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ABSTRACT 

 

 

Hyperpolarized noble gas MRI using 3He and 129Xe has allowed void space 

imaging of the lungs for several years. Hyperpolarized 83Kr MRI has also been 

shown to provide an MRI contrast sensitive to the surface-to-volume ratio and 

chemistry of synthetic porous systems. Ex vivo animal models of pulmonary 

diseases and in vitro experiments were used in this thesis to examine three 

methodological advances allowing for the measurement of pulmonary 

physiological parameters using 129Xe and 83Kr. 

The 83Kr quadrupolar property was explored in a rat model of pulmonary 

surface-to-volume ratio degradation, i.e. emphysema. The surface quadrupolar 

relaxation (SQUARE) of the noble gas provided maps of the longitudinal 

relaxation in control and emphysematous rat lungs. The relaxation observations 

were regionally correlated to the histological measurements of the alveolar 

degradation. 

The 129Xe solubility in the lungs, blood, and more generally liquids, was the 

basis for the design of a new biosensor composed of a cryptophane cage 

tethered to a paramagnetic agent. The depolarization of the 129Xe atoms 

encapsulated by the cryptophane, followed by chemical exchange with the 

surrounding medium was investigated in vitro. This model biosensor will lead 

to a future switchable biosensor that will be deactivated by the enzymatic 

cleavage of the encapsulating cage and the paramagnetic agent. 

Finally, the 129Xe solubility was further utilised to study the gas transfer 

through ex vivo rat lungs after blood replacement by a perfluorocarbon 

emulsion. The large chemical shift separating the 129Xe peaks for the gas 

phase, the tissue and the perfluorocarbon emulsion, allowed for a selective 

excitation of each phase and the independent observation of their signal build-

up after inhalation. This mechanism will be used as a biomarker for gas 

transfer impairment in animal models of pulmonary fibrosis. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Motivation 

The decrease of the number of infectious diseases and their virulence led to a 

shift of the worldwide main causes of death to chronic conditions such as 

pulmonary or heart diseases. Moreover, the environmental changes and the 

increase of tobacco exposure in the population induced a dramatic increase in 

chronic pulmonary diseases (COPD), which include number of non-reversible 

respiratory conditions (e.g. emphysema) with a slowly progressing decrease in 

lung function. The annual cost for taking care of the 3 million patients with 

COPD in the UK (although 2 million are undiagnosed) represents £36 million 

(1). According to the WHO, COPD is predicted to become the third leading 

cause of death in 2030 (2). Idiopathic pulmonary fibrosis is another respiratory 

disease related to tobacco smoking. This chronic and progressive interstitial 

disease occurs in 4200 new patients each year in England (3). Chronic 

pulmonary diseases show variable symptoms and are often not diagnosed in the 

early stage of the disease. They often require the collaboration of numerous 

medical specialists, and necessitate X-rays and spirometry tests. 

Some early stage biomarkers would be beneficial for an earlier diagnosis of 

these pulmonary diseases and would allow for targeted treatments and a better 

management of the symptoms.  

1.2. Imaging lung disease 

The most commonly used clinical method to diagnose or longitudinally 

monitor lung disease is high-resolution computed tomography (HRCT). Even 

though this imaging technique provides excellent anatomical features, it also 

involves the use of ionising X-rays radiations. Lung function tests such as 

spirometry or plethysmography give a global evaluation of the lung volumes 

and the ability to exchange gas, without spatial resolution. But the anatomical 

and functional changes caused by pulmonary diseases are not homogeneous 

over the organ. 
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At the difference of CT, magnetic resonance imaging (MRI) is a non-invasive 

tool that can be used to investigate lung disease. However, the low proton 

density of the lung (4), and the short relaxation times caused by the air-tissue 

interface (5) are major drawbacks for the technique. Fast acquisitions have 

been developed to overcome the fast relaxation in the pulmonary tissue (6), but 

the low tissue density is the main feature of the organ that cannot be amended. 

MRI has however the advantage to be able to image different nuclei such as the 

noble gases 3He, 129Xe or 83Kr, enabling harmless imaging of the airspace after 

the inhalation of a noble gas. Recent developments in spin exchange optical 

pumping (SEOP) in the past three decades have allowed for a great increase of 

the hyperpolarized noble gas signal intensity, and therefore high-resolution 

ventilation imaging. Ventilation imaging gives a spatial resolution of the 

ventilation defects, whereas the spirometry test is only providing a global 

evaluation of the ventilation function. 

Different methods using hyperpolarized noble gases have been giving 

functional parameters. For example, the inhaled gas being subject to a 

restricted diffusion in the alveoli, the 3He apparent diffusion coefficient (ACD) 

can define the alveolar dimensions (7, 8). Changes in this diffusion can be used 

as a biomarker for the alveolar degradation caused by emphysema (8-10). 

Hyperpolarized 129Xe ADC was also demonstrated to be able to distinguish 

emphysematous lung to healthy lung (11). 

129Xe also presents the unique property to dissolve in the lung tissue after 

inhalation. The large 129Xe chemical shift when dissolved in the pulmonary 

tissue or the blood has been used as an advantage to study the lung gas 

exchange using MRI. 129Xe gas exchange through the lung barrier is used as a 

biomarker for parenchymal thickening caused by pulmonary fibrosis (12). 

Finally, hyperpolarized 83Kr MRI has been demonstrated to be an alternative 

biomarker for the alveolar destruction. Its nuclear electric quadrupole moment 

is a probe for surfaces. Such interactions are detected by measuring the 83Kr 

longitudinal relaxation (𝑇1) in the gas phase (13-15). 

Hyperpolarized noble gas imaging is a method allowing longitudinal 

pharmacological studies without an over-exposition to ionising radiations and 

providing functional biomarkers that cannot be obtained using HRCT. 



 3 

1.3. Small animal study of pulmonary pathology 

Small animal models of human pulmonary diseases have been commonly used 

for both pharmacological development and imaging methodology 

development. Rodents are often used because of their fast breeding and their 

low cost. The use of small animals however requires the improvement of most 

techniques that were developed for humans. Various difficulties are 

encountered when using small animals for in vivo imaging experiments. 

Beyond the need of higher resolution, the main issue is the impossibility to 

make the animals breath-hold and stay still like a human subject would do. By 

a matter of fact, a ventilator and neuromuscular blocking agents are necessary 

to force the animal having a controlled behaviour similar to a human (16). 

Some other groups have developed free breathing hyperpolarized rodent lung 

imaging, involving increased motion artefact, the necessity for averaging and 

data post-processing (17). 

Ex vivo lung experimentation was used to study the pulmonary physiology (18-

20) but has also been utilised by our group as a tool for hyperpolarized lung 

imaging methodology development. Ex vivo lung imaging comports the 

advantage to avoid all of the in vivo numerous difficulties, whilst producing 

physiologically relevant measurements for new hyperpolarized noble gases 

imaging technique developments (15, 21, 22). 

1.4. Thesis overview 

Research outlined in this thesis has the objective to investigate potential 

pulmonary disease biomarkers using hyperpolarized gas NMR and MRI. The 

two noble gases 129Xe and 83Kr are hyperpolarized to probe ex vivo rat lungs, 

taking advantage of their unique characteristics to provide spatially resolved 

diseases biomarkers. These biomarkers provide information on the lung 

physiopathology such as the alveolar radius, the presence of an enzyme or a 

fibrotic thickening.  

Chapter 2 presents an overview of the interdisciplinary background of this 

thesis, from the concepts of magnetic resonance and hyperpolarized noble 

gases technologies, to the ex vivo rat lung experimentation. 

Chapter 3 demonstrates the promising hyperpolarized 83Kr MRI as a novel 

biomarker for the alveolar microstructure. The surface sensitive 83Kr relaxation 
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allows for the discrimination of diseased and healthy lungs in an ex vivo rat 

model of the COPD emphysema. 

Chapter 4 presents the first results obtained with a newly designed biosensor 

able to host hyperpolarized 129Xe in solution. The encapsulation of the 129Xe 

into a cryptophane A cage tethered to a paramagnetic group induces its fast 

relaxation. The biosensor relaxivity on the hyperpolarized 129Xe is investigated 

and an in vivo enzymatic biosensor is demonstrated. 

Chapter 5 examines the use of synthetic blood as a potential source of 129Xe 

MRI contrast for interstitial diseases. Two perfluorocarbon emulsions are used 

as a blood replacement in ex vivo rat lungs to evaluate the gas transfer through 

the lung parenchyma. 
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CHAPTER 2 

INTRODUCTION TO MAGNETIC NUCLEAR 

RESONANCE AND NOBLE GAS HYPERPOLARIZATION 

2.1. Purpose of the chapter 

This chapter aims to provide the reader with background knowledge in basic 

nuclear magnetic resonance techniques, and an introduction to noble gas 

hyperpolarization technique, used in all of the described research in this thesis. 

Most of this chapter’s material that is related to nuclear magnetism and 

resonance are taken and adapted from the textbooks published by A. Abragam 

(1), P. T. Callaghan (2), M. H. Levitt (3), and E. Mark Haacke (4). In addition 

to these four books, the theoretical parts associated to the hyperpolarization 

were supported by numerous relevant publications illustrating some 

applications using hyperpolarized noble gases for spectroscopy and imaging. 

Some more specific background about pulmonary diseases and animal models 

will be given in the next chapters of this thesis. 

2.2. Basics of Nuclear Magnetic Resonance (NMR) 

Nuclear Magnetic Resonance (NMR) is a physical phenomenon widely used in 

research and medical imaging applications. The NMR spectroscopy and 

imaging techniques are both based on the fact that nuclei placed in a magnetic 

field will interact with radiofrequency radiation. This interaction will cause a 

coherent precession of the nuclear spins that, in turn, will induce an electric 

signal in a surrounding receiving coil. 

2.2.1. Nuclear spin properties 

NMR and MRI are techniques using the properties of the atomic nuclei. The 

nuclei are composed of protons and neutrons that will determine the nuclear 

spin 𝐼 . The spin is an intrinsic property of all of the subelements of the 

nucleons, namely the quarks. The angular momenta of all the nuclear quarks 

are added up, defining the nuclear spin angular momentum 𝑚. The angular 

momentum is used to describe the direction of the spin polarization axis. 

Nuclei with an odd atomic number 𝑍 or an odd mass number will have an 
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integer of half integer nuclear spin value 𝐼 > 0 and will be considered NMR 

active. The nuclei used in this work and their properties are listed in Table 2.1. 

 

Isotope Spin Natural 

abundance 

(%) 

Gyromagnetic 

ratio 

𝛾 106⁄  

(rad.s-1.T-1) 

NMR frequency 

at 9.4 T 

(MHz) 

1H 1 2⁄  100.00 267.522 400.228 

3He 1 2⁄  0.000137 -203.802 -304.899 

19F 1 2⁄  100.00 251.815 376.729 

83Kr 9 2⁄  11.58 -10.331 -15.456 

129Xe 1 2⁄  26.44 -74.521 -111.488 

131Xe 3 2⁄  21.18 22.091 33.049 

Table 2.1 Nuclear isotopes used in this work and their properties. Table adapted from reference 

(5). 

In the case of a single spin placed in a static magnetic field 𝐵0, the total energy 

of the nuclear spin is defined by the Hamiltonian operator 𝐻̂𝑧. The Hamiltonian 

contains the gyromagnetic ratio 𝛾, the magnetic field 𝐵0 and the nuclear spin 

operator 𝐼𝑧 which eigenvalues are the magnetic quantum numbers 𝑚𝑧 (Eq. 2.1 

and 2.2). 

 𝐻̂𝑧 = −𝛾ℏ𝐵0𝐼𝑧 
Eq. 2.1 

 𝐻̂𝑧 = −𝜔𝐼𝑧 
Eq. 2.2 

where 𝛾  is the gyromagnetic ratio of the nucleus, and ℏ =
ℎ

2𝜋
 with ℎ  the 

Planck’s constant. 

The eigenvalues of the Hamiltonian describe the energy of a spin state. In the 

absence of a magnetic field, the different nuclear energy levels of the spin 

states are degenerate; they all have the same ground state energy. If a magnetic 

field 𝐵0 is applied along the z-axis, an energy splitting is therefore observed, 

producing 2𝐼 + 1 sublevels taking the values 𝑚𝑧 = 𝐼 , 𝐼 − 1 , …, −𝐼 , this is 

called the Zeeman splitting. NMR is the detection of this nuclear Zeeman 

splitting sublevels. In the energy diagram on Figure 2.1, these states are 
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represented by horizontal lines. The energy levels 𝐸  are directly calculated 

from the above Hamiltonian. 

 𝐸 = −𝛾ℏ𝐵0𝑚𝑧 Eq. 2.3 

 

Any nucleus with a spin 𝐼 = 0, will not present any Zeeman splitting at all, 

making them NMR silent. 

 

 

Figure 2.1 Energy level diagram for a population of two 129Xe spins (𝐼 = 1 2⁄ ). In the absence 

of an external magnetic field 𝐵0, the energy levels are degenerate. The presence of an external 

magnetic field along the z-axis induces a Zeeman splitting of the different spin states. 

Another intrinsic property of the nucleus is the magnetic moment 𝜇 caused by 

the nuclear magnetism. The magnetic moment 𝜇 and the nuclear spin angular 

momentum 𝐼 are proportionally linked by a constant 𝛾 called the gyromagnetic 

ratio (Eq. 2.4). Magnetic moments can be described as vectors 𝜇⃗ defining the 

spin polarization. The magnetic moment takes the value: 

 𝜇 = 𝛾. ℏ. 𝐼 Eq. 2.4 

where 𝛾  is the gyromagnetic ratio (see Table 2.1), ℏ  the Planck’s constant 

divided by 2𝜋 and 𝐼 the nuclear spin angular momentum. 

In the absence of magnetic field, the vectors are randomly oriented, resulting in 

no net magnetization (∑ 𝜇 = 0) (Figure 2.2.a). In the presence of a static 

magnetic field 𝐵0, the magnetic moments will align with the direction of the 
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field, inducing an anisotropic spin polarization distribution (∑ 𝜇 > 0) (Figure 

2.2.b). This positive net magnetization at thermal equilibrium is called the 

macroscopic magnetization, 𝑀0 = ∑ 𝜇. 

 

 

Figure 2.2 (a) Isotropic distribution of the magnetic moments in the absence of magnetic field. 

(b) Anisotropic distribution of the magnetic moments in the presence of a static magnetic field 

𝐵0 yielding a macroscopic magnetization 𝑀0 > 0. 

As discussed in the previous paragraph, the external magnetic field will 

orientate the spin polarization. The angular momenta will precess around the 

axis formed by the magnetic field 𝐵0. The frequency of precession is called the 

Larmor frequency 𝜔0  (Eq. 2.5), and is directly proportional to the 

gyromagnetic ratio 𝛾 of the nucleus and the magnetic field 𝐵0 applied to the 

nucleus: 

 𝜔0 = −𝛾. 𝐵0 Eq. 2.5 

The Larmor frequency can be positive or negative, depending on the sign of 

the gyromagnetic ratio (see Figure 2.3). That implies the angular momentum of 

different nuclei may precess in different directions around the magnetic field 

axis. For a positive gyromagnetic ratio, the Larmor frequency is negative, and 

the nucleus will precess clockwise around the field (when looking from the top 

of the field). For both noble gases nuclei 129Xe and 83Kr used in this thesis, the 
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gyromagnetic ratio is negative, implying an anticlockwise Larmor precession 

around 𝐵0. 

 

 

Figure 2.3 Precession of the nuclear spin magnetic moment around the external magnetic field 

axis for a spin with positive or negative gyromagnetic ratio. Figure adapted from (3). 

2.2.2. Polarization at thermal equilibrium 

The uneven spin population distribution in each Zeeman energy levels will 

induce a very small magnetization. This macroscopic magnetization 𝑀0  is 

oriented parallel or anti parallel to the external magnetic field (Figure 2.2.b). It 

is called the longitudinal magnetization 𝑀𝑧. This magnetization will be directly 

dependent on the difference of population of the spin orientations. 

At thermal equilibrium, given a temperature 𝑇, the spin population in each 

energy state follows the Boltzmann distribution. This means the spin density 

𝜌𝑒𝑞,𝑖 at a spin state 𝑖 will be equal to: 

 𝜌𝑒𝑞,𝑖 =
𝑁𝑖

∑ 𝑁𝑖
=

exp (
−𝐸𝑖

𝑘𝐵𝑇⁄ )

∑ exp (
−𝐸𝑖

𝑘𝐵𝑇⁄ )𝐼
−𝐼

 Eq. 2.6 

where 𝐸𝑖 = −𝛾ℏ𝐵0𝑚𝑖 is the energy at the spin state 𝑖. 

The polarization of a spin system is proportional to the longitudinal 

magnetization at thermal equilibrium. It corresponds to the ratio of the 

longitudinal magnetization over its maximum value. Therefore, for a spin 1 2⁄ , 

e.g. 129Xe, where 𝑁 ↑ and 𝑁 ↓ are the number of spins in each energy level, the 

polarization 𝑃 is equal to: 
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 𝑃 =
𝑁 ↑ −𝑁 ↓

𝑁 ↑ +𝑁 ↓
 

Eq. 2.7 

 𝑃 =
exp (

−𝛾ℏ𝐵0
2𝑘𝐵𝑇⁄ ) − exp (

𝛾ℏ𝐵0
2𝑘𝐵𝑇⁄ )

exp (
−𝛾ℏ𝐵0

2𝑘𝐵𝑇⁄ ) + exp (
𝛾ℏ𝐵0

2𝑘𝐵𝑇⁄ )
 Eq. 2.8 

The thermal energy is always much bigger than the energy between two 

Zeeman sublevels, therefore making the thermal equilibrium spin populations 

difference very small. Because the high temperature limit is met, i.e. 
𝐸𝑖

𝑘𝐵𝑇
≪ 1, 

the polarization equation for a spin 1 2⁄  can be simplified to: 

 𝑃 =
|𝛾|ℏ𝐵0

2𝑘𝐵𝑇
 Eq. 2.9 

The polarization is directly dependent on the magnetic field 𝐵0 but also, the 

gyromagnetic ratio 𝛾. This is of particular importance when handling nuclei 

with low gyromagnetic ratio such as 83Kr. 

The longitudinal magnetization 𝑀𝑧 , or thermal equilibrium polarization, 

corresponds to a very small population difference between the energy levels 

and is almost undetectable. It is defined by: 

 𝑀𝑧 = 𝑀0 =
𝑁𝛾ℏ

2
𝑃 =

𝑁𝛾2ℏ2𝐵0

4𝑘𝐵𝑇
 

Eq. 2.10 

 

We will see in the next section how the polarization induced by the magnetic 

field can be measured. 

2.2.3. Excitation and detection of the NMR signal 

This section describes how to excite the nuclear spin in the system and detect 

the signal from it. Some considerations for the construction of a custom-built 

129Xe coil for the in vivo preclinical MRI Bruker scanner, located in the 

psychology department of the University of Nottingham, are given in the 

Appendix 1. 

The application of an oscillatory field in the radio frequency (RF) range, with a 

frequency 𝜈 equal to the Larmor frequency of the sample spins will induce a 

Zeeman energy level transition. The energy absorbed by the system to induce 

the energy levels transition is equal to the difference between 𝐸−1 2⁄  and 𝐸1 2⁄  

(Eq. 2.11). 
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 Δ𝐸 = 𝐸−1 2⁄ − 𝐸1 2⁄ = γℏ𝐵0 = −𝛾𝜔0 Eq. 2.11 

The RF pulse induces a phase coherence of the spins, generating a non-zero 

transverse magnetization 𝑀𝑥𝑦, polarizing the bulk polarization off the z-axis 

(Figure 2.4). When the RF pulse is turned off, all of the spins will start 

precessing around the z-axis again, inducing the rotation of the transverse 

magnetization 𝑀𝑥𝑦  in the xy-plane at the Larmor frequency. The transverse 

magnetization 𝑀𝑥𝑦  will decay from 𝑀0  to zero, while the longitudinal 

magnetization 𝑀𝑧  will recover its equilibrium value 𝑀0  over time. The 

precession of the bulk magnetization produces an oscillating electric current in 

the detection coil (usually the same as the excitation coil). The signal will 

decay because of dephasing described by the rate constant 𝑇2
∗  (transverse 

relaxation) and the decaying signal detected by the coil is called the free 

induction decay (FID). Relaxation mechanisms related to hyperpolarized 

systems are explained further on this chapter. 

 

 

Figure 2.4 Excitation of a sample of spins 1 2⁄ . (a) The Boltzmann distribution of the spins at 

thermal equilibrium produces a bulk magnetization along the z-axis (along 𝐵0), the spins have 

random phases. (b) The application of a RF pulse induces the phase coherence of the spins, 

leading to a magnetization 𝑀𝑦 in the transverse plane. 
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2.3. Hyperpolarization through spin exchange optical pumping 

(SEOP) 

NMR and MRI of gas phase nuclei is challenging as compared to conventional 

MRI that images hydrogen atoms contained in the human tissue. This is due to 

the low density of a gas as compared to nuclei in the condensed state, and its 

associated low signal intensity. One way to increase the signal would be to 

increase the number of spins by increasing the gas pressure. Highly pressurised 

thermal samples are used to measure the thermal polarization of a gas sample; 

it is however not a practical option when used for pulmonary application for 

example. 

Different strategies can be used to enhance the polarization. The polarization 

equation (Eq. 2.9) states that the polarization is dependent on the gyromagnetic 

ratio of the nucleus 𝛾, the static magnetic field 𝐵0 and the temperature 𝑇. By 

consequence, in identical conditions 129Xe will provide a 7-fold stronger 

polarization than 83Kr. However, an increase of the magnetic field often limits 

the working space in the magnet bore, and cooling down a sample can be 

impracticable when doing preclinical or clinical studies. 

Hyperpolarization is a technique that creates a low spin temperature, enabling 

high polarization values at low pressure and ambient temperature. The work 

presented in this thesis utilises the spin exchange optical pumping (SEOP) 

hyperpolarization technique, which is the most commonly used method to 

hyperpolarize noble gases such as 3He, 129Xe and 83Kr. Other existing 

techniques to hyperpolarize noble gases are being developed, for example 

metastability exchange optical pumping (MEOP) that has been efficiently used 

to hyperpolarize 3He (6), dynamic nuclear polarization (DNP) has been applied 

to 129Xe in its liquid phase, directly followed by its sublimation (7), and 129Xe 

‘brute-force’ hyperpolarization by placing the system at very low temperature 

of the mK range to hyperpolarize the spins, followed by a rapid heating of the 

system (8). 

The primary aim of SEOP is to increase the sensitivity of the spectroscopy by 

increasing the longitudinal magnetization 𝑀𝑧  to overcome the low signal as 

discussed above (Figure 2.5). The purpose of this method is to obtain highly 

non-equilibrium nuclear spin polarization. 
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Figure 2.5 (a) Spin energy levels distribution and 129Xe signal at thermal equilibrium and 

corresponding spectrum, acquired with 1024 averages (scan duration: 4h 40min) (b) Spin 

energy levels distribution and 129Xe signal after enhancement by spin exchange optical 

pumping hyperpolarization and its corresponding spectrum, acquired in a single scan (scan 

duration: 6 s). At thermal equilibrium the spin population difference is very small, the signal 

has been averaged, producing a signal-to-noise ratio, 𝑆𝑁𝑅 = 3000. After hyperpolarization, a 

single scan allows for a 5-fold SNR enhancement (𝑆𝑁𝑅 = 14000). Note that the thermal 

sample was containing 8 bar Xe – 1 bar O2 (total pressure, 9 bar), and the hp gas mixture 25 % 

Xe – 75 % N2 was hyperpolarized for 6 min at 316 K and 682 mbar, for a detection pressure of 

0.42 bar after recompression. Representative spectra acquired for recompression unit tests (see 

Section 2.3.3.). 

The studies in this thesis only employ the SEOP technique with the existing 

laboratory equipment, and without analysing nor improving the method, a brief 

description of spin exchange optical pumping hyperpolarization is given in this 

section to provide a general understanding to the reader. The SEOP 

hyperpolarization process can be divided into two steps, optical pumping of the 

alkali metal and spin exchange with the noble gas. 
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2.3.1. Optical pumping of the alkali metal 

The SEOP cell containing the noble gas and the alkali metal rubidium is placed 

in a magnetic field produced by Helmholtz coils (15.54 mT) to induce the 

Zeeman splitting of rubidium (Rb). The SEOP cell is also heated with warm air 

to produce a rubidium vapour of appropriate density. Alkali metals such as 

rubidium or cesium are used because they have a single unpaired electron on 

their valence shell. 

 

Figure 2.6 Schematics of the optics components of the polarizer. The laser light is transmitted 

to an optic fibre. A collimator focuses the light on a beam splitter, placed 25 mm away. The 

beam splitter linearly polarizes the light beam. The light then goes through a quarter-wave 

plate (λ/4 plate) that circularly polarizes the beam. Finally, the beam is expended with a 

telescope to create a parallel beam having a diameter of the size of the SEOP pumping cell 

holder front window. 

The laser light is circularly polarized using a beam splitter and a quarter-wave 

plate as described in Figure 2.6. In general words, the circularly polarized laser 

is tuned to the D1 transition of the valence electron of the Rb (794.7 nm), 

present in the vapour state in the SEOP pumping cell. It will induce the 

transition of the angular momentum from the light to the electron spin. 

Resulting to the selection rule, the angular momentum is preserved and 

excitation will only happen from the 𝑚 = − 1 2⁄  sublevel of the 2S1/2 state to 

𝑚 = + 1 2⁄  of the 2P1/2 state (Figure 2.7). We say the electrons are in their 

excited state. Some collisions between Rb atoms will induce mixing of the 

excited states. The electrons will then decay back to their ground state. Due to 

ongoing laser pumping, the population of spins in the 𝑚 = − 1 2⁄  sublevel of 

the 2S1/2 state is continuously depleted by the circularly polarized light 

excitation, therefore increasing the population in the 𝑚 = + 1 2⁄  sublevel. 
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Figure 2.7 A left circularly polarized laser optically pumps the alkali metal electron. The 

sublevel 𝑚𝑠 = + 1 2⁄  is populated through the continuous pumping of the 𝑚𝑠 = − 1 2⁄  by the 

laser, tuned at its D1 transition. 

Nitrogen (N2) is included to the gas mixture, alongside with the noble gas, in 

order to quench the radiation caused by the relaxation of the excited electrons 

to their ground states. Instead of releasing the energy by emitting a photon that 

would be deleterious for the polarization build-up of the Rb, the energy is 

converted into the N2 vibrational mode. 

2.3.2. Spin exchange to the noble gas 

The transfer of polarization is done by spin exchange that will transfer the 

angular momentum from the alkali metal electron spin to the noble gas nuclear 

spin. As illustrated in Figure 2.8, it can be accomplished by two processes: 

binary collisions or van der Waals complexes formation. Binary collision is the 

main spin exchange mechanism for 83Kr, whereas 129Xe will also undergo spin 

exchange through van der Waals complexes. In both cases, the energy transfer 

happening during the contact between the alkali electron spin and the noble gas 

nuclear spin induces a flip flop of the Rb electron spin and the noble gas 

nuclear spin, increasing the populations of noble gas atoms with the same 

nuclear spin orientation. 
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Figure 2.8 Alkali metal spin exchange between a rubidium electron spin and a 129Xe nuclear 

spin by (a) collision and (b) van der Waals interaction (three-body collisions). 

2.3.3. Parameters involved in the polarization efficiency 

The use of very diluted noble gases mixtures requires cryogenic separation 

after SEOP hyperpolarization. However, this cryogenic concentration is not a 

feasible process in the case of 83Kr, due to its fast quadrupolar relaxation in the 

condensed phase that would lead to almost complete depolarization (9). An 

alternative to this is to hyperpolarize a higher concentration of noble gas, but at 

lower pressure. The polarization equipment in our laboratory has been adapted 

to such applications. Most parameters involved in the polarization level have 

been studied by Six et al. and published in the online journal PloS One in 2012 

(9). 

The polarization level of any nucleus placed in a magnetic field is defined by 

Eq. 2.9. The polarization of a known sample (see Figure 2.5(a) for example) at 

thermal equilibrium is calculated before each hyperpolarized gas experiment. 

