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ABSTRACT 

Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes 

during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic 

profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of 

hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and 5 

paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the 

simulated fluids, the particles increased in size due to ingress of the dissolution media into the 

particles. Simulated gastric emptying revealed that the formulations had mean sizes < 350 nm 

and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There 

was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate 10 

depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary 

ion mass spectrometry analyses indicated that drug loading followed the core-shell model and 

that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are 

therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the 

simulated GI media indicates their suitability for oral delivery. 15 

Keywords: Solid lipid nanoparticle, stability, gastrointestinal tract, gastric emptying, 

amphotericin B, paracetamol 

Chemical compounds studied in this article 


Amphotericin B (PubChem CID: 5386092); Paracetamol (PubChem CID: 1983); Sodium 

cholate (PubChem CID: 23668194) 20 

                                                           

AmB, amphotericin B; DLS, dynamic light scattering; GI, gastrointestinal; NTA, nanoparticle 

tracking analysis; PAR, paracetamol; PDI, polydispersity index; SGF, simulated gastric fluid; 

SIF, simulated intestinal fluid; SLN, solid lipid nanoparticle; ToF-SIMS, time-of-flight 

secondary ion mass spectrometry; ZP, zeta potential. 
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1. Introduction 

Ascertaining the stability of formulations in biological media can provide critical 

information for optimising such preparations, particularly for submicron formulations. Stability 

studies conducted in appropriate simulated GI media may give information on the fate of 

formulations after their oral administration. The stability of nanoparticulate formulations may be 25 

ascertained with reference to their chemical or pharmaceutical/storage stabilities (Muthu and 

Feng, 2009).  

After oral administration, a dosage form or drug must initially overcome the physical and 

chemical hydrodynamics within the GI tract and traverse the intestinal epithelium effectively in 

order to register significant bioavailability. Lipid-based delivery systems are susceptible to 30 

digestion/degradation by gastric and intestinal enzymes prior to their absorption. They can be 

absorbed by enterocytes as micelles, which improves the absorption of hydrophobic drugs 

(Müller et al., 1996; Pouton, 2000; Roger et al., 2009; Subramanian and Ghosal, 2004). In 

addition, solid lipid nanoparticles (SLNs) have a large surface area and are therefore prone to 

aggregation, which may reduce particle interaction with the intestinal mucosa (Jani et al., 1990).  35 

The slow drug release characteristics exhibited by SLN systems assure evasion of GI 

degradation of susceptible drugs; however, this may depend on the rate of degradation of the 

particles, which is also governed by the type of excipients used in formulating the SLNs (Damgé 

et al., 1990; Olbrich et al., 2002a, 2002b). A study by Zhang et al. revealed that using SLNs 

averted the gastric irritation caused by triptolide, which indicates that the delivery system retains 40 

its integrity in the stomach; however, the composition of the lipid matrix varies among 

formulations hence each SLN may respond differently (Zhang et al., 2013).  
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Amphotericin B (AmB) is a polyene antibiotic with broad-spectrum antifungal activity 

and an anti-leishmanial activity. It is used to treat systemic mycoses and it is particularly useful 

in immunocompromised patients as there is a high mortality rate in such patients due to invasive 45 

fungal infections (Wasan et al., 2009). AmB is currently administered intravenously due its poor 

aqueous solubility characteristics, which makes oral delivery challenging. In earlier studies, we 

have successfully formulated and exhaustively characterised an oral AmB-containing solid lipid 

nanoformulation with the aim of improving its oral bioavailability (Amekyeh et al., 2015; Tan et 

al., 2014; Tan et al., 2010). 50 

In the following, we investigate the stability of the AmB SLNs when challenged by 

simulated GI media. This was done in comparison with an identical SLN formulation containing 

paracetamol (PAR), which was used for studying the gastric empty pattern of the AmB SLNs. 

