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Instance 1 2 3 4 5 6 7 8
# of Events 400 400 200 200 400 400 200 200
# of Rooms 10 10 20 20 20 20 20 20
# of Features 10 10 10 10 20 20 20 20
# of Students 500 500 1000 1000 300 300 500 500

Instance 9 10 11 12 13 14 15 16
# of Events 400 400 200 200 400 400 200 200
# of Rooms 10 10 10 10 20 20 10 10
# of Features 20 20 10 10 10 10 20 20
# of Students 500 500 1000 1000 300 300 500 500

Instance 17 18 19 20 21 22 23 24
# of Events 100 200 300 400 500 600 400 400
# of Rooms 10 10 10 10 20 20 20 20
# of Features 10 10 10 10 20 20 30 30
# of Students 500 500 1000 1000 300 500 1000 1000

Table 3.3: Statistics for the ITC07 instances
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Instance S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
# of Events 200 210 200 200 200 200 200 225 225 220
# of rooms 5 6 6 5 5 5 5 5 5 5
# of Features 5 5 5 8 8 3 3 10 10 10
# of Students 200 400 400 500 500 1000 800 1000 900 1000

Instance S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
# of Events 200 225 225 225 200 200 200 225 225 225
# of Rooms 5 5 5 5 5 5 5 5 5 5
# of Features 4 10 10 3 3 3 3 3 3 3
# of Students 1000 1000 1000 1000 900 900 900 1000 1000 1000

Table 3.4: Statistics for the Hard small instances

Instance M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
# of Events 400 390 390 410 410 410 410 400 400 400
# of Rooms 10 10 10 10 10 11 11 10 10 10
# of Features 10 10 10 9 9 10 10 10 10 8
# of Students 400 400 400 400 450 450 450 400 400 500

Instance M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
# of Events 400 400 400 400 425 400 400 400 410 410
# of Rooms 8 8 8 8 8 8 8 8 8 8
# of Features 6 5 6 5 10 6 10 10 5 5
# of Students 800 800 800 1000 500 1000 800 1000 1000 1000

Table 3.5: Statistics for the Hard medium instances
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Instance B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
# of Events 1000 1000 1000 1050 1075 1075 1050 1025 1050 1075
# of Rooms 28 25 25 25 25 25 25 25 25 25
# of Features 20 20 20 20 20 20 20 20 20 20
# of Students 1000 1000 900 800 1000 1000 1100 1000 800 1000

Instance B11 B12 B13 B14 B15 B16 B17 B18 B19 B20
# of Events 1075 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of Rooms 25 26 25 25 25 25 25 25 25 25
# of Features 20 25 25 25 25 10 10 10 10 10
# of Students 1000 1000 1000 1000 1000 1000 1200 1000 1000 1000

Table 3.6: Statistics for the Hard big instances
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Solving the course problem involves assigning a set of C courses (with a set

of F features and attended by S students) to 45 time slots (5 days of 9 hours

each) and a set of R rooms. The objective is to satisfy all hard constraints

and minimize soft constraint violations as far as possible. Perfect solutions are

known to exist for all the datasets (except Hard). A sample course timetable

depicting the 45 time slots with R rooms each, is shown in Fig. 3.1.

 8-9am 9-10am 10-11am 11-12pm 12-1pm 1-2pm 2-3pm 3-4pm 4-5pm 

Mon 1 2 3 4 5 6 7 8 9 

r1 r2 ... r|R| … … … … … … … r1 r2 … r|R| 

Tue 10 11 12 13 14 15 16 17 18 

r1 r2 … r|R| … … … … … … … r1 r2 … r|R| 

Wed 19 20 21 22 23 24 25 26 27 

r1 r2 … r|R| … … … … … … … r1 r2 … r|R| 

Thu 28 29 30 31 32 33 34 35 36 

r1 r2 … r|R| … … … … … … … r1 r2 … r|R| 

Fri 37 38 39 40 41 42 43 44 45 

r1 r2 … r|R| … … … … … … … r1 r2 … r|R| 

 

Figure 3.1: A sample course timetable.

The hard constraints for all the datasets are:

• HC1: No student can be assigned more than one course at the same time.

• HC2: The room should satisfy the features required by the course.

• HC3: The number of students attending the course should be less than or

equal to the capacity of the room.

• HC4: No more than one course is allowed for each time slot in each room.

There are two additional hard constraints for ITC07 namely:

• HC5: A course can only be assigned to some preset time slots

• HC6: Where specified, a course should be scheduled to occur in the correct

order.

The soft constraints for all the datasets (except Hard) are:

• SC1: A student should not have a single course on a day.

• SC2: A student should not have more than two consecutive courses.

• SC3: A student should not have a course scheduled in the last time slot

of the day.
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3.2 Formal Representation of The Problem

The course timetabling problem can be formulated as (adapted from [169]):

Minimize

3∑
i=1

SCi (3.1)

SC1: Penalty for students with one event on a day

∑
s∈S

5∑
d=1

zs,d (3.2)

SC2: Penalty for students with three or more events consecutively.

∑
s∈S

5∑
d=1

d×9−2∑
t=(d−1)×9+1

ys,t · ys,(t+1) · ys,(t+2) (3.3)

SC3: Penalty for students with one event in the last time slot of the day∑
s∈S

∑
t∈{9,18,...45}

ys,t (3.4)

subject to:

HC1: No student is required to attend more than one event at the same

time. ∑
r∈R

xetr · ase ≤ 1 e ∈ E, s ∈ S, t ∈ T (3.5)

HC2: Each event is assigned a room with enough seats for all attending

students and all features required.

ber · cer · xetr = xetr e ∈ E, r ∈ R, t ∈ T (3.6)

HC3: Only one event per room in any time slot.∑
e∈E

xetr ≤ 1 r ∈ R, t ∈ T (3.7)

52



HC4: Events are assigned to designated time slots.

iet · xetr = xetr e ∈ E, r ∈ R, t ∈ T (3.8)

HC5: Where specified, events should be scheduled in the correct order.

je,tm · ke,tm · xetmr = xetmr e ∈ E, r ∈ R, tm ∈ T (3.9)

where:

set of events, E = {e1, . . . , e|E|}
set of time slots, T = {1, . . . , 45}
set of rooms, R = {r1, . . . , r|R|}
set of students, S = {s1, . . . , s|S|}
set of features F = {f1, . . . , f|F |}
set of days, D = {1, . . . , 5}
set of events that must appear later than e, Ae

set of events that must appear earlier than e, Be

as,e =

{
1 if student s attends event e

0 otherwise
(3.10)

be,r =

{
1 if size of event e ≤ capacity of room r

0 otherwise
(3.11)

ce,r =

 1 if
∑
f∈F

ge,f · hr,f =
∑
f∈F

ge,f

0 otherwise
(3.12)

ge,f =

{
1 if event e requires feature f

0 otherwise
(3.13)

hr,f =

{
1 if room r has feature f

0 otherwise
(3.14)

ie,t =

{
1 if event e can be assigned to time slot t

0 otherwise
(3.15)
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je,tm =

 1 if
∑

ev∈Ae

xevtnr · ptm,tn =
∑

ev∈Ae

xevtnr

0 otherwise
(3.16)

ke,tm =

 1 if
∑

ev∈Be

xevtnr · qtm,tn =
∑

ev∈Be

xevtnr

0 otherwise
(3.17)

ptm,tn =

{
1 if tm < tn

0 otherwise
(3.18)

qtm,tn =

{
1 if tm > tn

0 otherwise
(3.19)

xe,t,r =

{
1 if event e is assigned to time slot t and room r

0 otherwise
(3.20)

ys,t =

{
1 if xetr · ase = 1 r ∈ R, t ∈ T
0 otherwise

(3.21)

zs,d =

 1 if
d×9∑

t=(d−1)×9+1

ys,t = 1 d ∈ D, s ∈ S

0 otherwise

(3.22)

3.3 Related Work

3.3.1 Specific approaches applied to Socha instances

One of the earliest approaches on these instances was based on an ant sys-

tem [164]. Ants follow a list of ordered events and choose time slots randomly

based on probabilities that depend on pheromone and heuristic information. A

matching algorithm was applied for room assignment. The candidate solution

was further improved by a local search as an exploitation mechanism. A global

best solution was maintained. Pheromone corresponding to the global best was

increased, while other pheromone trails were reduced using an evaporation co-

efficient. The pheromone levels were reduced to allow exploration in the search

space. Parameter tuning was required for each instance type. The method was

reported to be better than random restart local search. Interested readers can
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refer to its variants [71] [102].

Burke et al. [35] proposed a method called Tabu Search Hyper-Heuristic to

overcome the weaknesses of optimization methods specifically meta-heuristics,

which often require intensive parameter tuning for individual instances. They

aimed to develop a general approach which can be easily applied to different

problems, yet remains competitive with state of the art approaches. The method

selects heuristics at each decision point instead of solving the problem directly.

Heuristics were ranked according to their performance inspired by the principles

of reinforcement learning. The value of the selected heuristic is increased by 1

when applied and which results in an improvement to the current cost function.

Otherwise, it is decreased by 1. A tabu list was also implemented to restrict the

use of heuristics which did not recently perform well based on First-In, First-

Out (FIFO). A heuristic placed in the list is made tabu even if it has the highest

rank. The approach was competitive with ant systems and random restart local

search.

Abdullah et al. [3] used a saturation degree heuristic to get an initial feasible

solution where soft constraint violations were ignored. The solution was then

improved using Variable Neighbourhood Search (VNS). VNS was made up of

three stages namely shaking, local search and move. Variants tested were VNS-

basic which only accepted improved solutions and VNS-EMC which employed

an exponential monte carlo acceptance criterion where worse solutions were ac-

cepted with a certain probability. VNS-EMC performed better than VNS-basic

and the authors believed that the latter got trapped in a local optima. The

result was further improved when a tabu list was utilized on VNS-EMC to pre-

vent neighborhoods that had not performed well recently from being chosen in

the next evaluation. The author also showed that VNS with ordering performed

better than VNS without ordering. It was able to get optimal solutions for all

the small instances. However, the constructive heuristic failed to get feasible

solution for the large instance.

Abdullah et al. [5] proposed Randomized Iterative Improvement. At each

iteration, the best solution was selected among temporary solutions produced

from different neighborhood structures where improved solutions compared to

the best were always accepted, while worse solutions were accepted based on

an exponential monte carlo acceptance criterion. The authors also introduced
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three more neighbourhood structures. The methodology was able to produce

better or equal results on seven instances. It failed to get feasible solutions for

the large instance.

Abdullah et al. employed a Memetic Algorithm which combined a Genetic

Algorithm with local search [4]. Randomized Iterative Improvement was im-

plemented as the local search after a mutation phase. A crossover operator

was not used which avoided the need to repair the solution. The methodol-

ogy performed better with reduced complexity compared to when crossover was

used [8]. Improved results were reported compared to Randomized Iterative

Improvement alone. The method was able to produce feasible solutions for the

large instance by using constructive heuristics which added and removed events.

Landa Silva and Obit modified the original Great Deluge by replacing the

linear decay rate with a non linear function [113]. The water level was allowed

to go up when it was about to converge with the candidate solution. The ratio-

nale was to accept worse solutions in order to better explore the search space.

The method required additional parameter tuning.

Turabieh and Abdullah incorporated Tabu Search into a memetic approach

[174]. A tabu list was maintained in a First-In, First-Out (FIFO) manner to

hold ineffective neighborhood structures from being selected in the next itera-

tion. A good neighborhood structure was used in the next iterations until no

better solutions were obtained. Good results were reported.

Landa Silva and Obit tested Non-Linear Great Deluge with Genetic Algo-

rithms without a crossover operator [114]. Local search was applied after mu-

tation phase. Better result was reported compared to Non-Linear Great Deluge

alone.

Abdullah et al. tackled the problem with Great Deluge and Tabu Search

[7]. Least saturation degree was used to produce feasible solutions. If a feasible

solution could not be found, neighborhood moves were applied. In the improve-

ment phase, during each iteration, the best solution among solutions generated

from Great Deluge and Tabu Search was accepted only if it was better than

the best. The water level in the Great Deluge was allowed to increase when a

non-improving counter reached a certain level to allow flexibility in accepting
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worse solutions.

Obit et al. utilized Non-Linear Great Deluge with reinforcement learning

[136] on the instances. Heuristics or neighborhood structures, were selected

probabilistically based on their weights, instead of choosing randomly. The

weights were increased or decreased based on their performance. Two types

of Modified Choice Function (MCF) are investigated namely MCF with static

memory and MCF with random learning rate. For MCF with static memory,

a reward of 1 point is awarded to the chosen heuristic if the current solution is

improved, otherwise no point is awarded. The weights are updated in every pre-

defined period. For MCF with random learning rate, a different set of rewards

was used according to the difference between the best cost and the current cost.

In addition, the reward was weighted by a random value in the range (0.5, 1.0].

The method involved the acceptance and rejection of solutions using Non-Linear

Great Deluge acceptance criterion.

Turabieh et al. presented a Fish Swarm Intelligent Algorithm [176]. This

work simulated fish movements when searching for food. At the initialization

phase, constructive heuristics were used to generate feasible solutions. In the

improvement phase, visual scope was defined. If the visual scope was empty,

Steepest Descent was applied. If the visual scope was crowded, Great Deluge

was applied (with Nelder-Mead Simplex algorithm to intelligently adjust the

decay rate). The authors believed by accepting worse solutions, the algorithm

was able to escape from local optimum. If visual scope was not crowded, Great

Deluge with best solution or central point as estimated quality was applied. The

method was able to produce best known results at that time.

Shaker and Abdullah tried to control multiple algorithms in a round robin

fashion [161]. The algorithms were Hill Climbing, Great Deluge and Simulated

Annealing. Each algorithm was assigned an equal portion of time and utilized

in a First-In, First-Out (FIFO) manner.

Sabar et al. used Honey Bee Mating to tackle the problem [155]. The au-

thors employed hybrid graph colouring heuristics to generate an initial feasible

solution. Events were sorted (by least saturation degree, largest degree and

largest enrollment) and assigned to time slots and rooms randomly. There was

no guarantee of generating a feasible solution. Next, the best solution from the
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pool was set as the queen (best solution). During mating, drones (incumbent

solutions) were selected, where the fitter ones had a better chance of being se-

lected. During breeding, broods (new solutions) were generated by a crossover

operator that took place between queen and selected drones. After breeding,

simple descent was employed to improve the broods. If any of the improved

brood was better than the queen, the queen was replaced. All the drones were

destroyed. The brood was mutated using a Kempe chain, ready for the next

mating. Highly competitive results were reported. However, the author men-

tioned the drawback of the method was the number of parameters that need to

be set.

Ceschia et al. applied simulated annealing on the problem and achieved

breakthrough results in very short time relative to methods used by other re-

searchers [48]. Two neighborhood structures were used; moving an event from

one slot to another and swapping events. Dummy time slots and dummy rooms

were used. The cost function was evaluated based on unscheduled events, prece-

dences and conflicts in addition to soft constraint violations which prompted the

need to set the proper weights for each component. In addition, parameters spe-

cific to simulated annealing had to be set. The author used an F-race mechanism

to tune the related parameters. The author attributed the good results to the

preprocessing and constraint reformulation step which improved the efficacy of

the local search. Their implementation produced the best results in terms of

best and mean results as reported in the literature.

Abuhamdah et al. proposed population based local search [11]. The authors

believed that population based algorithms were better at exploring a search

space compared to local search while local search was better at exploiting the

search space. Initial feasible solutions was generated in three phases. Events

were sorted by largest degree and assigned to timeslot and room randomly. If

no feasible room was available, any room would be assigned. If feasibility could

not be achieved, phase 2 that employed Hill Climbing, and phase 3, that em-

ployed Tabu Search, will be invoked. MPCA-ARDA was used as the local search.

Table 3.7 shows the performance comparison among the state of the art

methods on Socha instances in terms of soft constraint violations. Meanwhile,

the details of the solvers are given in Table 3.8. The highly tuned Simulated

Annealing employed by Ceshia et al. outperformed the rest of the methods.
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Instance
Solver S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L
A1 1 3 1 1 0 195 184 248 164.5 219.5 851.5
A2 1 2 0 1 0 146 173 267 169 303 1166
A3 10 9 7 17 7 243 325 249 285 132 1138
A4 0 0 0 0 0 317 313 357 247 292 926
A5 5 5 3 3 0 176 154 191 148 166 798
A6 0(0.8) 0(2.0) 0(1.3) 0(1.0) 0(0.2) 80(101.4) 105(116.9) 139(162.1) 88(108.8) 88(119.7) 730(834.1)
A7 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 221(224.8) 147(150.6) 246(252.0) 165(167.8) 130(135.4) 529(552.4)
A8 0 0 0 0 0 242 161 265 181 151 -
A9 2 4 2 0 4 254 258 251 321 276 1027
A10 3 4 6 6 0 140 130 189 112 141 876
A11 0 0 0 0 0 55 70 102 32 61 653
A12 0 0 0 0 0 78 92 135 75 68 556
A13 0 1 0 0 0 126 123 185 116 129 821
A14 0 0 0 0 0 38 37 60 39 55 638
A15 0 0 0 0 0 175 197 216 149 190 912
A16 0 0 0 0 0 45 40 61 35 49 407
A17 0 0 0 0 0 190 223 259 127 132 869
A18 0 0 0 0 0 117 108 135 75 160 589
A19 0 0 0 0 0 168 160 176 144 71 417
A20 0 0 0 0 0 75 88 129 74 64 523
A21 0(0.0) 0(0.0) 0(0.0) 0(0.1) 0(0.0) 9(26.5) 15(25.9) 36(49.0) 12(23.8) 3(10.9) 208(260.0)
A22 0 0 0 0 0 41 39 60 39 55 463

Table 3.7: Comparison among the state of the art methods on Socha instances. Depicted is best(mean) of soft constraint
violations. Note that some authors only reported their best results.
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Solver Technique Reference
A1 Ant System Socha et al. [164]
A2 Tabu Search Hyperheuristic Burke et al. [35]
A3 Fuzzy Multiple Heuristic Asmuni et al. [16]
A4 Variable Neighbourhood Search Abdullah et al. [3]
A5 Co-operative Ant Ejaz and Javed [71]
A6 Extended Great Deluge McMullan [129]
A7 Memetic (Genetic + Local Search) Abdullah et al. [4]
A8 Randomized Iterative Improvement Abdullah et al. [5]
A9 Genetic Algorithms + Local Search Abdullah et al. [8]
A10 Non-Linear Great Deluge Landa Silva and Obit [113]
A11 Tabu Search + Memetic Turabieh and Abdullah [174]
A12 Great Deluge + Tabu Search Abdullah et al. [7]
A13 Evolutionary Great Deluge Landa Silva and Obit [114]
A14 Non Linear Great Deluge + Learning Obit et al. [136]
A15 Electromagnetism + Great Deluge Turabieh et al. [175]
A16 Fish Swarm Turabieh et al. [176]
A17 Elitist Ant System Jaradat and Ayob [102]
A18 Round Robin Multi Algorithms Shaker and Abdullah [161]
A19 Modified Harmony Search Al-Betar and Khader [12]
A20 Honey Bee Mating Sabar et al. [155]
A21 Simulated Annealing Ceschia et al. [48]
A22 Population Based Local Search Abuhamdah et al. [11]

Table 3.8: Details of solvers applied on Socha instances.

3.3.2 Specific approaches applied to ITC02 instances

Kostuch employed a simulated annealing based heuristic approach, becoming

the winner of International Timetabling Competition 2002 (ITC2002) [109]. In

the preprocessing, the author defined the event room matrix and incidence ma-

trix. The incidence matrix was further updated with 1-room events. In finding

an initial feasible solution, events were ordered and each assigned a time slot

with a minimum number of events, provided that the number of events in the

time slot did not exceed the number of rooms. Unassigned events were placed in

a pool. Maximum matching was run for room assignment and unassigned events

were removed from the time slots and placed in a pool. Next, in an improve-

ment phase, unplaced events were refitted into the time slots where events were

removed during the room assignment phase. In a shuffling phase, every event

from the pool of unplaced events was assigned to a random time slot and maxi-

mum matching was run for room assignment. The newly unassigned event was

hopefully different from the initially unassigned event. The improvement phase
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was rerun. Next in a blow-up phase, the unassigned events were placed into a

time slot and all current events in that time slot were removed. Then rooms

were assigned and unplaced events were kept in a pool. The improvement and

shuffling phase were rerun. The still unplaced events, if there were any, were

distributed over the last time slots. The feasible solution was then improved

with simulated annealing by sequencing the time slots and exchanging pairs of

events. Finally, simulated annealing was run with lower acceptance probability

on the best solution until the time limit was reached. The search was confined

to the vicinity of solution.

Cordeau et al. used Tabu Search on ITC02 and ranked second for the com-

petition [55]. They first found a feasible solution and then applied Tabu Search

using an evaluation function defined as the weighted sum of hard and soft con-

straints. The search was allowed to navigate into infeasible regions where a

parameter was varied at each iteration to control the feasibility of the solution.

A few perturbation procedures as well as ejection chain were also used.

Burke et al. proposed a Great Deluge approach to the problem [27]. The

authors raised doubt as to the practicality of using Simulated Annealing in solv-

ing problems as it requires significant time and experience from a user in setting

parameters. The method extended the Great Deluge by Dueck (which accepts

every solution whose objective function is less than or equal to an upper level)

by accepting all candidate solutions which were better than the current one.

The one parameter which had to be set was the decay rate as a function of

search time and expected search quality. The expected search quality had to

be approximated by employing a Hill Climbing algorithm. The authors claimed

that the method produced better results for longer searches. The method was

superior in terms of performance from comparisons made with other methods

such as Simulated Annealing, Threshold Algorithm and Hill Climbing. The

author suggested good initial solutions, non-linear level function, hybridization

and neighborhood structures as future research directions.

Arntzen and Lokketangen employed a Tabu Search heuristic for ITC02 in-

stances [15]. In the constructive solver, at each iteration, an event with the

fewest possible places was selected and assigned to a place which was selected

by minimizing a weighted sum. Once a feasible solution was found, the basic

search was started. At each iteration, a list of moves were sorted by value and
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frequency. The best move in the list was chosen if it resulted in a solution

which was better than the best solution. Otherwise, the best non-tabu move

was chosen with 50% probability. If it was not chosen, the next best non-tabu

move was chosen with 50% probability. The move selection was repeated un-

til a move was chosen. The moved event was marked as tabu according to

certain tenures. Ejection chain was called after 4000 moves without improve-

ment to the best value. A tabu mechanism was also used in the ejection chain

where an event was set tabu for a certain number of steps when it was moved.

Basic search and ejection chain were alternated until the time limit was reached.

Chiarandini et al. employed a strategy which combined construction heuris-

tics, variable neighborhood descent and simulated annealing which outperformed

the winner of ITC2002 [52]. The authors used a racing algorithm to iteratively

select and configure algorithms. Candidate algorithms were evaluated and dis-

carded when sufficient statistical evidence was gathered against them. Local

search and tabu search were utilized to obtain a feasible solution. The feasi-

ble solution is improved in terms of soft constraint violations by using variable

neighborhood descent and simulated annealing. The authors claimed that the

method reduced the number of experiments and was well suited for the engineer-

ing of meta-heuristics. Findings highlighted the importance of local search in

ant colony optimization and genetic algorithms and that variable neighborhoods

strongly enhanced the local search. Solving hard and soft constraints separately

was also found to be preferable than weighting constraints in an evaluation

function. The authors also highlighted that tabu search was not suitable for

optimizing soft constraints. Population based meta-heuristics did not perform

better than a single solution based approach and the importance of problem

specific knowledge was emphasized. The method obtained better results than

the ITC2002 winner on 18 out of 20 instances.

Kostuch further improved his method and achieved the best results on all

20 instances [110]. Feasible solutions were constructed using graph colouring

and maximum matching. The feasible solution was improved by sequencing the

time slots and exchanging pairs of events. To keep the neighborhood structure

simple, the author also introduced 10 dummy events, 2 at each end of day time

slots which were removed in the final timetable. His implementation is the cur-

rent state of the art for the problem instances.
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Ceschia et al. tested their variant of Simulated Annealing on the problem as

well, using F-race [48]. However, the results reported were inferior to the best

in the literature.

Table 3.9 shows the performance comparison among the state of the art

methods on ITC02 instances in terms of soft constraint violations. The details

of the solvers are given in Table 3.10. No other solvers have yet to beat the

results of the Simulated Annealing implementation by Kostuch in any of the

instances either in terms of best or mean.
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Instance
Solver 1 2 3 4 5 6 7 8 9 10
B1 45 25 65 115 102 13 44 29 17 61
B2 61 39 77 160 161 42 52 54 50 72
B3 85 42 84 119 77 6 12 32 184 90
B4 63 46 96 166 203 92 118 66 51 81
B5 132 92 170 265 257 133 177 134 139 148
B6 45 14 45 71 59 1 3 1 8 52
B7 16(30.2) 2(11.4) 17(31.0) 34(60.8) 42(72.1) 0(2.4) 2(8.9) 0(2.0) 1(5.8) 21(35.0)
B8 45(57.1) 20(33.2) 43(53.2) 87(109.9) 71(91.7) 2(14.1) 2(13.7) 9(20.0) 15(21.9) 41(60.7)

Instance
Solver 11 12 13 14 15 16 17 18 19 20
B1 44 107 78 52 24 22 86 31 44 7
B2 53 110 109 93 62 34 114 38 128 26
B3 73 79 91 36 27 300 79 39 86 0
B4 65 119 160 197 114 38 212 40 185 17
B5 35 290 251 230 140 114 186 87 256 94
B6 30 75 55 18 8 55 46 24 33 0
B7 5(12.9) 55(76.3) 31(47.1) 11(22.3) 2(8.4) 0(3.4) 37(54.0) 4(9.4) 7(16.4) 0(0.5)
B8 24(38.2) 62(83.7) 59(78.0) 21(34.2) 6(11.8) 6(16.7) 42(56.5) 11(25.9) 56(73.0) 0(1.8)

Table 3.9: Comparison among the state of the art methods on ITC02 instances. Depicted is best(mean) of soft constraint
violations. Note that some authors only reported their best results.
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Solver Technique Reference
B1 Simulated Annealing Kostuch [109]
B2 Tabu Search Cordeau et al. [55]
B3 Great Deluge Burke et al. [27]
B4 Local Search + Tabu Search DiGaspero and Schaerf [63]
B5 Local Search Heuristic Arntzen and Lokketangen [15]
B6 Hybrid Algorithm Chiarandini et al. [52]
B7 Simulated Annealing Kostuch [110]
B8 Simulated Annealing Ceschia et al. [48]

Table 3.10: Details of solvers applied on ITC02 instances.

