Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

Short Title: Cathepsin K in Lymphangioleiomyomatosis

Arundhati Dongre¹, Debbie Clements¹, Andrew J Fisher², Simon R Johnson¹.

1. Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham
2. Institute of Transplantation, Newcastle upon Tyne Hospitals NHS FT and the Institute of Cellular Medicine, Newcastle University

Address where research was performed: Division of Respiratory Medicine, University of Nottingham, D Floor, South Block, Queens Medical Centre, NG7 2UH, UK.

Corresponding author: Arundhati Dongre, Division of Respiratory Medicine, University of Nottingham, D Floor, South Block, Queens Medical Centre, NG7 2UH, UK.

Tel: +44 (0)115 82 31063
Fax: +44 (0)115 82 31059
E-mail: arundhati.dongre@nottingham.ac.uk

Number of text pages: 27; Number of tables: 0; Number of figures: 9

Ethical approval for the use of LAM lung tissue was given by the University of Nottingham Research Ethics Committee, and written, informed consent was obtained from all patients. This study was funded by LAM
Action (lamaction.org) grant number LAM002 and the University of Nottingham postgraduate studentship award number 072. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Abstract

Lymphangioleiomyomatosis (LAM) is a rare disease in which clonal ‘LAM’ cells infiltrate the lungs and lymphatics. In association with recruited fibroblasts, LAM cells form nodules adjacent to lung cysts. It is assumed LAM nodule derived proteases lead to cyst formation although, this is uncertain. We profiled protease gene expression in whole lung tissue and observed cathepsin K was 40 fold over-expressed in LAM compared with control lungs (p≤0.0001). Immunohistochemistry confirmed cathepsin K protein in LAM nodules but not control lungs. Cathepsin K gene expression, protein and protease activity was detected in LAM associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immuno-reactivity was predominantly co-localised with LAM associated fibroblasts. In vitro, extra-cellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced in fibroblast cultures at pH 7 and 6. 621-101 cells reduced extracellular pH by 0.5 units over 24 hours. Acidification was dependent upon 621-101 cell mTOR activity and net hydrogen ion transporters, particularly sodium/bicarbonate co-transporters and carbonic anhydrases which were also expressed in LAM lung tissue. In LAM cell/fibroblast co-cultures, acidification paralleled cathepsin K activity and both were inhibited by sodium bicarbonate co-transporter (p≤0.0001) and carbonic anhydrase inhibitors (p=0.0021). Our findings suggest cathepsin K activity is dependent on LAM cell/fibroblast interactions and inhibitors of extracellular acidification may be potential therapies for LAM.
Lymphangioleiomyomatosis (LAM) is a lung and lymphatic disease which may eventually lead to respiratory failure. In LAM, the lung parenchyma is progressively replaced by cysts surrounded by heterogeneous groups of cells. These groups of cells, termed LAM nodules, contain LAM cells, which are clonal and have inactivating mutations in either \(TSC1 \) or more often \(TSC2 \). The protein products of \(TSC1 \) and \(TSC2 \), hamartin and tuberin respectively, form a heterodimer which, by inactivating the small GTPase Rheb, in turn suppresses the activity of the mechanistic target of rapamycin (mTOR). In LAM cells, constitutive activation of mTOR leads to abnormal proliferation, migration, inhibition of autophagy and metabolic dependence on glycolysis. LAM cells express markers of both smooth muscle, including \(\alpha \)-smooth muscle actin (\(\alpha \)-SMA) and melanocyte lineages with microphthalmia transcription factor (MITF), glycoprotein 100 (gp100) and PNL2. This mixed phenotype is characteristic of the perivascular epithelioid cell (PEC) group of neoplasms. Genetic, and more recently, histologic studies have shown that LAM nodules also contain a significant population of recruited wild type cells including fibroblasts, mast cells and other inflammatory cells.

The mechanism of cyst formation is not well understood although lung cysts are thought to arise as a result of LAM nodule derived matrix degrading proteases. The expression of various protease families has been described in LAM. The matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases with roles in many biological processes including extra-cellular matrix turnover, inflammation, angiogenesis, metastasis, regulation of growth factor and chemokine activity. LAM lung nodules express MMPs -1, -2 and -14, MMP-2 is over expressed by \(TSC2 \) knockout cells, and we and others have shown that women with LAM have higher levels of MMP-2 and -9 in serum and MMP-9 in urine than healthy women. However a recent study of MMP inhibition using doxycycline did not reduce decline in lung function despite suppression of MMP-9, suggesting other proteases are responsible for lung destruction. The serine protease, plasmin is increased in LAM lung whilst its inhibitor, plasminogen activator inhibitor (PAI-1), is reduced suggesting activation of this protease axis. Cathepsin K is a cysteine protease which is
expressed in LAM lung nodules and other PEC neoplasms22, 23. Unlike the MMPs and plasmin, cathepsin K is not present in normal lung tissue, but is classically expressed by osteoclasts as a bone remodelling protease24 and by tumour stromal fibroblasts25. Cathepsin K requires low pH for its activation. Inside the cell this generally occurs in lysosomes whereas in tumour stroma, cathepsin K activation is dependent upon acidification of the extra-cellular space by membrane transporters including carbonic anhydrases (CA), vacuolar-type H+-ATPases (V-ATPases) and sodium bicarbonate co-transporters26-28.