These SLNs have been characterised previously with regard to bioavailability and GI transit 

properties (Amekyeh et al., 2015). We aimed to specifically assess the changes in the surface 55 

chemistry and physical properties of the SLNs in simulated GI media and then extrapolate the 

data to the bioavailability study carried out earlier.  

 

2. Materials and methods 

2.1. Materials  60 

Paracetamol, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were 

purchased from Sigma-Aldrich (St. Louis, Missouri, USA). SGF and SIF were diluted with 

ultrapure water to obtain the media at pH 1.2 and pH 6.6 respectively. Beeswax was obtained 

from Acros Organics (New Jersey, USA), theobroma oil from JB Cocoa Company Limited 
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(Johor, Malaysia) and amphotericin B from Nacalai Tesque Inc. (Kyoto, Japan). Lecithin soy and 65 

sodium cholate were obtained from MP Biomedicals (Illkirch, France). Chloroform, ethyl acetate 

and methanol were purchased from Fisher Scientific (Loughborough, UK). All the reagents and 

solvents used were of analytical and HPLC grades respectively. Ultrapure water (18.2 MΩ·cm at 

25°C) was obtained using a Milli-Q system (Millipore Corp., Bedford, USA). 

 70 

2.2. Preparation of drug-free, AmB and PAR SLN formulations 

The drug-loaded SLNs were prepared according to the emulsification solvent diffusion 

technique, and characterised as described in our previous work (Amekyeh et al., 2015). Briefly, 

50 mg of drug, 120 mg of lecithin and 200 mg each of cocoa butter and beeswax were added to a 

40-mL mixture of chloroform and methanol (1:1). The solvent was evaporated off using a 75 

Rotavapor
®
 R-200/205 (Büchi, Switzerland) at 50°C. The resulting drug-lipid matrix was melted 

in 20 mL of ethyl acetate at 70°C and added to 40 mL of 2.5% w/v sodium cholate solution at 

70°C. The mixture homogenised (Ika-Turrax T 25
®
, IKA

®
, Staufen im Breisgau, Germany) at 10 

000 rpm for 6 min to prepare an emulsion. About 60 mL of water at 70°C was then added slowly 

to the mixture with continuous stirring for 20 min, after which the organic solvent was 80 

evaporated off. The drug-free formulation was similarly prepared without any drug.  

 

2.3. Stability of the SLNs in simulated GI fluids 

The SLN formulations were evaluated for their stability in SGF and SIF. An aliquot of 1 

mL of each formulation was placed in separate tubes containing SGF-only and SIF-only media, 85 

to produce a 1 in 250 dilution, which were then incubated for 2 hr. In a parallel study, the 
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formulations were incubated in SGF for 2 hr, followed by transfer into SIF and incubation for an 

additional 2 hr to mimic the gastric emptying process (SGF+SIF). All the SLN samples were 

diluted with the appropriate media to obtain a final dilution of 1 in 500 prior to analyses. The 

samples were then evaluated for size and surface charge changes using dynamic light scattering 90 

(DLS) and nanoparticle tracking analysis (NTA). Time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) was used to qualitatively evaluate changes in the surface chemistries 

of the particles after their exposure to the media. 

 

2.4. DLS studies 95 

DLS studies on the SLNs were carried out using a Zetasizer Nano ZS
® 

(Malvern, UK) 

and the parameters measured were z-average diameter, zeta potential (ZP) and polydispersity 

index (PDI). Each analysis was carried out at 37°C and performed in triplicate. The data obtained 

are expressed as mean ± standard deviation (SD). 

