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ABSTRACT 

A rapidly growing demand for food, feed, fuel and fibre has put a strain on 

vital resources, leading to increased concern of energy security. This, 

along with threats of global warming has attracted research into renewable 

energy sources and the development of new technologies for biofuel and 

biochemical production. The use of lignocellulosic material for the 

production of sustainable and cost-effective value-added products could 

offer a solution, with underutilised crops playing an important role as the 

raw material used in the biorefining process. However, enzymatic 

hydrolysis of the lignocellulosic material is one of the major barriers to an 

economically viable process, preventing its widespread application.  

The aim of this research was to investigate the feasibility of using solid 

state fermentation (SSF) of underutilised crops for the generation of 

cellulase and glucoamylase enzymes and fermentable sugars, providing 

the basis for a biorefining process for converting the crops to bioethanol 

and/or biochemicals.  

Several underutilised crops were investigated – Bambara, Leucaena, 

Napier grass, Nipa palm, Oil palm fronds, and Sago hampas. 

Characterisation of the crops was performed to determine their basic 

composition. The crops were screened to investigate which crop(s) had the 

highest potential as a substrate for fungal cellulase production during SSF 

and submerged fermentation (SmF). Two fungi, Aspergillus niger and 

Trichoderma reesei, were used, exploring different fermentation conditions 

to optimise the process. The use of A. niger during SSF resulted in the 

highest cellulase activity overall. Under baseline conditions (addition of 

deionised water to 80% (w/v) moisture content (MC)), the cellulase 

activity after five days of incubation ranged from 1.08 ± 0.06 FPU/g to 

17.17 ± 0.44 FPU/g, with the use of Napier resulting in the highest 
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activity. This activity was increased significantly with the addition of starch 

(0.0070 g/g), yeast extract (YE, 0.0175 g/g) and minerals. When these 

nutrients were added to Napier, the cellulase activity increased to as high 

as 31.02 ± 1.01 FPU/g.  

Since Sago hampas contained over 50% (w/w) starch, it was also 

investigated as a substrate for the production of fungal glucoamylases and 

fermentable sugars, using the fungus A. awamori. Glucoamylases could 

not be detected in SSF recovered fungal filtrate, although glucose was 

being produced. A SSF with washing cycles was designed to recover the 

glucose, examining several parameters including nutrients added, length 

between washing cycle and washing solution used. The highest glucose 

was obtained from a daily washing cycle, with the use of 40.0 x 106 

spores/g and the addition of YE (0.0175 g/g) and minerals to 80% (w/v) 

MC to the Sago hampas. This resulted in the conversion of 46.53 % of the 

available starch into glucose after six days of incubation. This was 

compared with the initial continuous SSF over 21 days of incubation which 

gave 10.11% conversion of starch. 

The processes explored in this work could enable the creation of novel 

biorefining processes, using on-site produced cellulase enzymes to 

hydrolyse underutilised crops to a sugar-rich hydrolysate. This, as well as 

the sugar-rich filtrate produced with the Sago hampas, could then be used 

in the production of biofuels and/or biochemicals. 

 

 

 

 



The University of Nottingham                                      Acknowledgements              

iii 

 

ACKNOWLEDGEMENTS  

This thesis and the work that went into putting it together would not have 

been possible without the support of many people around me. First and 

foremost, I would like to say thank you to my supervisors, Professor 

Gregory Tucker, Dr Chenyu Du and Professor Mei Fong Chong, for their 

support and guidance during my MPhil. 

I would like to acknowledge Crops for the Future Research Centre (CFFRC) 

for their financial support of this research and to the people at CFFRC for 

their help throughout the research period. I would particularly like to thank 

Nurdianah Mustafa for collecting and shipping all the crops for this 

research, and to Honorary Professor Aik Chin Soh for his input. 

I would like to thank everyone in Bioenergy and Brewing Sciences, 

especially Dr Nattha Pensupa, Dr Jwan Abdullah Al-Dabbagh, Emily Fong, 

Paul Waldron and Dr Roger Ibbett for their valuable discussions and help in 

the laboratory. 

Lastly, I would like to say thank you to my family and friends for all their 

love and encouragement throughout this research.  



The University of Nottingham                                       Abbreviations 

iv 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

α  Alpha 

AD  Anaerobic digestion 

A. awamori Aspergillus awamori 

A. niger Aspergillus niger 

β  Beta 

CFF  Crops for the Future 

CO2e  Carbon dioxide equivalent 

CBH-I  Cellobiohydrolase I 

CBH-II  Cellobiohydrolase II 

DP  Degree of polymerisation 

DNS  3,5-dinitrosalicylic acid 

FAO  Food and Agricultural Organisation of the United Nations 

FE  Fungal extract 

GHG  Greenhouse gases 

GOPOD Glucose oxidase peroxidase  

HGA  Homogalacturonan 

HMF  5-hydroxymethyl furfural  

HPLC  High performance liquid chromatography 

LiP  Lignin peroxidases 

MSI  Mineral solution I  

MSII  Mineral solution II 

MC  Moisture content 

RG-I   Rhamnogalacturonan I  

RG-II  Rhamnogalacturonan II 

rpm  Revolutions per minute 

SD  Standard deviation 

SmF  Submerged fermentation 

spores/g Fungal spore concentration per gram substrate 

SSF  Solid state fermentation 

T. reesei Trichoderma reesei 

VP  Versatile peroxidases 

YE  Yeast extract 



The University of Nottingham                                       Table of Contents 

v 

 