This measurement will be used to define the polarization of the hyperpolarized 

gas after SEOP. The signal intensity recorded during shuttle delivery 

hyperpolarized gas experiments also requires taking into account the N2 buffer 

gas. It is easy to understand that the actual noble gas polarization has to be 

scaled to the dilution of the noble gas in the gas mixture. The apparent 

polarization 𝑃𝑎𝑝𝑝 takes into account this dilution factor: 

 𝑃𝑎𝑝𝑝 = 𝑃 ∙
𝑃𝑁𝐺

𝑃𝑡𝑜𝑡
 Eq. 2.12 

where 𝑃𝑁𝐺  is the polarization in the pure noble gas, and 𝑃𝑡𝑜𝑡  the SEOP 

pressure, including the buffer gas. The highest polarization levels were 
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obtained using 40-50 % xenon and 25 % krypton gas mixtures, with 𝑃𝑎𝑝𝑝
𝑚𝑎𝑥 =

15.5% and 𝑃𝑎𝑝𝑝
𝑚𝑎𝑥 = 4.4% respectively. 

The polarization is shown to increase as the total SEOP cell pressure was 

decreased from 3.5 bar to a maximum polarization reached at around 0.2 – 0.3 

bar for 129Xe and 0.35 – 0.5 bar for 83Kr. When the pressure decreased from the 

optimum pressure, the polarization is rapidly decreasing to zero. 

The temperature is another important parameter involved in the formation of a 

high-density rubidium vapour. A higher SEOP hyperpolarization temperature 

has been shown to be beneficial to 83Kr, counteracting the lower Rb-83Kr 

exchange rate, but also reducing the quadrupolar relaxation on the SEOP cell 

surface. The highest polarizations have been reached with 373 K for 129Xe and 

433 K for 83Kr. 

To summarize, our laboratory settings allow the steady state spin polarization 

to be reached after 6 min of hyperpolarization at 373 K for 129Xe and 8 min at 

433 K for 83Kr. 

The drawback of using the highest polarization pressure conditions is that it 

cannot be delivered without recompression to ambient pressure. The idea of 

recompression of the gas was already used for metastability-exchange optical 

pumping applications (10). Similarly, for all imaging experiments in this work, 

a piston has been used to recompress the gas to ambient pressure before being 

delivered to excised lungs. This method consists in delivering the gas directly 

from the SEOP cell to a pre-vacuumed recompression chamber by gas 

expansion, and to subsequently recompress it by pushing a piston in the back 

of the chamber with pressurized nitrogen gas (11). Recompressed 

hyperpolarized gas was shown to not significantly alter the polarization of the 

noble gas. Up to 100 % and 75 % of the spin polarization was maintained for 

129Xe and 83Kr respectively. 

2.4. Relaxation mechanisms 

Instead of directly measuring the longitudinal magnetization, NMR will 

measure the magnetization that is perpendicular to the magnetic field 𝐵0, called 

the transverse magnetization 𝑀𝑥𝑦. At thermal equilibrium in a large magnetic 

field, this transverse magnetization is null. 
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2.4.1. Transverse relaxation 

After the application of a 90 ° RF pulse, the spins will be in phase coherence, 

forming a transverse magnetization as seen in Figure 2.4. From the time the RF 

pulse is off, the spins start losing their synchrony due to the presence of 

slightly difference local magnetic fields from the influence of neighbouring 

spins. Their phase will start cancel each other out over time; this loss of phase 

coherence will therefore induce an irreversible transverse magnetization 

relaxation, also called the spin – spin relaxation, or 𝑇2  relaxation. The 

relaxation behaviour of 𝑀𝑥𝑦  can be describe by an exponential decay as 

follow: 

 𝑀𝑥𝑦(𝑡) = 𝑀0𝑒−𝑡 𝑇2⁄  Eq. 2.13 

where 𝑡 is the time after tipping the magnetization in the xy-plane and 𝑀0 is 

the initial transverse magnetization. 

 

Figure 2.9 Transverse magnetization (𝑀𝑥𝑦) relaxation of 129Xe after full excitation with a 90 ° 

RF pulse. The transverse relaxation constant 𝑇2 corresponds to the time passed where 𝑀𝑥𝑦 =

37 %. 

On the envelope of the FID, the transverse decay that is actually observed is 

the T2
∗ relaxation decay that also takes into account 𝐵0 field inhomogeneities. 

T2
∗ is directly measured from the envelope of the FID and is linked to 𝑇2 and 

𝑇2,𝑖𝑛ℎ𝑜𝑚𝑜 by the relation in Eq. 2.14. 
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1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2,𝑖𝑛ℎ𝑜𝑚𝑜
 Eq. 2.14 

 

 𝑇2 (ms) 𝑇2
∗ (ms) 

129Xe 32.9 ± 0.5  1.77 ± 0.37  

83Kr 166 ± 11  13.1 ± 0.8  

Table 2.2 Transverse relaxation constants of the two nuclei of interest 129Xe and 83Kr, in the 

gas phase in the absence of oxygen, in ex vivo rat lungs, recorded at 9.4 T in the laboratory 

Bruker spectrometer. Data taken from J.S. Six PhD thesis (12). 

Experimental 𝑇2 and 𝑇2
∗ were measured in ex vivo lungs and displayed in Table 

2.2. The transverse relaxation is of particular importance in imaging sequences 

such as the gradient-echo sequence, where the signal is recorded a long time 

after the RF excitation pulse, making it more complicated for systems with 

short 𝑇2. 

2.4.2. Longitudinal relaxation 

First let’s consider a thermal system, e.g. an ensemble of 1H. After a RF 

excitation pulse, as the transverse magnetization 𝑀𝑥𝑦  decreases, the 

longitudinal magnetization 𝑀𝑧 grows back to its initial thermal value 𝑀0. The 

𝑀𝑥𝑦  regrowth process is called the longitudinal relaxation, or spin – lattice 

relaxation and is defined by Eq. 2.15. 

 𝑀𝑧(𝑡) = 𝑀0(1 − 2𝑒−𝑡 𝑇1⁄ ) 
Eq. 2.15 
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Figure 2.10 Longitudinal magnetization (𝑀𝑧) evolution as a function of time after a full 90 ° 

excitation pulse. Magnetization recovery resulting to 𝑀𝑧 = 63 % occurs when the time passed 

equals the longitudinal relaxation constant 𝑇1  

This phenomenon is caused by interactions of the nuclear spins with the 

surrounding nuclear spins magnetic fields (the lattice). The spins will return to 

their lower energy state with time. 

In the case of hyperpolarized noble gases, the system has been hyperpolarized 

such that the initial longitudinal magnetization before RF excitation is much 

greater than the thermal equilibrium polarization. The 𝑇1  relaxation is the 

mechanism by which the spins will return to their thermal equilibrium, 

inducing the decay of the longitudinal magnetization to thermal equilibrium 

magnetization. 
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Figure 2.11 (a) Small flip angle train of spectra. A fit of the Eq. 2.16 is displayed in blue, 

illustrating the longitudinal relaxation mechanism. (b) Schematics of the small flip angle pulse 

sequence. Example taken from Chapter 4. 

𝑇1 is obtained by using a small flip angle train of excitation pulses (Figure 

2.11.b). The longitudinal magnetization after the 𝑛-th pulse will be dependent 

on the 𝑇1 relaxation (s), but also on the flip angle 𝜃 (rad) as described in Eq. 

2.16 (13). 

 𝑀𝑧(𝑛) = 𝑀𝑧(0)×𝑐𝑜𝑠𝑛(𝜃)×𝑒−𝑛×𝜏 𝑇1⁄  
Eq. 2.16 

where 𝜏 (s) is the repetition time between two pulses. 

The flip angle was set to 6 to 24 °, depending on the signal intensity of the hp 

gas in the medium. A weak signal such as dissolved 129Xe signal will require a 

high flip angle, whereas a strong gas phase signal will allow the use of a very 

low flip angle. Flip angles and delays were calibrated before each experiment, 

and are specified in each experimental chapter’s methodological part. 

Experimental 𝑇1 values for hyperpolarized 129Xe and 83Kr recorded in ex vivo 

lungs are displayed in Table 2.3. The longitudinal relaxation of 129Xe is 

drastically shortened to ~20 s by the presence of 21 % oxygen in the case of in 

vivo experiments. 

 

 𝑇1 (s) 

129Xe 200 ± 20 

83Kr 1.25 ± 0.07 

Table 2.3 Longitudinal relaxation constants of the two nuclei of interest 129Xe and 83Kr, in the 

gas phase in the absence of oxygen, in ex vivo rat lungs, recorded at 9.4 T. 129Xe and 83Kr data 

are taken from reference (11), and (14) respectively. 
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2.6. Magnetic Resonance Imaging (MRI) methods using 

hyperpolarized systems 

When NMR defines the sample at the atomic and molecular levels, it however 

does not give any spatial information inside the RF coil. MRI allows the spatial 

resolution of quantitative NMR data. More precisely, a spatial dependency of 

the frequency and the phase properties of the nuclear spin is created by varying 

the magnetic field across the sample. Multi-dimensional data sets are acquired 

in the form of a spatial frequency image called k-space. The k-space is the 

Fourier transform of the image. The image is reconstructed by calculating the 

inverse Fourier transform of its corresponding k-space. 

An overview of the mechanisms involved in the k-space discrete sampling is 

given in this section, adapted to the construction of a typical image oriented the 

zy-plane of the MRI scanner, with a slice oriented along the x-axis, which was 

the most used geometry in this thesis. 

2.6.1. Spatial encoding using magnetic field gradients 

The spatial encoding of the NMR signal is realised by applying magnetic field 

gradients to the sample in addition to the static magnetic field 𝐵0 . The 

magnetic field gradients are linear along the x-, y- and z- axes, and will 

produce a very unique local magnetic field aligned with 𝐵0 at every point of 

the sample. The spins will experience different local magnetic field 

corresponding to a combination of the static magnetic field and the linear field 

gradient, 𝐵0 + 𝑥𝐺, where 𝐺 is a given gradient in x, y or z (Figure 2.12). 

 

Figure 2.12 Magnetic field representation along the x-, y- or z-axis. The linear gradient field is 

added to the static field from the superconducting magnet, generating a very unique total 

magnetic field, dependent on the spatial location along the gradient axis. 
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Frequency-encoding gradient In the presence of a magnetic field gradient 

along the z-axis, the spins experience different local magnetic fields, and 

therefore resonate at slightly different Larmor frequencies when located at 

different coordinate along the z-axis. Eq. 2.17 describes how a spin located at 

the coordinate 𝑧  will precess under a total magnetic field composed of the 

static magnetic field 𝐵0 and a gradient field 𝐺𝑧. 

 𝜔0 = 𝛾(𝐵0 + 𝑥𝐺𝑧) Eq. 2.17 

The local spatial distribution of the spins across the sample at a given location 

can be directly determined from the frequency content of the MR signal. This 

frequency-encoding gradient is used to define the direct direction of the k-

space (Figure 2.13.A). The inverse Fourier transform of the signal made of 

spatial frequencies will be directly proportional to the spin density at a location 

𝑥, giving a spin density profile. The field-of-view (FOV) in the frequency-

encoding gradient direction is defined by: 

 𝐹𝑂𝑉𝑧 =
1

𝜐×𝐺𝑧×𝐷𝑊
 Eq. 2.18 

where 𝜈 is the gyromagnetic ratio of the nucleus in Hz/T, 𝐺𝑥 is the strength of 

the frequency-encoding gradient in T/m and DW is the dwell time (sampling 

interval) in s. 

Phase-encoding gradient After a flip angle in applied, identical spins in an 

identical environment will spin at the same Larmor frequency. This can be 

altered by a gradient applied along the y-axis. The spins will now experience 

different local magnetic fields, and will be precessing at different frequencies. 

The gradient causing this dephasing is called the phase-encoding gradient. The 

number of phase-encoding gradient increments and the phase-encoding 

gradient strength will define the resolution in the second direction of the image 

Figure 2.13.A). The FOV in the phase-encoding gradient direction is defined 

by: 

 𝐹𝑂𝑉𝑦 =
1

𝜐×Δ𝐺𝑦×𝛿
 Eq. 2.19 

where 𝜈 is the gyromagnetic ratio of the nucleus in Hz/T, Δ𝐺𝑦 and 𝛿 are the 

strength of the phase-encoding gradient step in T/m and the duration of the 

phase-encoding gradient in s respectively. 
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Figure 2.13 (A) Example of k-space sampled using a gradient-echo pulse sequence with 256 

complex points echo acquisition and 64 phase-encoding steps. The frequency-encoding 

gradient was set along the z-axis, and the phase-encoding gradient along the y-axis. (B) 

Corresponding 128 x 64 image after inverse Fourier transform and rotation of the matrix. 

Slice selection The selective excitation of a slice is realised thanks to the use of 

a gradient in the third direction, combined to the application of a spatially 

selective RF pulse. The best slice profile is reached using a sinc RF pulse that 

will give, after inverse Fourier transform a frequency distribution with 

rectangular profile, or bandwidth. A linear gradient is applied in the z-direction 

orthogonal to the x-axis of the slice, so that only a slice will be excited by the 

RF pulse. The frequency of the RF pulse will define the position of the slice 

and its spin density profile. The slice thickness is defined by the RF pulse 

bandwidth BW in Hz and the gradient strength 𝐺𝑧 in T/m: 

 𝑆𝑙𝑖𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑧 =
𝐵𝑊

𝜐×𝐺𝑧
 Eq. 2.20 

where 𝜈 is the gyromagnetic ratio of the nucleus in Hz/T. 

The slice-encoding gradient is followed by a rephasing lobe (Figure 2.14.A) to 

compensate the dephasing of the slice spins during the slice-selective gradient. 

In this work, all imaging experiments have been conducted using gradient-echo 

imaging with a linear sampling of the k-space, from negative to positive phase-

encoding gradient. The next sections outline the gradient-echo imaging 

method, and the rapid acquisition technique gradient-echo technique fast low 

angle shot (FLASH). Finally, the variable flip angle (VFA) adaptation of the 

FLASH sequence for hyperpolarized systems is described. 
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2.6.2. Gradient-echo imaging 

Imaging sequences consists in building a k-space by putting together the 

frequency encoding, the phase encoding, and the slice selection if necessary. In 

order to fill the k-space with negative and positive frequency values, an echo is 

formed by the use of gradients. The echo was first introduced in spin-echo 

sequences in 1950 by Erwin Hahn (15), constituted of two RF pulse, a 90 ° 

pulse followed by a second pulse (ideally a 180 ° pulse), also called refocusing 

pulse. The spins will begin to dephase just after the 90 ° pulse. The 180 ° pulse 

will induce the tipping of the spins in the xy-plane, inversing their phase. All 

the spins will return to the zero-phase point at the same time equal to two times 

the interpulse delay, called the echo time. 

 

 

Figure 2.14 (A) Gradient-echo sequence diagram for the coverage of a 16 x 16 k-space matrix 

with 16 RF excitations. A sinc RF pulse is applied in concomitance with the slice-selection 

gradient. The echo is induced by a set of two lobes of frequency-encoding gradients of 

opposite polarity. The k-space is covered using a step increment of the strength of the phase-

encoding gradient. The echo time TE is the time between the centre of the RF pulse and the 

centre of the echo. The repetition time TR is the time for each phase-encoded loop. (B) k-space 

diagram of the coverage by linear sampling of a 16 x 16 matrix, starting from the most 

negative phase-encoding gradient value. The red dot represents the (0,0) point where the phase 

and the frequency are null. The dashed arrows represent the trajectory in the k-space when the 

phase-encoding and frequency-encoding gradients are applied simultaneously. The discrete 

sampling of the 16 data points is illustrated by the green dots. 
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In the gradient-echo imaging sequence, the same idea of refocusing the spins is 

used. The spins are dephased by a first gradient, and will be rephased using a 

gradient of opposite sign. The echo will be created by a frequency-encoding 

gradient composed of two lobes of opposite sign. The gradient-echo sequence 

is illustrated in Figure 2.14. The slice-selection gradient is applied with the RF 

pulse, and followed by a rephasing gradient, so that the spins in the slice are in 

phase. The first frequency-gradient lobe is negative and dephases the spin. A 

phase-encoding gradient is applied simultaneously with the dephasing 

frequency-encoding gradient, to encode the second direction of the k-space. 

The second frequency-gradient positive lobe is of the same amplitude as the 

defocusing frequency-encoding gradient, but twice as long and of positive sign. 

The change of sign of the gradient induces a rephasing of the spins and creates 

an echo similar to the spin-echo, in the middle of the positive rephasing 

gradient. The frequency-gradient lobe producing the echo is also called the 

read-gradient as the data are discretely sampled during the echo time. 

The phase-gradient encoding strength is incremented N times from −𝐺𝑚𝑎𝑥 to 

+𝐺𝑚𝑎𝑥 to cover the k-space. The maximum signal intensity is reached when the 

phase-gradient strength is set to zero. 

2.6.3. Variable flip angle (VFA) fast low angle shot (FLASH) 

imaging sequence 

The gradient-echo sequence presented in the previous section implies the 

transverse magnetization has completely depleted before the next incremental 

loop is started. This way, we get a steady-state magnetization for each k-space 

line. The introduction of low flip angle gradient-echo sequence has 

significantly fastened image acquisition of thermal systems, such as 1H, by 

reducing the TR to values lower than 𝑇2  (16). This fast low angle shot 

(FLASH) sequence is commonly used for hyperpolarized noble gas imaging, 

allowing the utilization of only a small part of the initial non-renewable 

longitudinal magnetization for each RF excitation pulse. The remaining 

longitudinal polarization after 𝑛  RF excitation pulses is proportional to 

(𝑐𝑜𝑠𝜃)𝑛 , where 𝜃  is the flip angle, leading to a signal decrease during the 

course of the k-space acquisition. Zhao et al. developed the variable flip angle 

FLASH pulse sequence (VFA FLASH) (17). This imaging method adapted 
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from the FLASH sequence maximises the amount of polarization that is used 

during the image acquisition by increasing the flip angle during the course of 

the image acquisition, up to 90 °, compensating for the polarization loss 

created by the preceding pulse (i.e. for the preceding phase-increment). In the 

case a total acquisition much shorter than 𝑇1 , the n-th excitation pulse will 

produce a flip angle 𝜃𝑛 defined by the relation in Eq. 2.21. 

 𝜃𝑛 = 𝑡𝑎𝑛−1 (
1

√𝑁 − 𝑛
) Eq. 2.21 

2.7. Hyperpolarized noble gases MRI of rodents’ lungs 

To date the most widespread atom used for hyperpolarized gases MRI is 3He. 

The larger 3He gyromagnetic ratio leads to a higher NMR and MRI signal 

intensity that led to a boost in the human hyperpolarized 3He imaging research 

in the past two decades (18-20). The main source of 3He comes from the 

nuclear weapons program (i.e. from tritium decay). The demand of 3He supply 

exceeding the available quantities, the world is facing a drastic shortage and a 

price inflation (21). The non-sustainable production of 3He pushed the 

researchers to extend their effort to hyperpolarized 129Xe pulmonary MRI. 

Xenon is a naturally occurring element and represents 0.05 ppm of air, and can 

be extracted by fractional distillation of liquefied air. The 129Xe isotope of 

interest for MRI represents 26.4 % of xenon gas. The first noble gas imaging 

actually was the image of a mouse lung preparation using hyperpolarized 129Xe 

(22). Because 129Xe has a 2.7 times smaller gyromagnetic ratio than 3He (Table 

2.1), 129Xe MRI was initially a much difficult task. Recent improvements in the 

hyperpolarization techniques compensated for the inherent lower signal and 

allowed 129Xe imaging to reach SNR values comparable to 3He MRI (23-25). 

The purpose of this thesis is to demonstrate some new sensor application in ex 

vivo rat lungs and in solution. An overview of the progress in hyperpolarized 

129Xe and 83Kr research in rodent pulmonary imaging research related to this 

work is presented in this section. A description of the ex vivo imaging protocol 

is given at the end of this chapter. 
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2.7.1. Hyperpolarized 129Xe MRI 

2.7.1.1. Ventilation imaging 

As discussed in the first part of this chapter, the NMR signal intensity is 

defined by the energy difference between the spins orientations, and is 

therefore directly proportional to the gyromagnetic ratio and the field strength. 

Therefore, identical conditions will lead to smaller 129Xe signal intensity than 

3He. The increasing interest in 129Xe spin exchange optical pumping in the last 

decade led to a significant progress in noble gas SEOP polarizers (23-27). 

Static ventilation imaging, usually realized using a FLASH (Flash Low Angle 

SHot) pulse sequence, allows imaging of the gas distribution within the lungs. 

An abnormal gas distribution may be the indication of one or more ventilation 

defects. Quantitative explorations of chronic obstructive pulmonary disease 

(COPD) and asthma in human have shown correlation between effective 

ventilation and gold standard clinical spirometry and plethysmography (28). 

The variable flip angle (VFA) FLASH sequence has been implemented to 

reduce the exponential signal decay due to a train of constant flip angles (17). 

Sequence imaging using VFA FLASH has been shown to create excitation 

field inhomogeneity artefacts when using human-size excitation coils (29), 

requiring field correction. This technique is however ideal for rodent lung 

imaging FOV of a few cm, using small probes (30, 31). 

2.7.1.2. Diffusion imaging 

The change of location of the gas atoms during the signal acquisition due to 

diffusion is often a problem causing imaging artefacts. It can however be used 

as a tool to evaluate the gas diffusion in restricted environment. During a 

breath hold, the gas is restricted by the pulmonary anatomy. As a consequence, 

the dimensions of the alveolar microstructure will directly affect the apparent 

diffusion coefficient (ADC) mapping. The diffusion in lungs has recently been 

defined as anisotropic, even in the more distal parts as mostly following 

cylindrical structures (32). The gas diffusion changes caused by destructive 

diseases such as emphysema seem to induce more variations in the transverse 

direction, perpendicular to the main diffusion axis (33). 

Because of its high signal intensity, and almost insolubility in tissue, most 

ADC studies were realised using 3He. Free 3He diffusion coefficient in air is 
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equal to 𝐷𝐻𝑒 = 0.86𝑐𝑚2/𝑠 (34). This value is significantly decreased when 

restricted by boundaries such as the alveolar walls (𝐴𝐷𝐶 = 0.14 ± 0.02𝑐𝑚2/𝑠 

in healthy rat lungs alveolar space, measured at the end of expiration). An 

increased 3He ADC was observed in emphysematous rats ( 𝐴𝐷𝐶 = 0.17 ±

0.02𝑐𝑚2/𝑠) (34). 

Although the 3He is the gas of choice for ADC MRI investigation, the progress 

in the 129Xe hyperpolarization overcoming the weaker signal, and the inflation 

of the 3He price induced a shift of the research effort to 129Xe ADC MRI. 129Xe 

self-diffusion in air is slower than for 3He, with 𝐷𝑋𝑒 = 0.14𝑐𝑚2/𝑠, allowing 

for some smaller scale diffusion measurements. Boudreau et al. measured a 

significant increase of the transverse component of the anisotropic gas 

diffusion from 𝐷𝑇 = 0.0021 ± 0.0005𝑐𝑚2/𝑠 in a control rat to 𝐷𝑇 = 0.005 ±

0.001𝑐𝑚2/𝑠 in the emphysematous rat lungs (35). 

3He ADC and 129Xe ADC have been correlated in control and emphysematous 

rabbits, providing equal results in quantifying the microstructure impairment 

(36). Finally, the longer diffusion times when using 129Xe would involve lower 

gradients strengths, which would be easier to implement on clinical MRI 

scanners. 

Note that the 83Kr hyperpolarized technique described further in this section 

can also be used to evaluate the alveolar microstructure. The work presented in 

chapter 3 correlates the hyperpolarized 83Kr relaxation behaviour to the 

alveolar geometry changes caused by emphysema in rat lungs. 

2.7.1.3. Dissolved phase imaging 

Since its discovery at the end of the 19th century, 129Xe has been a rich topic for 

the scientific community. 129Xe’s solubility has been of particular interest from 

the late 1940’s, when the first anaesthetic effect was observed in mice (37). 

The solubility of the noble gas has been further studied in aqueous media and 

in the different compartments of the body. 
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 Ostwald solubility coefficient 

Noble 

gas 

Water 

(mL/mL) 

Plasma 

(mL/mL) 

RBC 

(mL/mL) 

Adipocytes 

(mL/g) 

Human lung 

homogenate 

(mL/g) 

3He 0.0094 (a) - - - 0.01325 (b) 

129Xe 0.1217 (a) 0.1277 (a) 0.4312 (a) 2.0184 (a) - 

83Kr 0.0672 (a) 0.059 (b) 0.107 (b) 0.4622 (b) - 

Table 2.4 Ostwald solubility coefficient in water and biological compartments of interest. 3He, 

129Xe and 83Kr data were taken from references (38), (39, 40) and (40, 41) respectively. Note 

that measurements were taken at (a) at 20 °C and (b) 37 °C. 

Table 2.4 reports literature measurements of the Ostwald solubility coefficient 

for 3He, 129Xe and 83Kr in water and tissues. The Ostwald solubility coefficient 

is defined by the ratio of the volume of gas absorbed by the volume of the 

absorbing liquid at a given temperature. 129Xe presents a solubility 13 times 

larger than 3He, and 2 times larger than 83Kr. In addition, 129Xe’s solubility is 

enhanced by a factor 16 in fat tissue, with an Ostwald coefficient of 2 mL/g 

(39). The 129Xe higher solubility has been used to explore and image the 

hyperpolarized 129Xe transfer from the airspace to the bloodstream, whereas 

3He remains confined in the alveoli, used as a morphological marker in 

ventilation and diffusion imaging. 

Dissolved phase imaging is possible thanks to the relatively long 𝑇1 of 129Xe 

with 200 s in the alveolar gas phase in absence of oxygen (11), 15 s in presence 

of 20 % of oxygen (42), 12 s in the lung parenchyma (43), and 4.0 – 6.4 s in 

the blood (44), allowing for the transfer of hyperpolarized gas before the signal 

decay occurs. 

129Xe exhibits different chemical shifts when experiencing different chemical 

environments due to its large electron cloud making it precess at slightly 

different rates. Furthermore, there are significant differences in the resonance 

frequency when 129Xe is bound to a variety of molecules, including 

hemoglobin (45, 46). The different 129Xe chemical shifts observed in rodents 

and humans spread over 200 ppm, and allow us to differentiate the different 

compartments, from the gas phase, through the parenchyma, to the 

bloodstream. Rodents and human static and dynamic studies have shown four 
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peaks arising from the 129Xe in the lungs. The gas phase peak is used as a 0 

ppm reference, and three peaks appear at 191, 199 and 213 ppm, representing 

129Xe dissolved in plasma, lung parenchyma and red blood cells respectively 

(47). 

This large chemical shift between the 129Xe present in the alveoli and dissolved 

in the lung tissue allowed for chemical shift selective imaging of the dissolved 

phase, thus giving a spatially resolved information of the gas transfer over time 

(48). The dissolved 129Xe unfortunately represents less than 1-2 % of the total 

129Xe present in the lungs after inhalation. This low proportion makes chemical 

shift imaging of the dissolved phase more complicated, but can be 

accomplished through signal averaging, selective RF excitation, and radial 

acquisition (49, 50). 

This property has been used to show gas transfer impairment in rodents and 

human. For example, gas transfer is reduced in interstitial diseases such as 

idiopathic pulmonary fibrosis (51, 52). Dynamic spectroscopy showed a 

delayed and decreased 129Xe signal arising from the lungs’ vascular system 

(47). The first exploration in rodents showed a decreased signal in the blood 

compartment was observed due to a fibrotic thickening of the alveolar 

membrane (48). 

An imaging techniques has been derived from the fact that the signal intensity 

arising from the dissolved 129Xe is a lot smaller than that of the gas phase. This 

imaging technique called xenon transfer contrast (XTC), inspired from CEST, 

compensates the low dissolved 129Xe signal by detecting it indirectly through 

the gas phase after saturation of the dissolved phase and subsequent gas 

exchange (53, 54). Two gas phase images have to be acquired, the first one 

following a saturation of a region without 129Xe signal (-200 ppm), and the 

second one following the saturation of the dissolved 129Xe (200 ppm). A 

decrease of signal intensity in the gas phase would indicate a gas transfer from 

the lung parenchyma to the alveolar space (55, 56). 
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2.7.1.3. Gas carriers for dissolved 129Xe signal 

enhancement and contrast 

Because the hyperpolarized 129Xe signal arising from the lungs tissue is a 

factor of 100 times smaller than the gas phase signal after inhalation of the gas, 

methods to increase the concentration of 129Xe in the bloodstream have been 

investigated using various biocompatible carrier agents and membrane 

technologies (50, 57, 58). 