Here we have investigated the expression of cathepsin K and the mechanism of cathepsin k activation by extra-cellular acidification using \textit{in vitro} models of LAM and LAM lung tissue.

\textbf{Methods}

\textbf{Patients and tissue}

Women with LAM receiving clinical care at the UK LAM Centre, are enrolled in a comprehensive cohort study. Informed consent was obtained for the use of tissue taken as part of clinical care, including diagnostic biopsy or diseased LAM lung removed at the time of lung transplantation to be used for cell and tissue culture. LAM lung tissue removed at the time of transplantation was received from UK transplant centres and the National Disease Research Interchange (USA). The study has approval from the Nottingham research ethics committee (Ref. 13/EM/0264) and written informed consent was obtained from all patients.

\textbf{Cell isolation and culture}

Fibroblast-like cells, now termed LAM-Associated Fibroblasts (LAFs), were obtained from collagenase digested fresh LAM lung tissue, cultured in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DME-F12, Life Technologies Ltd, Paisley, UK) and were used between passages 3 and 6. LAF do not have TSC mutations, express full-length tuberin protein and suppressible mTOR activity in the absence of serum
consistent with wild-type cells as previously described. 621-101 cells were derived from the renal angiomyolipoma of a patient with sporadic LAM, have inactivation of both alleles of \(\text{TSC2} \), express oestrogen receptor \(\alpha \) and \(\beta \) and were a gift from Lisa Henske (Harvard). These cells were maintained in DME-F12 with 10% FCS. \(\text{TSC2}^{-/-} \) and \(\text{TSC2}^{+/+} \) murine embryonic fibroblasts (MEF) were a gift from David Kwaitkowski and were derived as described in Onda et al. Normal Human Lung Fibroblasts (NHLFs) from female premenopausal donors were purchased from Lonza (Slough, UK) and Promocell (Heidelberg, Germany) and were maintained in DME-F12 with 10% FCS.

Cell and tissue models

Co-cultures were established either in 12-well Boyden chamber Transwells or as direct contact co-cultures. In the Transwell system LAF and 621-101 cells were incorporated in a 10:1 ratio. Polycarbonate membrane Transwell inserts (0.4μm pore size, Corning Life Sciences, SLS, Nottingham UK) were equilibrated for one hour at 37°C and 5% CO\(_2\) prior to adding cells. LAF were seeded at 5x10\(^5\) cells per ml in the lower chamber and 5x10\(^4\) 621-101 cells (500μl) in the upper chamber. Mono-cultures of both cell types maintained the same cell number as co-cultures. Direct contact LAF and 621-101 co-cultures were set up using a total of 5x10\(^4\) cells in a 1:1 ratio. A mixture of cells was resuspended in serum-free DME-F12 and then cultured in tissue culture treated plastic. Mono-cultures of both cell types were set up using 5x10\(^4\) cells per well. For pH measurement, 5x10\(^4\) 621-101 cells, \(\text{TSC2}^{-/-} \) MEFs (rapamycin or vehicle treated) or \(\text{TSC2}^{+/+} \) MEFs were cultured in 24-well tissue culture plates.

Fresh ex-vivo LAM lung tissue obtained from transplant lungs was washed thoroughly in Dulbecco’s Phosphate Buffered Saline (DPBS, Sigma, Dorset, UK) and Dulbecco’s Modified Eagle Medium containing Penicillin/Streptomycin/ Amphotericin B (Sigma, Dorset, UK). Tissue from different areas in the lung parenchyma was cut into 3mm cubes and placed in 24-well tissue culture plates. Tissue was equilibrated overnight in serum-free DME-F12 after which it was treated with vehicle or 10nM Rapamycin or 10nM Oestrogen or both in serum-free DME-F12 for 48 hours.
MTT assay

An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay was performed to assess cell viability after treatment with low pH media or inhibitors of mTOR or membrane transporters and proton pumps. LAF, 621-101 cells or TSC2+/+ and TSC2-/− MEF cultured in unbuffered medium were treated with a sterile 0.5mg/ml MTT (Sigma) solution for 4 hours at 37°C and 5% CO₂. Remaining MTT solution was discarded after 4 hours and the resulting formazan crystals were dissolved in propan-2-ol. Samples were then transferred to a 96-well plate and absorbance was read at 570nm with a background subtraction of 690nm.

