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Abstract 

Apoptin, a potential anticancer candidate, selectively kills tumour or transformed cells but 

remains harmless to normal and non-transformed cells. Besides, apoptin-induced apoptosis is 

independent of p53 apoptosis pathway, which is always mutated in cancer cells during 

tumorigenesis or after radiotherapy. This has made apoptin becoming more pharmacological 

valuable. In this study, the general aim was to develop a plant-derived apoptin which offers a 

safer and more cost-effective treatment for cancer patients. The scope of the study focused on 

the production of recombinant apoptin in a plant-based system and preliminary bioactivity 

evaluation of the purified plant-derived apoptin on human lung cancer adenocarcinoma A549 

cells. Recombinant apoptin was expressed in Nicotiana benthamiana as apoptin alone, in 

fusion to green fluorescent protein (GFP) as well as in fusion to lichenase (Lic) to increase 

the expression of recombinant protein in soluble fraction. Recombinant apoptin was also in 

fusion to H22 single chain antibody and epidermal growth factor (EGF) in order to target 

recombinant H22-apoptin and EGF-apoptin to cancer cells overexpressed with 

immunoglobulin G (IgG) receptor (CD64) and EGF receptors. Expression of recombinant 

apoptin was detected in N. benthamiana successfully, however, high amount of soluble 

protein was obtained in plants infiltrated with recombinant GFP-apoptin (gene casette: PR-

GFP-VP3-HK) and EGF-apoptin (gene casette: PR-EGF-CatAd-VP3-HK) that targeted the 

recombinant proteins to endoplasmic reticulum (ER). Protein purification using immobilised 

metal affinity chromatography (IMAC) recovered recombinant GFP-apoptin (GFP-VP3-HK) 

and EGF-apoptin (EGF-CatAd-VP3-HK) at a low purity when recombinant proteins were 

purified in a non-denaturing condition. Host cell protein contamination was not able to be 

removed when second chromatography and acid precipitation method were used. However, 

recombinant GFP-apoptin (GFP-VP3-H) and lichenase-apoptin (Lic-VP3-H) without targeted 

to specific cellular compartment were purified at a good purity using IMAC. Recombinant 

GFP-VP3-H extracted in a denaturing condition was successfully refolded without an 

addition of chemical additives while recombinant Lic-VP3-H required triton to refold the 

protein. In cell-based study, enzyme-linked immunosorbent assay (ELISA) showed that 

apoptin interacted with EGF receptors as well as A549 cells which finding is the first of its 

kind in report but with an unverified speculation. On the other hand, nuclear localisation 

activity and a few apoptosis-associated morphological features were observed in cells 

microinjected with recombinant GFP-VP3-H. Meanwhile, recombinant EGF-VP3-HK 

showed a dose-dependent growth inhibitory effect at higher concentration and caused the loss 
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of mitochondrial membrane potential (MMP) in treated A549 cells. However, internalisation 

of recombinant EGF-VP3-HK requires a further study for confirmation. Considering the 

findings on MMP and caspase 3/7 assays were not convincing enough, further evaluations are 

necessitated in order to verify the apoptosis events induced by the recombinant GFP-VP3-H 

and EGF-VP3-HK. Nonetheless, this study has heralded a new milestone for apoptin research 

by which its protein has been successfully produced in plants and some preliminary 

biological characteristics have been explored at a certain extent. 
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Chapter 1   

Introduction 

Chicken Anemia Virus (CAV), a member of Gyrovirus, was first isolated in Japan in year 1979. 

Severe anemia, atrophy of lymphoid as well as hemorrhages are the symptoms observed during 

viral infection (Notebornb and Koch, 1994). Viral Protein 3 (VP3) of CAV, a non-structural 14 

kDa small protein, is the main candidate responsible for the destruction of erythroblastoid cells 

and cortical thymocytes that leads to anemia and immunodeficiency symptoms. Depletion of 

both erythroblastoid cells and cortical thymocytes was found to be the result of apoptosis 

induced by VP3. Due to the induction of apoptosis by VP3 in CAV infected or transformed 

chicken cells, VP3 was named “apoptin” by Noteborn and his colleagues in 1995. Other than 

transformed or CAV susceptible chicken cells, tumourigenic and transformed mammalian cells 

are also susceptible to apoptin (Noteborn et al., 1998). However, most of the normal and non-

transformed mammalian cells are not susceptible to apoptin. Apoptin consists of 121 amino acids 

and three important functional regions are found on this small protein, including a leucine rich 

region (LRR), a bipartite nuclear localisation signal (NLS) and a nuclear export signal (NES).  

To date, more than 70 cancer cell lines are susceptible to apoptin, including breast tumour 

(MCF-7), osteosarcoma (Saos-2), small lung cell carcinoma (SLCC), hepatoma (HepG2), kidney 

rhabdoid tumour (G401), myeloid leukemia (K562), colon carcinoma (HT29) and etc (Noteborn 

et al., 1998). Some mechanistic studies of apoptin-induced apoptosis in cancer cells had been 

reported. Most of the studies showed that apoptosis induced by apoptin was independent of 

extrinsic apoptosis pathway; but instead it involved in intrinsic apoptosis pathway (Los et al., 

2009). Loss of mitochondrial membrane potential, release of cytochrome c and activation of 

caspase cascade, which are the underlying apoptosis events of intrinsic pathway, were observed 

in cancer cells undergoing an apoptin-induced apoptosis. Apoptin-induced apoptosis does not 

require the functional tumour gene suppressor p53 but it is regulated by anti-apoptotic proteins 

Bcl-2 family in most cell lines (Los et al., 2009). Tumour gene suppressor p53 is always mutated 

in tumourigenic cells, which leads to inefficiency of radiotherapy and chemotherapy on cells that 

require a functional p53. Hence, apoptin-induced apoptosis which is independent of p53 pathway 

has made apoptin a great anticancer candidate particularly for cells with malfunctioning p53. The 

Bcl-2 family proteins include pro-apoptotic (such as Bax, BAD, and Bak) and anti-apoptotic 
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groups (Bcl-2 and Bcl-xL) of proteins and the balance among these 2 groups of proteins 

determines the fate of cells (Elmore, 2007). Increasing availability of pro-apoptotic group of 

proteins leads induction of apoptosis via mitochondria-mediated apoptosis pathway; however, 

increasing availability of anti-apoptotic group of proteins inhibit apoptosis triggered by 

mitochondria- mediated apoptosis pathway, 

Plant molecular pharming is production of pharmaceutical recombinant proteins via genetic 

engineering approach by using plant as expression host. In relative to other expression hosts, 

several advantages such as ease in scaling up, high protein expression level, low production cost, 

low risk of contamination by pathogenic agents and capability of post translational modifications, 

have made plant an attractive expression system (Fischer et al., 1999). Up to date, various kinds 

of plant-derived therapeutic proteins are available and many of them are important for defeating 

the life-threatening pandemic diseases. For example, ZMapp, released by Mapp 

Biopharmaceutical Inc (San Diego, USA) in year 2014, was a chimeric monoclonal antibody 

raised against the surface glycoprotein of Ebola produced in Nicotiana benthamiana (Davidson 

et al., 2015). This product has successfully saved numerous lives from death, which caused by 

Ebola infection that was originated from the outbreak in West Africa. In comparison with the 

laborious and time consuming stable transformation, production of high protein expression level 

within a short period could be achieved via transient expression. By using the deconstructed or 

agroinfiltration approach, leaf tissues are infiltrated with agrobacterial transformants bearing the 

recombinant foreign gene sequences. Agrobacterium is delivered into intercellular space of 

mesophyll cells by using syringe or vacuum infiltration. Vacuum infiltration, serving as a 

feasible and effective delivery tool, is currently widely adopted by manufacturers such as 

Medicago Inc (USA), Fraunhofer Center for Molecular Biotechnology (FhCMB, USA), 

Kentucky Bioprocessing (USA) and Icon Genetics (Germany).  

Cancer is a disease caused by uncontrolled proliferation of transformed body’s cells. This disease 

leads to the death of estimated ~ 8.2 million of people in the world in 2012 (GLOBOCAN, 2012). 

The most common types of cancers in men and women include lung, breast, colorectal, stomach 

and prostate cancers. There are numerous factors that lead to the development of cancer 

including exposure to physical carcinogens (such as ultraviolet and ionizing radiation), chemical 

carcinogens (such as nicotine from cigarettes or presence of heavy metal in drinking water), 
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biological pathogenic agents (such as Human papillomavirus, HPV) and obesity. Non-small cell 

lung cancer (NSCLC) is one of the most common types of lung cancer and patients suffer from 

NSCLC accommodates 80-85% of lung cancer disease (American Cancer Society, 2016). The 

primary reason leads to the lung carcinogenesis is cigarette smoking. Various kind of 

carcinogens, such as polycyclic aromatic hydrocarbons (PAH) and 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK), are present in the cigarette smoke and can induce DNA mutation in 

cigarette smoker as well as second-hand smokers (Hecht, 2012). To date, available treatments for 

lung cancer disease include surgery, radiofrequency ablation, radiotherapy, chemotherapy and 

immunotherapy. Numbers of cancer markers for NSCLS have also been determined, including 

epidermal growth factors (EGF), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma viral 

oncogene (KRAS), and etc. Identification for the cancer markers could accelerate the 

development of diagnosis for NSCLS and verify the disease in the earlier stage.    

NSCLS is the most common type of lung cancer and only ~ 30% of patients survive for 1 year 

after diagnosed with lung cancer disease (CancerReasrch UK, 2016).  Side effects such as nausea, 

hair loss, breathing difficulty, loss of appetite, vomiting, fatigue and etc have caused patients to 

suffer after treatments, such as surgery, radiotherapy and chemotherapy. Especially, some of the 

patients could not get rid off the side effects, including breathing difficulty and long term chest 

pain, for the rest of the life after they received the surgery to remove lung tissues, where the 

tumour was located. Suicide cases are always observed especially when patients could not stand 

for the pain after treatments. Study of Cipriano et al., (2011) showed that the liability cost for 

lung cancer patients was ~ $1,617 to $2,004 per month if the patient received chemo-

radiotherapy in year of 2000. The cost for treatments is a huge burden for patients especially for 

patients who are not allowed to work due to their health problem.  

Apoptin, a potential anticancer candidate, showing a great selective killing activity in cancer 

cells have attracted great interest from researchers. Apoptin is always delivered into mammalian 

cells in DNA form or in recombinant protein form. Apoptin delivered into mammalian cells in 

DNA form requires the employment of human viral vectors or non-viral vectors (such as bacteria 

or transfection reagents) (Rollano Peñaloza et al., 2014; Zhuang et al., 1995); however, 

disadvantages of viral vector delivery approach include potential for development of replication 

competent virus as well insertional mutagenesis. Meanwhile, recombinant apoptin protein, which 
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is a relatively safer delivery approach, is delivered into mammalian cells via microinjection or 

animal models via cell penetrating peptides (CPPs) (Guelen et al., 2004; Zhang et al., 2003). 

Most of the recombinant apoptin was currently produced in Escherichia coli (Leliveld et al., 

2003; Guelen et al., 2004; Sun et al., 2009). Besides, recombinant apoptin was also produced in 

human umbilical vein endothelial cells (HUVEC) (Ma et al., 2012). However, high production 

cost as well as potential contamination of animal pathogens and toxin compounds are huge 

drawback for the production of recombinant protein in both bacterial and human cell line system. 

However, there are very scarce reports detailing the production of recombinant apoptin in plants. 

Plants are currently developed as one of the important biofactories for therapeutic protein 

production. Trastuzumab, a plant-derived anticancer antibody drug, has shown effectives in 

reducing size and growth of breast cancer tumours. Besides, PlantForm, manufacturer of 

Trastuzumab, also claimed that the production cost for plant-based system was 90% lower than 

that of conventional production approach (Generic and Biosimilars Initiative, 2013). Hence, the 

main goal of current study is to evaluate the feasibility of production for recombinant apoptin in 

a cost-effective plant-based expression system. Development of the cost-effective plant-derived 

apoptin is expected to reduce the overall cost for a cancer treatment making it affordable to 

needy and hence could save more lives (Fischer et al., 1999; Gleba et al., 2005). Low risk of 

contamination by animal pathogens as well as free of co-infection by mammalian viral vectors 

during drug delivery are also the main drivers to opt for production of recombinant apoptin in 

plant-based system (Fischer et al., 1999). Hence, optimisations for recombinant apoptin 

expression and protein purification process were the main focuses at current stage of study in 

order to obtain a high amount of recombinant protein. Besides, additional study for the 

preliminary assessment on bioactivity of recombinant apoptin was also performed using human 

lung cancer cells. The result might provide some understanding of bioactivities of plant-made 

apoptin on human cells and suggestion for improvement on the production of plant-made apoptin 

in future study.  

In order to optimise the expression level of recombinant apoptin in Nicotiana benthamiana, 

several groups of gene cassettes were designed by which details are described in Chapter 3. Gene 

cassettes, including apoptin alone, apoptin in fusion to C-terminal of GFP (GFP-apoptin) and 

apoptin in fusion to lichenase (lichenase-apoptin), were designed in order to optimise the 

expression of recombinant proteins. Signal peptide (PR1a), which directs the recombinant 
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protein into endoplasmic reticulum (ER) space, and ER retention signal (KDEL) were also added 

to apoptin, GFP-apoptin and lichenase-apoptin gene cassettes in order to accumulate the 

recombinant proteins in specific cellular compartments. For targeting therapy purpose, 

recombinant apoptin was in fusion to C-terminal of H22 single chain antibody and epidermal 

growth factor (EGF). A molecular adaptor CatAd, a kind of CPPs developed from immunotoxin, 

was inserted between apoptin and H22 single chain antibody as well as apoptin and EGF. All 

gene cassettes were cloned into high expression tobacco mosaic viral (TMV) vector and binary 

vector (pGR-DN).  

Chapter 4 describes the delivery of agrobacterium transformed with the respective recombinant 

vectors into 4-5-week-old N. benthamiana using vacuum infiltration approach. Expression 

profiles of recombinant apoptin were assessed using Western blotting analysis. Leaf tissues 

infiltrated with high expression recombinant vectors harbouring apoptin gene sequences were 

harvested and used for subsequent downstream processing, including immobilised metal affinity 

chromatography (IMAC), ion-exchanged chromatography (IEX), hydrophobic interaction 

chromatography (HIC) as well as size exclusion chromatography (SEC) which are deduced in 

Chapter 5.  

Subsequently, Chapter 6 describes the preliminary bioactivity of purified recombinant apoptin 

(GFP-apoptin and EGF-apoptin) which was investigated on human lung cancer A549 cells. 

Interaction between recombinant apoptin and A549 cells as well as EGF receptors was evaluated 

using enzyme-linked immunosorbent assay (ELISA). Then, recombinant GFP-apoptin was 

delivered into A549 cells using microinjection approach. Cell viability, localisation of apoptin, 

mitochondrial membrane potential (MMP) and activation of caspase 3/7 activities were 

examined after recombinant GFP-apoptin was microinjected into A549 cells. On the other hand, 

recombinant EGF-VP3-HK was directly applied to A549 cultures. Cell viability, localisation of 

apoptin, MMP and activation of caspase 3/7 activities were also assessed in the recombinant 

EGF-VP3-HK treated A549 cells.  

Hence, the ultimate goal for the study is to produce a safe and cost-effective recombinant apoptin 

as an anticancer drug candidate by using plant-based expression platform via the agroinfiltration 

strategy. The specific objectives of this study were: (i) to design and construct gene cassettes for 

the development of recombinant apoptin vector variants; (ii) to evaluate protein expression 
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profiles of N. benthamiana receiving recombinant apoptin vector variants via agroinfiltration; (iii) 

to purify recombinant apoptin extracted from N. benthamiana; and (iv) to provide a preliminary 

evaluation of in vitro bioactivity of recombinant apoptin on human lung cancer cells.  
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2.1 Viral Protein 3 (VP3) of Chicken Anemia Virus (CAV) 

2.1.1 Overview of CAV and apoptin 

The Chicken Anemia Virus (CAV), first isolated in Japan, causes anemia, lymphoid atrophy, 

hemorrhages and increased mortality in young chickens during infection (Yuasa et al., 1979). 

Destruction of hemocytoblasts in bone marrow as well as depletion of lymphocytes and 

thymocytes in thymic cortex are the major characteristics of a CAV viral infection (Adair, 2000; 

Jeurissen et al., 1992) which directly led to development of severe anemia and 

immunodeficiency in young chickens. This also causes vaccination failure and concurrent 

infection by other infectious diseases such as Marek’s disease virus, Infectious Bursal Disease 

Virus (IBDV) and lentogenic Newcastle disease virus (Notebornb and Koch, 1994).    

As a member of Gyrovirus in the family of Circoviridae, CAV is a non-enveloped and 

icosahedral virus with only 23-25 nm in diameter (Notebornb and Koch, 1994). Circular viral 

genome comprises 2.3 kilobases (kb) single strand DNA and the virus replicates via circular 

double-stranded replicative intermediate (Notebornb and Koch, 1994; Prasetyo et al., 2009). 

Unlike other Circoviridae members, all three partially and completely overlapping open reading 

frames (ORFs) (Figure 2.1 -a) encoding for three viral proteins of CAV are coded on the 

antigenomic (minus) strand of DNA. An unspliced polycistronic mRNA is generated during 

transcription (Prasetyo et al., 2009). Viral Protein 1 (VP1) of CAV, 50 kDa, encodes for capsid 

protein of the virus. The sixty capsid protein subunits are clustered into 12 pentagonal trumpet-

shaped units to form the three-dimension shape of virus (Figure 2.1 -b) (Crowther et al., 2003). 

On the other hand, the 24 kDa Viral Protein 2 (VP2) is a dual specificity protein phosphatase and 

it plays an important role in viral replication as well as cellular regulation in infected 

lymphocytes (Peter et al., 2002). The main candidate responsible for the destruction and cell 

death of lymphocytes via induction of apoptosis in infected chicken is the smallest 14 kDa non-

structural Viral Protein 3 (VP3) of CAV. With this apoptosis-inducing ability, VP3 is thus 

renamed as ‘Apoptin’ by Notebornb and Koch (1994).     
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Figure 2.1: Schematic diagram of genome and 3-D morphological structure of CAV. (a) Circular 

CAV genome encoding three partially or almost completely overlapping ORFs, which are VP1, 

VP2 and VP3. (b) Three-dimensional structure of CAV with petagonal trumpet shaped subunits. 

Sources are partly adopted from Artimo et al. (2012); Prasetyo et al. (2009) and Crowther et al., 

(2003). 

2.1.2 Structure and functional regions of apoptin 

Apoptin, a basic protein, consists of 121 amino acids with no similarity in sequence to any other 

known proteins (Notebornb and Koch, 1994). It is rich in proline, serine and threonine, 

harbouring two proline rich stretches, two positively charged regions and a leucine rich region.  

Bipartite nuclear localisation signals NLS1 and NLS2, located on amino acids 82-88 and 111-

121, from apoptin have been reported that these two regions play a crucial role in the 

accumulation of apoptin in nucleus and in the cell killing effectiveness of apoptin on transformed 

cells (Figure 2.2) (Danen-van Oorschot et al., 2003; Poon et al., 2005). Translocation of apoptin 

from cytoplasm into nucleus is believed to be modulated by importins (IMPs), a karyopherin 

which recognises specific short nuclear localisation sequence (Kuusisto et al., 2008). In addition, 

the nuclear export signal (NES) located on amino acid at the 97-105 position, which is 

recognised by the chromosomal maintenance 1 (CRM1) exportin, is responsible for the reduced 

nuclear accumulation of apoptin in normal cell lines (Kuusisto et al., 2008; Poon et al., 2005). A 

hydrophobic leucine rich region (LRR) on amino acids position 33-46, is a weak apoptosis 

inducing region on apoptin. This region may enhance nucleus retention and is also the main site 

(a) (b) 



 

2-4 

 

for the binding of a number of interacting proteins (Poon et al., 2005; Los et al., 2009). In 

addition, LRR region is also responsible for the multimerisation activity of apoptin. In the study 

of Leliveldb et al. (2013), biologically active recombinant MBP-apoptin was in multimerised 

state and comprised of ~ 30-40 monomers.  

 

Figure 2.2: Schematic diagram of functional regions and amino acids of apoptin.  Apoptin 

contains a leucine rich region (located on amino acids 33-46), a bipartite nuclear localisation 

signal (NLS) (located on amino acids 82-88 and 111-121) and a CRM1 recognised nuclear 

export signal (NES). The representative apoptin nucleotide sequence of is based on the sequence 

of a Malaysia isolate (GenBank accession number: AAB86420.1) reported by Mohd-Azmi et al. 

(1997).  

2.1.3 Bioactivity of apoptin in mammalian cells 

Apoptin-induced apoptosis was initially reported in transformed chicken lymphoblastoid T cells 

(MDCC-MSBI) and myeloid cells (LSCC-HD11) but not in normal chicken embryo fibroblasts 

(Noteborna et al., 1994). In year 1995, apoptin was first reported to induce apoptosis in human 

osteosarcoma cells (Zhuang et al., 1995). To date, apoptin has been widely exploited as 

antitumour agents due to its selective killing effect on tumour cells and transformed cells but not 

on normal or primary cells. More than 70 human cancer cell lines have shown apoptotic effect in 

response to apoptin drug. This includes breast tumour (MCF-7), osteosarcoma (Saos-2), small 

lung cell carcinoma (SLCC), hepatoma (HepG2), kidney rhabdoid tumour (G401), myeloid 

leukemia (K562), colon carcinoma (HT29) and other cells (Los et al., 2009; Noteborn et al., 

1998; Sun et al., 2003; Zhuang et al., 1995). Apoptin also induced apoptosis in some non-

tumorigenic transformed cell lines, such as monkey SV40-transformed kidney cells (Cos-7), 

avian myeloblastosis virus (AMV) transformed cells and Adenovirus-5-transformed baby rat 
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kidney cell. However, no apoptosis effect is observed in T cells, smooth muscle cells (HSMC), 

epidermal keratinocytes (FSK-1), fibroblasts cell (VH25) and human umbilical-cord vascular 

endothelial cells (HUVEC) (Noteborn et al., 1998). Detailed mechanism of apoptin-induced 

apoptosis is still not clear; whereas, protein structure and sequence of apoptin have been studied 

exclusively in order to understand each regions of this protein that contributes to apoptosis effect. 

2.1.4 Apoptosis and mechanisms of apoptin-induced apoptosis 

2.1.4.1 Apoptosis 

Apoptosis (or programmed cell death) refers to “falling off of petals from a flower” or “of leaves 

from a tree in autumn” in ancient Greek. It was first used by John Kerr in 1972 to illustrate 

distinct morphological features of apoptotic bodies formation and phagocytosis as well as 

lysosomal degradation of apoptotic bodies by phagosomes (Kerr et al., 1972). Various kinds of 

diseases and physiological development involve apoptosis process, for example, Alzheimer’s 

(Cotman and Anderson, 1995; De-la Monte et al., 1997), Parkinson’s (Mochizuki et al., 1996) 

and diabetes (Russell et al., 1999). Besides, apoptosis also plays roles in cell number control 

(Hall et al., 1994), elimination of self-reactive lymphocytes (Parijs et al., 1998), and removal of 

cellular stresses (induced by irradiation or drugs) and DNA damage cells (Enoch and Norbury, 

1995). In addition, arisen of several types of cancers could be also traced to malfunction of 

apoptosis signalling molecules, especially p53 deficient cells, which cause most of the cancerous 

cells resistant to chemotherapeutic drugs (Wattel et al., 1994).  

Characteristics of apoptotic cells include round in cell shape, shrinkage in cell size and the loss 

in contact with neighbouring cells (Lawen, 2003). Within the dense cytoplasm, organelles are 

more tightly packed while endoplasmic reticulum (ER) stretches and vesicles are budded off 

from cisternae. In nucleus, condensation of chromatin and degradation of genomic DNA by 

endonucleases to form “laddering DNA” features in agarose gel analysis can be observed 

(Walker et al., 1994; Walker et al., 1999). At later stage of apoptosis, plasma membrane blebs 

and cell content is separated into several membrane spheres shielded apoptotic bodies that are 

various in size. These apoptotic bodies, with recognition site for phagocytic cells, are 

subsequently degraded and digested by macrophages, parenchymal cells or neoplastic cells 
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(Elmore, 2007). Apoptosis process does not release cell content into intercellular compartment, 

hence, this cell death mechanism does not result in inflammation.  

There are two important pathways, the intrinsic and extrinsic pathways, that regulate apoptosis 

process, and both pathways work non-independently by sharing some signaling molecules. 

Extrinsic pathway, also named as receptor-mediated pathway, involves triggering of receptors 

that reside on plasma membrane to induce apoptosis. Numerous kinds of receptors, including Fas, 

tumor necrosis factor receptor (TNF-R) family and granzyme B/perforin system, are available to 

bind to ligands, such as FasL, apoptosis ligand 2 (Apo 2) and tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL), in order to initiate formation of death-inducing signaling 

complex (DISC) and downstream caspase cascades (Ashkenazi, 2008). For instance, binding of 

FasL (Fas ligand) to Fas receptor leads to the binding of adaptor Fas-associated death domain 

protein (FADD) to Fas receptor via death domain (DD), which is available on both Fas and 

FADD.  Death effector domain (DED) of FADD allows the binding of pro-caspase 8, which 

contains the same domain. Subsequently, pro-caspase 8 is activated to active caspase 8 that 

responsible to activate other apoptosis elements. Hence, DISC is the complex of Fas, FasL, 

FADD and pro-caspase 8 (Lawen, 2003). Active caspase 8 is responsible to activate caspase 3, 

cleave Bid protein, produce truncated Bid protein that travels into mitochondria and leads to the 

release of cytochrome c, which initiates intrinsic apoptosis events. 

Instead of depending on receptors, intrinsic pathway is induced by intracellular signals (such as 

Bax and Bak proteins) that subsequently leads to mitochondrial-mediated apoptosis process. 

Opening of mitochondrial permeability transition pore and loss of the mitochondrial 

transmembrane potential occur in order to release two main groups of pro-apoptotic proteins 

(Elmore, 2007). Cytochrome C, Smac/DIABLO and serine protease HtrA2/Omi are the first 

main group of pro-apoptotic proteins that are important to initiate apoptosis cascades. 

‘Apoptosome’, a signaling molecule to activate caspase-9, forms when cytochrome C, a key 

element binding to WD40 repeat of Apaf-1, is released from mitochondria and subsequently 

results in the activation and oligomerisation of Apaf-1 into a wheel-shaped oligomeric 

complexes in the presence of dATP (Riedl and Salvesen, 2007). Second group of pro-apoptotic 

proteins are Apoptosis-inducing factor (AIF), endonuclease G and Caspase-Activated DNase 

(CAD) (Elmore, 2007). This group of proteins translocate into nucleus and eventually lead to 
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DNA fragmentation (Daugas et al., 2000; Li et al., 2001; Van Loo et al., 2001; Widlak, 2000). A 

simple overview diagram of intrinsic and extrinsic pathway is shown in Figure 2.3. 

  

Figure 2.3: Schematic diagram for intrinsic and extrinsic pathway of apoptosis. Extrinsic 

apoptosis pathway involves receptors on plasma membrane. For example, binding of FasL to Fas 

causes the formation of DISC complexes, which is important for the activation of caspase 8 

(Lawen, 2003). Active caspase 8 is responsible to activate caspase 3 and produce truncated Bid 

protein, a messenger that translocates into mitochondria and initiates intrinsic apoptosis events. 

For intrinsic apoptosis pathway, increasing permeability of mitochondrial membrane results the 

release of cytochrome c and formation of apoptosome. Apoptosome is important for the 

activation of caspase 9, which subsequently activate caspase 3, 6 and 7. Schematic diagram is 

adopted from Lamkanfi and Dixit (2010). 
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Both intrinsic and extrinsic pathways are equivalently important for induction of apoptosis, 

whereas, both pathways are also regulated by several kinds of regulator proteins. For example, 

tumor suppressor protein p53, a nuclear DNA-binding phosphoprotein, is a transcriptional factor 

that regulates cell cycle, DNA repair and apoptosis (Bellamy, 1997). Apoptosis induced by p53 

may be caused by DNA damage, inappropriate oncogene activation, cytokines or heat shock. 

Another group of apoptosis regulator is Bcl-2 family proteins, which contain pro-apoptotic and 

anti-apoptotic two independent categories, and ratio between these two categories of proteins is 

key to determine the fate of cells (Gross et al., 1999; Oltval et al., 1993). With the understanding 

of apoptosis pathway, various kind of drugs are designed in order to target desired signaling 

molecules or pathway to regulate apoptosis process of diseased cells. 

2.1.4.2 Mechanisms of apoptin-induced apoptosis 

To date, complete mechanism of apoptin-induced apoptosis is not fully explained but several 

proteins interacting with apoptin has been reported. Although there is no concrete data proving 

that apoptin-triggered cell death is induced by extrinsic pathway, Guelen and his colleagues 

(2004) has found that apoptin partial colocalised with FADD and resulted in formation of death 

effector filaments (DEFs), which was formed when proteins containing death domains are 

overexpressed. Besides, apoptin also interacts with DED associated factor (DEDAF) and partial 

colocalised with this protein in osteosarcoma cells (Danen-van Oorschot et al., 2004). However, 

apoptin has also been observed working independently of extrinsic pathway, which induced 

significant apoptotic effect on Caspase-8 deficient and truncated FADD overexpressing cells 

(Maddika et al., 2005). Hence, relation between apoptin-induced apoptosis and extrinsic 

apoptosis pathway still remained controversial and more studies need to be carried out to clarify 

the association between apoptin and extrinsic pathway.    

In contrast, apoptin was believed triggering apoptosis via intrinsic pathway. Apoptin successfully 

causes loss of mitochondrial membrane potential (MMP) (Maddika et al., 2005). Cytochrome c, 

AIF and caspase-3 are detected within cytosol of apoptin-treated cells; in addition, Nur77 is 

suggested as the nucleo-cytoplasmic signal transmitting candidate between nucleus and 

mitochondria since apoptin is reported triggering apoptosis independently of p53 (Maddika et al., 

2005; Zhuang et al., 1995).     
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Instead of intrinsic and extrinsic pathways, PI3-K/Akt signaling pathway is triggered by apoptin. 

PI3 (phosphatidylinositol 3 kinase), a lipid kinase, is responsible to catalyse phosphorylation of 

inositol ring of phosphoinositides; while, Akt is a serine/threonine kinase that is activated by PI3 

(Maddika et al., 2007). PI3 was reported involving in proliferation differentiation and cells. 

Maddika and his colleagues (2010) proved that apoptin binds to SH3 domain of p85, a subunit of 

PI3-K, via proline-rich region (amino acid 80-90). They suggested that PI3-K is responsible for 

apoptin localisation and cytotoxic activity of apoptin. Increasing expression level and 

translocation of Akt into nucleus upon treatment of apoptin have also been reported by Maddika 

and his co-workers (2007). Akt is suggested involving in phosphorylation activities of apoptin 

within nucleus, in which phosphorylation of apoptin on Threonine (108 amino acid) of apoptin is 

crucial to trigger cell death in tumour cells (Poon et al., 2005; Rohn et al., 2002).     

Besides, peptidyl-prolyl isomerase–like 3 (Ppil3) also interacts with apoptin and localisation of 

apoptin is associated with amount of Ppil3 (Huo et al., 2008). In tumour cells, Ppils is expressed 

in low level and apoptin is localized into nucleus; whereas, high protein amount of Ppil3 in 

normal cells cause distribution of apoptin in cytoplasm.  Furthermore, Hippi, a protein 

interacting with Huntingtin-interacting protein 1 (Hip-1), is suggested responsible for 

suppression of apoptosis within normal cells by retention of apoptin in cytoplasm (Cheng et al., 

2003). Interaction between APC1, a subunit of the anaphase-promoting complex/cyclosome 

(APC/C), and apoptin is also reported. Binding of apoptin with APC/C causes APC/C complex 

disruption and degradation, which eventually results G2/M cell cycle arrest and induction of 

apoptosis (Teodoro et al., 2004). In addition, apoptin was reported to initiate apoptosis 

independent of p53, a tumour suppressor protein (Zhuang et al., 1995). p53 is always mutated 

during tumour development and causes poor response to anticancer therapies that require 

functional p53. Therefore, apoptin is a potential anticancer drug that do not require functional 

p53 for its action. Bcl-2, an anti-apoptotic protein, does not inhibit activity of apoptin, on the 

contrary, apoptosis is stimulated by overexpression of this protein in the study of Noteborn et al., 

1998. In the study of Burek et al. (2006), a contrary result was observed. They reported that 

apoptin-induced apoptosis was inhibited in MCF-7 cells overexpressed with Bcl-2 and Bcl-xL. 

Therefore, effect of Bcl-2 protein to apoptin-induced apoptosis is yet to confirmed.  
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In addition, researchers also studied apoptin-induced apoptosis in relation to the translocation of 

apoptin into nucleus of tumour cells and interaction of apoptin with nuclear compartments. 

Nucleo-cytoplasmic shuttling of apoptin is responsible by importins (IMPs) and exportins CRM-

1, which are nuclear envelope-embedded multi protein channels (Kuusisto et al., 2008; Poon et 

al., 2005). Both transport receptors recognise NLS or NES signal embedded in apoptin sequence 

and translocate apoptin into nucleus of tumour cell but apoptin remains in cytoplasm of normal 

cells. Within the nucleus, apoptin is able to form DNA-apoptin superstructure, which consists 20 

multimeric apoptin complexes and 3 kb of DNA. Formation of DNA-apoptin superstructure 

interrupts chromosomal organization and it is suggested that apoptin may plays role in regulating 

transcription of genes involving in apoptosis activities (Lelivedc et al., 2003). Besides, it is also 

interesting to note that apoptin is also colocalised with promyelocytic leukemia protein (PML) 

bodies, which plays roles in viral replication, tumour progression, apoptosis and cell cycle 

regulation. It was found that apoptin was sumoylated before being targeted to PML. Nevertheless, 

interaction between apoptin and PML is suggested not responsible for apoptosis but for CAV 

viral replication (Los, 2009).  A summary of cellular proteins interacting with apoptin is listed 

Table 2.1. 

Table 2.1: List of cellular proteins interacting with apoptin.  

Molecules Biological effects 

Extrinsic Pathway 

Fas-associated death 

domain protein 

(FADD) and 

DEDAF 

Apoptin is colocalised with FADD as well as DEDAF and induces 

formation of death effector filaments (DEFs); However, apoptin-

mediated apoptosis is also suggested independent of extrinsic pathway. 

Hence, interaction between apoptin and extrinsic pathway molecules 

requires for further investigation. 

Intrinsic Pathway 

Nur77 Maddika and his colleagues showed that apoptin induced apoptosis via 

intrinsic pathway by releasing cytochrome c, AIF, caspase 3 and 

Nur77 as the nucleo-cytoplasms transmitting signal.   

Phosphorylation Pathway 

Akt and PI3K Apoptin interacts with the SH3-domain of the p85 regulatory subunit 

of PI3K and activates PI3K. This event leads to sustained Akt 

activation and nuclear translocation of Akt. 

Others 

Peptidyl-prolyl 

isomerase-- like 3 

(Ppil3) 

Interaction between apoptin and Ppil3 may favor its cytoplasmic 

localisation. 

 

Hip-interacting In normal cells, apoptin colocalises with Hippi in the cytoplasm; 
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protein (Hippi) whereas apoptin migrates to the nucleus in tumour cells while Hippi 

remains in the cytoplasm. 

APC1 (subunit of 

anaphase-promoting 

complex/cyclosome) 

Interaction between apoptin and APC1 may lead to mitotic cell cycle 

arrest and apoptosis. 

Nucleus 

Promyelocytic 

leukemia protein 

(PML) 

SUMOylated apoptin interacts with PML in PML nuclear bodies. 

However, the disruption of interaction between PML and apoptin does 

not affect apoptin's cytotoxicity. 

Importin-β1 Importin-β1 plays a role in nuclear localisation of apoptin by 

translocating apoptin through the nuclear pore complex. 

CRM1 CRM1 is involved in nuclear exportation of apoptin 

DNA Formation of DNA-apoptin superstructure molecules was observed in 

the study of Leliveld et al. (2003). Apoptin interacts with genomic 

DNA of cancerous cells and the interaction is suggested involving in 

regulation of the transcription of genes involving in apoptosis activity.   

 

2.1.5 Cancer 

2.1.5.1 Overview of cancer 

Cancer is a disease characterised by the formation of tumours due to uncontrolled proliferation of 

transformed body’s cells that are induced by genetic mutation (Cancer Research UK, 2010; 

Golan et al., 2005; Rang et al., 2007). According to GLOBOCAN (2012), death of 8.2 million 

people in the world is due to cancer and 14.1 million of new cases are being detected. The most 

common cancers among men and women include lung, breast, colorectum, stomach and prostate. 

In South-East Asia, death from cancer accumulated more than 1 million people and more than 1 

million new cases has been diagnosed (GLOBOCAN, 2012). In Malaysia, nearly 7000 new 

cancer cases have been reported in Peninsular Malaysia between year 2003-2005 (MAKNA, 

2013).  Among these cases reported in Malaysia, the most common cancers are breast cancer 

(18%), large bowel cancer (11.9%) and lung cancer (7.4%). 

A numbers of risk factors have been identified that lead to the formation of this malignancy. In 

particularly, physical and chemical carcinogens that inevitably present around human beings or 

existing in the environment are the major causes for cancer. Physical carcinogens, such as 

ultraviolet and ionizing radiation, can induce irreversible DNA damage and mutation that lead to 

development of skin cancer (Gruijl, 1999; Gruijl et al., 2001; Kvam and Tyrrell, 1997). In 

addition, polycyclic aromatic hydrocarbons (PAH), an active component of cigarettes, is also 
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recognised as the carcinogen that promotes lung cancer in smokers (American Cancer Society, 

2016). According to WHO (2013), 22% of global cancer deaths and 71% of global lung cancer 

deaths are due to the usage of tobacco. Besides, several types of cancers, including liver, lung, 

bladder and kidney, are initiated by inorganic arsenic that is available in drinking water (Chen et 

al., 1992).  Biological agents, including virus, bacteria and parasites, are also another risk factor 

for stimulation of cancer. Human papillomavirus (HPV) has become a nightmare for women as 

this virus has successfully caused invasive cervical cancer and led to presence of estimated 

528,000 new cases globally (GLOBOCAN, 2012; Walboomers et al., 1999). Recently, obesity 

and lack of physical exercise are also suggested to correlate with cancer incidences (Calle and 

Thun, 2004; Michaud et al., 2001; Wolk et al., 2001). Mechanisms of obesity induced 

tumorigenesis are related to insulin resistance and resultant chronic hyperinsulinaemia, increased 

bioavailability of steroid hormones and localised inflammation (Calle and Kaaks, 2004). 

Moreover, aging is also another major risk factor that is responsible for cancer incidences. 

Continuous and prolonged exposure to carcinogens as well as less effective cellular repair 

mechanisms make people more susceptible to malignancy as they are growing older (Dix and 

Cohen, 1980).       

2.1.5.2 Pathogenesis of Cancer  

Development of cancer is a complex and multistep process (Weinberg, 2007). Instead of cell 

proliferation, maturation and differentiation occurred in normal cells, cancerous cells are 

uncontrollably dividing, resisting for maturation and differentiation, invading the underlying 

tissues as well as spreading to other part of body via circulatory system. 

 

Uncontrolled proliferation of cancerous cells 

Uncontrolled proliferation is the main characteristic of cancerous cells. This may be due to the 

over-expression of growth factors and abnormal activity of mutated receptors in the absence of 

ligands (Rajkumar, 2001). For example, Guo and his colleagues (2003) have showed that 

overexpression of vascular endothelial growth factor (VEGF) can promote the cell proliferation 

of breast cancer in vivo. Besides, over-proliferation of cancerous cells could be also due to the 

cells are resistant to apoptosis. Mutation occurs on several genes involved in apoptosis pathway, 
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such as proto-oncogenes (bcl-2) (Coultas and Strasser, 2003) and tumour suppressor genes (p53) 

(Greenblatt et al., 1994), directly inhibit apoptosis activity of cancerous cells. To prevent the end 

of DNA replication and cell senescence, telomerase activity is re-activated in 85-95% of most 

common cancers (Shay, 1997). Telomerase is a ribonucleoprotein enzyme. This enzyme involves 

in synthesising hexameric repeats (TTAGGG) on telemetric end, which is only detected in 

human during blastocyst stage embryogenesis.  A portion of telomere is eroded in each round of 

cell division because DNA polymerase cannot easily replicate the last few nucleotides on DNA 

(Rang et al, 2007). This causes the DNA to become non-functional and thus lead to cell 

senescence. Thus, re-activation of telomerase is important to compensate telomeric loss in each 

round of cell division.  In order to gain enough nutrients for tumours enlargement, tumours also 

induce angiogenesis. Angiogenesis is a process for development of new blood vessels in 

response to induction of growth factors (Rang et al, 2007). For example, VEGF and angiopoietin 

(Ang) play a vital role as the survival factor to maintain survival of endothelial cells to form new 

vessels and this kind of cells is normally killed by angiogenesis inhibitors by the induction of 

apoptosis (Carmeliet and Jain, 2000).  

 

Less of differentiation 

Another important characteristic of cancerous cells is differentiation of cells into varying degrees 

of different tumours. Normal cells are differentiated into specialised cell types after cell division 

and maturation. However, cancerous cells are less mature over time because they lost most of the 

genetic materials during each round of replication. Undeniably, this makes the cells more 

primitive and malfunctioned, but the cells tend to reproduce more rapidly. Based on this 

characteristic, severity of cancer can be classified into low, medium and high grade (Cancer 

Research UK, 2010). Cancer cells look normal and replicate slowly for low severity of cancer; 

whereas, cancer cells are less differentiated and more abnormal as well as proliferating in higher 

speed for high severity of cancer. This is a useful indicator for doctor to judge the severity of the 

disease and decide for the treatments for patients.  

Invasiveness and Metastasis  



 

2-14 

 

Tumours require more space and nutrients for enlargement as the benign tumours grow and 

expand. Hence, angiogenesis becomes a part of tumour growth in order to provide essential 

nutrients. As new blood vessels are formed, they become a new entryway for tumour cells to 

pass into circulation system and metastases to other parts of the body (Folkman and Shing, 1992). 

According to Liotta (1986), tumour cells require three important steps to invade the underlying 

cell layers, including binding to the matrix collagen of basement membrane, secreting of 

hydrolytic enzymes   

  to degrade the matrix and tumour locomotion into region of matrix modified by proteolysis.  

According to Weinberg (2007), tumours are basically classified into two categories based on 

their degree of aggressive growth, including benign and malignant tumours. Benign tumours are 

local and slow growing tumours that are harmless. They may cause certain degree of damage if 

located on vital body organs, such as brain. On the other hand, malignant tumours are capable to 

spread and invade nearby tissues as well as other parts of body organs to form secondary 

tumours (metastases). 

2.1.5.3 Case study: Lung cancer 

In study by GLOBOCAN (2012), lung cancer is the most common cancer in the world and 

approximately 1.8 million of new cases was estimated in 2012. In general, incidence rate of lung 

cancer is high in men (about 1.2 million) and lower in women (about 0.6 million). More than 50% 

of lung cancer patients were diagnosed with lung cancer at stage IV. Generally, there are several 

factors that induce lung carcinogenesis. Tobacco smoking is the main risk for lung 

carcinogenesis and it causes 80% death for lung cancer (American Cancer Society, 2016). 

Cigarette smoke contains lung carcinogens, including polycyclic aromatic hydrocarbons (PAH) 

and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), that are responsible for induction 

of DNA mutation especially in TP53 and Kirsten rat sarcoma viral oncogene (KRAS) (Hecht, 

2012). Hence, there is also high risk for secondhand smokers to develop lung cancer. Besides, 

lung carcinogenesis could also be developed due to exposure to polluted air condition, asbestos 

and radon (American Cancer Society, 2016).  
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Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are two common types 

of lung cancer and NSCLC accommodates 80-85% of lung cancer (American Cancer Society, 

2016). Majority of lung cancer are adenocarcinoma (40% of lung cancer) following by squamous 

carcinoma (25-30% of lung cancer) and large cell carcinoma (10-15% of lung cancer). Several 

cancer markers or molecular alterations have been identified in NSCLS and these assist the 

identification of the correct treatment. Epidermal growth factor receptor (EGFR) mutations are 

one of the molecular alterations observed in lung carcinogenesis. Overexpression of EGFR and 

improper activation of EGFR tyrosine kinase domain induce hyperactivation of downstream pro-

survival signaling pathways (Gazdar, 2009). Besides, rearrangement of anaplastic lymphoma 

kinase (ALK), mutation on KRAS and overexpression of mesenchymal epithelial transition 

factor (MET) are also molecular alterations occurred in NSCLC (Dara et al., 2012).  

To date, there are several treatments available for NSCLC including surgery, radiofrequency 

ablation, radiotherapy, chemotherapy, targeted therapy and immunotherapy (American Cancer 

Society, 2016). Surgery and radiofrequency ablation are direct method to remove tumours. 

Surgery for NSCLC is categorised into pneumonectomy (removal of entire lung), lobectomy 

(removal lobe of lung), segmentectomy or wedge resection (removal part of lobe of lung) and 

sleeve resection (removal of tumourigenic region in large broncus and rejoining with remaining 

lobes) (American Cancer Society, 2016). Radiofrequency ablation is treatment for tumours 

located on the outer edges of lung. This therapy requires penetration of probe through the 

patient’s skin and tumours are destroyed by the high-energy radio waves. Radiofrequency 

ablation is also applied if patients cannot tolerate surgery (American Cancer Society, 2016). 

Radiotherapy is used if the tumours are not completely cleared by surgery or patients cannot 

tolerate surgery. Radiotherapy uses high energy rays, such as x-rays, gamma rays, or protons, to 

kill tumour cells. There are two types of radiotherapy including external radiotherapy and non-

commonly used internal radiation therapy.  External radiotherapy is applied from outside of body; 

while non-commonly used internal radiation therapy requires a piece of small source radioactive 

material to be implanted or taken by patients via oral delivery as well as injection to allocate 

radioactive elements near to tumour cells for effective killing activity. Internal radiation therapy 

is commonly used for treating bronchus tumours (American Cancer Society, 2016). Patients may 

feel tired, weak, skin soreness and hair fall after radiotherapy (Cancer Research UK, 2013). 
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Chemotherapy is the use of cytotoxic drugs to destroy cancerous cells either via mouth or 

injection. Chemotherapy drugs are commonly used for treating NSCLC including Paclitaxel, 

Cisplatin, Carboplatin and others. Instead of killing actively dividing cells randomly and causing 

various side effects, targeted therapy treats NSCLC by targeting drugs towards specific pathway 

or cancer markers found on NSCLC. For example, Erlotinib, Afatinib and Gefitinib are EGFR 

inhibitors that disturb activity of EGFR, which are overexpressed on NSCLC (Paez et al., 2004). 

Targeting drugs including ALKk inhibitors (Crizotinib, Ceritinib and Alectinib) (Ivana and 

David, 2016) and anti-angiogenesis monoclonal antibodies (such as Bevacizumab and 

Ramucirumab) (Das and Wakelee, 2014) are also used to treat NSCLC.       

2.1.6 Current study of apoptin with efficient delivery approaches 

Induction of apoptin-induced apoptosis in human cancer cells was first reported in 1995 (Zhuang 

et al., 1995) and diverse researches on apoptin-induced apoptosis was carried out after the report 

in human mammalian cell lines as well as in mice model. Based on previous studies, apoptin is a 

selective tumour killer since the protein selectively induces apoptosis in human transformed and 

tumorigenic cells but remains harmless to primary as well as non-transformed cells (Rollano 

Peñaloza et al., 2014). A huge variety of cancer cells have non-functional p53. p53 tumour 

suppressor pathway-based chemotherapeutic compounds as well as ionizing radiation are not 

effective in this condition. However, apoptin-induced apoptosis is independent of p53 tumour 

suppressor pathway. Therefore, apoptin is an attractive and potential anticancer candidate for 

cancer therapy.   

Delivery of apoptin into intracellular space of cells is a challenge for apoptin-based therapy since 

apoptin does not harbour cell penetrating peptide (CPP). Various kinds of delivery approaches 

have been established including employment of viral vectors, bacteria and direct apply of 

recombinant apoptin in fusion to CPPs. The most common delivery method of apoptin is by 

using viral vectors. Human viral vectors, including non-replicative viruses, replication-deficient 

viruses, non-oncolytic lentiviral vectors as well as oncolytic viruses, have been used to deliver 

apoptin gene into intracellular space of mammalian cells (Rollano Peñaloza et al., 2014). The 

most commonly used viral vectors for delivery of apoptin is adenoviral vector. Adenoviral vector 

is a high potential viral vector for gene delivery since the vector is able to transduce non-mitotic 

cells, easily grown in high titers and non-integrated into host genome. Apoptin delivered by 
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adenoviral vector was tested in various cancer cells, including a xenogeneic tumor (HepG2) in 

Balb/Cnu/nu mice (Pietersen et al., 1999), in-vitro prostate cancer cells (LNCaP) (Vida et al., 

2016) and in-vitro cholangiocarcinoma cell lines (Pietersen et al., 2004). Other potential viral 

vector candidates, including replication deficient fowlpox viral vector (tested in human hepatoma 

cell line (HepG2) and xenogeneic mouse hepatoma (H22) in C57BL/6 mice) (Li et al., 2006), 

lentiviral vector regulated by surviving promoter (tested in SW480, Hela and MCF-7 cell lines 

and xenogeneic tumor (SW480) (athymic NCR-nu/nu) nude mice) (Feng et al., 2013) and 

newcastle disease viral vector (tested in SMMC7721, A549 cell lines and xenogeneic tumor 

(Hep-2) in mice) (Wu et al., 2012), were also reported for delivery of apoptin.  