In vivo imaging however is still limited by the poor solubility of 129Xe in the 

blood requiring continuous perfusion of hp 129Xe directly into the bloodstream 

via a gas exchange module (Membrana MicroModule®, Charlotte, North 

Carolina, USA). These hollow-fiber membranes used in blood oxygenators 

have been employed to increase the concentration of dissolved 129Xe both in 

blood and in solutions (50, 57-60). Membranes have been used as they greatly 

reduce the degree of foaming that occurs when the relatively insoluble gas is 

delivered to solution as only small bubbles diffuse across. This method is 

suitable for in vivo animal experimentation but is unlikely to find widespread 

clinical acceptance due to issues with invasiveness and coagulation within the 

gas exchange device itself. This extracorporeal circulation composed of a gas 

exchange module has been used in rats to observe the hp 129Xe transferring 

back from the bloodstream to the alveoli, by imaging the gas phase (50). 

It has been shown to be less technically demanding and less invasive to prepare 

hp 129Xe into a solution and then infuse the prepared solution into the animal 

itself (61, 62). Biologically “inert” substances that produce little coagulation 

can avoid the need for delivery through extracorporeal circulation of blood. 

Carrier agents with high solubility have been investigated, as it is known that 

129Xe has a much higher solubility in lipid and perfluorocarbon based 

compounds (Ostwald coefficient > 1) (63). Hyperpolarized 129Xe imaging and 

spectroscopy using gas carrier have been used to investigate the dissolved 

129Xe signal by angiography (64), in the brain (65, 66), heart and kidneys (67), 

but also the gas exchange in the lungs (68). 

Table 2.5 lists the particle size, 129Xe solubility and 𝑇1 in gas carrier agents. 

Perfluorocarbon emulsions (PFCE) have been developed from the late 1980’s 

as blood substitutes taking advantage of their faster exchange with oxygen than 
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hemoglobin. 1st and 2nd generation PFCE blood substitutes, and perflurooctyl-

bromide (PFOB) have been investigated as hp 129Xe carrier agents (57, 63, 69). 

 

 Diameter 

(μm) 

Ostwald 

solubility 
𝑇1 (s) Chemical shift 

(ppm) 

Plasma - 0.13 47.2 ± 5.1 194 

RBC 7.0 0.43 2.2 – 7.8 ¶ 213 

PFCE 1st generation 

Fluosol 

0.20 N/A N/A ~110 

PFCE 2st generation 

Oxygent 

0.16 – 0.19 N/A N/A ~110 

PFOB 0.4 – 5.0 § 1.2 83.4 ± 3.3 106 

Liposomes 8 N/A 116.2 ± 6.2 0.6 

Intralipid suspension 20 % N/A 0.62 40.0 ± 3.0 197 

Table 2.5 Ostwald solubility and 129Xe 𝑇1  longitudinal relaxation times in different carriers 

from references (39, 57, 62, 64, 69). ¶ in deoxygenated and oxygenated blood respectively. § 

eggyold concentration dependent. 

When introduced to the PFCE such as Fluosol (Green Cross, Osaka, Japan) or 

Oxygent (Alliance Pharmaceutical Corp., Wiltshire, UK), hyperpolarized 129Xe 

displays a broad peak with a chemical shift relative to the gas phase at 110 ppm 

as compared to the RBC peak at 216 ppm (57). 

PFOB emulsions show a narrower peak centered at 106 ppm. The linewidth 

with PFOB is emulsion-dependent, with larger droplets producing the least 

exchange and a narrower peak (62). The best peak resolution was obtained 

with droplets bigger than 5 μm, but such particle size has been associated with 

various side effects such as thrombocytopenia in some patients after synthetic 

blood transfusion (70). 

Liposomes-filled 129Xe provides a narrow peak located at 0.6 ppm, that could 

be used as a 129Xe sensor in vivo, providing the organ of interest is not in the 

proximity of the lungs where the 129Xe gas phase signal would overlap with the 

liposome signal (69). 

Although better 129Xe spectral results (narrower dissolved phase peak) are 

expected with PFOB or liposome agents, most interest should be given to the 

less harmful gas carriers, such as PFCE with diameter under 0.2 μm. 

The peaks associated with the 129Xe in the tissue and in the blood are adjacent, 

at 191 ppm and 213 ppm in the rodent 198 and 218 ppm in human, and can be 

difficult to differentiate. The introduction of a carrier agent injected in the rat’s 
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lung pulmonary bloodstream has been explored in Chapter 5, taking advantage 

of the different chemical shift of 129Xe dissolved in two different 

perfluorocarbon emulsions (PFCE). 

2.7.1.3. 129Xe biosensors 

129Xe’s solubility and wide chemical shift have also been used for molecular 

sensing. Some encapsulating molecules have been synthetized to host the 129Xe 

in the dissolved phase. Spence et al. designed the first 129Xe biosensor in 2001 

(71), composed of a cryptophane A tethered to a ligand able to target a protein. 

The 129Xe dissolved in the solvent will be encapsulated in the cryptophane 

cage. The signal from the encapsulated 129Xe in a free biosensor appears at 70 

ppm, whereas the binding of the ligand to its target induces a chemical shift to 

72.5 ppm. Cryptophane E was also used as a 129Xe host for molecular 

biosensing, with a chemical shift close to 40 ppm (72). More in vitro essays 

have used human proteins targets (73), but the chemical shift created by the 

molecular biding was always below 7.5 ppm, leading to overlapping 129Xe 

NMR peaks. Although this 129Xe NMR is feasible in vitro, using high 

resolution NMR probes, in vivo detection of such small chemical shift change 

remains highly difficult. Taratula et al. thought of increasing the local 

concentration of encapsulated 129Xe by using dendrimers able to congregate 

several cryptophanes without tethering them (74). 

HyperCEST technique based on the XTC was developed (75). This NMR and 

MRI technique uses the detection of the dissolved phase (medium signal at 193 

ppm) after the saturation of the encapsulated 129Xe at 65 ppm or control at -65 

ppm. This technique inspired from CEST was also used by Garcia et al (76) to 

improve the sensitivity of the very low encapsulated signal. 

Finally, Klippel et al. used a combination of two 129Xe hosts, cryptophane A 

(60 ppm) and perfluoroctyl bromide (PFOB, 120 ppm) (77). Two cell cultures 

were labelled with one of each allowing a selective CEST saturation of each 

cell population. 

Chapter 4 uses an encapsulating cryptophane A, tethered to a paramagnetic 

gadolinium-DOTA (GdDOTA) group. The transient vicinity of the 129Xe and 

the GdDOTA induces its fast depolarisation. The relaxivity of the biosensor 

has been evaluated. 
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2.7.2. Hyperpolarized 83Kr MRI 

Nuclei with nuclear spin 𝐼 = 1 2⁄  have a completely spherical electric charge 

distribution; the nuclear electric energy will be entirely independent of the 

orientation of the spin in space, and of its electrical environment. On the other 

hand, nuclei with nuclear spin 𝐼 > 1 2⁄  such as 131Xe (𝐼 = 3 2⁄ ) or 83Kr (𝐼 =

9 2⁄ ) have a non-spherical electric charge distribution, called quadrupolar 

electric charge distribution. The electric quadrupole moment of the nucleus 

interacts with the electric field gradient (EFG) generated by external distortions 

of the electronic cloud. This electric quadrupolar interaction in typically an 

intramolecular process caused by chemical bonding, except for noble gas 

isotopes that are inherently monoatomic. Figure 2.15 illustrates how adsorption 

or collision cause a deformation of the electronic cloud, inducing the formation 

of an Electric Field Gradient (EFG) that will interact will the nuclear 

quadrupolar moment. The resulting fast quadrupolar driven relaxation will 

depolarize the 83Kr nuclear spin. 

 

Figure 2.15 83Kr collisions and surface adsorption causing quadrupolar relaxation. 

The 83Kr quadrupolar relaxation was shown to provide a 𝑇1 contrast dependent 

on the surface-to-volume ratio in the porous medium, but also on the surface 

hydration. 

Porous media made of glass beads have been used to demonstrate the 

quadrupolar relaxation. A high surface-to-volume ratio increases the 
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probability of adsorption or collisions of the 83Kr atoms with the surface. 

Shorter 𝑇1  were observed with high surface-to-volume ratio media (78). 

Furthermore, hydrophobic surfaces cause shorter 𝑇1 than hydrophilic surfaces 

due to stronger interaction with the surface during the adsorption (78, 79). 

The surface quadrupolar relaxation (SQUARE) previously described in 

synthetic porous media was also validated in ex vivo rat lungs. Excised healthy 

rat lungs were used as a biological model for porous media with an increasing 

surface-to-volume ratio from trachea to alveoli. 

Stupic et al. used non-localized 𝑇1  spectroscopy with different inhalation 

schemes to demonstrate the relaxation behaviours in the different lung 

compartments (14). The inhalation of smaller volumes of hyperpolarized 83Kr 

followed by thermal gas allows to specifically localize the signal without 

spatially resolve the spectroscopy (Figure 2.16.a). 83Kr is shown to relax faster 

in the distal parts of the pulmonary system (Figure 2.16.b). 
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Figure 2.16 (a) Gas distribution for four inhalation schemes in ex vivo rat lungs using 

hyperpolarized 83Kr in blue and thermal gas in pink. Scheme 1: only hp 83Kr inhaled. Scheme 

2a: 6 mL of thermal gas followed by hp 83Kr to the total volume. Scheme 2b: 12 mL of thermal 

gas followed by hp 83Kr to the total volume. Scheme 3: 6 mL of hp 83Kr followed by thermal 

gas to the total volume. (b) Longitudinal relaxation for the different inhalation schemes and 

total volumes. Composite figure adapted from reference (14). 

These results have been further demonstrated using hp 83Kr MRI. Six et al. 

acquired an image of the excised lung at different delay post-inhalation (80). 

Figure 2.17 A to E shows the hyperpolarized 83Kr gas distribution in the lungs 

at 0.0, 0.5, 1.0 and 1.5 s after inhalation. The signal decay is already visible by 

simple observation of the 83Kr ventilation images, with brighter airways after 

long pre-imaging delays. The incremented delay post-inhalation is necessary 

for the calculation of the spatially resolved 83Kr longitudinal relaxation in the 

lungs (Figure 2.17 E). A faster 𝑇1 decay is observed in the distal alveolar areas 

(iv) (0.9±0.1 s) as compared to the trachea (i) (5.3±1.9 s) where the surface-to-

volume ratio is small. 

 

Figure 2.17 SQUARE contrast demonstrated in ex vivo Sprague-Dawley rat lungs. (A-D) show 

the signal decay within the lungs when acquiring 83Kr MRI images after increasing pre-scan 

delays. (E) Regional 𝑇1 value calculated from the signal decay in (A-D). Figure taken from 

reference (80). 

This 83Kr surface-to-volume ratio sensor has been spatially resolved in healthy 

rat lungs. This property has been used in an animal model of emphysema, 

characterized by a destruction of the alveolar structure. The close relationship 

between 𝑇1 relaxation and surface-to-volume changes caused by emphysema is 

discussed in Chapter 3. 

2.8. Ex vivo rat lung protocol 

When hyperpolarized noble gases imaging has already been performed in vivo 

in small rodents such as mice, rats or guinea pigs, it is however an undeniable 
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very complex task. Advances have been made on ventilators allowing the 

delivery of the hyperpolarized gas to the animal while keeping the animal 

anaesthetised, but also on fast imaging sequences. 

High temporal and spatial resolution for hyperpolarized 129Xe 2D and 3D MRI 

have been reached by using radial acquisition that allowed a faster sampling of 

the k-space over the course of several inhalations (81, 82). Cartersian k-spaces 

are reconstructed by Fourier transform whereas radially collected k-spaces 

require projection reconstruction techniques. The variable flip angle concept 

has also been implemented to radial acquisition protocols in order to 

compensate for the flip-angle-induced hyperpolarization loss (83). Different 

flip angles have also allowed for selective enhanced resolution in the airways 

or the peripheral area (82). Acquisition time has also been reduced by using 

sparse sampling of the k-space (84). 

Small animal ventilators have been customised for hyperpolarized gas MRI 

purpose. They are built from non-magnetic components in order to preserve the 

gas hyperpolarization. They are usually able to deliver either the normally 

oxygenated gas mixed with anaesthetic gas, or the hyperpolarized gas mixture 

in a well-controlled manner (85, 86). Small tubing and valves have to be used 

to limit the dead space (87). Moreover, small rodents inhale only small volume 

of gas under 2 mL, and at a rate of 80-160 breaths per minute, requiring a tidal 

volume delivery high precision and high temporal precision for the MRI 

acquisition triggering. Whilst most hyperpolarized noble gases compatible 

ventilators are performing positive pressure forced inhalation (85, 86, 88, 89), 

another approach has been used to achieve in vivo 129Xe gas phase and 

dissolved phase in mice under passive spontaneous breathing and using low 

noble gas concentration mixture (90, 91). This technique has the advantage to 

be less invasive as to not require treating the animal with neuromuscular 

blocking drug nor excessively deep anaesthesia to control the breathing rate. 

Indeed, damages have been observed in mice after prolonged mechanical 

ventilation (92). 

Ex vivo lungs experiments have been shown to be technically less demanding 

and allow for MRI protocols development and study animal models of 

pulmonary diseases such as asthmatic bronchoconstriction (80, 93, 94). They 

do not require maintaining the animal under constant anaesthesia nor complex 
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intubation. The inhaled volume is reproducible over the course of the 

experiment, and breath holds can be maintained for extended durations. Some 

more extreme conditions can be applied to the lungs such as the complete 

absence of oxygen, prolonging the hyperpolarized signal in the lungs. Finally, 

the ex vivo lungs hyperpolarized noble gases MRI reduces the regulatory 

requirements for animal care and handling. In fact, it allows for the 

experiments to be realised in buildings that are not compliant to small animal 

research, and also reduces the approvals needed for the project to be realised in 

term of animal suffering regulation. A description of the lung excision surgery 

as used in Chapters 3 and 5 is given in the following section. 

The rat was euthanized using an overdose of pentobarbital sodium 200 mg/mL 

(Euthatal, Merial Animal Health Ltd, Harlow, UK). The permanent cessation 

of the circulation was checked before pursuing the dissection. From this point, 

the dissection has to be proceeded as quickly as possible in order to prevent 

blood clotting in the pulmonary circulation. An incision is done along the mid-

ventral line; the aorta is severed under the diaphragm in order to quickly drain 

the blood out of the heart and pulmonary system. A catheter is positioned in the 

isolated trachea and clamped after pushing 4 mL of air though it, in order to 

inflate the lungs to a minimal volume to avoid collapsing of the airways. A 

catheter is placed in the caudal vena cava and the lungs are perfused with 20 – 

30 mL heparin/saline 100 IU/mL to flush the remaining blood from the heart 

and the lungs. A midline thoracotomy gives access to the pulmonary and 

cardiac area. The thymus is removed, and the anterior vena cava is ligated. For 

the purpose of Chapter 5 only, synthetic blood is administrated to the lungs 

through the caudal vena cava. The lungs are finally loosened from the neck and 

thorax. A cannula is tied off in the trachea, and the lungs are tested several 

times for leaks. The lungs are suspended in a ventilation chamber whose 

dimensions fit the MRI detection coil. 
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Figure 2.18 Schematics of the principal surgery key locations during the lung extraction for 

hyperpolarized noble gases MRI. The aorta is first severed, and will serve as blood way-out. 

The pulmonary circulation is flushed with Heparin/saline through a catheter in the caudal vena 

cava. The cranial vena cava is sutured to orientate the injected Heparin/saline and synthetic 

blood directly through the pulmonary circulation. The trachea is catheterised and clamped in 

situ during the surgery. 

The ventilation chamber is connected to a ventilation syringe (Figure 2.19.a) 

placed in the coil within the spectrometer. The hp gas delivery composed of the 

hyperpolarizer and the recompression unit is attached to the bottom of the 

ventilation chamber, at the entrance of the trachea. The hp gas is shuttled to the 

recompression unit, which will deliver the gas at ambient pressure to the lungs. 

Passive inhalation is realised by pulling the ventilation syringe to the wanted 

volume (Figure 2.19.b). This will create a negative pressure in the back of the 

lung, mimicking the action of the diaphragm. This way, the excised lung will 

passively inhale the recompressed hp gas. 
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Figure 2.19 Overview of an ex vivo lung MRI experiment apparatus. (a) Simplified laboratory 

setup for an ex vivo rat lung experiment. The 129Xe or 83Kr is hyperpolarized at low pressure (< 

1 bar) in a custom built polarizer, and delivered to a recompression unit. The recompressed gas 

will be delivered to a transmission line located at the opening of trachea. (b) Ex vivo lungs 

passive inhalation using a ventilation syringe. 
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CHAPTER 3 

HYPERPOLARIZED 83KR MAGNETIC RESONANCE 

IMAGING OF ALVEOLAR DEGRADATION IN A RAT 

MODEL OF EMPHYSEMA 

 

The results presented in this chapter appear in parts in the journal publication: 

David M.L. Lilburn, Clémentine Lesbats, Joseph S. Six, Eric Dubuis, Liang 

Yew-Booth, Dominick E. Shaw, Maria G. Belvisi, Mark A. Birrell, Galina E. 

Pavlovskaya and Thomas Meersmann, “Hyperpolarized 83Kr magnetic 

resonance imaging of alveolar degradation in a rat model of emphysema”, J. R. 

Soc. Interface (2015) 12:20150192 (1). 

Experiments presented in this chapter were performed collectively at the Sir 

Peter Mansfield Imaging Centre at the University of Nottingham and at the 

Respiratory Pharmacology group at Imperial College London. Original concept 

and protocol design were developed by Prof. Meersmann and Dr. Lilburn. The 

animal model preparation, handling and care, and histological analysis were 

performed by Dr. Birrell, Mr. Dubuis and Ms. Yew-Booth at Imperial College 

London. The lungs harvesting was performed by Dr. Lilburn and Dr. Birrell. 

The hyperpolarized 83Kr imaging was carried out by Dr. Lilburn, Dr. Six, and 

Ms. Lesbats at the Sir Peter Mansfield Imaging Centre. Image processing and 

𝑇1  map reconstruction were performed by Dr. Pavlovskaya. The first data 

analyseis were performed by the authors included in the published article cited 

above. Further image and statistical analysis by Ms. Lesbats is presented at the 

end of this chapter. 
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3.1. Introduction 

83Kr quadrupolar relaxation behaviour has been shown to be of interest in 

biomedical research. Hyperpolarized 83Kr had originally been investigated 

using packed beads surface models, showing a relationship between the 

relaxation rate, 𝑅1, and the surface to volume (𝑆
𝑉⁄ ) ratio, the surface chemistry 

and temperature (2). An augmentation in 𝑆 𝑉⁄  ratio induced a reduction of 𝑇1, 

and a reduction of the signal intensity. The 83Kr surface quadrupolar relaxation 

(SQUARE) has subsequently been demonstrated in ex vivo lungs where the 𝑇1 

relaxation was observed to be shorter in the alveoli as compared to the main 

airways, confirming the 𝑆 𝑉⁄  ratio dependency of the 83Kr relaxation behaviour 

(3). 

In this chapter, the surface to volume ratio-sensitive SQUARE contrast in the 

lungs is investigated in an animal model of a component of chronic obstructive 

pulmonary disease (COPD), namely emphysema. COPD is a complex and not 

yet fully understood pulmonary disease composed of an airways obstruction 

(chronic bronchiolitis) and a parenchymal destruction (emphysema). 

Emphysema is characterised by a progressive alveolar destruction over time 

caused by inflammation and hyperinflation (4). New screening techniques are 

of particular interest considering COPD is the fourth leading cause of death 

worldwide and is estimated to become the third in 2030 (5). The main cause of 

such parenchymal tissue damage is chronic inflammation. The principal known 

risk factor is cigarette smoking, but pollution, occupational exposure, intrinsic 

factors, gender and aging seem to be involved as well (6,7). Smoking has been 

the cause of death of 73 % of COPD patients in the high-income countries, and 

40 % of low-income countries (5). An intrinsic genetic risk factor is also 

involved in emphysema causing an α-1 antitrypsin enzyme imbalance in 1-3 % 

of the patients with COPD, inducing an antiprotease deficiency, and an 

increased extracellular matrix proteolysis from the neutrophil elastase (6,8,9). 

The destruction of the parenchyma leads to a loss in lung elasticity and of gas 

exchange surface area, inducing a decrease in airflow (ventilation defects), and 

in the ability to transfer the oxygen from the air to the blood (diffusing 

capacity) respectively (10). Patients will suffer of increasing dyspnoea and 

congestion over time, and various other symptoms ranging from sleep 
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disturbance to anxiety or even alienation, decreasing the overall quality of life 

(11). The only treatment at the moment is avoidance or reduction of the 

exposure to the risk factors such as cigarette smoke accompanied by 

bronchodilators treating the associated asthmatic symptoms, and in some cases 

bullectomy to excise the extremely damaged lung areas, or in cases of extreme 

severity lung transplant (12). 

Lung function tests are currently used to diagnose pulmonary impairments 

such as emphysema (4). However, they do not allow a diagnosis before an 

advanced stage of the disease, when most symptoms are already established, 

and more importantly they give a global measurement of the lung function. 

High resolution computed tomography (HRCT) also show some bigger 

alveolar holes, called bullae within the distal lung (13). Because of this late 

diagnosis and high mortality, the importance of investigating emphysema and 

finding new biomarkers is paramount for an early diagnosis and the 

preservation of the lung function at an early stage of the disease. Numerous 

clinical and preclinical studies used computed tomography (CT), providing an 

excellent resolution of the scattered alveolar ‘holes’, but also a lowered 

diaphragm caused by the whole lung enlargement (14). Magnetic resonance 

imaging (MRI) has also been of interest for clinical imaging research of 

emphysema. When 1H imaging is already a difficult method for healthy lung 

imaging, the decreased tissue density due to the emphysematous injuries makes 

1H MRI even more challenging (15). On the other hand, hyperpolarized 3He 

and 129Xe MRI can provide ventilation imaging, showing ventilation defects in 

the lungs (16). The most interesting hyperpolarized 3He MRI exploration is the 

gas diffusion in the lungs, directly correlated to histological analysis of the 

alveolar dimensions (17). The 3He apparent diffusion coefficient (ADC) has 

been shown to increase from 0.225 cm2/s to 0.452 cm2/s in human 

emphysematous lungs (18,19). In the same way, hyperpolarized 129Xe MRI 

allows ventilation imaging and ADC analysis (20,21). 

Several animal models have been used to reproduce the emphysematous 

pulmonary damages. The traditional rodent model created in the 1960’s (22) 

uses an elastase proteinase, such as the human neutrophilic elastase papain or 

the porcine pancreatic elastase PPE, that destroys the extracellular matrix 

protein elastin, inducing the emphysematous lesions. These injuries cause a 
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destruction of the alveolar macrostructure, therefore decreasing the surface 

area in the parenchyma (23,24). These structural changes go along with a 

secretory cell metaplasia, comparable to chronic bronchitis (25). Animal 

models of emphysema have been assessed using histology (26), micro-CT (27), 

lung function tests (28), exercise capacity evaluation (29), but also 

hyperpolarized noble 3He and 129Xe MRI (30,31). 

This chapter aims to confirm the 83Kr SQUARE contrast using the established 

PPE animal model of emphysema. This ex vivo rat lung hyperpolarized 83Kr 

MRI study demonstrates that the 83Kr 𝑇1 contrast can be used as a biomarker 

for emphysema. A global and regional analysis shows a 83Kr 𝑅1 correlation 

with the 𝑆 𝑉⁄  ratio changes in the alveolar parenchyma. 

3.2. Material and methods 

3.2.1 Motivation 

The 83Kr nuclear spin 𝐼 = 9 2⁄  leads to a non-uniform nuclear charge 

distribution. The non-spherical symmetry of the nuclear charges distribution 

creates a nuclear electric quadrupole moment. Any interaction of the noble gas 

with a surface, such as collisions or adsorption, will induce an electronic cloud 

distortion and create an electric field gradient (EFG). Quadrupolar relaxation 

ensues from interactions between the EFG and the nuclear electric quadrupolar 

moment, resulting in shorter 𝑇1  relaxation in the presence of surfaces as 

compared to the bulk gas phase (more detail in Section 2.7.2.). 

The low gyromagnetic ratio and the surface-induced 𝑇1 relaxation create low 

intensity NMR hp 83Kr signal and thus make structural gas imaging 

challenging but not impossible at lower resolution (32). However, the 83Kr 

surface quadrupolar relaxation (SQUARE) MRI contrast is influenced by the 

𝑆
𝑉⁄  ratio but also by surface chemistry, temperature, and surface adsorption of 

molecules (32-35). In this study, hyperpolarized 83Kr is used to introduce a 

new source of contrast within the lungs, dependent on the 𝑆
𝑉⁄  ratio. The 

confirmation of 83Kr contrast caused by emphysematous damages represents a 

first stage in the 83Kr lung imaging development. This contrast can also be 

extended to other lung diseases caused by lung surfactant chemistry changes 

that can be due for instance to prematurity (36). 
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3.2.2. Elastase-induced pulmonary emphysema in rats: 

induction and preparation for ex vivo MRI 

12 male Sprague-Dawley rats, ranging between 260 and 300 g (Harlan UK 

Ltd., Bicester, IK) were used for imaging and histology. 2 in 5 control rats and 

2 in 7 elastase-treated rats were used solely for histology purposes. The other 

rats were used for both ex vivo imaging and histology. 

Animals were anaesthetised using Isoflurane 4% with medical grade O2 for 3 

to 4 min. Emphysema was induced by intratracheal instillation of one dose of 

120 U/kg Porcine Pancreatic Elastase, PPE (Merk Chemicals Ltd, Nottingham, 

UK) at 1 mL/kg. Control animals were similarly treated with 1 mL/kg sterile 

saline (Fresenus Kabi Ltd., Manor Park, UK). 28 days after intratracheal 

instillation, animals were weighted (see Table 3.1) and euthanized with an 

intraperitoneal overdose of sodium pentobarbital 200 mg/Kg (Merial Animal 

Health, Harlow, UK). Death was confirmed by assessing: the cessation of the 

circulation, and the non-response to a painful stimulus by pinching the legs 

with surgical forceps. Severing the aorta and caudal vena cava as rapidly as 

possible will cause the exsanguination, and avoid quick coagulation in the 

heart and pulmonary circulation, therefore minimising the presence of 

paramagnetic iron that would depolarize the hyperpolarized 83Kr. A catheter is 

placed in the caudal vena cava and tightened with a suture. This catheter is 

used to flush the pulmonary circulation with 20 mL heparin 100 IU/mL 

(Wockhardt UK Ltd., Wrexham, UK) in 0.9 % saline solution (Baxter 

Healthcare Ltd., Thetford, UK). Then, 20 mL Dublecco’s phosphate buffer 

solution (D-PBS, Sigma Aldrich Ltd, Gillingham, UK) were flown through it 

to remove residual blood. The lungs and heart are excised en masse. A 

polytetrafluorethylene (PTFE) adaptor tube is inserted in the trachea 5 – 10 

mm above the carina and tightened with a suture. A syringe is inserted in the 

adaptor, the lungs are inhaled to 10 mL and exhaled a few times to ensure they 

are not leaking. Finally, the lungs are suspended in 5 % (weight/volume) 

glucose solution (Baxter Healthcare Ltd., Thetford, UK) in a custom-built 

acrylic 30 mm diameter ventilation chamber, pointing downwards for 

hyperpolarized gas experiments (37). 
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Identifier 

Rat 

Weight 

(g) 

Whole lung MAA  

(104 μm2) 

Lung usage: 

MRI: hp 83Kr MRI 

including histology 

Histology: satellite 

group 

Inhaled volume 

in MRI, 

Vi (mL) 

C
o

n
tr

o
l 

CL.1 492 - MRI 7.0 ± 0.3 

CL.2 555 2.5 ± 0.1 MRI 6.8 ± 0.1 

CL.3 499 3.7 ± 0.6 MRI 6.8 ± 0.1 

CL.4 400 1.9± 0.1 Histology N/A 

CL.5 412 2.5± 0.4 Histology N/A 

E
la

st
a

se
 (

P
P

E
) 

tr
e
a

te
d

 

EL.1 390 6.3 ± 1.1 MRI 5.9 ± 0.7 

EL.2 508 6.8 ±1.1 MRI 6.1 ± 0.6 

EL.3 416 5.1 ± 1.0  MRI 6.9 ± 0.3 

EL.4 440 4.5 ± 0.6  MRI 7.3 ± 0.4 

EL.5 513 3.6 ± 1.0 MRI 6.1 ± 0.2 

EL.6 382 4.8 ± 1.4  Histology N/A 

EL.7 436 10.8 ± 6.2 Histology N/A 

Table 3.1 Demographic data from satellite animals (histology) and those used for hp 83Kr 

imaging. Summary of rat weights, whole lung mean alveolar area ± standard deviation of the 

mean, inhaled volumes (Vi) ± standard deviation corresponding to inflation (syringe) volume 

Vs = 8 mL. No values for Vi were determined in the histology groups. Values omitted were not 

measured. 