3.3.3 Specific approaches applied to ITC07 instances

The submission by Cambazard et al. won the post enrolment based course

timetabling competition, ITC2007 [41]. A few approaches were studied. In the

first approach, local search is performed on randomly generated solutions to

find a feasible one. A tabu list is maintained to prevent an event from being

assigned the same time slots for the last k iterations. Among the neighborhood

structures used were; moving an event to an empty space, swapping two events,

swapping two time slots, matching where events are reassigned within a time

slot and moving an event with matching and Hungarian move. The feasible

solution is optimized by simulated annealing with reheating. Moving an event

with matching is the only neighborhood structure considered in this phase. The

second approach presented was also based on local search but with a relaxation

on room allocation. It was termed LS with colouring. Four stages were involved.

In stage 1, a feasible solution is found ignoring room allocation. In stage 2, soft

constraint violations were minimized, again ignoring room allocation. In stage

3, the solution is repaired into a feasible solution. In stage 4, the solution is im-

proved in terms of soft constraint violations. The same neighborhood structures

were used but without matching during room allocation. The author reported

LS with colouring was the best approach in finding feasible solutions. Also LS

with colouring worked best for highly constrained problems. Constraint pro-

gramming was also developed but was less competitive compared to the local

search approach and it was unable to find feasible solutions for instances 1,2,9

and 10.

Chiarandini et al. employed a modular multiphase heuristic solver for the

post enrolment course timetabling problem of ITC07 [53]. There were two
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phases; a hard constraint solver and a soft constraint minimizer. In the hard

constraint solver, partial feasible solutions were generated. Lectures were or-

dered and assigned to a time slot that can fit the fewest unscheduled lectures.

Unassigned events were kept in a list and handled by a Tabu Search based on

the PARTIALCOL algorithm [22]. At each iteration, unassigned events were

selected based on enrollment and placed into the best non-tabu time slot and all

conflicting events (if there were any) were moved into the unassigned list. After

a fixed number of non-improving iterations, the solution was perturbed by the

soft constraint optimizer. The Tabu Search and soft constraint optimizer were

alternated until a feasible solution was found or the time limit was reached.

The soft constraint optimizer was then applied to the feasible solution. In this

phase, local search was employed on several neighborhood structures such as

one exchange, two exchange, time slots swap and Kempe chains until no im-

provement was found. Finally, Simulated Annealing was performed by moving

and swapping events with matching until the end of the allowed time.

Nothegger et al. applied Ant Colony Optimization (ACO) to ITC2007

achieving fourth place in the competition [135]. They proposed two separate

matrices to store pheromone information instead of the traditional single ma-

trix. They showed that a two matrices representation produced better results

in terms of distance to feasibility (DTF) and soft constraints penalty (SCP) as

it is less expensive computationally, thus allowing more iterations per time unit.

Events were considered in random order and assigned to time slots and rooms

based on pheromone information. Heuristic information in a typical ACO was

not used to promote randomness. Each constructed solution were improved lo-

cally by an ejection chain. Pheromone information is updated by solutions with

lowest DTF scores and better than average SCP scores. The pheromone levels

were reduced by evaporation. The authors also presented a parallel ACO with

simulated annealing as the local search procedure.

Muller tested a hybrid algorithm on ITC07, being placed fifth in the com-

petition [134]. Iterative Forward Search was used to find a complete solution,

where during each iteration the worst variable (domain size to hard constraint

ratio) was assigned the value that violated the least number of hard constraints

and then all conflicting variables were unassigned. Furthermore, conflict based

statistics was used to prevent repetitive assignments. The completed solution

was further improved by executing several algorithms in a cyclic fashion when
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certain bounds or idle iterations were reached. The algorithms utilized were

Hill Climbing, Great Deluge and Simulated Annealing. Events were assigned to

time slots without rooms. Room assignments and precedence were treated as

soft constraints. The weights were initially assigned a value of 1 and increased

after 1000 idle iterations. Among the neighborhoods used were time-move,

room-move, event-move, event-swap and precedence-swap.

Lewis presented an algorithm based on Simulated Annealing for ITC07 [117].

The problem was tackled in three stages, each phase using one third of the time

limit. Remaining time was passed to the next stage and the algorithm might

also stop early if all the stages were completed. In the first stage, events were in-

serted into the timetable, obeying all the hard constraints except for precedence

constraints. Events were chosen based on saturation degree and ties were bro-

ken randomly. Least constraining places were chosen where ties were broken by

prioritizing time slot with fewest events and further ties were broken randomly.

Unplaced events were kept in a list. Attempts were made to insert the unplaced

events after shuffling (a random event was moved to a random unoccupied place)

and extractions (two assigned events were first chosen randomly where the one

with the least enrollment was moved to a list). In the second stage, precedence

constraints were satisfied while not violating the previous hard constraints by

using Simulated Annealing. Two distinct cells were randomly selected and the

contents were swapped. The initial temperature was determined by calculating

the variance by performing a sample of neighborhood moves. In the third stage,

an attempt was made to satisfy the soft constraints while not violating the pre-

vious hard constraints, again by using Simulated Annealing.

Ceshia et al. also utilized a highly tuned Simulated Annealing (described

earlier) on ITC07 instances reporting good results [48].

Lewis and Thompson achieved 100% feasibility on all instances of ITC2007

by using constructive heuristics and followed by their PARTIALCOL algorithm

which uses a tabu mechanism for the remaining unassigned events [118]. The

authors further improved the method by performing perturbations in the form

of a random walk and resetting the tabu list after 5000 idle iterations. The

feasible solution was improved by using simulated annealing. The initial tem-

perature was set automatically as the standard deviation of the cost of sample

moves. The cooling rate was altered during the run. The authors also used the
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feasibility ratio to gauge the connectivity of the search space of various neigh-

borhood operators on the instances. A Kempe chain operator was found to

be particularly suitable for the instances. Strong results were achieved. The

authors also showed that the use of dummy rooms did not improve the results.

Table 3.11 shows the performance comparison among the state of the art

methods on ITC07 instances in terms of soft constraint violations. The details

of the solvers are given in Table 3.12. Competitive results are shown by the

Simulated Annealing methods of Ceshia et al. as well as Lewis and Thompson.
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Instance
Solver 1 2 3 4 5 6 7 8
C1 15(547.0) 9(403.0) 174(254.0) 249(361.0) 0(26.0) 0(16.0) 1(8.0) 0(0)
C2 925 1156 179 66 52 536 7 0
C3 0(613.0) 0(556.0) 110(680.0) 53(580.0) 13(92.0) 0(212.0) 0(4.0) 0(61.0)
C4 1330 2154 205 394 0 13 5 0
C5 59(399.2) 0(142.2) 148(209.9) 25(349.6) 0(7.7) 0(8.6) 0(4.9) 0(1.5)
C6 0(377.0) 0(382.2) 122(181.8) 18(319.4) 0(7.5) 0(22.8) 0(5.5) 0(0.6)

Instance
Solver 9 10 11 12 13 14 15 16
C1 29(1167.0) 2(1297.0) 178(361.0) 14(380.0) 0(135.0) 0(15.0) 0(47.0) 1(58.0)
C2 1480 1364 166 1 360 576 0 0
C3 0(202.0) 0(4.0) 143(774.0) 0(538.0) 5(360.0) 0(41.0) 0(29.0) 0(101.0)
C4 1895 2440 347 453 74 2 0 6
C5 0(258.8) 3(186.4) 142(269.5) 267(400.0) 1(120.0) 0(3.6) 0(48.0) 0(50.1)
C6 0(514.4) 0(1202.4) 48(202.6) 0(340.2) 0(79.0) 0(0.5) 0(139.9) 0(105.2)

Instance
Solver 17 18 19 20 21 22 23 24
C1 - - - - - - - -
C2 - - - - - - - -
C3 - - - - - - - -
C4 - - - - - - - -
C5 0(0.0) 0(41.1) 0(951.5) 543(700.2) 5(35.9) 5(19.9) 1292(1707.7) 0(105.3)
C6 0(0.1) 0(2.2) 0(346.1) 557(724.5) 1(32.1) 4(1790.1) 0(514.1) 18(328.2)

Table 3.11: Comparison among the state of the art methods on ITC07 instances. Depicted is best(mean) of soft constraint
violations. Note that some authors only reported their best results.
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Solver Technique Reference
C1 Simulated Annealing Cambazard et al. [41]
C2 Hybrid Algorithm Chiarandini et al. [53]
C3 Ant Colony Optimization Nothegger et al. [135]
C4 Hybrid Algorithm Mueller [134]
C5 Simulated Annealing Ceschia et al. [48]
C6 Simulated Annealing Lewis and Thompson [118]

Table 3.12: Details of solvers applied on ITC07 instances.

3.3.4 Specific approaches applied to Hard instances

Lewis and Paechter applied Grouping Genetic Algorithms (GGA) [76, 77] to find

feasible solutions for the Hard instances [120]. The university course timetabling

problem (UCTP) was considered as a grouping problem where groups (time

slots) were treated as the building blocks for representations and genetic oper-

ators. The authors modified the recombination operator of the standard GGA

which comprises four stages, namely point selection, injection, removal of dupli-

cates using adaptation and reconstruction. In addition to recombination, other

operators used were mutation and inversion. The algorithm was further im-

proved by investigating several fitness functions and applying local search after

the mutation operator. The authors concluded that in many cases, GGA was

outperfomed by a local search algorithm especially on large problem instances.

Tuga et al. employed a sequential approach (ISheuristic) consisting of Least

Saturation Degree (LSD) and Largest Degree (LD) to construct the initial so-

lution [173]. Any unassigned events were placed in artificial time slots and

treated as a soft constraint violation and minimized by using Hybrid Simu-

lated Annealing (HSA). KCHeuristic was applied and the temperature adjusted

when no improvement was observed after a certain number of iterations. The

neighbourhood structures used were simple, swap and kempe chain. The ini-

tial temperature was set to a sufficiently high value. The cooling equation was

similar to the one used by Kostuch [110]. The number of trials for each temper-

arure was set to a · |events| where a is initially set as 10 and linearly increased.

When compared to the method by Lewis, the result was comparable for small

instances. For medium and big instances, superior results were reported with

many feasible solutions found.

Liu et al. used a clique based algorithm for constructing feasible timetables
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[121]. Their method was inspired by [45] where Carter and Johnson found many

large cliques in the timetabling instances which may be useful for timetabling.

The algorithm consists of three steps. In the first step, 45 cliques (corresponding

to 45 time slots) were initialized. A clique is initialized by randomly choosing

a vertex which is then expanded to include additional vertices before matching

is run for room assignment. Vertices which were not included in a clique were

handled in the next step. In the second step, the cliques were enlarged further

before matching is run. In the third step, some vertices between two cliques

were swapped. Better results were reported compared to other papers, espe-

cially for large instances.

Tables 3.13, 3.14 and 3.15 show the performance comparison among the

state of the art methods on Hard:Small, Hard:Medium and Hard:Big instances

respectively in terms of number of unassigned events. Ceshia et al. solved all of

the Hard:Small instances to optimality in all runs [48]. Note that unlike Socha,

ITC02 and ITC07 datasets, soft constraint violations are not considered for

Hard instances. The authors are only concerned with finding feasible solutions

for Hard instances which are relatively hard compared to the rest of the datasets.

The details of the solvers are given in Table 3.16.
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Solver
Instance D1 D2 D3 D4
S1 0 0(0.00) 0(0.00) 0(0.00)
S2 0 0(0.00) 0(0.00) 0(0.00)
S3 0 0(0.00) 0(0.00) 0(0.00)
S4 0 0(0.00) 0(0.00) 0(0.00)
S5 0 0(0.00) 0(0.00) 0(0.00)
S6 0 0(0.00) 0(0.00) 0(0.00)
S7 0 0(0.00) 0(0.20) 0(0.00)
S8 0 0(1.90) 0(0.30) 0(0.00)
S9 0 0(3.85) 0(0.15) 0(0.00)
S10 0 0(0.00) 0(0.00) 0(0.00)
S11 0 0(0.00) 0(0.00) 0(0.00)
S12 0 0(0.00) 0(0.00) 0(0.00)
S13 0 0(1.00) 0(0.00) 0(0.00)
S14 0 3(5.95) 0(0.70) 0(0.00)
S15 0 0(0.00) 0(0.00) 0(0.00)
S16 0 0(0.00) 0(0.30) 0(0.00)
S17 0 0(0.00) 0(0.00) 0(0.00)
S18 0 0(0.45) 0(0.70) 0(0.00)
S19 0 0(1.20) 0(0.00) 0(0.00)
S20 0 0(0.00) 0(0.15) 0(0.00)

Table 3.13: Comparison among the state of the art methods on Hard small
instances. Depicted is best(mean) of unassigned events. Note that some authors
only reported their best results.
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Solver
Instance D1 D2 D3 D4
M1 0 0(0.00) 0(0.00) 0(0.00)
M2 0 0(0.00) 0(0.00) 0(0.00)
M3 0 0(0.00) 0(0.00) 0(0.00)
M4 0 0(0.00) 0(0.00) 0(0.00)
M5 0 0(0.00) 0(0.00) 0(0.00)
M6 0 0(0.00) 0(0.00) 0(0.90)
M7 14 1(4.15) 0(3.55) 0(0.00)
M8 0 0(0.00) 0(0.00) 0(0.30)
M9 2 0(4.90) 0(2.15) 0(0.35)
M10 0 0(0.00) 0(0.00) 0(0.00)
M11 0 0(0.00) 0(0.00) 0(0.00)
M12 0 0(0.00) 0(0.00) 0(0.60)
M13 0 0 (0.50) 0(0.00) 0(0.00)
M14 0 0(0.00) 0(0.00) 0(0.05)
M15 0 0(0.05) 0(0.00) 0(0.00)
M16 1 1(5.15) 0(0.30) 0(0.00)
M17 0 0(0.00) 0(0.00) 0(0.15)
M18 0 0(6.05) 0(0.00) 0(0.30)
M19 0 0(5.45) 0(0.00) 0(0.50)
M20 3 2(10.60) 0(0.65) 0(0.55)

Table 3.14: Comparison among the state of the art methods on Hard medium
instances. Depicted is best(mean) of unassigned events. Note that some authors
only reported their best results.
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Solver
Instance D1 D2 D3 D4
B1 0 0(0.00) 0(0.00) 0(0.15)
B2 0 0(0.00) 0(0.00) 0(0.60)
B3 0 0(0.00) 0(0.00) 0(1.45)
B4 8 0(0.00) 0(0.00) 0(0.00)
B5 30 0(1.10) 1(3.20) 0(0.00)
B6 77 5(8.45) 10(15.40) 1(2.85)
B7 150 47(58.30) 39(46.65) 21(29.25)
B8 5 0(0.00) 0(0.00) 0(0.00)
B9 3 0(0.05) 0(0.00) 0(0.00)
B10 24 0(1.25) 0(1.95) 0(0.00)
B11 22 0(0.35) 0(2.35) 0(0.00)
B12 0 0(0.00) 0(0.00) 0(1.15)
B13 0 0(0.00) 0(0.00) 0(1.15)
B14 0 0(0.00) 0(0.00) 0(1.20)
B15 0 0(0.00) 0(0.00) 1(3.5)
B16 19 0(2.00) 0(0.00) 0(0.65)
B17 163 76(89.90) 0(2.05) 12(22.00)
B18 164 53(62.60) 0(1.70) 8(13.55)
B19 232 109(127.00) 40(53.20) 37(52.85)
B20 149 40(46.70) 9(14.05) 11(15.05)

Table 3.15: Comparison among the state of the art methods on Hard big in-
stances. Depicted is best(mean) of unassigned events. Note that some authors
only reported their best results.

Solver Technique Reference
D1 Genetic Algorithm Lewis and Paechter
D2 Hybrid Simulated Annealing Tuga et al.
D3 Clique Based Algorithm Liu et al.
D4 Simulated Annealing Ceshia et al.

Table 3.16: Details of solvers applied on Hard instances.

3.4 Conclusion

We have described the requirements of the course timetabling problem. The

datasets (Socha, ITC02, ITC07, Hard) considered in this thesis are described

such as the origin, source, time limit, hard and soft constraints. In addition, the

instance specific statistics such as the # of events, # of rooms, # of features

and # of students are provided. The formal presentation of the problem is
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also presented. The related work for each dataset is reviewed and presented

in a chronological order. State of the art methods are identified and studied.

Generally, the best performing methods are based on SA. However, as evident in

the literature, the method either requires extensive parameter tuning to obtain

good results or is utilized on a limited number of instances/datasets.
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Chapter 4

Finding Feasibility:

Comparing GCH, MCTS

and TS

In this chapter, we compare the effectiveness of several constructive heuristic

approaches in finding feasible solutions for the course timetabling problem. We

focus on MCTS as well as other state of the art methods.

4.1 Graph Coloring Heuristic (GCH)

GCH is a classical approach used in solving graph coloring problem. The heuris-

tics derived are often utilized in timetabling problems. Often, the difficult events

are assigned first so that the easier events will be successfully assigned later,

when the environment becomes more constrained. We also include Dynamic

Search Rearrangement (DSR) [112], a heuristic often used in constraint satis-

faction problem in our experiments.

4.1.1 Algorithm Description

The heuristics are tested by using the procedure GCH as presented in Algorithm

19. It is a one pass method where, at each iteration, an event is selected and

assigned to a selected place (or slot). The heuristics are described in Table 4.1.

LD is considered as static ordering as the order of events is fixed throughout
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the process meanwhile SD and DSR are dynamic as the next selected event is

calculated at each iteration.

Algorithm 19

1: procedure GCH(best, unassignedE)
2: remainingE ← unassignedE
3: size← |remainingE|
4: for i = 1 to size do
5: event← selectEvent(remainingE)
6: place← selectPlace(event)
7: if place is available then
8: best← best ∪ event . assign event to place
9: else

10: unplacedE ← unplacedE ∪ event
11: end if
12: remainingE = remainingE − event
13: end for
14: unassignedE ← unplacedE
15: end procedure
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Heuristics Description
Random Order-
ing (RO)

event is selected randomly and assigned to a place (or
slot) which is also selected randomly. It is a base for
comparison with other heuristics.

Largest Degree
(LD)

An event is selected randomly from the set E={events
with the highest number of clashes with other events}.
A place (or slot) is selected randomly from the set
P={places (or slots) suitable for event and fit the least
number of remaining events}.

Saturation
Degree (SD)

An event is selected randomly from the set E2={events
with the highest number of clashes with other events}
where E2 ⊂ E1 and E1 ={events with the least number
of suitable places (or slots)}.
A place (or slot) is selected randomly from the set
P={places (or slots) suitable for event and fit the least
number of remaining events}.

Dynamic Search
Rearrangement
(DSR)

An event is selected randomly from the set E={events
with the least number of suitable places (or slots)}.
A place (or slot) is selected randomly from the set
P={places (or slots) suitable for event and fit the least
number of remaining events}.

Table 4.1: Heuristics

4.1.2 Experimental Results

We performed two types of assignment using the same set of heuristics. In the

first type, events are assigned to places (specific slot and specific room). In

the second type, events are assigned to slots with the aid of maximal matching

for room assignment. For Socha instances, SD and LD are the most effective

heuristics for the assignment by place and the assignment by slot respectively

as shown in Table 4.2. Assignment by place using SD and assignment by slot

using DSR are able to find feasible solution for all the instances. For ITC02,

SD and LD work well for the assignment by place and the assignment by slot as

presented in Table 4.3. It seems assignment by place is more suitable for Socha

and ITC02 instances. The employment of heuristics is better for assignment

by place compared to assignment by slot. In addition, the Socha and ITC02

instances are less constrained, therefore maximal matching for room assignment

is trivial.
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For ITC07, the DSR heuristic works well for both types of assignment as

shown in Table 4.4. However, assignment by slot is more appropriate for these

instances, despite the coarse employment of heuristics. Assignment by slot with

DSR heuristic is able to find feasible solutions for 5 out of 24 instances. We

believe the flexibility offered by maximal matching in room assignment is crucial

for ITC07 instances which is more constrained compared to Socha and ITC02

instances.
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Assignment by Place Assignment by Slot
Instance RO LD SD DSR RO LD SD DSR
S1 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S2 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S3 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S4 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S5 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M1 31(39.55) 0(0.00) 0(0.00) 0(0.00) 7(12.71) 0(0.00) 0(5.45) 0(5.00)
M2 32(40.13) 0(0.19) 0(0.00) 0(0.00) 9(15.45) 0(0.65) 0(2.97) 0(2.55)
M3 41(49.03) 0(0.03) 0(0.00) 0(0.00) 13(20.71) 0(0.00) 0(0.81) 0(0.48)
M4 28(34.16) 0(0.00) 0(0.00) 0(0.00) 8(11.71) 0(0.00) 0(2.39) 0(3.52)
M5 36(41.23) 0(0.32) 0(0.00) 0(0.00) 18(22.55) 0(0.00) 0(0.00) 0(0.68)
L 41(47.48) 1(4.87) 0(2.58) 1(6.94) 39(48.06) 2(6.65) 1(6.19) 0(6.48)
Avg. (23.71) (0.49) (0.23) (0.63) (11.87) (0.66) (1.62) (1.70)

Table 4.2: Comparison among assignment types with different heuristics on Socha instances. Depicted is best(mean) of
unassigned events. n=31 runs.
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Assignment by Place Assignment by Slot
Instance RO LD SD DSR RO LD SD DSR
1 28(36.94) 0(0.00) 0(0.00) 0(0.00) 17(24.55) 0(0.00) 0(0.16) 0(0.23)
2 27(33.42) 0(0.00) 0(0.00) 0(0.00) 15(20.19) 0(0.00) 0(0.00) 0(0.00)
3 37(44.84) 0(0.00) 0(0.00) 0(0.00) 13(19.74) 0(0.00) 0(0.13) 0(0.39)
4 38(45.52) 0(0.06) 0(0.10) 0(0.03) 25(30.71) 0(0.03) 4(13.39) 0(7.26)
5 32(37.61) 0(0.06) 0(0.00) 0(0.10) 27(31.52) 0(0.03) 0(0.00) 0(0.03)
6 32(40.71) 0(0.00) 0(0.00) 0(0.00) 16(22.32) 0(0.00) 0(0.00) 0(0.74)
7 29(35.35) 0(0.00) 0(0.00) 0(0.00) 16(19.65) 0(0.00) 0(0.00) 0(0.00)
8 40(47.10) 0(0.00) 0(0.00) 0(0.00) 16(22.39) 0(0.00) 0(0.00) 0(0.29)
9 31(38.00) 0(0.00) 0(0.00) 0(0.00) 13(19.65) 0(0.00) 0(0.52) 0(0.42)
10 48(53.23) 0(0.19) 0(0.00) 0(0.00) 19(26.97) 0(0.90) 0(0.13) 0(1.16)
11 33(40.55) 0(0.06) 0(0.00) 0(0.00) 18(25.68) 0(0.00) 0(2.32) 0(4.68)
12 40(46.39) 0(0.00) 0(0.00) 0(0.00) 25(30.87) 0(0.00) 0(0.65) 0(0.19)
13 39(45.32) 0(0.00) 0(0.10) 0(0.03) 20(25.48) 0(0.19) 0(0.00) 0(0.77)
14 32(41.32) 0(0.00) 0(0.00) 0(0.00) 21(26.23) 0(0.00) 0(0.00) 0(0.00)
15 32(39.06) 0(0.00) 0(0.00) 0(0.00) 19(25.39) 0(0.00) 0(0.00) 0(0.00)
16 32(41.58) 0(0.00) 0(0.00) 0(0.00) 8(13.61) 0(0.00) 0(2.84) 0(2.48)
17 29(33.03) 0(0.03) 0(0.10) 0(0.35) 27(32.32) 0(0.00) 0(0.00) 0(0.65)
18 24(31.65) 0(0.00) 0(0.00) 0(0.00) 14(19.71) 0(0.00) 0(0.06) 0(0.03)
19 49(55.32) 0(0.03) 0(0.00) 0(0.00) 18(23.55) 0(3.10) 0(0.06) 0(0.94)
20 27(32.06) 0(0.00) 0(0.00) 0(0.00) 8(15.26) 0(0.00) 0(0.00) 0(0.00)
Avg. (40.95) (0.02) (0.01) (0.03) (23.79) (0.21) (1.01) (1.01)

Table 4.3: Comparison among assignment types with different heuristics on ITC02 instances. Depicted is best(mean) of
unassigned events. n=31 runs.
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Assignment by Place Assignment by Slot
Instance RO LD SD DSR RO LD SD DSR
1 91(100.48) 40(57.87) 44(56.35) 47(57.58) 83(90.19) 45(52.90) 27(34.58) 26(34.29)
2 97(108.35) 53(66.52) 61(69.94) 53(64.55) 89(98.61) 53(63.90) 40(51.58) 36(45.03)
3 20(29.06) 6(10.23) 7(11.97) 7(12.26) 22(27.35) 2(7.42) 0(2.55) 0(4.35)
4 28(33.48) 11(15.00) 11(16.35) 12(16.61) 24(31.61) 9(13.74) 3(8.52) 4(9.94)
5 68(80.81) 28(37.13) 32(40.84) 32(41.68) 68(76.90) 27(33.35) 11(21.35) 13(20.42)
6 69(81.03) 28(38.29) 34(42.84) 33(43.81) 69(77.52) 20(30.65) 7(17.71) 11(20.26)
7 32(38.90) 19(26.00) 12(17.71) 15(19.23) 33(38.00) 17(22.26) 5(9.84) 6(11.87)
8 28(36.29) 12(19.26) 11(16.00) 9(15.45) 29(34.23) 10(17.65) 3(5.61) 0(4.97)
9 98(105.00) 55(69.68) 55(63.16) 55(61.65) 83(96.32) 58(67.58) 37(47.03) 32(43.26)
10 106(117.94) 76(86.32) 68(79.74) 72(79.81) 92(108.06) 73(84.94) 43(54.68) 43(53.29)
11 29(35.84) 7(12.74) 8(13.19) 9(13.84) 28(33.00) 7(12.26) 2(6.03) 1(7.10)
12 34(40.10) 14(18.68) 16(20.13) 15(19.68) 33(38.87) 11(18.26) 7(12.87) 4(14.26)
13 76(85.94) 27(41.23) 40(49.42) 35(48.19) 71(80.87) 25(33.71) 12(26.16) 17(25.26)
14 75(84.03) 35(44.32) 41(47.65) 39(46.16) 72(81.19) 40(45.97) 13(26.81) 16(24.81)
15 32(38.13) 11(17.71) 13(18.52) 12(18.39) 32(35.97) 13(19.23) 2(8.97) 5(9.97)
16 22(29.10) 5(7.45) 2(6.23) 4(6.55) 20(26.68) 5(8.03) 0(2.10) 0(2.39)
17 5(8.87) 0(1.45) 0(0.16) 0(0.35) 5(8.74) 0(1.13) 0(1.06) 0(1.26)
18 40(46.39) 14(20.23) 8(23.32) 14(24.03) 38(45.52) 8(20.13) 9(18.97) 10(17.61)
19 64(73.52) 35(45.35) 36(42.61) 30(41.81) 57(65.71) 33(40.19) 26(34.48) 23(30.23)
20 58(67.42) 2(9.29) 2(8.26) 3(8.90) 42(51.42) 2(5.10) 0(2.00) 0(2.52)
21 80(92.87) 26(36.58) 36(42.23) 32(39.65) 77(86.87) 23(36.19) 10(15.42) 10(14.65)
22 148(159.19) 106(117.23) 99(111.97) 98(110.23) 140(151.19) 97(107.48) 75(84.29) 63(74.16)
23 101(112.68) 49(59.61) 52(64.45) 51(63.39) 101(111.55) 48(63.97) 46(55.65) 40(52.81)
24 66(80.42) 30(40.03) 20(30.10) 21(28.13) 71(80.48) 30(38.00) 18(24.77) 13(21.94)
Avg. (70.24) (37.42) (37.21) (36.75) (65.70) (35.17) (23.88) (22.78)

Table 4.4: Comparison among assignment types with different heuristics on ITC07 instances. Depicted is best(mean) of
unassigned events. n=31 runs.
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4.2 Monte Carlo Tree Search (MCTS)

In MCTS, each node in the tree represents a state and each directed link rep-

resents an action leading to the state. Each node contains at least an average

value and a visit count. MCTS consists of four main steps namely selection,

expansion, simulation and back-propagation repeated many times within avail-

able resources. In the selection step, the tree is traversed from the root until a

non-terminal node with unvisited action is reached. A new child node is added

for the unvisited action in the expansion step. In the simulation step, a simu-

lation is run from the child node to produce an outcome. The traversed nodes

including the child node are updated with values from the outcome in the back-

propagation step. Ultimately, the move made is the best child of the root node,

which is usually the child node with the highest average value or highest visit

count. The process is depicted in Figure 4.1, from [50].