Besides, non-viral vector approach was also applied to transfer apoptin into tumour cells, 

including transfection reagents, nanoparticles and Salmonella typhimurium. The most common 

delivery tools for apoptin in vitro are transfection reagents, such as DEAE-dextran, calcium 

phosphate precipitation and lipofection (Zhuang et al., 1995). Besides, nanoparticles were also 

used to deliver apoptin, such as chitosan (Liu et al., 2008) and polyamidoamine dendrimer (Bae 

et al., 2016).  S. typhimurium, a biological delivery tool as well as a potential cancer therapeutic 

agent, selectively accumulates in tumour tissue and it is also actively against p53-deficient 

tumours (Guan et al., 2013). Recently, apoptin-induced apoptosis was reported when apoptin 

was delivered into human laryngeal cancer cell line (Hep-2). Significant reduction in tumour 

growth as well as tumour microvessel density was also observed when apoptin was delivered 

into xenogeneic tumor (Hep-2) in BALB/c nude mice.  

Instead of delivering apoptin in DNA form using vectors, protein form of apoptin could also be 

used. Currently, most of recombinant apoptin was produced in Escherichia coli expression 

system (Leliveld et al., 2003; Guelen et al., 2004; Sun et al., 2009). Preparation of recombinant 

apoptin in mammalian system was also reported by Ma et al. (2012) using human umbilical vein 

endothelial cells (HUVEC). Expression of recombinant apoptin in plants, Nicotiana benthamiana, 

was reported by Lacorte et al. (2007); however, no subsequent study was reported for bioactivity 

of plant-made apoptin in mammalian cells. Purified recombinant apoptin from E. coli expression 

system, recombinant MBP-apoptin, successfully induced apoptosis in human bone osteosarcoma 

(Saos-2) cells. However, MBP-apoptin was delivered into mammalian cells using microinjection 

since the protein could not directly pass through plasma membrane. In order to design a feasible 
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delivery way for long term study of recombinant apoptin, cell-penetrating peptides (CPPs) have 

been employed to assist protein penetrating plasma membrane. Trans-acting activator of 

transcription (Tat) protein from HIV, harbouring a protein transduction domain, was in fusion to 

apoptin (Guelen et al., 2004). Significant cell killing effect was observed when recombinant Tat-

apoptin was applied in Saos-2, HSC-3 cancer cells and human premyelocytic leukemia HL-60 

cells (Guelen et al., 2004; Lee et al., 2012). Besides, protein transduction domain 4 (PTD4) in 

fusion to apoptin, harvested from E. coli expression system, also harboured cell killing activity in 

human hepatocarcinoma HepG2 cells and restrained xenogeneic tumour growth in BALB/c nude 

mice (Sun et al., 2009). To date, no clinical study has been reported for apoptin; hence, effort for 

understanding apoptin-induced apoptosis as well as a good apoptin-based therapy approach is 

important to promote apoptin towards a great anticancer drug.    
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2.2 Plant as Expression Host 

2.2.1 Molecular Pharming 

2.2.1.1 Overview of plant as expression host for production of 

recombinant therapeutic proteins 

Molecular pharming is production of pharmaceutical recombinant proteins, such as vaccines and 

antibodies, in specific host using genetic engineering approach (Marsian and Lomonossoff, 

2016). Various kinds of expression hosts have been developed for the efficient production of 

recombinant proteins, such as prokaryotic system (E. coli and Bacillus subtilis), yeast 

(Saccharomyces cerevisiae), insect (Spodoptera frugiperda), mammalian cell lines (COS cells 

and CHO cells) and plants (N. benthamiana). Presence of pros and cons are always available for 

each of this expression systems; therefore, study should be performed and compared between the 

expression system in order to choose for the best expression host that gives the satisfied yield. 

For cell-based culture, recombinant protein can be produced within hours or days. Therefore, this 

production system, especially E. coli, becomes the most fascinated choice to produce large 

volume of targeted product within short period of time. However, expensive instruments and 

high maintenance cost for culture, fermentor and reactor have made production difficult to be 

scaled up. Besides, several critical problems are also arisen from this system, such as 

contamination of endotoxin in purified product, formation of inclusion body and lack of post-

translational modification system, and this has led to the development for alternative expression 

hosts (Yina et al., 2007). Mammalian cell expression system, as one of the alternative cell-based 

system, possess complete post-translational modification system; whereas, potential of 

mammalian viral contamination in purified product has also induced severe safety issue (Van der 

Pol and Tramper, 1998). As a result, plant-based expression system is highly gaining attention 

from researchers recently since all problems discussed above can be avoided using plants as 

expression host.   

Numbers of persuasive reasons using plant as alternative expression platform have driven 

researchers to focus on the establishment of this system. First, plant-based expression can be 

easily scaled up since plants can be grown in huge quantity in field. Plants require only simple 

and inexpensive sources for growing such as sunlight, mineral salt, water and soil (Fischer et al., 
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1999). There was estimated less than $50 required for 1 gram production of purified recombinant 

protein by Gleba et al., (2005). Besides, high expression level of recombinant protein could be 

obtained in plants. It was reported that milligrams or grams of recombinant proteins could be 

harvested within a month and 100 kg of products are possible collected less than a year (Gleba et 

al., 2005). In addition, potential infectious or pathogenic microbes are relatively lower in plant-

based system. Besides, presence of oncogenic sequences and viral contaminants, which are 

always the drawbacks of using mammalian viral vectors, could be also avoided by using plants 

(Fischer et al., 1999). Available of post translational modification system in plants is also 

another important reason for choosing plants as expression host, especially for the production of 

functional recombinant proteins that require proper folding. Production of improper folding 

protein in microbes (such as E. coli) has led to the formation of insoluble protein. In order to 

refold misfolded recombinant proteins, sophisticated and expensive downstream procedures are 

required to attain functional structure of proteins (Verma et al., 1998). On the way, expression of 

recombinant proteins in edible plant organs, such as seeds, could also eliminate the use of 

needles for delivery of the desired drug to human body. Instead of using leafy plants (such as 

tobacco), cereal seeds (such as maize, rice, wheat and barley) and some edible fruits as well as 

vegetables (potato, carrot and banana) have already been exploited to produce numbers of 

therapeutic drugs such as human serum albumin, tumour necrosis factor α (TNF-α) and 

antibodies (Fischer et al., 2004).  

2.2.1.2 Current status of plant-derived therapeutic proteins  

In 1986, human growth insulin, first plant-based recombinant therapeutics, was produced in 

sunflower and tobacco. By year 2011, there were more than 20 plant-derived therapeutic proteins 

undergoing preclinical and clinical trials (Yao et al., 2015). To date, several plant-derived 

therapeutic proteins have been commercialised in the market for research use as well as for 

human application. In year 2004, Sigma Aldrich announced that they would distribute tobacco-

derived aprotinin, which was a protease inhibitor produced by Large Scale Biology Corporation 

using GENEWARE technology (Outsourcing-Phama.com). Conventionally, aprotinin was 

extracted from lung of bovine; however, high cost as well as contamination of animal pathogens, 

such as bovine spongiform encephalopathy (BSE), were a concern of using this natural aprotinin. 

By using GENEWARE technology, which employing a full virus tobacco mosaic virus (TMV)-
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based expression system, high amount of aprotinin was harvested (at ~ 150 to 300 mg/kg) and 

the risk for animal pathogen contamination is also low (Pogue et al., 2010).  

In year 2012, ELELYSO™, recombinant taliglucerase alfa produced from carrot cells, was the 

first FDA approved plant-derived therapeutic proteins for the treatment of Gaucher disease for 

adult (Yao et al., 2015). In addition, ZMapp, a chimeric monoclonal antibody against surface 

glycoprotein of Ebola produced in tobacco, was released by Mapp Biopharmaceutical Inc (San 

Diego, USA) in year 2014 (Davidson et al., 2015). ZMapp successfully saved several patients 

from death caused by Ebola disease although the drug has not been approved by FDA. In year 

2015, an outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has killed 35% 

of infected patient. Plant Biotechnology Inc. (California, USA) reported that they have produced 

a tobacco-derived immunoadhesin (DPP4-Fc), by fusion of cell surface protein dipeptidyl 

peptidase 4 (DPP4) of MERS-CoV to constant region of human immunoglobulin (SBIRSource, 

2014). The recombinant protein prevents the infection of MERS-CoV by binding to MERS-CoV 

spike (S) glycoprotein. However, they claimed that high amount of recombinant protein is 

required to achieve 50% of inhibitory effect.  

2.2.2 Plant transformation strategies 

 Stable transformation and transient expression 

Stable transformation is a term for description regarding integration of foreign genes into 

recipient host genome and stably of integrated genes inherited by the progeny (Lico et al., 2008). 

There are numerous techniques available for plant stable transformation, including 

agrobacterium mediated transformation, biolistic, protoplast fusion, microinjection, employment 

of silicon carbide and tissue electroporation. The most commonly used stable transformation 

technique is agrobacterium-based transformation. In agrobacterium-based transformation 

approach, foreign genes are cloned on disarmed Ti plasmid, which is later delivered into host 

plants by agrobacterium (such as Agrobacterium tumefaciens and Agrobacterium rhizogene) 

(Gelvin, 2003). Agrobacterium-mediated transformation has been used widely in crops, such as 

soy bean, corn, rice and wheat (Nishimura et al., 2007; Sparks et al., 2014).  However, 

agrobacterium transformation is naturally available for dicotyledonous plants and favourable for 

transformation of monocotyledonous plants. Thus, direct gene transfer approach, using biolistic, 
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protoplast fusion, microinjection, employment of silicon carbide and tissue electroporation, is an 

alternative way to produce stable nuclear transformation for both monocotyledonous and 

dicotyledonous plants (Slater et al., 2003). 

Stable transformation is time consuming and requires tedious steps in order to generate 

transgenic plants. However, transient expression system is able to produce high protein 

expression level in short period of time after transformation (Slater et al., 2003). Foreign genes 

do not integrate into plant genome in transient expression system and non-integrated DNA is 

eventually lost over time. In plant, full viral vector as well as agroinfiltration are two major 

delivery approaches employed for transient expression. By using full viral vectors, DNA form of 

viral vectors or RNA transcripts of viral vector, harbouring genes of interest, is mechanically 

inonculated on plant leaves with carborandum (Escobar et al., 2003). Wounding sites on leaf 

surface generated by carbodandum allows the entry of plant viruses. For agroinfiltration 

approach, agrobacterium, harbouring disarmed Ti plasmid with gene of interest, is infiltrated into 

intercellular space of leaf mesophyll and agrobacterium is subsequently transfer Ti plasmid into 

plant genome (Chen et al., 2013). Since no selection activity for transformed cells with 

antibiotics is performed in both approaches, the expression of recombinant proteins is only 

expected from the infected or infiltrated plants and no seeds with stable transgenes are collected. 

Hence, protein expression using this method does not generate progeny with stable transgene.   

 

 Agroinfiltration strategy 

Agroinfiltration was initially used to study plant-virus interactions; however, this technique has 

been adopted recently for the production of recombinant proteins (Chen et al., 2013). By using 

agroinfiltration strategy, 2 common types of DNA vectors are available. General binary vector 

could be used for agroinfiltration by inserting an expression cassettes in T-DNA region of Ti 

plasmid. The second type of DNA vector involves the incorporation of partial or whole viral 

genome into T-DNA region of binary vector. Gene of interest is incorporated into the viral 

genome by inserting gene between viral elements, fusion to coat protein (CP) or replacing a non-

essential viral element.  
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Agroinfiltration can be performed using syringe or vacuum infiltration approaches. Syringe 

infiltration requires simple syringe rather than sophiscated machine. Besides, small amount of 

bacterial cultures is required and expression of multiple gene constructs could be assessed by 

infiltrating multiple construct on the same leaf. By using syringe infiltration, small amount of 

bacterial culture is pressed on the abaxial of leaves to deliver bacteria into intercellular space of 

leaf mesophyll. On the other hand, vacuum infiltration delivers bacteria into intercellular space 

of leaf mesophyll by changing the pressure in the infiltration chamber. Since infiltration work is 

performed by submerging plant leaves into bacterial suspension. larger amount of bacterial 

suspension is required for vacuum infiltration. However, this approach can infiltrate large 

batches of plants in short period of time. In addition, infiltration work performed using vacuum 

infiltration is consistent and severe mechanical injury could also be reduced. Currently, this 

platform is applied in several biopharmaceutical companies that produced recombinant proteins 

in plants, including Medicago Inc (USA), Fraunhofer Center for Molecular Biotechnology 

(FhCMB, USA), Kentucky Bioprocessing (USA) and Icon Genetics (Germany).    

 Emerging agro-based transformation approaches 

Although vacuum infiltration can efficiently infiltrate huge batches of plants, this approach is 

laborious and requires sophiscated machine. Hence, new delivery approaches are suggested to 

improve the current research challenge. In year 2008, Yang and his colleagues suggested 

delivery of agrobacterium into N. benthamiana using “root absorption” approach. They have 

successfully expressed recombinant GFP protein via this approach. From their study, expression 

of recombinant GFP in quadrifiliate phase and quinquefoliate phase is ~ 70% higher than in 

hexaphyllous phase. Seedling with root also showed higher expression of recombinant proteins. 

It is interesting to find that expression of recombinant GFP was ~60% higher when plants were 

not watered 7-10 days before inoculation.  

Besides, air-brush approach to deliver agrobacterium into tobacco plants was also reported in 

2015. Jin et al., (2015) successfully expressed recombinant GFP and human acidic fibroblast 

growth factor (ha FGF) in N. benthamiana using “air brush” method by employing carborandum 

and air-brush tube (pressure 75–80 psi). Similarly, recombinant protein has higher expression 

level in quadrifiliate phase and quinquefoliate phase. Highest expression of recombinant protein 
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was harvested from plants infiltrated for 7-9 dpi. Development for new delivery strategy is 

encouraged since this can directly reduce the cost as well as difficulty of the work for infiltration.



 

3-1 

 

 

 

 

Chapter 3  

Construction of Gene Cassettes for the Development of Recombinant Apoptin Vector 

Variants 

Table of Contents 

3.1 Introduction……………………………………………………………….. 3-2 

3.2 Materials and Methods……………………………………………………. 3-6 

3.2.1 General materials………………………………………………….. 3-6 

3.2.1.1 Vectors…………………………………………………….. 3-6 

3.2.1.2 Synthetic gene cassettes…………………………………… 3-6 

3.2.1.3 Enzymes, kits and chemical reagents………………………. 3-7 

3.2.1.4 Consumable labware supplies and specialised equipment… 3-8 

3.2.1.5 DNA sequencing, primer synthesis and data analysis……… 3-8 

3.2.2 Overview of design and construction of recombinant of apoptin vector 

variants …………………………………………………….. 3-8 

3.2.3 Polymerase chain reaction (PCR)…………………………………. 3-14 

3.2.4 DNA purification………………………………………………….. 3-16 

3.2.5 Restriction enzyme (RE) digestion………………………………… 3-16 

3.2.6 Ligation……………………………………………………….... 3-17 

3.2.7 Transformation and selection of positive clones…………………. 3-17 

3.2.8 Plasmid extraction………………………………………………… 3-18 

3.2.9 Verification of recombinant vectors……………………………… 3-18 

3.3 Results……………………………………………………………………. 3-19 

3.3.1 Codon optimisation of apoptin gene……………………………… 3-19 

3.3.2 Polymerase chain reaction (PCR) amplification and restriction enzyme 

(RE) digestion profiles of apoptin gene cassettes……….. 3-19 

3.3.3 Verification of recombinant vectors………………………………. 3-23 

3.3.4 Sequencing confirmation…………………………………………. 3-40 

3.4 Discussion………………………………………………………………… 3-41 



 

3-2 

 

 

 

 

3.1 Introduction 

Viral Protein 3 (VP3) is a small protein derived from Chicken Anemia Virus (CAV). This 

protein is renamed as ‘apoptin’ since it causes the depletion of myeloid cells and thymocytes 

by triggering apoptosis during viral infection in young chicken (Noteborn and Koch, 1995). It 

is believed that apoptin is a potential anticancer agent because apoptin exhibits selective 

killing feature towards cancer or transformed cells but not primary or non-transformed cells 

(Noteborn et al., 1995). DNA transfection with transfection reagents or mammalian viral 

vectors is a common tool used in most of the studies to deliver apoptin gene into cancer cells 

in vitro and in vivo (Backendorf et al., 2008). Moreover, production of recombinant apoptin 

had rapidly been discovered with predominant recovery from Escherichia coli expression 

system (Lelivelda et al., 2003; Nogueira-Dantas et al., 2007). 

Employment of plants as bioreactor to produce therapeutic drugs develops rapidly in both 

academia and industries. In comparison to other expression systems, plant-based system 

provides relatively more attractive benefits. These include low production cost, easy and 

scalable in production, short lead period and low risk of contamination with life-threatening 

biological agents (Fischer et al., 2004). With the advanced recombinant technology, high 

amount of recombinant proteins can be produced from plants with the creation of stable 

transformed lines or transient expression approach. Due to short incubation time and 

significantly high expression yield, transient expression is always a favourable method for 

large scale production of pharmaceutical products especially in an emergency situation 

(Gleba et al., 2005). Binary vectors and plant viral vectors are the two types of common 

vectors used in transient expression strategy to harbour gene of interest to be delivered into 

host plants. Due to several disadvantages of Ti plasmids originated from Agrobacterium 

tumefaciens, likewise the large molecular size leading to difficult manipulation in cloning 

activities, binary vectors have been developed to separate T-DNA region and vir genes that 

are important for transformation activities of Agrobacterium into two recombinant plasmids 

(Lee and Gelvin, 2008). Size reduction of recombinant plasmids enhances the transformation 

efficiency of foreign gene inserts with large molecular szie. The most commonly used binary 

vectors include pGreen, pBin19 and pPVP (Lee and Gelvin, 2008). More new binary vectors 

have been developed and modified based on these above mentioned binary vectors as vector 

backbones. On the other hand, plant viruses are also exploited and engineered to become 

compatible vectors for delivery of foreign DNA into plants. Expression of recombinant 
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protein with ‘full virus’ strategy requires several weeks for systemic movement of virus to 

whole plants; however, efficient delivery of foreign DNA into whole plants can be obtained 

by using deconstructed viral vectors (Gleba et al., 2007). Some viral elements that are 

responsible for systemic infection of virus, for example coat proteins or movement proteins, 

are removed and functions of these viral elements could be complemented by Agrobacterium 

via agroinfection or agroinfiltration technique.  

Yield and solubility are the two main challenges for recombinant protein expression 

following the successful delivery of transgene into host plants. In order to increase both yield 

and solubility of recombinant proteins, several approaches as mentioned below are always 

applied. First, codon sequences of foreign DNA could be optimised based on codon 

preferences of expression hosts. Codon optimisation removes rare codons and replaces 

synonymous codon sequences which are favourable by expression hosts; therefore, protein 

translation efficiency could be increased and yield of recombinant proteins could also be 

enhanced (Angov, 2011). Second, subcellular targeting is a way to accumulate recombinant 

proteins in a specific cell compartment in order to avoid high proteolytic activities occurring 

in cytoplasm. In plants, several subcellular compartments are always the preferred choices of 

researchers to store recombinant proteins, including endoplasmic reticulum (ER), vacuoles, 

apoplasts and chloroplasts (Streatfield, 2007). Third, fusion of recombinant proteins with 

large soluble protein molecules is an alternative way to enhance protein solubility. Large 

protein molecules, such as maltose binding protein (MBP) and glutathione S-transferase 

(GST), have always been used to increase solubility and correct folding of recombinant 

proteins (Terpe, 2003). Other than approaches mentioned above, protein expression may also 

be enhanced by inhibiting plant defense mechanisms by co-expression of recombinant protein 

with gene silencing suppressors, enhancing protein folding by co-expression with chaperones 

molecules as well as reducing proteolytic activity by co-expression of protease inhibitors 

(Feller et al., 2013; Kim et al., 2008). Nevertheless, these strategies do not necessary work 

well for all kinds of recombinant proteins and a good combination of these strategies should 

be investigated in order to achieve a better protein expression result.      

Development of a functional recombinant apoptin from plant-based system was the ultimate 

aim of the study. Previous studies showed several challenges that were needed to be solved in 

order to develop apoptin as a therapeutical drug. Up to date, expression of recombinant 

apoptin in plants was only once reported by Larcote et al. (2007) and only scarce information 
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was available for the production of apoptin in plant-based system. Recombinant apoptin 

produced in E. coli is always appeared in insoluble state, sophisticated purification and 

refolding processes are always required to recover the protein activities (Lelivelda et al., 

2003). Uneven delivery of apoptin gene into cancer cells is one of the major issues when 

apoptin is delivered via DNA transfection method (Backendorf et al., 2008). Besides, risk of 

potential infection by the mammalian virus, which it is used as a delivery tool, and cytotoxic 

effect of transfection reagents are also two major concerns with DNA transfection approaches 

(Anson, 2004). Hence, potential of production for recombinant apoptin in plants was 

explored in this study and several improvements had been made for recombinant apoptin 

expression in order to move a step forward for the production of apoptin as anticancer agent.  

In this chapter, design of apoptin gene cassettes and cloning of recombinant vectors are 

presented. In order to obtain high amount of soluble recombinant protein in Nicotiana 

benthamiana, optimisation was performed on codon sequences of apoptin to remove rare 

codons that might hamper expression of recombinant apoptin. Signal peptide (PR1a) and also 

ER retention signal were fused to apoptin sequence to redirect the accumulation of 

recombinant protein in apoplast and ER. Furthermore, green fluorescent protein (GFP) and a 

modified version of lichenase, a β-1,3-1,4-glucanase from Clostridium thermocellum, were 

fused to apoptin and it was believed that the fusion of large proteins was able to enhance the 

fraction of soluble protein. Sequences of single chain antibody H22 specifically binding to Fc 

gamma receptor I CD64+ and epidermal growth factor (EGF) that binds to EGF receptors 

were fused to apoptin sequence in order to target the action of apoptin towards cancer cells 

that overexpressed these receptors. A molecular adaptor was added between apoptin and 

tumor specific ligands to assist the internalisation of apoptin into cell cytosol. Besides, 

apoptin gene variants were co-expressed with ER stress proteins bZIP17, bZIP28 and bZIP60 

to enhance expression of recombinant apoptin.  

Hence, the specific objectives of this chapter were: (1) to optimise apoptin gene sequences 

based on the codon usage of N. benthamiana; (2) to design and construct apoptin gene 

cassettes harbouring apoptin gene with subcellular targeting signals, including signal peptide 

(PR1a) and ER retention signal (KDEL); (3) to construct apoptin gene cassettes in fusion 

with individual GFP and lichenase; (4) to construct apoptin gene cassettes in fusion with 

individual tumour specific ligands, namely H22 single chain antibody, EGF and the 

molecular adaptor CatAd; (5) to incorporate apoptin gene cassettes into vectors, pGR-D4, 
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pGR-D and pGR-DN, and lastly, (6) to integrate apoptin gene cassettes into vector, pGR-DN 

that harboured bZIP17, bZIP28 and bZIP60.       
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3.2 Materials and Methods 

 General materials 

3.2.1.1 Vectors 

Two types of vectors, including binary vectors (pGR-D and pGR-DN) and plant viral vector 

(pGR-D4), were used in this study to harbour apoptin gene cassettes and deliver into 

Nicotiana benthamiana via Agrobacterium. Tobacco mosaic virus (TMV) based expression 

vector (pGR-D4) as well as binary vectors, pGR-D and pGR-DN were kindly provided by 

Fraunhofer Center for Molecular Biotechnology (FhCMB), United States of America (USA). 

3.2.1.2 Synthetic gene cassettes 

All apoptin/VP3 gene cassettes based on sequence of Mohd-Azmi et al. (1997) (Malaysia 

isolate) (GenBank accession number: AAB86420.1) was synthesised by GeneArtTM Gene 

Synthesis, Thermo Scientific (USA). Synthetic gene cassette, PR-VP3-HK was designed as 

apoptin gene in fusion to C-terminal of signal peptide PR1a and N-terminal of hexahistidine 

as well as endoplasmic reticulum (ER) retention signal (Appendix 3.1). Individual green 

fluorescent protein (GFP) and lichenase were also synthesised in fusion to N-terminal of 

apoptin gene with signal peptide PR1a, hexahistidine and ER retention signal resulting the 

synthetic gene cassettes, PR-GFP-VP3-HK (Appendix 3.2) and PR-Lic-VP3-HK (Appendix 

3.3 Besides, synthetic gene sequences of red fluorescent protein, mCherryNuc (Appendix 

3.4), H22 single chain antibody (Appendix 3.5) and epidermal growth factor (EGF) 

(Appendix 3.6), bZIP17 (Appendix 3.7), bZIP28 (Appendix 3.8), bZIP60 (Appendix 3.9) 

were also synthesised by Gene Synthesis, Thermo Scientific (USA). All synthetic genes were 

provided in pMAT which served as a holding vector.  

Codon sequences of all synthetic genes were optimised based on the codon usage N. 

benthamiana. These synthetic genes are summarised in Table 3.1. 
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 Table 3.1: List of synthetic genes. 

No Synthetic gene cassettes Holding vector Source of sequences Appendix 

2 PR-VP3-HK pMAT:: PR-VP3-HK 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.1 

3 PR-GFP-VP3-HK 
pMAT:: PR-GFP-VP3-

HK 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.2 

4 PR-Lic-VP3-HK 
pMAT:: PR-Lic-VP3-

HK 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.3 

5 mCherryNuc pMAT:: mCherryNuc 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.4 

6 H22 
pMAT:: PR-HF-

H22catADGM 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.5 

7 EGF 
pMAT:: PR-HF-EGF-

CatAD-Tau 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.6 

8 bZIP17  - 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.7 

9 bZIP28 - 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.8 

10 bZIP60  - 

GeneArtTM Gene 

Synthesis, Thermo 

Scientific (USA) 

3.9 

 

3.2.1.3 Enzymes, kits and chemical reagents 

Polymerase enzymes used in polymerase chain reaction (PCR) assays included Phusion® 

High Fidelity PCR Master Mix with HF Buffer (New England Biolabs (NEB)® Inc, USA), 

Platinum® PCR SuperMix High Fidelity (Thermo Scientific, USA) and Platinum® PCR 

SuperMix (ThermoFisher Scientific, USA). DNA ladder, namely 1 kb Plus DNA ladder 

(ThermoFisher Scientific, USA) was used in gel electrophoresis. Restriction enzyme (RE) 

digestion was performed using enzymes inculduing PacI, XhoI, BsrGI and NheI (NEB® Inc, 

USA). Ligation was performed using T4 ligase (NEB® Inc, USA) and ligation buffer 

(ThermoFisher Scientific, USA). Gel purification was performed using ZymocleanTM Gel 

DNA Recovery Kit (Zymo Research, USA). Purification of DNA was also carried out using 

DNA Clean and ConcentratorTM-5 (Zymo Research, USA). Plasmid purification was 
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performed using ZyppyTM Plasmid Midiprep Kit (Zymo Research, USA). DNA gels were 

stained with ethidium bromide (ThermoFisher Scientific, USA).  

3.2.1.4 Consumable labware supplies and specialised equipment 

PCR was performed using Biometra T-Gradient (Biometra GmbH, Germany). DNA gel 

electrophoresis was carried out using DNA Plus gel electrophoresis system (USA Scientific, 

USA). Images of electrophoresed gels were captured using Kodak Capturing system with 

FOTO/Prep Transilluminator (Fotodyne Incorporated, USA). Concentration of DNA was 

measured using Nano Drop 1000 spectrophotometer (Thermo Scientific, USA). 

3.2.1.5 DNA sequencing, primer synthesis and data analysis  

Optimised DNA sequences were synthesised by GeneArtTM Gene Synthesis (Thermo 

Scientific, USA). Primers were synthesised by Integrated DNA Technologies (IDT, USA). 

DNA sequencing service was provided by Delaware Biotechnology Institute (DBI, USA). 

Codon adaptation indices (CAIs) of sequences were compared using CAIcal server. DNA 

sequences and maps were analysed using SeqBuilder (DNASTAR, Inc, USA) and GENtle 

(University of Cologne, 2003). Sequencing data were analysed and aligned using SeqMan 

Pro (DNASTAR, Inc, USA), BioEdit and ClustalW2 Multiple sequence alignment.  

 Overview of design and construction of recombinant of apoptin vector 

variants 

Synthetic apoptin gene in fusion to signal peptide from tobacco pathogenesis related protein 

1a (PR1a), hexa-histidine tag and endoplasmic reticulum (ER) retention signal (gene cassettes: 

PR-VP3-HK, PR-GFP-VP3-HK and PR-Lic-VP3-HK) (Table 3.2) were released from 

holding vector, pMAT using restriction enzymes, PacI and XhoI before incorporated into 

pGR-D4 vector. Recombinant apoptin expressed from these three gene cassettes were 

expected accumulating in ER of plant cells. Besides, ER retention signal was removed and 

the resultant gene cassettes, PR-VP3-H, PR-GFP-VP3-H and PR-Lic-VP3-H (Table 3.2) 

were generated. Removal of ER retention signal would be expected resulting recombinant 

proteins entering in secretory pathway and subsequently secreted into apoplast. Further 

removal of signal peptide generated gene cassettes, VP3-H, GFP-VP3-H and Lic-VP3-H 

(Table 3.2). Recombinant apoptin expressed from these gene cassettes were expected 

accumulating in cell cytoplasm. To 
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remove the fusion protein from apoptin after protein purification, an enterokinase site was 

incorporated between GFP and apoptin gene as well as lichenase and apoptin gene. Gene 

cassettes, PR-VP3-H, VP3-H, PR-GFP-VP3-H, GFP-VP3-H, PR-Lic-VP3-H and Lic-VP3-H 

were amplified from pMAT:: PR-VP3-HK, pMAT:: PR-GFP-VP3-HK and pMAT:: PR-Lic-

VP3-HK accordingly by the relevant primers (Table 3.3 and Appendix 3.10) via single step 

PCR using Phusion® High Fidelity PCR Master Mix with HF Buffer as described in section 

3.2.3. All PCR gene fragments were digested using PacI and XhoI before ligated to pGR-D4 

vector. 

Single chain antibody H22 and epidermal growth factor (EGF), for targeting to specific cell 

types, were also fused to N-terminal of apoptin gene with addition of signal peptide PR1a and 

ER retention signal. Instead of using full length apoptin gene sequence, truncated apoptin 

gene were also study while in fusion with H22 single chain antibody and EGF protein. A 

molecular adaptor was also incorporated between H22 single chain antibody and apoptin 

gene as well as EGF and apoptin gene. Therefore, gene cassettes, namely PR-H22-CatAd-

VP3-HK, PR-H22-CatAd-VP3-40-121-HK, PR-H22-CatAd-VP3-60-121-HK, PR-H22-

CatAd-VP3-80-121-HK, PR-EGF-CatAd-VP3-HK, PR-EGF-CatAd-VP3-40-121-HK, PR-

EGF-CatAd-VP3-60-121-HK, PR-EGF-CatAd-VP3-80-121-HK were amplified from 

recombinant vectors, pMAT:: PR-HF-H22catADGM, pMAT:: PR-HF-EGF-CatAD-Tau and 

pMAT:: PR-GFP-VP3-HK with corresponding primers (Table 3.3 and Appendix 3.10) via 

fusion PCR using Platinum® PCR SuperMix High Fidelity (section 3.2.3). All PCR gene 

fragments were digested using PacI and XhoI before ligated to pGR-D4 vector. 

Gene cassettes, PR-VP3-HK, PR-GFP-VP3-HK and PR-EGF-CatAd-VP3-HK (Table 

3.2Table 3.) were released from pGR-D4 vector using restriction enzymes, PacI and XhoI 

before ligated to pGR-DN vector that harboured the sequences of ER stress proteins, i.e. 

bZIP17, bZIP28 and bZIP60 located downstream of apoptin expression cassettes driven by 

individual promoters. 

Besides, gene cassettes, PR-GFP-VP3-HK, PR-GFP-VP3-H and GFP-VP3-H (Table 3.2) 

were also released from vectors, pMAT and pGR-D4 using restriction enzymes, PacI and 

XhoI before subcloned into binary vector, pGR-D. Recombinant GFP-apoptin was co-

expressed with a red fluorescent protein (mCherry) in order to evaluate the localisation of 

recombinant apoptin in N. benthamiana. mCherry was fused to N-terminal of nuclear 

localisation signal (Nuc) and the expression of mCherryNuc was directed by a separate 
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promoter located downstream of apoptin expression cassettes. Gene cassette, mCherryNuc 

was released from vector, pMAT:: mCherryNuc using BsrGI and NheI before ligated to pGR-

D. 

A schematic diagram is presented to illustrate the construction procedure of recombinant 

vectors in Figure 3.1. 

Table 3.2: List of apoptin gene cassettes. 

No 
Name of 

backbone  

Schematic diagrams of apoptin gene cassettes for the recombinant vector 

variants 

1 

p
G

R
-D

4
    PR-VP3-HK  

    

2 

p
G

R
-D

4
    PR-VP3-H 

    

3 

p
G

R
-D

4
    VP3-H 

    

4 

p
G

R
-D

4
    PR-GFP-VP3-HK  

    

5 

p
G

R
-D

4
    PR-GFP-VP3-H  

    

6 

p
G

R
-D

4
    GFP-VP3-H  
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7 

p
G

R
-D

4
    PR-Lic-VP3-HK  

    

8 

p
G

R
-D

4
    PR-Lic-VP3-H  

    

9 

p
G

R
-D

4
    Lic-VP3-H  

    

10 

p
G

R
-D

4
    PR-H22-CatAd-VP3-HK 

    

11 

p
G

R
-D

4
    PR-H22-CatAd-VP3-40-121-HK 

    

12 

p
G

R
-D

4
    PR-H22-CatAd-VP3-60-121-HK 

    

13 

p
G

R
-D

4
    PR-H22-CatAd-VP3-80-121-HK 

    

14 

p
G

R
-D

4
    PR-EGF-CatAd-VP3-HK 

    

15 

p
G

R
-D

4
    PR-EGF-CatAd-VP3-40-121-HK 
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16 

p
G

R
-D

4
    PR-EGF-CatAd-VP3-60-121-HK 

    

17 

p
G

R
-D

4
    PR-EGF-CatAd-VP3-80-121-HK 

    

18 

p
G

R
-D

N
    PR-VP3-HK__bZIP17 

    

19 

p
G

R
-D

N
    PR-VP3-HK__bZIP28 

    

20 

p
G

R
-D

N
    PR-VP3-HK__bZIP60 

    

21 

p
G

R
-D

N
    PR-GFP-VP3-HK__bZIP17 

    

22 

p
G

R
-D

N
    PR-GFP-VP3-HK__bZIP28 

    

23 

p
G

R
-D

N
    PR-GFP-VP3-HK__bZIP60 

    

24 

p
G

R
-D

N
    PR-EGF-CatAd-VP3-HK__bZIP17 
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25 

p
G

R
-D

N
    PR-EGF-CatAd-VP3-HK__bZIP28 

    

26 

p
G

R
-D

N
    PR-EGF-CatAd-VP3-HK__bZIP60 

    

27 

p
G

R
-D

 

   PR-GFP-VP3-HK__mCherryNuc 

    

 

28 

p
G

R
-D

 

   PR-GFP-VP3-H__mCherryNuc 

    

 

29 

p
G

R
-D

 

   GFP-VP3-H__mCherryNuc 
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Figure 3.1: Schematic representation of construction process of all recombinant vectors under 

the study.   

3.2.3 Polymerase chain reaction (PCR) 

All PCR preparations were done as recommended by manufacturer. General PCR mixtures 

were prepared as described: 1X reaction buffer, 1 unit of polymerase, forward and reverse 

primers (0.6 µM each), 15 ng DNA template and topped up with distilled water to 50 µl. PCR 

programme was initiated at 94-98°C from 30 seconds to 5 minutes, followed by 35 cycles of 

denaturation at 94-98°C for 10-45 seconds, annealing at 40-70°C for 40 seconds and 

extension at 68-72°C with 1-2kb/minute. The mixtures were incubated at 68-72°C for an 

additional 5-10 minutes and stored at 4-10°C after the amplification processes had finished. 

Amplified fragments were analysed in 1% agarose gel electrophoresis, subsequently, gel 

images were captured and recorded. Specific conditions of PCR for each gene cassette are 

listed clearly in Table 3.3 and primer sequences in Appendix 3.10. 
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Table 3.3: PCR conditions for apoptin gene cassettes. 

No 
Gene 

cassettes 
Templates 

Parameters of PCR 

Primers Annealing 

temperature 

Extension 

time Forward Reverse 

1 PR-VP3-H 
pMAT:: PR-VP3-

HK 
pVP3-F VP3H-R 56°C 

40 

seconds 

2 VP3-H 
pMAT:: PR-VP3-

HK 
VP3-F VP3H-R 56°C 

40 

seconds 

3 
PR-GFP-

VP3-H 

pMAT:: PR-GFP-

VP3-HK 
pVP3-F gVP3H-R 56°C 

40 

seconds 

4 
GFP-VP3-

H 

pMAT:: PR-GFP-

VP3-HK 
gVP3-F gVP3H-R 56°C 

40 

seconds 

5 
PR-Lic-

VP3-H 

pMAT:: PR-Lic-

VP3-HK 
pVP3-F VP3H-R 56°C 

40 

seconds 

6 Lic-VP3-H 
pMAT:: PR-Lic-

VP3-HK 
LicVP3-F VP3H-R 56°C 

40 

seconds 

7 

PR-H22-

CatAd-

VP3-HK 

pMAT:: PR-HF-

H22catADGM 

and  pMAT:: PR-

GFP-VP3-HK 

PRH22-F; 

HCatVP3-F;    

YFE1-T-F 

HCatVP3-R;       

VP3-HK_R 
56-63°C 

45-90 

seconds 

8 

PR-H22-

CatAd-

VP3-40-

121-HK 

pMAT:: PR-HF-

H22catADGM 

and  pMAT:: PR-

GFP-VP3-HK 

PRH22-F; 

HCatVP3-40-121-F; 

YFE1-T-F 

HCatVP3-40-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 

9 

PR-H22-

CatAd-

VP3-60-

121-HK 

pMAT:: PR-HF-

H22catADGM 

and  pMAT:: PR-

GFP-VP3-HK 

PRH22-F; 

HCatVP3-60-121-F; 

YFE1-T-F 

HCatVP3-60-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 

10 

PR-H22-

CatAd-

VP3-80-

121-HK 

pMAT:: PR-HF-

H22catADGM 

and  pMAT:: PR-

GFP-VP3-HK 

PRH22-F; 

HCatVP3-80-121-F; 

YFE1-T-F 

HCatVP3-80-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 

11 

PR-EGF-

CatAd-

VP3-HK 

pMAT:: PR-HF-

EGF-CatAD-Tau 

and  pMAT:: PR-

GFP-VP3-HK 

PREGF-F; 

ECatVP3-F;   

YFE1-T-F  

ECatVP3-R;       

VP3-HK_R 
56-63°C 

45-90 

seconds 

12 

PR-EGF-

CatAd-

VP3-40-

121-HK 

pGR-D4:: PR-

EGF-CatAd-VP3-

HK 

YFE-1-T-F; 

ECatVP3-40-121-F;  

ECatVP3-40-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 

13 

PR-EGF-

CatAd-

VP3-60-

121-HK 

pGR-D4:: PR-

EGF-CatAd-VP3-

HK 

YFE-1-T-F; 

ECatVP3-60-121-F;  

ECatVP3-60-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 

14 

PR-EGF-

CatAd-

VP3-80-

121-HK 

pGR-D4:: PR-

EGF-CatAd-VP3-

HK 

YFE-1-T-F; 

ECatVP3-80-121-F;  

ECatVP3-80-121-R; 

VP3-HK_R 
56-63°C 

45-90 

seconds 
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3.2.4 DNA purification 

ZymocleanTM Gel DNA Recovery Kit was used to recover the DNA pieces from agarose gel. 

Three volumes of ADB buffer were added to each volume of agarose excised from the gel 

and the mixture was incubated at 55°C for 10 minutes until the gel slice was completely 

dissolved. Melted agarose solution was transferred to a Zymo-Spin™ column with collection 

tube following by 30-second centrifugation at 13, 000 rpm. The pass-through was discarded 

and 200 µl of DNA wash buffer was added to the column followed by 30-second 

centrifugation at 13, 000 rpm. The washing step was repeated before DNA bound to the 

column matrix was eluted with 15-20 µl of distilled water. Columns were further incubated 

for 5 minutes at room temperature before centrifuging at 13, 000 rpm for 1 minute. Elution 

step was repeated to acquire higher amount of DNA from column matrix.  

RE-digested DNA was also purified by using DNA Clean and ConcentratorTM-5. 

Approximately 5 volumes of DNA Binding Buffer was added to 1 volume of DNA sample 

and mixed by vortexing. All mixtures were then transferred to Zymo-SpinTM columns with 

collection tubes followed by centrifugation for 30 seconds. The pass-through was discarded 

and 200 µl of DNA Wash Buffer was added to the column followed by another centrifugation 

for 30 seconds. Washing step was repeated before addition of 8-10 µl of distilled water to the 

column matrix. Columns were incubated at room temperature for 5 minutes before 

centrifuging for 30 seconds to elute DNA from the column matrix.  

Concentration and purity of all purified DNA products were then measured by Nano Drop 

1000 spectrophotometer. 

3.2.5 Restriction enzyme (RE) digestion 

A general double RE digestion was prepared as below: 0.5-2 µg of vectors, 500 ng of gene 

cassettes from PCR, 1-10 units of enzymes, 1X reaction buffer, 1X BSA and topped up to 50 

µl with distilled water. RE digestion for specific apoptin gene cassettes and vectors are listed 

clearly in Table 3.4. 
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Table 3.4: RE digestion details of apoptin gene cassettes and vectors. 

No Gene cassettes 
RE Incubation 

temperature 
Incubation period 

1 2 

1 PR-VP3-H PacI XhoI 37°C 2 hours 

2 VP3-H PacI XhoI 37°C 2 hours 

3 PR-GFP-VP3-H PacI XhoI 37°C 2 hours 

4 GFP-VP3-H PacI XhoI 37°C 2 hours 

5 PR-Lic-VP3-H PacI XhoI 37°C 2 hours 

6 Lic-VP3-H PacI XhoI 37°C 2 hours 

7 PR-H22-CatAd-VP3-HK PacI XhoI 37°C 2 hours 

8 PR-H22-CatAd-VP3-40-121-HK PacI XhoI 37°C 2 hours 

9 PR-H22-CatAd-VP3-60-121-HK PacI XhoI 37°C 2 hours 

10 PR-H22-CatAd-VP3-80-121-HK PacI XhoI 37°C 2 hours 

11 PR-EGF-CatAd-VP3-HK PacI XhoI 37°C 2 hours 

12 PR-EGF-CatAd-VP3-40-121-HK PacI XhoI 37°C 2 hours 

13 PR-EGF-CatAd-VP3-60-121-HK PacI XhoI 37°C 2 hours 

14 PR-EGF-CatAd-VP3-80-121-HK PacI XhoI 37°C 2 hours 

15 mCherryNuc BsrGI NheI 37°C 2 hours 

16 bZIP17 BsrGI NheI 37°C 2 hours 

17 bZIP28 BsrGI NheI 37°C 2 hours 

18 bZIP60 BsrGI NheI 37°C 2 hours 

19 pGR-D4 PacI XhoI 37°C 2 hours 

20 pGR-D PacI XhoI 37°C 2 hours 

21 pGR-D BsrGI NheI 37°C 2 hours 

22 pGR-DN PacI XhoI 37°C 2 hours 

23 pGR-DN BsrGI NheI 37°C 2 hours 

3.2.6 Ligation  

All RE-digested inserts were ligated to the respective vectors, pGR-D4, pGR-DN or pGR-D 

at 3:1 molar ratio. Ligation mixtures were prepared with inserts (3X molar of vector), 20 ng 

of vectors, 0.5 µl of T4 ligase, 1X Ligation Buffer and topped up with distilled water to 10 µl. 

Mixtures were incubated at room temperature for at least 2 hours. 

3.2.7 Transformation and selection of positive clones 

Ten µl of ligation mixture was added into 100 µl of Escherichia coli competent cells (XLI-B 

strain) and incubated on ice for at least 20 minutes. E. coli competent cells were heat-shocked 
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at 42°C for 45 seconds, subsequently, incubated on ice again for 2 minutes. Then, 400 µl of 

Luria Broth (LB) was added to the competent cells before bacterial suspensions were 

incubated at 37°C for at least an hour. After the incubation, bacterial suspensions were spread 

on LB agar plates containing 50 µg/ml kanamycin. All plates were incubated at 37°C 

overnight and PCR screening was performed to confirm the positive recombinant clones.   

3.2.8 Plasmid extraction 

Overnight bacterial cultures were purified using ZyppyTM Plasmid Midiprep Kit. Forty ml of 

overnight cultures were pelleted at 6, 000 rpm for 10 minutes and 6 ml of distilled water was 

used to resuspend bacterial pellets. Pellets were vortexed and 1 ml of 7X Lysis Buffer (Blue) 

was added and followed by inverting the tubes for 2-4 times. Mixtures were incubated at 

room temperature for 2 minutes and 3.5 ml of cold Neutralisation Buffer (Yellow) was added 

subsequently. Then, mixtures were inverted for 4-6 times to mix thoroughly while samples 

turned yellow with precipitates observed as neutralisation was complete. All mixtures were 

transferred to Zymo-Midi FilterTM columns, which were fixed onto a vacuum manifold, and 

vacuum was turned on to remove all the liquid lysate. All blue Zymo-Midi FilterTM columns 

from the top of Zymo-SpinTM V-E were discarded, nevertheless, Zymo-SpinTM V-E columns 

were transferred to a collection tube and centrifuged at 13, 000 rpm for 30 seconds to remove 

any retained liquid. Then, 200 µl of Endo-Wash Buffer was added to Zymo-SpinTM V-E 

columns and centrifuged at 13, 000 rpm for 30 seconds. Besides, 400 µl of ZyppyTM Wash 

Buffer was also added to the columns and centrifuged at 13, 000 rpm for another 30 seconds. 

Washing step of the columns with ZyppyTM Wash Buffer was repeated and the columns were 

centrifuged at 13, 000 rpm for additional 1 minute to remove any trace of buffer. Zymo-

SpinTM V-E columns were then transferred to new 1.5 ml microcentrifuge tubes and 150 µl of 

distilled water was added to the centre of the column. The column was incubated at room 

temperature for 5 minutes before centrifuging at 13, 000 rpm for 1 minute. Purity and 

concentration of DNA were measured using Nano Drop 1000 spectrophotometer. 

3.2.9 Verification of recombinant vectors 

Extracted recombinant vectors were verified by RE-digestion as illustrated in sections 3.2.3 

and 3.2.5. Verified recombinant vectors were then sent for sequencing. Sequencing results 

were assembled using SeqMan Pro and sequences were aligned using Bioedit and ClustalW2 

Multiple sequence alignment. 
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3.3 Results 

3.3.1 Codon optimisation of apoptin gene  

Codon sequences of apoptin gene cassettes were optimised based on codon usage of 

Nicotiana benthamiana in order to enhance the translation efficiency of recombinant protein. 

Codon adaptation index (CAI), a scoring or measure for codon adaptiveness in a gene 

sequence in reference to a given set of codon usage frequency analysed from highly 

expressed gene in a species and effective number of codons (ENC), a scoring for equal usage 

of synonymous codons in a gene, for native and optimised apoptin gene sequences are listed 

in Table 3.5. 

Table 3.5: Codon adaptation index (CAI) and effective number of codons (ENC) for apoptin 

gene cassettes. 

No 
Source of gene 

sequences 
Apoptin gene cassettes CAI  ENC GC content 

1 Genebank: AAB86420.1 VP3-A 0.681 61.0 53.0 

2 GeneArt, USA PR-VP3-HK 0.832 29.3 50.6 

3 GeneArt, USA PR-GFP-VP3-HK 0.815 28.0 49.7 

4 GeneArt, USA PR-Lic-VP3-HK 0.818 27.4 49.8 

Non-optimised apoptin sequences showed CAI approximately 0.68 and ENC at 61. However, 

optimised apoptin sequences showed a higher CAI, which is more than 0.8, and low ENC at 

approximately 27-29.     

3.3.2 Polymerase chain reaction (PCR) amplification and restriction enzyme 

(RE) digestion profiles of apoptin gene cassettes 

Apoptin gene cassettes were generated by using PCR and RE digestion in order to ligate to 

vectors, pGR-D4, pGR-DN and pGR-D. Apoptin gene cassettes, namely PR-VP3-H, VP3-H, 

PR-GFP-VP3-H, GFP-VP3-H, PR-Lic-VP3-H and Lic-VP3-H, were amplified by PCR and 

the amplified PCR products were analysed in 1% gel electrophoresis as shown in Figure 3.2.  
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 Lane Gene cassettes Estimated size  

 L 1 kb Plus DNA ladder   

 1 PR-VP3-H ~ 474 bp  

 2 VP3-H  ~ 384 bp  

 3 PR-GFP-VP3-H  ~ 1203 bp  

 4 GFP-VP3-H  ~ 1116 bp  

 5 PR-Lic-VP3-H  ~1158 bp  

 6 Lic-VP3-H  ~ 1068 bp  

     

Figure 3.2: PCR amplification profiles of apoptin gene cassettes, namely PR-VP3-H, VP3-H, 

PR-GFP-VP3-H, GFP-VP3-H, PR-Lic-VP3-H and Lic-VP3-H.  