3.2.3. Alveolar cross-section measurements 

Emphysema is described as a degradation of the alveolar sacs structure, leading 

to enlarged airways and resulting in a decreased gas exchange area. Elastase-

induced emphysema is a well-known animal model in rats, reproducing the 

human histological feature of emphysema: the airspace enlargement (25,38). 

The porcine pancreatic elastase (PPE) is a protease degrading elastic fibres, 

giving rise to a rapid enlargement of the airspace. 

Experimental emphysema can be assessed by measuring the average air space 

area. This technique was first described by Belloni et al. (39) and used 

previously (40). The lungs were inflated to forced vital capacity (25 cm H2O) 

with 5 % formalin – saline solution (Sigma-Aldrich Ltd, Gillingham, UK). The 

trachea was tied off and the lungs were then placed in formalin. After at least 

24 h in formalin, an experienced histologist processed the lungs. The lungs 
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were wax-embedded, sectioned using a microtome, and stained with 

hematoxylin and eosin (H&E) stain. Five slices per lobe were selected in each 

lung for analysis using an Olympus BX40 microscope and a Zeiss image-

processing software (Imaging Associates, Bicester, UK), excluding slices from 

the fields containing vasculature and large airways. The mean air space area 

was averaged for each lobe, and subsequently averaged for each lung, giving a 

mean alveolar area (MAA). Results are displayed in Table 3.1 and illustrated in 

Figure 3.1. 

 

Figure 3.1 Line and whiskers diagram of the histological data. The individual data from control 

lungs (in blue) and emphysematous lungs (in red) are displayed for each group, overlaid with 

the mean, and standard error of the mean, SEM (in grey). No significant difference is observed 

between the lungs used for MRI and subsequent mean alveolar area (MAA) determination 

(‘MRI + histology’ group) and the histology-only group within the control group and the 

emphysema group. 

As described in Table 3.1 some lungs were used for MRI and histological 

analysis, whereas some other rats were only utilised for histology. In order to 

compare the whole lung MAA results for each sub-group of the control and 

emphysema groups, results were displayed in Figure 3.1. Despite the small 

sample size, the Mann-Whitney U-test shows a non-significant difference 

between the MRI + histology and histology groups within the control (p-value 
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= 0.33) and emphysema groups (p-value = 0.57). This non-significant different 

between the sub-groups allows us to cluster them into a control group and an 

emphysema group for statistical analysis (see results Section 3.3.3.). 

Furthermore, although the ex vivo lung functional 129Xe imaging methodology 

has already been demonstrated to be of use for physiological studies, the non-

significant difference between the sub-groups in this work validates the ex vivo 

experimental protocol for the study of histological features of lungs using hp 

83Kr. No significant alveolar damage has been induced by ex vivo mechanical 

ventilation and MR imaging. 

3.2.4. Hyperpolarization, gas recompression, transfer and hp 

gas inhalation 

Hp 83Kr was produced in batch mode spin exchange optical pumping (SEOP). 

The gas mixture used was composed of 15 % enriched 83Kr (99.925 % 83Kr, 

CHEMGAS, Boulogne, France) and 85 % N2 (99.999 % purity, Air Liquide, 

Coleshill, UK). The SEOP was realised at 55 – 65 kPa with a build-up time 

was 12 min. A recompression unit described in (41) was used to bring back up 

the hp gas to ambient pressure, an inhalable pressure. The spin polarization 

reached P = 16 – 17 % after extraction and recompression of the gas, and an 

apparent polarization of Papp = 2.5 % (42). The method produced 12 – 16 mL 

of hp gas mixture every 12 min. This volume was enough to fill the 

transmission lines and allow the inhalation of 6 – 7 mL of hp gas by the ex vivo 

lungs. 

3.2.5. MRI protocol 

The 83Kr imaging has been performed using a 9.4 T Bruker Avance III 

microimaging system (Bruker Biospin GmbH, Rheinstetten, Germany) and a 

30 mm inner diameter Bruker double saddle coil tuned to the 83Kr resonance 

frequency (15.40 MHz). 

Non-slice selective coronal imaging of the lungs was performed by using a 

variable flip angle (VFA) FLASH sequence (43). The 32 x 32 matrix was 

acquired with a rectangular RF pulse of constant width of 0.3 ms and variable 

power, and the parameters TE = 1.8 ms, and TR = 12.6 ms, leading to a field of 

view FOV = 50.9 x 40.7 mm2. The total acquisition time was 0.405 s. 
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𝑇1 -weighted imaging was realised by acquiring five images as in previous 

works published by Six and coworkers (3). Each image acquisition was started 

after a post-inhalation delay τd = 0.2 s, 0.7 s, 1.2 s, 1.7 s, 2.2 s. Note that some 

maps were calculated from a series of 0.5 s, 1.0 s, 1.5 s, 2.0 s. The manual 

inhalation of the hp gas was achieved by pulling a ventilation syringe, leading 

to a reduction of the pressure in the artificial pleural cavity created by the 

ventilation chamber (as in Figure 2.19). 

3.2.6. Image reconstruction and analysis 

The 32 x 32 data were reconstructed in Prospa (Magritek, Wellington, New 

Zealand). Sine-bell squared apodization, zero filling to 64 points, and Fourier 

transform are applied to the raw data. 64 x 64 magnitude data are then exported 

to Igor Pro (Wavemetric, Lake Oswego, OR, USA) for 𝑇1 analysis. 𝑇1 data sets 

were created for each series of images by combining the images acquired at the 

individual time delays τd into a three dimensional dataset with increasing τd 

(see Figure 3.3). As described by Six et al. (3), spatially resolved 𝑇1  was 

calculated from the linear regression of the natural logarithm of the signal 

intensity as a function of delay time. All 𝑇1 values out of the range 0 ≤ 𝑇1 ≤

6𝑠  were rejected as physically not meaningful. Furthermore, a ROI was 

defined by selecting the lung contour on the image acquired with the shortest 

τd. Any 𝑇1 values out of this ROI were also rejected. The resulting 𝑇1 maps 

were used to plot 𝑇1 histograms for each lung. 𝑇1 data were binned into 200 

intervals with 0.03 s increments. The Igor Pro Multipeak 1.4 function was used 

for an automated peak picking. A bi-modal Gaussian distribution was fitted on 

each histogram. The parameters of the distribution provided numerical 

biomarkers that were used for analysis. Moreover, a 𝑇1 bimodal distribution 

was assumed due to the existence of two pulmonary compartments of different 

dimension scales, the large airways and the small alveolar areas, where 83Kr 

would experience different relaxation behaviours. 

The results of the histogram analysis returned the most probable (expected 

value, EV) relaxation time and the full width at half maximum (FWHM) for 

each of the two Gaussian components (see Figure 3.2). The fast component 

was described by its highest probability (the highest number of voxels) 𝑇1
𝐸𝑉(𝑓)
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and its full width at half maximum 𝐹𝑊𝐻𝑀(𝑇1
(𝑓)

). The slow component was 

described by 𝑇1
𝐸𝑉(𝑠𝑙)

 and 𝐹𝑊𝐻𝑀(𝑇1
(𝑠𝑙)

). All the bimodal fitting parameters 

were stored in Table 3.2. 

 

Figure 3.2 Description of the bi-modal fitting parameters. The 𝑇1 distribution within the lungs 

(dashed grey curve) is decomposed into two Gaussian in blue and green. Two modes are 

therefore identifiable 𝑇1
𝐸𝑉(𝑓)

 and 𝑇1
𝐸𝑉(𝑠𝑙)

, with their respective full width at half maximum 

𝐹𝑊𝐻𝑀 (𝑇1
(𝑓)

) and 𝐹𝑊𝐻𝑀 (𝑇1
(𝑓)

). 
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 Rat identifier 

𝐓𝟏
𝐄𝐕(𝐟)

 (s) 
mean 

𝐅𝐖𝐇𝐌(𝐓𝟏
(𝐟)

) (s) 

mean 

𝐓𝟏
𝐄𝐕(𝐬𝐥)

 (s) 

mean 

𝐅𝐖𝐇𝐌(𝐓𝟏
(𝐬𝐥)

) (s) 

mean 

C
o

n
tr

o
l 

lu
n

g
 

CL.1 0.9958 0.19619 1.2353 0.53927 

CL.2 1.0130 0.091234 1.2189 0.30050 

CL.3 1.0099 0.14987 1.3556 0.48057 

Average ± 

standard deviation 
1.00620 ± 0.009 0.14576  ± 0.053 1.2699 ± 0.075 0.44011 ± 0.124 

Combined histogram of 

control lungs (Figure 3.6 

– blue histogram) 

1.0112 0.13073 1.2494 0.38797 

E
la

st
a

se
 (

P
P

E
) 

tr
e
a

te
d

 

lu
n

g
 

EL.1 1.2559 0.12770 1.4787 0.32787 

EL.2 1.2311 0.30498 1.7067 0.52674 

EL.3 1.3697 0.28202 2.0474 0.63887 

EL.4 1.1576 0.21975 1.5708 0.71203 

Average ± 

standard deviation 
1.25358 ± 0.088 0.23361 ± 0.079 1.7009 ± 0.249 0.55138 ± 0.167 

Combined histogram of 

elastase (PPE) treated 

lungs (Figure 3.6 – red 

histogram) 

1.2734 0.28201 1.7288 0.54928 

 EL.5 0.94994 0.1333 1.2257 0.4500 

Table 3.2 Characteristic 𝑇1 times from bimodal fitting of the histograms of all lungs used in 

this work. 

3.3. Results and discussion 

3.3.1. SQUARE contrast in the control and emphysema 

groups 

An example of hp 83Kr MRI of a control lung and a PPE-treated lung is shown 

in Figure 3.3. The series of coronal images at different τd show the signal decay 

caused by the 𝑇1 relaxation, with a faster decay in the alveolar space than in the 

bronchial tree. The bronchial signal is persisting longer than the alveolar 

signal, and is still visible at 2.2 s. The PPE-treated lungs show more signal 

heterogeneity than the control lungs. However, heterogeneous ventilation was 

not the scope of the study and was even observed in some control lungs (Figure 

3.4.c) and can be caused by various physiopathological reasons. The hp 83Kr 𝑇1 

relaxation time has been measured to be 90 – 150 s in a 10 mm diameter 5 cm 
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long glass cylinder, at 289 K, 100 kPa and 9.4 T (2). Shorter 𝑇1  values 

recorded in the lungs are predominantly caused by the 83Kr atoms interaction 

with the lung surface. The alveolar space has a significantly higher 𝑆 𝑉⁄  ratio 

than the bronchi. As reported in Six et al. paper (3), a faster 𝑇1 relaxation was 

expected in the alveolar space due to the SQUARE effect. Regions with a low 

𝑆
𝑉⁄  ratio such as the bronchi will have a longer 83Kr 𝑇1 relaxation, and remain 

“bright” longer than regions with a higher 𝑆 𝑉⁄  ratio and shorter 𝑇1 such as the 

alveolar regions. This prolonged 𝑇1 relaxation time in the airways is illustrated 

in the 𝑇1 map in Figure 3.3. The PPE-treated lung SQUARE 𝑇1 map (Figure 

3.3.d) reveals higher 𝑇1 values than the control lung (Figure 3.3.b), displaying 

an elevated level of green colour. 

 

Figure 3.3 Series of hp 83Kr images with resultant 𝑇1 maps in control and PPE-treated lungs. 

VFA FLASH MRI with no slice selection in control lung CL.2 using a variable relaxation 

delay τd values, ranging from 0.2 s to 2.2 s between the hp gas inhalation and acquisition of the 

image. Each image in (a) and (c) was acquired using a new delivery of hp 83Kr. (b) The 

resultant SQUARE 𝑇1 map displays longer 𝑇1 values for the major airways and shorter values 

for the alveolar region. (c) VFA FLASH MRI in the PPE-treated lung EL.1. (d) The resultant 

SQUARE 𝑇1 map displays prolonged relaxation times in the alveolar area compared with the 

control 𝑇1 map (b). 
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Three control lungs 𝑇1 maps are displayed in Figure 3.4. The data were plotted 

into histograms for comparative analysis. The pixel count for each 𝑇1, between 

0.0 and at 4.0 s at intervals of 0.03 s, were analysed using a bi-modal Gaussian 

distribution function. The Gaussian distribution of the fast relaxing component 

is represented in blue under the histograms, whereas the slow relaxing 

component is represented in green. The sum of the two Gaussians results in the 

histogram contour, in black, suggesting the bimodal fitting is an accurate 

method to characterise the SQUARE behaviour in lungs. Figure 3.5 represents 

the 𝑇1 maps and their histograms for four PPE-treated lungs. The SQUARE 𝑇1 

maps depict visually some marked differences between the control lungs and 

the PPE-treated lungs, revealing more green and yellow colour than the control 

maps in Figure 3.4. The characteristic parameters from the bimodal fitting are 

listed in Table 3.2. 

Control lungs show some average values of 1.0 s and 1.3 s for 𝑇1
𝐸𝑉(𝑓)

 and 

𝑇1
𝐸𝑉(𝑠𝑙)

 respectively, with the corresponding full width at half maximum 0.1 s 

and 0.4 s. On the other hand, PPE-treated lungs seem to have longer 𝑇1
𝐸𝑉 and 

broader Gaussian distributions with 1.3 s and 1.7 s for 𝑇1
𝐸𝑉(𝑓)

 and 𝑇1
𝐸𝑉(𝑠𝑙)

 

respectively and 0.3 s and 0.6 s as full width at half maximum. 

3.3.2. T1 maps and histograms comparison 

Some ventilation defects are observed in two out of the three control lungs 

(Figure 3.4.a and c). This ventilation heterogeneity might be due to the 3-hours 

transport of the ex vivo lungs between the Respiratory Pharmacology 

Laboratory at Imperial College London and the hp MRI facility in Nottingham. 
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Figure 3.4 83Kr MRI 𝑇1  maps (SQUARE contrast) of three control lungs and their 

corresponding histograms: (a) Lung CL.1, (b) CL.2 and (c) CL.3. Blue colour in the alveolar 

regions indicates short 𝑇1 values around 1 s. The histograms represent the pixel count from the 

𝑇1  maps of 𝑇1  values within 0.03 s intervals. A bimodal fitting leads to a narrow Gaussian 

distribution of fast relaxing pixels (blue sold line) centred around 𝑇1
𝐸𝑉(𝑓)

≈ 1𝑠, and a broader 

distribution (green solid line) centred around 𝑇1
𝐸𝑉(𝑠𝑙)

≈ 1.3𝑠. 
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Figure 3.5 83Kr MRI 𝑇1  maps (SQUARE contrast) of four PPE-treated lungs and their 

corresponding histograms as described in Figure 3.4: (a) EL.1, (b) EL.2, (c) EL.3 and (d) EL.4. 

The characteristic 𝑇1 values are shifted to larger values than the control lungs (Figure 3.4) with 

𝑇1
𝐸𝑉(𝑓)

≈ 1.3𝑠 (blue solid line) and 𝑇1
𝐸𝑉(𝑠𝑙)

≈ 1.7𝑠 (green solid line). 
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Combined histograms for the three control lungs and four PPE-treated lungs 

are represented in Figure 3.6. This summary of the two groups represents the 

sum of all pixels for each 𝑇1. The 𝑇1
𝐸𝑉 and FWHM parameters resulting from 

these combined histograms are listed in Table 3.2 along with the individual 

histograms values. 

 

 

Figure 3.6 Combined histograms of all added 𝑇1 in the control and PPE-treated groups. Data 

were obtained from three control lungs (blue) in Figure 3.4 and PPE-treated (red) in Figure 3.5. 

The characteristic 𝑇1 data from bimodal fitting (solid lines) are decomposed into slow and fast 

components (dashed lines). 

A fifth lung (EL.5) from the PPE-treated group was excluded from the 

statistical analysis because the MAA increased developed asymmetrically in 

the left lobe only, possibly due to a very localised elastase deposition. The 

histological data for this lung in Table 3.1 (MAA = 3.6 x 104 μm2) prefigure a 

𝑇1 map similar to those in control lungs. All lobar MAA were in line with the 

control group except for the left lung that exhibits very high MAA values 

(Figure 3.7.c). The 𝑇1 map for this lung EL.5 and the corresponding histogram 

(Figure 3.7.a and b) are very similar to the control lungs’. Although the left 

lobe has very high MAA values, the 𝑇1 map and histogram are not showing the 

expected locally high 𝑇1 values in this lobe. This might be due to the extreme 

damage of the lung on this side, preventing any ventilation of these areas 

during the imaging. The unventilated areas should appear as ‘dark’ regions on 



 69 

the hp 83Kr SQUARE map, but they also could be masked by other ventilated 

areas, contributing to the non-slice selective image. 

 

 

Figure 3.7 (a) 83Kr MRI 𝑇1 map (SQUARE contrast) of the PPE-treated lung EL.5 with (b) its 

corresponding histogram and (c) comparative lobar mean alveolar area values. The grey 

histogram has a bimodal function fitted in black solid line and decomposed in two Gaussians in 

blue (fast mode) and green (slow mode). For comparison, the outline of the histograms 

represented in Figure 3.6 are displayed in blue (control) and red (PPE-treated) dashed line. The 

𝑇1 maps (SQUARE contrast) and the histogram seem to demonstrate that the lung EL.5 has 

similar 83Kr 𝑇1 values to the control lungs. 

The boxplots in Figure 3.8 illustrate a graphical overview of all of the bimodal 

parameters for the control lungs (in blue) and the PPE-treated lungs (in red) 

also listed in Table 3.2. The boxes represent the first quartile, the mean and 

third quartile, and the whiskers represent the minimum and maximum of each 

group’s dataset. Note that the control group was only composed of 3 lungs, not 

allowing a box plot. A Student’s t-test (α = 0.05) has been used to test the 

statistical difference between the two groups. The null hypothesis is assuming 

no statistically significant difference between the control and the PPE-treated 
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groups. 𝑇1
𝐸𝑉(𝑓)

 and 𝑇1
𝐸𝑉(𝑠𝑙)

 exhibited p-values of 0.00517 and 0.03629 

respectively. These values suggest that the two 𝑇1
𝐸𝑉  markers are useful 

biomarkers for the elastase model of emphysema and may be used as a sensor 

for changes of the MAA in the lungs. 

 

 

Figure 3.8 Boxplot of the characteristic data listed in Table 3.2. The MRI 𝑇1
𝐸𝑉(𝑓)

 data between 

control and elastase (PPE) group do not overlap. The same observation is made for the 𝑇1

𝐸𝑉(𝑠𝑙)
 

data. In contrast, the distribution of 𝑇1  values for the two modes of the histograms 

(characterized by 𝐹𝑊𝐻𝑀(𝑇1) ) significantly overlaps between control and PPE groups, 

indicating no significant statistical difference from the 𝑇1  spread. However, the variation in 

𝑇1

𝐸𝑉(𝑠𝑙) is more pronounced in the treated animals than in the control animals. 
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3.3.3. 83Kr T1 relaxation as a biomarker of the alveolar 

dimensions 

The non-significant difference of the whole lung MAA between the lungs used 

for histology only and the lungs used for MRI and histology allows for a 

clustering of the data in a control group and an emphysema group (Figure 3.1). 

The mean control MAA was 26654 ± 7586 𝜇𝑚2  whereas the mean PPE-

treated MAA was 59809 ± 23788 𝜇𝑚2 (Figure 3.9), confirming an increase 

of the alveolar dimensions caused by the proteinase. As expected, a p-value of 

0.0121 calculated with the Mann-Whitney U-test reveals a significantly 

different MAA in the control and the emphysema groups. 

 

Figure 3.9 Box and whiskers plot representing the repartition of the histological data in the 

control and emphysema groups. Bars in the box represent the mean, the first and third quartiles 

of the distribution, the whiskers bars represent the minimum and maximum. A significant 

difference between the two groups’ whole lung MAA is observed. 

The potential relationship between the SQUARE data 𝑇1
𝐸𝑉, and the histological 

data MAA has been analysed. It has been previously shown that 83Kr 𝑇1 ∝ 𝑉
𝑆⁄  

(2). In this work, a significant statistical difference has been observed between 

the control group and the PPE-treated group lungs for the 𝑇1
𝐸𝑉(𝑓)

, 𝑇1
𝐸𝑉(𝑠𝑙)

 and 
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the whole lung MAA (Figure 3.8 and Figure 3.9). The correlation between 

𝑇1
𝐸𝑉(𝑓)

, 𝑇1
𝐸𝑉(𝑠𝑙)

 and MAA was evaluated. Previous findings in material science 

showed that in presence of packed spherical beads, a relationship between the 

83Kr relaxation rate 𝑅1 and the surface-to-volume ratio was observed, 83Kr 𝑅1 

was therefore proportional to the inverse radius of the beads (2). Consequently, 

the assumption that 83Kr 𝑅1  was behaving similarly in the lungs was 

established. Assuming naively a spherical alveolar geometry, 𝑅1 is expected to 

be proportional to the inverse of the alveolar radius (𝑟 ) (Eq. 3.1 to 3.3), 

therefore proportional to the inverse of the √𝑀𝐴𝐴. 

 1
𝑇1

⁄ ∝ 𝑆
𝑉⁄  Eq. 3.1 

 𝑆
𝑉⁄ ∝ 1

𝑟⁄  Eq. 3.2 

 𝑅1 = 1
𝑇1

⁄ ∝ 1
𝑟⁄  Eq. 3.3 

Note that even in the cases of model surfaces, deviation from this dependency 

was observed due to non-uniform bead size and varying beads surfaces 

microstructure (2). Nevertheless, this behaviour can be assumed as an initial 

guess for the pulmonary data where it provides a reasonable starting point. In 

the following, the relationship between the two 𝑇1  modes of the SQUARE 

maps histograms and the whole lung mean alveolar area will be evaluated. 

Subsequently, the mean lobar 𝑇1 calculated from regions of interest directly in 

the SQUARE maps will be compared to the corresponding histological lobar 

mean alveolar area. 
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 𝑹𝟏
𝑬𝑽(𝒇)

= 𝟏
𝑻𝟏

𝑬𝑽(𝒇)⁄  

(s-1) 

𝒆𝒓𝒓𝒐𝒓

= 𝑻𝟏
−𝟐×𝑭𝑾𝑯𝑴 

(s-1) 

𝟏
√𝑴𝑨𝑨

⁄  

(10-3 μm-1) 

𝒆𝒓𝒓𝒐𝒓

=
𝟏

𝟐
𝑴𝑨𝑨−

𝟑
𝟐

×𝒔𝒕𝒅𝒆𝒗𝑴𝑨𝑨 

(10-3 μm-1) 

CL.2 0.987167 0.0889074 6.32455 0.126491 

CL.3 0.990197 0.146946 5.19875 0.42152 

EL.1 0.796242 0.0809619 3.98409 0.347818 

EL.2 0.812282 0.201226 3.83483 0.31017 

EL.3 0.730087 0.150324 4.42807 0.434125 

EL.4 0.863856 0.163988 4.71405 0.31427 

EL.5 1.0527 0.147719 5.27046 0.732009 

Table 3.3 Characteristic 83Kr 𝑅1
𝐸𝑉(𝑓)

 parameters and 1 √𝑀𝐴𝐴⁄   histological data with their 

respective errors used for correlation analysis. 

 𝑹𝟏
𝑬𝑽(𝒔𝒍)

= 𝟏
𝑻𝟏

𝑬𝑽(𝒔𝒍)⁄  

(s-1) 

𝒆𝒓𝒓𝒐𝒓

= 𝑻𝟏
−𝟐×𝑭𝑾𝑯𝑴 

(s-1) 

𝟏
√𝑴𝑨𝑨

⁄  

(10-3 μm-1) 

𝒆𝒓𝒓𝒐𝒓

=
𝟏

𝟐
𝑴𝑨𝑨−

𝟑
𝟐

×𝒔𝒕𝒅𝒆𝒗𝑴𝑨𝑨 

(10-3 μm-1) 

CL.2 0.820411847 0.820411847 6.32455 0.126491 

CL.3 0.737680732 0.737680732 5.19875 0.42152 

EL.1 0.676269696 0.149948296 3.98409 0.347818 

EL.2 0.585926056 0.180834763 3.83483 0.31017 

EL.3 0.488424343 0.152407766 4.42807 0.434125 

EL.4 0.636618284 0.28857354 4.71405 0.31427 

EL.5 0.815860325 0.299532631 5.27046 0.732009 

Table 3.4 Characteristic 83Kr 𝑅1
𝐸𝑉(𝑠𝑙)

 parameters and 1 √𝑀𝐴𝐴⁄   histological data with their 

respective errors used for correlation analysis. 
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3.3.3.1. Whole lung 83Kr relaxation as a biomarker 

for whole lung mean alveolar area 

Tables 3.3 and 3.4 show data for the fast and slow relaxation components of 

the bimodal relaxation behaviour 𝑅1
𝐸𝑉(𝑓)

, 𝑅1
𝐸𝑉(𝑠𝑙)

 and the inverse square root of 

the whole lung mean alveolar area, 1
√𝑀𝐴𝐴

⁄ . As functions of the measured 

variables were used for correlation analysis, the uncertainty was calculated for 

each plotted variable using the propagation of uncertainty equation (Eq. 3.4). 

 Δ(𝐹) = √(
𝜕𝐹

𝜕𝑥
)

2

Δ2(𝑥) Eq. 3.4 

Where the error is Δ(𝑥) = 𝐹𝑊𝐻𝑀  for the 𝑇1
𝐸𝑉  variables and Δ(𝑥) =

𝑆𝑡𝐷𝑒𝑣(𝑀𝐴𝐴) for the MAA variable. 

The relationship between the relaxation rates 𝑅1
𝐸𝑉(𝑓)

 and 𝑅1
𝐸𝑉(𝑠𝑙)

 and 1
√𝑀𝐴𝐴

⁄  

is represented in Figure 3.10 where the error bars represent the error 

propagated from the 𝑇1
𝐸𝑉 and MAA measurements. 

Linear regression following the least-square method using GraphPad Prism 

version 6.0 (GraphPad Software, La Jolla, California, USA) led to linear fitting 

(Figure 3.10), following the linear equations Eq. 3.5 and Eq. 3.6 for the fast 

and the slow 𝑇1 mode respectively. 

 𝑅1
𝐸𝑉(𝑓)

= 107.5× 1
√𝑀𝐴𝐴

⁄ + 0.3719 Eq. 3.5 

 𝑅1
𝐸𝑉(𝑠𝑙)

= 105.7× 1
√𝑀𝐴𝐴

⁄ + 0.1704 Eq. 3.6 

A linear correlation is observed between the relaxation rates 𝑅1
𝐸𝑉(𝑓)

 and 

𝑅1
𝐸𝑉(𝑠𝑙)

and the histological measurements 1
√𝑀𝐴𝐴

⁄  with a coefficient of 

determination 𝑟2 = 0.59 and 𝑟2 = 0.56  respectively, the value 0.5 < 𝑟2 < 1 

suggests that the linear model is an appropriate model confirming a strong 

association between the MRI variables 𝑅1
𝐸𝑉  and the histological variable 

1
√𝑀𝐴𝐴

⁄ . In fact, 59 % of the variation in 𝑅1
𝐸𝑉(𝑓)

 and 56 % of the variation in 

𝑅1
𝐸𝑉(𝑠𝑙)

 can be explained by a change in 1
√𝑀𝐴𝐴

⁄ . 