TABLE OF CONTENTS 

 INTRODUCTION ........................................................ 1 

1.1 ENERGY CRISIS AND ENVIRONMENTAL CONCERNS .................................. 1 

1.2 PROBLEMS ASSOCIATED WITH BIOMASS CONVERSION ............................. 2 

1.3 AIMS AND OBJECTIVES OF THE THESIS ............................................... 4 

1.4 STRUCTURE OF THE THESIS ............................................................ 5 

 LITERATURE REVIEW ............................................... 7 

2.1 PLANT CELL WALL POLYMERS .......................................................... 7 

2.1.1 Cellulose .......................................................................... 9 

2.1.2 Hemicellulose ................................................................. 11 

2.1.3 Pectins .......................................................................... 14 

2.1.4 Lignin ............................................................................ 16 

2.2 DIGESTION OF LIGNOCELLULOSIC MATERIAL ...................................... 19 

2.2.1 Cellulases ...................................................................... 19 

2.2.2 Hemicellulases ................................................................ 21 

2.2.3 Ligninases ...................................................................... 25 

2.3 STARCH ................................................................................ 27 

2.3.1 Sources and utilisation of starch ....................................... 27 

2.3.2 Starch structure ............................................................. 28 

2.3.3 Starch gelatinisation........................................................ 30 

2.3.4 Digestion of starch by amylolytic enzymes ......................... 30 

2.4 BIOFUEL & BIOCHEMICAL PRODUCTION PROCESS ................................. 33 

2.4.1 Pretreatment .................................................................. 34 

2.4.2 Hydrolysis ...................................................................... 40 

2.4.3 Production of biofuels and biochemicals ............................. 41 

2.5 ENZYME PRODUCTION VIA FUNGAL SOLID STATE FERMENTATION OR SUBMERGED 

FERMENTATION ................................................................................ 42 

2.6 USE OF UNDERUTILISED CROPS AS SUBSTRATES ................................. 44 

2.6.1 Bambara nut (Vigna subterranean) ................................... 44 

2.6.2 Leucaena (Leucaena leucocephala) ................................... 44 

2.6.3 Napier grass (Pennisetum purpureum) .............................. 45 

2.6.4 Nipa palm (Nypa Fruticans) .............................................. 46 

2.6.5 Sago palm (Metroxylon sagu) ........................................... 46 

2.6.6 Oil palm fronds (Elaeis guineensis) .................................... 47 

 MATERIALS AND METHODS .................................... 48 

3.1 PLANT MATERIAL ...................................................................... 48 

3.2 PREPARATION AND STORAGE OF SAMPLES ......................................... 48 



The University of Nottingham                                       Table of Contents 

vi 

 

3.2.1 Knife milling ................................................................... 48 

3.2.2 Ball milling ..................................................................... 49 

3.3 CHEMICALS ............................................................................ 49 

3.4 MEDIA SOLUTIONS ................................................................... 49 

3.5 MICROORGANISMS .................................................................... 50 

3.5.1 Microorganisms .............................................................. 50 

3.5.2 Growth of microorganisms ............................................... 50 

3.5.3 Preparation of spore suspension ....................................... 51 

3.5.4 Long-term storage of microorganisms ............................... 51 

3.6 SUBSTRATE COMPOSITIONAL ANALYSIS ............................................ 52 

3.6.1 Moisture content ............................................................. 52 

3.6.2 Ash content .................................................................... 53 

3.6.3 Elemental analysis .......................................................... 53 

3.6.4 Protein content ............................................................... 54 

3.6.5 Starch content ................................................................ 54 

3.6.6 Total sugar content ......................................................... 58 

3.6.7 Lignin content ................................................................ 60 

3.6.8 Lipid content .................................................................. 62 

3.7 SOLID STATE FERMENTATION ........................................................ 64 

3.7.1 Preparation of substrates ................................................. 64 

3.7.2 Addition of spore suspensions and incubation ..................... 64 

3.7.3 Extraction of fungal enzymes............................................ 65 

3.8 SUBMERGED FERMENTATION ........................................................ 66 

3.8.1 Preparation of substrates ................................................. 66 

3.8.2 Addition of spore suspensions and incubation ..................... 66 

3.8.3 Enzyme extraction .......................................................... 67 

3.9 ENZYME AND GLUCOSE ASSAYS ..................................................... 67 

3.9.1 Cellulase assay (filter paper units) .................................... 67 

3.9.2 Carboxymethyl cellulase (endo-β-1,4-glucanase) assay ....... 69 

3.9.3 Avicelase (exo-1,4-β-glucanase) assay .............................. 72 

3.9.4 β-glucosidase assay ........................................................ 74 

3.9.5 Glucoamylase assay ........................................................ 76 

3.10 STATISTICAL ANALYSIS ............................................................ 79 

 COMPOSITIONAL ANALYSIS ................................... 80 

4.1 INTRODUCTION ........................................................................ 80 

4.2 RESULTS ............................................................................... 80 

4.2.1 Moisture content ............................................................. 80 

4.2.2 Ash content .................................................................... 81 



The University of Nottingham                                       Table of Contents 

vii 

 