 100 

2.5. NTA studies 

NTA measurements were performed using a NanoSight LM10 (NanoSight, Amesbury, 

United Kingdom) equipped with a sample chamber and a 640-nm laser. Using sterile syringes, 

samples were injected into the chamber to capacity. All measurements were done at 37°C. Each 

video was captured at 30 frames/sec for 1 min 30 sec and analysed using the NTA software 105 

version 3.1 Build 3.1.46. Triplicate measurements were performed for each sample and the data 

obtained have been expressed as mean ± SD.  
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2.6. ToF-SIMS analyses  

ToF-SIMS was carried out on the samples using an ION-TOF equipment (Münster, 

Germany) equipped with a liquid metal bismuth ion gun (LMIG). Prior to analyses, the SLNs 110 

were washed by centrifuging at 13 000 rpm for 60 min, after which the supernatants were 

discarded and deionised water added to the samples. The washing was done to remove ions from 

the simulated GI media off the particles, as these ions can affect signals in the spectra. The 

washing also helped to remove traces of unassociated drug during formulation. The precipitated 

particles were resuspended in water by shaking and the centrifugation process was repeated 115 

thrice. The washed SLNs were redispersed in deionised water and about 40 µL samples placed 

on labelled silicon wafers. The samples were then air-dried prior to analyses. The analyses were 

carried out using 25 keV Bi3
+
 primary ions over 200 μm × 200 μm areas. Data analyses were 

performed on the negative ion spectra for each sample using the ION-TOF software.  

 120 

3. Results and discussion 

3.1. DLS studies 

Z-average from a DLS measurement corresponds to the mean hydrodynamic diameter of 

the particles in a sample whilst PDI is a measure of the width of the particle size distribution. 

PDI values of 0.0-0.1 point to a narrow monodisperse distribution, 0.1-0.4 indicate a moderate 125 

polydisperse distribution system, whereas values greater than 0.4 indicate a broadly polydisperse 

system. Generally, particles in a sample with mean sizes above 500 nm and PDIs greater than 0.5 

are considered as “large or agglomerated”, which may not be truly representative of the sample. 

This is because few large particles present in a sample usually dominate the light scattering 
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signals in DLS analysis and give rise to large PDI values, which render the results unreliable. 130 

Nanoparticles with ZPs up to |10 mV| are considered “neutral” whereas those with ZPs greater 

than |30 mV| are considered “strongly charged” (Clogston and Patri, 2011). 

Fig. 1 shows the size distributions by intensity of drug-free and drug-loaded (AmB or 

PAR) SLNs whilst Fig. 2 illustrates the z-averages and PDIs of the SLNs, before and after 

exposure to the simulated fluids. Table 1 shows the ZP values of the SLN formulations in the 135 

various media.  

 

Table 1  

ZPs (mV) of drug-free and drug-loaded SLNs obtained from DLS. 

SLN 

formulation 

Fresh sample SGF-only SIF-only SGF+SIF  

Drug-free -67.6 ± 1.7 2.4 ± 0.3 -28.9 ± 0.6 -0.4 ± 0.1 

AmB -61.9 ± 1.0 1.1 ± 0.6 -31.2 ± 1.2 -3.0 ± 0.1 

PAR -71.9 ± 0.9 4.9 ± 1.1 -35.7 ± 0.5 3.4 ± 1.0 

 140 

The SGF contained approximately 2.0 g/L of NaCl and 2.917 g/L of HCl as specified in 

the United States and European Pharmacopoeias. SGF is less complex as compared with in vivo 

gastric fluid. However, the dominant features of stomach fluid are its acidity and ionic content, 

which are replicated with the SGF. 
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There was an approximately 3.8-fold increase in the z-average of the drug-free particles 145 

in SGF, which points to massive aggregation of the particles. The marked drop in the magnitude 

of ZP, as well as the change in surface charge from negative to positive (-67.6 ± 1.7 mV to 2.4 ± 

0.3 mV) can be attributed to the H
+ 

ions in SGF neutralising the negative charge density on the 

fresh SLNs. Furthermore, the reduction in ZP favours van der Waals type interparticle 

interactions, which result in particle aggregation.  150 

The SIF contained approximately 0.616 g/L of NaOH and 6.8 g/L of KH2PO4. In SIF-

only, there was a 1.8-fold increase in particle size and a 2.3-fold decrease in the ZP after 

exposure of the fresh particles to the medium. The PDI value indicates a relatively narrower size 

distribution width of the particles in SIF-only than in SGF-only and no aggregation of the SLNs 

in the former, which is due to retention of adequate surface charge (|28.9 mV|) above the 155 

threshold attendant for the agglomeration of colloidal particles (|15 mV|) (Riddick, 1968).  