A F-test has also been used to confirm the slope was significantly deviated 

from a zero-slope line, about the mean value of 𝑅1
𝐸𝑉. A 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0436 
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and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0536  was observed for the 𝑅1
𝐸𝑉(𝑓)

 and 𝑅1
𝐸𝑉(𝑠𝑙)

 fittings 

respectively, confirming a significant deviation of the correlation line from the 

zero-slope for the 𝑅1
𝐸𝑉(𝑓)

 linear fitting, whereas 𝑅1
𝐸𝑉(𝑠𝑙)

 was not significantly 

deviating from a zero-slope line. This can be explained by the higher 𝑇1 values 

in the 𝑇1 map predominantly arising from the main airways, which were not 

included in the MAA measurements. But it can also be caused by an important 

alveolar destruction due to the elastase treatment; in which case, the relaxation 

behaviour will depend on many other variables such as the diffusion of the hp 

83Kr atoms to adjacent intact alveoli, or even a modification of the surface 

chemistry in the alveoli. 

A higher correlation was observed between 𝑅1
𝐸𝑉(𝑓)

 and 1
√𝑀𝐴𝐴

⁄  (Figure 

3.10.a) than 𝑅1
𝐸𝑉(𝑠𝑙)

 (Figure 3.10.b). This higher correlation was expected as 

the fast mode 𝑇1
𝐸𝑉(𝑓)

 was exhibiting higher significant difference between the 

two groups (Figure 3.8). The fastest 𝑅1
𝐸𝑉(𝑓)

 values are produced by the alveolar 

parenchyma. Consequently, the correlation between 𝑅1
𝐸𝑉(𝑓)

 and 1
√𝑀𝐴𝐴

⁄  

means changes in 𝑅1
𝐸𝑉(𝑓)

 directly depend on the alveolar radius. 
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Figure 3.10 Scatter diagram of the relaxation rates 𝑅1
𝐸𝑉(𝑓)

 (a) and 𝑅1
𝐸𝑉(𝑠𝑙)

 (b) of the fast mode 

and slow mode of the bimodal fitting respectively against 1 √𝑀𝐴𝐴⁄ . Error bars represent the 

propagated error for the two variables in x and y. The best-fitting linear regression line is 

plotted in solid red line with the 95 % confidence interval in dotted red line. 
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3.3.3.2. Regional 83Kr relaxation as a biomarker for 

lobar mean alveolar area 

Six et al. showed longer 𝑇1 in the airways than in the parenchyma where the 

𝑆
𝑉⁄  ratio is higher (3). One could expect that the alveolar wall degradation 

caused by the elastase proteinase will create a regional 83Kr SQUARE contrast. 

Region of interests were manually selected when clearly visible using ImageJ 

(Imagej.nih.gov/ij/, National Institutes of Health, USA). The mean 𝑇1  value 

and standard deviation were measured in regions of interest from the right 

cranial lobe, the right caudal lobe, and left lobe, which were the only lobes 

identifiable with certainty. The right middle lobe and the right accessory lobe 

were not included because of their difficulty to differentiate from the 

surrounding lobes. More lobes were excluded from the data analysis when a 

ventilation defect was observed in this lobe or near the region of interest. The 

average 𝑇1 and corresponding standard deviation are measured for each lobar 

region, and the calculated 𝑅1  data and inversed squared root of MAA are 

reported in Table 3.5. 

The relationship between the lobar 𝑅1  and 1
√𝑙𝑜𝑏𝑎𝑟𝑀𝐴𝐴

⁄  is represented in 

Figure 3.11. Linear regression using the least-square method led to a linear 

fitting with the equation (Eq. 3.7): 

 𝑅1 = 71.7× 1
√𝑙𝑜𝑏𝑎𝑟𝑀𝐴𝐴

⁄ + 0.4735 Eq. 3.7 

A linear correlation is observed between the two parameters, with a coefficient 

of determination 𝑟2 = 0.61 . Similarly to the whole lung characteristic 𝑅1
𝐸𝑉 

modes analysis, this coefficient suggests that the linear model is an appropriate 

model to quantitatively correlate the two variables. More than 60 % of the 

changes in lobar 𝑅1 can be explained by the changes in 1
√𝑙𝑜𝑏𝑎𝑟𝑀𝐴𝐴

⁄ . This is 

in agreement with the previous results correlating 𝑅1
𝐸𝑉 with 1 𝑟⁄ . 

A F-test confirmed the slope was significantly deviated from a zero-slope line, 

about the mean value of lobar 𝑅1, with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.0001. 
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 Lobe 

ROI 

area 

(voxels) 

𝑹𝟏

= 𝟏
𝑻𝟏

⁄  

(s-1) 

𝒆𝒓𝒓𝒐𝒓

= 𝐓𝟏
−𝟐

×𝐬𝐭𝐝𝐞𝐯𝐓𝟏 

(s-1) 

𝟏
√𝐥𝐨𝐛𝐚𝐫𝐌𝐀𝐀

⁄  

(10-3 μm-1) 

𝒆𝒓𝒓𝒐𝒓

=
𝟏

𝟐
𝐌𝐀𝐀−

𝟑
𝟐

×𝐬𝐭𝐝𝐞𝐯𝐌𝐀𝐀 

(10-3 μm-1) 
C

L
.2

 
Left 189 0.9751341 0.072771 0.006437618 0.000527179 

Right cranial 48 0.8928571 0.128348 0.006318761 0.000503071 

Right caudal 89 0.9242144 0.064063 0.006668633 0.00078311 

C
L

.3
 Right cranial 60 0.9337068 0.209234 0.005533474 0.000865373 

Right caudal 91 0.9578544 0.111016 0.006875601 0.000330779 

E
L

.1
 

Left 96 0.8237232 0.054282 0.005558919 0.001667787 

Right cranial 58 0.7593014 0.078986 0.004738923 0.000650874 

Right caudal 149 0.7867821 0.095330 0.003811215 0.000574466 

E
L

.2
 

Left 69 0.6161429 0.192473 0.003535096 0.000762941 

Right cranial 80 0.7980846 0.112101 0.004050135 0.001570891 

Right caudal 98 0.7042254 0.047610 0.003964682 0.000797613 

E
L

.3
 

Left (upper) 57 0.7220217 0.037013 0.005199137 0.000389679 

Left (lower) 98 0.7593014 0.067455 0.003413924 0.001215676 

Right cranial 47 0.7220217 0.037013 0.004596865 0.000687732 

Right caudal 93 0.8591065 0.071592 0.003675152 0.000659299 

E
L

.4
 Left (upper) 55 0.8012821 0.066774 0.004200986 0.000965453 

Right cranial 69 0.8474576 0.076846 0.004258851 0.000853734 

E
L

.5
 Right cranial 77 0.9514748 0.077856 0.007354658 0.001105535 

Right caudal 158 1.1248594 0.129061 0.006907996 0.001492845 

Table 3.5 Mean lobar 83Kr 𝑅1 and 1 √𝑙𝑜𝑏𝑎𝑟𝑀𝐴𝐴⁄   lobar histological data with their respective 

errors used for correlation analysis. 
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Figure 3.11 Scatter diagram of the lobar relaxation rate 𝑅1 against 1 √𝑙𝑜𝑏𝑎𝑟𝑀𝐴𝐴⁄ . Error bars 

represent the propagated error for the two variables in x and y. The best-fitting linear 

regression line is plotted in solid red line with the 95 % confidence interval in dotted red line. 

3.4. Conclusions 

This study investigated the effect of the alveolar destruction on the 

hyperpolarized 83Kr relaxation in the elastase animal model of emphysema. 

The elastase rat model consists in degrading the alveolar extracellular matrix 

using the porcine pancreatic elastase (PPE). The induced increase in surface-to-

volume (𝑆
𝑉⁄ ) ratio in the parenchyma of the treated animals was observed post 

mortem with a significant increase of the mean alveolar area (MAA) (Figure 

3.9). 

Hyperpolarized 83Kr ventilation coronal imaging of the lungs shows some spin 

density heterogeneities where the gas is not delivered to the lungs (Figure 3.3). 

An heterogeneous gas distribution was also observed in hyperpolarized 3He 

and 129Xe human studies of COPD (20,44-47) and rodent models of 

emphysema (48,49). These ventilation defects can be explained by some 

airways obstruction, but also by a loss of elasticity inducing a reduced inflation 

of the diseased overdistended rigid parenchyma (24). These ventilation defects 



 80 

were emphasized by using 129Xe spin density imaging as 129Xe has a higher 

viscosity than 3He and a 6 times lower diffusion coefficient (50). It has been 

shown that ventilation imaging was not an adequate technique to at early stages 

of COPD (30) whereas the apparent diffusion coefficient imaging has shown to 

be more effective and was correlated to the alveolar 𝑆 𝑉⁄  ratio (18,19). 

The hyperpolarized 83Kr imaging of the elastase animal model permitted a 

three levels analysis of the surface quadrupolar relaxation (SQUARE) contrast 

in the lungs. 

Pulmonary 𝑇1 maps with an appropriately chosen colour code permit a visual 

assessment of the hyperpolarized 83Kr relaxation behaviour within the lungs. 

The two groups were easily differentiable just by their respective 𝑇1  maps 

overall appearance. The control lungs were showing a mostly blue map 

whereas the PPE-treated lungs were more heterogeneously coloured with a 

tendency towards the greens (Figure 3.4 and Figure 3.5). This first level of 

analysis gives a qualitative evaluation of the slower relaxation in the impaired 

lungs. 

The pixel counts of the previously described 𝑇1  maps were plotted in 

histograms (Figure 3.4 and Figure 3.5). A cohort analysis of the histograms 

resulting from the 𝑇1  maps from 3 control lungs and 4 PPE-treated lungs 

indicated a bi-modal Gaussian 𝑇1  distribution within all lungs. The two 𝑇1 

modes are very likely to originate from two different pulmonary compartments. 

A fast component 𝑇1
𝐸𝑉(𝑓)

 and a slow component 𝑇1
𝐸𝑉(𝑠𝑙)

 were observed in all 

lungs. Both were evaluated significantly faster in control lungs than PPE-

treated lungs (Figure 3.8) and can therefore be considered as relevant 

biomarkers for surface degradation in the emphysematous rat lungs. 

A correlation is observed between the two characteristics whole lung 𝑅1
𝐸𝑉 and 

the whole lung mean 1
√𝑀𝐴𝐴

⁄ . This correlation between whole lung MRI data 

and histological data could allow some non-spatially resolved NMR evaluation 

of emphysematous lungs. However, the low 𝑆
𝑉⁄  ratio in the main airways 

providing a significantly longer 𝑇1 would bias the results, overestimating the 

alveolar destruction in all lungs. It is certainly possible to realise such a 

spectroscopic experiment, but it would require a well designed inhalation 
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scheme for the hyperpolarized 83Kr, so that it is delivered to the alveoli only, 

filling the airways with thermal gas (51). This way, the signal would arise from 

the parenchyma only and the recorded 𝑇1 would be comparable to 𝑇1
𝐸𝑉(𝑓)

, that 

was recorded in the parenchymal areas of the imaged lungs. 

The quadrupolar property of 83Kr gives the atom the unique property to have a 

surface-induced relaxation. This property has been demonstrated in a porous 

model composed of packed beads of defined size (2). The 83Kr relaxation rate 

𝑅1 was shown to be linearly correlated to the inverse of the beads radius. In 

this study, hyperpolarized 83Kr relaxation behaviour has been directly 

compared with the alveolar radius. However, the alveolar radius was not a 

measured value. Considering the alveolus as a spherical unit, the histological 

mean alveolar area (MAA) was assumed circular. The alveolar radius was 

therefore estimated proportional to √𝑀𝐴𝐴. 

The relaxation values resulting from the whole lung 𝑇1
𝐸𝑉(𝑓)

 and 𝑇1
𝐸𝑉(𝑠𝑙)

, 𝑅1
𝐸𝑉(𝑓)

 

and 𝑅1
𝐸𝑉(𝑠𝑙)

 respectively are shown to be inversely proportional to the whole 

lung √𝑀𝐴𝐴 (Figure 3.10). 

The regional 83Kr relaxation was analysed by selecting regions of interest in 

each lobe from all the 𝑇1 maps, without differentiating the cohorts. The lobar 

𝑅1 was inversely proportional to √𝑙𝑜𝑏𝑎𝑟 𝑀𝐴𝐴 (Figure 3.11). 

83Kr 𝑅1
𝐸𝑉 and lobar 𝑅1 were correlating only imperfectly with 1

√𝑀𝐴𝐴
⁄ , with 

coefficients of determination evaluating the correlation not higher than 0.61. 

The initial hypothesis was that 83Kr 𝑅1  is correlated to the inverse of the 

alveolar radius. The deviation from this linear model might be due to the use of 

the MAA as histological data for an estimate of the alveolar radius despite a 

non-perfect spherical geometry of the alveoli. This imperfect correlation is also 

in accordance with the previously shown 83Kr properties. Indeed, the 

hyperpolarized 83Kr 𝑅1 is not only dependent on the 𝑆 𝑉⁄  ratio, but also on the 

surface chemistry. Different surface chemical compositions have been 

authenticated using hp 83Kr NMR and MRI of hydrophobic-treated beads and 

non-treated beads (2,32), but also hp 83Kr NMR and MRI of surfactant-treated 

beads, some of them exposed also to tobacco smoke (34). An acceleration of 

the 𝑇1 relaxation was observed when the surface was coated with hydrophobic 
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agents, but also when in presence of tobacco smoke deposit. In the elastase-

induced emphysema animal model, the proteolysis of extracellular matrix 

induces a secretory cells metaplasia, and a subsequent increase in mucous 

production, comparable to bronchitis (25,52,53). This change in alveolar 

surface chemistry, not measured in the MAA, is very likely to induce a faster 

relaxation of the hp 83Kr. In addition, an imperfect spherical alveolar shape 

would also reduce the correlation between the two variables. 

On an additional note, although the 83Kr MRI results presented in this chapter 

were correlating with the histological marker mean alveolar area (MAA), some 

comparisons should be done with the intercept measurement, which is the most 

commonly used histological estimator for the volume-to-surface ratio in the 

lung (54). 

This study has identified 83Kr 𝑇1 as an appropriate biomarker for the alveolar 

surface-to-volume ratio. This unique property allows the hyperpolarized noble 

83Kr gas to be used as a probe for the alveolar wall degradation induced by the 

elastase in a widely used animal model of emphysema in rodents. Some more 

experiments should be conducted to evaluate whether the numerical biomarker 

𝑅1 would also correlate with a pathologic alveolar change in surface chemistry. 

For example, an animal model of chronic bronchitis could be used to evaluate 

the 83Kr 𝑇1  relaxation behaviour in presence of a significantly increased 

production of mucus. All investigation should be accompanied by appropriate 

histological analysis measuring the mucous quantity changes. 

The potential of this technique will be tested by Prof. Thomas Meersmann’s 

research group at lower field, in a 7 T research human scanner. The 𝑇1 

relaxation will be measured for the first time at 7 T and in a larger scale 

alveolar system, close to the human alveolar dimensions. The first stage in this 

project towards human 83Kr pulmonary imaging would be to acquire some 83Kr 

spectroscopy in some large animal ex vivo lungs. The knowledge of the 𝑇1 

relaxation time in such a system will help to image the hyperpolarized 83Kr in 

live human lungs. The expensive cost of a lung scan using isotopically 

enriched 83Kr is an obstacle to the fast development of this technique for 

clinical application  and broad use of it. Such problem can however be tackled 

thanks to the use of hydrogen as a buffer gas during the hyperpolarization 
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process. The replacement of nitrogen by hydrogen followed by a catalytic 

removal of this buffer gas induces a sevenfold increase of the apparent 

polarization (55), when isotopic enrichment provides an approximately 

eightfold signal increase. Even with the use of the expensive isotopically 

enriched gas, this technique could be useful for pharmaceutical trials where the 

cost of an experiment is less of a limitation. This technology could be used for 

drug testing in the case of novel treatments for COPD such as emphysema. 
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CHAPTER 4 

HP 129XE CHEMICAL EXCHANGE RELAXATION 

TRANSFER OF CRYPTOPHANE-GDDOTA 

BIOSENSORS 

 

The results presented in this chapter appear in the journal communication: 

Francesco Zamberlan†, Clémentine Lesbats†, Nicola J. Rogers, James L. 

Krupa, Galina E. Pavlovskaya, Neil R. Thomas, Henryk M. Faas and Thomas 

Meersmann, “Molecular Sensing with Hyperpolarized 129Xe Using Switchable 

Chemical Exchange Relaxation Transfer”, ChemPhysChem. (2015) 16: 2294–

2298. 

Chemical synthesis of the different molecules was carried out by Dr. Francesco 

Zamberlan with the assistance of James L. Krupa and supervision of Prof. Neil 

R. Thomas and Henryk M. Faas. The samples preparation was done by Dr. 

Francesco Zamberlan. The experimental apparatus for the NMR experiments 

was designed and assembled by Clémentine Lesbats and Dr. Nicola Rogers, 

supervised by Prof. Thomas Meersmann and Galina E. Pavlovskaya. 

Relaxation measurements were performed by Clémentine Lesbats, Dr. Nicola 

J. Rogers and Dr. Francesco Zamberlan. Clémentine Lesbats would be 

responsible of the polarizer and gas delivery while Dr. Nicola J. Rogers or Dr. 

Francesco Zamberlan would run the spectrometer. Clémentine Lesbats 

performed the data processing. 
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4.1. Introduction 

The xenon’s high solubility in biologic tissues and fluids is used in medical 

anaesthesia, and is now of great interest to research in hyperpolarized gas lung 

imaging. 129Xe’s solubility in tissue, red blood cells and plasma has been vastly 

studied in the last decade. The wide chemical shift arising from the different 

phases has allowed dissolved phase spectroscopy and imaging in animal and 

human lungs (1-4). 

The National Institutes of Health (NIH) defined a biomarker as “a 

characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses 

to a therapeutic intervention” (5). By monitoring biomarkers in vivo, molecular 

imaging has allowed progress in disease or treatment monitoring but also drug 

development. Hp 129Xe can be used for molecular sensing. This is usually 

realised thanks to encapsulating agents such as cryptophane cages (6-8). 

Cryptophane A is a large molecule which main characteristic is its 5.7 Å 

diameter cavity (9) able to encapsulate the hyperpolarized 129Xe (4.3 Å 

diameter) dissolved in solution. 129Xe encapsulated in molecular cages 

produces a signal located at an independent chemical shift, about 100 ppm 

upfield to the 129Xe signal from the bulk solvent often located around 200 ppm. 

The biosensors pioneered by Pines, Wemmer, and co-workers, but also used by 

Berthault, Schröder and their respective coworkers were composed of a 

cryptophane A (CrA) able to encapsulate 129Xe, connected by a linker to a 

ligand that will bind another molecule. The chemical shift of the signal 

produced by the biosensor will vary depending on its molecular conformation 

or the complexation with the ligand or not for example. The first functionalised 

CrA biosensor was composed of a short linker and a biotin ligand, capable of 

complexation with avidin (6, 7). The protein binding led to an important 

broadening of the signal and a shift of the signal 3 ppm downfield. Berthault 

and coworkers modified the cryptophane molecule, making it soluble in water 

at a physiological pH, suitable for injection in the bloodstream (10). 

A major difficulty with the detection of the hyperpolarized biosensor signal is 

the low signal intensity due to low concentration of cages (i.e. the actual 

biosensors molecules) and by extension of the cage bound hp 129Xe. In order to 

improve the signal to noise ratio (SNR), one could increase the concentration 
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to the extent possible for in vivo application. The hp 129Xe local concentration 

has also been increased by using the bacteriophage M13 as a scaffold for 

numerous CrA to covalently bind to its outer proteins (11). Another way to 

improve the SNR would be to do some signal averaging and selective 

excitation of the cage-bound 129Xe, allowing for some fast exchange with the 

bulk hyperpolarized 129Xe. The large chemical shift between the bulk signal 

and the 129Xe in cage signal easily allows selective excitation pulses. 

Hyperpolarized 129Xe Chemical Exchange Saturation Transfer (HyperCEST) 

uses this selective excitation to destroy the encapsulated 129Xe signal, the 

constant chemical exchange with the dissolved phase induces a decrease of the 

dissolved phase signal, and this indirect detection allows a drastic improvement 

of the sensitivity over direct detection and averaging of the encapsulated hp 

129Xe (11, 12). 

4.2. Motivation 

Molecular sensing using encapsulated 129Xe is usually based on the detection 

of a small chemical shift change up created by the change in conformation of 

the biosensor after interaction with a biomarker, such as an enzyme or a 

receptor (6, 7). This has been of particular interest for biomolecular NMR 

applications such as for in vitro assays and cells suspensions explorations (13), 

but the in vivo applications are often limited by the lower spectral resolution 

achievable in bigger coils and lower field, and more importantly in complex 

organisms. 

Moreover, the cryptophane-bound 129Xe phase signal intensity is very small to 

be detected; this work focuses on the 129Xe signal from the solution in which 

the biosensor is dissolved, providing a larger source of signal. 

Paramagnetic relaxation causes the rapid decay of the non-renewable 129Xe 

signal, and is therefore usually avoided for hyperpolarized gases probes. As 

discussed in Chapter 3, noble gas induced relaxation can however be used as a 

source of contrast. 83Kr longitudinal relaxation was shown to be linearly 

dependent on the surface-to-volume ratio in ex vivo rat lungs. The concept 

underlying this project is to use this disadvantage as a tool to create a positive 

contrast. In this work, the 129Xe’s solubility property is used to investigate a 

new sensor composed of a CrA, tethered to a gadolinium-DOTA chelate. The 
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paramagnetic property of gadolinium chelated in DOTA and attached to the 

CrA induces the fast decay of the dissolved hyperpolarized 129Xe signal 

through fast exchange with the cage-bound 129Xe. The rapid relaxation of the 

dissolved 129Xe induced by the CrA-GdDOTA has been explored. This proof-

of-concept study demonstrates a ‘switchable’ paramagnetic relaxation contract 

agent. The finale aim is to develop a biosensor that would lead to a positive 

contrast, providing a high hp 129Xe signal when deactivated by the presence of 

the biormarker of interest. 

Of course, the future design of the depolarizing biosensor will have to include 

some considerations, such as the length of the linker. Förster resonance energy 

transfer (FRET) shows a 𝑟−6  dependence of the fluorescence transfer 

efficiency between the donor and the acceptor (14). Similarly, the 

depolarization of the cage-bound 129Xe caused by the paramagnetic GdDOTA 

will be dependent on the distance between them. The enzymatic cleavage of 

the linker will increase the distance between the paramagnetic agent and the 

host cage and deactivate it. The resulting cleavable biosensor will enable the 

detection of a biomarker and its spatial distribution, providing insights on 

physiological process such as enzymatic reactions within an organ. 

4.3. Material and methods 

4.3.1. Synthesis of the molecule 

In this work, the model sensor consists of a Cryptophane A (CrA) and a 

gadolinium-DOTA (GdDOTA) chelate, a symmetrical linker was used to tether 

them together. CrA-GdDOTA was retrosynthesized from a DOTA chelator, 

modified with a short linker, and cryptophanol. This section gives a brief 

overview of the reactions leading to the final molecules. Further details on the 

chemical synthesis can be found in the supplementary information of the 

communication presenting this work (15). 

CrA (Figure 4.1) was synthesized following Berthault and coworkers report 

(16). They used their biosensor in vitro as an intracellular probe for 129Xe. 
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Figure 4.1 Cryptophane A molecule. 

DOTA-linker was obtained by reacting an appropriately protected Do3A with 

one of the α-bromoacetyl termini of a short bisamide linker. The cryptophanol 

was then reacted with the other α-bromoacetyl group, leading to the CrA-

DOTA compound in Figure 4.2. 

 

 

Figure 4.2 CrA-DOTA compound. 

After deprotection of the DOTA carboxylic groups, the Gd3+ cation was 

successfully chelated, yielding to the compound CrA-GdDOTA, as showed in 

Figure 4.3. 

 

 

Figure 4.3 CrA-GdDOTA compound. 
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The biosensor was not soluble in H2O. A 1:1 v/v mixture water and acetonitrile 

(H2O/ACN) was found to be the most suitable solvent for the sensor, Gd3+
(sol), 

and 129Xe. In this study, relaxation properties of 5 molecules, called Rx, have 

been compared: 

- GdDOTA 

- CrA-GdDOTA 

- CrA-DOTA + Gd3+
(sol) 

- Gd3+
(sol) 

- CrA-DOTA 

4.3.2. Experimental design 

Hp 129Xe gas was produced using batch mode spin exchange optical pumping 

(SEOP) in a custom built polarizer extensively described in Six et al. paper 

(17) with a 25 % natural abundance 129Xe and 75 % N2 gas mixture. The 

polarization build-up was achieved for 6 minutes at a temperature of 110 °C 

and a pump cell pressure of about 1300 mbar. Experiments have been 

performed on a 9.4 T spectrometer (Bruker BioSpin GmbH, Germany) at 293 

K. All NMR spectra were obtained using a custom-built 15 mm double saddle 

coil tuned to the 129Xe resonance frequency of 110.71546 MHz. 

Prior to any spectrum acquisition, the sample was degassed from any trace of 

oxygen dissolved in solution by bubbling through it for 2 minutes with 

research grade nitrogen at 40 mL/min. 
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Figure 4.4 Overview of the experimental setup for hp 129Xe(sol) relaxation measurements. The 

gas mixture enters the polarizer to be hyperpolarized. After 6 minutes, it is delivered to the 

sample at a flow of 40 mL/min determined by the flowmeter at the end of the circuit. For 

spectrum acquisition no valve is closed, whereas valves A and B are closed for small flip angle 

𝑇1 measurement. 

As sketched in Figure 4.4, a 5 mm sample tube containing 2 mL of the 

molecules Rx dissolved in 1:1 H2O/ACN at different concentrations is 

connected to the polarizer delivering the hyperpolarized noble gas, and to a 

flowmeter and exhaust line. A research grade nitrogen line is also located 

before the test tube in order to degas the sample as described previously. 

The hyperpolarized noble gas is flowed for 45 seconds at 40 mL/min before 

starting the spectrum acquisition sequence or 𝑇1 measurement. This process 

allows replacing any nitrogen or dark gas (depolarized gas mixture) by freshly 

polarized noble gas mixture. 

4.3.2.1. Continuous flow spin exchange optical 

pumping 

The hyperpolarized noble gas is continuously delivered (40 mL/min) during 

the initial spectrum acquisition. This qualitative spectrum was used to verify 

the signal-to-noise level in both gas phase and dissolved phase. It also 



 97 

permitted to determine the resonance frequency offset for later selective 

radiofrequency (RF) excitation pulses on the 129Xe dissolved in solution. 

4.3.2.2. Stopped flow spin exchange optical 

pumping 

The hyperpolarized noble gas flow is interrupted during the longitudinal 

relaxation (𝑇1) sequence measurement. This is achieved by closing two manual 

valves A and B located before and after the sample tube (Figure 4.4). 

4.3.3. NMR protocol for longitudinal relaxation measurements 

129Xe spectrum 

A hyperpolarized 129Xe spectrum is acquired prior to any relaxation 

measurements in order to identify and set the radiofrequency (RF) pulse to the 

dissolved phase resonance frequency. 

A previously calibrated 90 ° hard pulse (63 μs, 3 dB) induces a free induction 

decay (FID). The spectral width was set to 30 kHz, with 8192 complex points. 

These parameters allowed a spectral width of 268.8 ppm, covering the entire 

range of 129Xe frequencies in our system. Signal is averaged 8 times to 

compensate the weaker dissolved signal. The FID is Fourier transformed 

directly in Topspin 2.0 (Bruker, Germany) and the dissolved 129Xe resonance 

frequency is determined. 