4.2.3 Elemental content ........................................................... 82 

4.2.4 Protein content ............................................................... 84 

4.2.5 Starch content ................................................................ 85 

4.2.6 Total sugar content ......................................................... 86 

4.2.7 Lignin content ................................................................ 89 

4.2.8 Lipid content .................................................................. 90 

4.2.9 Mass balance .................................................................. 91 

 PRODUCTION OF CELLULASES ................................ 93 

5.1 INTRODUCTION ........................................................................ 93 

5.2 RESULTS ............................................................................... 95 

5.2.1 Growth of fungus on underutilised crops ............................ 95 

5.2.2 Initial screening of crops, using solid state fermentation ...... 97 

5.2.3 Optimisation of SSF conditions ......................................... 98 

5.2.4 Effect of growth media on fungal cellulase activity ............ 105 

5.2.5 Production of individual cellulase enzymes during SSF ....... 106 

5.2.6 Screening of crops under optimised SSF conditions ........... 108 

5.2.7 Comparison of MSI & MSII, with Aspergillus niger ............. 110 

5.2.8 Comparison of Trichoderma reesei and Aspergillus niger .... 113 

5.2.9 Screening of crops, using submerged fermentation ........... 118 

5.3 SUMMARY ............................................................................ 121 

 PRODUCTION OF GLUCOAMYLASES & GLUCOSE FROM 

SAGO HAMPAS ............................................................................ 122 

6.1 INTRODUCTION ...................................................................... 122 

6.2 RESULTS ............................................................................. 123 

6.2.1 Free sugars in Sago hampas .......................................... 123 

6.2.2 Growth of Aspergillus awamori on different growth media .. 124 

6.2.3 Glucoamylase activity recovered from SSF process ........... 126 

6.2.4 Glucoamylase activity using commercial glucoamylase ...... 128 

6.2.5 Glucoamylase analysis of fungal filtrate revisited .............. 134 

6.2.6 Production of glucose during SSF process ........................ 139 

6.2.7 Production of glucose during submerged fermentation ....... 157 

6.3 SUMMARY ............................................................................ 159 

 DISCUSSION, CONCLUSIONS & FURTURE WORK .. 160 

7.1 DISCUSSION ......................................................................... 160 

7.1.1 Characterisation of underutilised crops ............................ 160 

7.1.2 Production of cellulases ................................................. 161 

7.1.3 Production of glucoamylases and fermentable sugars ........ 172 



The University of Nottingham                                       Table of Contents 

viii 

 

7.2 CONCLUSIONS ....................................................................... 181 

7.3 FUTURE WORK ...................................................................... 182 

 REFERENCES......................................................... 186 

 



The University of Nottingham                                               List of Tables 

ix 

 

LIST OF TABLES 

Chapter 2 

Table 2.1 Some pretreatment methods used to degrade lignocellulosic 

material and their possible effects (DP - degree of polymerisation; SA – 

surface area). Adapted from Talebnia et al. (2010) and Verardi et al. 

(2012). .......................................................................................... 35 

Chapter 3 

Table 3.1  Crops used during this research. ........................................ 48 

Table 3.2  Composition of mineral solution I (MSI), with the addition of 10 

mL trace elements solution and then made up to 1.0 L with deionised 

water. ............................................................................................ 49 

Table 3.3  Composition of mineral solution II (MSII), with the addition of 

10 mL trace elements solution and then made up to 1.0 L with deionised 

water. ............................................................................................ 50 

Table 3.4  Composition of trace elements solution, made up to 1.0 L using 

deionised water. .............................................................................. 50 

Table 3.5  Sugar standard solution preparation. .................................. 59 

Table 3.6  Reagents added to sample tubes after incubation. ................ 60 

Table 3.7  Reagents added to standard lignin solutions. ....................... 62 

Table 3.8  Preparation of glucose standard solutions. ........................... 69 

Table 3.9  Preparation of glucose standard solutions. ........................... 71 

Table 3.10  Preparation of glucose standard solutions. ......................... 73 

Table 3.11  Preparation of ρ-nitrophenol standard solutions. ................. 76 

Table 3.12  Preparation of glucose standard solutions. ......................... 78 

Chapter 4 

Table 4.1 Mass balance for underutilised crops analysed. ...................... 91 

Chapter 5 

Table 5.1 Initial moisture content and final moisture content of substrates 

for SSF process. .............................................................................. 96 

Chapter 6 

Table 6.1 Media conditions used for growth of A. awamori spores. ....... 125 

Table 6.2 Preparation of commercial glucoamylase (AMG) dilutions. ..... 130 

Table 6.3 Glucose concentration of enzyme control tubes (0.5 mL SSF 

fungal filtrate + 0.5 mL 0.2 M Na-acetate buffer, pH 4.5) for inoculated 

and non-inoculated substrates. Both experiments were incubated for 5 d at 

28 °C. The glucoamylase assay was carried out on gelatinised starch at pH 

4.5 and 60 °C for 30 min (n=3). ..................................................... 136 

Table 6.4 Glucoamylase activity for three enzyme solutions – (i) D5 SSF 

fungal filtrate, (ii) Commercial enzyme (4000-fold dilution), (iii) D5 SSF 

fungal filtrate + Commercial enzyme (4000-fold dilution). Glucoamylase 

activity was determined as glucose production from gelatinised soluble 

starch. The assay was carried out at pH 4.5 and 60 °C for 30 min (n=3).