Quantification of gene expression

Total RNA was extracted from 10⁶ LAF, NHLF or 621-101 cells cultured in 6-well tissue culture plates for 24 hours using GenElute Mammalian Total RNA Miniprep Kit (Sigma, Dorset, UK). RNA from treated and untreated tissue explants was extracted by first homogenising the tissue using an IKA-ultra-turrax® T25 homogeniser (IKA, Oxford, UK) followed by shearing, centrifuging and filtering to remove tissue debris. Contaminating genomic DNA was removed using On-Column DNase I digest set (Sigma, Dorset, UK). cDNA was synthesised using Superscript III First-Strand Synthesis System (Invitrogen, Life Technologies Ltd, Paisley, UK) with random hexamer primers as per the manufacturer’s instructions. Relative gene expression of MMPs -1, -2, -9, -12, -13, -14, tissue inhibitor of metalloproteinases (TIMPs) 1-3, cathepsins B,D,H,K,L,S, urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), PAI-1, ADAM metallopeptidase domain 17 (ADAM17), calpains (CAPNs) 1-2 was determined by amplifying cDNA via quantitative real-time PCR using the Brilliant III SYBR Green QPCR master mix (Agilent Technologies, Cheshire, UK). Pre-designed and validated KiCq Start SYBR Green Primers (Sigma, Dorset, UK) were used. Primers were selected on the basis of their rank and exon locations. Reactions were performed in triplicate. Expression levels of target genes were determined relative to a housekeeping gene β-actin using the comparative CT (2^ΔΔCT) method.

Immunohistochemistry and Immunofluorescence

Immunohistochemistry (IHC) was performed on formalin-fixed paraffin embedded (FFPE) sections. After deparaffinization, antigen retrieval, where required, was carried out in sodium citrate buffer solution, pH 6.0, for 20 minutes in a steamer. Sections were then blocked with 3% hydrogen peroxide (Sigma, Dorset, UK) followed by 2.5% horse serum (Vector Laboratories, Peterborough, UK) before incubation with primary antibody at 4°C overnight. Sections were washed in PBS with 0.05% Tween 20 (PBS-T) then incubated with secondary antibody for one hour at room temperature. Chromogenic detection was carried out using ImmPact DAB (Vector Laboratories, Peterborough, UK). For double chromogenic IHC, following ImmPact DAB incubation, sections were blocked, incubated with the second primary antibody, washed in PBS-T, and then incubated with secondary antibody as described above. Chromogenic detection for second antibody was performed using Vector Blue Alkaline Phosphatase Substrate (Vector Laboratories, Peterborough, UK). Levamisole was added to block endogenous alkaline phosphatases. Sections were counterstained with Mayer’s Haematoxylin (Sigma, Dorset, UK) and mounted using Vectamount (Vector Laboratories). For double fluorescent IHC FFPE sections were sequentially incubated with primary antibodies against both antigens followed by washing and then incubation with both fluorophore conjugated secondary antibodies (pre-adsorbed against the other species), counterstaining with 4',6-diamidino-2-phenylindole (DAPI) and mounted in Fluorescent Mounting Medium (Dako UK Ltd, Ely, UK).

Immunofluorescent (IF) detection of proteins was carried out in cultured cells grown on 8-well Nunc Lab-Tek II Chamber Slide System (Fisher Scientific, Loughborough, UK) in DME-F12 with 10% FCS for 24 hours. The cells were then fixed in 4% formaldehyde overnight at 4°C, washed in PBS, then permeabilised in 0.15% Triton x100 in PBS for 10 minutes at room temperature. Samples were blocked in 10% goat serum, incubated with primary antibodies overnight at 4°C followed by incubation with fluorophore conjugated secondary antibodies for one hour at room temperature in the dark. Samples were incubated with DAPI and mounted in Fluorescent Mounting Medium (Dako UK Ltd, Ely, UK).
Primary antibodies used were: mouse anti-Cathepsin K (3F9, ab37259), 1:2000 (IHC), 1:100 (IF) (Abcam, Cambridge, UK); rabbit anti-Cathepsin K (11239-1-AP), 1:500 (IHC-F), 1:1000 (IHC) (Proteintech, Manchester, UK); anti-α-Smooth Muscle Actin (1A4, A2547), 1:10,000; anti-Fibroblast Surface Protein (1B10, F4771), 1:50 (Sigma, Dorset, UK); anti-Melanoma Associated Antigen PNL2(MSK082) 1:50 (Zytomed, Berlin, Germany); rabbit anti-Carbonic Anhydrase IX (ab15086), 1:500; rabbit anti-SLC4A4 (ab187511), 1:2000 (Abcam, Cambridge, UK). Secondary antibodies used were: Vector ImmPress HRP anti-Mouse and anti-Rabbit (Vector Laboratories, Peterborough, UK), Alexa Flour 488 goat anti-mouse IgG antibody, Alexa Fluor goat anti-rabbit IgG antibody (Fisher Scientific, Loughborough, UK), anti-Mouse IgM peroxidase conjugate (Sigma, Dorset, UK).