 

129Xe longitudinal relaxation 

A sequence composed of 16 equally spaced small flip angle RF pulses (12 °) 

has been used to measure the 𝑇1 relaxation times (Figure 4.5). As the time 

increases, signal decay will be caused by the 𝑇1 relaxation, diffusion, but also 

by the RF pulse polarization destruction (18). 
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Figure 4.5 (a) Illustration of the hp 129Xe dissolved in solution signal decay during a Small Flip 

Angle sequence and (b) schematics of the pulse sequence used. Spectra in black represent the 

dissolved 129Xe in 0.07 mM CrA-GdDOTA in 1:1 H2O/ACN, fitted with the Eq. 4.1 in red. 

The FIDs were composed of 4096 complex points, with a spectral width of 6 

250 Hz (equivalent to 56.4 ppm). The spectra are Fourier transformed, phase 

corrected and baseline corrected using Prospa (Magritek, Wellington, New 

Zealand). After Fourier transform, the signal intensity is integrated for each 

spectrum and normalised to the first and greater spectrum. 𝑇1  is calculated 

using Igor Pro (Wavemetrics, Portland, USA) from a linear fitting of the 

natural logarithm of the normalised integrated signal of the spectra as a 

function of time (19) described by Eq. 4.1 to Eq. 4.4. 

 𝑀𝑧(𝑛) = 𝑀𝑧(0)×𝑐𝑜𝑠 𝑛(𝜃)×𝑒−𝑛×𝜏 𝑇1⁄  Eq. 4.1 

 𝑀𝑧(𝑛)

𝑀𝑧(0)
= cos𝑛 𝜃 ×𝑒−𝑛×𝜏 𝑇1⁄  

Eq. 4.2 

 
ln (

𝑀𝑧(𝑛)

𝑀𝑧(0)
) = 𝑛× ln(cos 𝜃) −

𝑛×𝜏

𝑇1
 

Eq. 4.3 

 
ln (

𝑀𝑧(𝑛)

𝑀𝑧(0)
) = 𝑛× (ln(cos 𝜃) −

𝜏

𝑇1
) 

Eq. 4.4 

 

The decay of the longitudinal magnetization 𝑀𝑧 as a function of the excitation 

pulse number 𝑛, is caused by 𝑇1 relaxation during the time 𝑡 = 𝑛×𝜏. The fixed 

time constant 𝜏  is the time duration between two successive RF pulses. 

Furthermore, the polarization is diminished by 𝑠𝑖𝑛(𝜃) by each of the small flip 

angle pulses. The remaining signal after 𝑛  RF pulses is proportional to 
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𝑐𝑜𝑠𝑛(𝜃) and this term is multiplied by the exponential 𝑇1 relaxation decay in 

the full equation (20). 

 

1H longitudinal relaxation 

The proton signals produced from the bulk solution of water and acetonitrile 

have been identified prior to acquiring an inversion-recovery sequence that was 

used in order to evaluate 𝑇1 in water. 1H from the H2O and the ACN molecules 

resonate at 4.79 ppm and 2.44 ppm respectively (Figure 4.6) in accordance 

with reported common laboratory solvents chemical shifts (21, 22). 

 

 

Figure 4.6 1H spectrum in a 2 mL sample of 1 mM GdDOTA dissolved in 1:1 ACN/H2O. The 

spectral width was 10 000 Hz acquired with 8192 complex points. 

The Topspin inversion-recovery ‘T1ir’ inbuilt sequence has been used to 

measure 𝑇1 of proton in H2O. The sequence consists of consecutive 180 ° and 

90 ° pulses, separated by a delay τ (Figure 4.7.b). The first pulse rotates the net 

magnetization in the orientation of the –z axis. After a delay τ, the second pulse 

will rotate the magnetization of 90 ° in the xy plane. The signal intensity will 

therefore vary as a function of τ, time during the spin-lattice relaxation 𝑇1 

occurs. When 𝜏 < 𝑇1, very little of the magnetization will have returned to the 

+z axis, inducing a negative phase signal after the 90 °, resulting in a negative 

signal. When 𝜏 ≫ 𝑇1 , the magnetization will have fully recovered from the 
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inversion pulse, and the second 90 ° pulse will produce a maximal positive 

signal. 

 

Figure 4.7 Inversion recovery NMR sequence. (a) in blue the experimental data point acquired 

with different τ in 0.5 mM GdDOTA dissolved in 2 mL 1:1 ACN/H2O, fitted with the Eq. 4.2. 

in red. The inversion-recovery sequence has been sketched in (b). 

The signal intensity for different τ has been plotted Figure 4.7.a with a zero-

crossing point at 𝜏 = 𝑇1×𝑙𝑛2 . The resulting fit can therefore be used to 

extrapolate 𝑇1, according to Eq. 4.2. 

 𝐼(𝜏) = 𝐼0× (1 − 2𝑒
−

𝜏
𝑇1) Eq. 4.2 

4.3.4. HPLC 

High-Performance Liquid Chromatography (HPLC) is an analytical tool 

allowing the separation and identification of organic compounds. The different 

molecules will be separated depending on their adsorption level on a column 

they are flown through. In this experiment, HPLC has been used to follow the 

transformation of CrA-GdDOTA into CrA-DOTA, induced by the acidification 

of the solvent. 

HPLC was performed using an Agilent 1200 series system at 1.0 mL/min 

equipped with a 4.6 x 150 mm Agilent Eclipse XDB-C18 analytical column 

with a 5 μm pore size and a single channel UV detector at λ = 215 nm. The 

mobile phase used was a 0.1 % formic acid in milli Q water solvent, followed 

by a gradient elution (0 to 95 % over 30 min) of a second solvent composed of 

0.1 % formic acid in acetonitrile. 
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4.4. Results and discussion 

After synthesis of CrA, a hp 129Xe spectrum of CrA dissolved in chloroform 

(CDCl3) has been acquired to verify that the 129Xe signal arises from the three 

different phases. As illustrated in Figure 4.8 the three peaks identified as 129Xe 

signal appear from the gas phase at 0 ppm, from the chloroform phase at 216 

ppm and from the CrA cage at 64 ppm. Spence et al. already reported a 129Xe 

signal in CrA peak located at 71 ppm using water as solvent in their study (6). 

In this study, the highly concentrated 13 mM CrA solution in CDCl3 only 

allows a very small and broad peak arising from the CrA. 

 

 

Figure 4.8 Hp 129Xe spectrum of 13 mM CrA in chloroform (CDCl3). A hard pulse (63 μs, 3 

dB) has been used to acquire 64 averages during the bubbling of hp gas. The FID was 

multiplied by an exponential weighted function (lb = 30) before Fourier transformed. 

Once the full synthesis of the three parts of the molecules, i.e. CrA, GdDOTA 

and the linker; and tethering of the GdDOTA to the CrA have been 

accomplished successfully, spectra were acquired and relaxation rates 

measured. Longitudinal relaxation rates 𝑇1 were measured as a function of the 

concentration of the CrA-GdDOTA and its derivatives, [Rx]. 
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As showed in Figure 4.9, when hp 129Xe is bubbled in the solution, the 129Xe 

exchanges from the gas compartment to the dissolved compartment (H2O/ACN 

solvent), but also gets encapsulated in the CrA cage. The encapsulation of the 

129Xe in the CrA cages prolongs the 129Xe’s presence in close proximity to the 

paramagnetic chelated Gd3+ and induces a fast decay of the 129Xe(sol) NMR 

signal. 

 

 

Figure 4.9 Hp 129Xe spectrum of 0.035 mM CrA-GdDOTA in 1:1 H2O/ACN. Signal from the 

129Xe encapsulated in Cryptophane A is not visible due to important line broadening. The FID 

was multiplied by an exponential weighted function (lb = 30) before Fourier transformed. 

The dissolved phase chemical shift, δXe(sol), is varying with the concentration of 

the different CrA-GdDOTA derivatives. Figure 4.10 shows an illustration of 

the chemical shift dependency on the concentration of the molecules [Rx]. 

Only GdDOTA and CrA-GdDOTA allowed linear fitting. GdDOTA and CrA-

GdDOTA have a chemical shift dependence of 𝛿𝑋𝑒(𝑠𝑜𝑙) = 1.3 ±

0.1𝑝𝑝𝑚. 𝑚𝑀−1  and 𝛿𝑋𝑒(𝑠𝑜𝑙) = 3.5 ± 0.4𝑝𝑝𝑚. 𝑚𝑀−1  respectively. A large 

variation of the concentration will only induce a small change in chemical 

shift. The small chemical shift range does not appear to be useful as a sensor of 

the different molecules concentrations. 
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Figure 4.10 Chemical shift dependency on the concentration of CrA-GdDOTA (blue triangles), 

Gd3+
(sol) (red diamonds), CrA-DOTA (black circles), GdDOTA (green squares) dissolved in 1:1 

H2O/ACN. Note that the Gd3+
(sol) has also been fitted in red with a dependency of 2.3 ±

0.5𝑝𝑝𝑚. 𝑚𝑀−1. 

4.4.1. T1 characterization of the compound and its derivatives 

The solubility of hyperpolarized 129Xe gas in solvents allows for a quick 

dissolved signal build up after the start of bubbling at 40 mL/min. The signal 

typically reached a saturated plateau after 40 s. The dissolved 129Xe will and 

continuously exchange with the CrA cages where it is temporarily 

encapsulated. The 129Xe’s temporary confinement in the cages causes it to 

remain in close proximity of the paramagnetic GdDOTA for the duration of the 

encapsulation. During this time period, 129Xe experiences very fast 

paramagnetic relaxation leading to accelerated hp 129Xe depolarization. The 

continuous chemical exchange between the cages and the solvent will transfer 

the depolarized atoms to the dissolved phase where the effect is measured by 

an increase in the relaxation (or depolarization) rate. 

As explained in Section 4.3.3., a low flip angle series of RF pulses has been 

used to characterise 𝑇1. The signal from the dissolved phase, at 190 ppm, is 
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integrated, and the 𝑇1  value is calculated from the natural logarithm of the 

normalised integrated signal. 

 

 

Figure 4.11 Relaxation rates of the dissolved phase 129Xe in different concentrations of CrA-

GdDOTA (green squares), CrA-DOTA + Gd3+ (red diamonds), Gd3+ (purple circles), 

GdDOTA (blue triangles), and CrA-DOTA (yellow circles). All the compounds are dissolved 

in a 1:1 H2O/ACN solution. (i)-(v) represent the time course of CrA-GdDOTA before and after 

addition of HCl. (i) shows the 0.4 mM CrA-GdDOTA start point before acidification (n=3), (ii) 

the start point after acidification and dilution to 0.3 mM (n=7), (iii) after 20 h (n=10), (iv) after 

24 h (n=4), and (v) after 96 h (n=6). 
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 Concentration (mM) #1 𝑻𝟏 (s) #2 𝑻𝟏 (s) #3 𝑻𝟏 (s) 

C
rA

-G
d

D
O

T
A

 

0.035 33.673 42.708 39.721 

0.07 28.878 27.149 27.522 

0.175 12.059 11.775 11.423 

0.35 4.9935 5.0901 4.7121 

0.7 4.255 3.194 3.9558 

C
rA

-D
O

T
A

 
+

 

G
d

3
+
 

0.1 89.387 91.688 95.341 

0.225 34.737 32.305 33.085 

0.5 17.979 16.835 16.399 

0.8875 14.405 11.61 10.675 

C
rA

-D
O

T
A

 

0.041 205 197.48 233.85 

0.0825 217.03 207.84 239.14 

0.165 161.4 163.63 174.41 

0.33 144.03 132.86 153.92 

G
d

D
O

T
A

 

0.33 46.899 45.218 46.768 

0.67 24.703 22.327 25.222 

1.35 12.839 11.311 11.105 

2.7 7.292 7.1942 7.3708 

G
d

3
+
 

0 191.39 190.03 185.01 

0.05 214.89 217.84 214.39 

0.1 126.62 129.93 127.98 

0.25 46.476 46.92 45.652 

0.8 13.675 13.578 15.831 

Table 4.1 𝑇1 individual data for different concentrations of all biosensor derivatives. 3 repeats 

#1, #2 and #3 have been acquired at each biosensor concentration. 
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The longitudinal relaxation 𝑇1  has been recorded 3 times for each 

concentration of each derivative of the CrA-GdDOTA molecule, dissolved in 

1:1 H2O/ACN. These values are displayed in Table 4.1. 129Xe(sol) relaxation 

rates  have been measured and plotted as a function of the 

concentration in Figure 4.11 and summarized in Table 4.2. 

The relaxivity of GdDOTA for 129Xe(sol) was 𝑅1 = 0.0515 ±

0.0014𝑠−1. 𝑚𝑀−1. This value means that a high concentration of GdDOTA 

would induce only a minor acceleration in the 129Xe relaxation in vivo. Indeed, 

a 1 mM of GdDOTA shows a 𝑇1 for 129Xe of 𝑇1 = 19𝑠, that will have a very 

little effect if injected in vivo where 129Xe 𝑇1 in the whole lung is of the order 

of 20 s (23). 

The synthesis precursor CrA-DOTA, free of Gd3+ had a relaxivity for 129Xe of 

𝑅1 = 0.00725 ± 0.0007𝑠−1. 𝑚𝑀−1  (Table 4.2). This very low relaxivity is 

explained by the absence of paramagnetic gadolinium. This control experiment 

demonstrates the very small relaxation induced by the CrA cage itself on the hp 

129Xe. 

Once Gd3+ has been introduced to the system and chelated with the DOTA, the 

relaxivity of CrA-GdDOTA for 129Xe(sol) was recorded to be 

. This eightfold relaxivity increase as compared to 

CrA-DOTA can be explained by the encapsulation of 129Xe(sol) in the 

cryptophane cages, placing the hyperpolarized atoms in the immediate 

proximity of the paramagnetic GdDOTA. Paramagnetic relaxation follows an 

r6 dependence (24), where r is the distance between the nuclear spin 

(encapsulated 129Xe) and the paramagnetic centre. The chemical exchange 

transfers the relaxation effect from the encapsulated 129Xe to the dissolved 

phase, leading to an acceleration of 𝑅1 rates for the dissolved 129Xe(sol). 

The relaxivity of GdDOTA and CrA-GdDOTA for H2O protons is 150 times 

higher than that of 129Xe (see Table 4.2), explained by proton’s highest 

gyromagnetic ratio and the γ2 dependence of paramagnetic relaxation. In 

addition, the paramagnetic relaxation will be more efficient on water’s proton 

as they will directly coordinate with the Gd3+ centre in the GdDOTA chelates 

(23, 24). 

 

  

R1 =1 T1

  

R1 = 0.416 ± 0.023s-1mM-1
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 129Xe 𝑹𝟏 (s-1.mM-1) 1H 𝑹𝟏 (s-1.mM-1) 129Xe δ (ppm.mM-1) 

GdDOTA 0.0515 ± 0.0014 7.66 ± 0.17 1.3 ± 0.1 

CrA-GdDOTA 0.416 ± 0.023 7.36 ± 0.11 3.5 ± 0.4 

CrA-DOTA + Gd3+
(sol) 0.0955 ± 0.0051 15.0 ± 0.14 - 

Gd3+
(sol) 0.0847 ± 0.0029 23.4 ± 0.4 2.3 ± 0.5 

CrA-DOTA 0.00725 ± 0.0007 - - 

Table 4.2 129Xe and 1H relaxation rates, 𝑅1 , and chemical shift variation, δ, of the CrA-

GdDOTA compound and its derivatives. 

To demonstrate the deactivation of the sensor’s paramagnetic effect on hp 

129Xe, a few drops (0.66 mL) of concentrated HCl (37 % v/v) were added to a 

0.4 mM CrA-GdDOTA solution, giving a finale concentration of 0.3 mM. The 

change in pH causes a protonation of the DOTA and the Gd3+ to dislodge from 

the chelator, reducing the 129Xe presence time in the close vicinity of the 

paramagnetic agent. Relaxation measurements have been acquired before 

addition of HCl, and at different times after addition of the HCl. 

A time-course of this experiment is represented in Figure 4.12 and Table 4.3, 

illustrating the relaxivity changes during the acidification and the leach of Gd3+ 

from the molecule. The immediate dilution when adding HCl provokes a large 

increase of 𝑇1 and a decrease of 𝑅1. The acidification process led to a 3-fold 

decrease in the relaxivity in 96 hours. Figure 4.12 shows the relaxivity 

decrease from the CrA-GdDOTA 𝑅1 = 0.416 ± 0.023𝑠−1. 𝑚𝑀−1 to the CrA-

DOTA + Gd3+
(sol) 𝑅1 = 0.0955 ± 0.0051𝑠−1. 𝑚𝑀−1  during the acidification 

time course. This 4.3-fold drop in the relaxivity is found to be 2 times greater 

than the one found for GdDOTA (𝑅1 = 0.0515𝑠−1. 𝑚𝑀−1). This is likely to be 

caused by the increased contact with the unchelated paramagnetic Gd3+
(sol), as a 

similar effect is observed for 1H relaxivity (Table 4.2). 

In an additional experiment, the relaxivity of Gd3+
(sol) for 129Xe was found to be 

𝑅1 = 0.0847 ± 0.0029𝑠−1. 𝑚𝑀−1 (Table 4.2), close to the relaxivity obtained 

96 hours after acidification of the CrA-GdDOTA solution (pH = 0) and 

complete extraction of the Gd3+ out of the DOTA chelator. 
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Figure 4.12 CrA-GdDOTA relaxivity before and after adding concentrated HCl to the 1:1 

H2O/ACN solution. (i) shows the relaxivity of a 0.4 mM CrA-GdDOTA solution. The 

acidification induces the dilution of the solution to 0.3 mM (ii) and the conversion of CrA-

GdDOTA into CrA-DOTA + Gd3+
(sol). Relaxivities of the conversion process have been 

acquired 20 h (iii), 24 h (iv) and 96 h (v) after HCl addition to the solution. Note that the data 

are also represented in Figure 4.11 (black triangles).  

 

Time (h) 𝑻𝟏 ± st dev. (s) 𝑹𝟏 ± st dev. (s-1) 

Before HCl 6.63 ± 1.46 0.150798 ± 0.034085 

0.3 9.51 ± 1.02 0.105106 ± 0.010737 

21 16.77 ± 2.06 0.059623 ± 0.008251 

26 21.55 ± 1.90 0.046404 ± 0.004410 

96 28.45 ± 0.83 0.035150 ± 0.001047 

Table 4.3 129Xe(sol) relaxation data for the time-course experiment. 
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HPLC has been performed on the sampled 20 min, 24 hours and 96 hours after 

acidification. The chromatograms displayed in Figure 4.13. show the front 

solvent detection in the early times (peaks before 5 min), the CrA-DOTA peak 

at 17.2 min, and the CrA-GdDOTA peak at 18.4 min. Integrals of these two 

peaks are shown in Table 4.4. The chromatogram 20 min after acidification 

only shows a CrA-GdDOTA peak, illustrating the start point of the experiment, 

before the Gd3+ leaches out of the DOTA. At 24 hours, the second peak for 

CrA-DOTA appears, confirming a mixture of 13.9 % CrA-DOTA and 86.1 % 

CrA-GdDOTA. Indeed, the protonation of the DOTA induces the escape of the 

Gd3+ out of the DOTA. Finally, only the CrA-DOTA peak appears at 96 hours, 

demonstrating the reaction completion and the full leakage of the Gd3+ out of 

the DOTA. 

 

Figure 4.13 Time-course HPLC of the 0.3 mM CrA-GdDOTA in 1:1 H2O/ACN solution 20 

min (blue), 24 h (red) and 96 h (green) after adding concentrated HCl. The CrA-GdDOTA 

peak (a) appears at 18.4 min of retention time. The CrA-DOTA peak (b) appears at 17.2 min 

from the 24 h chromatogram in red. 
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 (a) area (a.u.) (b) area (a.u.) %(a) %(b) 

t = 20 min 9443.75 533.04 94.7 0.0 

t = 24 h 6210.44 3.85 × 104 13.9 86.1 

t = 96 h - 3.38 × 104 0.0 95.8 

Table 4.4 HPLC data. Integration of the indicated peaks in Figure 4.13. (a) refers to the CrA-

GdDOTA peak at 18.4 min. (b) refers to the CrA-DOTA peak at 17.2 min. Note that the purity 

at t = 96 h has been calculated by taking the ratio of peak (b) divided by (b) + impurities peak 

at 23.8 min. 

4.5. Conclusions 

The relaxation behaviours obtained in this work show an important increase in 

the relaxivity of GdDOTA for 129Xe when the chelate is linked to a 

cryptophane cage. The cage prolongs the presence of the hp 129Xe close to the 

paramagnetic centre, inducing its depolarization (Figure 4.14). Results showed 

a 59 % decrease in relaxivity when the chelate does not include the 

paramagnetic Gd3+. Although the paramagnetic relaxation occurs when the 

129Xe is in the cryptophane cage, when the NMR signal appears at about 64 

ppm, it is then transferred to the solvent phase at 189 ppm through chemical 

exchange. The dissolved phase 129Xe relaxation rate will therefore be a 

weighted average of the solvent phase and the cage phase relaxation rates. 

Unlike HyperCEST, this technique does not require radiofrequency irradiation 

for saturation to accomplish depolarization. The depolarization occurs 

consequently to the hyperpolarized nuclei’s encapsulation, followed by 

chemical exchange with the dissolved phase, leading to the fast decay of the 

dissolved phase signal. 
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Figure 4.14 Paramagnetic relaxation of the encapsulated 129Xe induced by the activated 

biosensor (top). No relaxation induced by deactivated biosensor (bottom). 

A cleavable linker would functionalize the separation of the cage from the 

paramagnetic gadolinium that, in turn, would deactivate this relaxation 

mechanism. In this work, this process has been illustrated by an acidification of 

the GdDOTA inducing the leakage of the Gd out of the DOTA chelator, 

deactivating the paramagnetic effect of the complex on the encapsulated 129Xe, 

and decreasing the relaxation mechanism. This property can be used to gauge 

enzymatic reactions, and will necessitate a different linker that will be targeted 

by an enzyme to be cleaved. Matrix metallopeptidase 9 (MMP-9) is a 

collagenase involved in the degradation of the extracellular matrix and in the 

lung remodelling. This enzyme is implicated in numerous pulmonary 

pathologies such as cancer but also IPF and COPD (25). The replacement of 

the linker by a MMP-9 target peptide will allow the cleavage of the 

cryptophane cage from the depolarizing GdDOTA where the enzyme is present 

in the organ. In this future application, the uncleaved biosensor will induce a 

fast relaxation of the dissolved 129Xe when MMP-9 is absent, therefore 

producing a positive contrast where the enzyme is present and cleaves the 

biosensor, preserving the 129Xe magnetization. 

After in vitro experiments assessing whether the switchable biosensor can 

quantify the amount of enzyme in the medium, the biosensor can be directly 
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injected to excised rat lungs via the blood. This method can help gauging the 

enzymatic composition changes in animal models of lung diseases. The 

molecule could also be directed to the lung cavity in the form of droplets using 

a nebulizer or in the form of a powder with a simple inhaler. The deposition of 

the biosensor in the alveoli could permit a non-invasive evaluation of the 

enzymatic activity in the airway surface liquid and mucus. 

This switchable biosensor is 129Xe specific and does not show any change in 1H 

relaxation. The paramagnetic relaxation on 1H would allow probing the 

biosensor location and concentration, independently of the activation state. The 

129Xe relaxation is however necessary to differentiate activated and deactivated 

biosensors with similar relaxation behaviour. Even though a chemical shift 

change had already been observed using an enzymatic cleavage of a hp 129Xe 

biosensor (26), this chemical exchange relaxation transfer contrast will not 

require a high spectral resolution and might be of interest to design new 

biosensors for in vivo application. 
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CHAPTER 5 

FLUORINATED SYNTHETIC BLOOD AS A CONTRAST 

AGENT FOR 129XE NMR OF EX VIVO RAT LUNGS 

 

The preliminary results presented in this chapter are based on experiments that 

were developed by Prof. Thomas Meersmann and Clémentine Lesbats. 

In vitro and ex vivo spectroscopy measurements were performed by 

Clémentine Lesbats. The animal preparation and lungs harvesting was 

performed by Clémentine Lesbats, and Anthony Habgood when using the 

animal model of pulmonary fibrosis. The recompression unit that allowed for 

the delivery of hyperpolarized gas to the excised lungs was built and semi-

automated by Zahra Rahemtulla, during the course of her M.Sc. The pulse 

sequences were written by Clémentine Lesbats, supervised by Dr. Galina E. 

Pavlovskaya and Prof. Thomas Meersmann. Data analysis was carried out by 

Clémentine Lesbats. 
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5.1. Introduction 

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung 

disease associated with severe morbidity. At present the aetiology of IPF is 

unknown, there are no effective means for monitoring disease progression and 

no treatments available. Whilst structural imaging is useful for diagnostic 

purposes, and conventional pulmonary function testing gives reliable global 

assessments of lung function, functional imaging would represent a significant 

step forward in assessing and monitoring novel therapeutics. 

The solubility of 129Xe in lung tissue, and blood plasma, makes hp 129Xe 

particularly promising for imaging of lung fibrosis (1). The tissue solubility of 

129Xe enables regional monitoring of gas-blood exchange in IPF providing a 

significant advantage over current technology (2, 3). 

Due to its large compressible outer electron shell, 129Xe has been shown to 

exhibit an observable chemical shift between the gas and dissolved phase (4). 

Furthermore, there are differences in the resonance frequency when 129Xe is 

bound to a variety of molecules, including haemoglobin (5, 6). This unique 

property has allowed imaging of hp 129Xe dissolved in the lung tissue and 

pulmonary circulation and imaging of 129Xe moving in the reverse direction, 

diffusing from the bloodstream into the lung airspaces (7). The large chemical 

shift (200 ppm) between the 129Xe gas phase and the dissolved phase permits 

the study of the diffusing capacity in human and rodent lungs (8-12). 

One limiting factor in these experiments is the rather poor solubility of 129Xe in 

plasma and red blood cells (RBCs) with the result that the intensity of the 

dissolved phase signal in the lungs is a factor of 100 times smaller than the gas 

phase signal after inhalation of hp 129Xe (13). Methods to increase the 

concentration of 129Xe in solution have been investigated using various carrier 

agents and membrane technologies (14-16). 

Another limitation is that the NMR peaks associated with the 129Xe in the 

tissue and in the blood are adjacent –at approximately 200 ppm, and can be 

difficult to differentiate. It has been shown that 129Xe dissolved in 

perfluorocarbon emulsion (PFCE) resonates around 100 ppm (14, 17). In this 

chapter, a PFCE will be explored to enhance the MRI contrast of hp 129Xe 

diffusing through the lung parenchyma into the vascular system. The addition 

of PFCE to the blood will facilitate the discrimination of the hp 129Xe dissolved 
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in the blood stream from the tissue. The purpose is to provide new MRI 

contrast for the study of pulmonary gas transfer dynamics in health and 

disease. For example, gas transfer to the blood compartment is reduced in 

interstitial diseases such as idiopathic pulmonary fibrosis (18, 19). 

It has been shown to be less technically demanding and less invasive to prepare 

hp 129Xe into a solution and then infuse the prepared solution into the animal 

itself (20, 21). Hollow-fibre membranes used in blood oxygenators have been 

employed to increase the concentration of dissolved 129Xe both in blood and in 

solutions (15, 16, 22, 23). Membranes have been used as they greatly reduce 

the degree of foaming that occurs when the relatively insoluble gas is delivered 

to solution as only small bubbles diffuse across. In vivo imaging is however 

still limited by the poor solubility of 129Xe in the blood requiring continuous 

perfusion of hp 129Xe directly into the bloodstream via a gas exchange module 

(16). This method may be suitable for in vivo animal experimentation but is 

unlikely to find widespread clinical acceptance due to issues with invasiveness 

and coagulation within the gas exchange device itself. In addition, numerous 

signal averaging over many breaths is still required for dissolved phase 

imaging, limiting resolution at present. Biologically “inert” substances that 

produce little coagulation can avoid the need for delivery of blood products or 

the extracorporeal circulation of blood. Carrier agents have been investigated, 

as 129Xe solubility is much higher in lipid and perfluorocarbon based 

compounds (24). 