The composition and volume of fluid along the GI tract, the motility of the GI tract, as 

well as the transit of dosage forms within it are highly variable. As a result, there is no perfect 

representative model for GI fluid. However, in the media exposure simulations described above, 

the SGF+SIF medium approximates the gastric emptying of contents into the small intestine, 160 

which is fairly consistent with that in the gut. Within the context of drug release and uptake of 

particles within the gut, surface chemistry and size changes of the particles are key determinants. 

Simulation of gastric emptying in respect of exposure to GI fluids was therefore a good measure 

of what might be happen in vivo. The z-average, PDI and ZP of the drug-free SLNs, as obtained 

in SGF+SIF were 517.0 ± 113.0 nm, 0.54 ± 0.22 and -0.4 ± 0.1 mV, respectively. Although a 165 

very low ZP magnitude is suggestive of particle agglomeration and subsequent precipitation, the 

PDI and mean particle size are intermediate between the values obtained in SGF-only and SIF-



9 
 

only. This probably suggests that the SLN aggregates in the SGF-only were held loosely as 

floccules, which then became deaggregated on exposure to SIF. A high ZP value is essential for 

the long-term storage stability of colloidal formulations. After oral administration however, only 170 

a sufficient ZP magnitude is necessary to maintain electrostatic repulsion among the particles 

prior to their absorption. As a result, a low ZP of nanoparticles after contact with GI fluids is not 

crucial in the present pursuit if their final size is optimal for absorption. 

A study by Shakweh et al. showed that uptake of neutral and negatively charged nano- 

and microparticles by Peyer’s patches in mice occurred to a greater extent as compared with that 175 

of positively charged particles (Shakweh et al., 2005). They observed a much larger number of 

particles with mean diameters of approximately 300 to 1000 nm in the patches than larger-sized 

particles. Again, particles with negative or close to neutral ZPs did not interact with the intestinal 

mucus gel layer due to electrostatic repulsion with the carboxylic (COO
-
) moiety of mucin, thus 

allowing such particles to reach the follicle-associated epithelium and subsequently the M cells, 180 

via endocytosis. Positively charged particles on the other hand were found to interact strongly 

with the mucus layer as the latter is negatively charged, resulting in an impeded uptake 

(Shakweh et al., 2005). 

The aforementioned results suggest that, in SGF+SIF, the drug-free particles retained 

their integrity as regards size and surface charge, which are critical features needed to augment 185 

absorption via endocytosis and subsequent lymphatic transport (Jani et al., 1989, 1994; Shakweh 

et al., 2005). The increase in size observed after exposure of the particles to the media may be a 

result of either aggregation or ingress of the dissolution media into the particles or both. The size 

distribution of the AmB SLNs (Fig. 1) in SGF-only was bimodal, and the two particle 

populations had mean sizes of 115.3 nm and 737.7 nm. As with the drug-free particles, the AmB 190 
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SLNs aggregated in SGF and after transfer from SGF into SIF, some deaggregation occurred. 

Prior to incubation, the AmB SLNs had z-average of 210.1 ± 1.4 nm, PDI of 0.22 ± 0.01 and ZP 

of -61.9 ±1.0 mV.  

There were no marked differences between the DLS data obtained for drug-free and 

AmB SLNs. Interestingly, both formulations showed an identical pattern of size change in the 195 

respective media, with the largest increase in size occurring in SGF-only, followed by SGF+SIF 

and then SIF-only. 

The increase in the sizes of the particles in SGF-only and SGF+SIF can be attributed to 

aggregation while the comparatively less marked size increase in SIF-only could be the result of 

influx of dissolution medium into the particles. The aggregation of the SLNs in SGF is likely to 200 

result in a reduced release of AmB from the particles due to a decrease in effective surface area. 