Cathepsin K activity assays

Intracellular Cathepsin K activity was recorded in live cells using the Magic Red substrate (ImmunoChemistry Technologies, 2B Scientific, Bicester, UK). Cultured cells were grown on 8-well Nunc Lab-Tek II Chamber Slide System in DME-F12 serum free for 24 hours. Cells were then treated with unbuffered Dulbecco’s Modified Eagle’s Medium (DMEM) medium, pH 6.5 for 2 hours after which Magic Red substrate was added to the media at a 1:26 ratio in the presence and absence of Cathepsin K inhibitor L006235 (100nM), and cysteine protease inhibitor E64 (10μM) (Tocris, Abingdon, UK). The cells were then incubated for 16 hours at 37°C and 5% CO₂. Cells were washed in PBS and nuclei labelled using 0.5% v/v Hoechst stain for 10 minutes at 37°C and 5% CO₂. Samples were then mounted using PBS.

Extra-cellular cathepsin K activity was measured using a Fluorometric Cathepsin K Activity Assay Kit (Abcam, Cambridge, UK). Indirect contact co-cultures and monocultures were run as described. Cells were cultured in 12-well plates and Transwell inserts in unbuffered DMEM supplemented with 0.584 gm/L L-glutamine and 0.004 gm/L folic acid at pH 6.0, 7.0 and 7.5 for 48 or 96 hours. Media were then harvested, clarified and concentrated five-fold using Vivaspin 2 Centrifugal Concentrators (Sartorius, SLS, Nottingham, UK).
LR-AFC substrate (200μM) was added to each concentrated media sample with cathepsin K reaction buffer. Samples were incubated in a black-walled 96-well plate at 37°C for 16-18 hours in the dark and fluorescence was read at a 400-nm excitation and 505-nm emission.

pH measurement

Unbuffered media were prepared by mixing 1 volume of 10x DMEM (Sigma, Dorset, UK) with 9 volumes of sterile deionised water and was supplemented with 0.584 gm/L L-glutamine and 0.004 gm/L folic acid (Sigma, Dorset, UK). Where required, starting pH was adjusted using 2M sodium hydroxide solution. pH was then measured over 24 or 48 hours using an Oakton Waterproof pH Spear Pocket pH Tester (Cole-Parmer, London, UK).

Membrane transporters and proton pump inhibitors

Inhibitors used were: Carbonic Anhydrases, S4 (IX and XII inhibitor) 100μM (Tocris, Abingdon, UK) and Acetazolamide (universal) 1mM (Sigma, Dorset, UK); Sodium H⁺ exchanger, BIX (Tocris, Abingdon, UK) 100nM; Sodium HCO₃⁻ co-transporter, S0859 (Sigma, Dorset, UK) 50μM; Vacuolar-type H⁺ATPase, Concanamycin A (Santa Cruz, Insight Biotechnology, Middlesex, UK) 100nM; mTOR, Rapamycin (Calbiochem, Merck Millipore, Watford, UK) 10nM.

Statistical Analyses

Statistical analysis was performed using Graphpad Prism version 6 software (Graphpad, La Jolla, USA). Paired experiments were analysed by t-test and multiple comparisons by two-way ANOVA with Dunnett’s or Bonferroni’s correction with a P value of <0.05 regarded as significant.

Results

Cathepsin K is overexpressed in LAM lung tissue
mRNA was extracted from whole lung tissue of six patients with sporadic LAM. Normal human total lung RNA was obtained from Ambion (ThermoFisher Scientific, Paisley, UK). Quantitative RT-PCR was performed for candidate proteases and protease inhibitors MMPs -1, -2, -3, -9, -13, -14, TIMPs 1, 2, 3, cathepsins B, C, D, K, L, S, uPA, uPAR and PAI1. To determine that the method was appropriate, we first compared expression of the LAM specific genes premelanosome protein (PMEL), Melan-A (MLANA) and vascular endothelial growth factor D (VEGF-D) in control and LAM lungs. Transcripts for PMEL, MLANA and VEGF-D were 297, 267 and 2.47 fold more abundant in LAM than control lung tissue (supplemental figure S1). mRNA was detected for all proteases examined. Transcript expression was variable between individual donors. The most strongly expressed protease transcript in LAM lung was cathepsin K which was increased 40 fold compared with normal tissue (control mean 0.00092 95% C.I. 0.177. LAM mean 0.375, 95% C.I. 0.136 p≤0.0001). Cathepsins B and D and TIMP3 were significantly reduced in LAM, other proteases were unchanged (figure 1a).

We next incubated fresh LAM lung tissue in culture with rapamycin, oestrogen or vehicle for 48 hours with cathepsin K expression measured by quantitative RT-PCR. Six tissue explants obtained from different areas of the lung parenchyma of two donors were assessed. Cathepsin K gene expression was detected in all tissue explants. Rapamycin (10nM) reduced cathepsin K gene expression to around one quarter of vehicle control treated levels (p<0.001). Oestrogen (10nM) had no significant effect upon cathepsin K levels (figure 1b).