Gene cassettes, namely PR-H22-CatAd-VP3-HK, PR-H22-CatAd-VP3-40-121-HK, PR-H22-

CatAd-VP3-60-121-HK, PR-H22-CatAd-VP3-80-121-HK, PR-EGF-CatAd-VP3-HK, PR-

EGF-CatAd-VP3-40-121-HK, PR-EGF-CatAd-VP3-60-121-HK and PR-EGF-CatAd-VP3-

80-121-HK were generated by fusion PCR and PCR amplification profiles of these gene 

cassettes are shown in Figure 3.3.  
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 Lane Gene cassettes Estimated size  

 L 1 kb Plus DNA ladder   

 1 PR-H22-CatAd-VP3-HK ~ 1338 bp  

 2 PR-H22-CatAd-VP3-40-121-HK ~ 1299 bp  

 3 PR-H22-CatAd-VP3-60-121-HK ~ 1279 bp  

 4 PR-H22-CatAd-VP3-80-121-HK ~ 1259 bp  

 5 PR-EGF-CatAd-VP3-HK ~ 756 bp  

 6 PR-EGF-CatAd-VP3-40-121-HK ~ 717 bp  

 7 PR-EGF-CatAd-VP3-60-121-HK ~ 697 bp  

 8 PR-EGF-CatAd-VP3-80-121-HK ~ 677 bp  

     

Figure 3.3: PCR amplification profiles of apoptin gene cassettes, namely PR-H22-CatAd-

VP3-HK, PR-H22-CatAd-VP3-40-121-HK, PR-H22-CatAd-VP3-60-121-HK, PR-H22-

CatAd-VP3-80-121-HK, PR-EGF-CatAd-VP3-HK, PR-EGF-CatAd-VP3-40-121-HK, PR-

EGF-CatAd-VP3-60-121-HK and PR-EGF-CatAd-VP3-80-121-HK. 

RE digestion profiles of recombinant vectors, pGR-D4:: PR-VP3-HK, pGR-D4:: PR-GFP-

VP3-HK and pGR-D4:: PR-EGF-CatAd-VP3-HK are also shown in Figure 3.4. Digested 

gene cassettes were purified from gel and cloned into pGR-DN vector. 
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Lane Vector backbone Gene cassettes Estimated size  

L  1 kb Plus DNA ladder   

1 pGR-D4 PR-EGF-CatAd-VP3-HK ~ 756 bp  

2 pGR-D4 PR-GFP-VP3-HK ~ 1215 bp  

3 pGR-D4 PR-VP3-HK ~ 486 bp  

      

Figure 3.4: RE digestion profiles of apoptin gene cassettes, namely PR-VP3-HK, PR-GFP-

VP3-HK and PR-EGF-CatAd-VP3-HK. 

RE digestion profiles of recombinant vectors, pMAT:: PR-VP3-HK, pMAT:: PR-GFP-VP3-

HK, pMAT:: PR-Lic-VP3-HK, pGR-D4:: PR-GFP-VP3-H, pGR-D4:: GFP-VP3-H and 

pMAT:: mCherryNuc are also shown in Figure 3.5. Digested gene cassettes were purified 

from gel and cloned into individual vectors, pGR-D4 and pGR-D. 
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Lane Vector backbone Gene cassettes Estimated size  

L  1 kb Plus DNA ladder   

1 pMA-T PR-VP3-HK ~ 486 bp  

2 pMA-T PR-GFP-VP3-HK ~ 1215 bp  

3 pMA-T PR-Lic-VP3-HK ~ 1184 bp  

4 pMA-T mCherryNuc ~ 780 bp  

5 pMA-T PR-GFP-VP3-HK ~ 1215 bp  

6 pGR-D4 PR-GFP-VP3-H ~ 1203 bp  

7 pGR-D4 GFP-VP3-H ~ 1116 bp  

      

Figure 3.5: RE digestion profiles of apoptin gene cassettes, namely PR-VP3-HK, PR-GFP-

VP3-HK, PR-Lic-VP3-HK, PR-GFP-VP3-H, GFP-VP3-H and mCherryNuc. 

3.3.3 Verification of recombinant vectors 

All recombinant vectors were analysed via RE digestion before the sequences of samples 

were further verified via sequencing. The results are shown following the RE digestion by 

PacI and XhoI for the verification of the recombinant vectors, namely pGR-D4:: PR-VP3-HK, 

pGR-D4:: PR-VP3-H, pGR-D4:: VP3-H, pGR-D4:: PR-GFP-VP3-HK, pGR-D4:: PR-GFP-

VP3-H, pGR-D4:: GFP-VP3-H (Figure 3.6), pGR-D4::PR-Lic-VP3-HK, pGR-D4:: PR-Lic-

VP3-H, pGR-D4:: Lic-VP3-H (Figure 3.7), pGR-D4:: PR-H22-CatAd-VP3-HK, pGR-D4:: 

PR-H22-CatAd-VP3-40-121-HK, pGR-D4:: PR-H22-CatAd-VP3-60-121-HK, pGR-D4:: 

PR-H22-CatAd-VP3-80-121-HK (Figure 3.8), pGR-D4:: PR-EGF-CatAd-VP3-HK, pGR-D4:: 

PR-EGF-CatAd-VP3-40-121-HK, pGR-D4:: PR-EGF-CatAd-VP3-60-121-HK, pGR-D4:: 

PR-EGF-CatAd-VP3-80-121-HK (Figure 3.9). 
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(a) 

 

 
 

 

 
Lane Recombinant vectors 

Gene cassettes released 

from RE digestion 
Estimated size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-D4:: PR-VP3-HK PR-VP3-HK ~ 486 bp  

 3-4 pGR-D4:: PR-GFP-VP3-HK PR-GFP-VP3-HK ~1215 bp  

 5-6 pGR-D4:: PR-VP3-H PR-VP3-H ~ 474 bp  

 7-8 pGR-D4:: VP3-H VP3-H ~ 384 bp  

 9-10 pGR-D4:: PR-GFP-VP3-H PR-GFP-VP3-H ~ 1203 bp  

 11-12 pGR-D4:: GFP-VP3-H GFP-VP3-H ~ 1116 bp  
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Figure 3.6: RE verification profiles for recombinant vectors, namely pGR-D4:: PR-VP3-HK, 

pGR-D4:: PR-VP3-H, pGR-D4:: VP3-H, pGR-D4:: PR-GFP-VP3-HK, pGR-D4:: PR-GFP-

VP3-H, pGR-D4:: GFP-VP3-H. (a) RE verification using PacI and XhoI for recombinant 

vectors; (b) Schematic diagram of the recombinant vector, pGR-D4 with apoptin gene 

cassettes as inserts. 
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Lane Recombinant vectors 

Gene cassettes released 

from RE digestion 
Estimated size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-D4:: PR-Lic-VP3-HK PR-Lic-VP3-HK ~ 1170 bp  

 3-4 pGR-D4:: PR-Lic-VP3-H PR-Lic-VP3-H ~1158 bp  

 5-6 pGR-D4:: Lic-VP3-H Lic-VP3-H ~ 1068 bp  
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Figure 3.7: RE verification profiles for recombinant vectors, namely pGR-D4:: PR-Lic-VP3-

HK, pGR-D4:: PR-Lic-VP3-H and pGR-D4:: Lic-VP3-H. (a) RE verification using PacI and 

XhoI for recombinant vectors; (b) Schematic diagram of the recombinant vector, pGR-D4 

with apoptin gene cassettes as inserts. 
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 (a) 

 

 
 

 

 
Lane Recombinant vectors 

Gene cassettes released from RE 

digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-D4:: PR-H22-CatAd-VP3-HK PR-H22-CatAd-VP3-HK ~ 1338 bp  

 3-4 pGR-D4:: PR-H22-CatAd-VP3-40-121-HK PR-H22-CatAd-VP3-40-121-HK ~ 1299 bp  

 5-6 pGR-D4:: PR-H22-CatAd-VP3-60-121-HK PR-H22-CatAd-VP3-60-121-HK ~ 1279 bp  

 7-8 pGR-D4:: PR-H22-CatAd-VP3-80-121-HK PR-H22-CatAd-VP3-80-121-HK ~ 1259 bp  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3-29 
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Figure 3.8: RE verification profiles for recombinant vectors, namely pGR-D4:: PR-H22-

CatAd-VP3-HK, pGR-D4:: PR-H22-CatAd-VP3-40-121-HK, pGR-D4:: PR-H22-CatAd-

VP3-60-121-HK and pGR-D4:: PR-H22-CatAd-VP3-80-121-HK. (a) RE verification using 

PacI and XhoI for recombinant vectors; (b) Schematic diagram of the recombinant vector, 

pGR-D4 with apoptin gene cassettes as inserts. 
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Lane Recombinant vectors 

Gene cassettes released from RE 

digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-D4:: PR-EGF-CatAd-VP3-HK PR-EGF-CatAd-VP3-HK ~ 756 bp  

 3-4 pGR-D4:: PR-EGF-CatAd-VP3-40-121-HK PR-EGF-CatAd-VP3-40-121-HK ~ 717 bp  

 5-6 pGR-D4:: PR-EGF-CatAd-VP3-60-121-HK PR-EGF-CatAd-VP3-60-121-HK ~ 697 bp  

 7-8 pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK PR-EGF-CatAd-VP3-80-121-HK ~ 677 bp  
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Figure 3.9: RE verification profiles for recombinant vectors, namely pGR-D4:: PR-EGF-

CatAd-VP3-HK, pGR-D4:: PR-EGF-CatAd-VP3-40-121-HK, pGR-D4:: PR-EGF-CatAd-

VP3-60-121-HK and pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK. (a) RE verification using 

PacI and XhoI for recombinant vectors; (b) Schematic diagram of the recombinant vector, 

pGR-D4 with apoptin gene cassettes as inserts. 
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Recombinant vectors, pGR-DN:: PR-VP3-HK__bZIP17, pGR-DN:: PR-VP3-HK__bZIP28, 

pGR-DN:: PR-VP3-HK__bZIP60, pGR-DN:: PR-GFP-VP3-HK__bZIP17, pGR-DN:: PR-

GFP-VP3-HK__bZIP28, pGR-DN:: PR-GFP-VP3-HK__bZIP60, pGR-DN:: PR-EGF-

CatAd-VP3-HK__bZIP17, pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP28 and pGR-DN:: 

PR-EGF-CatAd-VP3-HK__bZIP60 were verified by released gene cassettes, PR-VP3-HK 

(Figure 3.10), PR-GFP-VP3-HK (Figure 3.11) and PR-EGF-CatAd-VP3-HK (Figure 3.12) 

using PacI and XhoI. Besides, recombinant vectors were also digested using BsrGI and NheI 

to release gene cassettes, bZIP17, bZIP28 and bZIP60. NheI RE site is present on bZIP60 

gene sequence (nucleotide 231); hence, bZIP gene released from pGR-DN vector is shorter 

than expected, which is approximately 670 bp. 
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Lane Recombinant vectors 

Gene cassettes released from RE 

digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-DN:: PR-VP3-HK__bZIP17 PR-VP3-HK ~ 520 bp  

 3-4 pGR-DN:: PR-VP3-HK__bZIP28 PR-VP3-HK ~ 520 bp  

 5-6 pGR-DN:: PR-VP3-HK__bZIP60 PR-VP3-HK ~ 520 bp  

 7-8 pGR-DN:: PR-VP3-HK__bZIP17 bZIP17 ~ 1092 bp  

 9-10 pGR-DN:: PR-VP3-HK__bZIP28 bZIP28 ~ 960 bp  

 11-12 pGR-DN:: PR-VP3-HK__bZIP60 bZIP60 ~ 900 bp  
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Figure 3.101: RE verification profiles for recombinant vectors, namely pGR-DN:: PR-VP3-

HK__bZIP17, pGR-DN:: PR-VP3-HK__bZIP28 and pGR-DN:: PR-VP3-HK__bZIP60. (a) 

RE verification using PacI and XhoI for recombinant vectors; (b) Schematic diagram of the 

recombinant vector, pGR-DN with apoptin gene cassettes and bZIP17, bZIP28 and bZIP60 as 

inserts. 
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Lane Recombinant vectors 

Gene cassettes released from RE 

digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-DN:: PR-GFP-VP3-HK__bZIP17 PR-GFP-VP3-HK ~ 1249 bp  

 3-4 pGR-DN:: PR-GFP-VP3-HK __bZIP28 PR-GFP-VP3-HK ~ 1249 bp  

 5 pGR-DN:: PR-GFP-VP3-HK __bZIP60 PR-GFP-VP3-HK ~ 1249 bp  

 6-7 pGR-DN:: PR-GFP-VP3-HK__bZIP17 bZIP17 ~ 1092 bp  

 8-9 pGR-DN:: PR-GFP-VP3-HK __bZIP28 bZIP28 ~ 960 bp  

 
10 pGR-DN:: PR-GFP-VP3-HK __bZIP60 bZIP60 ~ 900 bp 
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Figure 3.21: RE verification profiles for recombinant vectors, namely pGR-DN:: PR-GFP-

VP3-HK__bZIP17, pGR-DN:: PR-GFP-VP3-HK__bZIP28 and pGR-DN:: PR-GFP-VP3-

HK__bZIP60. (a) RE verification using PacI and XhoI for recombinant vectors; (b) 

Schematic diagram of the recombinant vector, pGR-DN with apoptin gene cassettes and 

bZIP17, bZIP28 and bZIP60 as inserts. 



 

3-36 

 

 

 

 

 

(a) 

 

 

 

      

 
Lane Recombinant vectors 

Gene cassettes released from 

RE digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP17 PR-EGF-CatAd-VP3-HK ~ 790 bp  

 3-4 pGR-DN:: PR-EGF-CatAd-VP3-HK __bZIP28 PR-EGF-CatAd-VP3-HK ~ 790 bp  

 5 pGR-DN:: PR-EGF-CatAd-VP3-HK __bZIP60 PR-EGF-CatAd-VP3-HK ~ 790 bp  

 6-7 pGR-DN:: PR-EGF-CatAd-VP3-HK __bZIP17 bZIP17 ~ 1092 bp  

 8-9 pGR-DN:: PR-EGF-CatAd-VP3-HK __bZIP28 bZIP28 ~ 960 bp  

 10 pGR-DN:: PR-EGF-CatAd-VP3-HK __bZIP60 bZIP60 ~ 900 bp  
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Figure 3.123: RE verification profiles for recombinant vectors, namely pGR-DN:: PR-EGF-

CatAd-VP3-HK__bZIP17, pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP28 and pGR-DN:: 

PR-EGF-CatAd-VP3-HK__bZIP60. (a) RE verification using PacI and XhoI for recombinant 

vectors; (b) Schematic diagram of the recombinant vector, pGR-DN with apoptin gene 

cassettes and bZIP17, bZIP28 and bZIP60 as inserts. 
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Verification of recombinant vectors, including pGR-D:: PR-GFP-VP3-HK__mCherryNuc, 

pGR-D:: PR-GFP-VP3-H__mCherryNuc and pGR-D:: GFP-VP3-H__mCherryNuc was 

performed by PacI and XhoI digestion to release apoptin gene cassettes, namely PR-GFP-

VP3-HK, PR-GFP-VP3-H and GFP-VP3-H (Figure 3.13). Besides, recombinant vectors were 

also RE-digested using BsrGI and NheI to release the gene cassette, mCherryNuc.  

 

(a) 

 

 
 

 

 
Lane Recombinant vectors 

Gene cassettes released from RE 

digestion 

Estimated 

size 

 

 L 1 kb Plus DNA ladder    

 1-2 pGR-D:: PR-GFP-VP3-HK__mCherryNuc PR-GFP-VP3-HK ~ 1215 bp  

 3-4 pGR-D:: PR-GFP-VP3-H__mCherryNuc PR-GFP-VP3-H ~ 1203 bp  

 5-6 pGR-D:: GFP-VP3-H__mCherryNuc GFP-VP3-H ~ 1116 bp  

 7 pGR-D:: PR-GFP-VP3-HK__mCherryNuc mCherryNuc ~ 783 bp  

 8 pGR-D:: PR-GFP-VP3-H__mCherryNuc mCherryNuc ~ 783 bp  

 9 pGR-D:: GFP-VP3-H__mCherryNuc mCherryNuc ~ 783 bp  
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(b) 
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: Neomycin phosphotransferase 

: Origin of replication  
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   Escherichia coli 

 

Figure 3.13: RE verification profiles for recombinant vectors, namely pGR-D:: PR-GFP-

VP3-HK__mCherryNuc, pGR-D:: PR-GFP-VP3-H__mCherryNuc and pGR-D:: GFP-VP3-

H__mCherryNuc. (a) RE verification using PacI and XhoI for recombinant vectors; (b) 

Schematic diagram of the recombinant vector, pGR-D with apoptin gene cassettes and 

mCherryNuc as inserts. 
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3.3.4 Sequencing confirmation 

Following sequencing analysis, all recombinant vectors used for gene expression were 

confirmed harbouring the correct nucleotide sequences with no mutation or frameshift 

occurrence for all gene cassettes.  
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3.4 Discussion 

This chapter describes the upstream procedures for the production of recombinant apoptin in 

Nicotiana benthamiana, focusing on the design of apoptin gene cassettes and construction of 

recombinant vectors. In this study, apoptin gene cassettes were inserted after movement 

protein of tobacco mosaic virus (TMV) in pGR-D4 vector and expression of inserted genes 

were directed by a subgenomic promoter of TMV. Coat protein of this viral vector, 

responsible for systemic infection, had been removed and delivery of foreign genes to whole 

plant system was accomplished by agroinfiltration strategy (Roy et al., 2010). Besides, pGR-

DN vector was used in this study for co-expression of bZIP proteins with apoptin. For pGR-

DN vector, double 35S cauliflower mosaic virus promoter was used to direct the transcription 

of apoptin gene cassettes; however, a weaker promoter was chosen to control the 

transcription of bZIP genes (Streatfield, 2007). This design was aimed to have a higher 

expression of apoptin rather than bZIP proteins.  

Codon sequences of apoptin as well as fusion proteins, including green fluorescent protein 

(GFP), lichenase, H22 single chain antibody and epidermal growth factor (EGF), were 

optimised and synthesised based on codon usage preference of N. benthamiana. Codon bias, 

which is the preference of using specific type of synonymous codons during process of 

decoding genetic information into functional polypeptides, is found in diverse organisms as 

well as different genes within one genome. A favor for specific synonymous codon can cause 

significant impact on translation efficiency and protein folding (Quax et al., 2015) and 

studies showed that codon bias possesses high correlations with abundance of intracellular 

tRNA with specific anticodons (Angov, 2011). As high protein expression is directly affected 

by translation initiation as well as elongation, the presence of preferable codons with 

abundance of cognate tRNA are the keys for efficient translation. Hence, codon optimisation 

performed for foreign gene sequences based on preference codon of expression hosts is an 

important approach applied by researchers to boost up the expression of heterologous protein. 

Codon adaptation index (CAI), ranging from 0 to 1, is a measurement for codon adaptiveness 

of a gene sequence towards the favorable codon usage of highly expressed gene in a host 

species. This measurement was proposed as a way to predict the expression level of a gene 

(Sharp and Li, 1987). Therefore, higher the CAI value may indicate higher expression level 

of a protein. In this study, CAI values of synthetic and optimised apoptin gene cassettes 

showed more than 0.8 and are higher than non-optimised apoptin gene sequences (~ 0.6-0.7). 
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Thus, a relatively high protein expression level was expected to be obtained with codon 

optimised apoptin sequence. Instead of CAI value, effective number of codons (ENC), 

ranging from 20 to 61, was also used to justify the codon bias of a sequences. ENC value of 

20 means each amino acid coded by only one kind of codon sequence, hence, the codon 

sequence for that gene is extremely bias; however, ENC value of 61 means an equally use of 

all codons for all amino acids and no bias of codon usage is available (Behura and Severson, 

2012). In comparison to non-optimised apoptin sequences, codon optimised apoptin gene 

cassette sequences showed a huge bias of codon usage. Bias of codon usage in optimised 

sequences could be explained since a preference of usage for one or two codons for each 

amino acid was observed from codon usage frequency table of N. benthamiana (Appendix 

3.11). 

In this study, recombinant apoptin was aimed to be stored in s specific plant cellular 

compartment; hence, signal peptide sequences from tobacco pathogenesis related protein 1a 

(PR1a) was fused to N-terminal of apoptin gene cassettes in order to direct the protein 

entering into endoplasmic reticulum (ER) lumen (gene cassettes: PR-VP3-H, PR-GFP-VP3-H 

and PR-Lic-VP3-H). Presence of this signal peptide PR1a on N-terminal of polypeptide is 

highly important for the entry of recombinant protein into secretory pathway and 

subsequently passages to extracellular space (Lodish et al., 2004). Besides, an investigation 

was also performed for accumulation of recombinant apoptin in ER by adding signal peptide, 

PR1a on N-terminal of apoptin gene cassettes with ER retention signal on C-terminal 

concurrently (gene cassettes: PR-VP3-HK, PR-GFP-VP3-HK, PR-Lic-VP3-HK, PR-H22-

CatAd-VP3-HK, PR-H22-CatAd-VP3-40-121-HK, PR-H22-CatAd-VP3-60-121-HK, PR-

H22-CatAd-VP3-80-121-HK, PR-EGF-CatAd-VP3-HK, PR-EGF-CatAd-VP3-40-121-HK, 

PR-EGF-CatAd-VP3-60-121-HK and PR-EGF-CatAd-VP3-80-121-HK). Proteins targeting 

to ER and apoplast are favorable for subcellular storage compartment chosen by researchers 

since accumulation of proteins in these cellular compartments always lead to higher yield of 

recombinant proteins (Komarnytsky et al., 2000; Xu et al., 2002; Yang et al., 2005). 

Recombinant proteins targeted into secretory pathway obtain proper protein folding and post 

translational modifications, such as glycosylation, alkylation and carboxylation, which are 

highly important for the functional activity of proteins. 

High amount of recombinant apoptin was expressed as insoluble protein when fused only to 

hexahistidine tag in E. coli expression system (Lelivelda et al., 2003). Strong denaturants 
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were always used to harvest the protein and followed by a refolding step. This problem had 

been solved when apoptin was fused to large protein, maltose binding protein (MBP). 

Besides, a detectable soluble recombinant apoptin was also reported by Lacorte et al. (2007) 

when recombinant apoptin in fusion to GFP was expressed in N. benthamiana. In this study, 

GFP as well as lichenase were fused to N-terminal of apoptin gene (gene cassettes: PR-GFP-

VP3-HK, PR-GFP-VP3-H, GFP-VP3-H, PR-Lic-VP3-HK, PR-Lic-VP3-H and Lic-VP3-H) 

in order to enhance solubility and stability of protein. Signal peptides, PR1a and ER retention 

signal were also added to the gene cassettes in order to study the best location for subcellular 

storage of recombinant apoptin. An enterokinase cleavage site was purposely incorporated 

between GFP and apoptin gene or lichenase and apoptin gene for the removal of fusion 

proteins after the purification steps since these GFP and lichenase proteins might result 

unwanted side effects on subsequent cell-based assays. GFP is a common reporter protein and 

the employment of GFP protein in fusion to apoptin here is to ease detection of recombinant 

protein during purification process and functionality test of recombinant apoptin in 

mammalian cells. Lichenase, a thermostable enzyme, b-1,3-1,4-glucanase from Clostridium 

thermocellum, was successfully produced with more than 30 targeted recombinant proteins 

(Musiychuk et al., 2007). Enhancement of recombinant protein expression, stability and 

incorporation of multiple targets were able to be achieved with the fusion of protein of 

interest to lichenase (Musiychuk et al., 2007). 

Cancer treatments always aim to kill cancer cells selectively while confer negligible harm to 

healthy normal cells; however, common treatments, such as radiation, cytotoxic 

chemotherapeutic drugs and surgery, cause non-specific harmful effects to healthy 

neighboring cells or non-effective towards metastasized cancer cells. In order to enhance the 

effectiveness and specificity of drug towards cancer cells, targeting drug towards cancer cells 

is achieved via pathophysiological features of cancer cells as well as facilitation of surface 

receptors or antigens overexpressed on cancer cells (Mohanty et al., 2011). In current study, 

EGF and immunoglobulin G (IgG) receptor (CD64) were chosen as targets for drug delivery 

to cancer cells overexpressed with both receptors. CD64 is constitutively expressed in 

myelogenous cells, such as macrophages, monocytes and dendritic cells, and this receptor is 

upregulated during infection and on cancer cells such as acute myeloid leukemia (AML). 

CD64 has been chosen as a targeted receptor for the binding of immunotoxins using anti-

CD64 single chain antibody H22 for treatment of AML (Hetzel et al., 2008; Stahnke et al., 

2008). Epidermal growth factor receptor (EGFR), also known as ErbB1 receptor in EGF 
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receptor family, is overexpressed especially in breast tissue cancer (Hooper, 2016; Normanno 

et al., 2006). Several kinds of drugs, including non-hormonal cytotoxic drug, suramin and 

monoclonal antibody, cetuximab, have been developed for cancer treatment via inhibition of 

signal transduction activities of EGFR (Hooper, 2016). On the other hand, EGF, one of the 

ligands bound to EGFR, was chosen as ligands in fusion with immunotoxins for targeted 

therapy (Fuchs et al., 2007). EGF and H22 single chain antibody gene sequences were fused 

to N-terminal of apoptin gene with the addition of N-terminal signal peptide PR1a and C-

terminal ER retention signal (PR-H22-CatAd-VP3-HK and PR-EGF-CatAd-VP3-HK). 

Besides, a peptide transmembrane domain (PTD), CatAd was incorporated between EGF and 

apoptin gene as well as H22 single chain antibody and apoptin gene in order to enhance the 

internalization of apoptin into cancer cells. CatAd is a cleavable adaptor developed for the 

linking between ligands or antibodies and toxin moieties of immunotoxins used for cancer 

treatment (Keller et al., 2001). Incorporation of CadAd between ligands and toxin was 

reported causing an irreversible detainment of the toxin in the cell cytosol and making a short 

half-life of toxin, which significantly reduces non-specific toxicity that is always associated 

with undesirable side effects (Heisler et al., 2003).   

Instead of full length apoptin, expression of truncated apoptin was also investigated in this 

research. A bipartite nuclear localisation signals (NLS) are reported on C-terminal of apoptin 

and this region is believed playing a critical role for apoptosis induction. Hence, several 

truncated H22-apoptin gene cassettes (PR-H22-CatAd-VP3-40-121-HK, PR-H22-CatAd-

VP3-60-121-HK and PR-H22-CatAd-VP3-80-121-HK) and EGF-apoptin gene cassettes (PR- 

EGF-CatAd-P3-40-121-HK, PR- EGF-CatAd-VP3-60-121-HK and PR- EGF-CatAd-VP3-

80-121-HK) were designed by removing N-terminal region as well as reserving the full 

length and functional C-terminal bipartite NLS. Besides, N-terminal of apoptin was reported 

containing a leucine rich hydrophobic region that corresponds for the multimerisation of the 

protein (Leliveldc et al., 2003). Thus, removal of N-terminal of apoptin in truncated apoptin 

gene cassettes also aimed to increase the solubility of recombinant apoptin. These designs 

would like to reduce the potential formation of huge multimers that always lead to instability 

and insolubility of protein.   

In this study, soluble protein level of recombinant apoptin (gene cassettes: PR-VP3-HK, PR-

GFP-VP3-HK and PR-EGF-CatAd-VP3-HK) was also tried to be enhanced by co-expression 

with bZIP proteins (17, 28 and 60), which belong to a group of transcriptional factors 

involving in elevated level of chaperone proteins. Overexpression of recombinant proteins 
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always results in a huge amount of unfolded proteins, consequently, inducing the unwanted 

ER stress/unfolded protein response (UPR) (Ruberti et al., 2015). bZIP proteins are released 

during 

UPR and play roles as transcriptional factors to enhance transcription of chaperone proteins 

involving in protein folding activity (Vitale, 2013). Hence, the present study was performed 

to understand the effect of co-expressions of bZIP17, bZIP28 and bZIP60 with apoptin gene 

cassettes and the elevated amount of soluble recombinant apoptin was expected and could be 

harvested via this approach. 

In conclusion, all apoptin gene variants were ingeniously designed and cloned into vectors, 

namely pGR-D4, pGR-DN and pGR-D. Codon optimised apoptin gene sequences were 

synthesised incorporating with signal peptide PR1a as well as ER retention signal.  Apoptin 

gene cassettes that targeted protein to apoplast and cytoplasm were also generated. Besides, 

apoptin gene cassettes harbouring apoptin gene in fusion to GFP, lichenase and tumor 

specific ligands (H22 and EGF) were also designed and cloned into targeted vectors in hope 

to enhance yield, solubility and stability of recombinant apoptin proteins.  
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4.1 Introduction 

Transient expression is conventionally used for rapid assessment of gene functions at 

the first place. However, this technique has been recently adopted for production of 

recombinant proteins in plants attributed by its several creditable advantages. High 

expression yield, short incubation time and absence of adverse effects that are 

induced by permanent integration of DNA, have made transient expression a robust 

approach for production of high demanding recombinant proteins (Sainsbury and 

Lomonossoff, 2014). Among several gene delivery techniques, agroinfiltration is one 

of the most commonly used techniques by employing Agrobacterium as a delivery 

vector to transfer foreign genes into plants (Chen et al., 2013). Infiltrated plants are 

incubated for 2-8 days for transient expression of foreign genes without requiring any 

selection activity. Although agroinfiltration is a non-expensive, scalable, rapid and 

simple gene delivery approach, a requirement for infection of Agrobacterium towards 

specific host range has limited this application.   

Conventional Agrobacterium transformation protocol allows Agrobacterium come 

into contact with surface or wounding sites of plant samples by incubating plant 

specimens in Agrobacterium suspension. However, agroinfiltration allows bacteria 

penetrating into deeper and inner layers of infected tissues via infiltration technique, 

which could be achieved with simple and non-expensive syringes or specialised 

vacuum system. Using syringe infiltration, diluted bacterial cultures are injected into 

leaf abaxial side and pressure of injection allows bacteria penetrating into 

intercellular space of leaf mesophyll rather than leaf surface. Requirements for only 

small volume of cultures, inexpensive needleless syringes and tolerance with multiple 

injections using different recombinant vectors on the same leaf have made this 

approach becoming favourable for researchers working in lab or bench-scale study. 

However, syringe infiltration approach is no longer feasible for infiltration for large 

volume of plants in a pilot scale; hence, vacuum infiltration system is essential for 

efficient infiltration work (Chen et al., 2013). Using vacuum infiltration system, 

plants are firstly submerged into bacterial cultures and subsequently, application of 

vacuum removes air from plants and cultures. Pressure change causes agrobacterial 

culture penetrating into intercellular space of leaf mesophyll when vacuum system 

releases air into the chamber. Currently, this system is used by several 
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biopharmaceutical companies for production of recombinant proteins that are highly 

valuable for medical purposes, including Medicago Inc (USA), Fraunhofer Center for 

Molecular Biotechnology (FhCMB, USA), Kentucky Bioprocessing (USA) and Icon 

Genetics (Germany).   

There are always several hurdles encountered in the expression of recombinant 

proteins in plants in order to recover a satisfied amount of recombinant proteins. First, 

silencing of transgenes, one of the crucial challenges in this field, occurs at both 

transcriptional and post-transcriptional levels which is often induced by the presence 

of multiple copies of transgenes, integration of transgene in highly methylated 

chromosomal regions and accumulation of high level of aberrant RNA (Stam et al., 

1997). Second, incompetent transcription and translation of foreign genes also lead to 

the low recovery of recombinant proteins. Low availability of transcripts restricts 

subsequent translation process and this is always attributed to the instability of 

transcripts and inefficient promoters (Streatfield, 2007). In addition, the bias of codon 

usage and inefficient translation initiation cause low level of expression, while the 

turnover rate of proteins in plant cells also directly affects the total amount of 

recombinant proteins yielded. Other than the induction of gene silencing, 

overexpression and toxicity of recombinant proteins sometimes also induce stress and 

unwanted early necrosis symptom to the host plants. Hence, an optimised transgene 

expression cassette is always required in order to achieve a high level of protein 

expression for subsequent downstream processing.  

In current study, recombinant apoptin vector variants were designed as described in 

Chapter 3 in order to explore the optimised recombinant apoptin vectors leading to a 

high level of protein expression. To enhance transcription and translation efficiency, 

apoptin gene sequences were codon-optimised based on codon usage of Nicotiana 

benthamiana and cloned in high expression vectors, i.e. pGR-D4 (TMV-based viral 

vector) and pGR-DN (binary vector). Signal peptides such as tobacco pathogenesis 

related protein 1a (PR1a) and endoplasmic reticulum (ER) retention signal (KDEL) 

were incorporated into recombinant apoptin vector variants in order to target the 

apoptin to apoplast and ER for accumulation of protein at higher quantity in plant 

system. In addition, recombinant vector variants harbouring apoptin gene in fusion to 

C-terminal of fusion proteins including green fluorescent protein (GFP) and lichenase 
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were also designed and constructed in order to increase protein solubility. Whereas, 

recombinant vector variants harbouring apoptin gene in fusion to C-terminal of H22 

single chain antibody, epidermal growth factor (EGF) and molecular adaptor (CatAd) 

were also constructed for targeting and internalisation of purified recombinant 

apoptin into specific cancer cells that overexpressed CD64 and EGF receptors. 

Apoptin gene cassettes were also cloned into pGR-DN vectors that harboured bZIP17, 

bZIP28 and bZIP60 gene sequences. Co-expression of bZIP proteins and apoptin was 

aimed to enhance solubility and yield of recombinant apoptin.  

In this chapter, recombinant apoptin vector variants were transformed into 

Agrobacterium tumefaciens and delivered into N. benthamiana using vacuum 

infiltration approach. Meanwhile, delivery of Agrobacterium harbouring recombinant 

vectors with pGR-D and pGR-DN backbones were co-infiltrated with gene silencing 

suppressors. All infiltrated plant leaf samples were harvested from 3 to 8 days post 

infiltration (dpi) for time course study of accumulation of recombinant proteins. Total 

protein and total soluble protein extracts from leaf samples were analysed and the 

results were used as references for subsequent protein purification procedures. 

Besides, localisation of recombinant apoptin in fusion to green fluorescent protein 

(GFP) in plant cells was also visualised using confocal microscope.  

Therefore, the specific objectives for this chapter were (i) to deliver recombinant 

apoptin vector variants into N. benthamiana via vacuum infiltration, (ii) to compare 

the yield of total soluble and total protein among recombinant apoptin vector variants 

expressed in N. benthamiana, (iii) to determine the kinetic expression profiles of 

infiltrated N. benthamiana for the peak accumulation of recombinant apoptin and (iv) 

to examine subcellular localisation of recombinant apoptin in infiltrated N. 

benthamiana leaves. 
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4.2 Materials and Methods 

4.2.1 General materials 

4.2.1.1 Plant materials 

Four to five weeks old Nicotiana benthamiana, serving as a host plant was used for 

agroinfiltration. N. benthamiana was grown in hydroponic system with temperature 

set at 25±3°C and humidity at ~70% RH receiving 12 hours of light and 12 hours of 

darkness. Infiltrated plants were also incubated at the similar condition.  

4.2.1.2 Bacterial strains and recombinant vectors 

Two strains of Agrobacterium tumefaciens, GV3101 and AGLI, were used in this 

study to deliver recombinant vectors into the host plant. Studies reported that delivery 

of viral vector with pGR-D4 backbone using GV3101 gave higher protein expression; 

however, delivery of non-viral vector with pGR-D or pGR-DN backbone using AGLI 

produce higher protein yield. Hence, recombinant vectors, namely pGR-D4:: PR-

VP3-HK, pGR-D4:: PR-VP3-H, pGR-D4:: VP3-H, pGR-D4:: PR-GFP-VP3-HK, 

pGR-D4:: PR-GFP-VP3-H, pGR-D4:: GFP-VP3-H, pGR-D4:: PR-Lic-VP3-HK, 

pGR-D4:: PR-Lic-VP3-H, pGR-D4:: Lic-VP3-H, pGR-D4:: PR-H22-CatAd-VP3-HK, 

pGR-D4:: PR-H22-CatAd-VP3-40-121-HK, pGR-D4:: PR-H22-CatAd-VP3-60-121-

HK, pGR-D4:: PR-H22-CatAd-VP3-80-121-HK, pGR-D4:: PR-EGF-CatAd-VP3-HK, 

pGR-D4:: PR-EGF-CatAd-VP3-40-121-HK, pGR-D4:: PR-EGF-CatAd-VP3-60-121-

HK and pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK were transformed into 

agrobacterial strain GV3101. However, pGR-D:: PR-GFP-VP3-HK__mCherryNuc, 

pGR-D:: PR-GFP-VP3-H__mCherryNuc, pGR-D:: GFP-VP3-H__mCherryNuc, 

pGR-DN:: PR-VP3-HK__bZIP17, pGR-DN:: PR-VP3-HK__bZIP28, pGR-DN:: PR-

VP3-HK__bZIP60, pGR-DN:: PR-GFP-VP3-HK__bZIP17, pGR-DN:: PR-GFP-

VP3-HK__bZIP28, pGR-DN:: PR-GFP-VP3-HK__bZIP60, pGR-DN:: PR-EGF-

CatAd-VP3-HK__bZIP17, pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP28 and pGR-

DN:: PR-EGF-CatAd-VP3-HK__bZIP60 were transformed into agrobacterial strain 

AGLI. Meanwhile, pCB:: P19 and pCB:: P1/HC-Pro were transformed into 

agrobacterial strain GV3101. 
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4.2.1.3 Reagents 

MagicMark™ XP Western Protein Standard, SeeBlue Plus2 Pre-stained Protein 

Standard, BenchMark™ His-tagged Protein Standard and BenchMark™ Protein 

Ladder (ThermoFisher Scientific, USA) were protein markers used in protein gel 

electrophoresis. Besides, HAI standard (FhCMB, USA) and bovine serum albumin 

(BSA) standard (ThermoFisher Scientific, USA) were also used in protein gel 

electrophoresis. I-Block™ Protein-Based Blocking Reagent (ThermoFisher Scientific, 

USA) was used to block membranes prior incubation with antibodies. Tetra·His 

mouse monoclonal antibody (1: 2 000) (Qiagen, USA), anti-VP3 mouse monoclonal 

antibody (1: 20 000) (JCU/CAV/1C1) (TropBio Pty Ltd, Australia) and goat anti-

mouse antibody (1: 5 000) (Jackson ImmunoResearch Inc, USA) were used to detect 

the presence of apoptin via Western blotting technique. In addition, SuperSignal West 

Pico Chemiluminescent Substrate (ThermoFisher Scientific, USA) was used for 

horseradish peroxidase (HRP) reaction in the Western detection procedure. 

Coomassie Protein Assay Reagent (ThermoFisher Scientific, USA) was used in this 

study to stain protein gels.  

4.2.1.4 Specialised equipment and accessories  

Transformation of Agrobacterium via electroporation was performed by using 

MicroPulser™ Electroporator system (Biorad, USA). Sterile Gene Pulser 

Electroporation Cuvettes (0.1 cm) (Biorad, USA) were used for each electroporation 

reaction. Vacuum infiltration system used for infiltration of plant was customised by 

FhCMB (USA). Protein gel electrophoresis was performed using Mini-PROTEAN 

Tetra Cell system (Biorad, USA) and protein transfer from gel to (PVDF) membrane 

was performed using Trans-Blot® Turbo™ (Biorad, USA). In addition, GENE 

GNOME Chemiluminescence imaging system (Syngene, USA) was used to capture 

signals and save images of Western blots; HP Scanjet G3110 scanner was used to 

capture images of protein gels stained by Coomassie blue dye. Besides, Nikon Eclipse 

Ti Inverted Microscope (Nikon Instruments Inc, USA) and Zeiss 5 Live DUO 

Highspeed Confocal Microscope (Zeiss, USA) were also used in this study to observe 

the localisation of apoptin within the plant cells.      
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4.2.1.5 Analysis tools 

Images of Western blots were analysed using GeneSnap and GeneTools (Syngene, 

USA). Photos taken by Nikon Eclipse Ti Inverted Microscope were analysed using 

Nikon NIS Elements (Nikon Instruments Inc, USA); on the other hand, photos taken 

by Zeiss 5 Live DUO Highspeed Confocal Microscope were analysed using Zeiss 

LSM 5 (Zeiss, USA). 

4.2.2 Transformation of Agrobacterium tumefaciens   

Hundred nanograms of recombinant vectors were incubated with bacterial cells on ice 

for 5 minutes. Bacterial cell mixtures were subsequently electroporated based on a 

protocol recommended by manufacturer with voltage at 2.4 kV was applied for 5 

milliseconds. Hundred-fifty microlitre of Luria Broth (LB) broth was added to 

electroporated cells and cell mixtures were subsequently incubated at 28°C as well as 

shaken horizontally at 220 rpm for at least an hour. Bacterial cells were then plated on 

LB agar containing 50 mg/L kanamycin and incubated at 28°C for 48 hours. 

4.2.3 Agoinfiltration 

Overnight bacterial cultures were harvested and diluted to OD600 ranging at 0.2 - 1.0 

with buffers as described in Table 4.1.  
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Table 4.1: Dilution of A. tumefaciens harbouring recombinant vectors.  

No Recombinant vectors Agrobacterial strains OD600 Buffers 

1 pGR-D4:: PR-VP3-HK GV3101 0.5 Distilled water 

2 pGR-D4:: PR-VP3-H GV3101 0.5 Distilled water 

3 pGR-D4:: VP3-H GV3101 0.5 Distilled water 

4 pGR-D4:: PR-GFP-VP3-HK GV3101 0.5 Distilled water 

5 pGR-D4:: PR-GFP-VP3-H GV3101 0.5 Distilled water 

6 pGR-D4:: GFP-VP3-H GV3101 0.5 Distilled water 

7 pGR-D4:: PR-Lic-VP3-HK GV3101 0.5 Distilled water 

8 pGR-D4:: PR-Lic-VP3-H GV3101 0.5 Distilled water 

9 pGR-D4:: Lic-VP3-H GV3101 0.5 Distilled water 

10 pGR-D4:: PR-H22-CatAd-VP3-HK GV3101 0.5 Distilled water 

11 pGR-D4:: PR-H22-CatAd-VP3-40-121-HK GV3101 0.5 Distilled water 

12 pGR-D4:: PR-H22-CatAd-VP3-60-121-HK GV3101 0.5 Distilled water 

13 pGR-D4:: PR-H22-CatAd-VP3-80-121-HK GV3101 0.5 Distilled water 

14 pGR-D4:: PR-EGF-CatAd-VP3-HK GV3101 0.5 Distilled water 

15 pGR-D4:: PR-EGF-CatAd-VP3-40-121-HK GV3101 0.5 Distilled water 

16 pGR-D4:: PR-EGF-CatAd-VP3-60-121-HK GV3101 0.5 Distilled water 

17 pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK GV3101 0.5 Distilled water 

18 pGR-D:: PR-GFP-VP3-HK-mCherry__Nuc AGLI 1.0 MMA 

19 pGR-D:: PR-GFP-VP3-H__mCherryNuc AGLI 1.0 MMA 

20 pGR-D:: GFP-VP3-H__mCherryNuc AGLI 1.0 MMA 

21 pGR-DN:: PR-VP3-HK__bZIP17 AGLI 1.0 CMA 

22 pGR-DN:: PR-VP3-HK__bZIP28 AGLI 1.0 CMA 

23 pGR-DN:: PR-VP3-HK__bZIP60 AGLI 1.0 CMA 

24 pGR-DN:: PR-GFP-VP3-HK __bZIP17 AGLI 1.0 CMA 

25 pGR-DN:: PR-GFP-VP3-HK __bZIP28 AGLI 1.0 CMA 

26 pGR-DN:: PR-GFP-VP3-HK __bZIP60 AGLI 1.0 CMA 

27 pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP17 AGLI 1.0 CMA 

28 pGR-DN:: PR-EGF-CatAd-VP3-HK__ bZIP28 AGLI 1.0 CMA 

29 pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP60 AGLI 1.0 CMA 

30 pCB:: P1/HC-Pro GV3101  0.2 MMA 

31 pCB:: P19 GV3101 0.2 CMA 

Note: MMA= Inifltration buffer composed of 10mM MES, 10 mM MgCl2, 0.15 mM 

Acetosyringone; CMA= Inifltration buffer composed of 10mM citrate (pH 5.8), 10 

mM MgCl2, 0.15 mM Acetosyringone. 
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Diluted agrobacterial strain AGLI harbouring recombinant vectors, namely pGR-D:: 

PR-GFP-VP3-HK__mCherryNuc, pGR-D:: PR-GFP-VP3-H__mCherryNuc and 

pGR-D:: GFP-VP3-H__mCherryNuc were mixed with agrobacterial strain GV3101  

harbouring pCB:: P1/HC-Pro. Diluted agrobacterial strain AGLI  harbouring 

recombinant vectors, namely pGR-DN:: PR-VP3-HK__bZIP17, pGR-DN:: PR-VP3-

HK__bZIP28, pGR-DN:: PR-VP3-HK__bZIP60, pGR-DN:: PR-GFP-VP3-HK 

__bZIP17, pGR-DN:: PR-GFP-VP3-HK __bZIP28, pGR-DN:: PR-GFP-VP3-HK 

__bZIP60, pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP17, pGR-DN:: PR-EGF-

CatAd-VP3-HK__bZIP28 and pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP60 were 

also mixed with agrobacterial strain GV3101  harbouring pCB:: P19. All bacterial 

mixtures were incubated at room temperature for at least 2 hours. On the other hand, 

agrobacterial strain GV3101 harbouring recombinant vectors, namely pGR-D4:: PR-

VP3-HK, pGR-D4:: PR-VP3-H, pGR-D4:: VP3-H, pGR-D4:: PR-GFP-VP3-HK, 

pGR-D4:: PR-GFP-VP3-H, pGR-D4:: GFP-VP3-H, pGR-D4:: PR-Lic-VP3-HK, 

pGR-D4:: PR-Lic-VP3-H, pGR-D4:: Lic-VP3-H, pGR-D4:: PR-H22-CatAd-VP3-HK, 

pGR-D4:: PR-H22-CatAd-VP3-40-121-HK, pGR-D4:: PR-H22-CatAd-VP3-60-121-

HK, pGR-D4:: PR-H22-CatAd-VP3-80-121-HK, pGR-D4:: PR-EGF-CatAd-VP3-HK, 

pGR-D4:: PR-EGF-CatAd-VP3-40-121-HK, pGR-D4:: PR-EGF-CatAd-VP3-60-121-

HK and pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK were used immediately after 

dilution with distilled water for infiltration. 

Four to five weeks old N. benthamiana leaves were infiltrated with bacterial 

suspension at 28 inHg for 1 minute and subsequently brief-rinsed with distilled water. 

4.2.4 Protein extraction 

Plant leaf samples were collected between 3-8 days post infiltration (dpi). Leaf tissues 

were homogenised with 3 volumes of phosphate-buffered saline (PBS) with 1 mM 

Dieca. Triton X-100 (0.5% v/v) was added into the lysate to generate soluble protein 

extract (TSP-T) and 1x sodium dodecyl sulfate (SDS) reducing loading buffer [50mM 

Tris-Cl (pH 6.8), 2% SDS, 0.1M DTT] was used to generate total protein extract (TP). 

All cell lysates were pelleted at 16, 000 xg before the supernatant was analysed in 12% 

polyacrylamide gel electrophoresis.   
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4.2.5 Western blotting 

Electrophoresed gels were transferred onto 0.2 µm PVDF membrane using Trans-

Blot TurboTM blotting system with a preprogrammed protocol at 25 V for 7 minutes. 

Blotted membranes were brief-rinsed in PBS before blocking in I-Block buffer for at 

least half an hour. Membranes were subsequently incubated in either Tetra-His or 

VP3 monoclonal primary antibody for 1-2 hours. Three-time washing steps with 

PBS-Tween (PBS-T) buffer at 4-minute intervals were performed before membranes 

were incubated with secondary antibody for another hour. Membranes were washed 

again for three times with PBS-T buffer at 4-minute intervals. Then, membranes were 

incubated in SuperSignal West Pico Chemiluminescent Substrate for 4 minutes before 

images of membranes were captured and recorded. 

Protein bands detected in western blotting was measured using GeneTools and 

expression of recombinant proteins was quantified in relative to HAI standard (60 ng, 

30 ng and 15 ng) loaded on the same gel. Fold change of protein expression was 

calculated as an approach to compare protein expression between recombinant 

vectors.  

4.2.6 Microscopy 

A slice of leaf sample from plants infiltrated with recombinant vectors, pGR-D:: PR-

GFP-VP3-HK__mCherryNuc, pGR-D:: PR-GFP-VP3-H__mCherryNuc and pGR-D:: 

GFP-VP3-H__mCherryNuc on 5 dpi were prepared for observations under Nikon 

Eclipse Ti Inverted Microscope and Zeiss 5 Live DUO Highspeed Confocal 

Microscope. 
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4.3 Results 

4.3.1 Protein expression profiles of recombinant apoptin 

4.3.1.1 Expression and accumulation of recombinant 

apoptin alone in subcellular compartments 

Time course study for expression of recombinant apoptin was detected between 3 

days post infiltration (dpi) and 8 dpi. Expression profile of Nicotiana benthamiana 

infiltrated with recombinant vector without gene insert (mock) confirmed that mock 

samples were free of recombinant proteins (Appendix 4.1). Expression of 

recombinant apoptin alone in total soluble protein extract with 0.5% triton (TSP-T) 

gave low protein yield, which was less than 15% of total protein (TP), in all three 

recombinant vectors including pGR-D4:: PR-VP3-HK, pGR-D4:: PR-VP3-H and 

pGR-D4:: VP3-H (Figure 4.1). Hence, most of recombinant apoptin could only be 

recovered from insoluble plant extract. Plant infiltrated with recombinant vectors, 

pGR-D4:: PR-VP3-HK (Figure 4.2-a) and pGR-D4:: PR-VP3-H (Figure 4.2-b), by 

which recombinant proteins were expected accumulating in endoplasmic reticulum 

(ER) and apoplast, showed necrosis symptom as early as 3-4 dpi. Severe necrosis was 

subsequently observed on 5 dpi. Interestingly, necrosis was not found on plants 

infiltrated with recombinant pGR-D4:: VP3-H (Figure 4.2-c). 
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 Q 
BenchMark™ His-tagged Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-5 
TSP-T extract from leaf samples 

harvested on 4 and 5 dpi 
pGR-D4:: PR-VP3-HK ~ 18 kDa  

 6-7 
TP extract from leaf samples 

harvested on 4 and 5 dpi 
pGR-D4:: PR-VP3-HK ~ 18 kDa  

 8-10 
TSP-T extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR-VP3-H ~ 18 kDa  

 11-13 
TP extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR-VP3-H ~ 18 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: VP3-H ~ 18 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: VP3-H ~ 18 kDa  

      

Figure 4.1: Protein expression profiles of recombinant apoptin alone in subcellular 

compartment of Nicotiana benthamiana leaves. Detection was carried out via 

Western blotting technique which showed recombinant apoptin expressed from 

recombinant vectors, (a) pGR-D4:: PR-VP3-HK, (b) pGR-D4:: PR-VP3-H and (c) 

pGR-D4:: VP3-H using Tetra-His mouse monoclonal antibody.  

a b 

c 
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Figure 4.2: Physical appearances of N. benthamiana infiltrated with recombinant 

vectors, pGR-D4:: PR-VP3-HK, pGR-D4:: PR-VP3-H and pGR-D4:: VP3-H on 5 dpi. 