 ................................................................................................... 138 

Table 6.5 Glucose concentration of enzyme control tubes (0.5 mL SSF 

fungal filtrate + 0.5 mL 0.2 M Na-acetate buffer, pH 4.5). 6 h, 24h h, D5 

fungal SSF were carried out for 6 h, 1 d and 5 d, respectively (n=3). ... 139 



The University of Nottingham                                               List of Tables 

x 

 

Table 6.6 Mass balance showing starch consumed and glucose produced 

during the three different experiments, and the efficiency of the 

conversion. ................................................................................... 147 

Table 6.7 Mass balance showing starch consumed and glucose produced 

during the four different experiments, and the efficiency of the conversion.

 ................................................................................................... 153 

Table 6.8 Nutrients and fungal spore concentration added for four different 

SSF experiments, all carried out for 6 d with washing every day. ......... 155 

 

 



The University of Nottingham                                              List of Figures 

xi 

 

LIST OF FIGURES 

Chapter 2 

Figure 2.1 Schematic diagram of cellulose (Cave & Walker , 1994). ....... 10 

Figure 2.2 Molecular structure of several cellulose chains, showing the 

inter-chain and intra-chain hydrogen bonding (dotted lines) (Left) and the 

molecular structure of a cellulose repeating unit, showing the β-1,4 

glucosidic linkage and intra-chain hydrogen bonding (dotted lines) (Right) 

(Poletto et al., 2013). ...................................................................... 11 

Figure 2.3 Schematic diagram of different types of hemicelluloses (Scheller 

& Ulvskov, 2010). ............................................................................ 13 

Figure 2.4 Simplified schematic diagram of the three main pectic 

polysaccharides - homogalacturonan (HGA), rhamnogalacturonan-I (RG-I) 

and rhamnogalacturonan-II (RG-II) (Willats et al., 2001) ..................... 15 

Figure 2.5 Primary precursors of lignin (from left to right): p-coumaryl 

alcohol, coniferyl alcohol, and sinapyl alcohol. Adapted from Collinson and 

Thielemans (2010). ......................................................................... 17 

Figure 2.6  Structural model of a section of lignin (Qiu & Chen, 2006). ... 18 

Figure 2.7 Molecular structure of cellulose and action sites for three 
cellulase enzymes (endoglucanase, exoglucanase and β-glucosidase) 

(Kumar et al., 2008). ....................................................................... 20 

Figure 2.8 Structural components found in hemicelluloses and the action 

sites of some enzymes involved in their degradation (Shallom & Shoham, 

2003). ........................................................................................... 22 

Figure 2.9 Action sites of some enzymes involved in degradation of xylans 

(Kumar et al., 2008). ....................................................................... 23 

Figure 2.10  Simplified reaction of enzymes involved in lignin degradation 

– lignin peroxidase (LiP) and glyoxal oxidase (Hatakka, 2001). ............. 26 

Figure 2.11  Simplified reaction of enzymes involved in lignin degradation 

– manganese peroxidase (MnP) and laccase (Hatakka, 2001). .............. 26 

Figure 2.12 Chemical structure of starch components – amylose and 

amylopectin (El-Fallal et al., 2012). ................................................... 28 

Figure 2.13  Schematic diagram of amylose (α-1,4) and cellulose (β-1,4) 

glucose polymers. Adapted from Zobel (1988). ................................... 29 

Figure 2.14 Different enzymes involved in the degradation of starch. The 

open end structure represents the reducing ends of a starch molecule (van 

der Maarel et al., 2002).................................................................... 31 

Figure 2.15 Schematic diagram showing the role of pretreatment methods 

(Kumar et al., 2009). ....................................................................... 34 

Chapter 4 

Figure 4.1 Moisture content for samples of underutilised crops. The results 

are the mean + SD (n=3). Bars with different letters are significantly 

different (p<0.05). .......................................................................... 81 

Figure 4.2 Ash content (dry weight basis) for samples of underutilised 

crops. The results are the mean + SD (n=3). Bars with different letters are 

significantly different (p<0.05). ......................................................... 82 



The University of Nottingham                                              List of Figures 

xii 

 

Figure 4.3 Nitrogen, carbon, hydrogen and sulphur present in samples of 

underutilised crops. The results are the mean + SD (n=3). Bars with 

different letters are significantly different (p<0.05).............................. 83 

Figure 4.4 Protein content of samples of underutilised crops. The results 

are the mean + SD (n=3). Bars with different letters are significantly 

different (p<0.05). .......................................................................... 85 

Figure 4.5 Starch content in samples of underutilised crops. The results are 

the mean + SD (n=3). Bars with different letters are significantly different; 

Sago hampas (not shown on graph) was significantly different (p<0.05). 86 

Figure 4.6 Sugar concentration for samples of underutilised crops. The 

results are the mean + SD (n=5). Bars with different letters are 

significantly different (p<0.05). ......................................................... 88 

Figure 4.7 Sugar content for samples of underutilised crops. The results 

are the mean + SD (n=5). Bars with different letters are significantly 

different (p<0.05). .......................................................................... 89 

Figure 4.8 Lignin content (dry weight basis) for samples of underutilised 

crops. The results are the mean + SD (n=3). Bars with different letters are 

significantly different (p<0.05). ......................................................... 90 

Figure 4.9 Lipid content (dry weight basis) in samples of underutilised 

crops. The results are the mean + SD (n=3). Bars with different letters are 

significantly different (p<0.05). ......................................................... 91 

Chapter 5 

Figure 5.1 Growth of fungi on underutilised crops during solid state 

fermentation (28 °C in a static incubator for 5 d; substrates at 80% (w/v) 

MC). A: growth of A. niger on Sago hampas; B: growth of T. reesei on Oil 

palm fronds. ................................................................................... 96 

Figure 5.2 Cellulase activity recovered during SSF, using underutilised 

crops as substrates (fermentation by A. niger at 28 °C in a static incubator 

for 5 d incubation; substrates at 80% (w/v) MC). The results are the mean 

+ SD (n=3). Bars with different letters are significantly different (p<0.05).