Cathepsin K protein was examined using immunohistochemistry in six lung biopsy and seven transplant tissues from women with LAM. LAM nodules were identified using immunostaining for α-SMA, the melanoma marker PNL2 and fibroblast surface protein (FSP). LAM nodules were located adjacent to lung cysts (figure 3). Cathepsin K was expressed within LAM nodules in all cases but was not present in surrounding uninvolved lung tissue from patients with LAM or in control patients (figure 3). Cathepsin K
expression was particularly strong in the spindle-like cells within nodules that were also immuno-positive for FSP and α-SMA (figure 2).

Association of cathepsin K with fibroblast-like cells in LAM nodules

LAM nodules are heterogeneous structures with a complex mixture of cell types. To determine which cell types are responsible for cathepsin K expression we first examined expression of the CTSK transcript by RT-PCR in normal human lung fibroblasts, LAF and 621-101 cells. CTSK transcript was present in both normal lung fibroblasts and LAF but was not significantly expressed by 621-101 cells (figure 4a).

Using immunofluorescence, NHLF and LAF but not 621-101 cells were positive for cathepsin K protein which was concentrated in intra-cytoplasmic granules (figure 4b). To determine the presence of intra-cellular cathepsin activity, we then used Magic Red, a substrate that generates red fluorescence when processed by cathepsins. Red fluorescence was detected in LAFs which was partially inhibited by the cathepsin K inhibitor L006235 and completely inhibited by the broad-spectrum cysteine protease inhibitor E64 (figure 4c).

To determine if LAF are the predominant source of cathepsin K in LAM lung tissue we co-immunostained using differential immunostaining with both chromogenic and fluorescent labels. Using both systems we observed strong co-localisation of cathepsin K and FSP in LAM nodules consistent with expression of cathepsin K by LAM lung fibroblasts. A lower level of cathepsin K staining could also be detected by immunofluorescence in FSP negative cells (figure 5).

Cathepsin K activity is pH dependent

We examined cathepsin K activity in vitro using four separate LAF primary cultures and 621-101 cells both separately as mono-cultures and combined in co-cultures. At physiological pH, cathepsin K activity was not significantly elevated above baseline values in any cell type or culture condition. As cathepsin K requires low pH for its activity, cell cultures were also studied at pH 7.0 and 6.0. Cell viability was unimpaired at pH 6.
and above over 24 hours assessed by MTT reduction (supplemental figure S2). At pH 7.0 and 6.0, LAF cathepsin K activity was 1.7 and 2.2 fold higher (p=0.044 and 0.0017 respectively) than at pH 7.5, and almost 3 fold higher (p≤0.0001) in co-cultures. Cathepsin K activity in 621-101 cell supernatants was low at all pH values (figure 6a).

TSC2−/− cells acidify the extracellular pH as a consequence of mTOR dysregulation

As LAF derived cathepsin K requires low pH for its proteolytic activity, we set out to determine if cells within LAM nodules could acidify tissue culture medium *in vitro*. 621-101 cells and LAFs were grown in unbuffered tissue culture medium at initial pH values of 7.5, 7.0 and 6.0. LAFs had no significant effect on culture medium pH over 24 hours. 621-101 cell culture medium fell by around half of one pH unit over 24 hours independent of the starting pH value (figure 6b).

To determine whether extracellular acidification was a consequence of mTOR dysregulation, we examined MEFs lacking TSC2, a negative regulator of mTOR and their genotypic TSC2+/− counterparts. MEFs and 621-101 cells were grown in unbuffered tissue culture medium at initial pH values of 7.5, 7.0 and 6.0. Cell viability of both TSC2+/− and TSC2−/− MEFs was unimpaired at low pH over 24 hours (supplemental figure S3). TSC2+/− MEFs had no significant affect upon extra-cellular pH over 24 hours. TSC2−/− MEFs and 621-101 cells reduced the culture medium pH by 0.35 and 0.51 pH units from a starting pH of 7.5 (p=0.0067 and p=0.0004 respectively) (figure 6c). Treatment of TSC2−/− MEFs and 621-101 cells with rapamycin completely abrogated the change in pH over 24 hours. Similar findings were observed at starting pH values of 7.0 and 6.0 (data not shown).

Expression of H⁺ ion transporters in LAM

To determine the mechanism of extra-cellular acidification by 621-101 cells we profiled candidate membrane transporter expression in 621-101 cells using quantitative real time PCR. Carbonic anhydrases (CA), II, IX and XII, monocarboxylate transporters (MCT) 1 and 4, sodium bicarbonate (Na+/HCO3−) co-
transporters, members of the NBC family \((NBC)\ 1/SLC4A4\) and \(3/SLC4A7\), sodium \(\text{H}^+\) (\(\text{Na}^+\)/\(\text{H}^+\)) exchanger, member of the NHE family \((\text{NHE})\ 1/SLC9A1\) and vacuolar-type \(\text{H}^-\)-ATPases \((\text{V-ATPases})\ ATP6V1B2\) and \(ATP6V0A4\) were all expressed in 621-101 cells (figure 7a). When 621-101 cells were incubated with rapamycin, oestrogen or LAF conditioned medium, \(\text{CA IX}\) gene expression was reduced in the presence of rapamycin although no other changes were significant. In LAM and control lung tissue, gene expression for \(\text{CA II, XII, MCT1, 4, NHE1, SLC4A4, SLC4A7, ATP6V1B2}\) and \(ATP6V0A4\) was similar (figure 7b). We then examined the expression of the two most strongly expressed transporter proteins, \(\text{CA IX}\) and the \(\text{Na}^+\)/\(\text{HCO}_3^-\) co-transporter, \(\text{SLC4A4}\), in lung tissue. Both \(\text{CA IX}\) and \(\text{SLC4A4}\) were strongly expressed in LAM nodules. \(\text{SLC4A4}\), but not \(\text{CA IX}\) was present in control lung tissue (figure 7c).

