Continuous regression: a functional regression approach to facial landmark tracking

Sánchez Lozano, Enrique (2017) Continuous regression: a functional regression approach to facial landmark tracking. PhD thesis, University of Nottingham.

[img]
Preview
PDF (Thesis after minor corrections) (Thesis - as examined) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (8MB) | Preview

Abstract

Facial Landmark Tracking (Face Tracking) is a key step for many Face Analysis systems, such as Face Recognition, Facial Expression Recognition, or Age and Gender Recognition, among others. The goal of Facial Landmark Tracking is to locate a sparse set of points defining a facial shape in a video sequence. These typically include the mouth, the eyes, the contour, or the nose tip. The state of the art method for Face Tracking builds on Cascaded Regression, in which a set of linear regressors are used in a cascaded fashion, each receiving as input the output of the previous one, subsequently reducing the error with respect to the target locations.

Despite its impressive results, Cascaded Regression suffers from several drawbacks, which are basically caused by the theoretical and practical implications of using Linear Regression. Under the context of Face Alignment, Linear Regression is used to predict shape displacements from image features through a linear mapping. This linear mapping is learnt through the typical least-squares problem, in which a set of random perturbations is given. This means that, each time a new regressor is to be trained, Cascaded Regression needs to generate perturbations and apply the sampling again. Moreover, existing solutions are not capable of incorporating incremental learning in real time. It is well-known that person-specific models perform better than generic ones, and thus the possibility of personalising generic models whilst tracking is ongoing is a desired property, yet to be addressed.

This thesis proposes Continuous Regression, a Functional Regression solution to the least-squares problem, resulting in the first real-time incremental face tracker. Briefly speaking, Continuous Regression approximates the samples by an estimation based on a first-order Taylor expansion yielding a closed-form solution for the infinite set of shape displacements. This way, it is possible to model the space of shape displacements as a continuum, without the need of using complex bases. Further, this thesis introduces a novel measure that allows Continuous Regression to be extended to spaces of correlated variables. This novel solution is incorporated into the Cascaded Regression framework, and its computational benefits for training under different configurations are shown. Then, it presents an approach for incremental learning within Cascaded Regression, and shows its complexity allows for real-time implementation. To the best of my knowledge, this is the first incremental face tracker that is shown to operate in real-time. The tracker is tested in an extensive benchmark, attaining state of the art results, thanks to the incremental learning capabilities.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Pridmore, Tony
Bowden, Richard
Keywords: computer vision, facial tracking, face recognition
Subjects: Q Science > QA Mathematics > QA 75 Electronic computers. Computer science
T Technology > TA Engineering (General). Civil engineering (General) > TA1501 Applied optics. Phonics
Faculties/Schools: UK Campuses > Faculty of Science > School of Computer Science
Item ID: 43300
Depositing User: Sánchez Lozano, Enrique
Date Deposited: 18 Jul 2017 04:40
Last Modified: 13 Oct 2017 00:18
URI: https://eprints.nottingham.ac.uk/id/eprint/43300

Actions (Archive Staff Only)

Edit View Edit View