 ..................................................................................................... 97 

Figure 5.3 Effect of different nutrients on cellulase production by A. niger 

during SSF process (28 °C in a static incubator for up to 7 d incubation), 

compared to baseline conditions (no nutrients; addition of deionised water 

to 80% (w/v) MC). Nutrients added to the Napier included 0.0070 g/g 

starch, 0.0175 g/g YE and/or MSI to 80% (w/v) MC. The results are the 

mean + SD of each data set (n=3). ................................................... 99 

Figure 5.4 Effect of different nutrients on cellulase production by A. niger 

during SSF (28 °C in a static incubator for up to 7 d), compared to 

baseline conditions (no nutrients; addition of deionised water to 80% 

(w/v) MC). Nutrients added to the Napier included 0.0070 g/g starch, 

0.0175 g/g YE and/or MSI to 80% (w/v) MC. The results are the mean + 

SD (n=3). .................................................................................... 102 

Figure 5.5 Effect of fungal growth media on cellulase production by 

Aspergillus niger during SSF under optimised conditions (Napier with the 

addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI to 80% (w/v) MC; 5 

d static incubation at 28 °C). The results are the mean + SD (n=3). Bars 

with different letters are significantly different (p<0.05). .................... 106 

Figure 5.6 Production of individual cellulase enzymes (endoglucanase, 

exoglucanase and β-glucosidase) by A. niger during SSF under optimised 

conditions (Napier with the addition of 0.0070 g/g starch, 0.0175 g/g YE 



The University of Nottingham                                              List of Figures 

xiii 

 

and MSI to 80% (w/v) MC; 5 d static incubation at 28 °C), when A. niger 

spores grown on different growth media (PDA or Agar + Napier + starch 

+YE + MSI). The results are the mean + SD (n=3). .......................... 107 

Figure 5.7 Comparison of cellulase production by A. niger using 

underutilised crops under optimised SSF conditions (addition of 0.0070 g/g 

starch, 0.0175 g/g YE and MSI to 80% (w/v) MC); SSF at 28 °C in a static 

incubator for 5 d incubation (A); and percent increase, compared with 

cellulase activity for the baseline conditions (B). The results are the mean 

+ SD (n=3). Bars with different letters are significantly different (p<0.05).

 ................................................................................................... 109 

Figure 5.8 (A) Effect of MSII on fungal cellulase production during SSF 

(substrates at 80% (w/v) MC with the addition of 0.0070 g/g starch, 

0.0175 g/g YE and MSII); (B) Comparison of addition of MSI and MSII to 

baseline conditions (addition of no nutrients). Fermentation by A. niger at 

28 °C in a static incubator for 5 d incubation. The results are the mean + 

SD (n=3). Bars with different letters are significantly different (p<0.05).

 ................................................................................................... 112 

Figure 5.9 (A) Cellulase production by Trichoderma reesei during 5 d SSF 

under optimal conditions (addition of 0.0070 g/g starch, 0.0175 g/g YE 

and MSI, to 80% (w/v) MC); and (B) cellulase production by Aspergillus 

niger during 5 d SSF under the same conditions. The results are the mean 

+ SD (n=3). Bars with different letters are significantly different (p<0.05).

 ................................................................................................... 114 

Figure 5.10 Impact of MSI and MSII on cellulase production by 

Trichoderma reesei during SSF under optimised conditions (substrate at 

80% (w/v) MC with the addition of 0.0070 g/g starch, 0.0175 g/g YE and 

either MSI or MSII; Incubation at 28 °C for 5 d). The results are the mean 

+ SD (n=3). Bars with different letters, within the same data set, are 

significantly different (p<0.05). ....................................................... 115 

Figure 5.11 Comparison of cellulase production by Aspergillus niger during 

SSF under optimised conditions (substrate at 80% (w/v) MC with the 

addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI) and cellulase 

production by Trichoderma reesei during SSF under optimised conditions 

(substrate at 80% (w/v) MC with the addition of 0.0070 g/g starch, 0.0175 

g/g YE and MSII). The results are the mean + SD (n=3). ................... 117 

Figure 5.12 Cellulase production by A. niger under optimised conditions 

(addition of starch, YE and MSI) and baseline conditions (no nutrients) 

during SmF (A) and SSF (B). The results are the mean + SD (n=3). Bars 

with different letters, within the same data set, are significantly different 

(p<0.05). ..................................................................................... 119 

Chapter 6 

Figure 6.1 Starch content, as well as D-glucose and/or maltodextrin 

content, in samples of Sago hampas. Values are means + SD (n=3). .. 124 

Figure 6.2 Growth of Aspergillus awamori spores on different growth 

media. All media contained 2% (w/v) agar + 5% (w/v) Sago hampas plus 

(A) deionised water, (B) 0.5% (w/v) YE + deionised water, (C) MSI, (D) 