Figure 4.1: MCTS [50]

4.2.1 Algorithm Description

Assignment by slot (maximal matching for room assignment) is generally more

effective compared to assignment by place as evident in GCH. Therefore, we

employ assignment by slot in our MCTS implementation. The Node and Action

class definition used are given in Figure 4.2.
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Figure 4.2: Node and Action class definition

The MCTS procedure is shown in Algorithm 20. The initial solution initial,

is set to best. The list E is set to unassignedE. The best cost f(best) is initialized

to the # of events in E. A node is created as the root. The exploration continues

until a feasible solution is found (unassignedE is empty) or the elapsed time

exceeds runtime. At the beginning of each exploration, current solution is set

to initial, remainingE list is set to events in E and visitedNode list is set to

empty. The root is added to visitedNode. visitedNode is used to keep nodes

visited during tree traversal.

Algorithm 20

1: procedure mcts(best, unassignedE )
2: initial← best
3: E ← unassignedE
4: f(best)← |E|
5: create a node, root
6: while unassignedE is not empty AND time.elapsed() < runtime do
7: current← initial
8: remainingE ← E
9: visitedNode← empty

10: visitedNode← visitedNode ∪ root
11:

12: treeGrowth(current, root, visitedNode, remainingE )
13: reward ← simulation(current, best, f(best), unassignedE, remain-

ingE, E )
14: backpropagation(reward, visitedNode)
15: end while
16: end procedure

In the treeGrowth procedure (Algorithm 21) , the root is set as the cur-
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rent node, currentNode. While currentNode is not leaf node, one of the children

of currentNode is selected by the selection procedure (Algorithm 26) as the

current node. It is then added to visitedNode. The event of currentNode is

assigned to current according to the slot of currentNode. That event of cur-

rentNode is then removed from remainingE. If the currentNode is leaf node, we

try to expand the tree from the leaf node. Possible actions are selected by the

getActions procedure (Algorithm 27) and kept in the list of actions, A. If

A is not empty, all actions in A are added as the children of currentNode by

the expansion procedure (Algorithm 30). One of the children will be chosen

randomly as the child node, childNode. It is added to visitedNode. The event of

childNode is assigned to current according to the slot of childNode. The event

of childNode is then removed from remainingE.

Algorithm 21

1: procedure treeGrowth(current, root, visitedNode, remainingE )
2: currentNode← root
3: while currentNode is not leaf do
4: currentNode← selection(currentNode)
5: visitedNode← visitedNode ∪ currentNode
6: current← current ∪ currentNode.event . currentNode.slot
7: remainingE ← remainingE − currentNode.event
8: end while
9: A← getActions(remainingE, current)

10: if A is not empty then
11: expansion(currentNode, A)
12: childNode← select one of currentNode.children randomly
13: visitedNode← visitedNode ∪ childNode
14: current← current ∪ childNode.event . childNode.slot
15: remainingE ← remainingE − childNode.event
16: end if
17: end procedure

In the simulation procedure (Algorithm 22), events are assigned to slots in

current according to graph coloring heuristics. From experience in previous sec-

tion, DSR is the most effective heuristic and therefore is used for event and slot

selection. Events without any compatible slot are kept in unplacedE. f(current)

is calculated as the # of events in unplacedE. If f(current) is better than f(best),

best, f(best) and unassignedE are updated. Reward is defined as the ratio of

assigned events to # of events. Reward in the range of 0 to 1 is returned.
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Algorithm 22

1: procedure simulation(current, best, f(best), unassignedE, remainingE,
E )

2: size← |remainingE|
3: for i = 1 to size do
4: event← selectEvent(remainingE, current)
5: slot← selectSlot(event, remainingE, current)
6: if slot available then
7: current← current ∪ event . assign event to slot
8: else
9: unplacedE ← unplacedE ∪ event

10: end if
11: remainingE ← remainingE − event
12: end for
13: f(current)← |unplacedE|
14: if f(current) < f(best) then
15: best← current
16: f(best)← f(current)
17: unassignedE ← unplacedE
18: end if
19: return |E|−|unplacedE|

|E|
20: end procedure

Algorithm 23

1: procedure selectEvent(remainingE, current)
2: return an event in remainingE according to heuristics.
3: end procedure

Algorithm 24

1: procedure selectSlot(event, remainingE, current)
2: return a slot that is suitable for event.
3: end procedure

In the backpropagation procedure (Algorithm 25), the visit and value

property of each node in visitedNode are updated. The visit count is incre-

mented while the value is updated as the cumulative mean of reward.
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Algorithm 25

1: procedure backpropagation(reward, visitedNode)
2: for all node in visitedNode do
3: node.updateVisit()
4: node.updateValue(reward)
5: end for
6: end procedure

The selection, getActions and expansion procedures mentioned earlier

are described in details below. In the selection procedure (Algorithm 26), a

child among the children of currentNode with max UCB value is returned. B is

a constant that is used to balance between exploration and exploitation of the

search. When B is set higher, the less frequent visited nodes are given more

priority. B is set as 0.0001.

Algorithm 26

1: procedure selection(currentNode)

2: return arg maxi∈children of currentNode valuei +B
√

ln visitcurrentNode

visiti

3: end procedure

In the getActions procedure (Algorithm 27), we employ several graph

coloring heuristics to filter the possible actions to prevent the tree from getting

too broad. In effect, the tree is pruned based on heuristics. Note that an action

consists of an event and a slot.

Algorithm 27

1: procedure getActions(remainingE, current)
2: A← empty
3: E ← getEvents(remainingE, current)
4: for all e in E do
5: S ← getSlots(e, remainingE, current)
6: for all s in S do
7: A← A ∪ action(e, s)
8: end for
9: end for

10: return A
11: end procedure
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Algorithm 28

1: procedure getEvents(remainingE, current)
2: return events in remainingE according to heuristics.
3: end procedure

Algorithm 29

1: procedure getSlots(e, remainingE, current)
2: return slots that are suitable for e.
3: end procedure

In the expansion procedure (Algorithm 30), all actions in A are added

as children of currentNode. Our implementation is different from the general

MCTS where a child node is added whenever an unvisited action is encountered.

Instead, multiple nodes are added. We intend to save computation cost at the

expense of some memory.

Algorithm 30

1: procedure expansion(currentNode, A)
2: add all actions in A as children of currentNode
3: end procedure

4.2.2 Experimental Results

4.2.2.1 Comparing Random Simulation and Heuristics Based Simu-

lation

To make the simulation in MCTS more realistic, domain knowledge is incor-

porated into the play-outs [69, 163]. In this section, we compare the results of

random simulation (random selection of events and slots) with heuristic based

simulation. Dynamic Search Rearrangement (DSR) is used as it is the most

effective heuristic as seen in the previous section.

100% feasibility is achieved for Socha and ITC02 instances when a heuristic is

applied in the simulation phase of MCTS as shown in Table 4.5 and 4.6. MCTS

with heuristic based simulation also performs better than MCTS with random

simulation for all the ITC07 instances as shown in Table 4.7. Dash symbols in

Table 4.6 and 4.7 indicate no result is available as the algorithm encountered in-

sufficient heap memory in the tree growth phase of MCTS (even after extending
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the default size from 256Mb to 1.5Gb). An error message was prompted indi-

cating that the allocated 1.5Gb heap memory was exhausted during the runs.

Note that the tree is expanded by using all the possible actions (each action

involves assigning an event to a slot). On average, heuristic based simulation

improves the results of random simulation for all the datasets considered.

Simulation
Instance Random DSR
S1 0(0.00) 0(0.00)
S2 0(0.00) 0(0.00)
S3 0(0.00) 0(0.00)
S4 0(0.00) 0(0.00)
S5 0(0.00) 0(0.00)
M1 3(4.42) 0(0.00)
M2 5(6.06) 0(0.00)
M3 8(10.71) 0(0.00)
M4 2(3.71) 0(0.00)
M5 10(13.10) 0(0.00)
L 34(35.94) 0(0.00)
Avg. (6.72) (0.00)

Table 4.5: Comparison between random and heuristics based simulation on
Socha instances. Depicted is best(mean) of unassigned events. n=31 runs.
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Simulation
Instance Random DSR
1 12(14.52) 0(0.00)
2 9(10.74) 0(0.00)
3 10(11.48) 0(0.00)
4 18(20.16) 0(0.00)
5 - 0(0.00)
6 - 0(0.00)
7 9(10.68) 0(0.00)
8 10(12.71) 0(0.00)
9 6(10.35) 0(0.00)
10 14(17.13) 0(0.00)
11 13(15.29) 0(0.00)
12 17(19.26) 0(0.00)
13 13(15.26) 0(0.00)
14 15(16.06) 0(0.00)
15 13(14.52) 0(0.00)
16 2(5.68) 0(0.00)
17 - 0(0.00)
18 7(10.00) 0(0.00)
19 12(13.90) 0(0.00)
20 5(6.35) 0(0.00)
Avg. (13.18) (0.00)

Table 4.6: Comparison between random and heuristics based simulation on
ITC02 instances. Depicted is best(mean) of unassigned events. n=31 runs.
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Simulation
Instance Random DSR
1 67(73.39) 14(15.90)
2 - 20(25.19)
3 - 0(0.00)
4 - -
5 - -
6 - 2(5.55)
7 - -
8 - 0(0.00)
9 76(78.97) 22(24.77)
10 86(89.58) 29(32.58)
11 - 0(0.00)
12 - -
13 - 7(9.39)
14 - -
15 - 0(0.00)
16 - 0(0.00)
17 - 0(0.00)
18 - -
19 - -
20 34(36.58) 0(0.00)
21 65(67.23) 2(3.35)
22 127(131.39) 52(54.58)
23 - -
24 - -
Avg. (79.52) (11.42)

Table 4.7: Comparison between random and heuristics based simulation on
ITC07 instances. Depicted is best(mean) of unassigned events. n=31 runs.

4.2.2.2 Tree Pruning Based on Heuristics

To solve the memory problem encountered earlier, we try to prune the tree in

MCTS. Only certain actions (an action involves assigning an event to a slot) are

considered in expanding the tree instead of all actions as in the previous section.

In this section, we compare several heuristic based pruning mechanisms. The

idea is drawn from the work in [100, 96, 14] where domain knowledge was utilized

for pruning. The descriptions of the heuristics are presented in Table 4.8 based

on Algorithm 27. Note that simulation based on DSR is used as it is more

effective as shown previously.
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Heuristics Description
DSR getEvents procedure returns a set of events with the

least number of suitable slots, E={e1, e2, ...em}.
For each em in E, getSlots procedure returns slots suit-
able for em and fit the least number of remaining events,
S={s1, s2, ...sn}.
Each action(em, sn) is added into a list for use in tree
expansion.

LD-All getEvents procedure returns a set of events with
the highest number of clashes with other events,
E={e1, e2, ...em}.
For each em in E, getSlots procedure returns all slots
suitable for em, S={s1, s2, ...sn}.
Each action(em, sn) is added into a list for use in tree
expansion.

MV-All getEvents procedure returns a set of events with the
least number of suitable slots, E={e1, e2, ...em}.
For each em in E, getSlots procedure returns all slots
suitable for em, S={s1, s2, ...sn}.
Each action(em, sn) is added into a list for use in tree
expansion.

SD-All getEvents procedure returns a set of events with
the highest number of clashes with other events,
E2={e1, e2, ...em} where E2 ⊂ E1 and E1={events with
the least number of suitable slots}.
For each em in E2, getSlots procedure returns all slots
suitable for em, S={s1, s2, ...sn}.
Each action(em, sn) is added into a list for use in tree
expansion.

Table 4.8: Tree Pruning Heuristics

For Socha and ITC02 instances, 100% feasibility is achieved for all the heuris-

tics tested for tree pruning as shown in Table 4.9 and 4.10. In fact the same

feat is achieved even when no pruning is used as shown in the previous section

indicating that these datasets are easy.
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Tree Pruning
Instance DSR LD-All MV-All SD-All
S1 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S2 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S3 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S4 0(0.00) 0(0.00) 0(0.00) 0(0.00)
S5 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M1 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M2 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M3 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M4 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M5 0(0.00) 0(0.00) 0(0.00) 0(0.00)
L 0(0.00) 0(0.00) 0(0.00) 0(0.00)
Avg. 0(0.00) 0(0.00) 0(0.00) 0(0.00)

Table 4.9: Comparison among tree pruning heuristics on Socha instances. De-
picted is best(mean) of unassigned events. n=31 runs.

Tree Pruning
Instance DSR LD-All MV-All SD-All
1 0(0.00) 0(0.00) 0(0.00) 0(0.00)
2 0(0.00) 0(0.00) 0(0.00) 0(0.00)
3 0(0.00) 0(0.00) 0(0.00) 0(0.00)
4 0(0.00) 0(0.00) 0(0.00) 0(0.00)
5 0(0.00) 0(0.00) 0(0.00) 0(0.00)
6 0(0.00) 0(0.00) 0(0.00) 0(0.00)
7 0(0.00) 0(0.00) 0(0.00) 0(0.00)
8 0(0.00) 0(0.00) 0(0.00) 0(0.00)
9 0(0.00) 0(0.00) 0(0.00) 0(0.00)
10 0(0.00) 0(0.00) 0(0.00) 0(0.00)
11 0(0.00) 0(0.00) 0(0.00) 0(0.00)
12 0(0.00) 0(0.00) 0(0.00) 0(0.00)
13 0(0.00) 0(0.00) 0(0.00) 0(0.00)
14 0(0.00) 0(0.00) 0(0.00) 0(0.00)
15 0(0.00) 0(0.00) 0(0.00) 0(0.00)
16 0(0.00) 0(0.00) 0(0.00) 0(0.00)
17 0(0.00) 0(0.00) 0(0.00) 0(0.00)
18 0(0.00) 0(0.00) 0(0.00) 0(0.00)
19 0(0.00) 0(0.00) 0(0.00) 0(0.00)
20 0(0.00) 0(0.00) 0(0.00) 0(0.00)
Avg. 0(0.00) 0(0.00) 0(0.00) 0(0.00)

Table 4.10: Comparison among tree pruning heuristics on ITC02 instances.
Depicted is best(mean) of unassigned events. n=31 runs.
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For ITC07 instances, memory problems are no longer encountered when

tree pruning is used. Table 4.11 shows the maximum heap memory committed

during 31 runs for each problematic instance in the previous section. Obviously,

the maximum heap memory committed is far below the allocated size of 1.5Gb.

Note that the heap memory sizes are measured using Java Monitoring and

Management Console, a utility supplied by Java Development Kit (JDK).

Instance Maximum Heap Memory Committed (Mb)
4 27.24
5 130.57
7 24.08
12 56.40
14 147.10
18 27.82
19 158.65
23 178.08
24 134.30

Table 4.11: The maximum heap memory (Mb) committed during 31 runs for
selected ITC07 instances.

MV-All is the most effective pruning heuristic where feasible solutions are

found for all instances except instances 1, 2, 9, 10 and 22 as shown in Table 4.12.

Interestingly, this is consistent with the result of a Constraint Programming

approach [41] which was unable to find feasible solutions for instances 1, 2, 9

and 10. Instance 22 was not considered by the author. Generally, better results

are observed when pruning is used regardless of heuristics used. Tree size is

greatly reduced with pruning. As a result, pruning allows the search to focus

more time on better choices by eliminating obviously poor choices.
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Tree Pruning
Instance DSR LD-All MV-All SD-All
1 3(6.94) 3(7.13) 3(6.39) 3(6.87)
2 7(12.77) 11(16.77) 6(11.19) 9(12.13)
3 0(0.00) 0(0.00) 0(0.00) 0(0.00)
4 0(0.00) 0(0.00) 0(0.00) 0(0.00)
5 0(1.84) 0(0.23) 0(0.03) 0(0.16)
6 0(0.90) 0(0.61) 0(0.29) 0(0.42)
7 0(0.13) 0(0.00) 0(0.00) 0(0.03)
8 0(0.00) 0(0.00) 0(0.00) 0(0.00)
9 10(14.39) 13(17.61) 14(16.97) 9(15.16)
10 14(18.74) 17(24.48) 15(19.71) 16(21.77)
11 0(0.00) 0(0.00) 0(0.00) 0(0.00)
12 0(1.35) 0(0.00) 0(0.00) 0(0.06)
13 0(2.58) 1(2.29) 0(1.13) 0(1.26)
14 1(3.29) 0(1.55) 0(0.84) 0(2.19)
15 0(0.10) 0(0.06) 0(0.00) 0(0.00)
16 0(0.00) 0(0.00) 0(0.00) 0(0.00)
17 0(0.00) 0(0.00) 0(0.00) 0(0.00)
18 0(0.68) 0(0.00) 0(0.00) 0(0.00)
19 6(10.61) 1(3.16) 0(2.77) 4(8.26)
20 0(0.00) 0(0.00) 0(0.00) 0(0.00)
21 0(0.74) 0(1.03) 0(1.10) 0(0.39)
22 28(34.87) 46(49.06) 41(44.68) 31(40.45)
23 2(8.77) 7(13.97) 0(6.16) 2(9.23)
24 1(4.42) 0(0.35) 0(0.06) 0(1.61)
Avg. (5.13) (5.76) (4.64) (5.00)

Table 4.12: Comparison among tree pruning heuristics on ITC07 instances.
Depicted is best(mean) of unassigned events. n=31 runs.

We tested several values for B as given in Table 4.13. Note that tree pruning

based on heuristics (MV-All) and simulation based on DSR are used here. The

value of B determines the exploration and exploitation of the MCTS. A higher

value will allow the search to explore more and exploit less relatively. For the

search to work effectively, different values of B (exploration and exploitation)

are required for different instances.
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Values of B
Instance 0.00001 0.0001
1 3(6.52) 3(6.39)
2 7(11.32) 6(11.19)
3 0(0.00) 0(0.00)
4 0(0.00) 0(0.00)
5 0(0.03) 0(0.03)
6 0(0.23) 0(0.29)
7 0(0.00) 0(0.00)
8 0(0.00) 0(0.00)
9 8(16.26) 14(16.97)
10 16(19.52) 15(19.71)
11 0(0.00) 0(0.00)
12 0(0.00) 0(0.00)
13 0(0.81) 0(1.13)
14 0(0.87) 0(0.84)
15 0(0.00) 0(0.00)
16 0(0.00) 0(0.00)
17 0(0.00) 0(0.00)
18 0(0.00) 0(0.00)
19 0(3.03) 0(2.77)
20 0(0.00) 0(0.00)
21 0(0.97) 0(1.10)
22 39(44.74) 41(44.68)
23 1(5.55) 0(6.16)
24 0(0.26) 0(0.06)
Avg. (4.59) (4.64)

Table 4.13: The results of setting different values for B on ITC07 instances.
Depicted is best(mean) of unassigned events. n=31 runs.

4.2.2.3 Extended Runtime for MCTS

We extended the runtime for MCTS on selected ITC07 instances which we

could not find a feasible solution previously. As shown in Table 4.14, the results

improve when the runtime is extended for both values of B. In addition, the

appropriate value of B for MCTS to work effectively depends on the allocated

runtime. The value of 0.00001 seems to be more effective for the shorter runtime

whereas 0.0001 is more suitable for the longer runtime. With extended runtime

of 5T and B=0.0001, MCTS was able to find feasible solutions for instances 1,

2 and 9. However, it still could not a find feasible solution for instances 10 and

22.
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Values of B
0.00001 0.0001
runtime runtime

Instance T 5T T 5T
1 3(6.52) 0(1.10) 3(6.39) 0(1.10)
2 7(11.32) 0(3.52) 6(11.19) 0(2.97)
9 8(16.26) 2(7.13) 14(16.97) 0(5.87)
10 16(19.52) 6(10.13) 15(19.71) 5(9.81)
22 39(44.74) 21(29.29) 41(44.68) 19(28.23)
Avg. (19.67) (10.23) (19.79) (9.59)

Table 4.14: Comparison between MCTS with runtime of T and 5T for selected
ITC07 instances. Depicted is best(mean) of unassigned events. n=31 runs.

4.3 Tabu Search (TS)

TS selects the best admissible neighborhood move (non-tabu or allowed by as-

piration). The move with the lowest cost function is selected even if it increases

the cost function of the current solution. If the current solution is better than

the best solution, the best solution is updated. The reversal of the selected

move is then set tabu for some time to prevent cycling.

4.3.1 Algorithm Description

PARTIALCOL [22], which was initially used for solving graph coloring problems,

was adapted by [53], [169] and [118] in solving course timetabling problems. The

TS procedure, presented in Algorithm 31, is based on PARTIALCOL. A neigh-

bor move involves moving an event from the list of unplaced events unplacedE

to a time slot in the current solution current. At the start of each iteration, all

the neighborhood moves are evaluated (line 7-21) by considering all non-tabu

suitable time slots for all the events in unplacedE.

Event e is temporarily removed from unplacedE. To feasibly move e into a

particular time slot, events conflicting with e (violated clash or precedence con-

straint) are temporarily moved from current to unplacedE. By comparison, [118]

only removed events which violated a clash constraint from the time slots. As

maximal matching is computationally expensive, it is used for room assignment

only when necessary. If matching could not find a room for the event under
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consideration, a room is chosen randomly from among the suitable rooms and

the related event is moved from current to unplacedE.

Algorithm 31

1: procedure TS(best, unassignedE )
2: unplacedE ← unassignedE
3: current← best
4: f(best)← f(current)
5: while unplacedE is not empty AND time.elapsed() < runtime do
6: min←∞
7: for all e ∈ unplacedE do
8: unplacedE ← unplacedE − e
9: for all s ∈ S | S non-tabu slot suitable for e do

10: current← current− {events conflicting e}
11: unplacedE ← unplacedE ∪ {events conflicting e}
12: if f(candidate) < min then
13: bestEvent← e
14: bestSlot← s
15: min← f(candidate)
16: end if
17: unplacedE ← unplacedE − {events conflicting e}
18: current← current ∪ {events conflicting e}
19: end for
20: unplacedE ← unplacedE ∪ e
21: end for
22: current← current− {events conflicting bestEvent}
23: current← current ∪ bestEvent . bestSlot
24: f(current)← min
25: if f(current) < f(best) then
26: best← current
27: f(best)← f(current)
28: unassignedE ← unplacedE
29: end if
30: set tabu {events conflicting bestEvent} from original time slots
31: unplacedE ← unplacedE − bestEvent
32: unplacedE ← unplacedE ∪ {events conflicting bestEvent}
33: end while
34: end procedure

The cost function f used to evaluate solutions (current, candidate, best) is

based on the number of unplaced events (Equation 4.1):∑
e∈unplacedE

1 (4.1)
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The candidate solution with the lowest number of unplaced events is preferred.