Plants showed necrosis symptom when infiltrated with recombinant vectors, (a) pGR-

D4:: PR-VP3-HK and (b) pGR-D4:: PR-VP3-H as early as 3 dpi. Plants infiltrated 

with recombinant vector, (c) pGR-D4:: VP3-H did not show necrosis symptom but 

survived even incubation was extended until 8 dpi. 

4.3.1.2 Expression of recombinant apoptin in fusion to C-

terminal of green fluorescent protein (GFP) 

Recombinant apoptin in fusion to C-terminal of GFP (recombinant vectors: pGR-D4:: 

PR-GFP-VP3-HK and pGR-D4:: GFP-VP3-H) (Figure 4.3-a and -c) except for 

recombinant GFP-apoptin (recombinant vector: pGR-D4:: PR-GFP-VP3-H) (Figure 

4.3-b) showed an increased TP level to approximately 2-3 folds. Among these three 

recombinant vectors, recombinant GFP-apoptin (recombinant vector: pGR-D4:: GFP-

VP3-H) exhibited the highest expression on both protein (Figure 4.3-c) and 

fluorescence (Figure 4.4-c) signals but TSP-T extract of this protein was only 

accounted ~10% of TP level (Figure 4.3-c).   

On the other hand, TSP-T extracts of recombinant GFP-apoptin targeted to ER and 

apoplast (recombinant vectors: pGR-D4:: PR-GFP-VP3-HK and pGR-D4:: PR-GFP-

VP3-H) were estimated 10 folds higher than recombinant apoptin expressed alone 

(recombinant vectors: pGR-D4:: PR-VP3-HK and pGR-D4:: PR-VP3-H) (4.1-a and -

b). TSP-T extract of recombinant GFP-apoptin accumulated in ER was ~50% of TP 

level (4.3-a). However, TSP-T extract of recombinant GFP-apoptin accumulated in 

apoplast was ~90% of TP level (Figure 4.3-b). TSP-T extract of recombinant GFP-

apoptin accumulated in ER was slightly higher than protein accumulated in apoplast 

a b c 
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but it was ~2.5 folds higher than protein that was not targeted into secretory pathway 

(recombinant vector: pGR-D4:: GFP-VP3-H).  

      

 

  

 

 

 

  

      

 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: PR-GFP-VP3-HK ~ 42 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: PR-GFP-VP3-HK ~ 42 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: PR-GFP-VP3-H ~ 42 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: PR-GFP-VP3-H ~ 42 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: GFP-VP3-H ~ 42 kDa  

 29-33 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: GFP-VP3-H ~ 42 kDa  

      

Figure 4.3：Protein expression profiles of recombinant apoptin in fusion to C-

terminal of GFP. Detection was carried out via Western blotting technique which 

showed recombinant GFP-apoptin expressed from recombinant vectors, (a) pGR-D4:: 

PR-GFP-VP3-HK, (b) pGR-D4:: PR-GFP-VP3-H and (c) pGR-D4:: GFP-VP3-H 

using Tetra-His mouse monoclonal antibody. 

a b

c 

c 
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Figure 4.4: GFP fluorescent signals detected using UV lamp of plants infiltrated with 

recombinant vectors, (a) pGR-D4:: PR-GFP-VP3-HK, (b) pGR-D4:: PR-GFP-VP3-H 

and (c) pGR-D4:: GFP-VP3-H. Recombinant pGR-D4:: GFP-VP3-H exhibited the 

highest GFP signal. 

Under microscopic observation, recombinant GFP-apoptin (recombinant vector: 

pGR-D:: GFP-VP3-H__mCherryNuc) (Green) expressed in cytoplasm, was 

relocalised and accumulated in plant cell nucleus. This argument is in concordance 

with the expectation of the same localisation pattern as mCherry (Red) protein pre-

incorporated with a nuclear localisation signal, was redirected into the nucleus 

(Figure 4.5-c). However, relocalisation of protein into nucleus was not observed when 

recombinant GFP-apoptin targeted to ER and apoplast (recombinant vectors: pGR-D:: 

PR-GFP-VP3-HK__mCherryNuc and pGR-D:: PR-GFP-VP3-H__mCherryNuc) 

(Figure 2-a and -b). 

 

 

 

 

 

 

 

a b c 
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Figure 4.5: Microscopic observation of co-expression of recombinant GFP-VP3 

(Green) and mCherryNuc (Red) in N. benthamiana cells. mCherry protein containing 

nuclear localisation signal on C-terminal end is expected to be relocated into plant 

cell nucleus as evidenced in previous study. Images above show the redistribution of 

protein in cells instead of directing into cell nucleus for (a) and (b) occurred with the 

addition of signal peptides to VP3 protein. Expression of (c) GFP-VP3 showed the 

protein accumulation within the nucleus of plant cells since mCherry and GFP signals 

were co-localised at the same position.   
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4.3.1.3 Expression of recombinant apoptin in fusion to C-

terminal of lichenase  

Expression of recombinant lichenase-apoptin showed similar expression profiles as 

recombinant apoptin alone (Figure 4.6). Necrosis symptom was observed when 

recombinant lichenase-apoptin targeted to ER (recombinant vector: pGR-D4:: PR-

Lic-VP3-HK) (Figure  4.7-a) and apoplast (recombinant vector: pGR-D4:: PR-Lic-

VP3-H) (Figure 4.7-b) but not for recombinant vector pGR-D4:: Lic-VP3-H (Figure  

4.7-c). Low TSP-T level was detected for all three recombinant proteins. However, 2-

3 folds higher level of insoluble protein (TP) was able to be collected from 

recombinant lichenase-apoptin (recombinant vector: pGR-D4:: Lic-VP3-H) (Figure 

4.6-c) than recombinant apoptin alone (recombinant vector: pGR-D4:: VP3-H) 

(Figure 4.1-c) and recombinant GFP-apoptin (recombinant vector: pGR-D4:: GFP-

VP3-H) (Figure 4.3-c).    
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-6 
TSP-T extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR-Lic-VP3-HK ~ 40 kDa  

 7-9 
TP extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR-Lic-VP3-HK ~ 40 kDa  

 10-12 
TSP-T extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR- Lic-VP3-H ~ 40 kDa  

 13-15 
TP extract from leaf samples 

harvested on 3, 4 and 5 dpi 
pGR-D4:: PR- Lic-VP3-H ~ 40 kDa  

 16-20 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: Lic-VP3-H ~ 40 kDa  

 21-25 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: Lic-VP3-H ~ 40 kDa  

      

Figure 4.6: Protein expression profiles of recombinant apoptin in fusion to C-terminal 

of lichenase. Detection was carried out via Western blotting technique which showed 

recombinant lichenase-apoptin expressed from recombinant vector, (a) pGR-D4:: PR-

Lic-VP3-HK, (b) pGR-D4:: PR-Lic-VP3-H and (c) pGR-D4:: Lic-VP3-H using 

Tetra-His mouse monoclonal antibody. 

 

a b 
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Figure 4.7: Physical appearances of N. benthamiana infiltrated with recombinant 

vectors, pGR-D4:: PR-Lic-VP3-HK, pGR-D4:: PR-Lic-VP3-H and pGR-D4:: Lic-

VP3-H on 5 dpi. Plants showed necrosis symptom when infiltrated with recombinant 

vectors, (a) pGR-D4:: PR-Lic-VP3-HK and (b) pGR-D4:: PR-Lic-VP3-H as early as 

3 dpi. Plants infiltrated with recombinant vector, (c) pGR-D4:: Lic-VP3-H did not 

show necrosis symptom but were viable even incubation was extended until 8 dpi. 

4.3.1.4 Expression of full length and truncated recombinant 

apoptin in fusion to C-terminal of H22 single chain 

antibody and CatAd molecular adaptor 

All four recombinant H22-CatAd-apoptin showed low expression level (Figure 4.8). 

Instead of full size protein, degradation was observed in all four recombinant protein 

expression profiles. Presence of 2-3 lower molecular weight protein bands was 

observed instead of the expected full size proteins. For example, full size protein for 

recombinant H22-CatAd-apoptin (recombinant vector: pGR-D4:: PR-H22-CatAd-

VP3-HK) was expected to be 43 kDa but smaller molecular weight protein band was 

detected at sizes between 30 and 40 kDa (Figure 4.8-a). Similar observation could be 

detected in expression profiles of recombinant vectors, pGR-D4:: PR-H22-CatAd-40-

121-VP3-HK (Figure 4.8-b), pGR-D4:: PR-H22-CatAd-60-121-VP3-HK (Figure 4.8-

c) and pGR-D4:: PR-H22-CatAd-80-121-VP3-HK (Figure 4.8-d). 
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-VP3-

HK 
~ 43 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-VP3-

HK 
~ 43 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-40-

121-VP3-HK 
~ 40 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-40-

121-VP3-HK 
~ 40 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-60-

121-VP3-HK 
~ 37 kDa  

 29-33 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-60-

121-VP3-HK 
~ 37 kDa  

 34-38 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-80-

121-VP3-HK 
~ 35 kDa  

 39-43 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-H22-CatAd-80-

121-VP3-HK 
~ 35 kDa  

      

Figure 4.8: Protein expression profiles of recombinant apoptin in fusion to C-terminal 

of H22 single chain antibody and CatAd molecular adaptor. Detection was performed 

via Western blotting technique using Tetra-His mouse monoclonal antibody which 

showed recombinant H22-CatAd-apoptin expressed from recombinant vectors, (a) 

pGR-D4:: PR-H22-CatAd-VP3-HK, (b) pGR-D4:: PR-H22-CatAd-40-121-VP3-HK, 

(c) pGR-D4:: PR-H22-CatAd-60-121-VP3-HK and (d) pGR-D4:: PR-H22-CatAd-80-

121-VP3-HK.  

a b 

c d 
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4.3.1.5 Expression of full length and truncated recombinant 

apoptin in fusion to C-terminal of epidermal growth 

factor (EGF) and CatAd molecular adaptor 

Detectable levels of TP and TSP-T for recombinant EGF-CatAd-apoptin were 

observed in expression profiles of recombinant vector,  pGR-D4:: PR-EGF-

CatAd-VP3-HK (Figure 4.9-a). In addition, approximately 2-3 folds higher level was 

observed in expression profiles of recombinant vectors, pGR-D4:: PR-EGF-CatAd-

VP3-40-121-HK (Figure 4.9-b) and pGR-D4:: PR-EGF-CatAd-VP3-80-121-HK 

(Figure 4.9-d) but severe early necrosis symptom appeared on recombinant pGR-D4:: 

PR-EGF-CatAd-VP3-80-121-HK (Figure 4.10-d) only. Low expression of 

recombinant vector, pGR-D4:: PR-EGF-CatAd-VP3-60-121-HK (Figure 4.9-c) was 

detected in both TP and TSP-T extracts as compared to three other recombinant 

vectors. No significant degradation band was observed in expression of recombinant 

EGF-CatAd-apoptin. 
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR-EGF-CatAd-VP3-

HK 
~ 30 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR- EGF-CatAd-

VP3-HK 
~ 30 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR- EGF-CatAd-40-

121-VP3-HK 
~ 25 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR- EGF-CatAd-40-

121-VP3-HK 
~ 25 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR- EGF-CatAd-60-

121-VP3-HK 
~ 22 kDa  

 29-33 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-D4:: PR- EGF-CatAd-60-

121-VP3-HK 
~ 22 kDa  

 34-36 
TSP-T extract from leaf samples 

harvested on 3, 4 and 5 dpi 

pGR-D4:: PR- EGF-CatAd-80-

121-VP3-HK 
~ 20 kDa  

 37-39 
TP extract from leaf samples 

harvested on 3, 4 and 5 dpi 

pGR-D4:: PR- EGF-CatAd-80-

121-VP3-HK 
~ 20 kDa  

      

Figure 4.9: Protein expression profiles of recombinant apoptin in fusion to C-terminal 

of EGF and CatAd molecular adaptor. Detection was performed via Western blotting 

technique using Tetra-His mouse monoclonal antibody which showed recombinant 

EGF-CatAd-apoptin expressed from recombinant vectors, (a) pGR-D4:: PR-EGF-

CatAd-VP3-HK, (b) pGR-D4:: PR-EGF-CatAd-40-121-VP3-HK, (c) pGR-D4:: PR-

EGF-CatAd-60-121-VP3-HK and (d) pGR-D4:: PR-EGF-CatAd-80-121-VP3-HK.  

a b 

c 
d 



 

4-24 

 

 

 

 

 

Figure 4.10: Physical appearances of N. benthamiana infiltrated with recombinant 

vectors, pGR-D4:: PR-EGF-CatAd-VP3-HK, pGR-D4:: PR-EGF-CatAd-40-121-

VP3-HK, pGR-D4:: PR-EGF-CatAd-60-121-VP3-HK and pGR-D4:: PR-EGF-

CatAd-80-121-VP3-HK on 5 dpi. Plants showed early necrosis symptom when 

infiltrated with recombinant vectors, (d) pGR-D4:: PR-EGF-CatAd-80-121-VP3-HK 

as early as 3 dpi. Mild necrosis symptom was also observed on plants infiltrated with 

recombinant vector, (a) pGR-D4:: PR-EGF-CatAd-VP3-HK on 7 dpi. However, 

recombinant vectors, (b) pGR-D4:: PR-EGF-CatAd-40-121-VP3-HK and (c) pGR-

D4:: PR-EGF-CatAd-60-121-VP3-HK did not show any necrosis symptom where 

plants were viable even until 8 dpi. 

4.3.1.6 Co-expression of recombinant apoptin alone, 

recombinant GFP-apoptin and recombinant EGF-

CatAd-VP3 with ER stress proteins, bZIP17, 

bZIP28 and bZIP60 

Expression of recombinant apoptin alone was low in recombinant vector, pGR-D4:: 

PR-VP3-HK (Figure 4.1-a); however, expression of recombinant apoptin alone was 

increased when co-expressed with ER stress proteins (Figure 4.11). In comparison to 

pGR-D4:: PR-VP3-HK, expression of recombinant apoptin alone was ~6 folds higher 

in TP and TSP-T extracts when co-expressed with bZIP17 (recombinant vector: pGR-

DN:: PR-VP3-HK__bZIP17) (Figure 4.11-a). Meanwhile, it was ~10 folds higher in 

TP and TSP-T extracts when protein was co-expressed with bZIP60 (recombinant 

vector: pGR-DN:: PR-VP3-HK__bZIP60) (Figure 4.11-c). For recombinant apoptin 

co-expressed with bZIP28 (Figure 4.11-b), ~5 folds higher level of TP was able to be 

harvested but not significantly increased as observed in TSP-T extract compared with 

that of expression of recombinant vector, pGR-D4:: PR-VP3-HK. Plants infiltrated 

with recombinant vectors, pGR-DN:: PR-VP3-HK__bZIP17 (Figure 4.12-a) and 

pGR-DN:: PR-VP3-HK__bZIP28 (Figure 4.12-b) showed early necrosis symptom 

a b c d 
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similar to plants infiltrated with recombinant vector, pGR-D4:: PR-VP3-HK (Figure 

4.2-a). However, mild necrosis symptom was also observed in plants infiltrated with 

recombinant vector, pGR-DN:: PR-VP3-HK__bZIP60 (Figure 4.12-c).  

      

 

  

 

 

 

  

      

 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-VP3-

HK__bZIP17 
~ 18 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-VP3-

HK__bZIP17 
~ 18 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 3, 4, 5, 6 and 7 dpi 

pGR-DN:: PR-VP3-

HK__bZIP28 
~ 18 kDa  

 19-23 
TP extract from leaf samples 

harvested on 3, 4, 5, 6 and 7 dpi 

pGR-DN:: PR-VP3-

HK__bZIP28 
~ 18 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 3, 4, 5, 6 and 7 dpi 

pGR-DN:: PR-VP3-

HK__bZIP60 
~ 18 kDa  

 29-33 
TP extract from leaf samples 

harvested on 3, 4, 5, 6 and 7 dpi 

pGR-DN:: PR-VP3-

HK__bZIP60 
~ 18 kDa  

      

Figure 4.11: Protein expression profiles of recombinant apoptin alone co-expressed 

with ER stress proteins in N. benthamiana leaves. Detection was conducted via 

Western blotting technique which showed expressions of (a) recombinant apoptin 

alone that co-expressed with bZIP17 (recombinant vector: pGR-DN:: PR-VP3-

HK__bZIP17),  (b) recombinant apoptin alone that co-expressed with bZIP28 

(recombinant vector: pGR-DN:: PR-VP3-HK__bZIP28) and (c) recombinant apoptin 

alone that co-expressed with bZIP60 (recombinant vector: pGR-DN:: PR-VP3-

HK__bZIP60) reacted with Tetra-His mouse monoclonal antibody. 

a b 
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Figure 4.12: Physical appearances of N. benthamiana infiltrated with recombinant 

vectors, pGR-DN:: PR-VP3-HK__bZIP17, pGR-DN:: PR-VP3-HK__bZIP28 and 

pGR-DN:: PR-VP3-HK__bZIP60 on 5 dpi. Plants showed early necrosis symptom 

when infiltrated with recombinant vectors, (a) pGR-DN:: PR-VP3-HK__bZIP17 and 

(b) pGR-DN:: PR-VP3-HK__bZIP28 as early as 3-4 dpi. Plants infiltrated with 

recombinant vector, (c) pGR-DN:: PR-VP3-HK__bZIP60 showed milder necrosis 

symptom on 5 dpi. 

Approximately 2-fold increment on TSP-T expression levels for recombinant vectors, 

pGR-DN:: PR-GFP-VP3-HK__bZIP17 (Figure 4.13-a) and pGR-DN:: PR-GFP-VP3-

HK__bZIP60 (Figure 4.13-c) were observed when compared to expression of 

recombinant vector, pGR-D4:: PR-GFP-VP3-HK (Figure 4.3-a). However, 

expression of TSP-T level for recombinant GFP-apoptin that co-expressed with 

bZIP28 (pGR-DN:: PR-GFP-VP3-HK__bZIP28) (Figure 4.13-b) did not show 

significant difference from expression of recombinant vector, pGR-D4:: PR-GFP-

VP3-HK. Nevertheless, ~2-4 folds of increment in TP levels of recombinant GFP-

apoptin that co-expressed with all three ER stress proteins (bZIP17, bZIP28 and 

bZIP60) were noticed. 
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP17 
~ 42 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP17 
~ 42 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP28 
~ 42 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP28 
~ 42 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP60 
~ 42 kDa  

 29-33 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-GFP-VP3-

HK__bZIP60 
~ 42 kDa  

      

Figure 4.13: Protein expression profiles of recombinant GFP-apoptin co-expressed 

with ER stress proteins. Detection was carried out via Western blotting analysis using 

Tetra-His mouse monoclonal antibody which showed expressions of (a) recombinant 

GFP-apoptin that co-expressed with bZIP17 (recombinant vector: pGR-DN:: PR-

GFP-VP3-HK__bZIP17),  (b) recombinant GFP-apoptin that co-expressed with 

bZIP28 (recombinant vector: pGR-DN:: PR-GFP-VP3-HK__bZIP28) and (c) 

recombinant GFP-apoptin that co-expressed with bZIP60 (recombinant vector: pGR-

DN:: PR-GFP-VP3-HK__bZIP60). 

a b 
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In comparison to recombinant vector pGR-D4:: PR-EGF-CatAd-VP3-HK (Figure 

4.9-a), expression of recombinant EGF-CatAd-apoptin increased in 2-4 folds when 

co-expressed with ER stress proteins. Especially, recombinant vector, pGR-DN:: PR-

EGF-CatAd-VP3-HK__bZIP28 (Figure 4.14-d) gave the highest yield of TSP-T 

among three recombinant vectors, which was ~4 folds of protein higher than that 

expressed by recombinant vector, pGR-D4:: PR-EGF-CatAd-VP3-HK. Mild necrosis 

symptom was observed on plants infiltrated with recombinant vector, pGR-DN:: PR-

EGF-CatAd-VP3-HK__bZIP28 (Figure 4.15-b). 
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 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP17 
~ 30 kDa  

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP17 
~ 30 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP28 
~ 30 kDa  

 19-23 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP28 
~ 30 kDa  

 24-28 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP60 
~ 30 kDa  

 29-33 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 

pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP60 
~ 30 kDa  

      

Figure 4.14: Protein expression profiles of recombinant EGF-CatAd-apoptin co-

expressed with ER stress proteins. Detection was performed by Western blotting 

analysis which showed expressions of (a) recombinant EGF-CatAd-apoptin that co-

expressed with bZIP17 (pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP17), (b) 

recombinant EGF-CatAd-apoptin that co-expressed with bZIP28 (pGR-DN:: PR-

EGF-CatAd-VP3-HK__bZIP28)  and (c) recombinant EGF-CatAd-apoptin that co-

expressed with bZIP60 (pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP60) reacted with 

Tetra-His mouse monoclonal antibody. 

a b 
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Figure 4.15: Physical appearances of N. benthamiana infiltrated with recombinant 

vectors, pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP17, pGR-DN:: PR-EGF-CatAd-

VP3-HK__bZIP28 and pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP60 on 5 dpi. 

Plants infiltrated with recombinant vectors, (a) pGR-DN:: PR-EGF-CatAd-VP3-

HK__bZIP17 and (b) pGR-DN:: PR-EGF-CatAd-VP3-HK__bZIP28 were healthy 

throughout until the last harvest date on 8 dpi. Plants showed mild necrosis symptom 

when infiltrated with recombinant vector, (c) pGR-DN:: PR-EGF-CatAd-VP3-

HK__bZIP60 on 5 dpi. 
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4.4 Discussion 

This chapter illustrates the delivery of recombinant apoptin vector variants into 

Nicotiana benthamiana via agroinfiltration and expression profiling on the production 

of recombinant apoptin proteins in order to seek for the most ideal recombinant 

cassettes that could offer high yield and stable proteins for subsequent downstream 

purification study. This study fully hired vacuum infiltration as a delivery approach 

for Agrobacterium to get into N. benthamiana. A standard infiltration protocol was 

applied for all infiltration works, hence, the delivery efficiency of Agrobacterium to 

plants is expected to be the same for all recombinant vectors. As described above, 

vacuum infiltration is an efficient way to infiltrate large batches of plants in a short 

period of time. Thus, time spent for infiltration works was reduced in this study 

especially when large quantities of leaf materials were required for downstream 

purification work (Chen et al., 2013). Besides, adverse injuries of infiltrated plants 

that always occur during syringe infiltration could also be eliminated when vacuum 

infiltration system was applied. Therefore, the necrosis symptoms observed in this 

study was believed to be solely induced by the expression of recombinant apoptin.  

Other than the importance of optimised design for expression cassettes, the uses of 

agrobacterial concentration for infiltration and gene silencing suppressors are also the 

two factors that affect expression yield of recombinant proteins. An optimised 

concentration of Agrobacterium required for infiltration is always studied when a 

specific and optimised expression cassette is obtained. It was reported that high 

concentration of bacteria always induces hypersensitive response of plants and 

undoubtedly, an insufficient amount of bacteria also cause a lower level of protein 

expression (Leuzinger et al., 2013). Concentration of Agrobacterium cultures for 

agroinfiltration was adjusted to OD600 = 0.5-1.0 in current study, fitting well into the 

recommended range for agroinfiltration by previous studies (Lindbo, 2007; 

Wroblewski et al., 2005).  

Gene silencing suppressors, P19 and P1/HC-Pro (Proteinase1/Helper component-

proteinase), were used together with the recombinant vectors, pGR-D and pGR-DN 

(binary vectors) in this study in order to enhance protein expression level. Occurrence 

of gene silencing in plants suppresses expression of genes and hence resulting low 

protein expression levels. Especially, post transcriptional gene silencing (PTGS) in 
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plants is induced by the presence of double stranded RNA (dsRNA), which is 

possibly caused by the transcription of antisense genes, overexpression of mRNA and 

virus infection (Escobar and Dandekar, 2000-2013). To confront the silencing effect 

of infected plants, viral gene silencing suppressors are always found during viral 

infection. For example, P19 and P1/ HC-Pro are the commonly found gene silencing 

suppressors in virus, which are believed playing a role in interrupting the assembly of 

RNA-induced silencing complex (RISC) and preventing translation inhibition caused 

by RISC (Burgyan and Havelda, 2011). Therefore, gene silencing suppressors were 

employed to co-infiltrate with transgenes to prevent inhibitory effect of host plants on 

foreign protein expression (Feller et al., 2013; Garabagi et al., 2012; Shah et al., 

2013). Instead of using external gene silencing suppressors, it was reported that 126k 

protein of tobacco mosaic virus (TMV) was believed involving in gene silencing 

suppression activities leading to the accumulation of sufficient short RNA (sRNA) 

(Vogler et al., 2007). Hence, there was no gene silencing suppressor used when 

infiltration was performed using a TMV-based vector, pGR-D4 since an internal gene 

silencing suppressor had already been included.   

In this study, accumulation of recombinant apoptin was compared when protein was 

targeted to cytoplasm, ER and apoplast. Recombinant apoptin was targeted to ER 

using tobacco pathogenesis related protein 1a (PR1a) signal peptide and ER retention 

signal (KDEL) (gene cassettes: PR-VP3-HK, PR-GFP-VP3-HK and PR-Lic-VP3-

HK). Meanwhile, recombinant apoptin was targeted into secretory pathway by 

incorporating PR1a signal peptide only which resulted protein accumulation in 

apoplast of plant cells (gene cassettes: PR-VP3-H, PR-GFP-VP3-H and PR-Lic-VP3-

H). Recombinant apoptin without signal peptide and ER retention signal (gene 

cassettes: VP3-H, GFP-VP3-H and Lic-VP3-H) was expected to accumulate in cell 

cytoplasm; however, recombinant GFP-apoptin (gene cassette: GFP-VP3-H) was 

observed relocalising into cell nucleus rather than staying in cytoplasm (Figure 4.5) 

as observed under the microscope. Similar observation was reported by Lacorte and 

his colleagues (2007) when they expressed Chicken Anemia Virus (CAV) Viral 

Protein 1 (VP1), VP2 and VP3 in N. benthamiana. Localisation of apoptin in cell 

nucleus was initially identified in chicken lymphoblastoid T-cell line, MDCC-MSBI 

and subsequently in mammalian cancerous cell lines (Noteborn et al., 1994; Noteborn 

et al., 1998). It was believed that the localisation activity of apoptin was directed by 
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the bipartite nuclear localisation signal (NLS) residing on C-terminal of protein 

(amino acids 82-88 and 111-121) (Danen-Van Oorschot et al., 2003; Poon et al., 

2005). Nevertheless, the authentic activities of apoptin in plant cells are remained to 

be determined.   

Focusing on the accumulation of recombinant apoptin in three cellular compartments, 

it is interesting to find out that recombinant apoptin always showed the highest 

protein expression (at least 2-3 folds higher) when it is accumulated in nucleus in 

comparison to protein accumulated in ER and apoplast in this study. However, most 

of the expressed proteins were in the insoluble fraction. These proteins could only be 

harvested by using strong denaturants, such as sodium dodecyl sulfate (SDS) which 

was present in SDS reducing loading buffer (in section 4.2.4) or guanidium 

hypochlorite (GuHCl) (to be described in Chapter 5). Insoluble fraction of 

recombinant apoptin might be caused by the formation of large multimers that are 

hardly solubilised in the buffer without strong denaturants due to the huge size of 

protein. Formation of protein aggregates by apoptin was first observed in CAV-VP3 

transfected lymphoblastoid T-cell line, MDCC-MSBI (Noteborn et al., 1994). 

Furthermore, formation of large multimers were also discovered when recombinant 

apoptin in fusion with maltose binding protein (MBP) was expressed in Escherichia 

coli as well as in mammalian cell Saos-2 (Lelivelda et al., 2003). Ectopically 

expressed MBP-apoptin in Saos-2 cells formed dense protein aggregates, which could 

be pelleted at 10, 000 – 30, 000 xg centrifugation speed. Besides, Lelivelda and his 

colleagues (2003) also reported that the multimerised recombinant MBP-apoptin 

harvested from E. coli remained active when protein was microinjected into 

mammalian cells.  

On the other hand, detectable level of soluble recombinant apoptin was observed but 

extremely low when protein was targeted to apoplast and ER (gene cassettes: PR-

GFP-VP3-HK, PR-GFP-VP3-H, PR-Lic-VP3-HK and PR-Lic-VP3-H) as compared 

to accumulation that occurred in nucleus. Targeting recombinant protein into 

secretory pathway always results a higher yield of soluble protein and this most likely 

due to the presence of higher quantity of chaperones that involve in the protein 

folding process. In the study of Streatfield and his colleagues (2003), they showed 

that more than 100 folds of recombinant receptor binding (B) subunit of the heat-

labile toxin (Lt-B) protein of enterotoxigenic E. coli was recovered when protein was 
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accumulated in vacuole, cell surface and ER rather than cytoplasm of transgenic corn. 

Besides, spider silk-elastin was also successfully produced at 80 mg per kg of 

transgenic tobacco leaf materials when protein was targeted into ER (Scheller et al., 

2004). 

Early necrosis symptom (observed from 3 dpi) was detected on plants infiltrated with 

recombinant apoptin vector variants especially those gene cassettes that targeted 

protein accumulation in ER and apoplast (gene cassettes: PR-VP3-HK, PR-VP3-H, 

PR-Lic-VP3-HK and PR-Lic-VP3-H). It is believed that the plant death might be co-

related to the ER stress response/unfolded protein response (UPR) induced by the 

overexpression of recombinant protein. When protein translation exceeds the capacity 

of protein processing in ER lumen, efficiency of protein folding is questionable and 

this always leads to accumulation of unfolded or misfolded proteins (Kopito, 2000). 

As the amount of unfolded proteins accumulated over a threshold, UPR would be 

triggered to resolve the ER stress condition. This includes restraining protein 

biosynthesis, preventing protein loading into ER lumens, up-regulation of UPR genes 

especially those encode chaperone proteins and ER associated degradation of 

unfolded protein via ubiquitin-proteosome pathway in cytoplasm (Duwi Fanata et al., 

2013). ER stress-induced apoptosis would also be triggered that causes an irreversibly 

lethal effect if the stress condition is not resolved. Risk of unfolded protein is not only 

present in plants, similar issues are also observed in other system. For example, 

‘inclusion body’ is always formed as a result of aggregation of unfolded protein 

induced by overexpression of recombinant proteins in E. coli expression system 

(Kopito, 2000). In human, misfolded proteins also form protein aggregates leading to 

several lethal diseases, such as type II diabetes, Alzheimer, Parkinson and Huntington 

diseases (Ashraf et al., 2014).     

In plant expression system, there are several fusion proteins used to increase 

solubility and stability of recombinant proteins, for examples, Zera, Elastin like 

protein (ELP),  ubiquitin, b-glucuronidase, cholera toxin B (CTB), viral coat protein 

(CP) and human immunoglobulin A (IgA). In this study, solubility of recombinant 

protein was increased especially when apoptin was in fusion to green fluorescent 

protein (GFP) and epidermal growth factor (EGF). Soluble protein expression of 

recombinant GFP-apoptin (gene cassette: PR-GFP-VP3-HK) and recombinant EGF-

apoptin (gene cassette: PR-EGF-CAtAd-VP3-HK) was approximately 5 folds over 
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that of recombinant apoptin alone (gene cassette: PR-VP3-HK). In the study of 

Lelivelda and his co-workers (2003), as much as 100 mg per liter of recombinant 

apoptin was also obtained from E. coli when large fusion tag, maltose binding protein 

(MBP) was incorporated in the cassette; however, only 40 mg per liter of recombinant 

apoptin was able to be harvested from bacterial inclusion bodies. Although 

mechanisms of fusion protein partners increasing solubility of recombinant proteins 

are still unclear, there are several suggested explanations such as formation of fusion 

proteins in micelle-like structure, high propensity of fusion partners on attraction of 

chaperone proteins, presence of intrinsic chaperone-like activity and preventing 

formation of protein aggregates by electrostatic repulsion (Costa et al., 2014). In 

addition to enhance expression of recombinant proteins, fusion proteins are also used 

for purification purpose which include short peptides, such as polyhistidine-tag (His-

tag), FLAG-tag and c-myc, as well as large polypeptides, including MBP and 

Glutathione S-transferase (Terpe, 2003). In current study, hexa-histidine tag was 

fused to C-terminal of all recombinant apoptin. Fusion of tag is important for 

subsequent protein purification step since immobilized affinity chromatography 

(IMAC) was chosen as the approach used in the capturing step (to be described in 

Chapter 5). Yet, instead of increasing yield and solubility of recombinant protein, 

fusion proteins sometimes also cause unexpected side effects on recombinant proteins, 

including changes of protein conformation, loss of bioactivity of recombinant 

proteins and induction of unwanted immunogenic reaction (Chelur et al., 2008).  

Severe protein degradation was noticed in this study when recombinant apoptin was 

in fusion to H22 single chain antibody (gene cassettes: PR-H22-CatAd-VP3-HK, PR-

H22-CatAd-40-121-VP3-HK, PR-H22-CatAd-60-121-VP3-HK and pGR-D4:: PR-

H22-CatAd-80-121-VP3-HK). Hence, careful selection of a suitable fusion protein 

candidate for the targeted proteins and methods for removal of fusion proteins during 

purification must be considered.  

Other than fusion protein, truncated version of recombinant apoptin was also studied 

to enhance solubility of protein. Amino acid 29-69 of recombinant MBP-apoptin was 

reported as multimerisation domain by Leliveldb and his colleagues (2003); in 

addition, amino acids 80-121 and 1-69 on C-terminal of recombinant apoptin in 

fusion to GFP retained ~50% and 17% of apoptotic activity as induced by the full 

length GFP-VP3 (Danen-Van Oorschot et al., 2003). Hence, truncated apoptin was 
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generated in this study by removal of short peptide from N-terminal of apoptin. For 

recombinant EGF-apoptin, it was noted that higher soluble protein was detected when 

amino acids 1-40 and 1-80 of apoptin were removed but not the removal of amino 

acid 1-60. Although the inhibition of amino acids 60-80 on the expression of 

truncated recombinant EGF-apoptin is unclear, presence of unexpected secondary 

structure might be one of the possible considerations that prevent expression of 

proteins.  

Plant death symptom observed in infiltrated plants was suspected to be related to ER 

stress. Hence, recombinant apoptin was co-expressed with transcriptional factors, 

namely bZIP17, bZIP28, and bZIP60, which are always incorporated in stimulating 

expression of UPR related genes. Up regulation of UPR related genes always leads to 

increased availability of chaperone proteins (Duwi et al., 2013; Vitale, 2013); 

therefore, more folded and soluble recombinant proteins are expected to be harvested. 

In current study, co-expression of bZIP60 with apoptin alone (PR-VP3-HK) resulted 

several folds of higher protein expression and early plant death symptom also did not 

appear on infiltrated plants. Nevertheless, this did not apply to co-expression of 

recombinant apoptin with transcriptional factors, bZIP17 and bZIP28. Effect of bZIP 

proteins towards the expression of recombinant GFP-VP3 and EGF-VP3 proteins also 

did not contribute any huge changes. Therefore, a combination use of bZIP proteins 

could be tried in future instead of using a single kind of bZIP protein, which scarcely 

paved a significant impact to the expression of recombinant apoptin.  

Expression profiles of recombinant apoptin variants had shown several suitable 

candidates used for downstream purification study. For recombinant apoptin 

expressed alone, recombinant vector, pGR-D4:: VP3-H gave high insoluble protein 

expression on 7 dpi while recombinant pGR-DN:: PR-VP3-HK yielded high soluble 

protein from 3-7 dpi (infiltrated plants on 4 dpi were harvested for purification). In 

addition, recombinant vectors, pGR-D4:: PR-GFP-VP3-HK (7 dpi) and pGR-D4:: 

GFP-VP3-H (7 dpi) yielded the highest soluble and insoluble recombinant GFP-

apoptin, respectively. On the other hand, recombinant vector, pGR-D4:: Lic-VP3-H 

(7 dpi) yielded the highest insoluble recombinant lichenase-apoptin and recombinant 

vector, pGR-D4:: PR-EGF-VP3-HK also gave the highest soluble recombinant EGF-

apoptin on 5 dpi. All these recombinant vectors generating high expression yield were 

chosen for subsequent purification study. Expression profiling study in this chapter 
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was carried out for only once for each expression vector; hence, a relative 

quantification was indicated to compare expression profiles between vectors. 

Expression yield for selected recombinant apoptin variants was evaluated in protein 

purification analysis (with 2-3 replicates) and illustrated in Chapter 5. 

In conclusion, recombinant apoptin variants have been successfully expressed in N. 

benthamiana via vacuum infiltration of transformed Agrobacterium that harboured 

recombinant vectors into plant cells. Expression profiles and incubation time for 

accumulation of recombinant apoptin were assessed and several recombinant vectors 

(Chapter 5) were chosen rationally based on the screening results as discussed above 

for downstream purification works. Besides, it is noteworthy to mention that apoptin 

expressed in N. benthamiana also retains the intrinsic nuclear localisation activity of 

protein in plants which might generate an interest for further study in future focusing 

on the plant death or apoptotic effects of apoptin in plant system.  
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5.1 Introduction 

Protein purification is essential for the recovery of recombinant proteins through a series of 

fractionation procedures by segregating targeted proteins from host cell proteins (HCP). 

Purification work could not be omitted, unless recombinant proteins were produced in edible 

hosts or as by-products of expression hosts. For instance, productions of edible vaccine in 

potato tubers against dengue virus 2 (Kim et al., 2016), oral vaccine in probiotic strain 

Lactobacillus against Streptococcus pyogenes M6 antigen (Mansour and Abdelaziz, 2016) 

and recombinant cytokine (hG-CSF) in milk of goat (Batista et al., 2014), are free from 

purification works and direct consumption is feasible. It is not surprised that protein 

purification can account for more than 80% of total production cost (Barh, 2013). Hence, a 

cost-effective purification approach is always required. In fact, it is sometimes more 

preferably for manufacturers to invest in optimising the upstream process of production in 

order to enhance protein expression yield when a satisfactory protein purification efficiency 

has not been achieved. To date, common steps in protein purification include extraction, 

clarification and fractionation.  

The secreted proteins produced in plant expression system could proceed directly to 

centrifugation and fractionation steps without a pre-requisite extraction work. This approach 

is highly attractive when high amount of recombinant proteins are secreted with good 

stability in culture medium of stably transformed plant cell lines or hydroponic plant 

(Borisjuk et al., 1999; James et al., 2000; Lee et al., 2002). However, extraction or 

homogenisation is always the first step for the recovery of non-secreted recombinant proteins 

from host plants. Leaf is the most widely chosen tissue for expression of recombinant 

proteins, especially the tobacco plant leaf which gives a large volume of biomass. The most 

common leaf protein extraction method involves mechanical disruption of cells. This could 

be achieved using pestle and mortar at a laboratory scale or homogeniser at a pilot scale. 

Alternatively, solid-liquid separation (Wilken and Nikolov, 2012), vacuum infiltration 

(Kingsbury and McDonald, 2014) and enzyme digestion (Fischer et al., 1999) approaches are 

also applied to isolate recombinant proteins. During the extraction process, huge amounts of 

unspecific plant products are released including the plant proteins (such as proteases), 

secondary metabolites, nucleotides, plant viruses and Agrobacterium. Hence, a proper 

formulation of extraction buffer containing appropriate pH, salt concentration, detergents and 

additives is important to obtain a high recovery of recombinant proteins from plant tissues 

during the extraction process (Buyel et al., 2015).  
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In order to separate large particulates and precipitates from crude protein extracts, 

clarification is always performed using high-speed centrifugation and ultrafiltration 

technique before the protein extracts are subjected for subsequent chromatography based 

purification procedures (Scopes, 1994). Generally, protein fractionation includes capturing, 

intermediate and polishing. Various kinds of chromatography or non-chromatography based 

methods could be combined and applied in these three steps in order to achieve a final 

product with higher purity. Using chromatography based protein fractionation method; 

targeted protein could be separated from total protein based on specific protein properties 

including affinity, charge, hydrophobicity and size of protein (Berg et al., 2002). In affinity 

chromatography, antibody and fusion tag proteins such as FLAG-tag, maltose binding 

protein (MBP), glutathione S-transferase (GST), polyHis tag, are the most widely used 

affinity purification tools (GE Healthcare1, 2016). Affinity chromatography isolates specific 

protein from total protein pool based on specific interaction between regions on protein and 

affinity media. This approach is suitable to be used in capturing step of protein purification 

process and the selective purification allows purity of eluted protein to increase from hundred 

to thousand folds in majority of cases just within a single step (Urh et al., 2009). Owing to 

the presence of specific net surface charge of a protein in a specific pH range, ion exchange 

chromatography (IEX) performs a group separation of protein sample by encouraging a 

reversible binding of charged protein to opposite-charged media. In addition to pH, 

interaction of protein to media is affected by the ionic strength of buffers since the presence 

of high concentration of ions is a competitor of bound proteins (GE Healthcare2, 2016). 

However, protein binding is enhanced when high concentration of salt is present in the buffer 

of hydrophobic interaction chromatography (HIC). Protein binding to HIC media is attributed 

by the suitable hydrophobic interaction; the reverse phase chromatography (RPC) also 

applies similar principle in the purification process. However, protein is eluted in non-polar 

organic solvent and usually in denaturing condition since protein is strongly bound to higher 

concentration of hydrophobic ligands in RPC (GE Healthcare3, 2016). Application of IEX, 

HIC and RPC is suitable for group separation of proteins; hence, they are mostly used in 

capturing step when affinity chromatography is not applicable or used in intermediate step to 

remove the unwanted contaminants. Size exclusion chromatography (SEC) is always the 

recommended tool for polishing step in protein purification. Purified protein samples could 

be easily separated from a small amount of unspecific host protein contaminants based on 

size difference. On the other hand, non-chromatography based method has been developed 

rapidly since the costly chromatography based purification is always a huge challenge in the 
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production process of recombinant proteins. Particularly, cross flow filtration, two aqueous 

phase separation and sucrose gradient purification have successfully developed to recover a 

large variety of recombinant proteins (Azevedo et al., 2009; Biemelt et al., 2003; Forman et 

al., 1990).   

Expressions of recombinant apoptin alone, green fluorescent protein (GFP)-apoptin, 

lichenase (Lic)-apoptin and epidermal growth factor (EGF)-apoptin have been analysed and 

illustrated in details in Chapter 3. In this chapter, protein purification works were carried out 

on plant leaves infiltrated with recombinant vectors, pGR-D4:: VP3-H, pGR-D4:: PR-GFP-

VP3-HK, pGR-D4:: GFP-VP3-H, pGR-D4:: Lic-VP3-H and pGR-D4:: PR-EGF-CatAd-

VP3-HK that yielded relatively higher amount of recombinant protein (> 20 mg/kg of total 

protein). Hexa-histidine sequence was present in all C-terminal of recombinant apoptin; 

hence, immobilised metal affinity chromatography (IMAC) was chosen as the major 

capturing tool for the purification works to isolate the recombinant apoptin from total plant 

proteins. Besides, IEX and HIC were used to remove plant protein contaminants and SEC 

was performed to elucidate the molecular weight of the purified recombinant apoptin in this 

study. Hence, the specific objectives for this chapter were (i) to illustrates the purification of 

recombinant apoptin, GFP-apoptin and EGF-apoptin using IMAC in native and denaturing 

conditions, (ii) to remove host cell protein from recombinant GFP-apoptin and EGF-apoptin 

using IEX (HiTap SP) and HIC (Phenyl Sepharose 6TM FF (high sub), HiTrap Butyl 

Sepharose HP and HiTrap Octyl Sepharose FF) and (iii) to characterise size  of recombinant 

GFP-apoptin using size exclusion chromatography (SEC).  
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5.2 Materials and Methods 

5.2.1 General materials 

5.2.1.1 Plant materials  

All plant materials used for purification were prepared as described in Chapter 3. Plants 

infiltrated with recombinant vectors, namely pGR-D4:: VP3-H, pGR-D4:: PR-GFP-VP3-HK, 

pGR-D4:: GFP-VP3-H and pGR-D4:: Lic-VP3-H were harvested on 7 days post infiltration 

(dpi), when the infiltrated plants gave the highest protein expression; however, plants 

infiltrated with recombinant vector, pGR-D4:: PR-EGF-CatAd-VP3-HK were harvested on 5 

dpi when the infiltrated plants produced the highest protein yield as discussed in Chapter 4. 

Approximately 10-100 g of leaf material was used for each purification experiment.  

5.2.1.2 Columns and kits 

HisTrap HP 1ml and 5 ml columns were used for immobilised metal affinity chromatography 

(IMAC) (GE Healthcare, USA). HiTrap SP HP 1ml column was used for ion exchange 

chromatopgraphy (IEX) (GE Healthcare, USA). HiTrap Butyl Sepharose HP 1ml, HiTrap 

Octyl Sepharose FF 1 ml and Phenyl Sepharose 6TM FF (high sub) columns were used for 

hydrophobic interaction chromatography (HIC) (GE Healthcare, USA). Analytical Superdex 

200 10/300GL column (GE Healthcare, USA) and Sepax SRT SEC 1000 (Sepax 

Technologies, Inc) column were used for size exclusion chromatography (SEC). QuickfoldTM 

Protein Refolding Kit (Athena Environmental Sciences, Inc) was used to refold recombinant 

protein. Slide-A-Lyzer™ Dialysis Cassettes (ThermoScientific, USA) were used for buffer 

exchange and protein refolding activities. Besides, PD-10 desalting columns (GE Healthcare, 

USA) were also used for buffer exchange of protein sample prior loading into HIC or IEX 

column. Amicon Ultra-4 and 15 Centrifugal Filter Units were used for concentrating purified 

protein. 

5.2.1.3 Buffers 

All buffers components used for protein purification are listed as in Table 5.1. 
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Table 5.1: Components of buffers. 

No Buffers Components 

1 IMAC Extraction Buffer A 
50 mM sodium phosphate, 500 mM sodium chloride, 20 mM imidazole, 

1 mM Dieca, pH 8.0, 4°C 

2 IMAC Extraction Buffer B 
50 mM sodium phosphate, 500 mM sodium chloride, 20 mM imidazole, 

0.5% Triton, 1 mM Dieca, pH 8.0, 4°C 

3 IMAC Extraction Buffer C 
6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 20 mM imidazole, pH 8.0, 4°C 

4 IMAC Extraction Buffer D 
6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 20 mM imidazole, 0.5% Triton, pH 8.0, 4°C 

5 IMAC Extraction Buffer E 

6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 2.5 mM imidazole, 20 mM Glycine, 2 mM GSH, pH 

7.4, 4°C 

6 IMAC Wash Buffer A 
50 mM sodium phosphate, 500 mM sodium chloride, 20 mM imidazole, 

pH 7.5, 4°C 

7 IMAC Wash Buffer B 
6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 20 mM imidazole, pH 7.5, 4°C 

8 IMAC Wash Buffer C 
50 mM sodium phosphate, 500 mM sodium chloride, 20 mM imidazole, 

0.5% Triton, pH 7.5, 4°C 

9 IMAC Wash Buffer D 
6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 20 mM imidazole, 2 mM GSH, pH 7.4, 4°C 

10 IMAC Wash Buffer E 
50 mM sodium phosphate, 400 mM sodium chloride, 5 mM imidazole, 2 

mM GSH, 2 mM MgCl2, pH 6.5, 4°C 

11 IMAC Elution Buffer A 
50 mM sodium phosphate, 500 mM sodium chloride, 500 mM 

imidazole, pH 7.5, 4°C 

12 IMAC Elution Buffer B 
6 M Guanidine hypochlorite, 50 mM sodium phosphate, 500 mM 

sodium chloride, 500 mM imidazole, pH 7.5, 4°C 

13 IMAC Elution Buffer C 
50 mM sodium phosphate, 400 mM sodium chloride, 500 mM 

imidazole, 2 mM GSH, 2 mM MgCl2, pH 6.5, 4°C 

14 Storage Buffer A 50mM sodium phosphate, 100mM NaCl, pH 7.5, 4°C 

15 Customised Buffer 11 
50 mM Tris-Cl, 9.6 mM NaCl, 0.4 mM KCl, 1 mM EDTA, 1 mM DTT, 

0.5 % Triton, pH 8.5 

16 Customised Buffer 13 
50 mM Tris-Cl, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 1 mM DTT, 

500 mM Arginine, 750 mM GuHCl, 0.5 % Triton, pH 8.5 

17 HIC Starting Buffer A 50mM sodium phosphate, 0.7 M NaCl, pH 7.5, 4°C 

18 HIC Starting Buffer B 50mM sodium phosphate, 1.0 M NaCl, pH 7.5, 4°C 

19 HIC Elution Buffer  50mM sodium phosphate, pH 7.5, 4°C 

20 IEX Starting Buffer A 50mM sodium phosphate, pH 6.7, 4°C 
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21 IEX Starting Buffer B 50mM Bicine, pH 9.0, 4°C 

22 IEX Starting Buffer C 50mM Bicine, pH 8.5, 4°C 

23 IEX Starting Buffer D 50mM sodium phosphate, pH 7.7, 4°C 

24 IEX Starting Buffer E 50mM sodium phosphate, pH 8.0, 4°C 

25 IEX Starting Buffer F 50mM sodium phosphate, 0.2 M NaCl, pH 8.0, 4°C 

26 IEX Elution Buffer A 50mM sodium phosphate, 1M NaCl, pH 6.7, 4°C 

27 IEX Elution Buffer B 50mM Bicine, 1M NaCl, pH 9.0, 4°C 

28 IEX Elution Buffer C 50mM Bicine, 1M NaCl, pH8.5, 4°C 

29 IEX Elution Buffer D 50mM sodium phosphate, 1 M NaCl, pH 7.7, 4°C 

30 IEX Elution Buffer E 50mM sodium phosphate, 1 M NaCl, pH 8.0, 4°C 

 

5.2.1.4 Specialised equipment 

Akta Purifier (GE Healthcare, USA) was used to perform all protein purification activities.  

