A heat pipe and porous ceramic based sub wet-bulb temperature evaporative cooler: a theoretical and experimental study

Amer, Omar (2017) A heat pipe and porous ceramic based sub wet-bulb temperature evaporative cooler: a theoretical and experimental study. PhD thesis, University of Nottingham.

[img] PDF (Anyone) (Thesis - as examined) - Repository staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (7MB)


Worldwide energy demand in buildings represents about 40-50% of the total energy consumption. In hot climates, such as Middle East and North Africa (MENA) countries, about 30% of the national power demand is used for HVAC applications in buildings. This has led to escalation in power demand in buildings for indoor air-cooling and high energy bills. This is exacerbated further by the widespread adoption of energy intensive and commercially dominant vapour compression air conditioning systems as the technology of choice.

This research aims to address the potential of novel designs of evaporative cooling systems for space cooling and thermal comfort in buildings with reduced water and energy consumption, and low environmental impact as an alternative to vapour compression where climatically is suitable. High water consumption rates and low cooling effectiveness are some of the issues affecting the performance of existing Indirect Evaporative Coolers (IEC). A new configuration of IEC combining heat pipe heat exchanger and porous ceramic tubes is investigated in this work.

The proposed cooler configuration is based on the concept of regenerative IEC system, this system incorporates heat pipes as passive heat transfer elements and porous ceramic tubes as wet medium mounted on the condenser side of the exchanger. The design of the cooler was carried out with consideration for size of the airflows channels, heat pipes for heat transfer, and porous ceramic tubes properties for water evaporation. A mathematical formulation of heat and mass transfer equations was used to develop a computer model to design and optimise the cooling system. Furthermore, a test rig was built to test a laboratory scale cooling unit, evaluate the performance and validate the simulation.

The simulation results reveal that the Wet-bulb (WB) effectiveness of the cooler ranged from 0.524 to 1.053, the COP ranged from 6.33 to 17.01, and water consumption rates of the cooler were around 0.875-1.55 (l/kWh) of cooling capacity. Whereas, the experimental performance parameters of the cooler show the WB effectiveness was in the range of 0.422-0.908 for all test conditions, the COP was 4.62-13.16, and water consumption rates varied 0.841-2.82 (l/kWh) of cooling capacity. A good agreement was obtained between the experiments data and numerical results, the maximum errors between measured and computed results was around 3.94% and 4.51% of supply air temperature and humidity, respectively, while the discrepancy was in the range of 8.67-12.90% of the WB effectiveness.

The impact of operational and design parameters on the cooler performance was evaluated in a parametric study using the developed numerical model. It was found that increasing the inlet air temperature, decreasing the inlet air flow rate, and/or increasing the working-to-inlet air flow ratio, results in improving the effectiveness and supply air temperature. Whereas, increasing the inlet air wet-bulb temperature depression, increasing the inlet air flow rate, and/or minimising the working-to-inlet air flow ratio leads to enhancing the cooling output and COP of the cooler. Additionally, increasing the thickness and/or the radius of ceramic tube causes a decline of cooler thermal performance. Therefore, it is recommended to operate the cooler at inlet air velocity of 2-2.5 m⁄s, 50% flow ratio of working-to-inlet air, and inlet air relative humidity below 35% for best results of supply air temperature, WB effectiveness, and COP. Whereas, for desert climate conditions, it is recommended to increase the number of heat pipe rows to 20 to insure sufficient cooling effectivity and performance that meet comfort levels.

Finally, a brief economic assessment of the cooler annual operational performance for a case study was carried out, this IEC system provide sufficient cooling effectiveness to the conditioned space with significantly low power consumption compared to traditional air conditioner with annual saving of 77.60% of operational costs, and also substantially contribute to minimise CO2 emissions by saving about 86% of electricity consumption.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Boukhanouf, R.
Omer, S.
Keywords: Air conditioning, Evaporative cooling, Heat pipe exchanger, Energy conservation in buildings
Subjects: T Technology > TH Building construction > TH7005 Heating and ventilation. Air conditioning
Faculties/Schools: UK Campuses > Faculty of Engineering > Built Environment
Item ID: 43343
Depositing User: Amer, Omar
Date Deposited: 13 Jul 2017 04:41
Last Modified: 14 Jul 2017 16:48
URI: http://eprints.nottingham.ac.uk/id/eprint/43343

Actions (Archive Staff Only)

Edit View Edit View