As a comparison, the cost function used in [169] was the number of students

required to attend the unplaced events (Equation 4.2):∑
e∈unplacedE

size[e] (4.2)

The events conflicting with e are moved back from unplacedE to current

before evaluating the next non-tabu suitable time slot for the event under con-

sideration. When all the non-tabu time slots are evaluated, e is placed back to

unplacedE before the next event is considered. Ultimately, the neighbor move

with the lowest candidate cost f(candidate) is recorded as bestEvent and bestSlot.

Events conflicting with bestEvent are extracted from current (line 22). The

best neighbor move is applied where the bestEvent is moved to the bestSlot of

current (line 23). best, f(best) and unassignedE are updated if f(current) is

better than f(best). The events conflicting with bestEvent are set tabu from re-

turning to their original time slots for a number of iterations (line 30) according

to the tabu tenure (Equation 4.3):

random[10) + |unplacedE| (4.3)

where |unplacedE| is the number of unplaced events. A value of 10 is used

in the random element of the tabu tenure length. We use this value as the same

value was used in [22], [118] and [169]. The value works well for all the datasets

that we consider. The value of tabu tenure determines the level of exploration

for the search. When the value of tabu tenure is set too high, most of the avail-

able moves are not reachable and may restrict the search. When the value is

too low, cycling tends to occur which may stall the search.

bestEvent is removed from unplacedE while all the events conflicting with

bestEvent are added to unplacedE. The iteration continues until unplacedE is

empty (feasible solution is found) or the elapsed time exceeds runtime.

4.4 Comparing GCH, MCTS and TS

In this section, we compare the most competitive variant of GCH, MCTS and

TS in terms of average results. The GCH variant compared here is based on
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assignment by slot and the DSR heuristic. Meanwhile, the MCTS variant com-

pared utilizes MV-All heuristics for tree pruning and DSR heuristic for the

simulation phase. Feasible solutions are found for all Socha instances by all

three algorithms as shown in Table 4.15. 100% feasibility is achieved by both

MCTS and TS.

All three algorithms are able to find feasible solutions for all ITC02 instances

as shown in Table 4.16. However, only MCTS manages to obtain 100% feasibil-

ity for all the instances. TS achieves 100% feasibility for all the instances except

instance 7 (87%).

Results comparison for ITC07 instances is given in Table 4.17. TS is the

only algorithm capable of finding feasible solutions for all the instances. GCH

found feasible solutions for 5 out of the 24 instances (instances 3, 8, 16, 17

and 20). Meanwhile, MCTS found feasible solutions for all the instances except

instances 1, 2, 9, 10 and 22. In fact, none of the algorithms are able to achieve

100% feasibility for all the instances. TS performed well with 100% feasibility

for all the instances except instances 11, 19 and 23.

100



GCH (Slot DSR) MCTS TS
Unassigned Unassigned Unassigned

Instance Fea.(%) best mean Fea.(%) best mean Fea.(%) best mean
S1 100 0 0.00 100 0 0.00 100 0 0.00
S2 100 0 0.00 100 0 0.00 100 0 0.00
S3 100 0 0.00 100 0 0.00 100 0 0.00
S4 100 0 0.00 100 0 0.00 100 0 0.00
S5 100 0 0.00 100 0 0.00 100 0 0.00
M1 6 0 5.00 100 0 0.00 100 0 0.00
M2 29 0 2.55 100 0 0.00 100 0 0.00
M3 74 0 0.48 100 0 0.00 100 0 0.00
M4 10 0 3.52 100 0 0.00 100 0 0.00
M5 71 0 0.68 100 0 0.00 100 0 0.00
L 3 0 6.48 100 0 0.00 100 0 0.00

Table 4.15: Comparison among GCH, MCTS and TS on Socha instances. n=31 runs.
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GCH (Slot DSR) MCTS TS
Unassigned Unassigned Unassigned

Instance Fea.(%) best mean Fea.(%) best mean Fea.(%) best mean
1 84 0 0.23 100 0 0.00 100 0 0.00
2 100 0 0.00 100 0 0.00 100 0 0.00
3 81 0 0.39 100 0 0.00 100 0 0.00
4 10 0 7.26 100 0 0.00 100 0 0.00
5 97 0 0.03 100 0 0.00 100 0 0.00
6 74 0 0.74 100 0 0.00 100 0 0.00
7 100 0 0.00 100 0 0.00 87 0 0.13
8 90 0 0.29 100 0 0.00 100 0 0.00
9 81 0 0.42 100 0 0.00 100 0 0.00
10 42 0 1.16 100 0 0.00 100 0 0.00
11 10 0 4.68 100 0 0.00 100 0 0.00
12 87 0 0.19 100 0 0.00 100 0 0.00
13 60 0 0.77 100 0 0.00 100 0 0.00
14 100 0 0.00 100 0 0.00 100 0 0.00
15 100 0 0.00 100 0 0.00 100 0 0.00
16 32 0 2.48 100 0 0.00 100 0 0.00
17 71 0 0.65 100 0 0.00 100 0 0.00
18 97 0 0.03 100 0 0.00 100 0 0.00
19 65 0 0.94 100 0 0.00 100 0 0.00
20 100 0 0.00 100 0 0.00 100 0 0.00

Table 4.16: Comparison among GCH, MCTS and TS on ITC02 instances. n=31 runs.
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GCH (Slot DSR) MCTS TS
Unassigned Unassigned Unassigned

Instance Fea.(%) best mean Fea.(%) best mean Fea.(%) best mean
1 0 26 34.29 0 3 6.39 100 0 0.00
2 0 36 45.03 0 6 11.19 100 0 0.00
3 10 0 4.35 100 0 0.00 100 0 0.00
4 0 4 9.94 100 0 0.00 100 0 0.00
5 0 13 20.42 97 0 0.03 100 0 0.00
6 0 11 20.26 72 0 0.29 100 0 0.00
7 0 6 11.87 100 0 0.00 100 0 0.00
8 3 0 4.97 100 0 0.00 100 0 0.00
9 0 32 43.26 0 14 16.97 100 0 0.00
10 0 43 53.29 0 15 19.71 100 0 0.00
11 0 1 7.10 100 0 0.00 87 0 0.26
12 0 4 14.26 100 0 0.00 100 0 0.00
13 0 17 25.26 23 0 1.13 100 0 0.00
14 0 16 24.81 42 0 0.84 100 0 0.00
15 0 5 9.97 100 0 0.00 100 0 0.00
16 10 0 2.39 100 0 0.00 100 0 0.00
17 42 0 1.26 100 0 0.00 100 0 0.00
18 0 10 17.61 100 0 0.00 100 0 0.00
19 0 23 30.23 6 0 2.77 81 0 0.29
20 13 0 2.52 100 0 0.00 100 0 0.00
21 0 10 14.65 13 0 1.10 100 0 0.00
22 0 63 74.16 0 41 44.68 100 0 0.00
23 0 40 52.81 3 0 6.16 94 0 0.06
24 0 13 21.94 94 0 0.06 100 0 0.00

Table 4.17: Comparison among GCH, MCTS and TS on ITC07 instances. n=31 runs.
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4.5 Discussion

Assignment by slot is more effective than assignment by place as evident in the

GCH implementation. Therefore, our MCTS implementation is designed based

on assignment by slot. Events are assigned to empty rooms. Maximal matching

is used for room assignment only when necessary.

We faced heap memory problem when the tree is expanded by all the possi-

ble actions at one time. In fact, we decided to do so instead of expanding the

tree by one action at a time to save computational cost. This is essential as

the timetabling problem that we are solving is constrained by a time limit, due

to competition rules. We addressed the heap memory problem by pruning the

tree, based on heuristics. Tree pruning limits the number of nodes added to the

tree (hence heap memory utilization) but it may also cut off the paths to good

solutions.

MCTS works best for games like Go but not for timetabling problem. MCTS

lacks the flexibility offered by local search algorithms (e.g. TS). In each explo-

ration of MCTS, events are assigned sequentially in a constructive manner where

moves made cannot be undone or redone. This fits well for games such as Go but

not for timetabling where events are allowed to be unassigned and reassigned.

In effect, the connectivity of search space provided by MCTS is inferior to that

of a local search for timetabling problem.

The rigid tree structure of MCTS also limits the effort to hybridize the al-

gorithm with local search. In fact, local search played a vital role in obtaining

good results for similar learning based algorithm (ACO).

The time limit imposed on timetabling problems also restrict the use of

learning based algorithms (MCTS) which usually require reasonable computa-

tional resources to perform effectively.
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4.6 Conclusion

We compared several graph coloring heuristics (LD, SD, DSR) using two types

of assignments, namely assignment by place and assignment by slot. We found

that the variant based on slot assignment and DSR heuristic is the most effective

in terms of average means of unassigned events for all the datasets considered.

We compared random and heuristic based simulation (DSR) for the simula-

tion part of MCTS. It seems heuristic based simulation is better than random

simulation. Heuristics make simulation more realistic compared to random sim-

ulation where events and slots are selected randomly.

We tested several tree pruning heuristics (DSR, LD-All, MV-All and SD-All).

Tree pruning improves the effectiveness of MTCS in finding feasible solutions in

terms of average number of unassigned events. Empirical results also show that

MV-All worked best among the heuristics tested.

We compared the best variant of GCH, MCTS and TS in finding feasible

solutions. MCTS worked well for Socha and ITC02 instances but was lacking

in terms of performance for ITC07 instances. MCTS could not find a feasible

solution for instances 10 and 22 of ITC07 even with extended runtime. Com-

putational experience shows that the value of B (selection part of MCTS) can

affect the results. For MCTS to work effectively, this value needs to be adjusted

for specific instances. In addition, the suitable value also depends on the run-

time. Overall, TS shows great potential and therefore we decided to focus on

improving the algorithm, which is our focus in the next chapter.
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Chapter 5

Finding Feasibility:

TSSP-ILS Algorithm

In a comparison to GCH and MCTS, TS is the best method in finding feasible

solutions. Therefore, we focus on improving TS. In this chapter, we propose

several enhancements to the algorithm. The work in this chapter has been

published as [88]:

• Say Leng Goh, Graham Kendall, Nasser R. Sabar. Improved Local Search

Approaches to Solve Post Enrolment Course Timetabling Problem. Eu-

ropean Journal of Operational Research, 2017.

and submitted for peer review:

• Say Leng Goh, Graham Kendall, Nasser R. Sabar. A Hybrid Local Search

Approach for Hard Course Timetabling Problem. Information Systems

and Operational Research (INFOR). Under review.

5.1 Tabu Search with Sampling and Perturba-

tion (TSSP)

TS overcomes getting stuck in local optima by selecting the best non-tabu move,

even if it increases the cost function of the current solution. However, TS is

susceptible to cycling which may cause the search to get stuck. Therefore, our

enhancements below are devised with the general aim of alleviating cycling.
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5.1.1 Algorithm Description

The procedure is shown in Algorithm 32. It is important to note that no pa-

rameter tuning is required in this algorithm.
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Algorithm 32

1: procedure TSSP(best, unassignedE )
2: unplacedE ← unassignedE
3: current← best
4: f(best)← f(current)
5: ITER← room3

6: i← 0
7: while unplacedE is not empty AND time.elapsed() < runtime do
8: sampleE ← select S events randomly from unplacedE
9: min←∞

10: for all e ∈ sampleE do
11: unplacedE ← unplacedE − e
12: for all s ∈ S | S non-tabu slot suitable for e do
13: current← current− {events conflicting e}
14: unplacedE ← unplacedE ∪ {events conflicting e}
15: if f(candidate) < min then
16: bestEvent← e
17: bestSlot← s
18: min← f(candidate)
19: end if
20: unplacedE ← unplacedE − {events conflicting e}
21: current← current ∪ {events conflicting e}
22: end for
23: unplacedE ← unplacedE ∪ e
24: end for
25: current← current− {events conflicting bestEvent}
26: current← current ∪ bestEvent . bestSlot
27: f(current)← min
28: if f(current) < f(best) then
29: best← current
30: f(best)← f(current)
31: unassignedE ← unplacedE
32: end if
33: set tabu {events conflicting bestEvent} from original time slots
34: unplacedE ← unplacedE − bestEvent
35: unplacedE ← unplacedE ∪ {events conflicting bestEvent}
36: if i = ITER then
37: perturb(current)
38: i← 0
39: reset tabu list
40: end if
41: i = i+ 1
42: end while
43: end procedure
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Instead of evaluating all the non-tabu time slots for all the events, we only

evaluate the non-tabu time slots for certain sampled events. At the start of the

iteration, S events are selected randomly from unplacedE and added to sampleE

list (line 8). The event sampling size S is set as [0.25% × # of events]. It is

proportional to the # of events, e.g. event sampling size is 1, 2 and 3 for the #

of events between 1-400, 401-800 and 801-1200 respectively.

Rather than using the cost function based solely on the number of unplaced

events to evaluate solutions (current, candidate and best), we propose a novel

cost function f which is based on the number of unplaced events plus the clash

ratio (Eq. 5.1):

∑
e∈unplacedE

1 +
clash[e]

clashSum
(5.1)

where clash[e] is the clash number of e with other events and clashSum is

the total clash number of all events. Effectively, the candidate solution with the

lowest number of unplaced events is preferred and ties broken using the clash

number.

Unlike other implementations which tracked idle iterations before performing

perturbation, we perturbed the current solution at certain iteration intervals

ITER (lines 36-40). If i = ITER, current is perturbed, i is reset to 0 and tabu

list is reset. In the perturb procedure (Algorithm 33), we attempt to move

each assigned event to each time slot (except the time slot currently occupied

by the event) in slotList (shuffled randomly) by using either a Swap or a Kempe

operator. Maximal matching is used sparingly for room assignment. The event

is moved only if the time slot under consideration is suitable for the event (not

violating any hard constraints). Perturbation is used to explore the search space

and does not affect the current solution as no event is extracted. However, when

used too often it may slow down the search of a feasible solution. ITER is set

as room3 (line 5). Essentially, the search is allowed to progress longer when the

search space is larger before perturbation is initiated.
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Algorithm 33

1: procedure perturb(solution)
2: for all e ∈ solution do
3: shuffle(slotList)
4: for all slot ∈ slotList do
5: if random[0, 2) = 1 then
6: if swap(solution, e, slot) then
7: break;
8: end if
9: else

10: if kempe(solution, e, slot) then
11: break;
12: end if
13: end if
14: end for
15: end for
16: end procedure

The neighborhood structures used in the perturb procedure are:

• Swap: A swap is attempted between e with event in each room (room list

shuffled randomly) in slot . A swap is carried out if all the hard constraints

are satisfied.

• Kempe: Kempe chain interchange is attempted [170], [52], [118]. A chain

is built between events in the time slot occupied by e (time slot A) and

events in slot (time slot B). Initially, e is added to the chain. Next, events

in time slot B clashing with e are added to the chain. Next, events in

time slot A clashing with the chained events in time slot B are added to

the chain. Then, events in time slot B clashing with the chained events

in time slot A are added to the chain. The process is repeated until a

complete chain is obtained. Subsequently, the chained events in time slot

A are moved to time slot B and vice versa, assuming that all the hard

constraints are satisfied.

As in TS, the algorithm is exited when a feasible solution is found or the

runtime is exceeded. Therefore, the time or iteration number to find a feasible

solution varies for each instance. The time limit is determined by running a

program1 on the executing machine (our machine is entitled to 190s).

1http://www.idsia.ch/Files/ttcomp2002/ Last accessed: June 13, 2017.
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5.1.2 Experimental Results

5.1.2.1 The Effect of Event Sampling

We compared a few event sampling size S proportional to # of events, in TS on

selected instances. 100% feasibility is achieved for all the proportions on all the

instances tested. However, S=[0.25% × # of events] recorded the lowest time

to feasibility for all the instances as shown in Table 5.1.

Event Sampling Size S
Instance 0.25% × # of Events 0.5% × # of Events 1% × # of Events
Socha-L 0.1868 0.3494 0.4887
ITC02-1 0.0223 0.0481 0.0677
ITC07-1 0.4858 0.8161 1.4368
Hard-S1 0.0061 0.0065 0.0100
Hard-M1 0.0232 0.0355 0.0655
Hard-B1 0.1613 0.2674 0.4971
Avg. 0.1476 0.2538 0.4276

Table 5.1: The results of setting different event sampling size S upon time to
feasibility (s) on selected instances. n=31 runs.

In this section, we compare TS with and without event sampling. Note that

the cost function used here is given in Eq. 4.1. Event sampling size S=[0.25%

× # of events] is compared with no sampling at one continuum end and event

sampling size S=1 at another continuum end. As evident in Table 5.2, TS with

event sampling, regardless of type, is more effective than TS without sampling

for all the datasets in terms of the average number of unassigned events.

Event Sampling Size S
Dataset # of Events No Sampling 1 0.25% × # of Events
Socha 100-400 0.00 0.00 0.00
ITC02 350-440 0.01 0.00 0.00
ITC07 100-600 0.03 0.00 0.00
Hard small 200-225 1.87 1.24 1.27
Hard medium 390-425 1.69 0.35 0.39
Hard big 1000-1075 17.14 11.03 8.56

Table 5.2: Comparison of average number of unassigned events among event
sampling on datasets.

For event sampling size S=[0.25% × # of events], S is equivalent to 1, 2 and

3 for # of events between 1-400, 401-800 and 801-1200 respectively. As the #

111



of events in Socha and Hard small instances are less than or equal to 400, S are

equivalent for both types of event sampling, which is 1. Therefore, the average

results for S=1 and S=[0.25%×# of events], are comparable for these instances.

Meanwhile, the # of events for ITC02, ITC07, Hard medium and Hard big

instances varies between 100-1075. Clearly, event sampling size S=[0.25% × #

of events], is more effective than S = 1 when the # of events is high (Hard big).

The average time to feasibility is shown in Table 5.3. Dash symbols in the table

indicate that no valid average time is available as there are unassigned events.

As TS with event sampling size S=[0.25% × # of events] performs well in

terms of average number of unassigned events and average time to feasibility, it

is used from here on.

Event Sampling Size S
Dataset # of Events No Sampling 1 0.25% × # of Events
Socha 100-400 1.0923 0.0243 0.0326
ITC02 350-440 - - 0.0408
ITC07 100-600 - 0.8040 0.8007
Hard small 200-225 - - -
Hard medium 390-425 - - -
Hard big 1000-1075 - - -

Table 5.3: Comparison of average time to feasibility (s) between TS with and
without event sampling on datasets.

5.1.2.2 The Effect of Cost Functions and Perturbation

We tested several values for ITER as given in Table 5.4. The value of room

recorded the lowest means for all the selected instances. Therefore, it is used

onwards.
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ITER
Instance room room2 room3

Socha-L 0.1345 0.0406 0.0281
ITC02-1 0.1432 0.0381 0.0216
ITC07-1 0.8371 0.4171 0.1671
Hard-S1 0.0245 0.0106 0.0065
Hard-M1 0.0929 0.0265 0.0171
Hard-B1 0.6923 0.1716 0.1481
Avg. 0.3208 0.1174 0.0647

Table 5.4: The results of setting different values for ITER upon time to feasi-
bility (s) on selected instances. n=31 runs.

Next, we compare the effect of using different cost functions with or without

perturbation on TS with event sampling.

Without perturbation, the cost function in Eq. 5.1 is effective in terms of

the average number of unassigned events compared to the other cost functions

for all the datasets, as shown in Table 5.5. Likewise, the cost function is ef-

fective in terms of average time to feasibility when used without perturbation

(Table 5.6). Dash symbols indicate that the average time to feasibility is invalid

because there are unassigned events.

When perturbation is paired with the cost function in Eq. 5.1, TS with event

sampling performs the best where the average number of unassigned events is

the lowest for all the datasets as presented in Table 5.5. In fact, 100% feasibility

is achieved for all the datasets except Hard big. The combination also produces

the lowest average time to feasibility for all the datasets as shown in Table 5.6.

Perturbation did not improve the results for the cost functions in Eq. 4.1

(Hard medium and Hard big instances) and 4.2 (Hard small and Hard big in-

stances) as shown in Table 5.5. The extent of perturbation employed is redun-

dant for these cost functions as both already have good diversification capability.

Consequently, the exploitation capability of the search is weakened.
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Cost Functions
Eq. 4.1 Eq. 4.2 Eq. 5.1

Dataset - Perturbation - Perturbation - Perturbation
Socha 0.00 0.00 0.00 0.00 0.00 0.00
ITC02 0.00 0.00 0.07 0.00 0.00 0.00
ITC07 0.00 0.00 0.00 0.00 0.00 0.00
Hard small 1.27 0.73 0.47 0.69 0.20 0.00
Hard medium 0.39 0.44 0.26 0.07 0.10 0.00
Hard big 8.56 10.82 7.86 8.51 4.19 3.60

Table 5.5: Comparison of average number of unassigned events among cost functions with and without perturbation on datasets.

Cost Functions
Eq. 4.1 Eq. 4.2 Eq. 5.1

Dataset - Perturbation - Perturbation - Perturbation
Socha 0.0326 0.0205 0.0139 0.0146 0.0132 0.0133
ITC02 0.0408 0.0197 - 0.0271 0.0211 0.0190
ITC07 0.8007 0.5612 0.2610 0.3113 0.2021 0.1953
Hard small - - - - - 0.4834
Hard medium - - - - - 0.8211
Hard big - - - - - -

Table 5.6: Comparison of average time to feasibility (s) among cost functions with and without perturbation on datasets.
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5.1.2.3 Comparing TS and TSSP

We compare the performance of TS and TSSP in finding feasible solutions in

terms of the number of unassigned events and average time to feasibility.

For Socha instances, both algorithms performed well with 100% feasibility.

However, TSSP is faster as shown in Table 5.7. On average, the algorithm

managed to find feasible solutions in less than one-tenth of a second. The p

values (less than 0.05) reveal a significant difference between the means (time

to feasibility) of TS and TSSP for all the instances. It is important to note that

as we performed multiple statistical tests, some tests are significant by chance

or false positives, at the p<0.05 level. For example, Socha dataset with 11 in-

stances may have about 0.55 (0.05×11) instance with false positives. Meanwhile,

ITC07 dataset with 24 instances may have about 1.20 (0.05×24) false positives.

Datasets with 20 instances such as ITC02, Hard big, Hard medium and Hard

small may have about 1.00 (0.05×20) false positive each. This condition applies

to all the t-tests performed in this thesis.

Instance TS TSSP t-test (p value)
S1 0.0361 0.0032 0.000
S2 0.0268 0.0019 0.000
S3 0.0290 0.0013 0.000
S4 0.0397 0.0019 0.000
S5 0.0313 0.0019 0.000
M1 2.2906 0.0210 0.000
M2 2.0184 0.0242 0.000
M3 1.9681 0.0194 0.000
M4 1.8355 0.0203 0.000
M5 2.0655 0.0219 0.000
L 1.6742 0.0287 0.000

Table 5.7: Comparison of average time to feasibility (s) between TS and TSSP
on Socha instances. n=31 runs.

For ITC02, TSSP is more effective than TS in terms of feasibility and the

number of unassigned events as shown in Table 5.8. TSSP achieved 100% fea-

sibility for all the instances. As a comparison, TS achieved 100% feasibility

for all the instances except instance 7 (87%). The p value of 0.039 (less than

0.05) reveals a significant difference between the means (unassigned events) of

TS and TSSP for instance 7. Note that the rest of the instances are omitted in

Table 5.8 as they have means equivalent to 0. In addition, TSSP is faster than
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TS as shown in Table 5.9. On average, the algorithm managed to find feasible

solutions in less than one-tenth of a second. The p values (less than 0.05) reveal

a significant difference between the means (time to feasibility) of TS and TSSP

for all the instances. Note that dash symbols in Table 5.9 indicate that the

average time to feasibility is invalid (feasibility is not 100%) and therefore p

value is invalid.

TS TSSP
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
7 87 0 0.13 100 0 0.00 0.039

Table 5.8: Comparison between TS and TSSP on ITC02 instances. n=31 runs.

Instance TS TSSP t-test (p value)
1 1.7419 0.0239 0.000
2 1.7355 0.0200 0.000
3 1.1168 0.0142 0.000
4 1.7348 0.0203 0.000
5 0.6163 0.0103 0.000
6 0.9790 0.0148 0.000
7 - 0.0181 -
8 1.8723 0.0213 0.000
9 1.9865 0.0319 0.000
10 1.5881 0.0232 0.000
11 1.8161 0.0203 0.000
12 1.5023 0.0226 0.000
13 1.5506 0.0177 0.000
14 1.0461 0.0148 0.000
15 1.0119 0.0135 0.000
16 2.1765 0.0339 0.000
17 0.4819 0.0084 0.000
18 1.5652 0.0187 0.000
19 1.4961 0.0200 0.000
20 1.0377 0.0129 0.000

Table 5.9: Comparison of average time to feasibility (s) between TS and TSSP
on ITC02 instances. n=31 runs.

For ITC07, TSSP performed better than TS as shown in Table 5.10. TSSP

managed to achieve 100% feasibility for all the instances. Meanwhile, TS

achieved 100% feasibility for all the instances except instance 11 (87%), in-

stance 19 (81%) and instance 23 (94%). The p value of 0.015 (less than 0.05)
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reveals a significant difference between the means (unassigned events) of TS and

TSSP for instance 19. TSSP is also faster than TS as shown in Table 5.11. The

algorithm managed to obtain feasible solutions in less than one second except

instance 22. The p values (less than 0.05) reveal a significant difference between

the means (time to feasibility) of TS and TSSP for all the instances except

instance 3.