0.5% (w/v) YE + MSI. All samples were incubated for 7 d at 28 °C in a 

dark static incubator. ..................................................................... 126 

Figure 6.3 Glucoamylase activity of fungal filtrate. The fungal filtrate was 

collected after 5 d incubation and glucoamylase activity was determined as 

glucose production from non-gelatinised soluble starch. The assay was 



The University of Nottingham                                              List of Figures 

xiv 

 

carried out at pH 4.5 and 60 °C for up to 30 min. The results are the mean 

+ SD (n=3). ................................................................................. 127 

Figure 6.4 Effect of starch gelatinisation on the glucoamylase assay. A 

commercial glucoamylase (200-fold dilution) was assayed using either 

gelatinised or non-gelatinised soluble starch. The assay was carried out at 

pH 4.5 and 37 °C for up to 60 min. The results are the mean + SD (n=3).

 ................................................................................................... 129 

Figure 6.5 Production of glucose from gelatinised starch by commercial 

glucoamylase at different concentrations. Stock glucoamylase had an 

activity of 300 U/mL. The assay was carried out at pH 4.5 and 37 °C for up 

to 60 min. The results are the mean + SD (n=3). .............................. 130 

Figure 6.6 Production of glucose over time due to activity of commercial 

glucoamylase (1-4000 dilution) on gelatinised starch. The assay was 

carried out at pH 4.5 and37 °C for up to 60 min. The results are the mean 

+ SD (n=3). ................................................................................. 131 

Figure 6.7 Effect of pH on activity of commercial glucoamylase (4000-fold 

dilution). The assay was carried out on gelatinised soluble starch at 37 °C 

for 30 min. Results are the mean (n=3). .......................................... 133 

Figure 6.8 Effect of temperature on activity of commercial glucoamylase 

(4000-fold dilution). The assay was carried out on gelatinised soluble 

starch at pH 4.5 for 30 min. Results are the mean (n=3).................... 134 

Figure 6.9 Glucoamylase activity of fungal filtrate. The fungal filtrate was 

collected after 5 d incubation and glucoamylase activity was determined as 

glucose production from gelatinised soluble starch. The assay was carried 

out at pH 4.5 and 60 °C for up to 30 min. The results are the mean + SD 

(n=3). ......................................................................................... 135 

Figure 6.10 Production of glucose using a commercial glucoamylase (stock 

– 300 U/mL) at 0.25 U/g Sago hampas. 6 g Sago hampas, made up to 

10% (w/v), was used as substrate; hydrolysis performed in shaking 

incubator at 60 °C and 150 rpm. The results are the mean + SD (n=3).

 ................................................................................................... 140 

Figure 6.11 Glucose recovered in continuous SSF fungal filtrates over 21 d 

incubation period. SSF carried out using A. awamori on Sago hampas (with 

addition of 0.0175 g/g YE and MSI to 80% (w/v) MC), at 28 °C in a static 

incubator for up to 21 d. The results are mean + SD (n=3). ............... 143 

Figure 6.12 Glucose recovery from washed SSF experiments. (A) Glucose 

recovered in SSF fungal filtrates and (B) Accumulation of glucose in fungal 

filtrate for D3 and D5 washing experiments. SSF carried out using A. 

awamori on Sago hampas (with addition of 0.0175 g/g YE and MSI to 80% 

(w/v) MC), at 28 °C in a static incubator for up to 20 d incubation. The 

results are mean + SD (n=3). ......................................................... 145 

Figure 6.13 Effect of washing cycle and wash buffer on glucose production. 

SSF was carried out using A. awamori on Sago hampas (with the addition 

of 0.0175 g/g YE and MSI to 80% (w/v) MC on day 0), at 28 °C in a static 

incubator for up to 6 d. The glucose recovered in SSF fungal filtrates was 

measured for (A) D1 washing, (B) D2 washing, (C) D3 washing, (D) D3,D1 

washing experiments, respectively. The fungal filtrate was extracted using 

either 0.2 M Na-acetate, pH 4.5 buffer or 0.5% (w/v) YE + MSI. The 

results are the mean + SD (n=3). ................................................... 150 

Figure 6.14 Accumulation of glucose in fungal filtrate for D1, D2, D3, and 

D3,D1 washing experiments. SSF carried out using A. awamori on Sago 



The University of Nottingham                                              List of Figures 

xv 

 

hampas (with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC on day 

0), at 28 °C in a static incubator for up to 6 d incubation. Filtrates were 

collected by washing with 0.2 M Na-acetate buffer, pH 4.5. The results are 

the mean + SD (n=3). ................................................................... 151 

Figure 6.15 Percent starch (based on 50.88% starch in Sago hampas) 

remaining at end of SSF incubation. SSF carried out using A. awamori on 

Sago hampas (with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC 

on day 0), at 28 °C in a static incubator for up to 21 d. The results are the 

mean + SD (n=3). Bars with different letters, within the same data set, 

are significantly different (p<0.05). ................................................. 152 

Figure 6.16 Effect of nutrients and fungal spore loading on glucose 

production. (A) Glucose recovered in fungal filtrates after each wash and 

(B) Accumulation of glucose over SSF. SSF carried out using A. awamori 

on Sago hampas, at 28 °C in a static incubator for up to 6 d incubation. 