Inhibition of membrane transporters affects 621-101 cell extra-cellular pH and cathepsin K activity

We then used pharmacological inhibitors of these membrane transporters to determine if we could inhibit extra-cellular acidification by 621-101 cells. In unbuffered media, treated with vehicle control, 621-101 cells reduced extra-cellular pH by 0.75 pH units over 24 hours. Inhibition of V-ATPases, CAs, \(\text{Na}^+\)/\(\text{H}^+\) exchanger and the \(\text{Na}^+\)/\(\text{HCO}_3^-\) co-transporter blocked extra-cellular acidification increasingly strongly. Interestingly the mTOR inhibitor rapamycin was more potent than any of the membrane transporter inhibitors and completely abolished extra-cellular acidification (figure 7d).

To recapitulate the LAM nodule environment, we next examined if 621-101 cells were capable of acidifying their environment in the presence of LAF and whether this resulted in activation of LAF derived cathepsin K. 621-101 / LAF co-cultures acidified the extra-cellular space, which was associated with cathepsin K activity in the co-cultures (figure 8). Membrane transporter inhibitors blocked extra-cellular acidification to the same degree as seen in 621-101 monocultures. Inhibition of pH change was also associated with reduced cathepsin K activity. Importantly, the \(\text{Na}^+\)/\(\text{HCO}_3^-\) co-transporter inhibitor was the strongest inhibitor of both acidification and cathepsin K activity, reducing activity by almost 75%. Inhibitors with more modest effects on acidification had had lesser effects on cathepsin K activity. Again, rapamycin was the strongest inhibitor
of acidification and reduced cathepsin K activity by around 50%. The inhibitors used did not affect cell viability (supplemental figure S4).

Discussion

Here we have shown that cathepsin K expression in LAM is mainly dependent upon the presence of fibroblasts within LAM nodules. *In vitro* LAF derived cathepsin K is only active below pH 7.0 and importantly, LAM-derived 621-101 cells, in common with other TSC2−/− cell lines, express net hydrogen ion exporters which acidify their local environment to the extent that cathepsin K is activated. Our findings show that cell-cell interactions within the LAM nodule stroma can generate the conditions in which proteolytic lung damage may occur.

Cathepsin K has a primary role as a bone remodelling protease expressed by osteoclasts and dependent for its extra-cellular activity upon the low pH in bone resorbing lacunae generated by carbonic anhydrases, V-ATPases, Na+/H+ exchangers and chloride bicarbonate exchangers24, 32. Cathepsin K is a potent collagenase and elastase, but also selectively processes ELR chemokines which enhances their chemotactic activity33, suggesting a potential role in inflammatory cell chemotaxis. Unlike the metalloproteinases and serine proteases previously described in LAM, cathepsin K is not present in normal lung tissue but is expressed strongly by tumour stromal fibroblasts25. Expression of cathepsin K in LAM and other PEComas was first described by Chilosi and colleagues who also suggested cathepsin k expression may be mTOR dependent22.

Here we show that by suppressing mTOR activity in LAM lung tissue with rapamycin; cathepsin K gene expression was significantly reduced. In the osteoclast, cathepsin K expression is dependent on MITF, a helix-loop-helix transcription factor which regulates melanocyte development, cyclin dependent kinase and anti-apoptotic gene expression34. MITF binds three consensus sites in the cathepsin K promoter as a heterodimer with various partners including TFE3 and is partially mTOR dependent35. Moreover, mTOR inhibition in human osteoclasts reduced cathepsin K protein expression and bone resorption35: raising the
possibility that inhibition of mTOR and cathepsin K may have synergistic effects on inhibition of lung
destruction in LAM.