TS TSSP
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
11 87 0 0.26 100 0 0.00 0.053
19 81 0 0.29 100 0 0.00 0.015
23 94 0 0.06 100 0 0.00 0.156

Table 5.10: Comparison between TS and TSSP on ITC07 instances. n=31 runs.

Instance TS TSSP t-test (p value)
1 3.0639 0.1797 0.000
2 10.0226 0.4126 0.000
3 3.1600 0.0055 0.299
4 0.1277 0.0142 0.000
5 1.1787 0.0229 0.000
6 1.1800 0.0281 0.000
7 0.3955 0.0090 0.000
8 0.1310 0.0052 0.000
9 30.1587 0.4516 0.000
10 27.8168 0.8026 0.000
11 - 0.0119 -
12 1.2755 0.0161 0.045
13 1.3423 0.0355 0.000
14 1.2823 0.0313 0.000
15 0.0906 0.0058 0.000
16 0.0855 0.0032 0.000
17 0.0232 0.0013 0.000
18 0.1894 0.0129 0.000
19 - 0.2139 -
20 0.9274 0.0181 0.000
21 1.9823 0.0690 0.000
22 61.9365 2.1113 0.000
23 - 0.1894 -
24 2.0416 0.0371 0.000

Table 5.11: Comparison of average time to feasibility (s) between TS and TSSP
on ITC07 instances. n=31 runs.
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For Hard small instances, TSSP performed relatively better than TS as

shown in Table 5.12. TSSP managed to achieve 100% feasibility for all the

instances. In contrast, TS fails to find feasible solution for instances S7, S12,

S14, S18 and S20. The p values (less than 0.05) reveal a significant difference

between the means (unassigned events) of TS and TSSP for all the instances

except for instances S10 and S19. TSSP is also quicker than TS as shown in

Table 5.13. The p values (less than 0.05) reveal a significant difference between

the means (time to feasibility) of TS and TSSP for all the instances.

TS TSSP
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
S3 16 0 1.39 100 0 0.00 0.000
S5 3 0 2.81 100 0 0.00 0.000
S7 0 1 3.13 100 0 0.00 0.000
S8 6 0 2.74 100 0 0.00 0.000
S9 6 0 1.74 100 0 0.00 0.000
S10 90 0 0.10 100 0 0.00 0.078
S12 0 2 2.03 100 0 0.00 0.000
S13 61 0 0.55 100 0 0.00 0.001
S14 0 4 6.45 100 0 0.00 0.000
S17 35 0 0.84 100 0 0.00 0.000
S18 0 5 7.87 100 0 0.00 0.000
S19 97 0 0.03 100 0 0.00 0.321
S20 0 7 7.71 100 0 0.00 0.000

Table 5.12: Comparison between TS and TSSP on Hard small instances. n=31
runs.
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Instance TS TSSP t-test (p value)
S1 0.1700 0.0081 0.000
S2 0.2371 0.0058 0.000
S3 - 0.0135 -
S4 0.1929 0.0094 0.000
S5 - 0.0406 -
S6 0.2442 0.0071 0.000
S7 - 0.0187 -
S8 - 2.5910 -
S9 - 2.1845 -
S10 - 0.0165 -
S11 0.2290 0.0065 0.000
S12 - 0.0110 -
S13 - 0.2539 -
S14 - 4.3123 -
S15 0.1474 0.0065 0.000
S16 0.1226 0.0077 0.000
S17 - 0.0213 -
S18 - 0.0910 -
S19 - 0.0284 -
S20 - 0.0335 -

Table 5.13: Comparison of average time to feasibility (s) between TS and TSSP
on Hard small instances. n=31 runs.

For Hard medium instances, TSSP is shown to be better in terms of perfor-

mance than TS in Table 5.14. TSSP managed to achieve 100% feasibility for all

the instances. Meanwhile, TS could not find feasible solution for instances M7,

M9, M16 and M20. The p values (less than 0.05) reveal a significant difference

between the means (unassigned events) of TS and TSSP for all the instances

except instance M12. TSSP is also quicker than TS as shown in Table 5.15.

The p values (less than 0.05) reveal a significant difference between the means

(time to feasibility) of TS and TSSP for all the instances except M11.
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TS TSSP
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
M5 90 0 0.13 100 0 0.00 0.098
M7 0 1 3.71 100 0 0.00 0.000
M9 0 1 4.77 100 0 0.00 0.000
M12 97 0 0.06 100 0 0.00 0.321
M13 16 0 2.58 100 0 0.00 0.000
M14 26 0 1.94 100 0 0.00 0.000
M15 48 0 1.45 100 0 0.00 0.000
M16 0 1 4.61 100 0 0.00 0.000
M18 16 0 2.52 100 0 0.00 0.000
M19 10 0 4.90 100 0 0.00 0.000
M20 0 3 7.16 100 0 0.00 0.000

Table 5.14: Comparison between TS and TSSP on Hard medium instances.
n=31 runs.

Instance TS TSSP t-test (p value)
M1 1.0255 0.0229 0.000
M2 1.2877 0.0203 0.000
M3 1.6606 0.0306 0.000
M4 1.7703 0.1316 0.000
M5 - 0.2177 -
M6 4.4906 0.1903 0.000
M7 - 7.1881 -
M8 4.1361 0.0906 0.000
M9 - 6.7658 -
M10 1.3348 0.0168 0.000
M11 7.4665 0.0648 0.144
M12 - 0.0290 -
M13 - 0.2577 -
M14 - 0.0513 -
M15 - 0.3839 -
M16 - 0.3652 -
M17 4.5945 0.0681 0.024
M18 - 0.1448 -
M19 - 0.1900 -
M20 - 0.1923 -

Table 5.15: Comparison of average time to feasibility (s) between TS and TSSP
on Hard medium instances. n=31 runs.

For Hard big instances, TSSP is outstanding compared to TS as presented in
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Table 5.16. 100% feasibility is achieved by TSSP for 14 out of the 20 instances.

TSSP is able to find feasible solution for 15 out of 20 instances. Meanwhile, TS

fails to find feasible solution for 6 out of 20 instances. The p values (less than

0.05) reveal a significant difference between the means (unassigned events) of

TS and TSSP for all the instances except for instances B9 and B15. TSSP is

also faster than TS as shown in Table 5.17. The p values (less than 0.05) reveal

a significant difference between the means (time to feasibility) of TS and TSSP

for all the instances.

TS TSSP
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
B5 6 0 2.35 100 0 0.00 0.000
B6 0 15 19.16 0 2 4.19 0.000
B7 0 48 60.06 0 28 36.65 0.000
B9 97 0 0.03 100 0 0.00 0.321
B10 3 0 2.84 100 0 0.00 0.000
B11 6 0 2.61 100 0 0.00 0.000
B15 81 0 0.81 100 0 0.00 0.068
B16 74 0 0.74 100 0 0.00 0.010
B17 0 37 47.32 0 1 6.23 0.000
B18 0 37 47.32 23 0 1.42 0.000
B19 0 94 113.65 0 7 19.94 0.000
B20 0 38 45.97 0 2 7.16 0.000

Table 5.16: Comparison between TS and TSSP on Hard big instances. n=31
runs.
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Instance TS TSSP t-test (p value)
B1 16.5013 0.1561 0.000
B2 16.9668 0.2865 0.000
B3 19.5135 0.2581 0.000
B4 66.0226 3.8416 0.000
B5 - 26.4042 -
B6 - - -
B7 - - -
B8 64.6487 3.6406 0.000
B9 - 2.3458 -
B10 - 27.2355 -
B11 - 39.0497 -
B12 17.8629 0.2984 0.000
B13 29.0042 0.6887 0.000
B14 20.0426 0.3884 0.000
B15 - 4.5716 -
B16 - 4.9458 -
B17 - - -
B18 - - -
B19 - - -
B20 - - -

Table 5.17: Comparison of average time to feasibility (s) between TS and TSSP
on Hard big instances. n=31 runs.

As TSSP is shown to be more effective, our focus will be on TSSP from here

on.

5.1.2.4 Comparing TSSP with State of the Art Methods

Our method performed generally faster on average time (especially instances

10, 19, 23 and 24) than the Improved PARTIALCOL by Lewis [118] while being

equally effective (100% feasibility) in finding feasible solutions as shown in Table

5.18. As a comparison, the allowed time for Lewis’s method was 247s.
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LS-Colouring [41] I. PARTIALCOL [118] TSSP
Instance Time(s) Fea.(%) Time(s) Fea.(%) Time(s) Fea.(%)
1 7.31 100 0.25 100 0.18 100
2 15.80 100 0.79 100 0.41 100
3 0.47 100 0.02 100 0.01 100
4 0.48 100 0.02 100 0.01 100
5 2.77 100 0.06 100 0.02 100
6 3.47 100 0.08 100 0.03 100
7 0.59 100 0.03 100 0.01 100
8 0.49 100 0.01 100 0.01 100
9 14.78 100 0.68 100 0.45 100
10 53.87 98 2.03 100 0.80 100
11 0.63 100 0.03 100 0.01 100
12 0.73 100 0.04 100 0.02 100
13 3.86 100 0.08 100 0.04 100
14 3.75 100 0.11 100 0.03 100
15 0.60 100 0.01 100 0.01 100
16 0.50 100 0.01 100 0.00 100
17 - - 0.00 100 0.00 100
18 - - 0.02 100 0.01 100
19 - - 0.71 100 0.21 100
20 - - 0.01 100 0.02 100
21 - - 0.08 100 0.07 100
22 - - 3.80 100 2.11 100
23 - - 1.10 100 0.19 100
24 - - 0.18 100 0.04 100

Table 5.18: Comparing TSSP with other solvers on ITC07. n=31 runs.

5.2 Hybrid of TSSP and ILS

In this section, we propose to hybridize TSSP with Iterated Local Search (ILS)

to find feasible solutions. As opposed to the previous setting where we allow

TSSP to run until runtime is exceeded, we now allocate only 3
4 of runtime for

TSSP and the rest for ILS.

5.2.1 Algorithm Description

TSSP-ILS is shown in Algorithm 34.
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Algorithm 34

1: procedure TSSP-ILS(best, unassignedE )
2: TSSP(best, unassignedE )
3: if unassignedE is not empty then
4: ILS(best, unassignedE )
5: end if
6: end procedure

If 3
4 of runtime is exceeded and no feasible solution is found by TSSP (there

are remaining events in unassignedE ), the best solution recorded so far is passed

to ILS for further processing until runtime is exceeded. The algorithm is exited

early whenever a feasible solution is found (unassignedE is empty).

ILS is presented in Algorithm 35. At the start of each iteration, best is

perturbed (line 3) where assigned events are shuffled randomly by using the

perturb procedure given in Algorithm 33. Next, swap is attempted between

each unassigned event e1 in unassignedE with each assigned event e2 in best

(line 4-13). Swap will be carried out if the clash number of e2 is less than

the clash number of e1 and the time slot occupied by e2 is suitable for e1

(not violating any hard constraints). As a result, unassignedE will have a pool

of easier events to be assigned later. unassignedE is sorted by clash number

in descending order (line 14). In effect, harder events will be scheduled first.

Transfer is attempted for each event in unassignedE to each time slot in best

(line 15-22). The event e will be moved to the time slot if no hard constraint

is violated. The iteration stops when unassignedE is empty (feasible solution is

found) or runtime is reached.
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Algorithm 35

1: procedure ILS(best, unassignedE )
2: while unassignedE is not empty AND time.elapsed() < runtime do
3: perturb(best)
4: for all e1 ∈ unassignedE do
5: for all e2 ∈ best do
6: if clash[e2] < clash[e1] then
7: if slot of e2 is suitable for e1 then
8: swap e1 and e2
9: break

10: end if
11: end if
12: end for
13: end for
14: sort unassignedE by the clash number (descending order)
15: for all e ∈ unassignedE do
16: for slot = 1 to 45 do
17: if slot is suitable for e then
18: move e from unassignedE to slot of best
19: break
20: end if
21: end for
22: end for
23: end while
24: end procedure

5.2.2 Experimental Results

5.2.2.1 Comparing TSSP and TSSP-ILS

In this section, we compare the effectiveness of TSSP and TSSP-ILS in finding

feasible solutions. Both methods performed equally well on all the Hard small

and Hard medium instances with 100% feasibility. However, TSSP-ILS is more

effective than TSSP on the Hard big instances in terms of feasibility and the

number of unassigned events as shown in Table 5.19. TSSP-ILS is able to

find feasible solutions for 17 instances compared to 15 for TSSP. It improves

the feasibility % for the instances B6, B17 and B18. In addition, TSSP-ILS

improves the mean of unassigned events for the instances B6, B7, B17, B18, B19

and B20. We conducted a t-test to compare the means between both algorithms

for each instance and the respective p values are given in the last column of the

table. The dash symbols indicates that t cannot be computed for the particular

instance because the standard deviations of both groups are 0 (means are 0).
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The p values (less than 0.05) indicated a significant difference between the means

(unassigned events) of TSSP and TSSP-ILS for all the instances except B18,

B19 and B20. We did not conduct t-test on the Hard small and Hard medium

instances as all means are 0 for both TSSP and TSSP-ILS.

TSSP TSSP-ILS
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean p value
B1 100 0 0.00 100 0 0.00 -
B2 100 0 0.00 100 0 0.00 -
B3 100 0 0.00 100 0 0.00 -
B4 100 0 0.00 100 0 0.00 -
B5 100 0 0.00 100 0 0.00 -
B6 0 2 4.19 16 0 1.87 0.000
B7 0 28 36.65 0 23 29.55 0.000
B8 100 0 0.00 100 0 0.00 -
B9 100 0 0.00 100 0 0.00 -
B10 100 0 0.00 100 0 0.00 -
B11 100 0 0.00 100 0 0.00 -
B12 100 0 0.00 100 0 0.00 -
B13 100 0 0.00 100 0 0.00 -
B14 100 0 0.00 100 0 0.00 -
B15 100 0 0.00 100 0 0.00 -
B16 100 0 0.00 100 0 0.00 -
B17 0 1 6.23 6 0 3.97 0.000
B18 23 0 1.42 48 0 0.84 0.058
B19 0 7 19.94 0 1 16.97 0.155
B20 0 2 7.16 0 2 6.65 0.477

Table 5.19: Comparison between TSSP and TSSP-ILS on Hard big instances.
n=31 runs.

5.2.2.2 Comparing ILS and TSSP-ILS

We also compare the effectiveness of ILS and TSSP-ILS in finding feasible solu-

tions. Obviously, TSSP-ILS is more effective than ILS on all the small, medium

and big instances in terms of feasibility and the number of unassigned events as

shown in Table 5.20, 5.21 and 5.22. The p values of t-test revealed a significant

difference between the means (unassigned events) of ILS and TSSP-ILS for all

the instances except S8.
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ILS TSSP-ILS
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
S1 100 0 0.00 100 0 0.00 -
S2 100 0 0.00 100 0 0.00 -
S3 100 0 0.00 100 0 0.00 -
S4 100 0 0.00 100 0 0.00 -
S5 100 0 0.00 100 0 0.00 -
S6 100 0 0.00 100 0 0.00 -
S7 100 0 0.00 100 0 0.00 -
S8 97 0 0.03 100 0 0.00 0.321
S9 10 0 4.65 100 0 0.00 0.000
S10 100 0 0.00 100 0 0.00 -
S11 100 0 0.00 100 0 0.00 -
S12 100 0 0.00 100 0 0.00 -
S13 45 0 2.52 100 0 0.00 0.000
S14 0 12 20.16 100 0 0.00 0.000
S15 100 0 0.00 100 0 0.00 -
S16 100 0 0.00 100 0 0.00 -
S17 100 0 0.00 100 0 0.00 -
S18 100 0 0.00 100 0 0.00 -
S19 3 0 27.77 100 0 0.00 0.000
S20 100 0 0.00 100 0 0.00 -

Table 5.20: Comparison between ILS and TSSP-ILS on Hard small instances.
n=31 runs.
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ILS TSSP-ILS
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
M1 100 0 0.00 100 0 0.00 -
M2 100 0 0.00 100 0 0.00 -
M3 100 0 0.00 100 0 0.00 -
M4 100 0 0.00 100 0 0.00 -
M5 100 0 0.00 100 0 0.00 -
M6 19 0 11.87 100 0 0.00 0.000
M7 0 72 79.26 100 0 0.00 0.000
M8 0 21 31.71 100 0 0.00 0.000
M9 0 29 40.19 100 0 0.00 0.000
M10 100 0 0.00 100 0 0.00 -
M11 100 0 0.00 100 0 0.00 -
M12 100 0 0.00 100 0 0.00 -
M13 100 0 0.00 100 0 0.00 -
M14 100 0 0.00 100 0 0.00 -
M15 100 0 0.00 100 0 0.00 -
M16 0 57 75.81 100 0 0.00 0.000
M17 100 0 0.00 100 0 0.00 -
M18 0 24 61.32 100 0 0.00 0.000
M19 10 0 42.13 100 0 0.00 0.000
M20 48 0 8.45 100 0 0.00 0.000

Table 5.21: Comparison between ILS and TSSP-ILS on Hard medium instances.
n=31 runs.
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ILS TSSP-ILS
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
B1 100 0 0.00 100 0 0.00 -
B2 100 0 0.00 100 0 0.00 -
B3 100 0 0.00 100 0 0.00 -
B4 100 0 0.00 100 0 0.00 -
B5 100 0 0.00 100 0 0.00 -
B6 0 70 90.13 16 0 1.87 0.000
B7 0 185 191.65 0 23 29.55 0.000
B8 100 0 0.00 100 0 0.00 -
B9 100 0 0.00 100 0 0.00 -
B10 100 0 0.00 100 0 0.00 -
B11 100 0 0.00 100 0 0.00 -
B12 100 0 0.00 100 0 0.00 -
B13 100 0 0.00 100 0 0.00 -
B14 100 0 0.00 100 0 0.00 -
B15 0 130 143.48 100 0 0.00 0.000
B16 100 0 0.00 100 0 0.00 -
B17 0 313 325.48 6 0 3.97 0.000
B18 0 181 195.65 48 0 0.84 0.000
B19 0 301 309.32 0 1 16.97 0.000
B20 0 167 188.23 0 2 6.65 0.000

Table 5.22: Comparison between ILS and TSSP-ILS on Hard big instances.
n=31 runs.

5.2.2.3 Comparing TSSP-ILS with State of the Art Methods

In this section, we compare the performance of TSSP-ILS with the state of the

art methods in the literature. As evident from Table 5.23 and Table 5.24, TSSP-

ILS is superior compared to other methods for Hard small and Hard medium

instances. TSSP-ILS also outperformed other methods for Hard big instances

as shown in Table 5.25. We managed to find feasible solutions for 17 out of the

20 instances using runtime = T (190s). Details of the solvers are given in Table

5.26.
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Solvers
Instance D1 D2 D3 D4 TSSP-ILS
S1 0 0(0.00) 0(0.00) - 0(0.00)
S2 0 0(0.00) 0(0.00) - 0(0.00)
S3 0 0(0.00) 0(0.00) - 0(0.00)
S4 0 0(0.00) 0(0.00) - 0(0.00)
S5 0 0(0.00) 0(0.00) - 0(0.00)
S6 0 0(0.00) 0(0.00) - 0(0.00)
S7 0 0(0.00) 0(0.20) - 0(0.00)
S8 0 0(1.90) 0(0.30) - 0(0.00)
S9 0 0(3.85) 0(0.15) - 0(0.00)
S10 0 0(0.00) 0(0.00) - 0(0.00)
S11 0 0(0.00) 0(0.00) - 0(0.00)
S12 0 0(0.00) 0(0.00) - 0(0.00)
S13 0 0(1.00) 0(0.00) - 0(0.00)
S14 0 3(5.95) 0(0.70) - 0(0.00)
S15 0 0(0.00) 0(0.00) - 0(0.00)
S16 0 0(0.00) 0(0.30) - 0(0.00)
S17 0 0(0.00) 0(0.00) - 0(0.00)
S18 0 0(0.45) 0(0.70) - 0(0.00)
S19 0 0(1.20) 0(0.00) - 0(0.00)
S20 0 0(0.00) 0(0.15) - 0(0.00)

Table 5.23: Comparing TSSP-ILS with other solvers on Hard small instances.
Depicted is best(mean) of unassigned events. n=31 runs.
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Solvers
Instance D1 D2 D3 D4 TSSP-ILS
M1 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M2 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M3 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M4 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M5 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M6 0 0(0.00) 0(0.00) 0(0.90) 0(0.00)
M7 14 1(4.15) 0(3.55) 0(0.00) 0(0.00)
M8 0 0(0.00) 0(0.00) 0(0.30) 0(0.00)
M9 2 0(4.90) 0(2.15) 0(0.35) 0(0.00)
M10 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M11 0 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M12 0 0(0.00) 0(0.00) 0(0.60) 0(0.00)
M13 0 0 (0.50) 0(0.00) 0(0.00) 0(0.00)
M14 0 0(0.00) 0(0.00) 0(0.05) 0(0.00)
M15 0 0(0.05) 0(0.00) 0(0.00) 0(0.00)
M16 1 1(5.15) 0(0.30) 0(0.00) 0(0.00)
M17 0 0(0.00) 0(0.00) 0(0.15) 0(0.00)
M18 0 0(6.05) 0(0.00) 0(0.30) 0(0.00)
M19 0 0(5.45) 0(0.00) 0(0.50) 0(0.00)
M20 3 2(10.60) 0(0.65) 0(0.55) 0(0.00)

Table 5.24: Comparing TSSP-ILS with other solvers on Hard medium instances.
Depicted is best(mean) of unassigned events. n=31 runs.
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Solvers
Instance D1 D2 D3 D4 TSSP-ILS
B1 0 0(0.00) 0(0.00) 0(0.15) 0(0.00)
B2 0 0(0.00) 0(0.00) 0(0.60) 0(0.00)
B3 0 0(0.00) 0(0.00) 0(1.45) 0(0.00)
B4 8 0(0.00) 0(0.00) 0(0.00) 0(0.00)
B5 30 0(1.10) 1(3.20) 0(0.00) 0(0.00)
B6 77 5(8.45) 10(15.40) 1(2.85) 0(1.87)
B7 150 47(58.30) 39(46.65) 21(29.25) 23(29.55)
B8 5 0(0.00) 0(0.00) 0(0.00) 0(0.00)
B9 3 0(0.05) 0(0.00) 0(0.00) 0(0.00)
B10 24 0(1.25) 0(1.95) 0(0.00) 0(0.00)
B11 22 0(0.35) 0(2.35) 0(0.00) 0(0.00)
B12 0 0(0.00) 0(0.00) 0(1.15) 0(0.00)
B13 0 0(0.00) 0(0.00) 0(1.15) 0(0.00)
B14 0 0(0.00) 0(0.00) 0(1.20) 0(0.00)
B15 0 0(0.00) 0(0.00) 1(3.5) 0(0.00)
B16 19 0(2.00) 0(0.00) 0(0.65) 0(0.00)
B17 163 76(89.90) 0(2.05) 12(22.00) 0(3.97)
B18 164 53(62.60) 0(1.70) 8(13.55) 0(0.84)
B19 232 109(127.00) 40(53.20) 37(52.85) 1(16.97)
B20 149 40(46.70) 9(14.05) 11(15.05) 2(6.65)

Table 5.25: Comparing TSSP-ILS with other solvers on Hard big instances.
Depicted is best(mean) of unassigned events. n=31 runs.

Solver Technique Reference
D1 GA Lewis and Paechter
D2 Hybrid SA Tuga et al.
D3 Clique Based Algorithm Liu et al.
D4 SA Ceshia et al.

Table 5.26: Details of solvers applied on Hard instances.

5.2.2.4 Extended Runtime for TSSP-ILS

We run a further set of experiments to gauge the performance of TSSP-ILS using

an extended runtime. When the runtime is doubled to 2T (380s), we are able to

find feasible solutions for 19 of the 20 instances as shown in Table 5.27. In fact,

we managed to obtain best known results for all the instances. In addition, we

conducted a t-test to compare the means of TSSP-ILS with runtime of T and

2T. The p values (less than 0.05) indicates a significant difference between the

means of TSSP-ILS for both runtimes. We further extended the runtime for
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Hard big instances with non zero means (B6, B7, B17, B18, B19 and B20). The

results are illustrated in Figures 5.1-5.6, meanwhile the respective descriptive

statistics are given in Tables 5.28-5.33. Note that the circles and stars in the

box plots are mild and extreme outliers.

runtime=T runtime=2T
Unassigned Unassigned t-test

Instance Fea.(%) best mean Fea.(%) best mean (p value)
B1 100 0 0.00 100 0 0.00 -
B2 100 0 0.00 100 0 0.00 -
B3 100 0 0.00 100 0 0.00 -
B4 100 0 0.00 100 0 0.00 -
B5 100 0 0.00 100 0 0.00 -
B6 16 0 1.87 35 0 1.00 0.006
B7 100 23 29.55 100 21 26.87 0.006
B8 100 0 0.00 100 0 0.00 -
B9 100 0 0.00 100 0 0.00 -
B10 100 0 0.00 100 0 0.00 -
B11 100 0 0.00 100 0 0.00 -
B12 100 0 0.00 100 0 0.00 -
B13 100 0 0.00 100 0 0.00 -
B14 100 0 0.00 100 0 0.00 -
B15 100 0 0.00 100 0 0.00 -
B16 100 0 0.00 100 0 0.00 -
B17 6 0 3.97 19 0 1.45 0.000
B18 48 0 0.84 81 0 0.23 0.004
B19 0 1 16.97 3 0 9.16 0.000
B20 0 2 6.65 6 0 3.35 0.000

Table 5.27: Comparison between TSSP-ILS with runtime of T and 2T for Hard
big instances. n=31 runs.
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Figure 5.1: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B6 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 0 0 0 0 0
Max 5 3 2 2 2
Median 2.00 1.00 0.00 0.00 0.00
Mean 1.87 1.00 0.39 0.35 0.26

Table 5.28: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B-6 instance. n=31 runs.
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Figure 5.2: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B7 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 23 21 19 17 15
Max 38 33 31 31 28
Median 28.00 26.00 25.00 24.00 24.00
Mean 29.55 26.87 24.58 23.74 23.13

Table 5.29: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B7 instance. n=31 runs.
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Figure 5.3: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B17 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 0 0 0 0 0
Max 11 5 5 2 2
Median 3.00 1.00 0.00 0.00 0.00
Mean 3.97 1.45 0.71 0.61 0.32

Table 5.30: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B17 instance. n=31 runs.
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Figure 5.4: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B18 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 0 0 0 0 0
Max 4 2 1 0 0
Median 1.00 0.00 0.00 0.00 0.00
Mean 0.84 0.23 0.03 0.00 0.00

Table 5.31: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B18 instance. n=31 runs.
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Figure 5.5: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B19 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 1 0 0 0 0
Max 43 25 16 16 14
Median 16.00 8.00 5.00 1.00 1.00
Mean 16.97 9.16 5.19 3.39 2.06

Table 5.32: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B19 instance. n=31 runs.
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Figure 5.6: Box plot showing the number of unassigned events for TSSP-ILS
with an extended runtime on Hard-B20 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 2 0 0 0 0
Max 13 8 6 7 3
Median 3.00 3.00 2.00 1.00 0.00
Mean 6.65 3.35 1.90 1.45 0.68

Table 5.33: Descriptive statistics for TSSP-ILS with an extended runtime on
Hard-B20 instance. n=31 runs.