Consequently, aside from slow drug release from SLNs due to the hydrophobic nature of the 

lipid matrix, which retains most of the encapsulated drug within the matrix, particle aggregation 

in an acidic medium as observed above may further favour slow or no drug release in the 

stomach. This attribute is desirable as the small intestine, with its high expression of Peyer’s 205 

patches, is the probable site for uptake of the SLNs. Furthermore, the data obtained from our 

previous work in rats (Amekyeh et al., 2015) supports the assertion that AmB SLNs were taken 

up mostly from the small intestine.  

The PAR SLNs showed a bimodal distribution in SIF-only with mean sizes of 156.1 nm 

and 596.5 nm (Fig. 1). The size of the PAR SLNs was highest in SGF-only, followed by SIF-210 

only and then SGF+SIF. Generally, the increase in particle size after incubation in the media was 

lower for PAR SLNs as compared with the drug-free and AmB SLNs. 
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From previous studies, it appears that either a decrease or a size retention of various SLN 

formulations was observed in SGF-only (Jain et al., 2012; Laserra et al., 2015; Zhang et al., 

2013) while in SIF-only (Jain et al., 2012; Laserra et al., 2015; Roger et al., 2009; Yuan et al., 215 

2013), either an increase or a decrease in size was observed. It is likely that the composition of 

SLNs contribute to their propensity to aggregate as a function of GI media. In the present work, a 

size increase or aggregation of both drug-free and AmB-loaded SLNs was observed in the 

simulated GI fluids and this was manifested more in SGF-only.  

The hydrodynamic size obtained from DLS measurements can be affected by the salt 220 

concentration in a sample. This is due to the electrical double layer surrounding charged particles 

in an aqueous medium, which can be extended by the salts and result in an increase in size 

(Hackley and Clogston, 2011). In DLS, the intensity of scattered light is proportional to the 

square of particle diameter. Therefore, larger particles or clusters of smaller particles scatter light 

more strongly than smaller particles do (Balog et al., 2015). 225 

The marked increase in sizes of the SLNs observed in the present work could therefore be 

attributed to the few aggregated particles having approximate sizes of 5000 nm, which can be 

seen in each of the size distribution profiles for the fresh SLNs (Fig. 1). These large particles can 

perturb the light scattering signals, mask the presence of the smaller particles and lead to biased 

and possibly inaccurate size measurements.  230 

For samples containing significant differences in size populations such as the bimodal 

distributions of the AmB SLNs in SGF-only and the PAR SLNs in SIF-only, the calculated z-

averages do not convey very accurate size information. Although the DLS software has been 

designed to correct this aberration in multimodal distributions, the results may not reflect true 
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particle size distributions. As such, other particle sizing techniques can be used in addition to 235 

DLS in such instances (Lim et al., 2013). 

Overall, ZP was highest for the fresh SLN samples (Table 1). This is because the 

dispersion medium used to prepare the SLNs was deionised water. Hence, the negative surface 

charge on the fresh particles was solely due to the anionic surfactant (sodium cholate) used for 

formulating the SLNs. Incubating the SLNs in the simulated media resulted in a decrease in ZP, 240 

due the presence of electrolytes in the fluids. This is because ZP is dependent on the pH and 

conductivity of the suspending medium (Clogston and Patri, 2011). However, the decrease in ZP 

was more marked in SGF-containing media due to charge neutralisation by the H
+ 

ions present in 

SGF.  