Besides, peristaltic pump (EP-1 Econo Pump) (Biorad, USA) was also used for small scale 

work. Size exclusion chromatography (SEC) of protein samples were analysed using Agilent 

1260 system (Agilent Technologies, USA) and multi-angle light scattering (MALS) was 

performed using Wyatt HELEOS (Wyatt Technology, USA).  

5.2.1.5 Analysis software 

Purification performed using Akta Purifier was analysed using UnicornTM 5.11 (GE 

Healthcare, USA).  

5.2.2 Overview of protein purification study for recombinant apoptin variants 

Recombinant GFP-apoptin, namely GFP-VP3-HK (expressed from recombinant vector, 

pGR-D4:: PR-GFP-VP3-HK), and recombinant EGF-apoptin, namely EGF-VP3-HK 

(expressed from recombinant vector, pGR-D4:: PR-EGF-CatAd-VP3-HK), yielded ~ 50% of 
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soluble protein. Hence, capturing of recombinant GFP-VP3-HK and EGF-VP3-HK from 

total plant protein extract was carried out using IMAC (HisTrap HP column) in native 

condition with or without presence of detergent (such as triton). Size of purified recombinant 

GFP-VP3-HK was subsequently analysed using Analytical Superdex 200 10/300GL column 

and SRT SEC-1000 column. However, partial purified recombinant EGF-VP3-HK was 

further purified using HiTrap SP, HiTrap Butyl Sepharose HP 1ml, HiTrap Octyl Sepharose 

FF 1 ml and Phenyl Sepharose 6TM FF (high sub) columns.  

High amount of recombinant apoptin VP3-H (expressed from vector pGR-D4:: VP3-H), 

recombinant GFP-apoptin GFP-VP3-H (expressed from vector pGR-D4:: GFP-VP3-H) and 

recombinant Licchenase-apoptin Lic-VP3-H (expressed from vector pGR-D4:: Lic-VP3-H) 

were detected in insoluble fraction of plant extracts (Chapter 3). Hence, recombinant VP3-H, 

GFP-VP3-H and Lic-VP3-H were captured and recovered from total insoluble protein of 

plant extract using IMAC in denaturing condition. Purified recombinant GFP-VP3-H and 

Lic-VP3-H were subsequently refolded with phosphate buffer. Protein purification of 

recombinant apoptin variants was summarized as shown in Table 5.2.  

Table 5.2: Protein purification of recombinant apoptin variants. 

No Recombinant vector 
Recombinant 

protein 

Protein purification 

strategy 

Purification 

condition 

Purification 

procedure 

1 pGR-D4:: VP3-H VP3-H IMAC Denaturing 5.2.3.2 

2 
pGR-D4:: PR-GFP-

VP3-HK 
GFP-VP3-HK IMAC; SEC Native 5.2.3.1 and 5.2.8 

3 pGR-D4:: GFP-VP3-H GFP-VP3-H IMAC Denaturing 5.2.3.3  

4 pGR-D4:: Lic-VP3-H Lic-VP3-H IMAC Denaturing  5.2.3.2 

5 
pGR-D4:: PR-EGF-

CatAd-VP3-HK 
EGF-VP3-HK IMAC; HIC; IEX Native 

5.2.3.1, 5.2.6 and 

5.2.7 
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5.2.3 General immobilised metal affinity chromatography (IMAC) procedures 

5.2.3.1 Native condition 

Three volumes of Extraction Buffer A (v/w) were added into frozen leaf tissues (~50-100 g) 

and homogenised. The homogenised leaf extract was mixed by stirring and incubated for 20 

minutes at 4°C; subsequently, the extract was pelleted at 16, 000 xg for 30 minutes at 4°C. 

Supernatant was filtered using miracloth and 0.2 µm polyethersulfone (PES) filter before 

loaded into column. HisTrap HP column was equilibrated using 5 column volume (CV) of 

Wash Buffer A, 5 CV of Elution Buffer A and followed by 5 CV of Wash Buffer A. Extract 

was loaded into column at 5 ml/min for 5 ml column and 1 ml/min for 1 ml column. 

Subsequently, column was washed with 5 CV of Wash Buffer A and protein was eluted from 

column in stepwise gradient using 4% (40 mM imidazole), 9% (60 mM imidazole), 60% 

(300 mM imidazole) and 100% (500 mM imidazole) of Elution Buffer A. Protein samples 

from each fraction were collected for Western blotting analysis (which was similarly 

described in Chapter 4, section 4.2.5).  

5.2.3.2 Denaturing condition (Protocol 1) 

Three volumes of Extraction Buffer B (v/w) were used to homogenise the frozen leaf tissues 

(~50-100 g). The homogenised leaf extract was stirred and incubated for 20 minutes at 4°C; 

subsequently, the extract was pelleted at 16, 000 xg for 30 minutes at 4°C. Extraction with 

Extraction Buffer A was repeated for additional 3 times before pellet was resuspended with 

1.5 V of Extraction Buffer C. Protein extract was incubated at 4°C for 20 minutes, 

subsequently, extract was sonicated (amplitude: 70%) for 4 minutes (20 seconds on and 20 

seconds off) before extract was pelleted at 16, 000 xg for 30 minutes at 4°C. Supernatant was 

filtered using miracloth and 0.2 µm PES filter before loaded into column. HisTrap HP 

column was equilibrated using 5 CV of Wash Buffer B, 5 CV of Elution Buffer B and 

followed by 5 CV of Wash Buffer B. Extract was loaded into columns at 5 ml/min and 1 

ml/min for 5 ml and 1 ml columns, respectively. Then, column was washed with 5 CV of 

Wash Buffer B and protein was eluted from column in stepwise gradient using 4% (40 mM 

imidazole), 9% (60 mM imidazole), 60% (300 mM imidazole) and 100% (500 mM imidazole) 

of Elution Buffer B. Protein samples collected from each fraction were subjected to Western 

blotting analysis.  

 



 

5-11 

 

   

 

 

5.2.3.3 Denaturing condition (Protocol 2) 

Similar preparation steps of leaf samples were conducted as described in section 5.2.2.2 

(Protocol 1) until the soluble protein extract was pelleted. Extraction with Extraction Buffer 

B was repeated for additional 3 times before extract pellet was resuspended with 1.5 V of 

Extraction Buffer D. Protein extract was incubated at 4°C for 20 minutes, subsequently, 

extract was sonicated (amplitude: 70%) for 4 minutes (20 seconds on and 20 seconds off) 

before extract was pelleted again at 16, 000 xg for 30 minutes at 4°C. Supernatant was 

filtered using miracloth and 0.2 µm PES filter before the filtrate was diluted at 20X in 

Extraction Buffer B. Diluent was mixed at 4°C for 20 minutes and followed by filtration 

using 0.2 µm PES filter. HisTrap HP column was equilibrated using 5 CV of Wash Buffer C, 

5 CV of Elution Buffer A and followed by 5 CV of Wash Buffer C. Extract was loaded into 5 

ml HisTrap HP overnight. Subsequently, the column was washed with 5-10 CV of Wash 

Buffer C and 5-10 CV of Wash Buffer A. Protein was eluted from column in stepwise 

gradient using 4% (40 mM imidazole), 9% (60 mM imidazole), 60% (300 mM imidazole) 

and 100% (500 mM imidazole) of Elution Buffer A. Protein samples were ready for Western 

blotting analysis.  

5.2.4 Buffer exchange 

Purified protein was transferred into Slide-A-Lyzer™ Dialysis Cassettes before incubated in 

~100 volumes of storage buffer A or phosphate buffer saline (PBS) (v/v) for at least 4 hours. 

Incubation was repeated with fresh buffer before protein samples were analysed.  

Protein refolding using QuickfoldTM Protein Refolding Kit was performed as recommended 

by manufacturer. Approximately 50 µg of protein was added into 950 µl of buffers (buffers 

1-15). Mixtures were vortexed and mixed before incubated at 4°C overnight. Mixtures were 

centrifuged at 16, 000 xg for 15 minutes and supernatant was analysed using Western 

blotting.  

Buffer of recombinant protein eluted from IMAC was exchanged to starting buffer of 

hydrophobic interaction chromatography (HIC) or ion exchange chromatography (IEX) 

before sample was loaded into the HIC or IEX column. Buffer exchange was carried out 

using PD10 column and gravity flow protocol. PD10 column was initially equilibrated using 

25 ml of starting buffer before 2.5 ml of protein sample was added to the column. Flow 
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through from PD10 column was discarded and protein was subsequently eluted using 3.5 ml 

of starting buffer.  

5.2.5 Concentrating protein  

Protein was concentrated using Amicon Ultra-4 and 15 Centrifugal Filter Units. Protein 

sample was centrifuged at 3 000 – 6 000 rpm until a desired volume was remained in the 

filter unit.  

5.2.6 Hydrophobic interaction chromatography (HIC) 

HiTrapTM Butyl Sepharose HP 1ml, HiTrapTM Octyl Sepharose FF 1 ml and Phenyl 

Sepharose 6TM FF (high sub) columns were equilibrated using 5 CV of starting buffer, 5 CV 

of elution buffer following by 5 CV of starting buffer. Protein sample was loaded into 

column at 1 ml/min. Subsequently, column was washed and eluted using ~ 3 CV of elution 

buffer and deionised buffer. 

5.2.7 Ion exchange chromatography (IEX) 

HiTrapTM SP HP 1ml column was equilibrated using 5 CV of starting buffer, 5 CV of elution 

buffer followed by 5 CV of starting buffer. Protein sample was loaded into column at 1 

ml/min. Subsequently, column was washed and eluted in stepwise gradient using 20%-100% 

(containing 200 mM NaCl – 1M NaCl) of elution buffer. 

5.2.8 Size exclusion chromatography (SEC) and multi-angle light scattering     

(MALS) 

SEC analysis of recombinant GFP-apoptin (GFP-VP3-H) was performed and analysed by Dr 

Mark Jone and Ms April Horsey (Fraunhofer CMB, USA). Purified protein samples were 

analysed using SEC SRT-1000 column at flow speed ~1 ml/minute and separated proteins 

were subsequently analysed using MALS Wyatt HELEOS. SEC-MALS analysis was 

performed using Storage Buffer A.  

 

 

 



 

5-13 

 

   

 

 

5.3 Results 

 Protein purification of recombinant apoptin using immobilised metal 

chromatography (IMAC) 

5.3.1.1 Purification of recombinant apoptin alone VP3-H 

Recombinant apoptin VP3-H expressed alone (without fusion) in plants infiltrated with pGR-

D4:: VP3-H (Chapter 4) gave very low amount of soluble protein but with high level of 

insoluble protein detected. Hence, this recombinant VP3-H was attempted to be purified from 

insoluble protein extract (IMAC purification in denaturing condition, protocol 1). Total 

protein (TP) harvested from leaf material yielded ~ 31 mg/kg (Figure 5.1-a: Lane 4); 

however, amount of total soluble protein with 0.5% triton (TSP-T) (Figure 5.1-a: Lane 5) 

was lower than the detectable range. Extraction of recombinant protein using Extraction 

buffer C containing high concentration of denaturant (GuHCl) was able to harvest ~ 4 mg/kg 

(Figure 5.1-a: Lane 6) of protein and only ~ 1.2 mg/kg (30% of recovery) of recombinant 

apoptin (~ 18 kDa) was able to be recovered from IMAC eluent containing 300 mM 

imidazole (Figure 5.1-a: Lane 11). Since purified protein was in low amount, no detectable 

protein was observed on gel stained with coomassie blue (Figure 5.1-b: Lane 16).   
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 Lane Sample Estimated size    

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 TP extract from leaf sample 
~ 18 kDa for recombinant  

VP3-H 
 

 5 TSP-T extract from leaf sample 
~ 18 kDa for recombinant  

VP3-H  
 

 6 Insoluble protein extract from leaf sample 
~ 18 kDa for recombinant  

VP3-H  
 

 7 Flow through fraction from IMAC 
~ 18 kDa for recombinant  

VP3-H  
 

 8-12 
IMAC eluent containing 20, 40, 60, 300 and 500 

mM imidazole 

~ 18 kDa for recombinant  

VP3-H  
 

 13-15 0.9, 0.6 and 0.3 mg  of BSA protein standard ~ 67 kDa  

 16 IMAC eluent containing 300 mM imidazole 
~ 18 kDa for recombinant  

VP3-H 
 

      

Figure 5.1: IMAC protein purification profiles of recombinant apoptin alone VP3-H. (a) 

Western profiles showed the detection of recombinant apoptin at a molecular size of ~ 18 

kDa reacted with Tetra-His mouse monoclonal antibody in each step of IMAC. All sample 

volume was adjusted to the volume of starting material and subsequently loaded into gel at 

the same volume for all fractions. (b) SDS-PAGE profiles of coomassie blue-stained protein 

samples recovered from IMAC eluent containing 300 mM imidazole. No expected protein 

band (~ 18 kDa) was identified from the gel.  

a b 
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5.3.1.2 Purification of recombinant green fluorescent protein 

(GFP)-apoptin  

Plants infiltrated with recombinant vector, pGR-D4:: PR-GFP-VP3-HK yielded higher 

soluble protein level in relative to those of recombinant vectors, pGR-D4:: PR-GFP-VP3-H 

and pGR-D4:: GFP-VP3-H (Chapter 4). Therefore, IMAC was carried out using soluble 

protein extract from leaves infiltrated with pGR-D4:: PR-GFP-VP3-HK. The TP extract from 

this GFP-VP3-HK protein was ~ 20 mg/kg (Figure 5.2-a: Lane 4), while total soluble protein 

(TSP) yielded ~ 9 mg/kg (~ 50% of total protein) (Figure 5.2-a: Lane 5). Approximately 7 

mg/kg (~ 80% recovery) of recombinant GFP-VP3-HK was recovered from IMAC eluent 

containing 300 mM imidazole (Figure 5.2-a: Lane 10 and Figure 5.2-c: Lane 19). 

Nevertheless, ~ 50 kDa plant protein contaminant was also present in purified recombinant 

GFP-VP3-HK eluted from IMAC eluent containing 300 mM imidazole (Figure 5.2-c: Lane 

19). Hence, an additional step was required to remove the plant protein contaminant.  
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 and 13 TP extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 5 and 14 TSP extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-HK  
 

 6 and 15 Flow through fraction from IMAC 
~ 45 kDa for recombinant 

GFP-VP3-HK  
 

 
7-11 and  

16-20 

IMAC eluent containing 20, 40, 60, 300 and         

500 mM imidazole 

~ 45 kDa for recombinant 

GFP-VP3-HK  
 

 12 IMAC eluent containing 300 mM imidazole 
~ 45 kDa for recombinant 

GFP-VP3-HK  
 

      

Figure 5.2: IMAC protein purification profiles of recombinant GFP-apoptin (GFP-VP3-HK) 

in native condition. (a) Western profiles showed the detection of recombinant GFP-apoptin at 

a molecular size of ~ 45 kDa reacted with Tetra-His mouse monoclonal antibody in each step 

of IMAC. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. (b) Western profiles 

showed the detection of recombinant GFP-VP3-HK eluted from IMAC eluent containing 300 

a b 

c 
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mM imidazole at a molecular size of ~ 45 kDa reacted with anti-VP3 mouse monoclonal 

antibody. (c) SDS-PAGE profiles of coomassie blue-stained protein extracts and samples 

recovered from IMAC fractions. A 50 kDa plant protein was eluted with recombinant GFP-

VP3-HK from IMAC eluent containing 300 mM imidazole. 

 

In addition, IMAC of recombinant GFP-VP3-HK was also performed using TSP-T plant 

extract (9 mg/kg). Low amount of this recombinant protein (~ 13% recovery) was eluted 

from column if triton was removed during the purification process (Figure 5.3-a). However, 

higher amount of protein was eluted from column when column was washed and eluted with 

0.031% (~ 95% recovery) (Figure 5.3-b) and 0.015% (~ 74% recovery) (Figure 5.3-c) of 

triton containing elution buffer. However, a high amount of plant protein contaminants was 

still found in the eluent of recombinant GFP-VP3-HK especially the ~ 50 kDa proteins 

(Figure 5.3-d). 
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4, 12 and 20 TP extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 5, 13 and 21  TSP-T extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-HK  
 

 6, 14 and 22 Flow through fraction from IMAC 
~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 7-11 
IMAC eluent containing 20, 40, 60, 300 and         

500 mM imidazole without triton 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 15-19  
IMAC eluent containing 20, 40, 60, 300 and        

500 mM imidazole with 0.031% of triton 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 23-27 
IMAC eluent containing 20, 40, 60, 300 and        

500 mM imidazole with 0.015% of triton 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 28 and 29 
IMAC eluent containing 300 mM imidazole with 

0.031% and 0.015% of triton 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

      

a b 

c d 
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Figure 5.3: IMAC protein purification profiles of recombinant GFP-apoptin (GFP-VP3-HK) 

in TSP-T extract. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions tested by using Western 

blotting. Western profiles showed the detection of recombinant GFP-VP3-HK at a molecular 

size of ~ 45 kDa reacted with Tetra-His mouse monoclonal antibody in each step of IMAC. 

(a) Triton was removed from washing and elution buffer. (b) Protein bound in IMAC column 

was washed and eluted using buffer containing 0.031% of triton. (c) Protein bound in IMAC 

column was washed and eluted using buffer containing 0.015% of triton. (d) SDS-PAGE 

profiles of coomassie blue-stained protein samples recovered from IMAC eluent containing 

300 mM imidazole with 0.031% and 0.015% of triton. A 50 kDa plant protein was eluted 

with recombinant GFP-VP3-HK from IMAC eluent. 

Instead of purifying recombinant GFP-apoptin in native condition, recombinant GFP-apoptin 

(GFP-VP3-H) showing high protein expression in insoluble protein fraction was also purified 

in denaturing condition (protocol 2) using leaf materials infiltrated with recombinant vector, 

pGR-D4:: GFP-VP3-H (Chapter 4). Insoluble protein extract of GFP-VP3-H was estimated 

at more than 25 mg/kg (Figure 5.4-a: Lane 2) and ~ 21 mg/kg (> 70% recovery) of 

recombinant GFP-apoptin was able to be eluted from IMAC eluent containing 500mM 

imidazole (Figure 5.4-a: Lane 10). Purified recombinant GFP-VP3-H was relatively clean 

since no major plant protein contaminant band was detected in IMAC eluent (Figure 5.4-c: 

Lane 18). Purified recombinant GFP-VP3-H was buffer exchanged and concentrated (Figure 

5.4-c: Lane 19) and subsequently used for microinjection procedure as described in Chapter 6. 
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1 TP extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 2 
Insoluble protein extract from leaf sample using 

IMAC Extraction Buffer D 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 3 
Pellet of leaf sample after insoluble protein 

extraction 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 4 
20X dilution of insoluble protein with IMAC 

Extraction Buffer B 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 5 Flow through fraction from IMAC 
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 6 IMAC column washed using IMAC Wash Buffer C  
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 7-10 
IMAC eluent containing 20, 40, 60 and 500 mM 

imidazole using IMAC Elution Buffer A 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 11-13 60 ng, 30 ng and 15 ng of HAI standard ~ 70 kDa  

 14 and 18 IMAC eluent containing 500 mM imidazole  
~ 45 kDa for recombinant 

GFP-VP3-H 
 

a b 

c 
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 15-17 0.9, 0.6 and 0.3 mg of BSA protein standard ~ 67 kDa  

 19 
Buffer exchanged recombinant GFP-apoptin in 

storage buffer A 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

      

Figure 5.4: IMAC protein purification profiles of recombinant GFP-apoptin (GFP-VP3-H) in 

denaturing condition. (a) Western profiles showed the detection of recombinant GFP-VP3-H 

at a molecular size of ~ 45 kDa reacted with Tetra-His mouse monoclonal antibody in each 

step of IMAC. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. (b) Western profiles 

showed the recombinant GFP-VP3-H eluted in IMAC eluent containing 300 mM imidazole 

was detected at a molecular size of ~ 45 kDa by using anti-VP3 mouse monoclonal antibody. 

(c) SDS-PAGE profiles of coomassie blue-stained protein samples recovered from IMAC 

eluent containing 300 mM imidazole and buffer exchanged. No major plant protein 

contaminant band was detected in IMAC eluent. 

5.3.1.3 Purification of recombinant lichenase (Lic)-apoptin 

IMAC was performed in denaturing condition (protocol 1) using leaves infiltrated with 

recombinant vector, pGR-D4:: Lic-VP3-H since high expression level of insoluble protein (~ 

40 mg/kg) (Figure 5.5-a and b: Lane 6 and 17) was detected (Chapter 4). Approximately 20 

mg/kg of recombinant Lic-apoptin (Lic-VP3-H) (Figure 5.5-a and b: Lane 11 and 22) was 

recovered from IMAC column with 50% of protein did not bind to column which resembled 

~50% recovery (Figure 5.5-a and b: Lane 7 and 18). A clear band of recombinant Lic-VP3-H 

was identified in gel stained using coomasssie blue and no major plant protein contaminant 

band was detected in IMAC eluent (Figure 5.5-b: Lane 22). Protein was precipitated when 

IMAC eluent was buffer exchanged with PBS buffer (Figure 5.5-a and b: Lane 13, 14, 24 and 

25). Using refolding kit, recombinant Lic-VP3-H did not precipitate in buffer 11 and 13 

(Figure 5.5-c: Lane 27 and 28); however, removal of triton from buffer 11 and 13 caused a 

protein precipitation (Figure 5.5-c: Lane 31 and 32). 
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 and 15 TP extract from leaf sample 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 5 and 16 TSP-T extract from leaf sample 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 6 and 17 Insoluble protein extract from leaf sample 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 7 and 18 Flow through fraction from IMAC 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 
8-12 and  

19-23 

IMAC eluent containing 20, 40, 60, 300 and 500 

mM imidazole 

~ 40 kDa for recombinant Lic-

VP3-H 
 

 13 and 24 Dialysis against PBS (Supernatant) 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 14 and 25 Dialysis against PBS (Pellet) ~ 40 kDa for recombinant Lic-  

a b 

c 
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VP3-H 

 26 IMAC Eluent containing 300 mM imidazole 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 27 Refolded protein using Quickfold Buffer 11 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 28 Refolded protein using Quickfold Buffer 13 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 29 Refolded protein using customised Buffer 11 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 30 Refolded protein using customised Buffer 13 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 31 
Refolded protein using customised Buffer 11 

without triton 

~ 40 kDa for recombinant Lic-

VP3-H 
 

 32 
Refolded protein using customised Buffer 13 

without triton 

~ 40 kDa for recombinant Lic-

VP3-H 
 

      

Figure 5.5: IMAC protein purification profiles of recombinant Lic-apoptin (Lic-VP3-H) in 

denaturing condition. (a) Western profiles showed the detection of recombinant Lic-VP3-H 

at a molecular size of ~ 40 kDa reacted with Tetra-His mouse monoclonal antibody in each 

step of IMAC. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. (b) SDS-PAGE profiles of 

coomassie blue-stained protein samples recovered from each step of IMAC. No major plant 

protein contaminant band was detected in IMAC eluent. (c) Western profiles of recombinant 

Lic-VP3-H refolding from IMAC eluent containing 300 mM imidazole using Quickfold 

refolding kit and customised buffers. Bands of ~ 40 kDa Lic-VP3-H reacted with Tetra-His 

mouse monoclonal antibody were detected.  

Other than performing buffer exchange after IMAC, high concentration of denaturant was 

also removed when protein was binding in IMAC column using IMAC Wash Buffer D and 

IMAC Wash Buffer E. In comparison to the purification in complete denaturing condition, 

only 16% of Lic-VP3-H (Figure 5.6-a: Lane 10 and 11) was able to be recovered in IMAC 

using this method.  
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 and 13 TP extract from leaf sample 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 5 and 14 TSP-T extract from leaf sample 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 6 and 15 
Insoluble protein extract from leaf sample using 

IMAC Extraction Buffer E 

~ 40 kDa for recombinant Lic-

VP3-H 
 

 7 and 16 Flow through fraction from IMAC using  
~ 40 kDa for recombinant Lic-

VP3-H 
 

 8 and 17 IMAC column washed using IMAC Wash Buffer D 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 9 and 18 IMAC column washed using IMAC Wash Buffer E 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 
10-11 and  

19-20 
IMAC eluent containing 500 mM imidazole 

~ 40 kDa for recombinant Lic-

VP3-H 
 

 12 and 21 Dialysis supernatant 
~ 40 kDa for recombinant Lic-

VP3-H 
 

 22 Dialysis (pellet) 
~ 40 kDa for recombinant Lic-

VP3-H 
 

     

 

a b 
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Figure 5.6: IMAC protein purification profiles of recombinant Lic-VP3-H in denaturing 

condition. (a) Western profiles showed the detection of recombinant Lic-VP3-H at a 

molecular size of ~ 40 kDa reacted with Tetra-His mouse monoclonal antibody in each step 

of IMAC. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. (b) SDS-PAGE profiles of 

coomassie blue-stained protein samples recovered from each step of IMAC. No major plant 

protein contaminant band was detected in IMAC eluent. 

5.3.1.4 Purification of recombinant epidermal growth factor 

(EGF)-apoptin 

TP extract of recombinant EGF-apoptin (EGF-VP3-HK) from leaves infiltrated with pGR-

D4:: PR-EGF-CatAd-VP3-HK was ~ 29 mg.kg (Figure 5.7-a: Lane 4) and ~ 8-11 mg/kg of 

TSP was detected (Figure 5.7-a: Lane 5). However, only ~ 3-4 mg/kg of recombinant EGF-

VP3-HK was detected in IMAC eluent (Figure 5.7-a: Lane 10 and 12) and huge amount of 

plant protein contaminant (especially 50 kDa plant protein) was detected in the IMAC eluent 

(Figure 5.7-b: Lane 16).   
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 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 TP extract from leaf sample 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 5 TSP extract from leaf sample 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 6 Flow through fraction from IMAC column 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 7-11 
IMAC eluent containing 20, 40, 60, 300 and         

500 mM imidazole  

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 12 and 16 IMAC eluent containing 300 mM imidazole 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 13-15 0.9, 0.6 and 0.3 mg of BSA protein standard ~ 67 kDa  

      

Figure 5.7: IMAC protein purification profiles of recombinant EGF-apoptin (EGF-VP3-HK) 

in native condition. (a) Western profiles showed the detection of recombinant EGF-VP3-HK 

at a molecular size of ~ 30 kDa reacted with Tetra-His (Lane 1-11) and anti-VP3 (Lane 12) 

mouse monoclonal antibodies in each step of IMAC. All sample volume was adjusted to the 

volume of starting material and subsequently loaded into gel at the same volume for all 

fractions. (b) SDS-PAGE profiles of coomassie blue-stained protein samples recovered from 

IMAC eluent containing 300 mM imidazole. A 50 kDa plant protein was eluted with 

recombinant EGF-VP3-HK from IMAC eluent. 

a b 
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Purified recombinant EGF-VP3-HK in IMAC eluent containing 300 mM imidazole was 

eluted with huge amount of ~ 50 kDa plant protein contaminant. Hence, IMAC was 

performed again on IMAC eluent in order to remove the impurities. It was noticed that 

additional IMAC purification step did not improve the purity of recombinant EGF-apoptin 

and only 37% of protein was able to be recovered from samples loaded into the IMAC 

column (Figure 5.8-a and -b: Lane 9 and 18).   
      

 

  

 

 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1 and 10 TSP extract from leaf sample 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 2 and 11 IMAC eluent containing 300 mM imidazole 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 3 and 12 
Supernatant of IMAC eluent after centrifuged at 40, 

000 xg 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 4 and 13 
Buffer exchange of IMAC eluent buffer containing 

300 mM imidazole to IMAC Extraction Buffer A 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 5 and 14 Flow through fraction from IMAC 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 
6-9 and  

15-18 

IMAC eluent containing 20, 40, 60 and 500 mM 

imidazole 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

      

Figure 5.8: IMAC protein purification profiles of recombinant EGF-apoptin (EGF-VP3-HK) 

in native condition. (a) Western profiles showed the detection of recombinant EGF-VP3-HK 

at a molecular size of ~ 30 kDa reacted with anti-VP3 mouse monoclonal antibody in each 

step of IMAC. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. (b) SDS-PAGE profiles of 

coomassie blue-stained protein samples recovered from each step of IMAC.  A plant protein 

a 
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(50 kDa) was the major plant protein contaminant eluted with recombinant EGF-VP3-HK 

from IMAC eluent. 

 Improvement for protein purity 

5.3.2.1 Hydrophobic interaction chromatography (HIC) 

In addition to IMAC, partial purified recombinant EGF-apoptin (EGF-VP3-HK) was further 

separated from plant protein impurities using HIC and IEX.  Using HIC, EGF-VP3-HK  

bound tightly to HIC mediums, including Phenyl Sepharose 6TM FF (high sub), HiTrapTM 

Butyl Sepharose HP and HiTrapTM Octyl Sepharose FF, and protein was not able to be 

recovered from mediums (Figure 5.9-a, -b and -c: Lane 6, 11 and 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5-29 

 

   

 

 

 

 

      

 

  

 

 

 

  

      

 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 Q BenchmarkTM Protein Ladder   

 1, 7 and 13 IMAC eluent containing 300 mM imidazole 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 2 
Supernatant of IMAC eluent after centrifuged at 40, 

000 xg 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 3 
Buffer exchange IMAC eluent to HIC Starting 

Buffer A 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 4 
Flow through fraction from Phenyl Sepharose 6TM 

FF (high sub) 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 5 
Phenyl Sepharose 6TM FF (high sub) medium 

washed using HIC Starting Buffer A 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 6 
Phenyl Sepharose 6TM FF (high sub) medium eluted 

using HIC Elution Buffer 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

a b 
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 8 and 14 
Buffer exchange IMAC eluent to HIC Starting 

Buffer B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 9 
Flow through fraction from HiTrap Butyl Sepharose 

HP column 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 10 
HiTrap Butyl Sepharose HP column washed using 

HIC Starting Buffer B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 11 
HiTrap Butyl Sepharose HP column eluted using 

HIC Elution Buffer 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 12  
HiTrap Butyl Sepharose HP column eluted using 

deionised water 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 15 
Flow through fraction from HiTrap Octyl Sepharose 

FF column 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 16 
HiTrap Octyl Sepharose FF column washed using 

HIC Starting Buffer B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 17 
HiTrap Octyl Sepharose FF column eluted using 

HIC Elution Buffer 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 18 
HiTrap Octyl Sepharose FF column eluted using 

deionised water 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

      

Figure 5.9: HIC protein purification profiles of recombinant EGF-apoptin (EGF-VP3-HK) in 

native condition. All sample volume was adjusted to the volume of starting material and 

subsequently loaded into gel at the same volume for all fractions. Western profiles showed 

the detection of recombinant EGF-apoptin at a molecular size of ~ 30 kDa reacted with anti-

VP3 mouse monoclonal antibody in each step of HIC using (a) Phenyl Sepharose 6TM FF 

(high sub) column, (b) HiTrap Butyl Sepharose HP column and (c) HiTrap Octyl Sepharose 

FF column. No protein was successfully eluted from these columns using respective elution 

buffers. 

5.3.2.2 Ion exchange chromatography (IEX) 

Isoelectric point of recombinant EGF-apoptin (EGF-VP3-HK) was estimated as ~ pH 7.7. 

Using cationic exchanger HiTrap SP column, positively charged recombinant EGF-VP3-HK 

bound column tightly and protein was not able to be eluted from column (Figure 5.10-a: Lane 

5-9) when chromatography was performed at pH 6.7. In contrast, when IEX was performed 

at pH 9.0, most of the protein was able to be eluted from column (Figure 5.10-b: Lane 18) 

and small amount of protein was detected in the flow through fraction (Figure 5.10-b: Lane 

16). When IEX was performed at pH 8.5, approximately 35% of loaded recombinant EGF-
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VP3-HK was eluted in fraction using buffer containing 0.4 M of sodium chloride (Figure 

5.10-c: Lane 25). However, this approach did not successfully remove plant protein 

contaminants from the partial purified products (Figure 5.10-c: Lane 28). 

      

 

  

 

 

 

  

      

 Lane Sample Estimated size  

 P MagicMark™ XP Western Protein Standard   

 1, 13 and 19 IMAC eluent containing 300 mM imidazole 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 2, 14 and 20 
Supernatant of IMAC eluent after centrifuged at 40, 

000 xg 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 3 
Buffer exchange of IMAC eluent containing 300 

mM imidazole to IEX Starting Buffer A 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 4 Flow through fraction from HiTrap SP column 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 5-9 
Eluent containing 0.2, 0.4, 0.6, 0.8 and 1 M NaCl 

from HiTrap SP column using IEX Elution Buffer A 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 10-12 60 ng, 30 ng and 15 ng of HAI standard ~ 70 kDa  

 15 
Buffer exchange of IMAC eluent containing 300 

mM imidazole sample to IEX Starting Buffer B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

a b 

c 
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 16 Flow through fraction from HiTrap SP column 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 17 
HiTrap SP column washed using IEX Starting 

Buffer B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 18 
HiTrap SP column eluted using IEX Starting Buffer 

B 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 21 
Buffer exchange of IMAC Eluent containing 300 

mM imidazole sample to IEX Starting Buffer C 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 22 Flow through fraction from HiTrap SP column 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

 23 
HiTrap SP column washed using IEX Starting 

Buffer C 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 24-27 
Eluent containing 0.2, 0.4, 0.6 and 0.8 M NaCl from 

HiTrap SP column using IEX Elution Buffer C 

~ 30 kDa for recombinant 

EGF-VP3-H 
 

 28 Eluent containing 0.4 M NaCl 
~ 30 kDa for recombinant 

EGF-VP3-H 
 

      

Figure 5.10: IEX protein purification profiles of recombinant EGF-apoptin (EGF-VP3-HK) 

in native condition using 1 ml HiTrapTM SP column. All sample volume was adjusted to the 

volume of starting material and subsequently loaded in the same volume for all fractions. (a) 

Western profiles showed the detection of recombinant EGF-apoptin at a molecular size of ~ 

30 kDa reacted with anti-VP3 mouse monoclonal antibody (Lane 1-9) in each step of IEX 

performed at pH 6.7. Western profiles showed the detection of recombinant EGF-VP3-HK at 

a molecular size of ~ 30 kDa reacted with Tetra-His mouse monoclonal antibody in each step 

of IEX performed at (b) pH 9.0 and (c) pH 8.5. 

5.3.3 Characterisation of recombinant GFP-apoptin 

In gel filtration analysis, recombinant GFP-apoptin (GFP-VP3-H), always separated as ~ 45 

kDa protein molecule in reduced SDS page (Figure 5.4), did not migrate as monomer when 

analysed using SRT SEC1000 column in Storage Buffer A. In SEC analysis, GFP-VP3-H (~ 

0.75 mg/ml) migrated as a single peak at 10 ml with a small shoulder ~ 10.7 ml (Figure 5.11-

a). Majority of these protein molecules showed a similar molecular mass, which was ~ 944.3 

kDa (size estimation based on normalisation of BSA from Zenix C 300 column) (Figure 

5.11-b).   
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Figure 5.11: SEC-MALS analysis of recombinant GFP-apoptin. (a) SEC of recombinant 

GFP-VP3-H using SRT SEC1000 column in Storage Buffer A yielded a single peak at 10 ml 

and a shoulder at 10.7 ml. (b) MALS analysis of recombinant GFP-VP3-H immediately after 

SEC. Majority of the proteins showed a similar molecular mass of ~ 944. 3 kDa (size 

estimation based on normalisation of BSA from Zenix C 300 column).    
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5.4 Discussion 

In this chapter, a detailed description was provided on the study of downstream processing of 

recombinant apoptin alone (without fusion, VP3-H), GFP-apoptin (GFP-VP3-HK and GFP-

VP3-H), Lichenase-apoptin (Lic-VP3-H) as well as EGF-apoptin (EGF-VP3-HK). The 

purified recombinant proteins obtained from this study would be used for subsequent cell-

based assays. At the beginning, hexa-histidine sequence was added to C-terminal end of all 

recombinant apoptin which aimed to employ immobilised affinity chromatography (IMAC) 

as the major purification approach. Owing to the selective binding of IMAC resin to histidine 

tags which are present on the protein surface, IMAC is widely used in capturing step of 

purification process to recover the targeted proteins as well as eliminate majority of 

unspecific host proteins. IMAC was performed in both denaturing and native conditions in 

this study based on the solubility of the recombinant proteins.  

Expression of recombinant apoptin alone (VP3-H) procured the highest protein yield as 

compared to those leaves infiltrated with recombinant vectors, i.e. pGR-D4:: PR-VP3-HK 

and pGR-D4:: PR-VP3-H. Protein purification was however performed in denaturing 

condition using high concentration of denaturants, guanidine hypochloride (GuHCl) because 

majority of protein was found in insoluble state. In fact, insoluble recombinant apoptin alone 

was not extracted efficiently from leaf materials even with the use of high concentration of 

denaturants. Therefore, alternative buffering systems or additional additives might be 

necessary to enhance the recovery of protein during extraction process, such as sugars, salt, 

reducing agents, detergents and chaotropic agents (Leibly et al., 2012). According to the 

IMAC, only 30% recombinant apoptin was able to be recovered and this resulted low amount 

of purified protein (~ 1.2 mg/kg) harvested (section 5.3.1). Based on protein expression 

profiles in Chapter 4, soluble recombinant apoptin was detected in higher quantity (~ 4 

mg/kg) when leaf was infiltrated with pGR-DN:: PR-VP3-HK__bZIP60 compared to pGR-

DN:: PR-VP3-HK__bZIP17, pGR-DN:: PR-VP3-HK__bZIP28, pGR-D4:: PR-VP3-HK, 

pGR-D4:: PR-VP3-H and pGR-D4:: VP3-H. However, IMAC purification performed using 

50 g leaf materials infiltrated with recombinant vector, pGR-DN:: PR-VP3-HK__bZIP60 

yielded low amount of purified protein (< 1 mg/kg) (Appendix 5.1).  Purification of 

recombinant apoptin alone has been reported by Lelivelda and his colleague (2003) from 

Escherichia coli expression system. High amount (~ 40 mg/L of culture) of recombinant 
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apoptin in fusion to hexa-histidine tag was recovered using two-step chromatographic 

process, i.e. cation exchange chromatography following by Ni2+-NTA-agarose in denaturing 

condition. It was reported that only 50% of protein refolded efficiently and protein migrated 

as single species at 400 ± 50 kDa on Superose 6 HR 10/30. Although small amount (2 mg/L 

of culture) of soluble recombinant apoptin alone was obtained in the previous study of 

Nogueira-Dantas et al. (2007), majority of the recombinant apoptin was remained in the 

bacterial inclusion body which could only be recovered using high-concentration denaturant 

containing buffer or in bacterial pellet. In relative to E. coli system, expression yield of 

recombinant apoptin was low in plant system obtained in this study. Nevertheless, 

recombinant apoptin alone was found accumulating in insoluble protein fraction either in E. 

coli or Nicotiana benthamiana expression system.  

In contrast to recombinant apoptin alone, expression of soluble recombinant apoptin was 

detected upon fusion to green fluorescent protein (GFP), especially GFP-VP3-HK which 

yielded 50% soluble protein (~ 9-10 mg/kg). IMAC recovered 80% of GFP-apoptin from 

total soluble protein extract (Figure 5.2). However, a  50 kDa plant protein, which might be 

Rubisco was detected in purified recombinant GFP-apoptin eluent. Removal of host cell 

proteins from tobacco extract (especially Rubisco protein) has always been a major issue 

encountered in downstream processing of recombinant proteins (Buyel et al., 2015).  In order 

to remove host cell protein, chromatography (Kittur et al., 2015) and acidic precipitation 

methods (adjusting protein extract to ~ pH 5) are the commonly used method. Application of 

polishing step using ion exchange chromatography (IEX) HiTrap SP column was not 

efficient to remove the unspecific plant proteins (Appendix 5.2).  It is noted that most plant 

host cell proteins always have low pI value (Azzoni et al., 2002). Therefore, as long as the 

targeted recombinant proteins are stable in acidic condition, a lower pH nearing pI of host 

cell proteins could be adjusted in order to precipitate these unspecific contaminating proteins. 

However, the recombinant GFP-apoptin was found precipitated at acidic condition 

(Appendix 5.4) as well. Therefore, using either cationic exchange chromatography HiTrap 

SP column or low pH precipitation method was not ideal to remove these unwanted host cell 

proteins. When triton was added to extraction buffer, yield of soluble protein of recombinant 

GFP-apoptin was not increased. Triton (MW= 625 Da) is a kind of non-ionic surfactant used 

for disruption of cell membrane during extraction process. However, huge micelle size 

(MW= 90 kDa) of triton disabled the surfactant to be removed via dialysis approach from the 

final purified product. Hence, it is always encouraged to remove triton during the purification 
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process. However, it was also observed that removal of triton during purification caused 

protein precipitation in the column and a minimum of ~ 0.015% triton was required to avoid 

the precipitation occurrence (Figure 5.3). Instead of solely purifying recombinant GFP-

apoptin from soluble protein fraction, the insoluble fraction of GFP-VP3-H protein harvested 

was also purified using IMAC. Insoluble recombinant GFP-apoptin was isolated using 

extraction buffer containing strong denaturant (GuHCl) and triton. The denatured 

recombinant protein could be refolded and diluted for 20 times in buffer without denaturants 

but in the presence of triton prior loading into IMAC column (section 5.2.3.3 – Denaturing 

protocol 2) (Figure 5.4). Recombinant GFP-VP3-H purified using this strategy showed a 

higher recovery yield and lower amount of unspecific plant protein contaminants. In addition, 

refolding efficiency of protein via this method was believed to be higher than that of protein 

purified under denaturing condition with subsequent refolding process (section 5.2.3.2 – 

Denaturing protocol 1) (Appendix 5.3). This could be explained as protein was concentrated 

after purification process and low refolding efficiency always obtained at high protein 

concentration. Aggregation usually arose due to hydrogen bond formation between protein 

chains of partially folded intermediate that close to each other in high protein concentration 

(Gupta et al., 1998). So far, no membrane penetrating domain was detected on either apoptin 

or GFP. Therefore, external delivery tools would be required to transfer the protein into 

intracellular space of mammalian cells in order to examine for the bioactivity of purified 

protein. In this circumstance, the presence of surfactants (such as triton) or chemicals (such 

as GuHCl) used for protein purification would threaten the viability of mammalian cells. 

Hence, all these chemicals were removed from the final product before the protein sample 

was used for cell-based assay as illustrated in Chapter 6.  

Refolded GFP-apoptin (GFP-VP3H) analysed using SEC-MALS showed the protein owed a 

multimeric structure (~ 944.3 kDa) instead of presence as a monomer (~ 45 kDa). Majority of 

GFP-VP3-H proteins were from a single population composed of approximately 20 units of 

monomer. Multimerisation of recombinant apoptin was also shown in the study of Lelivelda 

et al. (2003) for purified recombinant MBP-apoptin and refolded apoptin from E. coli 

expression system. Results showed that ~ 30-40 monomers of recombinant MBP-apoptin 

(monomer: 56 kDa) assembled into multimeric form as 2.5 ± 0.3 MDa in size (Leliveldb et 

al., 2003); while ~ 27 monomers of refolded apoptin (monomer: 14.5 kDa) assembled into 

400 ± 50 kDa mutimers. In addition, MBP-apoptin was presented as globular particles with a 

radius of ± 40 nm under scanning electron microscope in a uniform population. Recombinant 
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MBP-apoptin and apoptin protein molecules could be broken down into monomer with SDS 

(similar as recombinant GFP-apoptin); therefore, interaction of apoptin molecules is believed 

to be non-covalently linked.  

Purification of recombinant Lic-apoptin (Lic-VP3-H) was performed under denaturing 

condition and refolding of protein required the presence of triton (Figure 5.5). Besides, 

refolding of recombinant protein in IMAC column showed poor protein yield in IMAC 

eluent (Figure 5.6). Although IMAC purified recombinant Lic-apoptin showed high purity in 

this study, refolding process of protein did not work as expected. On the other hand, IMAC 

purification of recombinant EGF-apoptin (EGF-VP3-HK) in native condition showed poor 

yield (~3-4 mg/kg) and low purity. Besides, polishing chromatography using IMAC, HIC, 

IEX and acidic precipitation method (Appendix 5.4) also did not improve the situation. 

Recombinant EGF-apoptin yielded ~ 50 % of soluble protein, so, by starting purification 

from insoluble protein fraction would loss half of the protein amount. Hence, IMAC 

purification from denaturing condition had been performed from total protein of recombinant 

EGF-apoptin extract (Appendix 5.5). Unfortunately, the contaminating host cell proteins 

(especially ~ 50 kDa) were detected in IMAC eluent (Appendix 5.5).   

Based on the current observations, recombinant apoptin purified in native condition 

(recombinant GFP-VP3-HK and EGF-VP3-HK) was always encountered with challenges of 

having host protein contaminants in the final purified products. The low ratio of recombinant 

apoptin to total protein pool with the initial attribution of low expression level is suspected to 

be one of the reasons that affect the selectivity of IMAC resin. Currently, IMAC was 

performed using nickel ion and other immobilized metal ions, such as copper, zinc and cobalt, 

could also be used to recover recombinant apoptin in future study. IMAC performed in 

denaturing condition (recombinant GFP-VP3-H and Lic-VP3-H) always required several 

washing steps with soluble protein extraction buffer (such as IMAC Extraction Buffer A) in 

the presence of triton before the recombinant apoptin was extracted from pellet using 

insoluble protein extraction buffer containing high concentration of strong denaturants. These 

washing steps are imperative to remove huge amount of soluble host cell proteins in addition 

to increase the ratio of recombinant apoptin to protein pool in the protein extract. Thus, a 

higher purity of recombinant apoptin could be detected in IMAC eluent. Instead of using 

IMAC, other affinity chromatography methods could be considered in the future.  
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It is known from previous studies that fusion of recombinant apoptin to other large protein 

would increase its solubility, stability as well as expression yield. Hence, large fusion tag 

proteins, such as maltose binding proten (MBP) and glutathione S-transferase (GST), are the 

favorable choices. In the study of Lee et al. (2012), recombinant GST-TAT-apoptin was 10-

fold higher in expression quantity in relation to recombinant Histidine-TAT-apoptin. Besides, 

Lee et al. (2003) also showed soluble recombinant MBP-apoptin was 2.5-fold higher 

expression level in relation to the recombinant apoptin-histidine that was present in inclusion 

body. Fusion of either MBP or GST to recombinant EGF-apoptin would be one of the 

solutions in order to recover this protein more efficiently. Numerous approaches are available 

for downstream processing and yet, a suitable purification protocol can be found only after 

attempting various combinations of purification strategies.     

In conclusion, a few protein purification protocols of recombinant apoptin extracted from 

tobacco leaf materials were attempted and further study might be required to enhance 

purification efficiency in future. Based on current findings, recombinant apoptin alone (VP3-

H), GFP-apoptin (GFP-VP3-HK) and Lichenase apoptin (Lic-VP3-H) did not yield good 

purity or promising amount of purified proteins. On the other way, good purity of refolded 

GFP-apoptin (GFP-VP3-H) was collected at ~ 2 mg/ml. Although purification of 

recombinant EGF-apoptin (EGF-VP3-HK) did not yield high purity in the final product, this 

purified protein was still tested in subsequent cell-based study. Recombinant EGF-apoptin 

was expected to be selectively internalised into EGF overexpressed cell via endocytosis after 

the binding of recombinant protein to EGF receptors and passed through plasma membrane 

via the CatAd molecular adaptor. Hence, refolded GFP-apoptin and IMAC purified EGF-

apoptin were used for cell-based study to determine the bioactivity of both plant expressed 

apoptin in mammalian cells. 
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6.1 Introduction 

Viral protein 3 (VP3) from Chicken Anemia Virus (CAV) is responsible for the destruction of 

lymphocytes during viral infection by induction of apoptosis; hence, the protein was named 

“apoptin” (Los et al., 2009). Apoptin is a 14 kDa non-structural protein. There is a leucine rich 

region, resides between amino acids 33-46, and a bipartite nuclear localization signal (NLS), 

resides between amino acids 82-88 and 111-121. Apoptin showed selective killing activity 

towards ~ 70 cancer or transformed cell lines including breast cancer, osteosarcoma, lung 

carcinoma, hepatoma, SV-40 transformed fibroblast and adenovirus-5-transformed embryonal 

retinoblasts (Noteborn et al., 2008). However, apoptosis was usually not induced by apoptin in 

normal and non-transformed cells such as human umbilical cord vascular endothelial cells 

(HUVEC), smooth muscle (HSM), primary T cells and rat embryo fibroblasts (REF) (Danen-van 

Oorschot et al., 1997; Noteborn et al., 2008). Apoptin-induced apoptosis is independent of p53 

(Zhuang et al., 1995) and involves mitochondria-mediated apoptotic pathway by loss of 

mitochondrial membrane potential (MMP), releasing of cytochrome c and activation of caspase 3 

(Danen-van Oorschot et al., 2000). Currently, cell killing ability of apoptin was tested in various 

cancer cell lines as well as in mice using various kinds of delivery method including viral vectors, 

bacteria (Salmonella typhimurium), intratumoral injection, electroporation and cell penetrating 

peptides (such as trans-activator protein (TAT) from human immunodeficiency virus (HIV) or 

protein transduction domain 4 (PTD4)) (Rollano Peñaloza et al., 2014).       