5.3 Discussion

TSSP does not require parameter tuning as the values such as event sampling

size S and ITER in the algorithm are determined automatically based on the

characteristics of the specific instances.

TSSP is not only effective but also fast in finding feasible solutions. In our

opinion, the sampling of events reduces the number of evaluations needed before

a move is made, permitting more moves per time unit.

In our implementation, the sampling ratio (event sampling size : number
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of unassigned events) increases as more events are assigned. For instance, the

event sampling size for 1000 events is 3 (0.0025 × 1000 or 0.25% of the #

of events). The event sampling size is fixed throughout the search. Initially,

the sampling ratio is 0.0025 (0.25%). When the number of unassigned events

decreases to 6, the sampling ratio is 0.5 (50%). When the number of unas-

signed events decreases to 3 or below, the sampling ratio is 1.0 (100%) where

all the events will be selected for evaluation without sampling. Naturally, the

event sampling that we adopted allows the search to switch from diversification

(exploration) to intensification (exploitation) and vice versa depending on the

number of unassigned events.

Meanwhile, the proposed cost function increases the probability of unas-

signed events to be assigned later as they have the least number of clash with

other events.

The perturbation that we proposed attempts to move all assigned events to

random time slots instead of trying to move random assigned events to random

time slots. As a result, a solution is thoroughly perturbed. Ideally, perturbation

should be initiated when cycling (local optima) is detected. Some researchers

perturb the solution after certain idle iterations. However, the solution may be

perturbed prematurely as the search may not be stuck and still looking for good

solution especially when the search space is large. We perturb the solution after

certain intervals proportional to the size of search space. This way, we hope that

the search will be able to examine the current area of the search space thor-

oughly before perturbation is initiated. After perturbation, the search explores

other areas of the search space or possibly escapes from local optima (if the

search is stuck). The importance of perturbation is shown in Figures 5.7 and

5.8. Without perturbation, the search is stuck when cycling occurs (indicated

by idle current cost). As a result, there is one event remains unassigned. On

the contrary, when perturbation is enabled, TSSP found a feasible solution in

an equally seeded run.
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Figure 5.7: TSSP (perturbation disabled) on Hard-M15. The number of unas-
signed event is 1.

0

1

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000

P
e

rt
u

rb
at

io
n

 

H
ar

d
 C

o
st

 

Timeline 

Current

Best

Perturbation

Figure 5.8: TSSP on Hard-M15. The number of unassigned event is 0.

TSSP is good in both exploring and exploiting the search space. The best

solution is further improved by ILS towards the end of the search. ILS guides

the search to operate in the vicinity of the best solution hoping to find the

optimal solution. The local search (first descent) that we employ in ILS is not

only computationally fast, but also exploitative as it only accepts improving

or equal cost solutions. In addition, two operators are used randomly in ILS

namely transfer and swap to ensure the solution space is well connected.
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5.4 Conclusion

We have presented the effect of sampling on TS. TS with event sampling is more

effective than TS without event sampling. Event sampling size S=[0.25% × #

of events], is more effective than event sampling size S = 1, particularly when

the # of events is high. Event sampling size S=[0.25% × # of events] not only

allows more moves per time unit but also naturally varies the diversification

and intensification capability of the algorithm (depending on the the number of

unassigned events) despite the fixed S throughout the search.

We compared the effect of using different cost functions with or without

perturbation on TS with sampling. The novel cost function proposed in Eq.

5.1 performed better than other cost functions used in the scientific literature

regardless of whether perturbation is used.

The results are further improved when the proposed perturbation is paired

with the proposed cost function on TS with event sampling. The proposed

cost function is exploitative, and the proposed perturbation is exploratory. A

good balance between exploration (proposed perturbation) and exploitation

(proposed cost function) for the search is achieved when the perturbation is

initiated at the right time. When perturbation is called too early (more fre-

quent), the search lacks exploitation. Meanwhile if perturbation is initiated too

late (less frequent), the search lacks exploration.

Overall, TSSP is shown to be more effective in finding feasible solutions for

the benchmark timetabling problem compared to TS. The number of unassigned

events and average time to feasibility are presented for all the datasets. In ad-

dition, t-tests are conducted to compare the means for these values between TS

and TSSP. TSSP managed to find 100% feasibility for all Socha, ITC02 and

ITC07 instances in relatively short time compared to existing methods in the

scientific literature.

TSSP is further enhanced by hybridization with ILS. We compared the ef-

fectiveness of TSSP and TSSP-ILS in finding feasible solutions for considerably

hard benchmarked timetabling problems. The method is not only superior to

the performance of either TSSP or ILS alone but also other state of the art
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methods. In addition, significant improvement of result is observed when the

runtime is extended suggesting that TSSP-ILS is extendable. As we have de-

veloped an efficient algorithm in finding feasible solutions, we shift our focus

on improving the soft constraint violations of the feasible solutions in the next

chapter.
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Chapter 6

Improving Quality: SAR

Algorithm

In this chapter, we improve the feasible solutions in terms of soft constraint

violations by using a method based on SA. We do not use Tabu Search (TS)

to improve the soft constraint violations as we feel TS is too restrictive and

may affect the connectivity of search space. Instead, we focus on SA as it has

been very effective in solving combinatorial optimization problems, particularly

timetabling problems. In fact, all state of the art methods for the instances

considered in this work are based on SA. The work in this chapter has been

published as [88]:

• Say Leng Goh, Graham Kendall, Nasser R. Sabar. Improved Local Search

Approaches to Solve Post Enrolment Course Timetabling Problem. Eu-

ropean Journal of Operational Research, 2017.

6.1 SA with Reheating (SAR)

SA generally accepts all improving and equal cost candidate solutions and ac-

cepts worsening candidate solutions with certain probabilities depending on the

current temperature. This property of accepting worsening candidate solutions

enables the search to escape from local optima.

The drawback of SA is the requirement to tune a number of parameters some-

times for a set of benchmark instances and sometimes for specific instances, in
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order to get competitive results. Generally, the parameters which require tuning

are the initial temperature, end temperature, Markov chain length and cooling

rate. Usually, preliminary runs are initiated to gauge the suitable initial tem-

perature (based on standard deviation of the cost) [178].

In geometric cooling, as the temperature gradually decreases, the search

gradually switches from exploring to exploiting the search space. At relatively

high temperatures, the current solution may stray away from the best solu-

tion. Meanwhile, at relatively low temperatures, the search may stall (probably

trapped when most of the worse transitions will be rejected). In both scenarios,

we may observe idle iterations, where no new best is achieved. Some researchers

rely on the idle iteration count to estimate whether the search is stuck in lo-

cal optima before triggering any exploration initiative such as reheating [6] or

channeling the search process to other algorithms [134]. Reheating the temper-

ature after certain idle iterations may not be the best option as it may result in

unnecessary (premature) reheating and affect the exploitation capability of SA.

The algorithm presented below is developed with consideration on these

aspects. We suggest solutions on issues such as the ideal time to reheat and the

level of reheating required in order for the search to escape from local optima.

6.1.1 Algorithm Description

We are proposing an improved Simulated Annealing with Reheating (SAR). The

method is inspired by the idea that when the current cost is high, the search

should explore more and when the current cost is low, the search should exploit

more. In SAR, we rely on the current cost to determine the initial temperature

(rigorous setting of the initial temperature is bypassed) and how much to reheat

when the search is stuck. In fact, we also rely on the current cost to determine

whether the search is stuck in a local optima (inactive current cost through

Markov chains indicates the search is stuck). As the temperature is reheated

when a local optima is estimated at a certain low temperature, the setting of

an end temperature as required in conventional SA is omitted. If the search is

still stuck after the previous reheating, a higher temperature is applied for the

next reheating. We estimate whether the search is still stuck in the previous

local optima by utilising the current and best cost. The approach is novel as

the closest cost based reheating in the literature is based on the best cost and
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specific heat [10, 72]. The details of SAR is shown in Algorithm 36.

Algorithm 36

1: procedure SAR(current, E )
2: temp← f(current)× C
3: heat← 0
4: best← current
5: previousCost← f(current)
6: currentStagnantCount← 0
7: stuckedBestCost← f(current)
8: stuckedCurrentCost← f(current)
9:

10: while current is not optimal AND time.elapsed() < runtime do
11: for all e ∈ E do
12: moved← false
13: for slot = 1 to 45 do
14: ns← selectNeighbourStructure()
15: candidate← getCandidate(current, e, slot, ns)
16: if candidate exists then
17: if random[0,1) ≤ exp(− f(candidate)−f(current)

temp ) then
18: moved← true
19: current← candidate
20: if f(current) < f(best) then
21: best← current
22: end if
23: end if
24: end if
25: if moved then
26: break
27: end if
28: end for
29: end for
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30: if stuck(f(current), previousCost, currentStagnantCount) then
31: if f(best) = stuckBestCost then
32: if f(current)− stuckCurrentCost < 2% then
33: heat = heat+ 1
34: else
35: heat← 0
36: end if
37: else
38: heat← 0
39: end if
40: temp← [heat× 0.2× f(current) + f(current)]× C
41: stuckBestCost← f(best)
42: stuckCurrentCost← f(current)
43: else
44: temp← temp× β
45: end if
46: previousCost← f(current)
47: end while
48: end procedure

Algorithm 37

1: procedure stuck(f(current), previousCost, currentStagnantCount)
2: if f(current)− previousCost < 1% then
3: currentStagnantCount = currentStagnantCount+ 1
4: else
5: currentStagnantCount← 0
6: end if
7: if currentStagnantCount > THRESHOLD then
8: return true
9: else

10: return false
11: end if
12: end procedure

Algorithm 38

1: procedure selectNeighbourStructure( )
2: return a neighbourhood structure selected probalistically (Roulette

Wheel) from a set of neighbourhood structures with predefined composi-
tion.

3: end procedure

At each temperature, a Marcov chain is generated by deterministically try-
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ing to move each event e ∈ E into each time slot (except the time slot currently

occupied by e) using a neighbourhood structure selected probalistically from a

set of neighbourhood structures with predefined composition as shown in Ta-

ble 6.1. Note that the composition is empirically adjusted. We use maximal

matching (only when necessary) for room assignment.

Candidate solutions are feasible solutions which satisfy all the hard con-

straints. If a candidate solution exists, it is evaluated using the acceptance

criterion where the improving and equal cost solution is accepted while the

worsening solution is accepted with a certain probability. If accepted, the can-

didate solution will be set as the current solution. If the current solution is

better than the best, the best solution is updated.

Dataset Neighbourhood Structure Composition (%)
Socha Transfer: 70, Swap: 29, Kempe: 1
ITC02 Transfer: 70, Swap: 29, Kempe: 1
ITC07 Transfer: 70, Swap: 20, Kempe: 10

Table 6.1: Neighbourhood structure composition for dataset

The neighborhood structures used are:

• Transfer: Attempt to transfer e into slot. A feasible transfer is returned

as a candidate for acceptance evaluation.

• Swap: A swap is attempted between e with event in each room (incre-

menting order) in slot. The first feasible swap is returned as a candidate

for acceptance evaluation.

• Kempe: Same as described in section 5.1 except that a candidate is re-

turned for acceptance evaluation.

In our implementation, a number of variables are maintained, namely pre-

viousCost (cost after each Markov chain is completed), currentStagnantCount

(number of consecutive times current cost remains the same), stuckBestCost

(best cost when the search is stuck) and stuckCurrentCost (current cost when

the search is stuck).

The initial temperature is set as the initial cost multiplied by a constant

C. This bypasses the manual setting of an initial temperature which is criti-

cal in conventional SA. The temperature is cooled according to an update rule
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Ti+1 = Ti × β.

After each Marcov chain, we check whether the search is stuck in a local

optima. In the stuck procedure (Algorithm 37), we observe the changes of the

current cost between Markov chains. currentStagnantCount is incremented by

1 if the difference between f(current) and previousCost is less than 1%. Other-

wise, currentStagnantCount is set to 0.

If the search is stuck (currentStagnantCount is more than a THRESHOLD

value set as 5), then the temperature is reheated according to

temp← [heat× 0.2× f(current) + f(current)]× C (6.1)

where C is a constant and heat is the incremental step. For the first re-

heating, heat is usually set to 0 (line 38) thus the temperature is reheated to

f(current) × C before being cooled again until the search is stuck in another

local optima.

If the search is still stuck in the previous local optima (no new best since

the previous reheating AND f(current)− stuckCurrentCost < 2%), then heat

is incremented by 1 (line 33). Essentially, a higher temperature is applied for

the next reheating so that the search can explore more in order to escape from

the previous local optima.

If the search has escaped from the previous local optima ([a new best since

the previous reheating] OR [no new best since the previous reheating AND

f(current)− stuckCurrentCost ≥ 2%]), then heat is set to 0 (line 35 and 38).

In effect, the temperature is reheated to f(current)×C in order for the search

to escape from the current local optima. Note that the setting of end tempera-

ture is omitted as the temperature is reheated when the search is stuck.

The series of cooling and reheating is repeated until an optimal solution is

obtained or the elapsed time exceeds runtime. We set the decay rate β to 0.9995

and the constant C to 0.01. The same settings are used across all instances in

our experiments.
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6.1.2 Experimental Results

6.1.2.1 Comparing Neighborhood Structures

To compare the effect of neighborhood structures, the temperature is cooled

statically without reheating from the initial value until the elapsed time exceeds

the time limit.

In each Marcov chain, we attempt to move a certain number (instance

specific) of randomly selected events. To move each selected event, up to 45

(number of time slots) randomly selected time slots are attempted, by using

a neighborhood operator which is selected probabilistically from a predefined

composition. Therefore, the number of attempts in each Marcov chain ranges

from # of events to # of events × 45. The number of attempts varies as some

events are moved to the first selected time slot while others are not moved even

after the 45th time slot. The next event is immediately considered when the

present event is successfully moved.

The neighborhood structures tested separately are transfer, swap and kempe.

We also tested the mixture of the neighborhood structures at ratio of 33:33:33

and 70:29:1 for the transfer: swap: kempe operators. The number of soft con-

straint violations, trial moves, feasible moves and accepted moves for the neigh-

borhood structures are shown in Tables 6.2, 6.3 and 6.4 for instance Socha-L,

ITC02-1 and ITC07-1. The feasible ratio and accepted ratio are calculated

by Feasible/Trial and Accepted/Trial respectively. Based on the trial number,

transfer operator is the fastest (lowest computational cost), followed by swap

and kempe operator. Kempe operator has the highest value for both the feasible

ratio and accepted ratio. Based on the soft cost, the ratio 70:29:1 works best

for Socha-L and ITC02-1 instances. Meanwhile, 33:33:33 is the most effective

ratio for instance ITC07-1.
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Neighborhood Structure
Variable Transfer Swap Kempe 33:33:33 70:29:1
Soft Cost 448.52 463.23 1013.39 940.13 218.42
Trial (K) 627236 252377 3539 9843 188926
Feasible (K) 28637 14006 1847 1924 10431
Accepted (K) 1238 1455 583 615 1148
Feasible Ratio 0.0461 0.0556 0.5218 0.1955 0.0553
Accepted Ratio 0.0020 0.0058 0.1648 0.0625 0.0061

Table 6.2: Comparison among neighborhood structure on Socha-L instance.
n=31 runs.

Neighborhood Structure
Variable Transfer Swap Kempe 33-33-33 70-29-1
Soft Cost 111.10 226.03 492.45 390.55 60.84
Trial (K) 636770 244990 11200 29785 305461
Feasible (K) 49064 8434 2578 2863 20269
Accepted (K) 590 919 824 845 716
Feasible Ratio 0.0771 0.0345 0.2302 0.0961 0.0664
Accepted Ratio 0.0009 0.0038 0.0736 0.0284 0.0023

Table 6.3: Comparison among neighborhood structure on ITC02-1 instance.
n=31 runs.

Neighborhood Structure
Variable Transfer Swap Kempe 33-33-33 70-29-1
Soft Cost 1706.29 2644.42 430.00 358.23 956.90
Trial (K) 1617666 1158748 70061 132516 700448
Feasible (K) 15935 2095 1266 3439 11985
Accepted (K) 477 153 369 355 345
Feasible Ratio 0.0102 0.0018 0.0181 0.0263 0.0180
Accepted Ratio 0.0003 0.0001 0.0053 0.0027 0.0005

Table 6.4: Comparison among neighborhood structure on ITC07-1 instance.
n=31 runs.

The soft constraint violations for the selected instances are summarized in

Table 6.5. As the ratio 70:29:1 has the lowest means for 2 out of 3 selected

instances, it is therefore used from here on.
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Neighborhood Structure
Transfer Swap Kempe 33-33-33 70-29-1

Instance best mean best mean best mean best mean best mean
Socha-L 371 448.52 376 463.23 968 1013.39 882 940.13 169 218.42
ITC02-1 96 111.10 203 226.03 465 492.45 367 390.55 48 60.84
ITC07-1 1251 1706.29 2222 2644.42 129 430.00 0 358.23 533 956.90
Avg. - 755.30 - 1111.23 - 645.28 - 562.97 - 412.05

Table 6.5: Comparison of soft constraint violations among neighborhood structure on selected instances. n=31 runs.
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6.1.2.2 Comparing Neighborhood Examination Scheme

As in the previous section, the temperature is decreased statically without re-

heating from the initial value until the time limit is exceeded. The neighborhood

structure composition is fixed at 70:29:1 for the transfer:swap:kempe operators.

In this section, we compare several methods of selecting events and time slots,

namely RE-RS (random event and random slot), DE-RS (deterministic event

and random slot) and DE-DS (deterministic event and deterministic slot). We

note that RE-RS was used in the previous section (6.1.2.1). The best and mean

of soft constraint violations for selected instances are given in Table 6.6. DE-DS

has the lowest average of means for all the selected instances. As DE-DS is the

most effective among the neighborhood examination schemes in terms of the

number of instances with the lowest mean, it is used from here on.

Neighborhood Examination Scheme
RE-RS DE-RS DE-DS

Instance best mean best mean best mean
Socha-L 169 218.42 174 207.58 168 210.39
ITC02-1 48 60.84 34 59.32 37 52.10
ITC07-1 533 956.90 396 832.87 420 800.74
Avg. - 412.05 - 366.59 - 354.41

Table 6.6: Comparison of soft constraint violations among neighborhood exam-
ination schemes on selected instances. n=31 runs.

6.1.2.3 The Effect of Basic Reheating

Here, we investigate the effect of basic reheating. The temperature is decre-

mented statically from the initial value and reheated when the search is stuck.

The search is assumed stuck if the current cost changes between Marcov chains

is nil for a given number of consecutive times (THRESHOLD value is set as 5).

The temperature is reheated to a value as a function of the current cost. The

series of cooling and reheating are repeated until the time limit is exceeded. The

neighborhood structure composition is fixed at 70:29:1 ratio and DE-DS is used

as the neighborhood examination scheme. As evident in Table 6.7, the means

for all the selected instances are further improved when basic reheating is used.

Therefore, basic reheating is used from now on.
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Basic Reheating
disabled enabled

Instance best mean best mean
Socha-L 168 210.39 146 191.03
ITC02-1 37 52.10 22 32.97
ITC07-1 420 800.74 72 549.10
Avg. - 354.41 - 257.70

Table 6.7: The effect of basic reheating upon soft constraint violations on se-
lected instances. n=31 runs.

We tested several values for C as given in Table 6.8. The value of 0.01

recorded the lowest means for 2 out of the 3 selected instances. Therefore, it is

used onwards.

Values of C
0.005 0.01 0.02

Instance best mean best mean best mean
Socha-L 175 207.35 146 191.03 158 203.65
ITC02-1 35 46.81 22 32.97 35 45.65
ITC07-1 553 952.26 72 549.10 0 325.19
Avg. - 402.14 - 257.70 0 191.49

Table 6.8: The results of setting different values for C upon soft constraint
violations on selected instances. n=31 runs.

We also tested a couple of values for THRESHOLD as given in Table 6.9.

The value of 5 recorded the lowest means for all the 3 selected instances. Thus,

it is used onwards.

Values of THRESHOLD
5 10

Instance best mean best mean
Socha-L 146 191.03 153 196.94
ITC02-1 22 32.97 27 35.68
ITC07-1 72 549.10 282 581.48
Avg. - 257.70 - 271.37

Table 6.9: The results of setting different values for THRESHOLD upon soft
constraint violations on selected instances. n=31 runs.
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6.1.2.4 Comparing Local Optima Detection

To determine whether the search is stuck, we keep track of the current cost

changes between Marcov chains. If the current cost is stagnant for a given

number of consecutive times (set as 5), the search is considered stuck. The

current cost is perceived as stagnant if changes is nil (Type 1) or the changes is

less than 1% (Type 2) or the changes is less than 2% (Type 3). Type 1 was used

in the previous section (6.1.2.3). Table 6.10 shows that Type 2 is more effective

than Type 1 and Type 3 in terms of number of instances with the lowest means

for the selected instances. Note that the neighborhood structure composition

is fixed at 70:29:1 ratio and DE-DS is used as the neighborhood examination

scheme.

Local Optima Detection
Type 1 Type 2 Type 3

Instance best mean best mean best mean
Socha-L 146 191.03 143 199.03 271 613.03
ITC02-1 22 32.97 24 32.90 48 151.87
ITC07-1 72 549.10 129 332.65 0 575.19
Avg. - 257.70 - 188.19 (446.70)

Table 6.10: Comparison of soft constraint violations between local optima de-
tection type 1,2 and 3 on selected instances. n=31 runs.

6.1.2.5 The Effect of Incremental Reheating

Incremental reheating allows the temperature to be reheated to a higher level

if the search is still stuck since the previous reheating. We compare the per-

formance of the algorithm with basic and incremental reheating. Note that the

neighborhood structure composition is fixed at 70:29:1 ratio, DE-DS is used

as the neighborhood examination scheme and local optima detection Type 2 is

utilized. Incremental reheating is used onwards as it recorded the lowest means

for 2 out of 3 selected instances as shown in the Table 6.11.
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Reheating
Basic Incremental

Instance best mean best mean
Socha-L 143 199.03 165 206.6
ITC02-1 24 32.90 22 32.29
ITC07-1 129 332.65 0 317.32
Avg. - 188.19 - 183.06

Table 6.11: Comparison of soft constraint violations between basic and incre-
mental reheating on selected instances. n=31 runs.

We tested several values for β as given in Table 6.12. One lowest mean is

recorded by each value of β. However, 0.9995 is the most effective in terms

of average of means for the selected instances. Therefore, this value is used

onwards.

Values of β
0.999 0.9995 0.9999

Instance best mean best mean best mean
Socha-L 148 202.00 165 206.6 518 632.45
ITC02-1 24 34.23 22 32.29 128 174.52
ITC07-1 127 391.65 0 317.32 9 191.52
Avg. - 209.29 - 183.06 - 332.83

Table 6.12: The results of setting different values for β upon soft constraint
violations on selected instances. n=31 runs.