5.2. Motivation 

Excised rodent lung imaging has been validated and used to study excised 

healthy rodent lungs with hp 129Xe (25) and 83Kr (26), allowing for the imaging 

of the lungs prior to histological studies. In this research, a bleomycin-induced 

animal model of pulmonary fibrosis has been used (19). The initial hypothesis 

is that if a synthetic blood, perfluorocarbon emulsion (PFCE), is added to the 

blood compartment of excised lungs (Figure 5.1), the dissolved peaks will be 

better resolved, allowing an enhanced discrimination of the 129Xe signal in the 

parenchyma and the capillaries. 

The objectives of this project are to investigate the solubility of 129Xe in two 

PFCEs and assess their suitability for use as a contrast agent in ex vivo lungs in 
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order to study the gas diffusion through the pulmonary parenchyma. This will 

lead to a new non-invasive monitoring of the gas diffusion kinetics parameters 

in animal models of pulmonary fibrosis. The practicability of the use of 

synthetic blood as a hp 129Xe contrast agent in excised rat lungs will be 

evaluated, involving in vitro measurements of the 129Xe chemical shift 

dissolved in the synthetic blood, and longitudinal relaxation measurements, 

alongside with some ex vivo rat lung spectroscopy applications. These results 

can be used for the exploration of the gas exchange in small animal disease 

models where the pulmonary gas diffusion is impaired, or the evaluation of 

pulmonary treatments on the gas transfer. 

 

 

Figure 5.1 Gas diffusion through the lung parenchyma from the alveolar space, through the 

tissue, to the pulmonary capillaries before (a) and after (b) blood replacement by PFCE. 

5.3. Material and methods 

5.3.1. Ex vivo rat lung MRI protocol 

The rat lungs were extracted and were all suitable for hyperpolarized noble gas 

MR experiments, i.e. they were not damaged nor leaking. Lungs were 

suspended in a 25 mm or 30 mm ventilation chamber filled with saline solution 

that was then placed into the magnet, set to 17 °C. 

As described in Chapter 2, and similarly to Chapter 3 (Section 3.2.4.), 

hyperpolarized 129Xe was produced in batch mode spin exchange optical 

pumping (SEOP). The gas mixture used was composed of 25 % enriched 129Xe 

(enriched to 83 % 129Xe, Nova Gas Technologies, Charleston, SC, USA) and 

75 % N2 (99.999 % purity, Air Liquide, Coleshill, UK). Low pressure SEOP 

was performed at 65 – 75 kPa during 6 min. The hp gas mixture was then 
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delivered to the pre-vacuumed recompression piston (27). The recompression 

unit was allowing for recompression of the hp gas up to above ambient 

pressure to permit delivering the gas to the excised lung trachea as described in 

Section 2.8. 

An active inhalation of the hp 129Xe into the excised lungs was accomplished 

by a ventilation syringe producing a suction in the ventilation chamber (25). 

The inhalation volume was determined prior to the MR experiments. The lungs 

were completely inhaled at a fixed volume. The exhaled gas volume was 

delivered to an inversed measuring cylinder filled with water, and the gas 

volume was directly measurement by the volume of displaced water. The 

average inhaled volume in 6 representative rats are listed in Table 5.1. 

Rat ID Experiment 

day 

Weight 

(g) 

Inhaled 

volume 

(mL) 

Inhalation 

pressure 

(mbar) 

129Xe 

NMR and 

MRI 

83Kr 

NMR 

Control 2_2 1 324 4.8 ± 0.1 19 ± 0.9 Yes No 

Bleo 1_1 1 304 4.2 ± 0.4 21 ± 1.5 Yes Yes 

Bleo 1_3 1 302 4.2 ± 0.6 26 ± 0.6 Yes Yes 

Control 2_3 2 330 5.2 ± 0.05 23 ± 2.3 Yes No 

Bleo 3_3 2 307 4.8 ± 0.2 22 ± 1.1 Yes No 

Bleo 3_4 2 302 5.3 ± 0.1 22 ± 0.0 Yes No 

Table 5.1 Demographic data for the emphysematous rat lungs used for 129Xe MRI and NMR, 

rat weights, inhaled volumes ± standard deviation (𝑛 = 5), and experiments done with the 

lungs. 

5.3.2. Animal model of pulmonary fibrosis: the bleomycin rat 

model 

Lewis male rat (300-350 g) lungs were used for preliminary investigation on 

the 129Xe gas transfer through the lung parenchyma in excised fibrotic rat 

lungs. An ex vivo rat model of pulmonary fibrosis was produced by 

oropharyngeal delivery of bleomycin. Bleomycin is a chemotherapeutic 

antibiotic well known for its adverse effect of activating fibroblasts and 

subsequently inducing fibrosis (28). The lungs were excised 21 days after 

treatment for MR experiment. 
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A second set of rats was composed of one bleomycin-treated and one control 

rat received a post mortem blood replacement by a perfluorocarbon emulsion 

as explained in the next section. 

5.3.3. Perfluorocarbon emulsion as synthetic blood and 129Xe 

carrier 

Two perfluorocarbon emulsions (PFCE) were used, Oxycyte (Tenax 

Therapeutics, Inc, Morrisville, USA) and Perftoran (OJSC SPC Perftoran, 

Moscow, Russia). These two agents were developed to be used as a human 

blood replacements and oxygen carrier agents (29, 30). In the purpose of this 

study, they were utilised as 129Xe carrier in the ex vivo rat lungs. The synthetic 

blood was administered post mortem to the lungs through the caudal vena cava 

after flushing of the blood off the heart and lung capillaries. For more detail, 

the lung extraction and blood replacement were extensively detailed in Section 

2.8. 

Table 5.2 lists the aims of the three experiments involving rat lungs, the PFCE, 

and the number of rat that was used for each of them. 

Some 129Xe MRI and NMR were first done in some fibrotic and control rat 

lungs (Stage 1). In a second experiment, 129Xe NMR was evaluated in a treated 

and a control rat lungs which underwent a blood replacement by Oxycyte 

(Stage 2). 

Finally, for the particularity of the Stage 3 experiment, the original Perftoran 

10 % was concentrated by evaporation of the solvent phase. This was achieved 

using a water bath (RE 300 DB, Stuart equipment, Bibby Scientific Limited, 

Stone, UK) and a rotary evaporator (RE 300, Stuart equipment, Bibby 

Scientific Limited, Stone, UK). A 60 mL initial volume of commercial 

Perftoran, defined by 10 % v/v lipid emulsion, was added, and intermittently 

warmed up to 313 K bath while rotating in order to preserve the emulsion, with 

a 50 to 100 mbar vacuum. The final volume was 32 mL, producing a Perftoran 

solution concentrated to 19.2 % v/v lipid emulsion. This concentrated solution 

was made to improve the 129Xe signal arising at 90 ppm when dissolved in the 

lipid emulsion and is used in the latest section of this chapter. 
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P
F

C
E

 

Aim of the experiment 
Number 

of rats 
MRI NMR 

Stage 1 

N
/A

 

Comparing the hp 129Xe gas 

phase MRI and dissolved phase 

NMR in bleomycin and control 

Lewis rat lungs 

6 Yes Yes 

Stage 2 

O
x

y
cy

te
 Comparing the hp 129Xe PFCE 

signal from a bleomycin and a 

control Lewis rat lung 

2 No Yes 

Stage 3 

P
er

ft
o

ra
n

 1
9
.2

 %
 

Utilizing two control Sprague-

Dawley rats to assess the hp 

129Xe gas transfer from the 

alveoli to the blood 

compartment containing the 

PFCE 

2 No Yes 

Table 5.2 Experiments overview: PFCE that was used as blood replacement, aim of the 

experiment, and number of rat used. 

5.3.4. 129Xe lung MRI protocol 

Imaging experiments were performed using a 9.4 T Bruker Avance III 

microimaging system (Bruker BioSpin GmbH, Germany). A custom-built 25 

mm low-pass birdcage coil tuned to the resonance frequency of 129Xe gas in the 

rat lung of 110.69 MHz was used for 129Xe gas phase imaging. 

Images were acquired using a variable flip angle (VFA) FLASH gradient echo 

sequence. A sinc shaped pulse of 1000 µs was used to accomplish a 3.8 mm 

slice selection. The images were acquired in 128 x 64 voxels matrices, and 

with a field of view (FOV) of 47 x 33 mm in a total acquisition time of 4 s. 

5.3.5. 129Xe NMR protocol 

Spectroscopy of the ex vivo lungs was realised using a 30 mm Bruker-made 

coil tuned to the 129Xe gas phase (110.69 MHz), tissue (110.715 MHz) or 

PFCE phase (110.703 MHz) resonance frequency. 
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A qualitative spectrum was first acquired using a 140 µs hard pulse centred 

between the gas phase (0 ppm) and the tissue (193 ppm), and a spectral width 

of 𝑆𝑊 = 60 𝑘𝐻𝑧 covering all of the 129Xe phases in a rat lung. 

A chemical shift selective gauss pulse was also calibrated in order to 

selectively excite the tissue or the Perftoran phase, with minor excitation of the 

two other peaks. A 750 µs gauss pulse led to an excitation bandwidth of 𝐵𝑊 =

3000 𝐻𝑧. 

Chemical shift selective gauss pulses were calibrated to minimize the effect of 

the excitation on the bulk gas phase (0 ppm) that is used as a reservoir during 

longer experiments. Figure 5.2 represents three spectra acquired using a single 

hard pulse centred on the Perftoran phase (grey), compared to 64 averages 

using a chemical shift selective gauss pulse (750 µs) in a healthy rat lung with 

blood replacement using Perftoran 19.2 %. The gas phase peak appears smaller 

when the carrier frequency of the gauss pulse is centred on the tissue phase 

(red) as compared to the Perftoran phase (blue). 

 

 

Figure 5.2 Hp 129Xe NMR spectra using a single non-selective hard pulse (grey), or a chemical 

shift selective gauss pulse (64 averages), centred on the Perftoran phase (blue) or tissue phase 

(red). Note that the phase was inversed for an easier visualisation. 
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5.3.6. 129Xe Chemical Shift Saturation Recovery (CSSR) 

Dynamic spectroscopy of the 129Xe gas transfer through the parenchyma has 

been performed using a Chemical Shift Saturation Recovery (CSSR) pulse 

sequence. The pulse sequence consists in sequentially measuring 129Xe NMR 

spectra after a selective saturation of the dissolved phase and an increasing 

exchange time (Figure 5.3). In addition, the saturation pulse was followed by a 

dephasing gradient (1771.74 Hz/mm, 0.1 ms). 

 

Figure 5.3 (a) Schematics of a chemical shift saturation recovery (CSSR) pulse sequence used 

in this chapter. The chemical shift selective saturation gauss pulse is followed by an exchange 

time. A similar chemical shift excitation pulse is employed for signal acquisition. The 

exchange time is incremented for each new loop. (b) an example of spectra acquired in a single 

acquisition using the different exchange times in a CSSR sequence, with a tissue phase signal 

build-up. 
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5.3.7. 83Kr longitudinal relaxation measurement 

In order to evaluate whether the bleomycin instillation induced an alveolar 

degradation, the 83Kr longitudinal relaxation was measured. A train of 16 small 

flip angle pulses with an interpulse delay of 1 ms was used. The 𝑇1 relaxation 

was obtained by linear regression of the natural logarithm of the signal 

intensity as a function of delay time as explained in Section 2.4.2. 

5.3.8. Data analysis 

All raw data were processed using Prospa (Magritek, Wellington, New 

Zealand) and subsequent processing using Igor Pro (Wavemetrics, Lake 

Oswego, Oregon, USA), followed by figure adjustments using the illustration 

tool Adobe Illustrator® CS5. A sine-bell squared function was applied in the 

images k-space both directions and zero filled to 256 x 128 in order to smooth 

the magnitude images after 2D Fourier transform. NMR raw data were resized 

to remove the zero-value points present prior to the FID, and an exponential 

function was applied on them before Fourier transform. Similarly, CSSR 

matrices were also resized, an exponential function was applied before being 

Fourier transformed in the direct direction. 

5.4. Results and discussion 

5.4.1. Preliminary 129Xe MRI and NMR of ex vivo fibrotic lungs 

The purpose of this first study was to observe the dissolved 129Xe in excised 

fibrotic lungs (see Stage 1 in Table 5.2). 4 bleomycin-treated and 2 control rats 

were used, during the course of two days, with 2 bleomycin and 1 control on 

each day. The excised lungs are the subject of a blood replacement by PBS 

solution (Sigma-Aldrich Ltd, Gillingham, UK) during the lung dissection. 

Therefore, we can assume that the sharp peak appearing at 193 ppm in all lungs 

spectra was arising from the 129Xe dissolved in saline, accompanying the 

parenchymal tissue phase peak at 195 ppm (see Figure 5.4 for an example). 

The Tissue/Total 129Xe ratio was calculated after a single hard pulse spectrum 

was acquired in the 4 bleomycin rats and 2 control, phase and baseline 

corrected. Results are listed in Table 5.3. The results are very similar for both 

control and fibrotic lungs, and do not allow for any correlation between the 

proportion of the 129Xe dissolved in the lungs and the bleomycin treatment. 



 125 

 

Figure 5.4 Hp 129Xe NMR spectrum in the excised lung Bleo 1_1. The gas phase is set to the 

conventional 0 ppm and the tissue peak appears at 195 ppm, accompanied by a sharp saline 

peak at 193 ppm. 

 

 

Rat ID Tissue/Total 

129Xe signal 

D
ay

 1
 

Control 2_2 3.34 % 

Bleo 1_1 2.70 % 

Bleo 1_3 2.33 % 

D
ay

 2
 

Control 2_3 2.51 % 

Bleo 3_3 2.76 % 

Bleo 3_4 2.73 % 

Table 5.3 Proportion of the 129Xe signal arising from the tissue over the total 129Xe signal in the 

bleomycin-treated lungs and control lungs. One control lung and two bleomycin-treated lungs 

were studied during two consecutive days. The peaks were integrated after phase correction 

and baseline correction of the spectra, and the tissue signal ratio was calculated. 
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A narrower spectral width allowed zooming in on the dissolved peak. Figure 

5.5 shows the tissue peak for the 2 control lungs and the 4 fibrotic lungs. Less 

total signal was observed in both control and fibrotic on the second day due to 

the SEOP pump cell aging. Spectra were therefore normalised to match similar 

integral in the control lungs on both days. On days of measurement the control 

lung showed more signal in the tissue than the two fibrotic lungs. The higher 

signal in the control lungs on both days can be explained by their 20 – 30 g 

higher weight. Indeed, the bleomycin instillation induces a weight loss in the 

treated animal, causing the control rats to be heavier than the rats with the 

disease model. Finally, a red blood cell peak remains noticeably visible at 213 

ppm (see light blue spectrum from the Control lung 2_3 in Figure 5.5), 

probably due to some very small amount of blood that remained in the heart 

and pulmonary capillaries. 

 

 

Figure 5.5 Hp 129Xe spectra of the six excised lungs presented in Table 5.1. The control rat 

lungs are displayed in blue solid lines, the bleomycin-treated rat lungs are presented in dashed 

and dotted lines. Due to lower signal caused by the SEOP performance, the spectra acquired on 

the second day were normalised to match the same control spectrum integral (blue spectra). 
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Hyperpolarized gas phase 129Xe MRI of excised lungs was used to position the 

lungs in the coil and magnet, prior to the spectroscopy measurements, but also 

to observe some qualitative characteristics of a bleomycin treatment on excised 

rat lungs. Slice selective coronal and transverse imaging was done using the 

VFA FLASH imaging sequence described in Section 5.3.4. 

Figure 5.6 and Figure 5.7 present the transverse and coronal images in two 

representative control and bleomycin lungs respectively. The slice selective 

transverse images allow for a clear visualisation of the bronchi, brighter than 

the parenchymal 129Xe signal. The coronal images show the trachea, the 

division into bronchi, and the different lobes. Numerous ventilation defects are 

observed in all fibrotic lungs (see also the appendices for all rats MRI). The 

slice selective coronal images of the fibrotic lung (Figure 5.7, images vii and 

viii) depict some ventilation defects mostly located around the main airways on 

both sides, confirming the disease induction in these animals. The bleomycin-

treated lung 1_3 was presenting a collapsed upper left lobe (Appendix, Figure 

A.5) that might be due to severe fibrosis that weakened the lung structure, but 

might also have collapsed during the travel or any experimental procedure. 
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Figure 5.6 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Control lung 2_2 accompanied by a non-slice selective image showing the location of the 

slices. 
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Figure 5.7 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Bleo lung 1_1 accompanied by a non-slice selective image showing the location of the slices. 
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5.4.2. 83Kr NMR of ex vivo fibrotic lungs 

Whole lung hyperpolarized 83Kr NMR spectroscopy is used to assess whether 

the whole lung 𝑇1 can be used as a measure for global alveolar impairment. 

Alveolar degradation not being the main scope of this study, the technically 

more demanding 83Kr MRI as demonstrated in Chapter 3 was not evaluated on 

this animal model of fibrotic thickening. It has been shown that fibrotic lungs 

also show emphysematous damages due to scarring (31). Hp 83Kr 𝑇1  was 

measured in the two fibrotic Lewis lungs, Bleo 1_1 and Bleo 1_3, without 

spatial resolution nor specific inhalation scheme. This whole lung longitudinal 

relaxation measurement was also measured in the emphysematous and control 

rat lungs used in Chapter 3. The average 𝑇1  for each pathological group is 

listed in Table 5.4. 

 
No. of 

measurements 

Average 𝑇1 ± 

standard 

deviation (s) 

Average 

weight ± 

standard 

deviation (g) 

Inhaled 

volume 

Control rats 𝑛 = 5 1.354 ± 0.101 513 ± 35 6.5 ± 0.6 

Elastase-

treated rats 

𝑛 = 9 1.401 ± 0.178 453 ± 55 6.9 ± 0.1 

Bleo 1_1 𝑛 = 4 1.255 ± 0.051  304 4.2 ± 0.4 

Bleo 1_3 𝑛 = 4 1.208 ± 0.037  302 4.2 ± 0.6 

Table 5.4 83Kr longitudinal relaxation (𝑇1) in the control rats and elastase-treated rats from 

Chapter 3, and in two bleomycin-treated rat lungs. 

The whole lung 83Kr 𝑇1 appear to be lower in the bleomycin-treated rat lungs 

as compared to both elastase-treated and control rat lungs utilised in Chapter 3. 

This can perhaps be explained by the difference of species in the rats that are 

used for both animal models. Indeed, the preferred rat species for emphysema 

are Sprague-Dawley rats while Lewis rats are used for fibrosis models. This 

difference of species might induce a difference in the alveolar morphology. 

In addition, there was an animal weight difference between elastase and 

bleomycin-treated rats. The bleomycin rats before lung dissection were 303 g 

on average, which was more than 150 g lower than that of the Sprague-Dawley 

rats used for the 83Kr study in Chapter 3. 
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Finally, the inhaled volume in the bleomycin-treated rats was also lower than 

that of the elastase-treated ones. The reduced alveolar inflation due to a 

reduced inhalation volume might induce the partial recruitment of some alveoli 

and could explain the lower 𝑇1 in these lungs (32). 

5.4.3. In vitro 129Xe NMR of synthetic blood 

Hyperpolarized 129Xe was bubbled through the synthetic bloods Oxycyte and 

commercial Perftoran, containing 10 % v/v lipid emulsion (see Section 5.3.3.). 

The protocol was the same as used in Chapter 4 (see Section 4.3.2.). The 

spectra obtained by such protocol allows locating the 129Xe signal dissolved in 

the perfluorocarbon emulsions. 

 

Figure 5.8 129Xe spectra in three carriers: Oxycyte (blue), Perftoran (orange) and water (green) 

after bubbling some hp 129Xe through a 2 mL sample for 45 s. 

Figure 5.8 displays the in vitro 129Xe spectra for Oxycyte and Perftoran. The 

signal arising from a water sample is also displayed for reference. Hp 129Xe 

signal from the Oxycyte (blue) appears to be notably bigger and narrower than 

the Perftoran 10% (orange). This is explained by the higher perfluorocarbon 

concentration in Oxycyte that contains 60 % v/v as compared to Perftoran that 

contains only 10 % v/v. The chemical shift or each synthetic blood and water, 

and their full width at half maximum (FWHM) are listed in Table 5.5. Both 

Oxycyte and Perftoran 10% peaks appear at 97 and 122 ppm respectively, 

notably apart from the tissue or water peak that would arise from a hp 129Xe 

lung spectrum between 192 and 213 ppm. Moreover, 129Xe 𝑇1 was measured in 

vitro (𝑛 = 4) in degassed Oxycyte, giving 𝑇1 = 97.1 ± 13.5 𝑠. This long 𝑇1 
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and specific chemical shift are used in the next part of this chapter to 

selectively excite the 129Xe tissue or the PFCE phase in excised rat lungs. 

 

 

Table 5.5 Hp 129Xe dissolved in vitro in Oxycyte, Perftoran and water peaks chemical shift and 

full width at half maximum (FWHM). 

The 129Xe-O2 relaxivity in Oxycyte was measured in vitro. The O2 was added 

to the hp gas mixture before being bubbled in vitro to the Oxycyte. 𝑇1 was 

measured using a train of 8 x 24 ̊ flip angles pulse sequence and calculated 

using the Eq. 2.16 described in Section 2.4.2. The relaxivity plot is presented in 

Figure 5.9. The effect of O2 on the 129Xe relaxation in Oxycyte (Eq. 5.1) will 

permit the mixing of hp gas with oxygen before inhalation for future 

preclinical in vivo studies. 

 𝑅1 = (0.003678 ± 0.000517)×%𝑂2
 Eq. 5.1 

 

 

Figure 5.9 In vitro 129Xe-O2 relaxivity in Oxycyte. In black, the measured longitudinal 

relaxations, and in blue the calculated relaxivity as a function of the % O2 in the hp gas 

mixture. 

 Chemical shift FWHM 

Oxycyte 97 ppm 2.4 kHz 

Perftoran 10 % 122 ppm 3.6 kHz 

Water 192 ppm 250 Hz 



 133 

5.4.4. 129Xe NMR of synthetic blood in excised rat lungs 

5.4.4.1. Preliminary results in excised bleomycin-

treated rat lungs 

For the stage 2 study, some dissolved 129Xe spectroscopy has been done on a 

bleomycin-treated lung and a control rat lung. The two rats underwent a post 

mortem blood replacement of the heart and pulmonary capillaries using 

Oxycyte. The protocol for the dissection and the blood replacement can be 

found in Section 2.8. 

 

Figure 5.10 (a) Illustration of a set of chemical shift selective spectra acquired on a bleomycin-

treated rat with increasing TR (64 averages). Each point represents an averaged acquisition 

with a given TR. (b) Oxycyte/Gas ratio in a saline-treated lung (blue) and a bleomycin-treated 

lung (red) and their respective noise levels. The lines represent an exponential fit of the data. 

A spectrum was acquired right after inhalation of the hp gas. A chemical shift 

selective pulse centred on the PFCE frequency is applied, and averaged 64 

times, with different repetition times. A 785 µs chemical shift selective sinc 

pulse was used, allowing for the excitation of the Oxycyte phase, with minor 

depolarization of the gas phase and the tissue phase. The acquisition of spectra 

with different repetition times TR ranging from 0.01 s to 1 s allows to evaluate 

the diffusion from the tissue to the vascular system. In the case of a gas 

diffusion that is slower than the repetition time, the signal will not increase, 

whereas a diffusion that is faster than the repetition time will induce a signal 

build-up. 

The replenishment of the 129Xe signal dissolved in Oxycyte is represented in 

Figure 5.10 b. This diffusion curve has been done by integrating the PFCE 
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peak for each spectrum with different repetition times. The diffusion in the 

bleomycin-treated lung from the tissue to the vasculature appears to be faster 

than in the saline-treated lung, in agreement with previous reports (11). This 

method enables for the measurement of hp 129Xe diffusion from the gas to the 

tissue and the vascular phases but also passage of hp 129Xe from the tissue to 

the vascular liquid. 

5.4.4.2. Dynamic spectroscopy of the gas transfer in 

excised lungs with Perftoran 19.2 % 

Chemical Shift Saturation Recovery (CSSR) is a straightforward spectroscopic 

technique to study the 129Xe uptake by the lung parenchyma and blood in the 

course of a single acquisition. This technique is possible thanks to the large 

129Xe chemical shift between the different compartments that are the alveolar 

space, the lung parenchyma and the blood. By varying the delay between the 

RF saturation pulse and the acquisition of the spectrum, the amount of 129Xe 

that has dissolved in the lung tissue will vary. In an in vivo setting, the 129Xe 

signal arising from the parenchyma and the blood are however located very 

close to each other, at 198 and 218 ppm respectively, with overlapping peaks 

(33, 34), and is therefore challenging to selectively saturate one compartment. 

Hyperpolarized 129Xe uptake by the ex vivo lung parenchyma has been 

explored: the 129Xe gas phase diffuses from the alveoli to the pulmonary tissue, 

and can then either come back to the alveolar space or advance further to the 

capillaries. The excised lungs underwent a post mortem blood replacement 

with Perftoran 19.2 %, allowing for a shift of the 129Xe signal from the 

capillaries from 218 ppm to that of the PFCE, i.e. 90 ppm in the case of 

Perftoran 19.2 %. Such a chemical shift between the 129Xe signal coming from 

the gas, the tissue or the blood compartments allows for the selective saturation 

and excitation of each of them. A 750 µs gauss shape chemical shift selective 

RF pulse was used to both saturate and excite each phase. 

The following experiments show how selective saturation of each dissolved 

phase has been realised to observe 129Xe build-up in the Perftoran phase and 

the tissue phase. 
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129Xe dynamic spectroscopy in ex vivo rat lung Perftoran phase 

The chemical shift selective RF pulse was centred on the Perftoran phase (90 

ppm) in order to saturate the 129Xe signal from the lung capillaries and evaluate 

the uptake of fresh hp 129Xe in the Perftoran from the surrounding tissue, after 

varying diffusion delays. The pulse sequence consisted in a saturation RF 

pulse, followed by a diffusion delay Δ𝜏 and a spectrum acquisition, repeated 

with different diffusion delays (Figure 5.11 a). The RF saturation pulse is 

followed by a spoiler gradient dephasing the residual transverse magnetization. 

Most experiments shown in this chapter were composed of 10 to 12 increasing 

delays in a single breath-hold acquisition. The Perftoran phase (at 90 ppm) was 

integrated and normalised to the gas phase (0 ppm) integral. CSSR build-up 

curves of the 129Xe Perftoran/Gas signal are displayed in Figure 5.12. 

 

Figure 5.11 CSSR pulse sequences used in this section. (a) Single selective saturation, 

followed by a dephasing gradient, and selective excitation of a given dissolved 129Xe phase. (b) 

4 saturations spoilers followed by excitation. The 4 saturation pulses can be set to a single 

frequency ( 𝑠𝑎𝑡1 = 𝑠𝑎𝑡2 = 𝑡𝑖𝑠𝑠𝑢𝑒 ) to saturate a single compartment or two frequencies 

(𝑠𝑎𝑡1 = 𝑡𝑖𝑠𝑠𝑢𝑒, 𝑠𝑎𝑡1 = 𝑃𝑒𝑟𝑓𝑡𝑜𝑟𝑎𝑛) to saturate all dissolved 129Xe. 
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Figure 5.12 Replenishing of the 129Xe magnetization in Perftoran (90 ppm) in an ex vivo 

healthy rat lung. Each signal recovery curve was acquired during a single breath-hold, after 

inhalation of the hyperpolarized 129Xe gas mixture and lung using the CSSR pulse sequence 

illustrated in Figure 5.11 a. 

The Perftoran signal build-up appears repeatable, and not dependent on the 

diffusion delays (Δ𝜏) that were used during a single acquisition. Data have 

been clustered when identical diffusion delays (Δ𝜏 ) were used during the 

acquisition as listed in Table 5.6 and were displayed in Figure 5.13. 

The 129Xe gas transport through the alveolar structure was following an 

exponential diffusion. The augmentation of the 129Xe magnetization that has 

built-up in the dissolved compartments is described by Eq. 5.2 and displayed 

on Figure 5.13. 