Apoptosis, also named as programmed cell death, is one of the cell death mechanisms that plays 

role in various kinds of cellular activities such as cell number controlling (Hall et al., 1994), 

elimination of self-reactive lymphocytes (Parijs et al., 1998) and cellular stresses (induced by 

irradiation or drugs) leading to cellular DNA damage (Enoch and Norbury, 1995) as well as 

senescence. Regulated apoptosis is crucial since excess activity of apoptosis caused atrophy and 

defective in apoptosis results the progression of cancer. Round in shape, shrink, smaller in size 

and losing contact with neighbouring cells, chromatin condensation, DNA fragmentation and 

formation of apoptotic bodies are the several features observed during apoptosis (Walker et al., 

1994). Apoptosis is induced through extrinsic (cell death receptor) or intrinsic (mitochondria) 

pathway. Apoptosis induced by extrinsic pathway involves activation of receptors located on 

plasma membrane such as TNF-R (tumour necrosis factor receptor) and Fas receptor (Ashkenazi, 
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2008). On the other hand, intrinsic pathway is induced by the loss of mitochondrial membrane 

potential, releasing of cytochrome c and formation of apoptosome (Elmore, 2007). Triggering of 

apoptotic pathway eventually leads to the activation of caspases that are important for the 

degradation of cellular proteins in apoptotic cells, activation of other cellular proteins involved in 

apoptosis and DNA fragmentation (McIlwain et al., 2013).  

The lipophilic feature of plasma membrane restrains the direct transport of biomolecules, hence, 

macromolecules (such as DNA, RNA and proteins) and micromolecules (such as ions and 

organic molecules) could not freely pass through the membrane without involving a specific 

transport mechanism. In order to determine bioactivity of pharmacological drugs, delivery of 

these compounds into intracellular space or specific cellular compartment is always a challenge 

with low risk of damage or toxic effect towards the tested cell lines or animals. Currently, there 

are two major categories of delivery methods including invasive approach (such as 

microinjection and electroporation) and non-invasive approach (such as liposomes, nanoparticles 

and cell penetrating peptides). Microinjection is a precise delivery method for single cell 

transduction with high transduction efficiency. Microinjection has lower cytotoxicity in relative 

to chemical transfection and it is feasible for the transduction of cells with difficulty in 

transfection (Zhang and Yu, 2008). However, microinjection requires specialised equipment as 

well as involves sophisticated and laborious techniques to deliver exogenous biomolecules into 

the cells. Currently, this technique is always used for developmental biology, neurobiology, cell 

biology, and signal transduction (Carroll, 2009).  Cell penetrating peptides (CPPs) or peptide 

transfer domains (PTD) are short peptides that facilitate entry of macromolecules or drugs (such 

as DNA, RNA or proteins) through the plasma membrane into intracellular space. Mechanisms 

of internalisation for these CPPs include endocytosis, direct translocation, inverted micelle 

formation and pore formation (Bechara and Sagan, 2013). Most of these CPPs are low toxicity 

and less immunogenic and these peptides have been used for intestinal delivery of insulin, cell 

immunity, cancer therapy and enzyme replacement (Dinca et al., 2016). A molecular adaptor, 

catAd, was a cell penetrating peptide composes of membrane transfer sequence (MTS), cytosolic 

cleavable unit (CCU) and endosomal cleavable unit (ECU). Cell specific ligands or antibodies 

were linked to adaptor to increase the selectiveness of the drugs binding to targeted cells. Drug 

molecules (toxins or proteins) bound to the adaptor were endocytosed into cells and subsequently 
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transferred through plasma membrane via the MTS sequence from the adaptor. Drug molecules 

were then released into cell cytosol by the cleavage of CCU. This adaptor was used for the 

delivery of immunotoxins, such as diphtheria toxin (Keller et al., 2001), saporin (Fuchs et al., 

2007; Heisler et al., 2003) and human angiogenin (Hetzel et al., 2008).  

In this chapter, bioactivity of purified recombinant GFP-apoptin (GFP-VP3-H) and recombinant 

EGF-apoptin (EGF-VP3-HK) was tested in human lung carcinoma A549. In the absence of cell 

penetrating peptides on recombinant GFP-VP3-H, the purified protein was delivered into A549 

cells using microinjection approach. Viability of cells injected with recombinant GFP-VP3-H 

was determined by checking the morphology of cell nucleus. However, recombinant EGF-VP3-

HK was directly added into culture medium since this protein contained molecular adaptor 

harbouring a membrane transfer peptide. Translational fusion of apoptin with EGF (EGF-VP3-

HK) was expected to target the recombinant protein towards EGF receptors (EGFR) that are 

overexpressed at lung cancer cell surface. Therefore, the binding activity of recombinant EGF-

VP3-HK to EGFR was determined using enzyme-linked immunosorbent assay (ELISA). 

Viability of cells treated with recombinant EGF-VP3-HK was quantified by checking the 

cleavage of tetrazolium salt WST-1 to formazan by mitochondrial dehydrogenases which are 

present in viable cells. Besides, loss of mitochondrial membrane potential and activation of 

caspase 3/7 which are among the hallmarks of apoptosis were determined in cells receiving 

individual treatments of recombinant apoptin (GFP-VP3-H and EGF-VP3-HK).  

Therefore, the specific objectives of this chapter were: (i) to examine the interactions between 

the respective recombinant apoptin (GFP-VP3-H and EGF-VP3-HK) and A549 cells as well as 

EGF receptors; (ii) to deliver recombinant GFP and GFP-VP3-H into A549 cells via 

microinjection; (iii) to investigate the cellular activities including cell killing, nuclear localisation 

and apoptosis potential of recombinant GFP-VP3-H in A549 cells; (iv) to examine the 

internalisation of recombinant EGF-VP3-HK into A549 cells; and (v) to evaluate cell killing 

efficiency and apoptosis potential of recombinant EGF-VP3-HK in A549 cells.  
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6.2 Materials and Methods 

6.2.1 General materials 

6.2.1.1 Cells and cell culture reagents 

Human lung adenocarcinoma epithelial cell A549 (ATCC® CCL-185™) (American Type Cell 

Collection –ATCC) was used for the assessment of bioactivity of recombinant apoptin purified 

using method as described in Chapter 5. A549 cell line was maintained in F-12 Ham medium 

without phenol red (Sigma Aldrich, USA), supplemented with 10% fetal bovine serum (FBS), 

0.29 mg/ml L-glutamine, 1.5 mg/L sodium bicarbonate and antibiotic solutions (100 IU 

penicillin and 100 µg/ml streptomycin) (Corning, USA).  

6.2.1.2 Protein samples 

Recombinant GFP-apoptin (GFP-VP3-H) was prepared as described in Chapter 5 (section 5.3.1.2) 

and recombinant EGF-apoptin (EGF-VP3-HK) was prepared as described in Chapter 5 (section 

5.3.1.4). Recombinant GFP-apoptin was buffer exchanged to Storage buffer A (50 mM sodium 

phosphate, 100 mM NaCl, pH 7.5, 4°C) and concentrated to 2.4 mg/ml. Small aliquots of protein 

was prepared and stored at -80°C. Recombinant GFP (19 mg/ml) was prepared using 

immobilised affinity chromatography (IMAC) by Dr Konstantin Musiychuk (Fraunhofer CMB, 

USA). Recombinant GFP was diluted to 2.5 mg/ml using Storage buffer A and small aliquots 

were stored at -80°C.  

6.2.1.3 Reagents and injection consumables 

For microinjection, femtotips II (Eppendorf, USA), microloader tips (Eppendorf, USA), 35 mm 

collagen coated glass bottom dish  (No. 1.5 Coverslip, 14 mm Glass Diameter) (Matek 

Corporation, USA), dextran conjugated fluorescein (70 000 MW) Anionic (Thermo scientific, 

USA) and lysine fixable dextran conjugated texas red (10 000 MW) (Thermo Scientific, USA) 

were used in this study.  Propidium iodide (PI) with RNase (ThermoScientific, USA), SYB 

Green I for nuclei acid stain and ready to used 200 µg/ml hoechst 33342 (Immunochemistry 

Technologies LLC, USA) were used for staining of cell nucleus. Mouse monoclonal VP3 

antibody (JCU/CAV/1C1) (1: 200) (TropBio Pty Ltd, Australia), rabbit polyclonal anti-GFP 
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antibody (1: 250) (Invitrogen), rhodamine (TRITC) affiniPure goat anti-mouse IgG (H+L) (1:100) 

(Jackson Immunoresearch Laboratories Inc, USA) and anti-rabbit conjugated FITC (1:100) were 

used for immunofluorescence (IF) assay. Human EGFR/HER1/ErbB1 protein (His tag) (100001-

H08H, Sino Biological Inc, China), rabbit monoclonal antibody to human EGFR/ErbB/HER1 

(10001-R021, Sino Biological Inc, China), Epidermal growth factor (EGF) recombinant protein 

(RP-10914, ThermoScientific, USA), human EGF Monoclonal antibody (M806, 

ThermoScientific, USA), Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson 

Immunoresearch Laboratories Inc, USA), peroxidase affiniPure Goat Anti-Rabbit IgG (H+L) 

(Jackson Immunoresearch Laboratories Inc, USA) and sigma Fast OPD (Sigma-Aldrich, USA) 

were used for enzyme-linked immunosorbent assay (ELISA). slowFade® diamond antifade 

mountant (ThermoScientific, USA) was used to mount cell samples used for microscopic 

examination. Cell proliferation reagent WST-1 (Roche Applied Science, USA) was used to 

measure viability of cultures. MitoPT TMRM assay kit (Immunochemistry Technologies, USA) 

and magic red caspase 3 & 7 assay kit were used to analyse depolarization of mitochondrial 

membrane potential and caspase activity of apoptin-treated cell samples.  

6.2.1.4 Specialised equipment 

Nikon Instruments Eclipse Ti-E inverted microscope and Zeiss Observer Z1 microscope and 

Zeiss LSM 510 META highspeed confocal microscope were used for microscopic imaging of 

cell samples. FemtoJet pressure unit (Eppendorf, USA), three-axis coarse positioning 

micromanipulator MMN-1 (Narishige, USA) and three-axis joystick type oil hydraulic fine 

micromanipulator MMO-202ND (Narishige, USA) were the microinjection system used to 

deliver recombinant GFP and GFP-apoptin into mammalian A549 cells. Inverted microscope 

Axiovert 40°C (Zeiss) was used for visualising cells during microinjection. Molecular Devices 

MPR-100 SpectraMax M2 was used to collect absorbance for ELISA and cell viability assay.  

6.2.1.5 Bioinformatics and statistical analysis 

Photos taken by Nikon Eclipse Ti Inverted Microscope were analysed using Nikon NIS Elements 

(Nikon Instruments Inc, USA); while, photos taken by Zeiss 5 Live DUO Highspeed Confocal 

Microscope were analysed using Zeiss LSM 5 (Zeiss, USA). Data collected from cell viability 
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assay and enzyme-linked immunosorbent assay (ELISA) were plotted using four parameter 

fitting model from Microsoft Excel. 

6.2.2 Enzyme-linked immunosorbent assay (ELISA) 

A549 cells were seeded at 0.8 X 104 cells/ well on 96-wells plate and incubated at 37°C 

overnight. ELISA plates were also coated with 2.5 mg/ml of human EGFR/HER1/ErbB1 protein 

at 4ºC for 24 hours. A549 cells were fixed with 1% formaldehyde for 10 minutes, methanol for 5 

minutes and 80% acetone for 2 minutes (Zhang et al., 2003). Fixed cells as well as coated ELISA 

plates were blocked using 0.5% I-block buffer (dissolved in PBST-T) for at least an hour. 

Recombinant EGF-apoptin (EGF-VP3-HK), GFP-apoptin (GFP-VP3-H) and recombinant GFP 

were incubated with fixed A549 cells or pre-coated ELISA plates at room temperature for at 

least an hour. Samples were then washed for 6 times with 1 X PBS buffer. Primary antibodies 

(Table 6.1) were added to samples and incubated for another hour. Samples were washed for 6 

times with 1 X PBS buffer and followed by incubation with secondary antibodies (Figure 6.1) for 

an hour. Again, samples were washed similarly as abovementioned. Subsequently, 90 µl of 

Sigma Fast OPD was added to each well of samples and incubated at room temperature in dark 

for 20-30 minutes. Reactions were then stopped by adding 10 µl 5 M of sulphuric acid (H2SO4) 

and absorbance was taken at 492 nm. Absorbance for each sample was normalised with negative 

control to eliminate unspecific binding caused by rabbit polyclonal anti-GFP antibody or mouse 

monoclonal VP3 antibody.  

Table 6.1: List of antibodies used in ELISA.  

No Protein samples 
Incubation with primary antibodies 

and amount used in ELISA 

Incubation with secondary antibodies 

and amount used in ELISA 

1 Recombinant GFP 
Rabbit polyclonal anti-GFP 

antibody (1 µg/ml) 

Peroxidase AffiniPure Goat Anti-

Rabbit IgG (H+L) (1: 25 000) 

2 Recombinant GFP-VP3-H 
Rabbit polyclonal anti-GFP 

antibody (1 µg/ml) 

Peroxidase AffiniPure Goat Anti-

Rabbit IgG (H+L) (1: 25 000) 

3 Recombinant GFP-VP3-H 
Mouse monoclonal VP3 antibody 

(1: 10 000) 

Peroxidase AffiniPure Goat Anti-

Mouse IgG (H+L) (1: 7 500) 

4 Recombinant EGF-VP3-HK 
Mouse monoclonal VP3 antibody 

(1: 10 000) 

Peroxidase AffiniPure Goat Anti-

Mouse IgG (H+L) (1: 7 500) 
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6.2.3 Microinjection procedures 

A549 cells were seeded on coverslip at 40-50% confluency a day (preferable incubation for at 

least 24 hours) before microinjection. Protein samples (2.5 mg/ml recombinant GFP or ~ 0.8-1.0 

mg/ml GFP-VP3-H) were prepared as described in section 6.2.1.2. Ideally, protein concentration 

~ 3 mg/ml was recommended for microinjection work; however, concentration of recombinant 

GFP-VP3-H (~ 0.8-1.0 mg/ml) is the maximum protein concentration could be obtained in 

current study. For the identification of injected cells, protein samples were prepared with 2 

mg/ml of dextran conjugated fluorescein (70 000 MW) Anionic or lysine fixable dextran 

conjugated texas red (10 000 MW). Injection mixtures were centrifuged at 15 000 xg for 20 

minutes immediately before microinjection to eliminate precipitates that might clog the opening 

of microinjection capillary. Approximately 3.5 µl of mixtures were transferred to microloader 

tips in order to load samples into femtotips II. Femtotips II loaded with protein mixture was then 

incubated vertically at room temperature for 1-2 minutes for capillary reaction to fill the tip with 

protein sample. Air bubbles trapped in the liquid sample within the capillary should be removed 

with a gentle tap before pushing sample out from the capillary into a fresh PBS buffer using a 

pre-set <clean> function of microinjector at maximum pressure. Culture was replaced with fresh 

medium prior microinjection. Microinjection parameters were optimised by observing the 

condition of the cells which were microinjected with recombinant GFP. Thereafter, both 

recombinant GFP and GFP-VP3-H were delivered into cells by using microinjection pressure at 

100 hPa and injection time for 1s. Approximately 50-100 cells were injected for each sample. 

Culture was replaced with fresh medium again immediately after the microinjection procedure.   

 

6.2.4 Indirect immunofluorescence (IF) assay  

The A549 cells receiving microinjection (GFP-VP3-H) and recombinant EGF-VP3-HK were 

washed for 3 times with 1X PBS buffer before cells were fixed with 1% formaldehyde for 10 

minutes, methanol for 5 minutes and 80% acetone for 2 minutes (Zhang et al., 2003). Fixed cell 

samples were blocked using 0.5% I-block buffer (dissolved in PBST-T) for at least an hour 
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before samples were incubated with primary antibody (Table 6.2) for another hour. Subsequently, 

cells were washed for 3 times with 1X PBS-T buffer (5 minutes interval). Cells were then 

incubated with secondary antibody (Table 6.2) for an hour following by the same 3-time washing 

step with 1X PBS-T buffer. Eventually, cell nucleus was stained using nuclear staining dye 

(Hoechst, PI or SYB Green). Nuclei of detected cells were stained using PI (for cells 

microinjected with recombinant GFP) and SYB Green (for cells microinjected with recombinant 

GFP-VP3-H). The mounted samples were viewed and images were captured. For cells 

microinjected with recombinant GFP and GFP-VP3-H, all detected cells were counted to 

quantify for the detection and survival rate of cells.  

Table 6.2: List of antibodies used in IF. 

No Cell samples 
Incubation with primary antibodies 

and amount used in IF 

Incubation with secondary 

antibodies and amount used in IF 

1 
Cells microinjected with 

recombinant GFP-VP3-H 

Mouse monoclonal VP3 antibody  

(1: 250) 

Rhodamine (TRITC) affiniPure 

Goat Anti-Mouse IgG (H+L) 

(1:100) 

2 
Cells incubated with 

recombinant EGF-VP3-HK 

Mouse monoclonal VP3 antibody 

 (1: 250) 

Rhodamine (TRITC) affiniPure 

Goat Anti-Mouse IgG (H+L) 

(1:100) 

3 
Cells incubated with 

recombinant EGF-VP3-HK 

Rabbit monoclonal antibody to human 

EGFR/ErbB/HER1 (10 µg/ml) 

Anti-rabbit conjugated FITC 

(1:100) 

 

6.2.5 Cell Proliferation Reagent WST-1 assay 

A549 cells were seeded at 0.8 x 104 cells/ well (96-well plates) in 100 µl of culture medium a 

day before the experiment. Recombinant EGF-VP3-HK (330-3000 nM) and recombinant EGF 

(0.15-15 000 nM) were incubated separately with A549 cells (3 replicates for each samples) for 

72 hours before 10 µl of cell proliferation reagent WST-1 was added into each well of cell 

samples. Cell and reagent mixtures were incubated for ~ 1.5-2 hours. Samples were gently 

shaken before absorbance was measured at 420 nm. Cell viability of cells incubated with 

recombinant EGF-VP3-HK and recombinant EGF was calculated in relative to untreated cells 

(reflected as 100% of viable cells). Cell viability of recombinant EGF-VP3-HK and recombinant 

EGF was then plotted using four parameter fitting model from Microsoft Excel. 
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6.2.6 Mitochondrial membrane potential assay (MMP) 

Mitochondrial membrane is polarised when it is intact. Polarised mitochondrial membrane is 

negative charged within mitochondria and positive charged at the outer region. Loss of 

mitochondrial membrane potential is always caused by the depolarisation of charges or damage 

of mitochondrial membrane, which can occur in cells that are undergoing stress or apoptosis. 

Cell permeant, positively charged and lipophilic TMRM dye accumulates in mitochondria of 

normal cells and hence red fluorescence will be observed. However, red fluorescence is 

diminished as the membrane of mitochondria becomes permeable or depolarised in apoptotic or 

stressed cells. The charged reagent does not accumulate in mitochondria but disperses in the 

cytoplasm. The redistribution of this reagents causes the significant drop of signal; thus, red 

fluorescent signal will no longer be observed.    

In order to assess the MMP, microinjection was performed on every cells located within a grid. 

On the other hand, MMP test was performed on recombinant EGF-VP3-HK treated A549 cells 

using 3030 nM of recombinant protein. Cells microinjected with recombinant GFP and GFP-

VP3-H as well as cells incubated with recombinant EGF and recombinant EGF-VP3-HK were 

washed for 3 times with PBS buffer before samples were incubated with 200 nM of MitoPT 

assay TMRM reagent for 15-20 minutes at 37°C in dark. Cell samples were washed for 3 times 

with PBS buffer before image of samples were captured using Nikon Eclipse Ti inverted 

microscope.   

6.2.7 Caspase 3/7 assay  

Activation of caspase is also a hallmark for apoptosis. Evaluation for activity of caspase could be 

assessed by examining cleaving activity of caspases (such as caspase 3) towards targeted amino 

acid aspartate-glutamate-valine-aspartate, (z-DEVD)2 peptide. Cell permeant magicred caspase-

3/7 reagent is DEVD-based caspase substrate coupled with cresyl violet fluorophore. Upon the 

cleavage of DEVD targeted sequence by caspase, the active fluorophores will be released and 
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more intense fluorescent signal is observed after the cleavage. Hence, elevated amount of 

caspases in cells could be assessed by the elevation of the fluorescent signal.    

In order to assess the caspases activity, microinjection was performed on every cells located 

within a grid. On the other hand, caspases activity was performed on recombinant EGF-VP3-HK 

treated A549 cells using 3030 nM of recombinant protein. Cells microinjected with recombinant 

GFP and GFP-VP3-H as well as cells incubated with recombinant EGF and recombinant EGF-

VP3-HK were washed for 3 times with PBS buffer before samples were incubated with magicred 

caspase-3/7 reagent (1:150) for 60 minutes at 37°C. Then, cell samples were rinsed twice with 

PBS buffer (1 minute per rinse) before images were captured using Nikon Eclipse Ti inverted 

microscope.   
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6.3 Results 

6.3.1 Evaluation for the interaction of recombinant apoptin (GFP-VP3-H and 

EGF-VP3-HK), A549 cells and EGF receptors 

Epidermal growth factor receptors (EGFR) were overexpressed on cell surface of A549 cells; 

hence, A549 cells and recombinant EGF receptors were used to determine the specific binding 

efficiency of recombinant apoptin (GFP-VP3-H and EGF-VP3-HK). Serving as a control, 

recombinant GFP did not bind to EGF receptors (dark green line) but it bound to A549 cells 

(light green line) at very low efficiency (Figure 6.1). Recombinant GFP-VP3-H bound to Human 

EGF receptors (red lines) as well as A549 cells (purple lines) (Figure 6.1). Binding of 

recombinant GFP-VP3-H to A549 cells was steadily higher than that of Human EGF receptors as 

reacted with both antibodies. Besides, detection levels of recombinant GFP-VP3-H using rabbit 

polyclonal anti-GFP antibody (dark purple and dark red) were shown higher than those of mouse 

monoclonal VP3 antibody (blue and pink). 
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Figure 6.1: Binding activities of recombinant GFP (green lines) and GFP-VP3-H (red and purple 

lines) towards A549 cells and Human EGF receptors as tested by ELISA. Absorbance for each 

sample was normalised with negative control to eliminate unspecific binding caused by rabbit 

polyclonal anti-GFP and mouse monoclonal VP3 antibodies. Collected data was plotted using 

four parameter fitting model from Microsoft Excel. In contrast to recombinant GFP control 

(green lines), recombinant GFP-VP3-H (purple and red lines) bound strongly to A549 cells and 

Human EGF receptors but with a higher level towards A549 cells.  
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Recombinant EGF-VP3-HK bound to A549 cells as well as human EGF receptors (Figure 6.2). 

Binding of recombinant EGF-VP3-HK to human EGF receptors (dark blue) was slightly stronger 

than that of A549 cells (light blue). 

 

Figure 6.2: Binding activities of recombinant EGF-VP3-HK towards A549 cells (light blue) and 

Human EGF receptors (dark blue) as tested by ELISA. Absorbance for each sample was 

normalised with negative control to eliminate unspecific binding caused by rabbit polyclonal 

anti-GFP and mouse monoclonal VP3 antibodies. Collected data was plotted using four 

parameter fitting model from Microsoft Excel. Recombinant EGF-VP3-HK bound to A549 cells 

as well as EGF receptors with the latter shown a higher level.  
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6.3.2 Bioactivity of recombinant GFP-apoptin (GFP-VP3-H) in A549 cells 

delivered via microinjection 

 Standardisation of microinjection procedure 

Microinjection was performed for ~ 100-150 cells per sample. Intrinsic signal of recombinant 

GFP protein was detected in microinjected cells from 2 to 24 hours (Figure 6.3). It was estimated 

that ~ 60% of cells microinjected with recombinant GFP protein was detected and remained 

healthy until 24 hours post microinjection. However, signal of the GFP protein was gradually 

faded over time with the lowest level was observed from microinjected samples incubated for 24 

hours (Figure 6.3 -e).  
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Figure 6.3: Fluorescence microscopic observation of A549 cells microinjected with recombinant 

GFP protein. Images of microinjected A549 cells were captured at (a) 2 hours, (b) 4 hours, (c) 6 

hours, (d) 12 hours and (e) 24 hours post microinjection. Recombinant GFP was microinjected at 

2.4 mg/ml and intrinsic signal of recombinant GFP was detected in microinjected cells using 

Nikon Instruments Eclipse Ti-E inverted microscope. Intrinsic GFP signal of recombinant GFP 

faded when cells were incubated for a longer period, especially at 24 hours post microinjection.  
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 Immunofluorescence detection of A549 cells microinjected with 

recombinant GFP-VP3-H 

Since concentration of recombinant GFP-VP3-H was low (~ 0.8 – 1.0 mg/ml), intrinsic signal of 

GFP was difficult to be detected in microinjected cells. Therefore, detection of cells 

microinjected with recombinant GFP-VP3-H was performed using indirect immunofluorescence 

assay (IF) using mouse monoclonal VP3 antibody and Rhodamine (TRITC) AffiniPure Goat 

Anti-Mouse IgG (H+L). Cells were successfully microinjected with recombinant GFP-VP3-H 

would fluorescent in red (Figure 6.4) after IF was performed. Nuclei of detected cells were 

stained using PI (for cells microinjected with recombinant GFP) and SYB Green (for cells 

microinjected with recombinant GFP-VP3-H). Viability of cells (50-100 cells) was scored based 

on the morphology of cell nucleus (Figure 6.5). Figure 6.5 shows only viability of cells generated 

from a single experiment. Cell viability for microinjection of recombinant GFP remained above 

50% when samples were incubated from 2 to 12 hours; however, cell viability was dropped to ~ 

35% when samples incubated for 24 hours (Figure 6.5). For microinjection of recombinant GFP-

VP3-H, chromatin condensation was observed (Figure 6.6) and viable cells were found as low as 

20-35 % at 2-4 hours post microinjection. This conformed to the number of cells microinjected 

with recombinant GFP-VP3-H with red fluorescent signal decreased over time and almost 

diminished at 24 hours post microinjection (Figure 6.4 -e). Hence, limited viable cells was 

considered since very low red fluorescent signal was detected.  
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Figure 6.4: Fluorescence microscopic observation of A549 cells microinjected with recombinant 

GFP-VP3-H protein under IF using mouse monoclonal VP3 antibody and Rhodamine (TRITC) 

AffiniPure Goat Anti-Mouse IgG (H+L). Images of microinjected A549 cells were captured at (a) 

2 hours, (b) 4 hours, (c) 6 hours, (d) 12 hours and (e) 24 hours post microinjection. Recombinant 

GFP-VP3-H was microinjected at ~0.8-1.0 mg/ml. Detected signal of recombinant GFP-VP3-H 

(red fluorescence) faded when cells were incubated for a longer period. 
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Figure 6.5: Viability of cells microinjected with recombinant GFP and GFP-VP3-H calculated 

based on total cell numbers receiving microinjection. Cells microinjected with recombinant GFP 

was determined based on intrinsic signal of the protein; however, cells microinjected with 

recombinant GFP-VP3-H was identified based on IF using mouse monoclonal VP3 antibody and 

Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG (H+L). Nuclei of detected cells were 

stained using PI (for cells microinjected with recombinant GFP) and SYB Green (for cells 

microinjected with recombinant GFP-VP3-H). Viability of cells (50-100 cells) was scored based 

on the morphology of cell nucleus. The data were represented only viability of cells obtained 

from a single experiment. Complete scoring data for detected cells as well as viability of cells are 

shown in Appendix 6.3. For microinjection of recombinant GFP-VP3-H, viability of cells was 

lower than that of cells microinjected with recombinant GFP. In general, decrements of detected 

as well as viable cell numbers were observed in cells microinjected with recombinant GFP-VP3-

H.   
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Figure 6.6: Immunofluorescence microscopic observation of cells microinjected with 

recombinant GFP-VP3-H its stained nuclei. Photos in this section were representative data for 

microinjected cells showing morphological changes at 6 and 24 hours. Nevertheless, similar 

morphological changes could also been observed on other time points. (a) A549 cells 

microinjected with recombinant GFP-VP3-H at pressure 100 hPa at 6 hours post microinjection 

under IF using mouse monoclonal VP3 antibody and Rhodamine (TRITC) AffiniPure Goat Anti-

Mouse IgG (H+L). Red colours indicated the location of recombinant GFP-VP3-H in A549 cells. 

(b) Nuclear staining of A549 cells microinjected with recombinant GFP-VP3-H at pressure 100 

hPa at 6 hours post microinjection using SYB Green. Chromatin condensation (white arrowheads) 

was observed in some A549 cells microinjected with recombinant GFP-VP3-H in contrast to 

normal and healthy nuclei (yellow arrowheads). (c) A549 cells microinjected with 

recombinant GFP-VP3-H at pressure 50 hPa at 24 hours post microinjection under IF using 

mouse monoclonal VP3 antibody and Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG 

(H+L). Red colours indicated the location of recombinant GFP-VP3-H in A549 cells. (blue 

arrowheads). (d) Nuclear staining of A549 cells microinjected with recombinant GFP-VP3-H at 

a b 

c d 
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pressure 50 hPa using SYB Green. Chromatin fragmentation (blue arrowheads) was observed in 

some A549 cells microinjected with recombinant GFP-VP3-H in contrast to normal and healthy 

nuclei.   

 Nuclear localisation characteristics of recombinant GFP-VP3-

H microinjected into A549 cells  

Recombinant GFP and GFP-VP3-H were microinjected into cytoplasm of A549 cells. 

Microinjected recombinant GFP distributed equally in A549 cells (Figure 6.7 -a(i)); however, 

majority of recombinant GFP-VP3-H was localised to cell nucleus (Figure 6.7  -b and c(ii)). 

Nuclear localisation activity of recombinant GFP-VP3-H was confirmed by the staining of cell 

nucleus using Hoechst dye. IF signal detected for recombinant GFP-VP3-H (red) was co-

localised with Hoechst dye (blue). Nuclear localisation activity of recombinant GFP-VP3-H was 

detected as early as 2 hours post microinjection. 
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Figure 6.7: Immunofluorescence microscopic observation of A549 cells microinjected with 

recombinant GFP and GFP-VP3-H proteins at 2 hours post microinjection. Photos in this section 

were representative data for microinjected cells showing morphological changes at 6 and 24 

hours. Nevertheless, similar morphologhical changes could also been observed on other time 

points. (a) Microinjected A549 cells with recombinant GFP. Microinjected recombinant GFP 

was distributed evenly in A549 cells. (a-i) Image captured at 465-495 nm was intrinsic signal of 

recombinant GFP in microinjected A549 cells. (a-ii) Image captured at 528-553 nm was nuclei 
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of cells microinjected with recombinant GFP stained with PI. (b and c) Representative images of 

microinjected A549 cells with recombinant GFP-VP3-H. (b-i and c-i) Images captured at 465-

495 nm were fluorescent signal detected from cells microinjected with recombinant GFP-VP3-H 

and Dextran conjugated Fluorescein (70 000 MW). (b-ii and c-ii) Images captured at 528-553 nm 

were IF assay of microinjected cell samples using mouse monoclonal VP3 antibody 

(JCU/CAV/1C1). (b-iii and c-iii) Nuclei of microinjected cells were stained by Hoechst dye. (b-

iv and c-iv) Overlaid images of stained nuclei and fluorescent signal detected upon IF for 

recombinant GFP-VP3-H protein in A549 cells.  

 Evaluation of depolarization of mitochondrial membrane 

potential (MMP) for cells microinjected with recombinant 

GFP-VP3-H 

MMP was evaluated for cells microinjected with recombinant GFP-VP3-H. Since loss of MMP 

is an early event of apoptosis, MMP assay was performed for 2 hours and 6 hours post 

microinjection. Red fluorescent signal due to the accumulation of MitoPT TMRM reagent in 

mitochondria was observed in normal and untreated A549 cells (Figure 6.8 -a and c). Loss of 

fluorescent signal should be observed if the MMP has been disturbed (refer to Appendix 6.4 

using a positive control). However, no apparent difference of fluorescent signal was observed 

between untreated cells and cells microinjected with recombinant GFP-VP3-H (Figure 6.8 -b and 

d). 
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Figure 6.8: Immunofluorescence microscopic observation of A549 cells microinjected with 

recombinant GFP-VP3-H under MMP assay. MMP assay was performed on untreated control at 

(a) 2 hours and (c) 6 hours post microinjection as well as on cells microinjected with 

recombinant GFP-VP3-H at (b) 2 hours and (d) 6 hours post microinjection. No difference was 

observed between fluorescent signal from untreated samples and cells microinjected with 

recombinant GFP-VP3-H. Most mitochondrial membranes of cells microinjected with 

recombinant GFP-VP3-H were still intact.  

 Assessment of Caspase 3/7 activity for cells microinjected with 

recombinant GFP-VP3-H 

Activation of caspases is an event happens at a later stage of apoptosis; hence, caspase 3/7 assay 

was performed started at 6 hours to 48 hours. The presence of activated capase 3 and 7 in 

apoptotic cells causes the accumulation of red fluorescent signal in cells, which could be 

observed from the result using a positive control as shown in Appendix 6.5. However, no 

fluorescent signal was observed in untreated A549 cells (Figure 6.9 -a, c and e) and cells 

microinjected with recombinant GFP-VP3-H (Figure 6.9 -b, d and f).  
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Figure 6.9: Immunofluorescence microscopic observation for caspase 3/7 assay performed for 

microinjected recombinant GFP-VP3-H. Caspase 3/7 assay performed on untreated control at (a) 

6 hours (c) 24 hours and (e) 48 hours post microinjection. Besides, caspase 3/7 assay performed 

on cells microinjected with recombinant GFP-VP3-H at (b) 6 hours, (d) 24 hours and (f) 48 

hours post microinjection. No fluorescent signal was observed from untreated samples as well as 

cells microinjected with recombinant GFP-VP3 proteins. Hence, caspase 3 and 7 might not be 

activated. 
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6.3.3 Bioactivity of recombinant EGF-apoptin (EGF-VP3-HK) in A549 cells 

6.3.3.1 Immunofluorescence detection of recombinant EGF-VP3-HK 

in A549 cells incubated with recombinant EGF-VP3-HK 

Recombinant EGF-apoptin (EGF-VP3-HK) is expected to bind to EGF receptors located on the 

cell surface of A549 cells and internalised into cells via catAd molecular adaptor; hence, no 

physical or chemical delivery tool was required to transfer the protein into intracellular space. At 

18 hours post treatment, IF results showed that recombinant EGF-VP3-HK was randomly 

distributed on cells at either cell surface or cytoplasm (Figure 6.10) without any apparent nuclear 

localisation signal as contrasted to which was found in ectopically expressed apoptin in A549 

cells (Appendix 6.1) and cells microinjected with recombinant GFP-VP3-H.     
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Figure 6.10: Immunofluorescence microscopic observation of recombinant EGF-VP3-HK treated 

A549 cells on ~ 18 hours post incubation using mouse monoclonal VP3 antibody. Images were 

captured using Zeiss LSM 510 META highspeed confocal microscope. (a) Detection of 

recombinant EGF-VP3-HK on treated A549 cell samples under IF using mouse monoclonal VP3 

antibody and Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG (H+L). (b) Cell nuclei of 

treated cell samples were stained using Hoechst dye. (c) Images of differential interference 

contrast (DIC) of treated cell samples. (d) Overlaid image of (a), (b) and (c). Recombinant EGF-

VP3-HK was still able to be detected 1 day post incubation of recombinant protein in A549 cells; 

however, distribution of protein was randomly located on either cell surface or cytoplasm.  
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In order to identify the internalisation of recombinant EGF-VP3-HK protein into intracellular 

space of cells, EGF receptors on A549 cells were detected using monoclonal antibody raised 

against Human EGFR/ErbB/HER1to determine the location of plasma membrane of cells (Figure 

6.11 and Figure 6.12). In untreated A549 cells, EGF receptors were distributed evenly on plasma 

membrane of the cells, which could be observed in Figure 6.11 (b-ii) and Figure 6.12  (a). 

Inclusion of a negative control confirmed the signal (Figure 6.11 -c) detected was due to specific 

binding of Rabbit Monoclonal antibody to Human EGFR/ErbB/HER1 to EGF receptor located 

on A549 cells and not the unspecific binding of anti-rabbit conjugated FITC to A549 cells. From 

Figure 6.12 (a), Z-stack images of untreated A549 cells clearly showed that EGF receptors 

formed a layer of Green, which was expected to be the plasma membrane of A549 cells, locating 

out of nucleus region (blue fluorescent signal as a result of staining by Hoechst dye). However, 

signal of EGF receptors (Green) obtained from recombinant EGF-VP3-HK treated A549 cells 

(Figure 6.11-a-ii) did not show the normal distribution of EGF receptors (Figure 6.11-b-ii) but 

the signal was found sharing similar distribution as that of recombinant EGF-VP3-HK (red) 

(Figure 6.11-a-iii). Since plasma membrane of recombinant EGF-VP3-HK treated A549 cells 

could not be indicated by the presence of EGF receptors, which supposed to be arranged on the 

cell surface, hence, the localisation of recombinant EGF-VP3-HK in either intracellular or 

extracellular could not be confirmed.  
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Figure 6.11: Immunofluorescence microscopic observation of recombinant EGF-VP3-HK treated 

and untreated A549 cells on ~ 18 hours post incubation using Rabbit Monoclonal antibody to 

Human EGFR/ErbB/HER1 and mouse monoclonal VP3 antibody. Images were captured using 

Zeiss LSM 510 META highspeed confocal microscope. (a) Detection of recombinant EGF-VP3-

HK in treated A549 cells. Signal of recombinant EGF-VP3-HK showed similar location as signal 

detected from EGF receptors. (b) Detection of EGF receptors in untreated A549 cells. EGF 

receptors were distributed evenly on plasma membrane of A549 cells. (c) Detection of untreated 

A549 cells serving as a negative control for IF assay. Images of nuclei were shown for (a-i) 

A549 cells incubated with recombinant EGF-VP3-HK, (b-i) and (c-i) untreated A549 cells 
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stained with Hoechst dye. Besides, detection of EGF receptors was conducted by using Rabbit 

Monoclonal antibody to Human EGFR/ErbB/HER1 and anti-rabbit conjugated FITC for (a-ii) 

A549 cells incubated with recombinant EGF-VP3-HK and (b-i) untreated A549 cells. (c-ii) 

Image of untreated A549 cells incubated with anti-rabbit conjugated FITC without Rabbit 

Monoclonal antibody to Human EGFR/ErbB/HER1. In addition, images for detection of 

recombinant EGF-VP3-HK using mouse monoclonal VP3 antibody and Rhodamine (TRITC) 

AffiniPure Goat Anti-Mouse IgG (H+L) were also shown for recombinant EGF-VP3-HK treated 

A549 cells (a-iii) as well as untreated A549 cells (b-iii and c-iii). (a-iv), (b-iv) and (c-iv) 

Overlaid signal from stained nuclei, EGF receptors and detected recombinant EGF-VP3-HK.  

      

 

  

 

    

Figure 6.12: Immunofluorescence microscopic examination at higher resolution of recombinant 

EGF-apoptin (EGF-VP3-HK) treated and untreated A549 cells on ~ 18 hours post incubation. 

The Z-stack images were captured using Zeiss LSM 510 META highspeed confocal microscope. 

(a) Z-stack images of untreated A549 cells detected using mouse monoclonal VP3 antibody, 

Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG (H+L), Rabbit Monoclonal antibody to 

Human EGFR/ErbB/HER1 and anti-rabbit conjugated FITC. EGF receptors which represented 

as a green layer, was expected to be the plasma membrane, located outside of cell nucleus. (b) Z-

stack images of recombinant EGF-VP3-HK treated A549 cells detected using mouse monoclonal 

VP3 antibody and Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG (H+L). Recombinant 

EGF-VP3-HK could not be confirmed to localise inside the cell nucleus.  
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6.3.3.2 Cell viability assessment for A549 cells incubated with 

recombinant EGF-VP3-HK 

Viability of recombinant EGF-VP3-HK treated A549 cells were assessed using Cell Proliferation 

Reagent WST-1 at 72 hours post incubation (Figure 6.13). Measurement for viability of 

treatment was represented by the ratio between recombinant EGF as well as recombinant EGF-

VP3-HK treated A549 cell samples to untreated A549 smaples. Recombinant EGF did not show 

any cell toxicity but promoted cell proliferation even at high concentration (~ 1500 nM). 

Recombinant EGF-VP3-HK also showed similar cell growth induction activty but a dose-

dependent growth inhibitory was observed when cell was treated at high concentration of 

recombinant protein (~ 3000 nM).   

 

Figure 6.13: Cell viability of A549 cells treated with recombinant EGF-VP3-HK as tested by 

using Cell Proliferation Reagent WST-1 at 72 hours post incubation. Recombinant EGF 

promoted cell growth even at high centration at ~1500 nM. A similar effect was seeen in 

recombinant EGF-VP3-HK treated A549 cells. Cell growth was noticed to have dose-dependent 

inihibitory effect at high concentration (~ 3000 nM). Measurement for viability of treatment was 

represented by the ratio between recombinant EGF as well as recombinant EGF-VP3-HK treated 

A549 cell samples to untreated A549 smaples. Data was plotted using four parameter fitting 

model from Microsoft Excel to fit all data on the best line.     
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6.3.3.3 Evaluation of depolarization of mitochondrial membrane 

potential (MMP) for A549 cells treated with recombinant 

EGF-VP3-HK  

MitoPT TMRM assay kit was also used to check depolarization of mitochondrial membrane of 

recombinant EGF-VP3-HK treated A549 cells. Results showed that the accumulation of MitoPT 

TMRM reagent in untreated and recombinant EGF treated A549 cells (Figure 6.14 -a and b) 

since strong red fluorescent signal was observed. However, red fluorescent signal in recombinant 

EGF-VP3-HK treated cells (Figure 6.14-c) were lost. Loss of the fluorescent signal indicated that 

mitochondrial membrane of cells might become permeable or membrane potential had been lost.  
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Figure 6.14: Fluorescence microscopic observation of recombinant EGF-VP3-HK treated A549 

cells for the evaluation of MMP. Accumulation of MitoPT TMRM reagents (red) was observed 

in (a) untreated and (b) recombinant EGF treated A549 cells. Accumulation of MitoPT TMRM 

reagents indicated that mitochondrial membrane of the cells was intact without losing membrane 

potential. Red fluorescent signal diminished as A549 cells were incubated with (c) 3030 nM of 

recombinant EGF-VP3-HK for 72 hours. This showed that treatment of recombinant EGF-VP3-

HK caused the loss of mitochondrial membrane potential or the increase of permeability of A549 

cells.  

6.3.3.4 Assessment of caspase 3/7 activity in A549 cells treated with 

recombinant EGF-VP3-HK  

Results showed that limited red signal was detected on both untreated (Figure 6.15 -a) as well as 

recombinant EGF (Figure 6.15-b) treated A549 cells. The faint signal might be caused by the 

background signal from MagicRed Caspase-3/7 substrate. No red fluorescent signal was 

observed in A549 cell samples treated with recombinant EGF-VP3-HK; therefore, caspase 3 or 7 

might not be activated in A549 cells treated with recombinant EGF-VP3-HK.  
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Figure 6.15: Fluorescence microscopic observation of A549 cells treated with recombinant EGF 

and EGF-VP3-HK for the assessment of Caspase 3/7 activity. Limited fluorescent signal was 

observed from (a) untreated and (b) recombinant EGF treated A549 cells. The faint signal might 

be caused by the background signal from MagicRed Caspase-3/7 substrate. However, no 

fluorescent signal was observed from (c) recombinant EGF-VP3-HK treated A549 cells. Hence, 

caspase 3/7 might not be activated in A549 cells treated with 3030 nM recombinant EGF-VP3-

HK for 72 hours.  
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6.4 Discussion 

This chapter discusses the cell-based study of recombinant apoptin. More than 20 years, apoptin 

had shown effective cell killing ability in more than 70 cancer cell lines including breast cancer 

(MCF-7), osteosarcoma (Saos-2 and U2OS), lung carcinoma (SLCC-1 and SLCC-2), hepatoma 

(HepG2 and Hep3B), SV-40 transformed fibroblast (Pre) and adenovirus-5-transformed 

embryonal retinoblasts (911) (Noteborn et al., 2008). Apoptin-induced apoptosis was reported 

that it triggers apoptosis via intrinsic (mitochondria-mediated) apoptosis pathway (Los et al., 

2009) and most of the studies reported that apoptosis induced by apoptin is independent of 

extrinsic pathway. Mitochondria-mediated apoptosis pathway was determined by several 

apoptotic events including loss of mitochondrial membrane potential, releasing of cytochrome c, 

formation of apoptosome and subsequently activation of caspases (especially caspases 3 and 9). 

In the study of Danen-van Oorschot et al. (2000), apoptin-induced apoptosis involved loss of 

mitochondrial membrane potential, releasing of cytochrome c and activation of caspase 3 in 

human osteosarcoma cell line Saos-2. In addition, apoptin-induced apoptosis is also independent 

on the presence of p53 and regulated by anti-apoptotic Bcl-2 in several tumour cell lines (Los et 

al., 2009).  

In this study, lung carcinoma (A549) was chosen to investigate for the recombinant apoptin due 

to the overexpression of epidermal growth factor receptors (EGFR) on the cell surface (Qian et 

al., 2014) (Figure 6.11-b) which is important to determine the activity of the plant-made 

recombinant EGF-apoptin (EGF-VP3-HK). Based on previous study, A549 cells were 

susceptible to apoptin when recombinant Newcastle disease virus was employed as delivery tool 

(Olijslagers et al., 2006). Activity of ectopically expressed apoptin had also been evidenced in 

A549 cells (Appendix 6.1). Significant cell death was observed from cells expressing apoptin 

alone, GFP-apoptin and EGF-apoptin on 4, 5 and 6 days post transfection. Besides, cell 

shrinkage, chromatin condensation and fragmentation of cell nucleus, which are the hallmarks of 

apoptosis, were observed from cells that expressing apoptin (Appendix 6.1- Figure A6.4). A549 

cells was confirmed to be susceptible to apoptin-induced apoptosis and hence this cell line was 

used to evaluate for the bioactivity of both recombinant GFP-apoptin (GFP-VP3-H) and EGF-

apoptin (EGF-VP3-HK).          
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Since A549 cell line was chosen for evaluating the bioactivity of the recombinant apoptin, 

interaction between apoptin and A549 cells was also studied by using enzyme-linked 

immunosorbent assay (ELISA). Apoptin was found interacting with A549 cells as well as EGFR 

in this ELISA binding assay. Instead of the expected binding activity from recombinant EGF-

VP3-HK, recombinant GFP-VP3-H was also noticed interacting with EGFR (Figure 6.1). For the 

detection, rabbit polyclonal anti-GFP antibody and mouse monoclonal VP3 antibody were both 

employed for the detection of recombinant GFP-VP3-H and EGF-VP3-HK. Higher detection 

was observed by using rabbit polyclonal anti-GFP antibody and this most likely due to the 

presence of small amount of degraded protein (Figure 5.4) as well as differences in binding 

efficiency for both kinds of antibodies. Up to date, there is no study of interaction between 

apoptin and EGFR. Besides, there is also no homology sequence found between apoptin and 

ligands of EGFR, including EGF, amphiregulin, Heparin-binding EGF-like growth factor and 

Betacellulin. A leucine rich regions (LRS) of apoptin, located on amino acids 33-46, was a 

region responsible for the multimerisation activity of protein (Leliveldb et al., 2004). Apoptin 

monomers interact via hydrophobic interaction into huge multimers via this LRS region. Leucine 

rich regions were also found in EGFRs separately on L1 and L2 extracellular domains (Ward and 

Garrett, 2001). Besides, small leucine-rich proteoglycan decorins was also found interacting with 

EGFRs via leucine rich region on both decorins and EGFRs (Santra et al., 2002). Hence, it is 

speculated that apoptin might interact with EGFRs via this LRS region located on both apoptin 

and EGFRs. Anyway, specific region results the interaction between apoptin and EGFRs should 

be studied and point mutation would be one of suitable option for study the region responsible 

for protein interaction in future.  

In this study, recombinant GFP-apoptin did not have cell penetrating peptides; therefore, delivery 

tool was required to assist the penetration of protein into intracellular space of A549 cells. 

PULSin® protein delivery reagent had been employed to deliver the protein into A549 cells; 

however, huge protein aggregates and clumps were found on A549 cells when IF was performed 

on transfected cells using mouse monoclonal VP3 antibody (Appendix 6.2). One of the possible 

reasons to form protein aggregates on transfected cells was the changes of environmental buffer 

and temperature, which were non-favorable for the stability of recombinant GFP-apoptin 

(Ciechanover, 2005).  Besides, apoptin was found that it might interact with A549 cells or EGF 
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receptors, which were also overexpressed on surface of A549 cells. Aggregation of EGF 

receptors occurs upon the binding of ligands.  Hence, protein aggregates on A549 cells after 

protein transfection procedure may be also caused by the aggregation of apoptin-EGF receptor 

complexes. Recombinant apoptin may clump into huge aggregates via the interaction of apoptin 

protein via the LRS region. The huge size of protein aggregates was the key research challenge 

for internalisation of the protein into A549 cells. For this instance, protein transfection as 

delivery tool was not successful. 