6.1.2.6 Comparing SAR with State of the Art Methods

We now compare SAR with the best results in the literature. Table 6.13 sum-

marizes the details of the solvers.
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Solver Technique Reference
A Ant System Socha et al. [164]
B Tabu Search Hyperheuristic Burke et al. [35]
C Extended Great Deluge McMullan [129]
D Great Deluge + Tabu Search Abdullah et al. [7]
E Non Linear Great Deluge + Learning Obit et al. [136]
F Fish Swarm Turabieh et al. [176]
G Round Robin Multi Algorithms Shaker and Abdullah [161]
H Honey Bee Mating Sabar et al. [155]
I Simulated Annealing Ceschia et al. [48]
J1 Simulated Annealing Kostuch [109]
J2 Simulated Annealing Kostuch [110]
K Tabu Search Cordeau et al. [55]
L Great Deluge Burke et al. [27]
M Local Search + Tabu Search DiGaspero and Schaerf [63]
N Hybrid Algorithm Chiarandini et al. [52]
O Simulated Annealing Cambazard et al. [41]
P Ant Colony Optimization Nothegger et al. [135]
Q Simulated Annealing Lewis and Thompson [118]

Table 6.13: Solver details

SAR outperformed (best results are in bold) all the other solvers for all Socha

instances as shown in Table 6.14. It is interesting to note that our averages are

far better than the best produced by other solvers over all instances. We found

optimal solutions for 9 out of the 11 instances. Note that solver A was run

according to the time limit set initially (small instances: 90s, medium instances:

900s and large instances: 9000s). For solver B-H, no benchmark time limit was

followed in their implementations.
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Solver
Instance A B C D E F G H I SAR
S1 1 1 0(0.8) 0 0 0 0 0 0(0.0) 0(0.0)
S2 3 2 0(2.0) 0 0 0 0 0 0(0.0) 0(0.0)
S3 1 0 0(1.3) 0 0 0 0 0 0(0.0) 0(0.0)
S4 1 1 0(1.0) 0 0 0 0 0 0(0.1) 0(0.0)
S5 0 0 0(0.2) 0 0 0 0 0 0(0.0) 0(0.0)
M1 195 146 80(101.4) 78 38 45 117 75 9(26.5) 0(1.5)
M2 184 173 105(116.9) 92 37 40 108 88 15(25.9) 0(2.2)
M3 248 267 139(162.1) 135 60 61 135 129 36(49.0) 7(13.4)
M4 164.5 169 88(108.8) 75 39 35 75 74 12(23.8) 0(0.7)
M5 219.5 303 88(119.7) 68 55 49 160 64 3(10.9) 0(1.2)
L 851.1 1166 730(834.1) 556 638 407 589 523 208(259.8) 165(206.6)

Table 6.14: Comparing SAR with other solvers on Socha instances. Depicted is best(mean) of soft constraint violations. n=31
runs. Note that some authors only reported their best results.
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Results comparison for ITC02 is given in Table 6.15. J1 was the official

winner of ITC02. The solver N appeared post competition and was competitive

with the solver J1. Not long after that, J2 was presented and became the state

of the art method with the best known results for all the instances. J2 was an

improvement of J1 by the same author. Since then, no other solvers are able

to beat the results of J2 on any of the ITC02 instances. We have managed to

achieve that. Our results are competitive, or better, than the other solvers on

all the instances. In fact, we managed to get optimal solutions for 7 out of 20

instances in comparison to the four of J2.

Solver
Instance J1 K L M N J2 I SAR
1 45 61 85 63 45 16(30.2) 45(57.1) 23(32.6)
2 25 39 42 46 14 2(11.4) 20(33.2) 7(13.7)
3 65 77 84 96 45 17(31.0) 43(53.2) 26(36.4)
4 115 160 119 166 71 34(60.8) 87(109.9) 50(63.1)
5 102 161 77 203 59 42(72.1) 71(91.7) 38(58.6)
6 13 42 6 92 1 0(2.4) 2(14.1) 0(0.8)
7 44 52 12 118 3 2(8.9) 2(13.7) 0(2.6)
8 29 54 32 66 1 0(2.0) 9(20.0) 0(1.4)
9 17 50 184 51 8 1(5.8) 15(21.9) 0(4.6)
10 61 72 90 81 52 21(35.0) 41(60.7) 28(40.9)
11 44 53 73 65 30 5(12.9) 24(38.2) 10(17.7)
12 107 110 79 119 75 55(76.3) 62(83.7) 53(64.5)
13 78 109 91 160 55 31(47.1) 59(78.0) 38(53.3)
14 52 93 36 197 18 11(22.3) 21(34.2) 5(12.9)
15 24 62 27 114 8 2(8.4) 6(11.8) 0(4.0)
16 22 34 300 38 55 0(3.4) 6(16.7) 0(0.5)
17 86 114 79 212 46 37(54.0) 42(56.5) 26(41.6)
18 31 38 39 40 24 4(9.4) 11(25.9) 2(9.7)
19 44 128 86 185 33 7(16.4) 56(73.0) 11(24.7)
20 7 26 0 17 0 0(0.5) 0(1.8) 0(0.0)

Table 6.15: Comparing SAR with other solvers on ITC02 instances. Depicted
is best(mean) of soft constraint violations. n=31 runs. Note that some authors
only reported their best results.

Table 6.16 shows the results comparison for ITC07. The solver O was the

official winner of ITC07. The solver P is based on Ant Colony Optimization

and is the only competitve algorithm which is not SA based. However, SA was

present in their approach and played a critical role in its performance. Our

results are competitive compared to the other solvers. We managed to obtain

159



optimal solutions for 15 out of 24 instances. Solvers O and P did not attempt

their methods on instances 17-24.

Solver
Instance O P I Q SAR
1 15(547.0) 0(613.0) 59(399.2) 0(377.0) 0(307.6)
2 9(403.0) 0(556.0) 0(142.2) 0(382.2) 0(63.4)
3 174(254.0) 110(680.0) 148(209.9) 122(181.8) 163(199.4)
4 249(361.0) 53(580.0) 25(349.6) 18(319.4) 242(328.8)
5 0(26.0) 13(92.0) 0(7.7) 0(7.5) 0(2.7)
6 0(16.0) 0(212.0) 0(8.6) 0(22.8) 0(33.2)
7 1(8.0) 0(4.0) 0(4.9) 0(5.5) 5(18.0)
8 0(0.0) 0(61.0) 0(1.5) 0(0.6) 0(0.0)
9 29(1167.0) 0(202.0) 0(258.8) 0(514.4) 0(100.7)
10 2(1297.0) 0(4.0) 3(186.4) 0(1202.4) 0(65.3)
11 178(361.0) 143(774.0) 142(269.5) 48(202.6) 161(244.3)
12 14(380.0) 0(538.0) 267(400.0) 0(340.2) 0(318.2)
13 0(135.0) 5(360.0) 1(120.0) 0(79.0) 0(99.5)
14 0(15.0) 0(41.0) 0(3.6) 0(0.5) 0(0.2)
15 0(47.0) 0(29.0) 0(48.0) 0(139.9) 0(192.0)
16 1(58.0) 0(101.0) 0(50.1) 0(105.2) 10(105.8)
17 - - 0(0) 0(0.1) 0(0.8)
18 - - 0(41.1) 0(2.2) 0(12.5)
19 - - 0(951.5) 0(346.1) 0(516.7)
20 - - 543(700.2) 557(724.5) 586(650.7)
21 - - 5(35.9) 1(32.1) 0(12.5)
22 - - 5(19.9) 4(1790.1) 1(136.0)
23 - - 1292(1707.7) 0(514.1) 11(504.4)
24 - - 0(105.3) 18(328.2) 5(192.6)

Table 6.16: Comparing SAR with other solvers on ITC07 instances. Depicted
is best(mean) of soft constraint violations. n=31 runs.

6.1.2.7 Extended Runtime for SAR

Up to this point, all the experiments were conducted according to the time

limit provided by the competition benchmark program. Out of curiosity, we

also performed some experiments to see the effects of an extended runtime with

regard to soft constraint violation. We selected one hard instance from each

dataset namely Socha-L, ITC02-1, ITC07-1 and ran for five times the time limit

or 5T (950s). It took around 8 hours to run each instance for 31 times. As

shown in Table 6.17, the algorithm is extendable as the best and average cost

improved significantly when the runtime is extended. In fact, we managed to
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obtain the best known results for the instances. It is important to note that

we simply reset runtime in the algorithm without tuning any parameters, as is

often required in a conventional SA e.g. decay rate. The p values (0.000 < 0.05)

of t-tests reject the null hypotheses H0 : µT = µ5T and revealed a statistically

difference between the mean between the runtime of T and 5T.

runtime=T runtime=5T t-test
Instance best mean best mean (p value)
Socha-L 165 206.61 103 139.39 0.000
ITC02-1 23 32.61 10 21.03 0.000
ITC07-1 0 307.55 0 134.94 0.000
Avg. - 182.26 - 98.45

Table 6.17: Comparison of soft constraint violations between SAR with a run-
time of T and 5T. n=31 runs.

6.2 Discussion

TSSP assisted SAR in obtaining the good results. As only a fraction of time

is used by TSSP to find feasible solutions, more time is allocated for SAR to

improve the soft constraint violations.

The right neighborhood structure composition used in SAR contributed to

the good results. For Socha and ITC02 instances, the search spaces are well

connected by transfer and swap operators. Therefore, a Kempe operator is

redundant for these instances. Furthermore, the Kempe operator is computa-

tionally more expensive, thus reducing the number of transitions attempted.

Meanwhile, for ITC07 instances, the search space is poorly connected by trans-

fer and swap operators. Thus, a higher composition of a Kempe operator is

worthwhile for the instances as it increases the connectivity of search space. In

fact, ITC07 instances are more constrained compared to the instances of Socha

and ITC07 as there are two additional hard constraints for ITC07 instances

(order of events and preset time slots).

The neighborhood examination scheme applied in SAR, played a key role

in achieving the good results. Attempts were made to deterministically move

each event to each time slot (1-45) in each Markov chain. The scheme allows

neighbors to be examined thoroughly and systematically with less redundancy.
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SAR is able to estimate whether the search is stuck in a local optima, thus

allows reheating to be applied at the right time. In addition, incremental re-

heating provides exploration opportunities for the search to escape from local

optima while ensuring that the current solution does not stray too much thus

preserving the previous search effort.

To highlight the importance of reheating in SAR, we compare the algorithm

with reheating disabled, basic reheating and incremental reheating. The behav-

ior (variation in temperature, current cost and best cost) of the algorithm for

different reheating settings on selected instances are illustrated in Figures 6.1

to 6.18. The current and best cost for the algorithm with reheating disabled,

becomes idle early indicating the search is stuck. Meanwhile, the current cost

for the algorithm with basic reheating is active throughout the search. In a

comparison, a lower soft constraint violation (best) is achieved by the algorithm

with basic reheating. The SAR algorithm with incremental reheating performs

equally well if not better than its counterpart with basic reheating. Incremen-

tal reheating is effective, particularly when the current cost is low as shown in

Figures 6.3, 6.9 and 6.12.

The rigorous setting of the initial and end temperature in conventional SA

is bypassed in SAR. We set the decay rate β and the constant C as 0.9995 and

0.01 respectively. Nonetheless, the values work well for the all the instances

considered in this work.

162



0

1

2

3

4

5

6

7

8

9

0

100

200

300

400

500

600

700

800

900

0 5000 10000 15000 20000

Te
m

pe
ra

tu
re

So
ft

 C
on

st
ra

in
t V

io
la

tio
ns

Marcov Chain

Current

Best

Temperature

Figure 6.1: SAR (reheating disabled) on Socha-M1. Best=19.
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Figure 6.2: SAR (basic reheating) on Socha-M1. Best=16.
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Figure 6.3: SAR (incremental reheating) on Socha-M1. Best=0.
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Figure 6.4: SAR (reheating disabled) on Socha-L. Best=245.
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Figure 6.5: SAR (basic reheating) on Socha-L. Best=240.
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Figure 6.6: SAR (incremental reheating) on Socha-L. Best=210.
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Figure 6.7: SAR (reheating disabled) on ITC02-1. Best=57.
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Figure 6.8: SAR (basic reheating) on ITC02-1. Best=39.
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Figure 6.9: SAR (incremental reheating) on ITC02-1. Best=37.
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Figure 6.10: SAR (reheating disabled) on ITC02-11. Best=29.
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Figure 6.11: SAR (basic reheating) on ITC02-11. Best=24.
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Figure 6.12: SAR (incremental reheating) on ITC02-11. Best=17.
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Figure 6.13: SAR (reheating disabled) on ITC07-1. Best=604.
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Figure 6.14: SAR (basic reheating) on ITC07-1. Best=435.
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Figure 6.15: SAR (incremental reheating) on ITC07-1. Best=433.
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Figure 6.16: SAR (reheating disabled) on ITC07-13. Best=226.
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Figure 6.17: SAR (basic reheating) on ITC07-13. Best=147.
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Figure 6.18: SAR (incremental reheating) on ITC07-13. Best=147.
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6.3 Conclusion

We have compared the effectiveness of both individual and combination of neigh-

borhood structures. The right combination of neighborhood structures is im-

portant in getting high quality solutions. It is more effective than any individual

operator used alone. However, finding the right ratio for the operators is diffi-

cult as its effectiveness is dependent on the instances.

We analyzed various neighborhood examination schemes or the method of

selecting events and time slots for move evaluation. We found that DE-DS

(deterministic event and deterministic slot) is more effective than both RE-RS

(random event and random slot) and DE-RS (deterministic event and random

slot). DE-DS allows the search space to be thoroughly explored.

We presented the effect of basic reheating. The temperature is reheated to

a value as a function of the current cost when the search is assumed stuck. In

effect, exploration is guided by the current cost. The setup with reheating gen-

erated better results than its counterpart without reheating.

We tested three types of local optima detection. Type 2 (relative changes

of current cost) seems to be more effective than Type 1 (absolute changes of

current cost) and Type 3 (relative changes of current cost). A precise local

optima estimator is vital to prevent unnecessary reheating which may affect the

exploitation capability of the search.

We also compared the effect of incremental reheating where temperature is

reheated to a higher value if the search is still stuck since the previous reheat-

ing. Slightly better results are observed when incremental reheating is used on

the selected instances. Experimental results show that incremental reheating

thrives while basic reheating suffers in terms of performance when the current

cost is low. Incremental reheating helps the search to escape from local optima

while ensuring that the current solution does not stray too much (preserving

previous search effort).

Finally, we compared the performance of the SAR algorithm with state of

the art methods. Competitive results in terms of soft constraint violations
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are reported in all datasets tested. The behaviour of SAR and the effect of

reheating are also displayed. Moreover, SAR is also shown to be extendable

when the runtime is extended.
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Chapter 7

Improving Quality: SAIRL

Algorithm

In this chapter, we further enhance the SAR algorithm in terms of ease of

use and performance (minimizing soft constraint violations). The work in this

chapter has been submitted for peer review:

• Say Leng Goh, Graham Kendall, Nasser R. Sabar. Solving Post Enrolment

Course Timetabling Problem using Simulated Annealing with Improved

Reheating and Learning (SAIRL). Journal of Operational Research Soci-

ety (JORS). Under review.

7.1 SA with Improved Reheating and Learning

(SAIRL)

One drawback of SAR is having to preset the composition of neighborhood

structures for the datasets in order to obtain good results. It is difficult to set

the right composition as the effectiveness is dependent on the instance. An-

other drawback of SAR is the limitation of using the current cost exclusively to

determine the level of reheated temperature as different instances may require

different level of exploration to search effectively. We propose several enhance-

ments based on these shortcomings. We term the improved algorithm Simulated

Annealing with Improved Reheating and Learning (SAIRL).
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7.1.1 Algorithm Description

The SAIRL algorithm is shown in Algorithm 39.

Algorithm 39

1: procedure SAIRL(current, E )
2: temp← f(current)× C
3: heat← 0
4: best← current
5: previousCost← f(current)
6: currentStagnantCount← 0
7: stuckedBestCost← f(current)
8: stuckedCurrentCost← f(current)
9:

10: while current is not optimal AND time.elapsed() < runtime do
11: for all e ∈ E do
12: moved← false
13: for slot = 1 to 45 do
14: n← selectNeighbourhoodStructure()
15: visitn + +
16: candidate← getCandidate(current, e, slot, n)
17: if candidate exists then
18: if random[0,1) ≤ exp(− f(candidate)−f(current)

temp ) then
19: moved← true
20: current← candidate
21: if f(current) < f(best) then
22: best← current
23: end if
24: update valuen
25: else
26: update valuen
27: end if
28: else
29: update valuen
30: end if
31: if moved then
32: break
33: end if
34: end for
35: end for
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36: if stuck(f(current), previousCost, currentStagnantCount) then
37: if f(best) = stuckBestCost then
38: if f(current)− stuckCurrentCost < 2% then
39: heat = heat+ 1
40: else
41: heat← 0
42: end if
43: else
44: heat← 0
45: end if
46: temp← [heat× 0.2× f(current) + f(current)]×∆f ×D
47: stuckBestCost← f(best)
48: stuckCurrentCost← f(current)
49: else
50: temp← temp× β
51: end if
52: previousCost← f(current)
53: end while
54: end procedure

We propose a method based on reinforcement learning (RL) to obtain a

balanced composition of the neighborhood structures. The method is inspired

by the observation that different neighbourhood structures have different accep-

tance ratio and computational cost for different instances. Some neighbourhood

structures may have lower acceptance ratio but are less computationally expen-

sive which allows more transitions per time unit. Therefore, the objective is to

maximize the number of accepted moves per time unit.

In our implementation, a visitn and a valuen are maintained for each neigh-

borhood structure n. visitn is incremented by 1 each time the neighborhood

structure n is selected (line 15). Meanwhile, valuen is updated (lines 24, 26 and

29) as a cumulative mean of rewards:

valuen ← valuen +
reward− valuen

visitn
(7.1)

The reward is defined as:

reward =

0, if candidate is accepted

CPU time, otherwise
(7.2)
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A reward of 0 is awarded to the neighborhood structure n if the candidate

solution is accepted (line 24). Otherwise, the neighborhood structure n is pe-

nalized with CPU time (elapsed time since selection) if the candidate is rejected

(line 26) or the candidate does not exist because a move is not feasible (line 29).

Initially, all neighborhood structures have an equal probability of being se-

lected. Over time, the probability varies according to:

Pn =
1

valuen∑N
n=1

1
valuen

(7.3)

Roulette Wheel (RW) based selection is used to ensure the less favorable

neighbourhood structures can still be selected but the better neighbourhood

structures are more likely to be selected. Fig. 7.1 shows the interaction be-

tween agent and environment in our application of RL.

 Action (NS) Selection 

Event 

Selection 

Slot 

Selection 

Acceptance Criterion 

Event  Slot 

Neighbourhood Structures 

(NS) 

Values 

Reward 

Action (NS) 

Agent 

Environment  

Figure 7.1: The interaction between agent and environment in RL.

Another enhancement that we propose to SAR is for the temperature re-

heating function. As the acceptance probability of an uphill move is determined

by the cost changes of the move and temperature, intuitively it is a good idea to
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incorporate the average cost changes of uphill moves (∆f) into the temperature

reheating function:

temp← [heat× 0.2× f(current) + f(current)]×∆f ×D (7.4)

D is a constant which determines the exploration level of the reheated tem-

perature. We set the decay rate β to 0.9995 and the constant D to 0.001. To

allow a fair comparison between SAR and SAIRL, the initial temperature is

set to the same value used in SAR where the initial cost is multiplied by the

constant C=0.01 (1% of the initial cost). The same settings are used across all

instances in our experiments.

7.1.2 Experimental Results

7.1.2.1 The Effect of Learning

In this section, we compare the results of SAR and SARL for selected in-

stances. For SAR, neighborhood structure composition is set manually for

specific datasets. The composition are 70:29:1 (Socha/ITC02 instances) and

70:20:10 (ITC07 instances) for Tansfer:Swap:Kempe operators. Meanwhile, a

reinforcement learning based method is used in SARL to optimize the compo-

sition as the search progresses. SARL not only eliminates the requirement for

manual setting of neighborhood structure composition but also improves the

average of means for the selected instances as evident in Table 7.1.

SAR SARL
Instance best mean best mean
Socha-L 165 206.61 151 204.16
ITC02-1 23 32.61 28 36.45
ITC07-1 0 307.55 0 277.45
Avg. - 182.26 - 172.69

Table 7.1: Comparison of soft constraint violations between SAR and SARL on
selected instances. n=31 runs.

7.1.2.2 The Effect of Improved Reheating

We also investigate the effect of incorporating the average cost changes into the

reheated temperature function. The average cost change varies for each instance

as shown in Figures 7.2, 7.3 and 7.4. It provides an insight to the gradient of the

search landscape. SAIRL further improved the average of means for selected
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instances as shown in Table 7.2. A notable improvement can be seen for instance

ITC07-01.

0
2
4
6
8

10
12
14
16
18
20

S01 S02 S03 S04 S05 M01 M02 M03 M04 M05 L01

Av
er

ag
e 

Co
st

 C
ha

ng
e

Instances

Figure 7.2: Average Cost Changes for Socha instances
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Figure 7.3: Average Cost Changes for ITC02 instances
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SARL SAIRL
Instance best mean best mean
Socha-L 151 204.16 181 215.19
ITC02-1 28 36.45 26 35.71
ITC07-1 0 277.45 0 209.39
Avg. - 172.69 - 153.87

Table 7.2: Comparison of soft constraint violations between SARL and SAIRL
on selected instances. n=31 runs.

We tested several values for D as shown in Table 7.3. The values of 0.0005,

0.001 and 0.002 recorded the lowest means for the instances Socha-L, ITC02-1

and ITC07-1 respectively. The value of 0.001 is used onwards as it has the

lowest average of means.

Values of D
0.0005 0.001 0.002

Instance best mean best mean best mean
Socha-L 150 205.42 181 215.19 174 234.35
ITC02-1 28 39.94 26 35.71 36 48.97
ITC07-1 0 327.77 0 209.39 0 188.00
Avg. - 191.04 - 153.87 0 157.11

Table 7.3: The effect of basic reheating upon soft constraint violations on se-
lected instances. n=31 runs.

7.1.2.3 Comparing SAIRL with SAR

We compare the performance of SAR and SAIRL in minimizing the soft con-

straint violations. For Socha instances, SAIRL is comparable to SAR as shown

in Table 7.4. The p values reveal that there is no significant difference between

the means of SAR and SAIRL for all the instances except M2 where SAR is

better than SAIRL.
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Instance SAR SAIRL t-test (p value)
S1 0(0.0) 0(0.0) -
S2 0(0.0) 0(0.0) -
S3 0(0.0) 0(0.0) -
S4 0(0.0) 0(0.0) -
S5 0(0.0) 0(0.0) -
M1 0(1.5) 0(2.32) 0.057
M2 0(2.2) 0(3.58) 0.007
M3 7(13.4) 6(14.39) 0.443
M4 0(0.7) 0(1.35) 0.073
M5 0(1.2) 0(1.42) 0.600
L 165(206.6) 181(215.19) 0.127

Table 7.4: Comparison between SAR and SAIRL on Socha instances. Depicted
is best(mean) of soft constraint violations. n=31 runs.

Results comparison between SAIRL and SAR for ITC02 instances is shown

in Table 7.5. The t-tests show that SAR performed better than SAIRL for

instances 1, 2, 9, 16, 18. Meanwhile, SAIRL is more effective for instances 5

and 17. There is no significant difference between the means for the rest of the

instances.
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Instance SAR SAIRL t-test (p value)
1 23(32.6) 26(35.7) 0.040
2 7(13.7) 6(16.3) 0.031
3 26(36.4) 27(38.2) 0.291
4 50(63.1) 47(69.0) 0.062
5 38(58.6) 36(51.8) 0.005
6 0(0.8) 0(0.8) 0.826
7 0(2.6) 0(2.4) 0.579
8 0(1.4) 0(1.5) 0.782
9 0(4.6) 0(6.4) 0.025
10 28(40.9) 22(40.4) 0.761
11 10(17.7) 10(19.0) 0.318
12 53(64.5) 47(64.1) 0.881
13 38(53.3) 33(51.0) 0.297
14 5(12.9) 4(13.6) 0.587
15 0(4.0) 0(4.8) 0.234
16 0(0.5) 0(2.2) 0.000
17 26(41.6) 25(36.8) 0.044
18 2(9.7) 3(12.5) 0.005
19 11(24.7) 15(25.6) 0.577
20 0(0.0) 0(0.0) -

Table 7.5: Comparison between SAR and SAIRL on ITC02 instances. Depicted
is best(mean) of soft constraint violations. n=31 runs.

For ITC07 instances, SAIRL performed significantly better compared to

SAR for instances 1, 2, 3, 9, 11, 15, 16, 19, 24 as shown in Table 7.6. SAR is

better than SAIRL for instances 14 and 23. No significant difference is evident

between the means for the rest of the instances.
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Instance SAR SAIRL t-test (p value)
1 0(307.6) 0(209.4) 0.025
2 0(63.4) 0(10.1) 0.048
3 163(199.4) 141(188.6) 0.050
4 242(328.8) 192(320.9) 0.456
5 0(2.7) 0(2.9) 0.845
6 0(33.2) 0(54.7) 0.074
7 5(18.0) 4(14.5) 0.614
8 0(0.0) 0(1.6) 0.156
9 0(100.7) 0(15.2) 0.009
10 0(65.3) 0(30.5) 0.160
11 161(244.3) 136(201.6) 0.001
12 0(318.2) 0(303.5) 0.641
13 0(99.5) 0(90.4) 0.605
14 0(0.2) 0(25.6) 0.001
15 0(192.0) 0(12.5) 0.000
16 10(105.8) 0(45.8) 0.000
17 0(0.8) 0(0.5) 0.590
18 0(12.5) 0(7.7) 0.366
19 0(516.7) 0(11.0) 0.000
20 586(650.7) 555(664.0) 0.280
21 0(12.5) 0(25.7) 0.071
22 1(136.0) 0(5.8) 0.099
23 11(504.4) 56(713.6) 0.005
24 5(192.6) 0(77.5) 0.000

Table 7.6: Comparison between SAR and SAIRL on ITC07 instances. Depicted
is best(mean) of soft constraint violations. n=31 runs.