Nutrients and spores added on day 0 – (i) Sago + water (addition of 

deionised water to 80% (w/v) MC); (ii) Sago + YE + MSI (addition of 

0.0175 g/g YE and MSI to 80% (w/v) MC); (iii) Sago + FE + MSI (addition 

of 0.0175 g/g fungal extract and MSI to 80% (w/v) MC); (iv) 40.0 x 106 

spores/g (addition of 0.0175 g/g YE and MSI to 80% (w/v) MC, plus 40.0 x 

106 spores/g). For all other experiments 4.0 x 106 spores/g added. 

Filtrates were collected by washing with 0.2 M Na-acetate buffer, pH 4.5. 

The results are the mean + SD (n=3). ............................................. 156 

Figure 6.17 Glucose production from Sago hampas substrate by A. 

awamori during submerged fermentation (SmF). Sago hampas prepared 

with addition of 0.2 M Na-acetate buffer, pH 4.5 to 80% (w/v) MC or 

prepared with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC; SSF 

carried out at 28 °C in a shaking incubator at 150 rpm for up to 6 d 

incubation. The results are the mean + SD (n=3). ............................. 158 



The University of Nottingham                                                Introduction 

1 

 

 INTRODUCTION 

1.1 ENERGY CRISIS AND ENVIRONMENTAL CONCERNS 

It is reported that the global population is projected to increase from 

around 7 billion people today to just over 9 billion people by the year 2050 

(United Nations, 2015). This population growth, as well as the expansion 

of the industrial sector and changes in people’s lifestyle, has resulted in a 

rapidly growing demand for food, feed, fuel and fibre. Global primary 

energy consumption continues to rise, with consumption reaching 13,148 

million tonnes oil equivalent in 2015, an increase of 1% from 2014 data 

(BPstats, 2016).  

Much of this energy is derived from fossil fuels (petroleum, coal and 

natural gas), which provided 86.0% of total energy consumption in 2015 

when split by fuel source (BPstats, 2016). Conversion of fossil fuels results 

in the emission of greenhouse gases (GHG), such as carbon dioxide (CO2), 

methane (CH4) and nitrous oxide (N2O), into the atmosphere, leading to 

climate changes. In order to reduce the negative effects from GHG 

emissions, the Committee on Climate Change (2008) has estimated that 

we need to reduce global GHG emissions by 50% by 2050; this is 

equivalent to “reductions of global GHG emissions between 20-24 billion 

tonnes CO2 equivalent (CO2e) in 2050, with further reductions to 8-10 

billion tonnes by 2100”. Furthermore, energy security due to threats of 

potential energy shortages is also a major concern for many countries.  

In order to continue to meet these growing energy demands, yet reduce 

GHG emissions, research into the use of renewable energy sources and the 

development of new biosynthetic technologies that will help reduce 

dependence on fossil fuels is key. Although there was an increase of 15% 

over 2014 data, currently less than 10% of global primary energy 
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consumed comes from renewable energy, with only 2.8% coming from 

wind, solar, geothermal, biomass and waste (BPstats, 2016). 

Nevertheless, biomass has the potential to contribute to future energy, as 

it can be used for the production of bioenergy, which can be harnessed in 

several ways, such as in the production of associated co-products like feed 

and chemicals or as a fuel in the transport sector (Food and Agriculture 

Organisation of the United Nations (FAO), 2008a; FAO, 2008b). 

1.2 PROBLEMS ASSOCIATED WITH BIOMASS CONVERSION 

When talking about the use of biomass for bioenergy production, this is 

often used to mean biomass from plant material (Biomass Energy Centre, 

2011; Crops for the Future (CFF) Research, 2011a). Although the use of 

biomass for the commercial production of first generation biofuels is 

prevalent, most of the biomass used comes from commercially grown food 

crops. Currently, agricultural production relies on fewer and fewer crops. 

Throughout history, 7000 species have been used in agriculture; however, 

today only 120 crop species contribute 90% of total calories consumed 

(CFF Research, 2011a).  

There are many crops and plants that are underutilised which could play 

an important role in the production of sustainable and cost-effective 

renewable energy, both economically and environmentally. Although these 

underutilised crops are often overlooked they could provide new 

opportunities, in terms of food for increasing populations, as well as being 

used for the production of biofuels and biochemicals. Since these crops 

usually grow in hostile environments they can be grown in areas where 

large-scale commercial crops do not perform well. Alternately, they can be 

grown alongside some monocultures by intercropping, helping to reduce 

soil erosion and degradation, improving sustainability, and creating 

alternate sources of income to reduce agricultural risk. Also, such areas 
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are often inhabited by poorer communities or these crops are already 

subsistently farmed by such communities. Therefore, the development of 

these crops will benefit local communities by developing local industries 

and create an income for poorer people. 

However, even if underutilised crops were to be used in the production of 

biofuels and biochemicals, the use of non-food crops or the waste from 

food crops would need to be used in order to avoid the ‘food versus fuel’ 

conflict. This poses a challenge as the plant biomass from non-food crops 

and waste from food crops typically consists mostly of lignocellulosic 

material which cannot easily be processed. Much research has been 

performed using lignocellulosic material to produce bioenergy; however, 

the production cost is a large hurdle to overcome (Bon & Ferrara, 2007; 

Sarkar et al., 2012). This high cost of production is partly due to the low 

efficacy on the pretreatment step and the lack of cost-effective enzymes 

used to hydrolyse the pretreated biomass into usable sugars (Kumar et al., 

2009). 