The requirement for low pH to activate cathepsin K is well described36, 37. Monocyte-derived macrophages
acidify their pericellular environment via vacuolar-type H\(^+\)-ATPases thus enabling them to maintain
cathepsin K in its active form38. Here we have shown that acidic conditions may exist within a LAM nodule
and that this extra-cellular acidification is a consequence of mTOR dysregulation, likely to result both in the
expression of membrane transporters including, carbonic anhydrases, monocarboxylate transporters and
Na\(^+\)/HCO\(_3\)\(^-\) co-transporters and mTOR dysregulation causing the Warburg effect, a metabolic dependence
on aerobic glycolysis (figure 9). In 621-101 cell / LAF co-cultures, the transporters acidify the extra-cellular
space to resulting in activation of cathepsin K, whilst their inhibition, particularly the Na\(^+\)/HCO\(_3\)\(^-\) co-
transporters, block both extra-cellular acidification and protease activation. Strikingly, rapamycin
completely and rapidly, abrogated acidification in culture despite only suppressing the transcription of \(CA\)
\textit{IX}, suggesting that the part of the effect may have been on 621-101 cell metabolism rather than exclusively
on the transporters themselves.

Inhibition of the mTOR pathway is the only proven treatment for LAM but does not arrest lung destruction
in all cases39. Our findings suggest that part of the beneficial effect of mTOR inhibition may be suppression
of Warburg metabolism and extracellular acidification, a phenomenon also observed in lymphoma
models40. Small molecule inhibitors of carbonic anhydrases and sodium bicarbonate co-transporters have
been successfully used in pre-clinical cancer models41-44 and may have synergistic benefits with mTOR
inhibition in LAM to reduce destructive protease activation. In addition, direct inhibition of cathepsin K has
been shown to reduce bone loss in osteoporosis45. Combinations of these therapeutic approaches may be
superior to mTOR inhibition alone in reducing lung destruction in LAM.
Whilst the 621-101 cell and LAF in culture may not completely recapitulate the LAM nodule environment, we have been careful to show that in addition to our in vitro studies that the elements necessary to synthesise and activate cathepsin K are present in human lung tissue. Whilst we have not directly shown that there is an acidic environment in human LAM lung nodules, the presence of these components and the existence of an analogous situation in human cancers, suggest this is likely to be the case.

Taken together, our findings suggest that LAM cell / LAF interactions within LAM nodules promote disease progression by protease activation in a similar manner to tumour cell / cancer associated fibroblast interactions in cancer. These similarities are consistent with the idea that LAM is a low grade neoplastic disease, with a stroma similar to cancer. Moreover, mTOR inhibitors which reduce lung function decline in LAM, may exert some of their protective action in the lung upon LAM cell related extracellular pH, cathepsin K activation and expression. The expression of transporters including the Na⁺/HCO₃⁻ co-transporter are downstream of mTORC1 / hypoxia inducible factor 1α. Further studies are required to understand, how mTOR activation and the expression of membrane transporters are related and whether inhibition of these transporters or cathepsin K activity will be of benefit in addition to mTOR inhibitors for LAM.

Acknowledgements

The authors would like to thank the Institute of Transplantation, Newcastle upon Tyne Hospitals, the Transplant Unit, Harefield Hospital, the National Disease Research Interchange (NDRI) and the LAM Treatment Alliance for providing access to tissue samples, Professors Elizabeth Henske and David Kwitkowski (Harvard Medical School, Boston, MA) for 621–101 cells and MEFs.
References

Main Figure Legends

Figure 1

Relative protease gene expression in human LAM and control lungs. A: Whole lung RNA was extracted from 6 patients with LAM and 3 control patients without LAM. Protease gene expression was analysed by quantitative real time PCR. Figure shows mean (± standard deviation) protease gene expression normalised to β-actin. MMP (matrix metalloproteinase), TIMP (tissue inhibitor of metalloproteinase), CTS (cathepsin), CAPN (calpain) B: Lung tissue was incubated for 48 hours with rapamycin (10nM), oestrogen (10nM), oestrogen and rapamycin or vehicle and gene expression measured by quantitative RT-PCR. *p<0.05, **p<0.01, ***p<0.001.

Figure 2

Expression of cathepsin K in LAM. Immunohistochemical images of three representative LAM lung tissues. α-SMA identifies LAM nodules (black arrowhead) adjacent to cysts which have positive staining for cathepsin K. Magnification x2.5, scale bar 1mm.

Figure 3

Cathepsin K expression within LAM lung nodules. Immunohistochemical staining for cathepsin K (CTSK), α-smooth muscle actin (α-SMA), fibroblast specific protein (FSP) and melanoma marker antibody (PNL2) in two patients with LAM and normal lung tissue. Magnification x10, scale bar 200μm.

Figure 4

Expression and activity of cathepsin K in cultured cells. A: Quantitative real-time PCR for cathepsin K in LAM associated fibroblasts (LAF, n=4), normal human lung fibroblasts (NHLF, n=3) and 621-101 cells. *p<0.05. B: Immunofluorescent detection of cathepsin K protein in two LAF, NHLF and 621-101 cell
cultures. Magnification x20, scale bar 200μm. C: Intra-cellular cathepsin K activity is visible as red fluorescence in two LAF cultures. Fluorescence is reduced by the cathepsin K specific inhibitor L006235 and completely abrogated by the cysteine protease inhibitor E64. Magnification x20, scale bar 200μm.