 𝑆(𝑡) = 𝑆𝐴 − 𝑆𝐵× exp (−
𝑡

𝑇𝑑𝑖𝑓𝑓
) Eq. 5.2 

where (𝑆𝐵 − 𝑆𝐴)  is the intercept at 𝑡 = 0  and 𝑇𝑑𝑖𝑓𝑓  the exponential time 

constant. The fitting parameters for the data sets summarizing the two 

Perftoran/Gas signal build-up curves from Figure 5.13 are listed in Table 5.7. 
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Scans 21 - 23 

Green 

Scans 24 - 30 

Red 

0.001 0.001 

0.005 0.008 

0.01 0.01 

0.02 0.02 

0.03 0.03 

0.04 0.05 

0.05 0.075 

0.075 0.1 

0.1 0.2 

0.2 0.3 

- 0.5 

Table 5.6 List of the diffusion delays Δ𝜏 (in s) that were used for all magnetization recovery 

experiments displayed in Figure 5.12 and 5.13. 

 

Figure 5.13 Replenishing of the 129Xe magnetization dissolved in Perftoran (90 ppm) in an ex 

vivo healthy rat lung. Data sets from Figure 5.12 were regrouped when identical diffusion 

delays between the saturation and the excitation pulses were used (see Table 5.6 for delay 

lists). Averages and standard deviations are displayed; an exponential function as in Eq. 5.2 

was fitted on each signal build-up. 
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 n 𝑆𝐵 − 𝑆𝐴 𝑇𝑑𝑖𝑓𝑓 (s) 

Green 3 0.208 ± 0.050 0.063 ± 0.024 

Red 7 0.227 ± 0.055 0.049 ± 0.019 

All scans 10 0.228 ± 0.053 0.058 ± 0.016 

Table 5.7 Fitting parameters on the two datasets displayed in Figure 5.13. n represents the 

number of build-up curves with identical diffusion delays (Δ𝜏) that were averaged together. All 

scans were also put in a single data set and displayed in Figure 5.14. 

The red and green data sets present similar fitting results with an exponential 

time constant 𝑇𝑑𝑖𝑓𝑓 of 63 and 49 ms respectively. This time constant illustrates 

the 129Xe diffusion from the tissue to the Perftoran in the capillaries. 

The 10 Perftoran signal recovery datasets were gathered to a single build-up 

curve and displayed in Figure 5.14. The fitting parameters are also listed in 

Table 5.7. The 129Xe signal arising from the Perftoran phase increases to its 

maximum within 150 ms to reach a plateau. This plateau would increase with a 

light slope in the case of a live experiment with blood flow (10, 11). 

 

 

Figure 5.14 Replenishing of the 129Xe magnetization dissolved in Perftoran (90 ppm). All data 

from Figure 5.12 (n = 10) were grouped. Averages and standard deviations are displayed; an 

exponential fit was applied to the signal build-up. 
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As a summary, the Perftoran signal is observed to increase up to a maximum 

reached within 150 ms. For more consistent results, averaging of the same 

diffusion delay could be done within the same CSSR acquisition and one 

breath hold. This way the signal scattering could be reduced. 

 

129Xe dynamic spectroscopy in ex vivo rat lung tissue phase 

The 129Xe signal dissolved in the tissue represents a much bigger proportion of 

the overall signal than that of the Perftoran, described in the previous section. 

The detection of the 129Xe dissolved in the tissue is therefore easier. Moreover, 

the larger chemical shift between the gas phase and the tissue phase allows for 

minimal saturation and excitation of the bulk gas phase during the CSSR 

experiment (Figure 5.8). A better repeatability is expected when studying this 

129Xe phase. 

All individual tissue signal recovery curves are displayed in Figure 5.15, where 

slightly different pulse programs were used (Figure 5.11). The first CSSR pulse 

sequence that was used consisted on a single saturation of the tissue phase and 

the observation of the tissue signal build-up (Figure 5.11 a) similarly to the 

previously shown Perftoran signal build-up acquisition. The second CSSR 

pulse sequence introduced the saturation of the Perftoran phase interlaced with 

the saturation of the tissue phase (Figure 5.11 b), with a total of 4 saturation 

pulses before each excitation and CSSR step. Data are displayed in Figure 5.15 

a and b. 

The fitting parameters for clustered data (experiments with identical diffusion 

delays Δ𝜏 as listed in Table 5.8), and their saturation scheme are listed in Table 

5.9. Curves fitting the diffusion model are showed in Figure 5.16. 
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Figure 5.15 Replenishing of the 129Xe magnetization dissolved in the tissue (195 ppm) in an ex 

vivo healthy rat lung. Individual signal recovery curves are represented. (a) Saturation of the 

tissue only as in Figure 5.11 a. (b) Saturation of the tissue and Perftoran following a 4 RF 

saturations scheme as in Figure 5.11 b. 
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Scans 

8 - 10 

Green 

Scans 

600 - 602 

Yellow 

Scans 

52 - 58 

Blue 

Scans 

63 - 64 

Grey 

Scans 

592 - 594 

Red 

Scan 

591 

Pink 

0.001 0.001 0.001 0.008 0.02 0.001 

0.01 0.005 0.005 0.01 0.03 0.005 

0.02 0.008 0.008 0.015 0.05 0.008 

0.03 0.01 0.01 0.02 0.075 0.01 

0.04 0.02 0.02 0.05 0.1 0.02 

0.05 0.03 0.03 0.1 0.2 0.03 

0.075 0.05 0.05 0.2 0.3 0.05 

0.1 0.075 0.075 0.3 0.4 0.075 

0.2 0.1 0.1 0.8 0.5 0.1 

0.3 0.2 0.2 - 0.6 0.2 

- 0.3 0.3 - - 0.3 

- 0.4 0.5 - - 0.5 

- 0.5 - - - 1 

- 0.6 - - - - 

Table 5.8 List of the diffusion delays Δ𝜏 (in s) that were used for all scans displayed in Figure 

5.15 and 5.16. Colours indicate the build-up curves in Figure 5.16 and Table 5.9. 
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Figure 5.16 Replenishing of the 129Xe magnetization dissolved in the lung parenchyma (195 

ppm) in an ex vivo healthy rat lung. Data sets were regrouped when identical diffusion delays 

Δ𝜏 between the saturation and the FID acquisition were used. Averages and standard deviations 

are displayed; an exponential function was fitted on each signal build-up. Details on the 

saturation schemes for each colour group can be found in Table 5.9. 

Not perceptible in the integrated signal build-up curves (Figure 5.16), when 

fitted with an exponential function, the 129Xe dissolved in the tissue appears to 

build-up faster when only the tissue has been saturated as compared to a 

saturation of both tissue and Perftoran phases as listed in Table 5.9. 

The exponential component of the signal build-up 𝑇𝑑𝑖𝑓𝑓 is equal to 57 ms on 

average when both tissue and Perftoran have been saturated, and the hp 129Xe 

can only be provided from the gas phase alveolar reservoir. On the other side, 

𝑇𝑑𝑖𝑓𝑓 is reduced to 47 ms when the tissue only has been saturated and the hp 

129Xe can therefore either come from the alveolar reservoir, or diffuse back 

from the Perftoran seating in the vascular system. 
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 n Saturation scheme 𝑆𝐵 − 𝑆𝐴 𝑇𝑑𝑖𝑓𝑓 (s) Average 𝑇𝑑𝑖𝑓𝑓  ± 

st. deviation (s) 

Green 3 Tissue 2.04 ± 0.12 0.057 ± 0.016 
0.047 ± 0.016 

Yellow 3 Tissue 1.91 ± 0.21 0.040 ± 0.019 

Blue 7 Tissue + Perftoran 1.46 ± 0.21 0.059 ± 0.017 

0.057 ± 0.024 
Grey 2 Tissue + Perftoran 1.68 ± 0.67 0.206 ± 0.072 

Red 3 Tissue + Perftoran 1.18 ± 0.28 0.034 ± 0.014 

Pink 1 Tissue + Perftoran 1.06 0.027 

Table 5.9 CSSR scan saturation schemes and fitting parameters for the diffusion model for six 

magnetization build-ups displayed in Figure 5.16. The average 𝑇𝑑𝑖𝑓𝑓  for the tissue signal build-

up after saturation of the tissue only or tissue + Perftoran is indicated. 

The choice of diffusion delays used during the CSSR acquisition appears to be 

an important parameter inducing some variability in the obtained data. The 

grey data set represented in Figure 5.16 does not display a similar growth as 

the other build-up curves. This might be due to the high number of very low Δ𝜏 

delays and unique longer Δ𝜏 (see Table 5.8). 

The 129Xe diffusion from the alveolar gas space to the parenchyma follows a 

1D and 2-phase system diffusion through a single layer of porous medium (35) 

and should follow: 

 𝑆(𝜏) ∝ √2𝐷𝜏 Eq. 5.3 

where D is the diffusion coefficient of 129Xe in the dissolved phase and τ the 

diffusion delay. The build-up data collected after saturation of the tissue phase 

or both tissue and blood compartments were plotted against √𝜏 (Figure 5.17). 

The dissolved signal increases linearly with √𝜏 for short times before the tissue 

saturates (35). The septal uptake curves represent how fast the 129Xe builds up 

in the tissue. 129Xe diffuses back from the alveolar airspace when the tissue and 

Perftoran phases were saturated (Figure 5.17, green points) whereas it will 

diffuse from the airspace and the capillaries in the case of the saturation of the 

sole tissue phase (Figure 5.17, orange points). The normalised signal shows a 

non-zero y-intercept due to an immediately saturated thin layer of tissue at the 

interface with the gas phase and the capillaries. The amount of tissue very 

quickly saturated is 1.5 times higher in the case of the saturation of the tissue 
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only, as some 129Xe will rapidly enter the tissue on the alveolar side and the 

capillaries side. 

The difference in the build-up slopes can also be explained by the different 

saturation schemes as well. As explained in the previous paragraph, they do not 

start with the same amount of signal. Furthermore, both build-ups reach a 

plateau of full saturation of the tissue with 129Xe at around √𝜏 = 0.3 𝑠1 2⁄ . 

Therefore, the slope in Figure 5.17 is decreased from 7.4 ± 0.7 𝑠−1/2 when the 

tissue and Perftoran phases were saturated to 5.8 ± 0.9 𝑠−1/2 when the tissue 

only was saturated, explaining the previously observed slightly different build-

up times Tdiff for each saturation schemes (Table 5.9). 

 

Figure 5.17 Experimentally measured and normalised signal from the tissue phase as a function 

of √Δ𝜏. Orange data were acquired after saturation of the tissue phase (195 ppm) whereas 

green data were acquired after saturation of both the tissue phase and the Perftoran phase (90 

ppm). 
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5.5. Conclusions 

In this study, we have used hyperpolarized 129Xe to evaluate the gas diffusion 

through excised rat lungs. We have demonstrated that CSSR dynamic 

spectroscopy with perfluorocarbon emulsion as a blood replacement in excised 

lungs allows for the selective saturation and detection of the 129Xe dissolved in 

the tissue or the blood compartments. The technique is sensitive enough to 

detect the Perftoran signal located in the capillaries, independently to the tissue 

signal, with a clear chemical shift difference and no peak overlap with neither 

the tissue nor the gas phase. The selective saturation has allowed the 

measurement of the signal build-up in each phase, with no saturation of the 

other 129Xe phases. Different exponential time constants for the signal build-up 

were observed in the tissue phase when the tissue only or both the tissue and 

the Perftoran phases have been saturated. This difference was emphasised by 

the representation of the signal build-up against √𝜏, showing a faster build-up 

at short times when only the tissue was saturated (Figure 5.17). 

The measurement of such parameter should be further studied in animal 

models where the gas exchange is impaired. This technique would replace the 

technically difficult lung function tests in small animals, but however 

necessitate sacrificing the animal and replacing the blood by PFCE. The use of 

theoretical models such as the Månsson model (11) on these build-up curves, 

or even the Patz model (10) and the MOXE model (36) will allow for the 

exploration of animal models such as the bleomycin rat model described by a 

parenchymal thickening, in synergy with DLCO (diffusing capacity of the lung 

for carbon monoxide), a clinical test measuring the gas transfer from the 

airspace to the RBC. These mathematical models use CSSR build-up data and 

fitting parameters to provide thickness measurements of the parenchyma, or the 

alveolar diameter. Histological studies would confirm the fibrotic thickening 

(37). Moreover, a regional mapping of the gas uptake in the PFCE will be 

possible using the XTC technique developed by Ruppert et al. (7). The 

multimodality of the hyperpolarization techniques would allow the evaluation 

of both parenchymal thickening and alveolar degradation using hp 129Xe 

magnetization kinetics and hp 83Kr 𝑇1  relaxation mapping respectively. The 

bleomycin-induced viscoelastic changes and alveolar degradation will be 



 146 

assessed using plethysmography (38). Finally, recent advances on 19F 

sensitivity (39) allowed for the quantification of the minimum detectable 

fluorine concentration in the sample under the given laboratory hardware 

settings, and would allow the 19F MRI of the PFCE in the lungs. 

Even if the three 129Xe phases are separated by a large chemical shift and do 

not require a very narrow and selective pulse (e.g. reference (12) used a 

custom-designed RF pulse), particular considerations should be taken to avoid 

the possible hardware difficulties that we encountered during the course of this 

study. The coils should have an homogeneous excitation in order to allow a 

precise calibration of the chemical shift selective low power RF pulse. The coil 

should also have a sufficient shielding to avoid any RF noise. Indeed, the 

CSSR spectra acquired for this work were presenting a low frequency noise 

that appeared at a very close frequency to that of the 129Xe dissolved in tissue 

and at the early diffusion delays, therefore substantially altering the calculated 

diffusion constants 𝑇𝑑𝑖𝑓𝑓. 

The partial blood replacement with PFCE for in vivo exploration would 

complicate the model as the red blood cells 129Xe peak would appear close to 

the tissue peak and there would be two peaks representing one compartment, 

therefore reducing the amount of signal in both. This study is however 

possible, and both peaks should show similar build-ups. Moreover, the use of 

breathable hyperpolarized gas mixed with 21% O2 would provide a sufficiently 

long 𝑇1 = 12.9 𝑠 in the PFCE phase (Figure 5.9). 

The perfluorocarbon emulsion (PFCE) concentration appeared to be an 

important factor. The original Perftoran 10 % was not providing sufficient 

dissolved 129Xe signal within the excised lungs (data not shown) and required 

concentrating it up to 19.2 %. The concentration process involves slight 

heating and vacuum of the solution, which might be deleterious for the 

emulsion compound. Some investigations on the Perftoran structural change 

upon concentration should be done.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE OUTLOOK 

The work presented in this thesis investigates hyperpolarized 83Kr and 129Xe as 

biomarkers for pulmonary diseases. Three potential markers have been 

evaluated in ex vivo rat lungs and in solution. 

 

(i) The 83Kr surface quadrupolar relaxation (SQUARE) has been validated in 

excised healthy rat lungs prior to the work realised for this thesis (1). Chapter 

3 and (2) detail an application of this technique to an animal model of 

emphysema, where the surface-to-volume ratio within the lungs is decreased 

due to an alveolar wall destruction. The 83Kr SQUARE 𝑇1 maps allow for a 

qualitative discrepancy between healthy and emphysematous lungs. The 

analysis of the overall 𝑇1  distribution within the lungs demonstrated a 

significant difference between the control and treated animals. A correlation 

analysis also indicated a relationship between the regional 83Kr relaxation 

behaviour and the histologically measured alveolar dimensions in each lobe. 

Some further work can be done on the ex vivo animal model of emphysema. 

The obtained results can be compared to 129Xe ADC MRI that has been 

correlated to the alveolar radius (3). Furthermore, the mean alveolar area 

(MAA) has been proved to be an efficient measurement for the 𝑆 𝑉⁄  in the 

lungs, but most hyperpolarized studies were using the gold standard 

histological intercept measurement. In future works, this could be addressed 

with a new cohort of rats. Further comparisons with the 𝑆 𝑉⁄  obtained through 

SQUARE with that from hp 129Xe ADC measurements and hp 129Xe dissolved 

phase measurements would shine further light on this new biomarker. 

Such surface-to-volume ratio dependent 83Kr contrast will be implemented to a 

human scale MRI system at the Sir Peter Mansfield Imaging Centre. Once the 

threshold for healthy human alveolar 𝑇1  will be determined, the SQUARE 

maps will provide an easy and early diagnosis of emphysema. The translation 

of this technology from excised rat lungs to human lungs involves a 3-fold 

increase in the alveolar diameter. The 𝑇1  relaxation is therefore expected to 

increase by three times (4). The shift from 9.4 T to lower 𝐵0 magnetic field, 7 



 153 

T, might however shorten the 𝑇1  relaxation (5). Better imaging protocols 

should be implemented to improve the image signal-to-noise ratio (SNR) with 

a bigger coil. It should be noted that there is a lot of room for optimization of 

the experimental protocol. For example, the production of hp 83Kr can be 

further improved leading to higher signal intensity (6). Furthermore, EPI 

acquisition schemes utilizing the long 𝑇2  relaxation time of 83Kr and 

compressed sensing can be explored and counteract sensitivity limitations. EPI 

would have the advantage of using 90° pulses instead of small flip angle 

excitation, thereby potentially improving signals 5-fold over what is currently 

been used. Lastly, better coil design for the low radiofrequency of 83Kr may 

further improve sensitivity. 

 

(ii) The investigations on a new 129Xe biosensor has been presented in Chapter 

4 and (7). It is based on the tethering of a cryptophane A to a paramagnetic 

GdDOTA group inducing the fast depolarization of the encapsulated 129Xe, that 

subsequently exchanges with the surrounding dissolved 129Xe atoms. Different 

molecular derivatives of the model biosensor were tested in vitro. 129Xe 

relaxation was induced by the close vicinity of the noble gas atom and the 

paramagnetic GdDOTA, and is displaced by fast chemical exchange from the 

cage to the medium. This sensor showed clearly different relaxation behaviour 

when the cage was tethered to a GdDOTA and when it was not. Unlike most 

129Xe biosensors, it is not based on the detection of a small chemical shift but 

the measurement of the dissolved phase (~200 ppm) and will not require a high 

spectral resolution thanks to a low background noise level. 

A functionalised biosensor will be evaluated. This time, the linker between the 

cryptophane A cage and the paramagnetic GdDOTA will be the target of 

MMP-9, an abundant enzyme in diseased lungs. The presence of the enzyme 

would induce the cleavage of the biosensor and therefore no relaxation will be 

generated. In the absence of the MMP-9 enzyme, the biosensor remains intact 

and a fast relaxation of the hyperpolarized 129Xe would be induced as shown in 

Chapter 4. This will induce a positive contrast, with a higher signal appearing 

from the places where the enzyme is present. This would however necessitate 

an homogeneous repartition of the biosensor in the organ. This issue will be 

overcome by assessing the biosensor repartition in the organism, using 1H MRI 
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as it has been shown that the proton relaxation is unaffected by the cleavage of 

the molecule. 

 

(iii) In Chapter 5, the use of synthetic blood has permitted for a clear 

distinction of the blood compartment on an ex vivo rat lung 129Xe NMR 

spectrum. The complete blood replacement in the excised organ tackles the 

problem of the dissolved 129Xe overlapping peaks in vivo. Instead of displaying 

three peaks for the red blood cells, the plasma and adipose cells, and the lung 

parenchyma, the dissolved 129Xe spectrum only shows two peaks for the lung 

tissue (195 ppm) and the synthetic blood (90 ppm). The two compartments can 

be selectively excited thanks to their separated respective chemical shifts. This 

compartmentalization in excised lungs will allow for novel evaluation of the 

gas transfer in animal models. 

The use of better coil could improve the selective saturation and excitation, and 

homogeneity across the sample region. The synthetic blood needed to be 

concentrated to be able to detect the 129Xe dissolved in the lung capillaries. The 

129Xe chemical shift and 𝑇1 should be evaluated in the synthetic blood after 

concentrating it, in order to verify the good quality of the product after the 

procedure. More improvements can be done on the dynamic spectroscopy 

protocols, with optimized delays, saturations, randomisation, and averaging. 

This will allow for more applications in excised lungs of animal models. The 

difference in 129Xe diffusion through the parenchyma should be observed in an 

animal model of pulmonary fibrosis and analysed using diffusion models (8-

10). Some imaging techniques such as XTC (11) can be derived from the 

knowledge of the gas diffusion behaviour in the healthy and pathologic lungs. 

Finally, despite the complex 19F spectrum in vitro and in vivo, recent advances 

in 19F NMR and MRI sensitivity will allow for a mapping of the capillaries in 

the organ. 

 

The work presented in this document intends to find biomarkers for specific 

characteristics of pulmonary diseases. Multimodal imaging will facilitate 

pulmonary diagnosis by addressing the variety and complexity of lung 

pathologies. The combination of 129Xe and 83Kr with the markers described in 
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this work seeks to enable the evaluation of both the alveolar structural integrity 

and the parenchymal thickness. 
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APPENDICES 

 

Appendix 1: Birdcage coil construction for 129Xe excitation and 

detection in the University of Nottingham preclinical MRI facilities 

 

This section details a custom-built 129Xe coil for the in vivo preclinical MRI 

Bruker scanner, located in the psychology department of the university of 

Nottingham. 

Radiofrequency (RF) coils are used for the detection of the NMR signal. MRI 

imposes additional field homogeneity requirements on the RF coil. To date, the 

most commonly used in MRI and the most volume homogeneous RF 

resonators have the cylindrical geometry and are commonly termed “birdcage 

coils”. Unlike a solenoid coil, the 𝐵1  magnetic field in birdcage coils is 

generated perpendicular to the main axis of the cylinder of the coil. This allows 

for the alignment of the opening of the coil with the magnet bore thus giving a 

great opportunity to study live animals in relatively small bores (gradients bore 

diameter: 12 cm). In addition, the open bore design allows for a better delivery 

of life support and breathing for the animals during the experiments in vivo. 

The birdcage coil for 129Xe resonance frequency (83.8 MHz) was designed 

using the shareware program “BirdcageBuilder”, distributed by the College of 

Medicine of Pennsylvania State University, USA (1). 

The low-pass concept of the present birdcage coil was borrowed from a 

commercial Bruker coil used for measurements in small animals in vivo in 

scanner with the same bore size. 

The critical geometric parameters were the diameter of the coil, the number 

and length of the rungs and the diameter of the RF shield surrounding the coil. 

The RF shield surrounding the coil is a very important component in the coil 

design as it alters the resonance frequency of the coil by inductive coupling and 

also ensures that no detuning of the tuning and matching capacitors occurs 

outside the magnet. Therefore, the ratio of the coil diameter to the RF shield 

diameter was approximately 0.66 to minimise the inductive coupling between 

the shield and the coil. 
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The following additional geometric parameters were used in the calculations of 

the rung capacitance to ensure that the coil resonates at 83.023 MHz: coil 

diameter = 74 mm; length of rungs = 148 mm and shield diameter = 112 mm. 

In principle, at least 50 % of the coil surface has to be covered by the 

conductor. The following calculations were used to evaluate the width of an 

individual rung. The circumference of the coil is 𝜋×74 𝑚𝑚 = 233 𝑚𝑚 , 

therefore at least 117 mm have to be covered by the conductor. This results in 

approximately 7.3 mm for an individual rung and 16 rungs in total. 

A1.1. Rung capacitor value determination 

To determine the value of the rung capacitors of the low pass birdcage coil, the 

parameters displayed in Table A.1 were used in the simulation using the 

“BirdcageBuilder” software. The simulation returned a rung capacitor value of 

13.9 pF. 

Resonance frequency 83.8 MHz 

Type of ER Rectangular 

Nb of rungs 16 

Coil radius (cm) 3.7 

Leg Length (cm) 14.8 

Leg Width (cm) 0.8 

RF shield radius (cm) 5.6 

ER segment length (cm) 1.45 

ER segment width (cm) 0.8 

Table A.1 Geometrical parameters for the construction of the 129Xe birdcage coil resonating at 

83.8 MHz at 7 T. 

  



 159 

A1.2. Conductor thickness in the RF shield 

In simplest terms, the main purpose of the RF shield is to avoid the detuning of 

the tuning and matching capacitors when the coil is placed inside the magnet 

bore for measurements. Therefore, the thickness of the shield conductor should 

exceed the required skin depth 𝛿  for an efficient isolation from unwanted 

irradiation. The skin depth can be determined using the well-known 

relationship (2): 

 𝛿 = √
2𝜌

2𝜋𝜐𝜇
 Eq. A.1 

where 𝜈 is the frequency in Hz, 𝜌 is the resistivity of the conductor in Ω. m, 

and 𝜇 is the magnetic permeability of the conductor in 𝐻. 𝑚−1. 

Using the 129Xe resonance frequency at 7 T 𝜐 = 83.8 𝑀𝐻𝑧, the resistivity of 

copper 𝜌 = 1.678×10−8Ω. 𝑚  and the magnetic permeability of copper 𝜇 =

1.256×10−6𝐻. 𝑚−1, we get a skin depth of 𝛿 = 7.13×10−6𝑚. 

This means that the thickness of the copper conductor chosen for the shield 

manufacturing has to exceed 7 μm in order to provide efficient isolation from 

unwanted irradiation. 

A1.3. 129Xe birdcage coil outline and manufacturing 

The outline of the coil is given in Figure A.1. The birdcage coil is composed of 

16 equally spaced rungs connected by two end-rings as shown in the left panel 

of Figure A.1. To ensure the desired low-pass band, the rung capacitors were 

placed in the centre of each rung. 
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Figure A.1 Left panel - The outline of the coil with all relevant sizes. Central panel – mounting 

points of tuning and matching capacitors are shown. The capacitive matching circuit was used 

in this particular design to ensure that the coil resonates at the 129Xe frequency at 7 T. Right 

panel – schematic of the capacitive matching circuit. 

Copper tape (Saint Gobain, France) was used to manufacture rungs, end rings 

and other conducting components. 15 pF non-magnetic chip ceramic high 

power capacitors (ATC, New York, USA) have been used as rung capacitors. 

A 2 mm thick acrylic cylinder with OD = 74 mm and length = 271 mm was 

used as a coil holder. The capacitive matching network shown in the right 

panel of Figure 2.2 was used to match the impedance to 50 Ohm and to tune 

the coil to the resonance frequency of 83.8 MHz. The circuit was attached to 

the coil as shown in the middle panel of Figure A.1. Glass trimmer capacitors 

(Voltronics Corporation, Maryland, USA) were used as variable tuning and 

matching capacitors. 
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Figure A.2 Photographs of the components of a 129Xe birdcage coil for a preclinical 7 T Bruker 

MRI scanner: (a) the birdcage coil, (b) the RF shield, (c) mounting points of the capacitive 

matching network, (d) the coil body with mounted 15pF rung capacitors, and (e) BNC plug and 

matching rods as positioned in the MRI scanner. 

The RF shield composed of 9 copper foil strips of 40 mm in width and 270 mm 

in length was mounted onto 2 mm acrylic holder of OD = 112 mm and of 

length = 271 mm. The strips have been place evenly around the acrylic 

cylinder leaving gaps of equal size between the strips. The gaps were produced 

to quench eddy currents during the gradient pulsing of MRI experiments. 

The coil and the shield were held together by two acrylic end-rings of OD = 

108 mm. All components are displayed in Figure A.2. 
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A1.4. Testing, troubleshooting 

The coil is loaded with a 129Xe thermal sample and is matched to the 50 Ohm 

impedance. The RF homogeneity of the coil will also be determined to ensure 

the MR image quality. The coil stability and linear response will also be 

checked during RF pulsing. An example of thermal sample signal is given in 

Figure A.3. 

 

Figure A.3 Longitudinal (a) and axial (b) view of the 129Xe thermal sample using the birdcage 

coil. Scale bar: 10 mm. 
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Appendix 2: Hp 129Xe MRI of bleomycin-treated and control lungs 

using a Variable Flip Angle (VFA) FLASH pulse sequence 

 

This section presents all of the images acquired for comparison of fibrotic 

lungs with control lungs (see Section 5.4.1.). 

 

Figure A.4 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Control lung 2_3 accompanied by a non-slice selective image showing the location of the 

slices. 
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Figure A.5 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Bleo lung 1_3 accompanied by a non-slice selective image showing the location of the slices. 

The left upper lobe is collapsed. 
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Figure A.6 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Bleo lung 3_3 accompanied by a non-slice selective image showing the location of the slices. 
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Figure A.7 Transverse (a) and coronal (b) slice selective VFA FLASH images of the excised 

Bleo lung 3_4 accompanied by a non-slice selective image showing the location of the slices. 
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