Hence, microinjection, an alternative delivery tool, was used for the delivery of recombinant 

GFP-apoptin (GFP-VP3-H) into cytoplasm of A549 cells. Microinjection, a direct and precise 

delivery approach, is usually performed at 50-120 hPa to deliver high concentration of protein (~ 

3mg/ml) into mammalian cells (Li et al., 1997; Lim et al., 2011). In this study, GFP was 

microinjected into A549 cells as negative control since GFP is of low toxicity to mammalian 

cells (Appendix 6.3) and it was a fusion protein for the recombinant apoptin (GFP-VP3-H). 

Based on a thorough observation for several attempts, cells microinjected with recombinant GFP 

was always detected at ~ 50-60% after the procedure and the remaining microinjected cells were 

suspected killed by the mechanical injury during injection process. Although microinjection can 

deliver protein precisely to cells and even to specific cellular compartment, minimising the 

mechanical injury induced during microinjection process is a huge challenge for this approach. 

Especially, microinjection in this study was performed manually, which may directly increase 

the risk of mechanical damage to microinjected cells. Besides, concentration of recombinant 

GFP-VP3-H was low (~ 0.8 mg/ml); hence, injection pressure was set at 100 hPa with injection 

time of ~ 1s. With this parameter set for microinjection, cells microinjected with recombinant 

GFP was still detected at ~ 50-60% and survived cells also maintained above 50%.  

In order to safeguard the bioactivity of recombinant apoptin using microinjection, assessment of 

the protein was performed within 24 hours (Lim et al., 2011; Zhang et al., 2003). In the study of 

Zhang et al. (2003), apoptin-induced apoptosis in osteosarcoma cells (Saos-2) was observed 

starting from 2 hours post microinjection and almost 80% of microinjected cells was dead at 24 

hours post microinjection. In this study, cells microinjected with recombinant GFP-VP3-H could 

not be identified based on the intrinsic signal of GFP from the protein since the green fluorescent 

signal was not detectable. Failure for the detection of intrinsic GFP signal from the recombinant 
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GFP-VP3-H after microinjection might be due the low amount of microinjected protein since the 

initial concentration of the protein was low. Besides, it might also due to the denaturation of 

protein after microinjected into the cells with a non-favorable environment for protein stability. 

In order to detect cells microinjected with recombinant GFP-VP3-H, indirect immunofluorescent 

(IF) assay was carried out using mouse monoclonal VP3 antibody. Based on the IF results, it was 

noticed that number of detected cells microinjected with recombinant GFP-VP3-H decreased 

rapidly when cell samples were incubated at 2-24 hours post microinjection (Figure 6.4). The 

most possible reason contributing to the reduced cell numbers from 2-24 hours post 

microinjection might due to the presence of intracellular proteolysis. Degradation of 

microinjected protein is probable as the decrease of intrinsic GFP signal of recombinant GFP in 

microinjected cells occurred when cells were incubated for a longer period (12-24 hours) (Figure 

6.3 and Table A6.1). The major challenge using proteins as therapeutic drugs is the stability of 

proteins after delivering into mammalian cells or animals. Intracellular stability of foreign 

proteins is always challenged by physiological pH, temperatures, salts and endogenous proteases 

(Torchilin, 2008). Denaturation or changes of folding state of proteins in the non-favourable 

cellular environment always lead to the loss of function and eventually to be degraded by 

proteolytic system such as ubiquitin-based proteolysis (Ciechanover, 2005). In this study, IF 

signal from cells injected with recombinant GFP-VP3-H was also 3-5 times lower than that of 

ectopically expressed cells undergoing apoptosis (Appendix 6.1). This might be due to the low 

concentration of protein stock used in microinjection. With the low amount of recombinant 

protein, the presence of intracellular proteolysis would further reduce the availability of protein 

in the cell, which might directly affect the activity of apoptin-induced apoptosis.       

The decrease of cell number may also be caused by the putative cell killing effect of recombinant 

GFP-VP3-H. Detected number of cells injected with recombinant GFP-VP3-H decreased faster 

than the number of cells injected with recombinant GFP (Appendix 6.3); hence, the decrease of 

detected cell number might not be attributed by the mechanical injury induced by the 

microinjection. To investigate the cell killing effect of recombinant GFP-VP3-H, protein 

localisation, nucleus morphology, depolarization of mitochondrial membrane potential (MMP) 

and activation of caspase 3/7 of microinjected cells were examined. Nuclear localisation of 

recombinant GFP-apoptin was observed in majority of injected cells (~ 70% of cells) and the 

localization activity of the protein was detected as early as 2 hours post microinjection (Figure 
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6.7). Nuclear localisation of apoptin was observed in various types of cancer cells (Noteborn et 

al., 1998) as well as in our study when apoptin was expressed ectopically in A549 cells 

(Appendix 6.1). Besides, apoptin was also found that it interacted with DNA and colocalised 

with heterochromatin (Danen-Van Oorschot2 et al., 2003; Leliveldc et al., 2004). Hence, the 

DNA binding ability of apoptin was believed playing a role in regulating expression of gene 

involving in apoptosis. On the other hand, chromatin condensation was observed in nuclei of 

some cells microinjected with recombinant GFP-VP3-H (Figure 6.6). However, it was found that 

cells injected with recombinant GFP-VP3-H did not show detectable positive result in the tests of 

depolarization of mitochondrial membrane potential (MMP) and activation of caspases 3/7. 

Increasing permeability of mitochondrial membrane or loss of mitochondrial membrane potential 

was an early event occurred in mitochondria-mediated apoptosis pathway. The release of 

cytochrome c always due to the permeable mitochondrial membrane leads to the formation of 

apoptosome, which is crucial to activate caspase 9. Active caspase 9 cleaves caspases 3, 6 and 7 

that involve in cellular protein degradation. Previous study of Maddika et al. (2005) confirmed 

that apoptin-induced apoptosis involves the loss of mitochondrial membrane potential and 

release of cytochrome c in Jurkat cells. Activation of caspase 3 was also confirmed in apoptin-

induced apoptosis in Jurkat as well as MCF-7 cells (Maddika et al., 2005; Burek et al., 2006). 

Nevertheless, increment in permeability of MMP and activation of caspase 3/7 were not 

convincingly detectable in cells microinjected with recombinant GFP-VP3-H. One of the reasons 

might be due to the low concentration of recombinant protein microinjected into cells, which is 

unable to trigger an apparent apoptosis in these two assays. Nevertheless, the probable induction 

of apoptosis cannot be absolutely ruled out as nuclear localization activity and some features of 

apoptosis (chromatin condensation and fragmentation as shown in Figure 6.6) were evidenced in 

the microinjected cells. Yet, more investigations on apoptotic activity induced by apoptin in 

current study are necessitated for a concrete confirmation.  

Based on the results of ELISA, binding of recombinant EGF-VP3-HK to EGF receptors was 

confirmed which might be due to the interaction between EGF and/or apoptin to EGF receptors. 

Upon the binding, recombinant EGF-VP3-HK is expected to be internalised into A549 cells 

without requiring any delivery tool. In this study, EGF linked molecular adaptor, containing 

membrane transfer sequence (MTS) and cytosolic cleavable unit (CCU), was employed to 

deliver the apoptin into A549 cells that overexpressed with the EGF receptors. In theory, EGF 
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from recombinant EGF-apoptin would bind to EGF receptors of A549 cells that subsequently 

internalised the apoptin into the cells via clathrin-mediated endocytosis. MTS could assist the 

penetration of apoptin through endosomal membrane and cleavage at cytosolic cleavable unit 

(CCU) could release apoptin into cytosol. Currently, the data as shown in section 6.3.3 could not 

confirm the exact location that the recombinant EGF-VP3-HK bound which could be either 

inside or outside the cells. This is owing to the location of EGF receptors, which supposed to be 

an indicator for the location of plasma membrane of recombinant EGF-VP3-HK treated A549 

cells was unlikely redistributed. Signal of EGF receptors was found at area exactly where signal 

of recombinant EGF-VP3-HK was detected in IF assay (Figure 6.11-a). Besides, EGF receptors 

were found aggregated into patches in contrast to the even distribution on plasma membrane, 

which is the case for the untreated A549 cells (Figure 6.11-b).  Aggregation of EGF receptors 

into patches was reported by Schlessinger et al (1978) upon the binding of EGF ligands before 

the ligand-receptors complexes were internalized via endocytosis. Hence, it is believed that the 

EGF receptor patches observed from the recombinant EGF-VP3-HK treated cultures might be 

induced by the binding of recombinant EGF from the protein. Besides, microscopic images 

showed that recombinant EGF-VP3-HK precipitated into huge size and distributed randomly in 

recombinant EGF-VP3-HK treated A549 culture (Figure 6.10). This protein did not localise to 

cell nucleus, which was contrarily observed in ectopically expressed apoptin (Appendix 6.1). To 

date, the reason for the precipitation of protein is still unknown. Hence, it is crucial to investigate 

whether aggregation of protein is induced before or after internalisation since the aggregation of 

protein might hamper the internalisation of protein into cytoplasm as well as localisation into 

nucleus. For future study, application of fluorescence scanning electron microscope (FL-SEM) 

and fluorescence integrated transmission electron microscope will be necessary to examine for 

the internalisation of protein by using fluorescence based protocols.  

From the current findings, the growth of A549 cells was not inhibited at ~ 500 -1500 nM of 

recombinant EGF-VP3-HK. However, treated A549 cells with recombinant EGF-VP3-HK 

induced proliferation of cells, which could also be observed from the cells treated with 

recombinant EGF (Figure 6.13). This result could be explained since binding of EGF to EGFR 

could lead to numerous kinds of cellular activities, including an enhancement of cell proliferation, 

differentiation and cancer development (Hyder et al., 2012). However, a dose-dependent growth 

inhibitory effect was observed when cells were incubated with recombinant EGF-VP3-HK at a 
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higher concentration (~ 3000 nM) though with an only ~20% reduced viability. Unlikely, due to 

limited protein, further concentrations could not be continued in the assay. Activation of caspase 

3/7 was not observed in this study but result showed that cells had a loss of MMP after 

incubation with recombinant EGF-VP3-HK at 3000 nM which concentration was coincided with 

the evidence of reduced cell viability. Considering the fact that the loss of MMP requiring a 

constant threshold stimulus of pro-apoptotic proteins, such as Bax; owing to the limited 

concentrations of EGF-VP3-HK tested, it may be speculated that the insufficient stimulus of Bax 

may halt the subsequent release of cytochrome c and thereby diminishing the probable formation 

of executioner caspase cascades including the caspase 3/7 activation which could not be detected 

currently in the study. In contrarily, one of the possible reasons leading to the growth inhibitory 

effect and undetectable caspase 3/7 activation at this high concentration of recombinant EGF-

VP3-HK may be due to the overloaded cultures with considerable amount of impure proteins. 

Purification of recombinant EGF-VP3-HK did not yield a good purity of protein as observed in 

Chapter 5 and huge amount of plant protein contaminants were detected in final eluted protein 

sample. Increasing MMP is an early event of apoptosis but it can also occur when cells 

undergoing a stress condition. Therefore, the recombinant EGF-VP3-HK treated A549 cells may 

be in stress condition rather than in the process of apoptosis. Further tests on the cellular Bax 

level and cytochrome c release as well as plant protein contaminant effect on cells should be 

conducted in order to verify for the actual reason and address the shortfall in the interpretations 

of apoptotic activity induced by the recombinant apoptin. 

In shorts, ectopically expressed apoptin using DNA transfection approach confirmed that A549 

cell line was susceptible to apoptin. Via ELISA binding assay, recombinant GFP-VP3-H and 

EGF-VP3-HK interacted with A549 cells as well as EGF receptors. However, the reasons for the 

interaction between recombinant apoptin and EGF receptors are yet to be made known. In this 

study, recombinant GFP-VP3-H was confirmed to be delivered into A549 cells using 

microinjection. Cells microinjected with recombinant GFP-VP3-H decreased rapidly when the 

cultures were incubated for a longer period. Although apoptotic features were observed in some 

cells, the decrease of microinjected cells still could not be concluded to be caused by the 

apoptosis induced by apoptin. Nevertheless, confirmation of nuclear localisation activity of 

recombinant GFP-VP3-H confirms the nuclear localisation domains of apoptin is active. In 
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current stage of study, recombinant EGF-VP3-HK was found binding to EGF receptors located 

on A549 cells due to the detected clumps of EGF receptors upon treatment. However, 

internalisation of recombinant EGF-VP3-HK is yet to be confirmed. Recombinant EGF-VP3-HK 

stimulated cell proliferation but a dose-dependent growth inhibitory effect was observed when 

cells were incubated with recombinant protein at a higher concentration. In addition, apoptin-

induced apoptosis still could not be verified by current study for A549 cells treated with 

recombinant EGF-VP3-HK. In order to make apoptin becoming a great anticancer candidate in 

the future, an efficient delivery of the protein must be developed and understanding on the 

mechanisms of apoptin-induced apoptosis is also critical in order to correctly target apoptin to 

cancer cells.  
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Chapter 7 

General Discussion  

Apoptin, the smallest 14 kDa non-structural Viral Protein (VP3) of Chicken Anemia 

Virus (CAV), is responsible for the destruction of lymphocytes via induction of 

apoptosis (Noteborn et al., 1994). Due to the apoptosis-inducing feature of the protein, 

VP3 was called as “apoptin” by Noteborn and Koch (1995). Other than inducing 

apoptosis in chicken lymphoblastoid T and myeloid cells that are susceptible to CAV 

infection, apoptin-induced apoptosis was also found in tumourigenic and transformed 

mammalian cells (Zhuang et al., 1995). More than 70 cancer cells were reported 

sensitive to apoptin and underwent apoptosis eventually (Los et al., 2009.). Up to date, 

normal or non-transformed cells, including chicken fibroblast that lacks susceptibility 

to CAV infection are not sensitive to apoptin. Apoptin contains 121 amino acids 

coding for a leucine rich region (LRR), locating at amino acids 33-16, and a bipartite 

nuclear localisation signal NLS1 and NLS2, locating at amino acids 82-88 and 111-

121. Although exact mechanisms of apoptin-induced apoptosis are yet to be 

elucidated, the intrinsic pathway involvement had been evidenced and a huge variety 

of apoptosis-related proteins were found interacting with apoptin (Los et al., 2009.). 

Study of apoptin was achieved in mice as well as mammalian cell lines via liposome-

based DNA transfection, nanoparticles, viral vectors, recombinant proteins and 

intratumoural injection (Rollano Penaloza et al., 2014). Up to date, recombinant 

apoptin had been successfully expressed in bacteria (E. coli), plants (Nicotiana 

benthamiana) and mammalian cells (HUVEC) (Zhang et al., 2003; Lacorte et al., 

2007; Ma et al., 2012). The apoptotic induction activity in tumor cells was obtained 

from recombinant apoptin recovered from bacterial and mammalian cells. However, 

bioactivity of plant-made apoptin has not been assessed in mammalian cell lines. 

Besides, several issues have been encountered during the research of apoptin, 

including uneven delivery of apoptin gene into cancer cells using DNA transfection 

method, risk of potential infection when mammalian viral vectors are used, cytotoxic 

effect from transfection reagents as well as huge amount of recombinant apoptin 

harvested from insoluble protein fraction (Anson, 2004; Backendorf et al., 2008). 

Hence, this study would like to evaluate the feasibility of plant expression system for 
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the production of recombinant apoptin. Besides, some preliminary studies were also 

performed to explore the apoptosis-inducing potential of plant-made apoptin.  

Flexibility for up-scaling, high expression level as well as lack of potential infectious 

or pathogenic microbes are the attractive benefits of using plant-based system. In this 

study, tobacco, N. benthamiana, was used for the expression of recombinant apoptin 

since N. benthamiana is a non-crop, model plant as well as a huge amount of biomass 

could be harvested from its leaf tissue (Tremblay et al., 2010.). Agroinfiltration, a 

scalable, non-expensive, rapid and simple gene delivery tool, was employed in this 

study to deliver recombinant DNA vectors into leaves of N. benthamiana. Instead of 

using syringe, vacuum infiltration, a more efficient and productive way, was used to 

infiltrate large batches of plants in order to generate a huge amount of plant materials 

in a short period of times for downstream bioprocessing procedures. With the similar 

delivery efficiency for each batch of plants, data generated for protein expression-

associated morphological changes as well as comparative expression profiles of 

recombinant vectors were more reliable.  

In order to obtain an optimal protein expression and ease for purification, several 

gene cassettes were designed. Recombinant apoptin was inserted into vectors as 

apoptin gene alone (gene cassettes: PR-VP3-HK, PR-VP3-H and VP3-H), apoptin 

gene in fusion to C-terminal of green fluorescent protein (GFP) (gene cassettes: PR-

GFP-VP3-HK, PR-GFP-VP3-H and GFP-VP3-H) and apoptin gene in fusion to C-

terminal of lichenase (gene cassettes: PR-Lic-VP3-HK, PR-Lic-VP3-H and Lic-VP3-

H). Signal peptide (PR1a), hexa-histidine tag as well as endoplasmic reticulum 

(ER)(KDEL) retention signal were separately fused to apoptin gene cassettes in order 

to target recombinant proteins to ER, apoplast or cytoplasm. Besides, apoptin gene 

was also designed in fusion to H22 single chain antibody (gene cassettes: PR-H22-

CatAd-VP3-HK, PR-H22-CatAd-VP3-40-121-HK, PR-H22-CatAd-VP3-60-121-HK 

and PR-H22-CatAd-VP3-80-121-HK) and epidermal growth factor (EGF) (gene 

cassettes: PR-EGF-CatAd-VP3-HK, PR-EGF-CatAd-VP3-40-121-HK, PR-EGF-

CatAd-VP3-60-121-HK and PR-EGF-CatAd-VP3-80-121-HK). The design of fusion 

to H22 single chain antibody and EGF was to target the protein to specific cancer 

cells that overexpressed immunoglobulin G (IgG)(CD64) and EGF receptors. 

Truncated apoptin versions in fusion to H22 single chain antibody as well as EGF 
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were also attempted. Protein expression profiles of all gene cassettes were compared 

and the most ideal recombinant vectors with promising protein yield were selected for 

the use in the downstream purification steps.    

In order to obtain high protein yield for recombinant apoptin from plant-based 

expression system, several improvement strategies were applied at transcriptional and 

translational levels which could be achieved by using recombinant vectors enabling 

high expression of protein, co-expression with gene silencing suppressors as well as 

codon optimisation for gene of interest. In this study, tobacco mosaic viral (TMV) 

based vector pGR-D4 as well as binary vector pGR-DN were used for the expression 

of recombinant apoptin. Expression of recombinant proteins using viral vectors 

always yields several folds higher of proteins. High expression of proteins is normally 

induced by the strong promoters and untranslated regions located on viral genome 

(Kanoria and Burma, 2012). Recombinant apoptin was also expressed using binary 

vector, pGR-DN, that harbours a strong promoter (CaMV double 35S promoter) and 

tobacco etch virus (TEV) enhancer. Infiltration of transformants bearing the 

recombinant vector, pGR-DN requires the co-infiltration with gene silencing 

suppressors (P19 and P1/HC-Pro). Employment of gene silencing suppressors is 

crucial for inhibiting gene silencing events from host plants that suppress 

transcription as well as translation programme of foreign proteins (Feller et al., 2013). 

Gene silencing suppressor is not used with TMV-based vector since 126k protein of 

TMV is believed involving in gene silencing suppression activities. Codon 

optimisation is also commonly performed to increase preferable codons used by the 

host plants in order to increase transcription and translation efficiency (Quax et al., 

2015). In this study, codon optimisation was performed on sequences of recombinant 

apoptin and fusion proteins, including green fluorescent protein (GFP), lichenase, 

H22 single chain antibody and epidermal growth factor (EGF), to increase the 

percentage of N. benthamiana preferable codon and remove mRNA secondary 

structure that might hamper the translation process. Codon adaptation index (CAI), a 

measurement for codon adaptiveness of a gene sequence towards the favorable codon 

usage of highly expressed gene in a host species, of optimised gene sequences 

increased from 0.6-0.7 to 0.8 (Chapter3). In addition, effective number of codon 

(ENC) value of optimised gene sequences was also reduced showing a bias of codon 

towards the preference codons used by N. benthamiana.    
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Besides, several approaches were applied to increase the yield of recombinant apoptin 

at post translational level. Recombinant apoptin was in fusion to large protein, 

targeted to specific cellular compartment, co-expressed with endoplasmic reticulum 

(ER) stress proteins as well as expressed in truncated peptides in order to stabilise the 

protein and escape from proteolytic degradation. Fusion of recombinant apoptin to 

large proteins, especially GFP (recombinant pGR-D4:: PR-GFP-VP3-HK) and 

lichenase (recombinant pGR-D4:: PR-Lic-VP3-HK), was observed with several folds 

of protein yield increase as compared to apoptin expressed alone (recombinant pGR-

D4:: PR-VP3-HK) (Chapter 4). The fusion to large proteins might promote stability 

and consequently increase solubility of the targeted protein via formation of fusion 

proteins in micelle-like structure, high propensity of fusion partners in the attraction 

of chaperone proteins, presence of intrinsic chaperone-like activity and preventing the 

formation of protein aggregates by electrostatic repulsion (Costa et al., 2014). 

However, not all fusion proteins might result a positive impact for the expression of 

recombinant apoptin. In this study, fusion of apoptin to H22 single chain antibody 

yielded a huge amount of degraded bands instead of full length recombinant H22-

apoptin. Besides, recombinant apoptin was also stored at specific plant cellular 

compartments in order to rescue proteins from degradation by a high amount of 

cytosolic active proteases as well as receive a proper folding (Streatfield, 2007.). It 

was noticed that apoptin gene cassettes without signal peptide and ER retention signal 

were expected to be accumulated in cytoplasm. However, the protein was in fact 

accumulated in nucleus (gene cassette: GFP-VP3-H) and this might be due to the 

nuclear localisation activity caused by the bipartite nuclear localisation signal (NLS) 

located at the C-terminal end of apoptin. Accumulation of soluble fraction of 

recombinant apoptin showed a higher amount in ER than in nucleus and apoplast. In 

particular, recombinant GFP-apoptin (recombinant pGR-D4:: PR-GFP-VP3-HK) 

yielded ~ 2 folds of soluble protein when was accumulated in ER rather than in 

apoplast (recombinant pGR-D4:: PR-GFP-VP3-H) and nucleus (recombinant pGR-

D4:: GFP-VP3-H). However, it was noticed that recombinant apoptin, including 

apoptin alone, GFP-apoptin and lichenase-apoptin, targeted to nucleus produced the 

highest amount of proteins in relative to ER and apoplast. Hence, a higher solubility 

of protein could be obtained when the protein was targeted and retained in ER 

compartment. This is most probably due to the presence of a huge variety of 

chaperones that always facilitates protein folding (Streatfield, 2007). Overexpression 
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of recombinant gene always leads to ER stress response as a result of loss of balance 

for protein processing in ER lumen (Kopito, 2000). ER stress response causes the 

accumulation of insoluble protein as well as early plant death in infiltrated plants. 

Early plant death was observed in plants infiltrated with recombinant pGR-D4:: PR-

VP3-HK, pGR-D4:: PR-VP3-H, pGR-D4:: PR-Lic-VP3-HK and pGR-D4:: PR-Lic-

VP3-H. ER stress proteins, such as bZIP17, bZIP28 and bZIP60, are transcriptional 

factors inducing expression of unfolded protein response (UPR) related genes. Up-

regulation of UPR genes would lead to an elevated level of chaperones (Duwi Fanata 

et al., 2013). In this study, co-expression of bZIP60 with apoptin alone (recombinant 

pGR-DN:: PR-VP3-HK_bZIP60) had resolved early plant death symptom as 

observed when apoptin was expressed alone. On the other hand, co-expression of 

recombinant apoptin alone with ER stress proteins bZIP60 also caused increasing 

protein expression in soluble fraction as well as total protein. However, co-expression 

of recombinant bZIP 28 and bZIP17 did not cause any significant changes for the 

plants as well as protein expression. Besides, co-expression of ER stress proteins also 

did not improve expression of recombinant GFP-apoptin (gene cassette: PR-GFP-

VP3-HK) and EGF-apoptin (gene cassette: PR-EGF-VP3-HK). In the other hand, 

expression of truncated domains of recombinant apoptin was also studied. Since the 

N-terminal region of apoptin was responsible for the aggregation activity (Leliveldc et 

al., 2003), truncated versions of apoptin (VP3-40-121, VP3-60-121 and VP3-80-121) 

in fusion to EGF and H22 single chain antibody were generated by removing the N-

terminal region of the protein. Higher amount of recombinant apoptin was obtained in 

soluble fraction from recombinant EGF-apoptin reserving amino acid 40-121 and 80-

121. However, lower amount of recombinant EGF-apoptin was recovered when 

amino acids 1-60 were removed. Fusion of truncated apoptin to H22 single chain 

antibody produced degraded protein fragments showing a similar result as full length 

apoptin in fusion to H22 single chain antibody. Indeed, not all approaches were 

suitable applied for the expression of recombinant apoptin in N. benthamiana. 

Combination of approaches might be required to further investigate a better method 

for enhancing the protein expression yield of recombinant apoptin in N. benthamiana. 

Nevertheless, recombinant vectors were selected from each group of recombinant 

apoptin, including apoptin alone, GFP-apoptin, lichenase-apoptin and EGF-apoptin, 

for downstream protein purification works. These included the recombinant vectors, 

pGR-D4:: VP3-H, pGR-DN:: PR-VP3-HK_bZIP60, pGR-D4:: PR-GFP-VP3-HK, 
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pGR-D4:: GFP-VP3-H, pGR-D4:: Lic-VP3-H and pGR-D4:: EGF-CatAd-VP3-H by 

which the infiltrated plants were harvested, extracted and purified in various defined 

processes.  

Hexa-histidine tag was fused to the C-terminal of all proteins; hence, immobilised 

metal affinity chromatography (IMAC) was employed in the capturing step to purify 

the recombinant apoptin. Recombinant proteins were isolated from total protein pool 

based on a specific interaction between hexa-histidine regions and divalent metal 

nickel (Ni2+). In this study, IMAC was performed in both non-denaturing and 

denaturing conditions as the recombinant apoptin was present in both soluble and 

insoluble fractions. For IMAC purification performed in non-denaturing condition, 

recombinant apoptin alone (recombinant vector pGR-DN:: PR-VP3-HK) was 

recovered at a low amount of purified protein (< 1 mg/kg). However, ~7 mg/kg of 

recombinant GFP-apoptin (recombinant vector pGR-D4:: PR-GFP-VP3-HK) was 

recovered and ~3-4 mg/kg of EGF-apoptin (pGR-D4:: PR-EGF-CatAd-VP3-HK) was 

also recovered from IMAC in non-denaturing condition. A large amount of host cell 

proteins (HCPs) was always detected in the final eluted recombinant apoptin, 

including apoptin alone, GFP-apoptin as well as EGF-apoptin, in non-denaturing 

condition of IMAC. In fact, removal of HCPs contamination with acidic precipitation 

as well as second chromatography, using hydrophobic interaction (HIC) columns 

(including Phenyl Sepharose 6TM FF (high sub), HiTrap Butyl Sepharose HP and 

HiTrap Octyl Sepharose FF) and cation exchange chromatography (IEX) column 

(HiTrap SP), did not give a positive feedback for the trials. Instead of purifying 

protein from soluble protein fraction, recombinant apoptin expressed in insoluble 

protein fraction was also performed using IMAC in denaturing condition. 

Recombinant apoptin alone (from recombinant vector pGR-D4:: VP3-H) did not 

solubilise completely in extraction buffer by using high concentration of guanidium 

hypochlorite (GuHCl); hence, a low amount of protein (~ 1 mg/kg) was recovered 

from IMAC. On the other hand, recombinant GFP-apoptin (from recombinant vector 

pGR-D4:: GFP-VP3-H) and lichenase-apoptin (from recombinant vector pGR-D4:: 

Lic-VP3-H) yielded a high amount of protein with good purity from IMAC in 

denaturing condition. Recombinant GFP-apoptin (GFP-VP3-H) was recovered at 21 

mg/kg and purified protein was refolded without the requirement of other additives; ~ 

20 mg/kg of recombinant lichenase-apoptin (Lic-VP3-H) was harvested from IMAC 
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in denaturing condition but refolding of recombinant Lic-VP3-H required the addition 

of triton in order to stabilise the protein in the buffer. Characterisation of protein 

multimerisation was also performed for refolded recombinant GFP-VP3-H using size 

exclusion chromatography coupled with multi-angle light scattering (SEC-MALS). 

Recombinant GFP-VP3-H was migrated as a single peak at 10 ml with a small 

shoulder at ~ 10.7 ml in SRT SEC1000 column and MALS analysis showed that 

majority of these protein molecules shared a similar molecular mass, which was ~ 

944.3 kDa. This data showed that refolded GFP-VP3-H was existed in a multimerised 

state with ~ 20 monomers per protein molecules. A similar result was also reported 

by Lelivelda et al. (2003). Since refolded GFP-VP3-H was recovered at a high 

amount with good purity and partial purified recombinant EGF-VP3-HK was able to 

be internalised directly into targeted cancer cells; hence, both proteins were subjected 

to subsequent cell-based experiments in order to collect some preliminary 

understanding regarding bioactivity of plant-made apoptin in mammalian cells.  

Human lung adenocarcinoma epithelial cell A549 cell line was chosen for evaluating 

the bioactivity of recombinant GFP-VP3-H and EGF-VP3-HK. The key reason of 

using A549 cells is due the overexpression of EGF receptors was present on the cell 

surface as this is crucial for evaluation of bioactivity of recombinant EGF-VP3-HK. 

In addition, ectopically expression of apoptin via DNA transfection also confirmed 

that A549 cell line was susceptible to apoptin. Interaction between recombinant 

apoptin and A549 cells was also studied using enzyme-linked immunosorbent assay 

(ELISA) binding assay. Based on the ELISA result, recombinant apoptin (GFP-VP3-

H and EGF-VP3-HK) interacted with EGF receptors as well as A549 cells, which 

overexpressed with EGF receptors. Up to date, there is no report about the 

interactions between apoptin and EGF receptors as well as apoptin and cell surface of 

cancers. The interaction between apoptin and EGF receptors might be due to the 

presence of leucine rich region (LRR), a region that is responsible for the 

multimerization of apoptin, on both apoptin and EGF receptors. Nevertheless, the 

underlying mechanism for the interaction between apoptin and EGF receptors 

requires more investigations.  

Although recombinant GFP-apoptin (GFP-VP3-H) could bind to EGF receptors and 

A549 cells, this protein did not have cell penetrating peptides and a delivery tool was 

required to transfer protein into the intracellular space of A549 cells. Presence of 
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protein aggregates on A549 cells was observed when recombinant GFP-apoptin 

(GFP-VP3-HK) was delivered into A549 cells using PULSin® protein delivery 

reagent. The changes of buffer condition and temperature may cause the incidence of 

protein aggregates. Besides, clumping of recombinant apoptin-EGF receptor 

complexes may also be the reason causing the protein aggregates. Since the size of 

protein precipitates was huge, the internalisation of protein was a challenge. Instead 

of using transfection reagent, microinjection, a precise delivery method, was used to 

deliver recombinant GFP-apoptin (GFP-VP3-H) into A549 cells. By using 

microinjection, recombinant GFP-VP3-H was directly introduced into cytoplasm of 

cells and huge protein aggregates were no longer observed. In microinjection, number 

of cells microinjected with recombinant GFP-VP3-H reduced rapidly in relative to 

those cells microinjected with recombinant GFP when the cell samples were 

incubated from 2-24 hours post microinjection. The most possible reason contributing 

to the decrease of cell numbers might be due to the intracellular degradation activity 

since reducing signal of recombinant GFP in microinjected cells was also observed. It 

is not surprised to find that intracellular bioavailability of recombinant proteins is 

always challenged by the changes of physiological pH, temperature, salt as well as 

the presence of proteases (Torchilin, 2008). Besides, cell killing activity of 

recombinant apoptin might also contribute for the decrease of cells since changes of 

nuclear morphology was observed in small amount of microinjected cells. Besides, 

microinjected recombinant GFP-VP3-H was also localised into cell nucleus of A549 

cells which is crucial for apoptosis induction. However, it could not be concluded at 

this stage that the decreased cell number was absolutely due to apoptotic activity 

induced by the recombinant apoptin since no convincingly positive result was 

collected from the tests for depolarization of mitochondrial membrane potential 

(MMP) and activation of caspase 3/7, which are both significant hallmarks for an 

apoptosis event.  

On the other hand, recombinant EGF-VP3-HK is expected to bind specifically to 

EGF receptors located on cell surface of A549 cells and the protein will then be 

internalised into cell via endocytosis. Subsequently, apoptin would be transferred and 

released into cytoplasm via the activity of membrane transfer unit (MTU) as well as 

cytosolic cleavable unit (CCU) from CatAd adaptor linked between EGF and apoptin. 

Based on current indirect immunofluorescent (IF) assay, internalisation of 
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recombinant EGF-VP3-HK could not be confirmed after it was applied on the culture. 

This is because the identification of plasma membrane by detecting the EGF receptors 

was interrupted by the redistribution of EGF receptors. The redistribution of EGF 

receptors was believed due to the binding of recombinant EGF. Hence, a future study 

on the protein internalisation is required by using other plasma membrane staining 

markers. The recombinant EGF-VP3-HK induced cell proliferation of A549 cells at a 

lower concentration, which was also observed in the cells incubated with recombinant 

EGF. However, a dose-dependent growth inhibitory effect was observed when cells 

were incubated at a higher concentration of recombinant proteins. In current study, no 

activation for caspase 3/7 activity was observed in cells incubated with recombinant 

EGF-VP3-HK; however, loss of mitochondrial membrane potential (MMP) was 

observed. Since a loss of mitochondrial membrane potential occurs in both cells 

undergoing apoptosis as well as stress, activation of apoptin-induced apoptosis is 

probable, however, the loss of MMP caused by the cells under a stress condition 

could not be ruled out too. Apoptin protein concentration is a limiting factor in the 

study. Therefore, the protein may provide inadequate stimulus for cellular pro-

apoptotic proteins involving in the upstream event of apoptosis, such as Bax and Bak. 

Increasing level of these cellular proteins may lead to the loss of MMP; however, 

inadequate stimulus may render the activation of caspase 3, which is the executor 

caspase actived at later stage in apoptosis pathway. Evaluation for activation of pro-

apoptotic proteins, which is upstream event for apoptosis before loss of mitochondria, 

could be performed to investigate this assumption. Besides, activation for cellular 

proteins (such as caspase 9, cytochrome c and apaf-1) involving in apoptosis, which 

activated after loss of MMP and before activation for caspase 3,  could also be 

measured to examine this hypothesis.   

Limitations of the Current Study and Future Recommendations 

Some limitations of the current study are found and prospective research of apoptin is 

highlighted herein. The main objective of this study was to evaluate the potential of 

using a plant-based system, i.e. agroinfiltration approach for the production of 

recombinant apoptin. By using plant as a biofactory, it was found that only a low 

amount of recombinant apoptin in soluble protein fraction was able to be recovered 

and fusion of apoptin to a large protein had increased the yield of soluble protein. In 
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the current study, GFP, lichenase as well as EGF were adopted in fusion to apoptin 

and yields of soluble protein varied among these fusion proteins (~ 10-20 mg/kg). In 

comparison to E. coli expression, plant-derived apoptin alone and apoptin in fusion 

with the abovementioned proteins have not resulted a more satisfactorily soluble 

protein yield. In fact, other large proteins could be considered to be fused to apoptin 

in future in order to enhance the solubility and stability of recombinant apoptin. For 

examples, maltose binding protein (MBP), glutathione S-transferase (GST) and 

elastin like protein (ELP) are the commonly used large proteins for fusion purpose. In 

the study of Lelivelda et al. (2003), MBP-apoptin fusion had been proven to 

significantly increase the soluble recombinant protein production with a level up to ~ 

40 mg/L in E. coli system. Besides, the employment of MBP or GST as a fusion 

protein to recombinant apoptin could also be an alternative protein purification option 

over IMAC, which might improve the overall purity of recombinant apoptin, better 

than that of generated by IMAC in this study. Removal of fusion protein after 

purification is also a concern for the production of recombinant protein since fusion 

protein might induce an unwanted response in the animal experiment. In the current 

study, an enterokinase site was incorporated between apoptin and fusion proteins 

making the apoptin can be purified as a single pure protein. However, cleavage of 

fusion protein and evaluation for the stability of apoptin after cleavage have yet to be 

carried out for current study.  

Besides, protein targeting was also one of the strategies used in the current study to 

increase stability of recombinant protein. Among three cellular compartments, 

recombinant apoptin showed a high soluble protein level when protein was 

accumulated in ER. However, protein was accumulated in nucleus at the highest 

amount but in an insoluble state. Accumulation of recombinant apoptin in ER at 

lower quantity might be due to the activation of proteolysis machinery for unfolded or 

improper folded proteins produced rapidly in a short period of time. Instead of using a 

strong promoter, a weak promoter like nopaline synthase can be attempted in future to 

reduce the rate of protein synthesis, which might in turn lead to a higher amount of 

soluble protein to be harvested. Besides, recombinant protein could also be targeted to 

chloroplast, which is an alternative protein accumulation site within plant cells. In 

addition to protein fusion, several parameters, including agrobacterium strain, 

infiltration bacterial OD, vectors, gene silencing suppressors and storage of protein in 
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specific cellular compartments, could also be optimised in order to enhance protein 

expression.  

In the protein purification process, IMAC dependent on the interaction between hexa-

histidine and metal ion, was the major tool used for capturing recombinant protein 

from total protein pool in this study. Other purification approaches, such as ion 

exchange chromatography (IEX), glutathione-S-transferase GST-based affinity 

chromatography and MBP-based chromatography, could be examined for purification 

of recombinant apoptin in the future. Besides, multimerisation of apoptin is 

interesting but the mechanism has yet been understood. The multimerisation 

characteristics of recombinant protein had been analysed in this study using SEC and 

MALS to evaluate the molecular weight of the recombinant protein. For future 

investigations, hydrodynamic radius of recombinant apoptin could be measured by 

using dynamic light scattering (DLS) and size of protein could be further validated 

using electron microscopy (EM). A lack of elucidation of the protein structure of 

recombinant apoptin is one of the major missing parts in this study. Protein structure 

could be analysed using circular dichroism to characterise for the secondary structure 

of protein. Up to date, no crystallography of apoptin has been reported. The protein 

structure captured after crystallisation might have a great impact in the current 

apoptin research in order to understand the three-dimensional structure of apoptin 

macromolecules at an atomic resolution. Understanding on the proper protein folding 

and structure could give a guidance for the design of gene cassettes and probably help 

to explain the mechanism of apoptin-induced apoptosis.  

Protein stability is also required for future study. Instability of recombinant apoptin 

was noticed during protein purification process; however, recruitment of suitable 

stabilising agents, such as sucrose and glycerol, has yet to be conducted. Difficulty 

for studying protein function in subsequent cell-based or animal experiments has been 

encountered in current study since the protein precipitation occurred upon storage. 

Hence, investigation for improving the stability of recombinant protein is important in 

future to overcome this research bottleneck.  

Lung adenocarcinoma was chosen as the cell lines tested for activity of recombinant 

apoptin in the current study. However, apoptin is actively against various kinds of 

cancer cells. Hence, it is also suggested to test recombinant apoptin in other cancer 
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cell lines. Besides, low protein concentration is also a critical limiting factor in this 

study. Significant apoptosis activity might be able to be detected when apoptin is 

tested in other cells since efficient cell killing dosage of therapeutic proteins might 

not be the same for different cell lines. In the other hand, an unexpected interaction 

between apoptin and EGF receptors was noticed in this study. However, there is no 

study reported regarding this sort of interaction between apoptin and EGF receptors 

or cancer cells. Truncated or point mutation study on recombinant GFP-apoptin 

sequences could be performed in future for elucidating the region which is 

responsible for the interaction. More studies on protein interaction and domain 

binding between apoptin and EGFR are important for determining the suitability of 

EGFR as a site for recombinant protein binding and successful internalisation.  

Besides, recombinant GFP- apoptin could not pass through plasma membrane directly 

and employment of microinjection technique was required for the delivery of 

recombinant protein into the cells. Microinjection is not a favourable delivery tool for 

long term study of recombinant protein since the technique is of high cost, laborious 

and not feasible when protein is tested in vivo. Therefore, the use of cell-penetrating 

peptides (CPPs) may resolve these research problems as identified. Up to date, 

researches have employed Tat protein from HIV and PTD4 to deliver apoptin into 

animal cells and significant cell death was observed in treated tumour cells (Sun et al., 

2009: Lee et al., 2012). In this study, cell specific ligands, such as EGF and H22 

single chain antibody, were used in addition to CPPs. However, H22-apoptin did not 

yield a good amount of proteins and recombinant EGF-apoptin requires more studies 

in order to elucidate the protein internalisation activity. EM would be a direct method 

to check for the localisation of protein inside A549 cells. Besides, internalisation of 

protein could also be quantified using MALDI-TOF MS in addition to fluorescence-

based protocol (Benchara, 2012). Hence, in addition to the study of internalisation of 

recombinant EGF-apoptin, other cell specific ligands could also be exploited, such as 

RGD tri-peptide, Bombesin (BBN) peptide, somatostatin and follicle-stimulating 

hormone analogs, which could increase the targeting efficiency for cancer cells (Raha 

et al., 2011). In addition, evaluation on the cleavage of apoptin from EGF fusion 

protein after internalisation will also be one of the important parameters to study the 

delivery strategy. Cytosolic cleavage site located between apoptin and EGF harbours 

cellular enzyme cleavage sites, such as Caspase-1 and Caspase-3 cleavage sites. 
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Hence, cleavage efficiency of apoptin from EGF fusion protein could be determined 

by incubating the protein with cellular cytoplasmic extract that containing high 

amount of enzymes. Cleavage of apoptin from EGF fusion protein is important to 

release apoptin from vesicle and allow apoptin to be relocalised to nucleus, where the 

protein expected to trigger apoptosis pathway.   

Upon several attempts, the results in the current study were not conclusive enough to 

validate the apoptosis activity. One of the major factors that contributes to this 

research outcome is the low concentration of recombinant protein, especially for the 

recombinant GFP-apoptin used in microinjection procedure. Hence, stability of 

recombinant apoptin is the main challenge for next investigations in order to evaluate 

for the functionality of recombinant protein in mammalian cell lines and animal 

model. Instead of checking the activity of caspase 3/7 and MMP, other cellular 

proteins activated during apoptosis could also be determined, such as Bax, Bak, 

cytochrome c, Nur77, caspase 9 and Apoptotic protease activating factor 1 (Apaf-1).  

Conclusions 

It is of no doubt that the recombinant apoptin alone, GFP-apoptin, Lic-apoptin, EGF-

apoptin as well as H22-apoptin had been successfully expressed in N. benthamiana. 