In SGF+SIF, the drug-loaded SLNs had mean sizes ranging from 362.8 to 513.2 nm and 245 

neutral ZPs ranging from -10 to +10 mV. These properties favour the absorption of the SLNs via 

endocytosis by intestinal cells as well as via the Peyer’s patches through lymphatic transport 

(Clogston and Patri, 2011; Shakweh et al., 2005). We may conclude that the SLNs exhibit ideal 

physical properties necessary for absorption, following oral delivery and transit from the 

stomach to the small intestine. 250 

 

3.2. NTA studies 

In order to investigate the size variation of the SLNs in simulated GI fluids, free from the 

bias of DLS, the particle-by-particle approach for determining size using NTA was used. Fig. 3 

shows the mean particle size of the drug-free and drug-loaded SLNs, before and after their 255 

incubation in the various media. There was a general increase in size after incubating the 
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particles in the simulated media, except for the AmB SLNs in SGF+SIF and the PAR SLNs in all 

three media. The current results are suggestive of increase in particle size due to ingress of the 

media into the particles rather than of particle aggregation as indicative of the DLS data. The 

largest increase recorded for the drug-free particles was 94.1 nm and that was observed in 260 

SGF+SIF. 

For the AmB SLNs, there was an increase in size in SGF-only and SIF-only and a 

decrease in size in SGF+SIF. AmB is insoluble in water at pH 6-7 but soluble at pH 2 or 11 due 

to its amphoteric nature. It appears that SGF+SIF, having an approximate pH of 1.5, served as a 

better dissolution medium for AmB. In this regard, the diffusion of AmB from the particles 265 

resulted in a size decrease as opposed to the increase in size observed in the other media  

For the PAR SLNs, there was a decrease in size in all the three media and the largest 

decrease was observed in SGF+SIF. PAR is a hydrophilic drug and slightly soluble in water. 

PAR is also weakly acidic and forms a salt in strong acids (SGF) or bases however, the solubility 

of this salt depends on the ionic content of the dispersion medium. Since the dissolution of 270 

weakly acidic drugs is very minimal in strong acids, we observed identical size changes of the 

PAR SLNs in SGF-only and SIF-only (185.4 nm versus 182.7 nm, respectively), possibly 

indicating similar solubility characteristics of the drug at the two pHs respectively. In this regard, 

ingress of dissolution media into the particles would be followed by dissolution and diffusion out 

of the particles, resulting in the observed decrease in particle size. 275 

Comparing DLS and NTA, the latter is time-consuming and requires more operational 

skills but it clearly has benefits over DLS. NTA allows for sample visualisation, gives an 

approximate concentration of the particles in a sample and produces size data based on the 

Brownian motion of individual particles. The presence of few large particles in a sample has 
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little impact on the sizing accuracy of the NTA technique (Filipe et al., 2010). However, this is 280 

not the case in DLS, in which larger particles perturb and dominate the light scattering signals 

(Clogston and Patri, 2011). This could have been the reason for the observed differences in 

particle sizes from using the two techniques. In the present study, much larger particle sizes were 

obtained using DLS as compared with NTA although all the samples were similarly treated in 

the various media. Notwithstanding, the two techniques complement each other. 285 

In summary, contrasting patterns of size changes were observed for the drug-loaded 

SLNs in the various media. It appears that the size changes were dependent on the solubility of 

the incorporated drugs in the simulated fluids such that, ingress of the dissolution media into the 

SLNs caused some initial swelling of the particles. The dissolved drug was then free to diffuse 

out of the matrix of the particles, the rate of which depends on the aqueous solubility of the drug. 290 

Therefore, with PAR being the more hydrophilic drug in the present study, the PAR SLNs 

manifested a larger decrease in size due to the faster diffusion rate of the drug from the SLN 

matrices into the aqueous media. Particles with sizes below 10 µm are well taken up in the GI 

tract but uptake occurs more favourably when sizes are below 1000 nm (Jani et al., 1989; 

Kreuter, 1991; Shakweh et al., 2005). In addition, the mesh-pore spacing of the intestinal 295 

mucosal barrier is 50-1800 nm (Lai et al., 2010; Primard et al., 2010).  