Figure 5

Cathepsin K and fibroblast specific protein are co-localised in LAM lung tissue. A: Immunofluorescent staining in LAM lung tissue from three donors. Individual panels show DAPI staining of nuclei (blue), fibroblast specific protein (FSP, green), cathepsin K (CTSK, red) and the overlay with co-localisation of FSP and CTSK (yellow). Cathepsin K and FSP are strongly co-localised, with only modest cathepsin K expression outside of LAM associated fibroblasts. Images x20 magnification, scale bar 200μm. B: Dual chromogenic immunohistochemistry showing LAM nodules reacting with antibodies against both cathepsin K (blue) and fibroblast surface protein (brown). Left panels are x4 magnification, scale bar 500μm and right are inset area at x40, scale bar 50μm taken from the same three representative donors. All donors showed spindle-shaped cells within nodules reacting with both antibodies.

Figure 6

Cathepsin K activity is pH dependent. A: 621-101 cells, LAM associated fibroblasts (LAF) and 621-101 / LAF co-cultures were grown in culture at a range of pH values. Cathepsin K activity was low at all pH values in 621-101 supernatants but elevated at low pH in LAF cultures. Co-cultures had significantly higher cathepsin K activity than 621-101 cell or LAF cultures at pH 7.0 and 6.0. ** p<0.01, *** p≤0.001. B: 621-101 cells and LAF were cultured in unbuffered media for 24 hours at various starting pH values. LAF did not significantly affect pH whereas 621-101 cells acidified the media independent of starting pH. C: TSC2⁻/⁻ and TSC2⁺/⁺ MEF were cultured in unbuffered media for 24 hours at pH 7.5. TSC2⁻/⁻ MEF and, TSC2⁺/⁺ MEF and 621-101 cells treated with 10nM rapamycin did not affect pH whereas untreated TSC2⁻/⁻ MEF and 621-101 cells significantly acidified media. ** p≤0.01, *** p≤0.001.
Figure 7

Expression of membrane transporters in LAM cells and lung tissue. A: Quantitative real time PCR for carbonic anhydrase (CA) II, IX, XII, monocarboxylate transporter (MCT) 1, 4, sodium bicarbonate (Na+/HCO₃⁻) co-transporters (NBC) 1 / SLC4A4, 3 / SLC4A7, sodium H⁺ (Na⁺/H⁺) exchanger (NHE) 1 / SLC9A1 and vacuolar-type H⁺-ATPases (V-ATPases) ATP6V1B2 and ATP6V0A4 in 621-101 cells treated for 24 hours with either vehicle, rapamycin (10nM), oestrogen (10nM) or LAF conditioned medium (LAF CM). B: Quantitative real time PCR for CA II, IX, XII, MCT 1, 4, Na⁺/H⁺ exchanger, NHE1, Na⁺/HCO₃⁻ co-transporters SLC4A4, SLC4A7 and V-ATPases ATP6V1B2 and ATP6V0A4 in six LAM and three control patient derived lung tissues. C: Immunohistochemical staining of two representative LAM lung tissues showing positive staining in serial sections for CA IX and SLC4A4 within LAM nodules. Normal lung showed positive staining for SLC4A4 but not CA IX. Magnification x4, scale bar 500μm and x40, scale bar 50μm. D: Pharmacological inhibition of membrane transporters or mTOR inhibits extra-cellular acidification in 621-101 cell cultures. S4 and Acetazolamide - carbonic anhydrase inhibitors, BIX - Na⁺/H⁺ exchanger inhibitor, S0895 - Na⁺/HCO₃⁻ co-transporter inhibitor and Concanamycin A - V-ATPase inhibitor.

Figure 8

Inhibition of membrane transporters blocks extracellular acidification and cathepsin K activity in LAM cell co-cultures. A: 621-101 / LAM associated fibroblast (LAF) co-cultures were grown in unbuffered media in the presence of either vehicle control or S4 (carbonic anhydrase IX, XII inhibitor), acetazolamide (non-specific carbonic anhydrase inhibitor), BIX (Na⁺/H⁺ exchanger inhibitor), S0895 (Na⁺/HCO₃⁻ co-transporter inhibitor) concanamycin A (V-ATPase inhibitor) or rapamycin (mTOR inhibitor). B: Cathepsin K activity in co-culture supernatants treated as above showing strong inhibition of both acidification and cathepsin K activity by inhibition of the Na+/HCO3- co-transporter and mTOR. **p<0.01, ***p<0.001.

Figure 9
Proposed mechanism of Cathepsin K activation in LAM. TSC2−/− LAM cells express carbonic anhydrases (CA) II, IX and XII within the cell which, in tandem, catalyse the conversion of CO₂ and water to H⁺ and HCO₃⁻ ions. Na⁺/HCO₃⁻ co-transporters (NBC) shuttle HCO₃⁻ ions into the cell resulting in net H⁺ export into the extracellular space. Cathepsin K containing lysosomes of LAM associated fibroblasts (LAF) translocate to the cell membrane discharging cathepsin K where it is activated in the low extracellular pH.