In current study, recombinant apoptin, GFP-apoptin as well as EGF-apoptin could not 

be purified from soluble protein fraction efficiently since eluted proteins were always 

contaminated with a huge amount of HCPs. Alternatively, purification using 

denaturing condition yielded the protein at higher purity, especially recombinant 

GFP-apoptin (GFP-VP3-H) and lichenase-apoptin (Lic-VP3-H). In preliminary cell-

based experiments, apoptin-induced apoptosis was not able to be confirmed in cells 

microinjected with recombinant GFP-VP3-H; however, majority of injected protein 

was found localising to cell nucleus. On the other hand, a dose-dependent growth 

inhibitory was observed when recombinant EGF-VP3-HK at high concentration was 

incubated with A549 cells. Internalisation of recombinant EGF-VP3-HK could not be 

confirmed in this study and more studies might be necessary to clarify for the 

internalisation activity of the protein. Although current cell-based experiment could 

not provide convincing data for the bioctivity of plant-made apoptin, there was some 

important findings that suggested future research orientation.
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Chapter 9 

Appendices 

Appendices for Chapter 3 

3.1 Nucleotide and amino acid sequences of synthetic apoptin gene cassette, PR-VP3-

HK  

Nucleotide sequence 

TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAGCTGCCTTCTTTCCTTCTTGT

GTCTACCCTTCTGCTGTTCCTGGTGATCTCTCATTCTTGCAGGGCTATGGATGCTCTG

CAAGAGGATACTCCTCCTGGTCCTTCTACTGTTTTCAGGCCTCCTACTTCTAGCAGGC

CTCTTGAAACTCCTCACTGCAGAGAGATCAGGATCGGTATCGCTGGTATTACCATCA

CCCTTTCTTTGTGCGGTTGCGCTAATGCTAGGGCTCCTACTCTTAGATCTGCTACCGC

TGATAACAGCGAGAGCACCGGTTTCAAGAACGTGCCAGATCTTAGGACCGATCAGC

CTAAGCCTCCAAGCAAGAAGAGAAGCTGCGATCCTTCTGAGTACAGGGTGAGCAAG

CTGAAAGAGAGCCTTATCACTACCACCCCTTCTAGGCCAAGGACTGCTAAGAGAAG

GATTAAGCTTCATCACCATCACCACCACAAGGATGAGCTGTAGCTCGAGGGCGCGC

CGCTAGC 

Amino acid sequence 

MGFVLFSQLPSFLLVSTLLLFLVISHSCRAMDALQEDTPPGPSTVFRPPTSSRPLETPHCRE

IRIGIAGITITLSLCGCANARAPTLRSATADNSESTGFKNVPDLRTDQPKPPSKKRSCDPSE

YRVSKLKESLITTTPSRPRTAKRRIKLHHHHHHKDEL* 

Features 

Signal peptide PR1a  : (nucleotide) 15…104 (amino acid) 1…30 

VP3-A    : (nucleotide) 105…467 (amino acid) 31…151 

Hexahistidine   : (nucleotide) 468…485 (amino acid) 152…157 

ER retention signal  : (nucleotide) 486…497 (amino acid) 158…161 
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3.2 Nucleotide and amino acid sequences of synthetic apoptin gene cassette, PR-GFP-

VP3-HK  

Nucleotide sequence 

TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAGCTGCCTTCTTTCCTTCTTGT

GTCTACCCTTCTGCTGTTCCTGGTGATCTCTCATTCTTGCAGGGCTGCTTCTAAGGGT

GAGGAACTTTTCACTGGTGTGGTGCCTATTCTGGTTGAGCTGGATGGTGATGTGAAC

GGTCACAAGTTCTCTGTGTCTGGTGAAGGTGAGGGTGATGCTACCTACGGTAAGCTG

ACCCTTAAGTTCATCTGTACCACCGGAAAGTTGCCTGTGCCTTGGCCTACTCTTGTGA

CCACTTTCTCATACGGTGTGCAGTGCTTCAGCAGGTATCCTGATCATATGAAGAGGC

ACGATTTCTTCAAGAGCGCTATGCCTGAGGGTTACGTGCAAGAGAGGACCATCTTCT

TCAAGGATGATGGTAACTACAAGACCAGGGCTGAGGTGAAGTTCGAAGGTGATACC

CTTGTGAACAGGATCGAGCTGAAGGGTATCGATTTCAAAGAGGATGGAAACATCCT

GGGTCACAAGCTTGAGTACAACTACAACAGCCACAACGTTTACATCACCGCTGATA

AGCAGAAGAACGGTATCAAGGCTAACTTCAAGATCAGGCACAACATCGAGGATGGT

AGCGTGCAGCTTGCTGATCATTACCAGCAGAACACCCCTATCGGTGATGGTCCTGTT

CTGCTTCCTGATAACCACTACCTGTCTACCCAGTCCGCTCTGTCTAAGGATCCTAACG

AGAAGAGGGATCACATGGTGCTGCTTGAGTTCGTTACCGCTGCTGGTATTACCCACG

GTATGGATGAGCTGTATAAGGACGATGATGATAAGATGGATGCTCTGCAAGAGGAT

ACCCCTCCTGGTCCTTCTACTGTTTTTAGGCCTCCTACCTCTAGCAGGCCTCTTGAAA

CTCCACACTGCAGAGAGATCAGGATCGGTATCGCTGGAATTACCATCACCCTGTCTT

TGTGCGGTTGCGCTAATGCTAGGGCTCCTACTCTTAGATCTGCTACCGCAGATAACA

GCGAGAGCACCGGTTTCAAGAACGTGCCAGATCTTAGGACCGATCAGCCTAAGCCT

CCAAGCAAGAAGAGAAGCTGCGATCCTTCTGAGTACAGGGTGAGCAAGCTGAAAGA

GAGCCTTATTACCACCACCCCTTCAAGGCCTAGGACTGCTAAGAGAAGGATTAAGCT

TCATCACCACCACCATCACAAGGATGAGCTTTAGCTCGAGGGCGCGCCGCTAGC 

Amino acid sequence 

MGFVLFSQLPSFLLVSTLLLFLVISHSCRAASKGEELFTGVVPILVELDGDVNGHKFSVSG

EGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKRHDFFKSAMPE

GYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHN
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VYITADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSK

DPNEKRDHMVLLEFVTAAGITHGMDELYKDDDDKMDALQEDTPPGPSTVFRPPTSSRP

LETPHCREIRIGIAGITITLSLCGCANARAPTLRSATADNSESTGFKNVPDLRTDQPKPPSK

KRSCDPSEYRVSKLKESLITTTPSRPRTAKRRIKLHHHHHHKDEL* 

Features 

Signal peptide PR1a  : (nucleotide) 15…104 (amino acid) 1…30 

GFP    : (nucleotide) 105…818 (amino acid) 31…268 

VP3-A    : (nucleotide) 834…1196 (amino acid) 274…394 

Enterokinase site  : (nucleotide) 819…833 (amino acid) 269…273 

Hexahistidine   : (nucleotide) 1197…1214 (amino acid) 395…400 

ER retention signal  : (nucleotide) 1215…1226 (amino acid) 401…404 
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3.3 Nucleotide and amino acid sequences of synthetic apoptin gene cassette, PR-Lic-

VP3-HK  

Nucleotide sequence 

TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAGCTGCCTTCTTTCCTTCTTGT

GTCTACCCTTCTGCTGTTCCTGGTGATCTCTCATTCTTGCAGGGCTCAGAACGGTGGT

TCCTACCCTTATAAGTCTGGTGAGTACAGGACCAAGAGCTTCTTCGGTTACGGTTAC

TACGAGGTGAGGATGAAGGCTGCTAAGAACGTGGGTATCGTGTCCAGCTTCTTTACC

TACACCGGTCCAAGCGATAACAACCCTTGGGATGAGATTGATATCGAGTTCCTGGGT

AAGGATACCACCAAGGTGCAGTTCAACTGGTACAAGAATGGTGTGGGTGGTAACGA

GTACCTGCACAACCTTGGTTTCGATGCTTCCCAGGATTTCCACACCTACGGTTTTGAG

TGGAGGCCTGATTACATCGATTTCTATGTGGATGGTAAGAAGGTTTACAGGGGTACT

AGGAACATCCCTGTGACCCCTGGTAAGATCATGATGAACCTTTGGCCTGGTATCGGT

GTGGATGAGTGGCTTGGTAGATACGATGGTAGGACTCCTCTGCAGGCTGAGTACGA

GTACGTTAAGTACTACCCTAACGGTAGGTCCGAGTTCAAGCTTGTGGTGAATACTCC

TTTCGTGGCTGTGTTCAGCAACTTCGATTCTAGCCAGTGGGAGAAGGCTGATTGGGC

TCAGGGTTCTGTTTTCAACGGTGTGTGGAAGCCTTCTCAGGTGACCTTCTCTAACGGT

AAGATGATCCTGACCCTGGATAGGGAATACGACGATGATGATAAGATGGATGCTCT

GCAAGAGGATACCCCTCCTGGTCCTTCTACTGTTTTTAGGCCTCCTACCTCTAGCAGG

CCTCTTGAAACTCCACACTGCAGAGAGATCAGGATCGGTATCGCTGGTATTACCATC

ACCCTTTCTTTGTGCGGTTGCGCTAATGCTAGGGCTCCTACTCTTAGATCTGCTACCG

CTGATAACAGCGAGAGCACCGGTTTCAAGAACGTGCCAGATCTTAGGACCGATCAG

CCTAAGCCTCCAAGCAAGAAGAGAAGCTGCGATCCTTCTGAGTACAGAGTGAGCAA

GCTGAAAGAGTCCCTTATCACCACTACCCCTTCTAGGCCAAGGACAGCTAAGAGAA

GGATTAAGCTTCATCACCATCACCACCACAAGGATGAGCTGTAGCTCGAGGGCGCG

CCGCTAGC 

Amino acid sequence 

MGFVLFSQLPSFLLVSTLLLFLVISHSCRAQNGGSYPYKSGEYRTKSFFGYGYYEVRMK

AAKNVGIVSSFFTYTGPSDNNPWDEIDIEFLGKDTTKVQFNWYKNGVGGNEYLHNLGF

DASQDFHTYGFEWRPDYIDFYVDGKKVYRGTRNIPVTPGKIMMNLWPGIGVDEWLGRY
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DGRTPLQAEYEYVKYYPNGRSEFKLVVNTPFVAVFSNFDSSQWEKADWAQGSVFNGV

WKPSQVTFSNGKMILTLDREYDDDDKMDALQEDTPPGPSTVFRPPTSSRPLETPHCREIR

IGIAGITITLSLCGCANARAPTLRSATADNSESTGFKNVPDLRTDQPKPPSKKRSCDPSEY

RVSKLKESLITTTPSRPRTAKRRIKLHHHHHHKDEL* 

Features 

Signal peptide PR1a  : (nucleotide) 15…104 (amino acid) 1…30 

Lichenase   : (nucleotide) 105...773 (amino acid) 31…253 

VP3-A    : (nucleotide) 789...1151 (amino acid) 259…379 

Enterokinase site  : (nucleotide) 774…788 (amino acid) 254…258 

Hexahistidine   : (nucleotide) 1152…1169 (amino acid) 380…385 

ER retention signal  : (nucleotide) 1170…1181 (amino acid) 386…389 
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3.4 Nucleotide and amino acid sequences of synthetic gene, mCherryNuc 

Nucleotide sequence 

ATGGTGAGCAAGGGTGAAGAGGATAACATGGCTATCATCAAAGAGTTCATGAGGTT

CAAGGTGCACATGGAAGGTAGCGTGAACGGTCACGAGTTTGAGATTGAAGGTGAGG

GTGAGGGTAGGCCTTATGAGGGTACTCAAACCGCTAAGCTGAAGGTTACAAAGGGT

GGTCCTCTTCCTTTCGCTTGGGATATTCTGAGCCCTCAGTTCATGTACGGTAGCAAGG

CTTACGTTAAGCACCCTGCTGATATCCCTGATTACCTGAAGCTGTCTTTCCCAGAGG

GTTTCAAGTGGGAGAGGGTGATGAATTTCGAGGATGGTGGTGTGGTGACTGTGACC

CAGGATTCTTCACTTCAGGATGGTGAGTTCATCTACAAGGTGAAGCTGAGGGGTACT

AACTTCCCTTCTGATGGTCCTGTGATGCAGAAAAAGACTATGGGTTGGGAGGCTTCA

AGCGAGAGAATGTATCCTGAAGATGGTGCTCTGAAGGGTGAGATCAAGCAGAGGCT

GAAGCTGAAAGATGGTGGTCACTACGATGCTGAGGTTAAGACCACCTACAAGGCTA

AGAAGCCTGTTCAGCTTCCTGGTGCTTACAACGTGAACATCAAGCTGGATATCACCA

GCCACAACGAGGATTACACCATCGTTGAGCAGTATGAGAGGGCTGAGGGAAGGCAT

TCTACTGGTGGTATGGATGAGCTTTACAAAGATCCTAAGAAGAAGAGGAAAGTTGA

TCCAAAGAAAAAAAGAAAAGTTGATCCTAAAAAGAAGAGAAAGGTTTAG 

Amino acid sequence 

MVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGP

LPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDS

SLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKD

GGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMD

ELYKDPKKKRKVDPKKKRKVDPKKKRKV 

Features 

mCherry   : (nucleotide) 1…708  (amino acid) 1…236 

Nuclear localisation signal : (nucleotide) 709...783 (amino acid) 237…260 

(Nuc) 
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3.5 Nucleotide and amino acid sequences of synthetic gene, H22 single chain antibody 

Nucleotide sequence 

CAGGTTCAGCTGGTTGAGTCTGGTGGTGGTGTTGTTCAACCTGGAAGATCTCTGAGG

CTGAGCTGCTCATCTAGCGGTTTCATCTTCAGCGATAACTACATGTACTGGGTGAGG

CAGGCTCCTGGTAAGGGTCTTGAATGGGTGGCAACCATTTCCGATGGTGGTAGCTAC

ACCTACTACCCTGATTCTGTGAAGGGAAGGTTCACCATCAGCAGGGATAACAGCAA

GAACACCCTGTTCCTTCAGATGGATAGCCTGAGGCCTGAAGATACCGGTGTTTACTT

TTGCGCTAGAGGATATTACAGGTACGAGGGTGCTATGGATTACTGGGGTCAAGGTA

CTCCTGTGACCGTTTCTAGCGGAGGTGGTGGATCAGGTGGTGGTGGAAGTGGTGGTG

GTGGTTCTGATATTCAGCTTACCCAGAGCCCTAGCAGCCTTTCTGCTTCTGTTGGTGA

TAGGGTGACCATTACCTGCAAGTCCTCTCAGTCTGTGCTGTACTCCAGCAACCAGAA

GAACTACCTGGCTTGGTATCAGCAGAAGCCTGGAAAGGCTCCTAAGCTGCTTATCTA

CTGGGCTTCCACTAGGGAATCTGGTGTGCCTTCTAGGTTCTCCGGTTCTGGTTCTGGT

ACTGATTTCACCTTCACCATCTCCAGCCTTCAGCCTGAGGATATCGCTACTTACTACT

GCCACCAGTACCTGTCCTCTTGGACTTTTGGTCAGGGTACTAAGCTTGAGATCAAA 

Amino acid sequence 

QVQLVESGGGVVQPGRSLRLSCSSSGFIFSDNYMYWVRQAPGKGLEWVATISDGGSYT

YYPDSVKGRFTISRDNSKNTLFLQMDSLRPEDTGVYFCARGYYRYEGAMDYWGQGTP

VTVSSGGGGSGGGGSGGGGSDIQLTQSPSSLSASVGDRVTITCKSSQSVLYSSNQKNYLA

WYQQKPGKAPKLLIYWASTRESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYLSS

WTFGQGTKLEIK 

Feature 

H22 single chain antibody : (nucleotide) 1…741  (amino acid) 1…247 
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3.6 Nucleotide and amino acid sequences of synthetic gene, epidermal growth factor 

(EGF) 

Nucleotide sequence 

AACAGCGATAGCGAGTGCCCTCTGTCTCATGATGGTTACTGCTTGCATGATGGTGTG

TGCATGTATATCGAGGCTCTGGATAAGTACGCTTGCAACTGCGTGGTGGGTTACATT

GGTGAGAGATGCCAGTACAGGGATCTGAAGTGGTGGGAACTTAGA 

Amino acid sequence 

NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR 

Feature 

Epidermal growth factor  : (nucleotide) 1…159  (amino acid) 1…53 

(EGF) 
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3.7 Nucleotide and amino acid sequences of synthetic gene, bZIP17 

Nucleotide sequence 

ATGCTGTACAATGGCTGAACCAATCACCAAGGAGCAGCCTCCTCCACCTGCTCCGGA

CCCTAATTCCACCTACCCTCCTCCGTCCGATTTTGATTCCATCTCGATCCCTCCGTTA

GATGATCATTTCTCCGATCAGACTCCGATTGGTGAACTAATGTCCGATCTGGGGTTT

CCCGATGGTGAATTCGAGCTCACTTTCGACGGTATGGACGATCTTTACTTCCCTGCTG

AGAATGAGTCGTTTCTCATCCCTATCAATACGTCCAATCAAGAACAGTTTGGTGATT

TCACTCCGGAGTCTGAAAGTTCTGGAATTTCCGGTGATTGTATTGTTCCCAAAGATG

CAGATAAGACTATTACAACTTCCGGTTGCATTAACCGGGAATCTCCTAGAGATTCCG

ATGATCGTTGCTCCGGTGCTGACCATAATTTAGATCTACCGACTCCATTGTCCTCTCA

GGGTTCGGGTAATTGCGGTTCTGATGTTTCGGAAGCTACAAATGAATCGTCGCCTAA

ATCGAGAAACGTTGCGGTCGACCAGAAGGTTAAAGTGGAAGAAGCTGCTACGACGA

CGACGTCTATTACCAAGAGGAAGAAAGAGATCGATGAGGATTTGACTGACGAGTCT

AGGAACAGTAAGTACAGGAGATCGGGAGAGGATGCTGACGCTAGTGCTGTTACCGG

TGAAGAAGATGAGAAAAAGAGAGCTAGACTCATGAGAAACCGTGAAAGTGCTCAG

CTTTCTAGGCAGAGGAAGAAGCATTACGTCGAGGAGCTTGAAGAAAAGGTTAGGAA

TATGCATTCTACGATTACGGATTTGAACGGTAAGATATCGTATTTCATGGCTGAGAA

TGCTACTCTAAGGCAGCAATTGGGTGGCAATGGAATGTGCCCGCCGCATCTTCCACC

ACCTCCGATGGGAATGTATCCACCTATGGCTCCAATGCCTTATCCATGGATGCCTTG

TCCTCCTTATATGGTGAAGCAACAAGGATCTCAAGTGCCTTTGATTCCTATTCCTAGG

TTGAAACCACAGAACACCCTTGGAACATCCAAGGCTAAGAAGTCCGAGAGTAAGAA

GAGTGAAGCTAA 

Amino acid sequence 

MAEPITKEQPPPPAPDPNSTYPPPSDFDSISIPPLDDHFSDQTPIGELMSDLGFPDGEFELTF

DGMDDLYFPAENESFLIPINTSNQEQFGDFTPESESSGISGDCIVPKDADKTITTSGCINRE

SPRDSDDRCSGADHNLDLPTPLSSQGSGNCGSDVSEATNESSPKSRNVAVDQKVKVEEA

ATTTTSITKRKKEIDEDLTDESRNSKYRRSGEDADASAVTGEEDEKKRARLMRNRESAQ

LSRQRKKHYVEELEEKVRNMHSTITDLNGKISYFMAENATLRQQLGGNGMCPPHLPPPP 
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MGMYPPMAPMPYPWMPCPPYMVKQQGSQVPLIPIPRLKPQNTLGTSKAKKSESKKSEA

KT* 

Feature 

bZIP17    : (nucleotide) 1…1092  (amino acid) 1…363 
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3.8 Nucleotide and amino acid sequences of synthetic gene, bZIP28 

Nucleotide sequence 

ATGACGGAATCAACATCCGTGGTTGCTCCTCCGCCGGAGATACCTAATCTGAACCCT

AGCATGTTTTCTGAGTCCGATTTGTTTTCTATTCCGCCGCTAGATCCTCTTTTCCTATC

TGATTCTGATCCGATTTCAATGGATGCGCCAATCTCCGATCTCGACTTCTTACTCGAC

GATGAGAACGGAGATTTCGCTGATTTTGATTTCTCGTTTGATAATTCTGATGATTTCT

TCGATTTCGATTTATCGGAGCCCGCGGTGGTGATCCCTGAGGAGATCGGTAACAATC

GTTCGAATTTGGACTCATCGGaAAACAGAAGCGGCGATGGAGGTTTAGAAGGAAGA

TCTGAGTCTGTTCATTCACAGGTTTCATCTCAAGGCTCCAAGACTTTTGTGTCCGACA

CCGTTGACGCATCATCCTCCCCTGAATCAAGCAATCACCAGAAATCTTCTGTTAGCA

AGAGGAAGAAGGAAAATGGAGACTCCAGTGGCGAATTAAGGAGCTGCAAGTACCA

AAAGTCCGATGATAAATCAGTCGCTACGAACAACGAAGGTGATGATGACGACGACA

AGAGGAAGTTGATAAGGCAGATTAGGAACCGTGAAAGTGCTCAGCTTTCGAGGTTG

AGGAAGAAGCAACAAACTGAGGAGCTTGAAAGAAAAGTGAAGAGTATGAATGCTA

CCATTGCTGAATTGAATGGTAAGATTGCTTATGTTATGGCTGAGAATGTCGCTTTAA

GGCAACAAATGGCTGTTGCTTCTGGTGCTCCTCCTATGAATCcTTATATGGCTGCCCC

GCCTTTACCGTATCAATGGATGCCGTATCCGCCGTATCCTGTTAGGGGATATGGATC

ACAGACACCTTTGGTTCCCATTCCTAAGTTAAATCCTAAGCCTGTATCGAGTTGTAG

ACCGAAGAAGGCAGAGAGTAAGAAGAATGAGGGTAAAAGTAAGCTCTGA 

Amino acid sequence 

MTESTSVVAPPPEIPNLNPSMFSESDLFSIPPLDPLFLSDSDPISMDAPISDLDFLLDDENGD

FADFDFSFDNSDDFFDFDLSEPAVVIPEEIGNNRSNLDSSENRSGDGGLEGRSESVHSQVS

SQGSKTFVSDTVDASSSPESSNHQKSSVSKRKKENGDSSGELRSCKYQKSDDKSVATNN

EGDDDDDKRKLIRQIRNRESAQLSRLRKKQQTEELERKVKSMNATIAELNGKIAYVMAE

NVALRQQMAVASGAPPMNPYMAAPPLPYQWMPYPPYPVRGYGSQTPLVPIPKLNPKPV

SSCRPKKAESKKNEGKSKL* 

Feature 

bZIP28    : (nucleotide) 1…960  (amino acid) 1…320 
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3.9 Nucleotide and amino acid sequences of synthetic gene, bZIP60 

Nucleotide sequence 

ATGGTGGATGACATCGATGATATCGTTGGACACATCAATTGGGACGATGTAGATGA

CCTCTTCCACAACATTCTAGAGGATCCCGCCGACAATCTCTTCTCTGCTCATGATCCG

TCCGCGCCGTCTATCCAGGAGATCGAGCAGCTTCTCATGAACGATGATGAAATCGTC

GGTCACGTGGCTGTCGGAGAGCCTGATTTTCAACTTGCTGACGACTTTCTCTCCGAC

GTGCTAGCCGATTCTCCTGTTCAGTCCGATCTTTCTCACTCTGATAAAGTCATTGGAT

TCCCCGATTCCAAGGTTTCAAGTTGCTCAGAGGTTGATGATGACGACAAAGACAAG

GAGAAGGTTTCCCAGTCGCGGATTGACTCTAAGGACGGCTCTGACGAACTAAACTGT

GATGATCCCGTCGATAAAAAGCGTAAGAGGCAATTGAGAAACAGAGATGCAGCTGT

CAGGTCACGAGAGCGGAAGAAGTTGTATGTTAGGGATCTTGAGTTGAAGAGTAGAT

ACTTTGAATCAGAGTGCAAGAGGTTGGGGTTAGTTCTCCAGTGCTGTCTTGCAGAAA

ATCAAGCTTTGCGCTTCTCTTTGCAGAATGGCAATGCTAATGGTGCTTGTATGACCA

AGCAGGAGTCTGCTGTGCTCTTGTTGGAATCCCTGCTGTTGGGTTCCCTGCTTTGGTT

CCTGGGCATCATATGCCTGCTCATTCTTCCCAGCCAACCCTGGTTAATTCCAGAAGA

AAATCAACGAAGCAGAAACCACGGTCTTCTGGTTCCGATAAAGGGAGGAAATAAGG

CTGGTCGGATTTTTGAGTTCCTGTCCTTCATGATGGGCAAGAGATGCAAAGCTTCAA

GATCGAGGATGAAGTTCAATCCCCATTCTTTGGGAATTGTTATGTGA 

Amino acid sequence 

MVDDIDDIVGHINWDDVDDLFHNILEDPADNLFSAHDPSAPSIQEIEQLLMNDDEIVGHV

AVGEPDFQLADDFLSDVLADSPVQSDLSHSDKVIGFPDSKVSSCSEVDDDDKDKEKVSQ

SRIDSKDGSDELNCDDPVDKKRKRQLRNRDAAVRSRERKKLYVRDLELKSRYFESECK

RLGLVLQCCLAENQALRFSLQNGNANGACMTKQESAVLLLESLLLGSLLWFLGIICLLIL

PSQPWLIPEENQRSRNHGLLVPIKGGNKAGRIFEFLSFMMGKRCKASRSRMKFNPHSLGI

VM*  

Feature 

bZIP60    : (nucleotide) 1…900  (amino acid) 1…300 
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3.10 List of primers 

Primers Sequences 

pVP3-F TGTACATTAATTAAATGGGTTTCGTGCTGTT 

VP3H-R 
GCTAGCGGCGCGCCCTCGAGCTAGTGGTGGTGATGGT

GATGAAGCTT 

VP3-F TGTACATTAATTAAATGGATGCTCTGCAAGAGGATAC 

gVP3H-R 
GCTAGCGGCGCGCCCTCGAGCTAGTGATGGTGGTGGT

GATGAAGCTT 

gVP3-F TGTACATTAATTAAATGGCTTCTAAGGGTGAGGAACT 

LicVP3-F TGTACATTAATTAAATGCAGAACGGTGGTTCCTACCC 

PRH22-F 

TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAG

CTGCCTTCTTTCCTTCTTGTGTCTACCCTTCTGCTGTTC

CTGGTGATCTCTCATTCTTGCAGGGCTCAGGTTCAGCT

GGTTGAGTCTGGTG 

HCatVP3-R GGTATCCTCTTGCAGAGCATCCATAGGACCCCTATC 

HCatVP3-40-121-R GGTGATGGTAATAGGACCCCTATCAACTTCATCGTG 

HCatVP3-60-121-R ATCTGCGGTAGCAGGACCCCTATCAACTTCATCGTG 

HCatVP3-80-121-R AGGCTTAGGCTGAGGACCCCTATCAACTTCATCGTG 

HCatVP3-F CACGATGAAGTTGATAGGGGTCCTATGGATGCTCTG 

VP3-HK_R GCTAGCGGCGCGCCCTCGAGCTAAAGCTCA 

HCatVP3-40-121-F GATAGGGGTCCTATTACCATCACCCTGTCTTTGTGC 
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HCatVP3-60-121-F GATAGGGGTCCTGCTACCGCAGATAACAGCGAGAGC 

HCatVP3-80-121-F GATAGGGGTCCTCAGCCTAAGCCTCCAAGCAAGAAG 

PREGF-F 

TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAG

CTGCCTTCTTTCCTTCTTGTGTCTACCCTTCTGCTGTTC

CTGGTGATCTCTCATTCTTGCAGGGCTAACAGCGATA

GCGAGTGCCCTCTGT 

ECatVP3-R CAGAGCATCCATAGGACCTCTATCAACTTCATCGTG 

ECatVP3-F GATAGAGGTCCTATGGATGCTCTGCAAGAGGATACC 

YFE-1-T-F 
TGTACATTAATTAAATGGGTTTCGTGCTGTTCAGCCAG

CT 

ECatVP3-40-121-R GGTGATGGTAATAGGACCTCTATCAACTTCATCGTG 

ECatVP3-60-121-R ATCTGCGGTAGCAGGACCTCTATCAACTTCATCGTG 

ECatVP3-80-121-R AGGCTTAGGCTGAGGACCTCTATCAACTTCATCGTG 

ECatVP3-40-121-F GATAGAGGTCCTATTACCATCACCCTGTCTTTGTGC 

ECatVP3-60-121-F GATAGAGGTCCTGCTACCGCAGATAACAGCGAGAGC 

ECatVP3-80-121-F GATAGAGGTCCTCAGCCTAAGCCTCCAAGCAAGAAG 
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3.11 Codon usage table of Nicotiana benthamiana (N. benthamiana) 

This data was adopted from URL: http://www.kazusa.or.jp/codon/cgi-

bin/showcodon.cgi?species=4100 

Features: [codon] [frequency: per thousand] ([number]) 

UUU 23.7 (  1036)  UCU 22.3 (   974) UAU 15.8 (   690) UGU  9.2  (   404) 

UUC 17.6 (    771)  UCC 10.4 (   453) UAC 12.8 (   562) UGC  7.2  (   315) 

UUA 12.8 (   559)  UCA 17.2 (   752) UAA  0.7  (     32) UGA  0.9  (     39)  

UUG 24.3 (  1062)  UCG  5.6  (   247) UAG  0.7  (     29) UGG 12.4 (   542) 

 

CUU 24.9 (  1091)  CCU 18.9 (   826) CAU 12.9  (   566) CGU  7.7  (   335) 

CUC 12.5 (    545)  CCC  6.4  (   278) CAC  8.2   (   360) CGC  4.2  (   183) 

CUA  9.2  (    404)  CCA 16.8 (   734) CAA 18.1  (   790) CGA  5.8  (   253) 

CUG 11.9 (    522)  CCG  6.5  (   284) CAG 17.0  (   745) CGG  5.3  (   233) 

 

AUU 26.7 (  1170)  ACU 17.4 (   762) AAU 29.1  (  1272) AGU 14.7 (   642) 

AUC 13.9 (    610)  ACC 10.1 (   443) AAC 16.9  (    741) AGC 10.7 (   469) 

AUA 12.1 (    530)  ACA 15.2 (   665) AAA 29.0  (  1269) AGA 15.8 (   690) 

AUG 23.9 (  1044)  ACG  5.4  (   236) AAG 38.0  (  1662) AGG 13.0 (   569) 

 

GUU 26.1 (  1142)  GCU 33.2 ( 1452) GAU 38.5  (  1686) GGU 24.3 ( 1065) 

GUC 10.6 (    465)  GCC 12.6 (   550) GAC 16.4  (    719) GGC 11.4 (   500) 

GUA  9.9  (    435)  GCA 23.5 ( 1029) GAA 35.2  (  1541) GGA 22.5 (   986) 

GUG 15.6 (    684)  GCG  6.5  (   283) GAG 30.9  (  1351) GGG 11.1 (   485) 

 

 

 

http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4100
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4100


 

9-16 

  

Appendices for Chapter 4 

4.1   Expression profile for mock infected plant sample 

Protein expression profile of plants infected with recombinant vector without gene insert (as a 

negative control/ pGR-D4) was analysed using western blotting. No band was detected from total 

protein (TP) and total soluble protein (with triton) (TSP-T) fraction from protein samples 

extracted from plants infected with recombinant vector without gene insert.   

      

 

  

 

      

 Lane Sample Expression vector 
Estimated 

size 
 

 P 
MagicMark™ XP Western Protein 

Standard 
   

 1-3 
60 ng, 30 ng and 15 ng of HAI 

standard  
 ~ 70 kDa  

 4-8 
TP extracts from leaf samples 

harvested from 4, 5, 6, 7 and 8 dpi 
pGR-D4   

 9-13 
TP extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: GFP-VP3-H ~ 42 kDa  

 14-18 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4   

 19-23 
TSP-T extract from leaf samples 

harvested on 4, 5, 6, 7 and 8 dpi 
pGR-D4:: PR-GFP-VP3-H ~ 42 kDa  

      

Figure A4.1: Protein expression profile of mock infected plants. (a) Western profiles showed the 

detection of TP from mock infected (pGR-D4) plants and plants infiltrated with recombinant 

pGR-D4:: PR-GFP-VP3-H using Tetra-His mouse monoclonal antibody. (b) Western profiles 

showed the detection of TP from mock infected (pGR-D4) plants and plants infiltrated with 

recombinant pGR-D4:: PR-GFP-VP3-H using Tetra-His mouse monoclonal antibody. 

a b

c 
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Appendices for Chapter 5 

5.1 IMAC purification of recombinant apoptin from leaves infiltrated with recombinant 

vector pGR-DN:: PR-VP3-HK__bZIP60 

Total protein (TP) harvested from leaf materials infiltrated with recombinant vector, pGR-DN:: 

PR-VP3-HK__bZIP60 yielded ~ 20 mg/kg (Figure A5.1-a: Lane 4); however, amount of total 

soluble protein (TSP) (Figure A5.1-a: Lane 5) was ~ 4 mg/kg. Recovery of soluble recombinant 

apoptin in eluent containing 300 mM imidazole was ~ 10% of TSP. Protein eluent contained 

high amount of unspecific protein (Figure A5.1-a: Lane 15). 

      

 

  

 

      

 Lane Sample Estimated size  

 P 
MagicMark™ XP Western Protein 

Standard 
  

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 TP extract from leaf sample 

~ 18 kDa for recombinant 

VP3-HK 
 

 5 TSP extract from leaf sample 

~ 18 kDa for recombinant 

VP3-HK 
 

a b 
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 6 Flow through fraction from IMAC 

~ 18 kDa for recombinant 

VP3-HK 
 

 7-11 
IMAC eluent containing 20, 40, 60, 300 

and 500 mM imidazole 

~ 18 kDa for recombinant 

VP3-HK 
 

 12-14 900 ng, 600 ng and 300 ng of BSA standard ~ 66.5 kDa  

 15 
IMAC eluent containing 300 mM 

imidazole 

~ 18 kDa for recombinant 

VP3-HK 
 

      

Figure A5.1: IMAC protein purification profiles of recombinant apoptin alone from leaves 

infiltrated with recombinant pGR-DN:: PR-VP3-HK__bZIP60. (a) Western profiles showed the 

detection of recombinant apoptin at a molecular size of ~ 18 kDa reacted with Tetra-His mouse 

monoclonal antibody in each step of IMAC. All sample volume was adjusted to the volume of 

starting material and subsequently loaded into gel at the same volume for all fractions. (b) 

Protein sample from IMAC eluent containing 300 mM imidazole was electrophoresed in SDS-

PAGE and stained with coomassie blue. 
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5.2 Ion exchange chromatography (IEX) of IMAC purified recombinant GFP-apoptin 

using HiTrap SP column  

IMAC purified recombinant GFP-apoptin (GFP-VP3-HK) was further purified with HiTrap SP 

column at pH 7.7 (Figure A5.2-b), pH 8.5 (Figure A5.2-a) and pH 8.0 (Figure A5.2-c and -d). 

Among these three conditions, purification using HiTrap SP column gave the highest purification 

yield (~ 40% recovery) at pH 8.0 using eluent buffer containing 0.6 M NaCl. However, 

unspecific plant protein at  50 kDa still remained as a major contaminant in this purified 

product.   

      

 

  

 

 

  

 

 

 

  

a b 

c 
d 

e 
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 Lane Sample Estimated size  

 P 
MagicMark™ XP Western Protein 

Standard 
  

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 
4, 13, 21 

and 29 

Supernatant of IMAC Eluent after 

centrifuged at 40, 000 xg 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 5 
Buffer exchange IMAC eluent to IEX 

Starting Buffer C 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 6 
Flow through fraction from HiTrap SP 

column at pH 8.5 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 7 
HiTrap SP column washed using IEX 

Starting Buffer C 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 8-11 

Eluent with 0.2, 0.4, 0.6 and 0.8 M NaCl 

containing buffer using IEX Elution Buffer 

C 

~ 45 kDa for recombinant 

GFP-VP3-HK  

 
12, 20, 28 

and 37 

IMAC eluent containing 300 mM 

imidazole buffer 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 14 
Buffer exchange IMAC eluent to IEX 

Starting Buffer D 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 15 
Flow through fraction from HiTrap SP 

column at pH 7.7 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 16 
HiTrap SP column washed using IEX 

Starting Buffer D 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 17-19 

Eluent with 0.2, 0.4 and 0.6 M NaCl 

containing buffer using IEX Elution Buffer 

D 

~ 45 kDa for recombinant 

GFP-VP3-HK  

 22 
Buffer exchange IMAC eluent to IEX 

Starting Buffer E 

~ 45 kDa for recombinant 

GFP-VP3-HK 
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 23 
Flow through fraction from HiTrap SP 

column at pH 8.0 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 24 
HiTrap SP column washed using IEX 

Starting Buffer E 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 25-27 

Eluent with 0.2, 0.4 and 0.6 M NaCl 

containing buffer using IEX Elution Buffer 

E 

~ 45 kDa for recombinant 

GFP-VP3-HK  

 30 
Buffer exchange IMAC eluent to IEX 

Starting Buffer F 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 31 
Flow through fraction from HiTrap SP 

column at pH 8.0 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 32 
HiTrap SP column washed using IEX 

Starting Buffer F 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 33-36 

Eluent with 0.4, 0.6, 0.8 and 1.0 M NaCl 

containing buffer using IEX Elution Buffer 

E 

~ 45 kDa for recombinant 

GFP-VP3-HK  

 38 
Eluent with 0.6 M NaCl containing buffer 

(pH 8.0) 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

      

Figure A5.2: Protein purification profiles of IMAC purified recombinant GFP-apoptin (GFP-

VP3-H). All sample volume was adjusted to the volume of starting material and subsequently 

loaded in the same volume for all fractions. Western profiles showed the detection of 

recombinant GFP-apoptin at a molecular size of ~ 45 kDa reacted with with Tetra-His mouse 

monoclonal antibody in each step of purification performed at (a) pH 8.5. (b) pH 7.7 (c) pH 8.0 

and (d) pH 8.0 with 0.2 M of NaCl in starting buffer. (e) Protein samples from IMAC eluent 

containing 300 mM imidazole and IEX eluent containing 0.6 M NaCl were electrophoresed in 

SDS-PAGE and stained with coomassie blue. 
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5.3 IMAC purification of recombinant GFP-apoptin from insoluble extract 

Recombinant GFP-apoptin (GFP-VP3-H) purified using IMAC under denaturing condition 

showed a recovery of ~ 50% (Figure A5.3). IMAC eluent containing GFP-apoptin required 

subsequent buffer exchange step to remove and refold protein. It was noticed that refolded 

recombinant protein showed a weak GFP signal compared to protein purified using method 

described in Chapter 5 (section 5.3.1.2) (Figure A5.4). 

      

 

  

 

      

 Lane Sample Estimated size  

 P 
MagicMark™ XP Western Protein 

Standard 
  

 Q BenchmarkTM Protein Ladder   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 TP extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 5 TSP-T extract from leaf sample 
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 6 
Insoluble protein extract from leaf sample 

with triton 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 7 
Insoluble protein extract filtered with 0.2 

µm filter 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

a b 
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 8 Flow through fraction from IMAC 
~ 45 kDa for recombinant 

GFP-VP3-H 
 

 9-13 
IMAC eluent containing 20 (+0.5% triton), 

20, 40, 60 and 300 mM imidazole 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

 14-16 900 ng, 600 ng and 300 ng of BSA standard ~ 66.5 kDa  

 17 
IMAC eluent containing 300 mM 

imidazole 

~ 45 kDa for recombinant 

GFP-VP3-H 
 

      

Figure A5.3: IMAC protein purification profiles of recombinant GFP-apoptin (GFP-VP3-H). (a) 

Western profiles showed the detection of recombinant GFP-apoptin at a molecular size of ~ 45 

kDa reacted with Tetra-His mouse monoclonal antibody in each step of IMAC. All sample 

volume was adjusted to the volume of starting material and subsequently loaded into gel at the 

same volume for all fractions. (b) Protein sample from IMAC eluent containing 300 mM 

imidazole was electrophoresed in SDS-PAGE and stained with coomassie blue.  

 

 

Figure A5.4: Fluorescence signal of recombinant GFP-apoptin (GFP-VP3-H) under UV lamp. (a) 

Refolded recombinant GFP-apoptin purified under denaturing condition as described in this 

section showing unapparent green fluorescence. Protein concentration was estimated as 0.1 

mg/ml. (b) Refolded recombinant GFP-apoptin purified under native condition as described in 

Chapter 5 (section 5.3.1.2) showing green fluorescence. Protein concentration was estimated as 

0.07 mg/ml. 

 

a b 
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5.4 Extraction of recombinant GFP-apoptin and EGF-apoptin  

Recombinant GFP-apoptin was extracted from leaf materials infiltrated with recombinant vector, 

pGR-D4:: PR-GFP-VP3-HK using buffer at pH 5.5-9.0 (Figure A5.5: Lane 4-8). Similarly, 

recombinant EGF-apoptin was extracted from leaf materials infiltrated with recombinant vector, 

pGR-D4:: PR-EGF-CatAD-VP3-HK using similar condition (Figure A5.5: Lane 9-13). It was 

noticed that both proteins had high solubility at pH 8.0 and most of the proteins were precipitated 

at acidic condition.  

      

 

 

  

      

 Lane Sample Estimated size  

 P 
MagicMark™ XP Western Protein 

Standard 
  

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4-8 
Protein extract of recombinant GFP-apoptin 

at      pH 5.5, 6.0, 7.0, 8.0 and 9.0 

~ 45 kDa for recombinant 

GFP-VP3-HK 
 

 9-13 
Protein extract of recombinant EGF-

apoptin at      pH 5.5, 6.0, 7.0, 8.0 and 9.0 

~ 30 kDa for recombinant 

EGF-VP3-HK 
 

      

Figure A5.5: Protein extraction profiles of recombinant GFP-apoptin (GFP-VP3-HK) and EGF-

apoptin (EGF-VP3-HK) using buffer at pH 5.5-9.0. Western profiles showed the detection of 

recombinant GFP-VP3-HK (a molecular weight of ~ 45 kDa) and EGF-VP3-HK (a molecular 

weight of ~ 30 kDa) reacted with Tetra-His mouse monoclonal antibody. 

a 
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5.5 IMAC purification of recombinant EGF-apoptin in denaturing condition 

Total protein (TP) harvested from leaf material infiltrated with recombinant vector, pGR-D4:: 

PR-EGF-CatAd-VP3-HK yielded ~ 30 mg/kg (Figure A5.6-a: Lane 4). Recovery of recombinant 

EGF-apoptin in eluent containing 300 mM imidazole was ~ 50% of total protein extract in 

denaturing condition (Figure A5.1-a: Lane 9). Unspecific host protein ~ 50 kDa was detected in 

IMAC eluent (Figure A5.1-a: Lane 16). 

 

      

 

  

 

      

 Lane Sample Estimated size  

 P 
MagicMark™ XP Western Protein 

Standard 
  

 Q Benchmark protein standard   

 1-3 60 ng, 30 ng and 15 ng of HAI standard  ~ 70 kDa  

 4 and 11 Insoluble protein extract from leaf sample  
~ 30 kDa for recombinant 

EGF-VP3-HK 
 

 5 and 12 Flow through fraction from IMAC 
~ 30 kDa for recombinant 

EGF-VP3-HK 
 

 
6-10 and 

13-17 

IMAC eluent containing 20, 40, 60, 300 

and 500 mM imidazole  

~ 30 kDa for recombinant 

EGF-VP3-HK 
 

a b 
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 18-20 900ng, 600 ng and 300 ng BSA standard ~ 66.5 kDa  

      

Figure A5.6: IMAC protein purification profiles of recombinant EGF-apoptin (EGF-VP3-HK) in 

denaturing condition. (a) Western profiles showed the detection of recombinant EGF-apoptin at a 

molecular size of ~30 kDa reacted with anti- Tetra-His mouse monoclonal antibody in each step 

of IMAC. All sample volume was adjusted to the volume of starting material and subsequently 

loaded into gel at the same volume for all fractions. (b) Protein samples from each step of IMAC 

were electrophoresed in SDS-PAGE and stained with coomassie blue. 
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Appendices for Chapter 6 

 

6.1 Activity of ectopically expressed apoptin in A549 cells 

Activity of ectopically expressed apoptin was assessed in A549 cells in order to identify for the 

susceptibility of A549 cells towards apoptin. Gene sequence of GFP, GFP-VP3, VP3-A and 

EGF-VP3 were synthesized by GeneArtTM Gene Synthesis, Thermo Scientific (USA). Besides, 

GFP and EGF gene sequences were optimised based on codon usage of Homo sapiens.  Gene 

sequence of apoptin (VP3) was synthesised based on sequence of Mohd-Azmi et al. (1997) 

(Malaysia isolate) (GenBank accession number: AAB86420.1). Synthesised genes were cloned 

into mammalian expression vector pCDNA3.0(+) and generated recombinant vectors, 

pCDNA3.0(+):: GPF, pCDNA3.0(+):: GFP-VP3-A, pCDNA3.0(+):: VP3-A and pCDNA3.0(+):: 

EGF-VP3-A. All recombinant vectors were delivered into A549 cells using Lipofectamine 3000 

(Thermo Scientific, USA) by following the instruction provided by the manufacturer. Expression 

of proteins in A549 cells were evaluated using IF (described in section 6.2.4) on 2, 4, 5 and 6 

days post transfection. For evaluation of activity of apoptin in A549 cells, ~50 cells were 

examined for cells expressed each recombinant protein. Survival of apoptin or GFP expressed 

cells were quantified by checking the morphology of cell nucleus stained by SYB Green or PI. 

Data collected were analysed by statistical analysis ANOVA by using GraphPad Prism. 

Significance of cell death was evaluated by comparing cells expressing GFP to cells expressing 

GFP-VP3, VP3-A and EGF-VP3.   

Significant cell death was not observed on apoptin expressed cells on 2 days post transfection; 

but instead, it was observed on 4, 5 and 6 days post transfection (Figure A6.3). DNA 

condensation and nucleus fragmentation occurred in cells expressing apoptin (Figure A6.4). 

Instead of quantifying the viability of cells expressing apoptin, localisation of protein was also 

studied. GFP protein expressed in A549 cells was distributed evenly within the cells; however, 

ectopically expressed apoptin was relocalised into cell nucleus (Figure A6.5).  Relocalisation of 

apoptin into cell nucleus was reported in various kinds of cancer cells and this activity of protein 
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was mainly due to the bipartite nuclear localisation signal residing in C-terminal of apoptin (Los, 

2009). 
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Figure A6.1: Evaluation of survival rate of ectopically expressed apoptin in A549 cells. Cells 

expressing recombinant GFP, GFP-apoptin (GFP-VP3), apoptin alone (VP3-A) and EGF-apoptin 

(EGF-VP3) were firstly confirmed by using indirect immunofluorescent assay (IF). Viability of 

cells expressing recombinant proteins was quantified by evaluating morphology of cells using 

a 
b 

c 

d 
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propidium iodide (PI) or SYBGreen. Cells expressing recombinant GFP and apoptin showed 

similar rate of survival (p=0.67) on 2 days post transfection; however, cells expressing apoptin 

showed significant cell death in relative to cells expressing GFP protein on 4 (p= 0.0008), 5 (p= 

0.0003) and 6 (p< 0.0001) days post transfection.  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

  

      

Figure A6.2: Fluorescence microscopic observation of ectopically expressed apoptin in A549 

cells captured using Nikon Instruments Eclipse Ti-E inverted microscopes. (a) Cells expressing 

apoptin showed normal and healthy conditions. Cell nuclei remained round and intact. (b) Cells 

expressing apoptin showed chromatin condensation with evidence of bright green fluorescence 

a b 

c 
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stained DNA. (c) Cells expressing apoptin showed nuclear fragmentation morphology. Nucleus 

of cells was no longer intact and had been broken into pieces.    

 

 

     

 
Cell nucleus stained 

by Hoechst dye 
Intrinsic GFP signal 

Ectopically 

expressed GFP-

apoptin (GFP-VP3) 

detected using 

mouse monoclonal 

VP3 antibody 

Overlaid signal of 

stained nucleus and 

intrinsic GFP signal 

a 

    

b 

  

 

 

Figure A6.3: Fluorescence microscopic observation of ectopically expressed apoptin in A549 

cells captured using Zeiss Observer Z1 microscope and Zeiss LSM 510 META highspeed 

confocal microscope. (a) Cells expressing apoptin (red) (detected using mouse monoclonal VP3 

antibody) showed protein aggregation in cell nucleus (stained by Hoechst dye). (b) Cells 

expressing GFP protein showed even distribution of protein in A549 cells.     
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6.2 Delivery of recombinant GFP-VP3-HK into A549 cells using Pulsin protein 

transfection reagent 

Since recombinant GFP-VP3-HK did not harbor cell penetrating peptide, refolded GFP-VP3-HK 

was transfected into A549 cells using PULSin® protein delivery reagent (Polyplus transfection, 

France) based on the protocols provided by the manufacturer. PULSin® protein delivery reagent 

is a kind of cationic amphiphile molecule that forms non-covalent complexes with proteins. 

Complexes are internalized via anionic cell-adhesion receptors and are released into the 

cytoplasm where they are disassembled. In this study, cells were incubated with recombinant 

GFP-VP3-HK and PULSin® protein delivery reagent for 4 hours. Subsequently, fresh culture 

medium was used to replace medium containing recombinant GFP-VP3-HK and transfection 

reagent. IF (described in section 6.4) was performed to identify for the location of recombinant 

GFP-VP3-HK. Fluorescence microscopic images showed that positive control R-Phycoerythrin 

(~ 240 kDa), as provided by manufacturer, was successfully delivered into A549 cells as shown 

in Figure A6.6. However, delivery of recombinant GFP was not as efficient as R-Phycoerythrin 

since limited green fluorescent signal was observed from transfected cells. For recombinant 

GFP-VP3-HK, huge aggregates were observed on A549 cells and these aggregates were proven 

to be recombinant GFP-VP3-HK by IF using mouse monoclonal VP3 antibody.  
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Figure A6.4: Fluorescence microscopic observation of A549 cells transfected with R-

Phycoerythrin, GFP and recombinant GFP-VP3-HK. (a and b) Images of A549 cells transfected 

with R-Phycoerythrin. R-Phycoerythrin (fluorescent in red) was successfully delivered into A549 

cells as shown in image (b) (white arrows). (c and d) Images of A549 cells transfected with 

recombinant GFP protein. Limited numbers of cells (d) were successfully transfected with 

recombinant GFP protein. (e and f) Images of A549 cells transfected with recombinant GFP-

VP3-HK protein. Huge amount of aggregates was noticed locating on A549 cells (e) and these 

aggregates were proven to be recombinant GFP-VP3-HK as shown in image (f), by which IF was 

performed using Mouse monoclonal VP3 antibody.  

a b 

c d 

e f 
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6.3 Scoring for microinjection efficiency and viability of A549 cells microinjected with 

recombinant GFP and GFP-VP3-H 

Microinjection was chosen as delivery tool to transfer recombinant GFP-VP3-H into A549 cells 

since the protein did not have cell penetrating peptide. Efficiency as well as viability of cells 

microinjected with recombinant GFP and GFP-VP3-H was scored and presented as in Table 

A6.1. Efficiency of microinjection for recombinant GFP was scored based on the detected 

intrinsic signal of GFP present in the microinjected cells; however, microinjected cells turned up 

with signal from indirect immunofluorescence (IF) staining of recombinant GFP-VP3-H using 

mouse monoclonal VP3 antibody and Rhodamine (TRITC) AffiniPure Goat Anti-Mouse IgG 

(H+L) which was calculated as the efficiency of microinjection. The nuclei of cells microinjected 

with recombinant GFP were stained with propidium iodide (PI) while nuclei of cells 

microinjected with recombinant GFP-VP3-H were stained with SYB Green. Staining of cell 

nuclei allowed for the identification of the nuclear morphology of cells and determination of the 

survival of injected cells (Figure 6.6). Only those with intact and round nucleus were considered 

as survived cells, which did not include cells with condensed chromatin or fragmented nuclei.  

Table A6.1: Survival of cells microinjected with recombinant GFP and GFP-VP3-H. 

Recombinant 

Proteins 

Efficiency and viability 

of microinjected cells 

Time (hours) 

2 4 6 12 24 

G
F

P
 

Detected cells 60 % 58 % 66 % 68 % 41 % 

Survived cells  55 % 52 % 61 % 58 % 37 % 

G
F

P
-

V
P

3
-H

 Detected cells  40 % 57 % 17 % 7 % 1 % 

Survived cells  18 % 34 % 11 % 4 % 0 % 

Note: Detected cells - Cells detected after 2-24 hours post microinjection based on intrinsic 

signal of recombinant GFP or fluorescent signal shown in IF of cells microinjected with 

recombinant GFP-VP3-H were classified as detected cells. The calculation was 
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 performed by [ (detected cell numbers/ total injection number) 

x 100]. 

 Survived cells - Microinjected cells with intact and normal nuclear features 

were considered as survived cells. The calculation was 

performed by [ (survived cell numbers/ total injection number) 

x 100]. 

 

Data shown in Table A6.1 were calculated from a single experiment. Cells microinjected with 

recombinant GFP showed survival rate of more than 50% during the period of 2-12 hours post 

microinjection. Survival of cell microinjected with recombinant GFP decreased starting at 24 

hours post microinjection and this most likely due to the decrease of detected cells that caused by 

the overturn of recombinant protein in live cells. Decrease of cells microinjected with 

recombinant GFP-VP3-H was also observed. The lower cell numbers might be caused by the 

overturn of apoptin protein as well as cell killing effect from recombinant GFP-VP3-H.  
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6.4 Mitochondrial membrane permeability (MMP) evaluation of A549 cells using 

carbonyl cyanide 3-chlorophenylhydrazone (CCCP) 

MMP evaluation for A549 cells using a reversible proton gradient uncoupling agent, carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP), was performed as a positive control for MMP assay, 

which would be performed for microinjected A549 cells with recombinant GFP as well as 

recombinant EGF-VP3-HK treated A549 cells. In untreated and normal cells, positively charged 

MitoPT TMRM dye was accumulated in mitochondria and red fluorescent signal was detected 

(Figure A6.1 -b). By using CCCP as low as 50 µM, mitochondrial membrane potential of A549 

cells was disturbed and red fluorescent signal was depleted (Figure A6.1 -f).  
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g h 
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Figure A6.5: Mitochondrial membrane permeability activity of A549 cells treated with carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP) for an hour. (a and b) Untreated A549 cells. (c and d) 

A549 cells treated with 5 µM of CCCP. (e and f) A549 cells treated with 50 µM of CCCP. (g and 

h) A549 cells treated with 500 µM of CCCP. Loss of mitochondrial membrane potential 

(represented by the loss of red fluorescent signal) was observed as dose-dependent of CCCP 

effect.  

6.5 Caspase 3/7 activity of A549 cells treated with Camptothecin 

Commercially available Camptothecin is a cytotoxic drug that induces apoptosis in mammalian 

cells via activation of caspases activity. In this study, Camptothecin was employed to be a 

positive control used to examine for the activation of caspase 3/7 using MagicRed Caspase 3/7 

kit in A549 cells. No fluorescent signal was detected for untreated A549 cells indicating no 

activation of caspase 3/7. While activation of caspase 3/7 causes the cleavage of MagicRed 

Caspase 3/7 substrate and releasing of cresyl violet fluorophore, which will cause the cells 

fluoresced in red. A549 cells showed red fluorescent signal (Figure A6.2 -d) as the cells were 

treated with 0.625 µg/ml of Camptothecin.   

 

 

 

 

 

 

 

 

 

 



 

9-38 

  

 

      

 

  

 

 

  

 

      

Figure A6.6: Caspase 3/7 activity of A549 cells treated with 0.625 µg/ml of Camptothecin for 2 

days post incubation. (a and b) Untreated A549 cells. (c and d) A549 cells treated with 0.625 

µg/ml of Camptothecin. Activation of caspase 3/7 was detected on A549 cells (red fluorescence) 

treated with Camptothecin.    

 

a b 

c d 