The SLN formulations were found to be stable in the simulated GI fluids and are 

therefore deemed to be stable in vivo as well. The mean particle sizes and ZPs for all three 

formulations in the simulated media were also optimal for GI absorption meaning that the 

different particles would respond similarly with the GI mucus and epithelia. 300 
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3.3. ToF-SIMS analyses 

The negative and positive secondary ion spectra of the pure drugs, drug-free and drug-

loaded SLNs as well as the individual ingredients used for preparing the SLNs were subjected to 

ToF-SIMS analyses. However, only the negative ion spectra are presented as they provided data 305 

that were more meaningful as regards yields of the secondary ions of fragmented chemical 

components of the particles. In addition, the spectra for the individual non-drug components of 

the SLNs are not presented as these constituted the drug-free SLNs.  

The ions representing the diagnostic peaks used to identify AmB (C47H73NO17, 923.49 

g/mol) on the SLNs were [C20H27O2]
-
 at m/z 299.20, [C20H29O2]

-
 at m/z 301.22 and [C17H21NO4]

-
 310 

at m/z 303.23.  

 Comparing pure AmB with AmB SLNs, the peak intensities of the diagnostic ions (Fig. 

4(a)) indicated that the drug was present only in small quantities on the surface of the freshly 

prepared SLNs. As there was no drug loaded in the drug-free nanoparticles, the peaks 

corresponding to the diagnostic ions in the spectrum for the drug-free SLNs are due to the other 315 

ingredients used in preparing the nanoparticles. As a result, the peaks at m/z 299.20, 301.22 and 

303.23 in the spectrum for the AmB SLNs could be due to the excipients in the formulation, 

especially since the peak intensities are higher for the drug-free particles. These factors point to a 

drug-enriched SLN core and are a reflection of the high encapsulation efficiency of 91.2 ± 3.0% 

obtained for the AmB SLNs in our previous study (Amekyeh et al., 2015). 320 

 In Fig. 5(a), the relative intensities of AmB on the surfaces of the fresh SLNs and their 

after exposure to the media are compared. It can be observed that higher drug counts were 

detected on the particles after exposure of the SLNs to the GI media in the following order: 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Oxygen
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SGF+SIF > SIF-only > SGF-only. This trend is the reverse order of the particle size of the AmB 

SLNs in the respective media, as obtained from the NTA data. The higher intensities of the 325 

reference peaks for the media-exposed SLNs compared to the fresh sample points to the 

diffusion of AmB towards the surfaces of the SLNs. It is apparent that this diffusion to the 

surface is most effective in SGF+SIF and least so in SGF-only. Furthermore, this observation is 

in concert with the assertion that the diffusion of AmB from the SLN matrices is preceded by 

ingress of the media into the nanoparticles and dissolution of the payload, the speed of which 330 

may result in shrinkage of particles to various extents.  

 The diagnostic peak for PAR (C8H9NO2, 151.163 g/mol) is at m/z of 107.05, representing 

the [C7H7O]
-
 ion. The peak at m/z 107.05 (Fig. 4(b)) in the spectrum for the drug-free SLNs is 

attributable to the excipients used in the formulation. The intensity of the diagnostic peak was 

higher on the drug-loaded SLNs than on the drug-free particles, which indicates that the peak 335 

intensity observed on the SLNs is a combination of that for the drug itself as well as the 

excipients. This observation is the reverse of that detected in Fig. 4(a) for AmB. The results 

therefore indicate that there is a little amount of PAR on the surface of the fresh PAR SLNs, 

unlike the AmB SLNs, which had a negligible amount of AmB on the SLNs. 

 In Fig. 5(b), the spectra show a much intense PAR count on the fresh PAR nanoparticles 340 

in comparison to those incubated in the media. The PAR SLNs showed a relatively low 

encapsulation efficiency of 60.7 ± 0.26% (Amekyeh et al., 2015).  