7.1.2.4 Comparing SAIRL with State of the Art Methods

We now compare SAIRL with the best results in the literature. Table 7.7

summarizes the details of the solvers we use for comparison.
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Solver Technique Reference
A Ant System Socha et al. [164]
B Tabu Search Hyperheuristic Burke et al. [35]
C Extended Great Deluge McMullan [129]
D Great Deluge + Tabu Search Abdullah et al. [7]
E Non Linear Great Deluge + Learning Obit et al. [136]
F Fish Swarm Turabieh et al. [176]
G Round Robin Multi Algorithms Shaker and Abdullah [161]
H Honey Bee Mating Sabar et al. [155]
I Simulated Annealing Ceschia et al. [48]
J1 Simulated Annealing Kostuch [109]
J2 Simulated Annealing Kostuch [110]
K Tabu Search Cordeau et al. [55]
L Great Deluge Burke et al. [27]
M Local Search + Tabu Search DiGaspero and Schaerf [63]
N Hybrid Algorithm Chiarandini et al. [52]
O Simulated Annealing Cambazard et al. [41]
P Ant Colony Optimization Nothegger et al. [135]
Q Simulated Annealing Lewis and Thompson [118]
R Simulated Annealing with Reheating (SAR) Goh et al. [88]

Table 7.7: Solver details
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SAIRL outperformed all the other solvers for all Socha instances except

solver R which we attempt to improve in this work as shown in Table 7.8. Both

SAIRL and solver R found optimal solutions for 9 out of 11 instances. In addi-

tion, SAIRL achieved a new best result for instance M3.

Results comparison for ITC02 is given in Table 7.9. Our results are com-

petitive or better than the other solvers on all the instances. In fact, SAIRL

managed to get optimal solutions for 7 out of 20 instances in comparison to

solver J2 (four) and solver R (seven). Furthermore, SAIRL obtained four new

best results (instance 5, 12, 14 and 17) and four best means (instance 5, 7, 12

and 17).

Table 7.10 shows the results comparison for ITC07. Our results are compet-

itive compared to the other solvers. SAIRL found eighteen optimal solutions

compared to solver Q (seventeen) and solver R (fifteen). SAIRL achieved one

new best result (instance 22) and ten best means (instance 1, 2, 9, 11, 12, 15,

16, 19, 22, 24). Solver P was not executed on instances 17-24.
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Solver
Instance A B C D E F G H I R SAIRL
S1 1 1 0(0.8) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S2 3 2 0(2.0) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S3 1 0 0(1.3) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S4 1 1 0(1.0) 0 0 0 0 0 0(0.1) 0(0.0) 0(0.0)
S5 0 0 0(0.2) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
M1 195 146 80(101.4) 78 38 45 117 75 9(26.5) 0(1.5) 0(2.32)
M2 184 173 105(116.9) 92 37 40 108 88 15(25.9) 0(2.2) 0(3.58)
M3 248 267 139(162.1) 135 60 61 135 129 36(49.0) 7(13.4) 6(14.39)
M4 164.5 169 88(108.8) 75 39 35 75 74 12(23.8) 0(0.7) 0(1.35)
M5 219.5 303 88(119.7) 68 55 49 160 64 3(10.9) 0(1.2) 0(1.42)
L 851.1 1166 730(834.1) 556 638 407 589 523 208(259.8) 165(206.6) 181(215.19)

Table 7.8: Comparing SAIRL with other solvers on Socha instances. Depicted is best(mean) of soft constraint violations. n=31
runs. Note that some authors only reported their best results.
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Solver
Instance J1 K L M N J2 I R SAIRL
1 45 61 85 63 45 16(30.2) 45(57.1) 23(32.6) 26(35.7)
2 25 39 42 46 14 2(11.4) 20(33.2) 7(13.7) 6(16.3)
3 65 77 84 96 45 17(31.0) 43(53.2) 26(36.4) 27(38.2)
4 115 160 119 166 71 34(60.8) 87(109.9) 50(63.1) 47(69.0)
5 102 161 77 203 59 42(72.1) 71(91.7) 38(58.6) 36(51.8)
6 13 42 6 92 1 0(2.4) 2(14.1) 0(0.8) 0(0.8)
7 44 52 12 118 3 2(8.9) 2(13.7) 0(2.6) 0(2.4)
8 29 54 32 66 1 0(2.0) 9(20.0) 0(1.4) 0(1.5)
9 17 50 184 51 8 1(5.8) 15(21.9) 0(4.6) 0(6.4)
10 61 72 90 81 52 21(35.0) 41(60.7) 28(40.9) 22(40.4)
11 44 53 73 65 30 5(12.9) 24(38.2) 10(17.7) 10(19.0)
12 107 110 79 119 75 55(76.3) 62(83.7) 53(64.5) 47(64.1)
13 78 109 91 160 55 31(47.1) 59(78.0) 38(53.3) 33(51.0)
14 52 93 36 197 18 11(22.3) 21(34.2) 5(12.9) 4(13.6)
15 24 62 27 114 8 2(8.4) 6(11.8) 0(4.0) 0(4.8)
16 22 34 300 38 55 0(3.4) 6(16.7) 0(0.5) 0(2.2)
17 86 114 79 212 46 37(54.0) 42(56.5) 26(41.6) 25(36.8)
18 31 38 39 40 24 4(9.4) 11(25.9) 2(9.7) 3(12.5)
19 44 128 86 185 33 7(16.4) 56(73.0) 11(24.7) 15(25.6)
20 7 26 0 17 0 0(0.5) 0(1.8) 0(0.0) 0(0.0)

Table 7.9: Comparing SAIRL with other solvers on ITC02 instances. Depicted is best(mean) of soft constraint violations.
n=31 runs. Note that some authors only reported their best results.
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Solver
Instance P I Q R SAIRL
1 0(613.0) 59(399.2) 0(377.0) 0(307.6) 0(209.4)
2 0(556.0) 0(142.2) 0(382.2) 0(63.4) 0(10.1)
3 110(680.0) 148(209.9) 122(181.8) 163(199.4) 141(188.6)
4 53(580.0) 25(349.6) 18(319.4) 242(328.8) 192(320.9)
5 13(92.0) 0(7.7) 0(7.5) 0(2.7) 0(2.9)
6 0(212.0) 0(8.6) 0(22.8) 0(33.2) 0(54.7)
7 0(4.0) 0(4.9) 0(5.5) 5(18.0) 4(14.5)
8 0(61.0) 0(1.5) 0(0.6) 0(0.0) 0(1.6)
9 0(202.0) 0(258.8) 0(514.4) 0(100.7) 0(15.2)
10 0(4.0) 3(186.4) 0(1202.4) 0(65.3) 0(30.5)
11 143(774.0) 142(269.5) 48(202.6) 161(244.3) 136(201.6)
12 0(538.0) 267(400.0) 0(340.2) 0(318.2) 0(303.5)
13 5(360.0) 1(120.0) 0(79.0) 0(99.5) 0(90.4)
14 0(41.0) 0(3.6) 0(0.5) 0(0.2) 0(25.6)
15 0(29.0) 0(48.0) 0(139.9) 0(192.0) 0(12.5)
16 0(101.0) 0(50.1) 0(105.2) 10(105.8) 0(45.8)
17 - 0(0) 0(0.1) 0(0.8) 0(0.5)
18 - 0(41.1) 0(2.2) 0(12.5) 0(7.7)
19 - 0(951.5) 0(346.1) 0(516.7) 0(11.0)
20 - 543(700.2) 557(724.5) 586(650.7) 555(664.0)
21 - 5(35.9) 1(32.1) 0(12.5) 0(25.7)
22 - 5(19.9) 4(1790.1) 1(136.0) 0(5.8)
23 - 1292(1707.7) 0(514.1) 11(504.4) 56(713.6)
24 - 0(105.3) 18(328.2) 5(192.6) 0(77.5)

Table 7.10: Comparing SAIRL with other solvers on ITC07 instances. Depicted
is best(mean) of soft constraint violations. n=31 runs.

7.1.2.5 Extended Runtime for SAIRL

Lastly, we performed some experiments to see the effects of an extended runtime

with regard to soft constraint violations on selected instances. The algorithm

was ran for 31 times with a time limit of 5T (950s). As evident in Table 7.11,

the algorithm is extendable as the best and average cost improved significantly

when the runtime is extended. Note that runtime is simply reset without tuning

any parameters. The p values (0.000 < 0.05) of t-tests reject the null hypotheses

H0 : µT = µ5T and revealed a statistical difference between the mean between

the runtime of T and 5T. The soft constraint violations for SAIRL with extended

runtime on Socha-L, ITC02-1 and ITC07-1 instances are illustrated in Figures

7.5, 7.6 and 7.7. The respective descriptive statistics are given in Tables 7.12,

7.13 and 7.14. Note that the circles and the stars in the box plots are mild and
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extreme outliers.

runtime=T runtime=5T t-test
Instance best mean best mean (p value)
Socha-L 181 215.19 157 190.42 0.000
ITC02-1 26 35.71 11 20.84 0.000
ITC07-1 0 209.39 0 23.06 0.000
Avg. - 153.87 - 78.11

Table 7.11: Comparison of soft constraint violations between SAIRL with a
runtime of T and 5T on selected instances. n=31 runs.
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Figure 7.5: Box plot showing the soft constraint violations for SAIRL with an
extended runtime on Socha-L instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 181 174 138 160 157
Max 254 236 214 211 215
Median 218.00 205.00 195.00 193.00 194.00
Mean 215.19 204.97 189.65 191.58 190.42

Table 7.12: Descriptive statistics for SAIRL with an extended runtime on Socha-
L instance. n=31 runs.
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Figure 7.6: Box plot showing the soft constraint violations for SAIRL with an
extended runtime on ITC02-1 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 26 19 15 18 11
Max 53 36 38 31 31
Median 35.00 28.00 25.00 24.00 21.00
Mean 35.71 27.84 25.03 23.65 20.84

Table 7.13: Descriptive statistics for SAIRL with an extended runtime on
ITC02-1 instance. n=31 runs.
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Figure 7.7: Box plot showing the soft constraint violations for SAIRL with an
extended runtime on ITC07-1 instance. n=31 runs.

Runtime
Unassigned 1T 2T 3T 4T 5T
Min 0 0 0 0 0
Max 623 469 272 288 298
Median 230.00 0.00 1.00 0.00 0.00
Mean 209.39 90.23 48.29 27.23 23.06

Table 7.14: Descriptive statistics for SAIRL with an extended runtime on
ITC07-1 instance. n=31 runs.

We also compare the results of extended runtime (five times the time limit or

5T ) between SAR and SAIRL for selected instances. As it took around 8 hours

to run each instance for 31 times, therefore, we selected only one instance from

each dataset namely Socha-L, ITC02-1 and ITC07-1. SAIRL is comparable to

SAR as shown is Table 7.15. In fact, SAIRL is preferred based on the average of

means for the selected instances. There is no significant difference between the

means of both algorithms for ITC02-1. SAIRL performed better than SAR for

instance ICT2007-1. Meanwhile, SAR is more effective than SAIRL for instance

Socha-L. One possible explanation is, average cost changes can be distorted by

very large or very small cost changes. Therefore, the information on the gradient

of the search landscape can be distorted as well as the reheated temperature
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since the average of cost changes is incorporated into the reheated temperature

function.

SAR (5T ) SAIRL (5T ) t-test
Instance best mean best mean (p value)
Socha-L 103 139.39 157 190.42 0.000
ITC02-1 10 21.03 11 20.84 0.867
ITC07-1 0 134.94 0 23.06 0.000
Avg. - 98.45 - 78.11

Table 7.15: Comparison of soft constraint violations between SAR (5T ) and
SAIRL (5T ) on selected instances. n=31 runs.

7.2 Discussion

In order for a conventional SA to produce good results, certain parameters have

to be tuned, even for specific instances e.g. initial temperature, end tempera-

ture, Marcov chain length and decay rate. SAIRL, proposed in this chapter, not

only eliminates the requirement for tuning those parameters but also eliminates

the selection of neighborhood structure composition (dataset specific) in SAR.

Nevertheless, the algorithm produces superior results compared to the state of

the art methods which were either heavily tuned or limited in terms of datasets

considered. For SAIRL, we only have to set the decay rate β to 0.9995 and the

constant D to 0.001. The same settings were used, and worked well, for all the

instances without tuning. Meanwhile the initial temperature is simply set as

1% of the initial cost. Unlike conventional SA, the initial temperature is not

critical for SAIRL as reheating allows search exploration to reset when stuck.
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Figure 7.8: The use of Reinforcement Learning (RL) to adjust the neighborhood
structure composition.

Multiple operators are often better than any single operator being used alone

because the solution space is more connected when the operators are assumed to

have equal acceptance ratio and computational cost. However, selecting opera-

tors with equal probability is suboptimal because in reality, the operators have

different acceptance ratio and computational cost for different data instances.

The effect of RL is shown in Figure 7.8. We use dashed instead of solid lines

to indicate that the solution space is not necessarily connected by any of the

operators as move acceptance is determined by feasibility as well as the tem-

perature. Meanwhile, the thickness of the dashed lines represent the selection

probabilities for the operators. Initially, the operators have an equal chance

of being selected. As the search progresses, the probabilities are increased or

decreased depending on the acceptance ratio and computational cost of the op-

erators. Unlike other methods, which reward operators that improve the current

or best solution, our RL based methodology rewards operators that change the

current solution (improving moves or equal cost moves or worsening moves).

Effectively, operators with relatively high value (cumulative mean of rewards)

will have a higher tendency of being selected. The RW selection that we use

prevents the domination of any operator as low valued operators can still be

selected. As a result, the number of transitions (accepted moves) per time unit

is maximized. The connectivity of the solution space is improved. The move-

ment of neighborhood structure composition for Socha-L, ITC02-1 and ITC07-1

is shown in Fig. 7.9 , 7.10 and 7.11 respectively. Kempe operator seems more

worthwhile for ITC07-1 compared to Socha-L and ITC02-1.
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Figure 7.9: Movement of neighborhood structure composition for Socha-L
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Figure 7.10: Movement of neighborhood structure composition for ITC02-1
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Figure 7.11: Movement of neighborhood structure composition for ITC07-1

In SAR, the reheated temperature is set proportional to the current cost.

When the current cost is low, the temperature is set proportionally low. In

effect, the search is guided to operate in the vicinity of the current solution in

the hope of finding the optimal solution (exploitation). Meanwhile, when the

current cost is high, the temperature is set proportionally high and the search is

allowed to explore more. However, setting the reheated temperature based on

the current cost alone is not sufficient as the search landscape for each instance

is different. In SAIRL, the average cost change (which provides insight into the

gradient of the search landscape) is incorporated into the reheated temperature

function since the temperature determines the acceptance of uphill moves based

on the cost changes. In effect, we are using the information on the gradient of

the search landscape to determine the exploration level for the search.

7.3 Conclusion

We have compared the results of SAR and SAR with Learning (SARL) on

selected instances. The reinforcement learning used in SARL eliminates the

manual setting of neighborhood structure composition as required in SAR. Fur-

thermore, experimental results show that SARL is more effective compared to

SAR. The way multiple operators are weighted (acceptance rate and CPU time)

and selected (Roulette Wheel) improves the connectivity of search space and

number of transitions per time unit.
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We incorporated the average cost changes into the reheated temperature

function on selected instances. In effect, exploration is guided by the gradient

of the search landscape. In a comparison, SAIRL is better than SARL on se-

lected instances in terms of average means of soft constraints violations. In fact,

SAIRL is particularly effective for the instance ITC07-1.

We also compared the performance of SAIRL with SAR and other state of

the art methods. SAIRL is comparable, or better, than SAR and other state

of the art methods without the need for parameter tuning. In addition, we

illustrated the movement of neighborhood structure composition. Finally, we

have shown that SAIRL is extendable when the runtime is extended.
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Chapter 8

Conclusion and Future

Research

As a conclusion of the study, section 8.1 presents the summary of the research

work carried out and highlights the contributions that can be drawn from this

research. Section 8.2 outlines the possible future research work that is suggested

to further develop ideas presented in this thesis.

8.1 Thesis Summary

In chapter 2, we reviewed the scientific literature on educational timetabling

where key introduction and surveys are provided. There are three variants

of educational timetabling identified, namely school, course and examination

timetabling. We described how timetabling is closely associated with the graph

coloring problem. Generally, the algorithms used to solve timetabling problems

are either one-stage, multi-stage or multi-stage with relaxation. One of the

most popular approaches utilized in educational timetabling problems is Meta-

heuristics which can be categorized as local search based (SD, FD, TS, GD,

SA, ILS, VNS) and evolutionary based (GA, ACO). Another popular approach

is hyper-heuristics which aim to be generally applicable across optimization

problems. In addition, we presented a review of MCTS for combinatorial op-

timization problems. MCTS has never been utilized for timetabling problems.

Finally, we reviewed the implementation of hybrid algorithms.
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In chapter 3, we described the requirements of the course timetabling prob-

lem. The datasets (Socha, ITC02, ITC07, Hard) considered in this thesis are

described, including their origin, time limit, hard and soft constraints. In addi-

tion, the instance specific statistics such as the # of events, # of rooms, # of

features and # of students are provided. The formal presentation of the problem

is also presented. The related work for each dataset are reviewed in detail and

presented in a chronological order. State of the art methods are identified and

studied. Generally, the best performing methods are based on Simulated An-

nealing. However, as evident in the literature, the methodologies either require

extensive parameter tuning to obtain good quality results or are only utilized

on a limited number of datasets.

In chapter 4, we compare the effectiveness of several constructive heuristic

approaches in finding feasible solutions for the course timetabling problem. We

focus on MCTS as well as other state of the art methods. We compared sev-

eral graph coloring heuristics (LD, SD, DSR) using two types of assignments,

namely assignment by place and assignment by slot. We found that the variant

based on slot assignment and DSR heuristic is the most effective in terms of

average means of unassigned events for all the datasets considered. We com-

pared random and heuristic based simulation (DSR) for the simulation part of

MCTS. It seems heuristic based simulation is better than random simulation.

Heuristics make simulation more realistic compared to random simulation where

events and slots are selected randomly. We tested several tree pruning heuristics

(DSR, LD-All, MV-All and SD-All). Tree pruning improves the effectiveness of

MTCS in finding feasible solutions in terms of average number of unassigned

events. Empirical results also show that MV-All worked best among the heuris-

tics tested. We compared the best variant of GCH, MCTS and TS in finding

feasible solutions. MCTS worked well for Socha and ITC02 instances but was

lacking in terms of performance for ITC07 instances. MCTS could not find a

feasible solution for instances 10 and 22 of ITC07 even with extended runtime.

Computational experience shows that the value of B (selection part of MCTS)

can affect the results. For MCTS to work effectively, this value needs to be

adjusted for specific instances. In addition, the suitable value also depends on

the runtime. Overall, TS shows great potential and therefore we decided to

focus on improving the algorithm, which is our focus in the next chapter.

In a comparison with GCH and MCTS, TS is apparently the best method
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in finding feasible solutions. Therefore, we focus on improving TS. In chapter 5,

we propose several enhancements to the algorithm. We have presented the effect

of sampling on TS. TS with event sampling is more effective than TS without

event sampling. Event sampling size S=[0.25% × # of events], is more effective

than event sampling size S = 1, particularly when the # of events is high. Event

sampling size S=[0.25% × # of events] not only allows more moves per time

unit but also naturally varies the diversification and intensification capability

of the algorithm (depending on the the number of unassigned events) despite

the fixed S throughout the search. We compared the effect of using different

cost functions with or without perturbation on TS with sampling. The novel

cost function proposed in Eq. 5.1 performed better than other cost functions

used in the scientific literature regardless of whether perturbation is used. The

results are further improved when the proposed perturbation is paired with the

proposed cost function on TS with event sampling. The proposed cost function

is exploitative, and the proposed perturbation is exploratory. A good balance

between exploration (proposed perturbation) and exploitation (proposed cost

function) for the search is achieved when the perturbation is initiated at the

right time. When perturbation is called too early (more frequent), the search

lacks exploitation. Meanwhile if perturbation is initiated too late (less frequent),

the search lacks exploration. Overall, TSSP is shown to be more effective in find-

ing feasible solutions for the benchmark timetabling problem compared to TS.

The number of unassigned events and average time to feasibility are presented

for all the datasets. In addition, t-tests are conducted to compare the means

for these values between TS and TSSP. TSSP managed to find 100% feasibility

for all Socha, ITC02 and ITC07 instances in relatively short time compared to

existing methods in the scientific literature. TSSP is further enhanced by hy-

bridization with ILS. We compared the effectiveness of TSSP and TSSP-ILS in

finding feasible solutions for considerably hard benchmarked timetabling prob-

lems. The method is not only superior to the performance of either TSSP or

ILS alone but also other state of the art methods. In addition, significant im-

provement of result is observed when the runtime is extended suggesting that

TSSP-ILS is extendable. As we have developed an efficient algorithm in finding

feasible solutions, we shift our focus on improving the soft constraint violations

of the feasible solutions in the next chapter.

In chapter 6, we improve the feasible solutions in terms of soft constraint

violations by using a method based on SA. We focus on SA as it has been
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very effective in addressing combinatorial optimization problems, particularly

timetabling problems. In fact, all state of the art methods for the instances

considered in this work are based on SA. We have compared the effectiveness of

both individual and combination of neighborhood structures. The right combi-

nation of neighborhood structures is important in getting high quality solutions.

It is more effective than any individual operator used alone. However, finding

the right ratio for the operators is difficult as its effectiveness is dependent on

the instances. We analyzed various neighborhood examination schemes or the

method of selecting events and time slots for move evaluation. We found that

DE-DS (deterministic event and deterministic slot) is more effective than both

RE-RS (random event and random slot) and DE-RS (deterministic event and

random slot). DE-DS allows the search space to be thoroughly explored. We

presented the effect of basic reheating. The temperature is reheated to a value

as a function of the current cost when the search is assumed stuck. In effect,

exploration is guided by the current cost. The setup with reheating generated

better results than its counterpart without reheating. We tested three types

of local optima detection. Type 2 (relative changes of current cost) seems to

be more effective than Type 1 (absolute changes of current cost) and Type 3

(relative changes of current cost). A precise local optima estimator is vital to

prevent unnecessary reheating which may affect the exploitation capability of

the search. We also compared the effect of incremental reheating where temper-

ature is reheated to a higher value if the search is still stuck since the previous

reheating. Slightly better results are observed when incremental reheating is

used on the selected instances. Experimental results show that incremental re-

heating thrives while basic reheating suffers in terms of performance when the

current cost is low. Incremental reheating helps the search to escape from lo-

cal optima while ensuring that the current solution does not stray too much

(preserving previous search effort). Finally, we compared the performance of

the SAR algorithm with state of the art methods. Competitive results in terms

of soft constraint violations are reported in all datasets tested. The behaviour

of SAR and the effect of reheating are also displayed. Moreover, SAR is also

shown to be extendable when the runtime is extended.

In chapter 7, we further enhance the SAR algorithm in terms of ease of use

and performance (soft constraint violations). We have compared the results of

SAR and SAR with Learning (SARL) on selected instances. The reinforcement

learning used in SARL eliminates the manual setting of neighborhood struc-
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ture composition as required in SAR. Furthermore, experimental results show

that SARL is more effective compared to SAR. The way multiple operators

are weighted (acceptance rate and CPU time) and selected (Roulette Wheel)

improves the connectivity of search space and number of transitions per time

unit. We incorporated the average cost changes into the reheated temperature

function on selected instances. In effect, exploration is guided by the gradient

of the search landscape. In a comparison, SAIRL is better than SARL on se-

lected instances in terms of average means of soft constraints violations. In fact,

SAIRL is particularly effective for the instance ITC07-1. We also compared the

performance of SAIRL with SAR and other state of the art methods. SAIRL

is comparable, or better, than SAR and other state of the art methods with-

out the need for parameter tuning. In addition, we illustrated the movement

of neighborhood structure composition. Finally, we have shown that SAIRL is

extendable when the runtime is extended.

8.2 Future Research

It would be interesting to see how TSSP-ILS performs on graph coloring problem

as the algorithm is based on PARTIALCOL which was initially used to tackle

graph coloring. We expect to see improved results similar to the improvements

made by TSSP-ILS on course timetabling problems.

We plan to utilize SAIRL on other educational timetabling problems such as

school timetabling (ITC11) and examination timetabling (examination track of

ITC07 and Toronto dataset). Adaptations should be minimal considering the

common features and structures shared by the educational timetabling prob-

lems. The algorithm could also be applied to other scheduling problems (trans-

port scheduling, sports scheduling and nurse rostering) and possibly other com-

binatorial optimization problems (bin packing, vehicle routing). Working on

different problems not only provides a platform to test the robustness and gen-

eral applicability of SAIRL but also provides further evidence which might lead

to further algorithm enhancements.

It is also possible to add more complex operators into the neighborhood

structure compostion such as Hungarian method [111], double Kempe [124] etc.

The complex operators may be computationally expensive but are worthwhile
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provided the connectivity of the search space is improved. The reinforcement

learning used in SAIRL will adjust to the neighborhood structure composition

accordingly based on the acceptance ratio and computational cost (CPU time)

of the operators.

SAIRL can be hybridized with Tabu Search. In SAIRL, every time slot is

attempted for each event unless the event is successfully moved to a time slot.

An event can be prohibited from moving to certain slots after moving out of

the time slots recently. Instead of attempting to move an event to every time

slot, only certain non-tabu time slots would be attempted. It is hoped that the

exploration of the search will improve. Tabu tenure determines the prohibition

duration (number of iterations) of a particular time slot for a particular event.

We could set the tabu tenure as a function proportional to the current cost.

This dynamic tabu tenure is expected to allow the search to explore and exploit

the search space accordingly during the search process. This idea is inspired by

the principle that the search should explore more when the current cost is high

and exploit more when the current cost is low.

SAIRL can also be hybridized with any population based algorithms (GA)

which are well known for their exploration capability. For instance, when SAIRL

is stuck during the search, GA can be initiated for the search to escape from

being stuck in a local optima. We would suggest that the number iterations

for the genetic algorithm to be set proportional to the current cost. After a

certain number of iterations, the mode of execution is returned back to SAIRL.

Then the temperature is set proportional to the current cost and cooled until it

is stuck again. The execution of SAIRL and GA are alternated until the time

limit is reached.

Currently, SAIRL is utilizing a static cooling schedule. We are looking at

testing SAIRL with various adaptive cooling schedules as proposed in [178],

[149], [137] and [172]. The adaptive cooling schedules worked well for the re-

spective domains. However, a parameter value has to be set for them to work

effectively.
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