 PAR is hydrolysed in acidic solutions (SGF) to produce 4-aminophenol and acetic acid; 

however, these products have different masses and would therefore not contribute to the signal 

intensity at m/z 107.05. This would manifest as a low PAR count on the particles in SGF-only as 345 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Oxygen
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compared with the fresh particles. Furthermore, PAR is very soluble at the pH of SIF, which 

favours drug release and dissolution in the medium resulting in an equally low drug count on the 

particles. As with the AmB SLNs, the highest drug intensity was detected on the PAR SLNs after 

their incubation in SGF+SIF, which indicates the latter as the best dissolution medium for both 

drugs. This means that there is a higher rate of drug diffusion out of the particles in SGF+SIF, 350 

which explains why the two SLNs had the smallest mean particle size in that medium (Fig. 3).  

The mean particle size (based on the NTA data) of the PAR SLNs after exposure to the 

media decreased in the order: SGF-only > SIF-only > SGF+SIF, and drug intensity on the SLNs 

was SIF-only < SGF-only < SGF+SIF. From Fig. 3, the mean sizes of the PAR nanoparticles in 

SGF-only and SIF-only are comparable (185.4 ± 53.9 nm and 182.7 ± 27.2 nm, respectively). 355 

Also, in Fig. 5(b), the intensity of the diagnostic peak is similar in the two media albeit slightly 

lesser in SIF-only, unequivocally signifying that the ultimate size of the particles is inversely 

related to the amount of drug released from the particles into the medium.  

 

4. Conclusions 360 

The data obtained indicate that after placing the SLNs in the simulated GI media, there 

was ingress of the fluids into the SLNs followed by diffusion of the dissolved drug. The rate of 

the diffusion however depended on the solubility of the loaded-drug in the particular medium. 

There was an increase in the size (NTA-based) of the drug-free SLNs in all the three media since 

the main mass transfer was the diffusion of the media into the SLNs and no drug diffusion out of 365 

the particles. The study showed NTA to be a more suitable technique than DLS for analysing the 

stability of the SLNs in the various media. The data obtained indicate that the SLNs after oral 
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ingestion may aggregate in the stomach. However, on reaching the small intestine, both the size 

and surface charge of the particles would be optimal for absorption. The mass spectra obtained 

from the ToF-SIMS analyses indicated that drug loading into the SLNs possibly followed the 370 

core-shell model and that the AmB SLNs may have a more drug-enriched core than the PAR 

SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. 

Furthermore, the stability of the SLN formulations in the simulated GI media indicated their 

suitability for oral delivery. 

 375 

Acknowledgements 

We also thank the Laboratory of Biophysics and Surface Analysis (LBSA) and the 

Nottingham Nanotechnology and Nanoscience Centre, both at the University of Nottingham (UK 

campus) for the facilities and support provided throughout the study. 

Funding: This work was supported by the Ministry of Science, Technology and 380 

Innovation (MOSTI), Malaysia [grant number 02-02-12-SF0227].



19 
 

FIGURES 

 

Figure 1 Size distribution by intensity of drug-free and drug-loaded SLNs, before and 

after their exposure to simulated GI fluids. The analyses were conducted using 

DLS. Triplicate measurements were performed for each sample. 

 

 

Figure 2 Z-averages and PDIs of drug-free and drug-loaded SLNs, before and after 

their exposure to simulated GI fluids. The analyses were conducted using 

DLS. Triplicate measurements were performed for each sample. Data have 

been presented as mean ± standard deviation. 
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Figure 3 Mean particle diameter of drug-free and drug-loaded SLNs, before and after 

their exposure to simulated GI fluids. Measurements were done using NTA. 

Triplicate measurements were performed for each sample. Data have been 

presented as mean ± standard deviation. 

 

 

Figure 4 Negative ion ToF-SIMS spectra showing pure drugs [(a) AmB or (b) PAR], 

drug-free SLNs and the respective drug-loaded SLNs. [* = diagnostic peaks].  
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Figure 5 Negative ion ToF-SIMS spectra showing the drugs [(a) AmB or (b) PAR] on 

the surface of the respective fresh SLNs and after their incubation in simulated 

GI fluids. The asterisks represent the diagnostic peaks. 
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