There are several different types of pretreatment methods, including 

physical, chemical, physiochemical, and biological, or a combination of 

these methods (Hendricks & Zeeman, 2009; Talebnia et al., 2010). 

Recently biological pretreatment has received attention as it has low 

operational costs and low energy inputs, due to the use of low 

temperatures, pressure, water and chemicals; and it also has a wide 

adaptability on various biomass materials (Dashtban et al., 2009). 

However, biological conversion processes are not yet well established and 

further research needs to be performed to make it commercially viable. 

Currently, the operation time is long, the enzyme productivity is low and 

the impact of this step on following hydrolysis and fermentation steps is 

still unclear (Dashtban et al., 2009).  
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1.3 AIMS AND OBJECTIVES OF THE THESIS 

This project aimed to explore the potential for a biorefining process for the 

production of a fermentable sugar solution that could be used for the 

synthesis of value added products (biofuels and biochemicals) from 

lignocellulosic material, using underutilised crops as the biomass source. 

Several crops were used in this project, including Bambara, Leucaena, 

Napier, Nipa palm, Oil palm and Sago palm.  

The main focus of the project was to investigate the possibility of using a 

short-term biological process as an efficient way of producing fungal 

hydrolytic enzymes (cellulases and glucoamylases), which could then be 

used onsite for the production of fermentable sugars to be used for biofuel 

or biochemical production. In order to do this, soft-rot fungi were applied 

to the underutilised crops during solid state fermentation (SSF) and 

submerged fermentation (SmF). Since the enzymes needed for hydrolysis 

during biofuel or biochemical production are costly and need to be replaced 

often, on-site production of enzymes via a biological process could 

significantly reduce costs and therefore improve the economic viability of 

biofuel or biochemical production from non-food crop and food crop waste 

sources. 

Within this framework, the objectives of this work were as follows: 

1. Characterisation of underutilised crops – 

 To perform compositional analysis of selected underutilised 

crops. 

2. Production of fungal cellulases –  

 To screen and identify the most suitable underutilised crops to 

be used as substrates for the production of fungal cellulases via 

solid state fermentation (SSF) and submerged fermentation 

(SmF), using soft-rot fungi.  
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 To optimise SSF and SmF conditions for maximum cellulase 

production, using the crop that showed the greatest potential.  

3. Production of fungal glucoamylases and sugar-rich solution – 

 To investigate the potential of the use of Sago hampas (as it 

contained over 50% (w/w) starch) as a substrate for the 

production of fungal glucoamylases via SSF and SmF, using 

soft-rot fungi.  

 To propose a novel biological pretreatment to produce a 

fermentable sugar-rich solution from Sago hampas hydrolysis 

via SSF with washing process.  

 To optimise the conditions for glucose production during SSF 

with washing of Sago hampas.  

1.4 STRUCTURE OF THE THESIS 

Chapter 1 gives an overview of the project, an explanation of the current 

problems and some suggestions for solutions to these problems. This is 

followed by a general literature review in Chapter 2, and a description of 

the materials and methods used within this research is given in Chapter 3.  

The work presented in Chapter 4 shows analysis of the composition of the 

underutilised crops. Contents analysed included moisture, ash, lignin, 

protein, lipid, starch, cellulose and hemicellulose content, and elemental 

analysis.  

In Chapter 5, the underutilised crops were used as a biomass substrate for 

the production of fungal cellulases via solid state fermentation, using soft-

rot fungi Aspergillus niger and Trichoderma reesei. The crops were first 

screened to determine which crop(s) showed the most potential as a 

substrate. Several SSF conditions were then optimised using the crops 

which showed the most potential. Conditions investigated included fungus 
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used, addition of starch, addition of nitrogen source and/or minerals, 

incubation period, and culturing of microorganisms on different feed 

stocks. All the underutilised crops were then screened again under the 

optimised conditions to determine the effect on cellulase production. The 

production of fungal cellulases via submerged fermentation was also 

investigated.  

In Chapter 6, Sago hampas was used as a substrate for the production of 

fungal glucoamylases and glucose via solid state fermentation using the 

soft-rot fungus, A. awamori. Optimisation of conditions for increased 

production were investigated, including addition of nutrients, culturing of 

microorganisms on different feed stocks, washing techniques, incubation 

period, and extraction techniques. The production of fungal glucoamylases 

via submerged fermentation was also investigated.  

A general discussion, along with conclusions of this work and suggestions 

for future studies are presented in Chapter 7.  
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 LITERATURE REVIEW 

2.1 PLANT CELL WALL POLYMERS 

The majority of plant biomass constitutes lignocellulosic material, which 

makes up the plant cell walls. Plant cell walls are important features of 

plant cells that perform a number of essential functions for the plant. They 

provide structure and shape to the many different cells types of the plant. 

Plant cell walls also allow plants to withstand large ‘pulling’ and ‘pushing’ 

forces, for example, the plant moving in the wind, whilst providing 

sufficient support to withstand the forces of gravity (Burton et al., 2010). 

Plant cell walls play key roles in growth regulation, differentiation of cells, 

movement of water and nutrients through the plant cells, intercellular 

adhesion and communication and plant defences (Cosgrove, 2005). As an 

alternative to starch, plant cell wall polysaccharides can also be a source of 

metabolisable energy for some plants. For example, galactomannans 

(hemicellulose) in fenugreek seeds, xyloglucans (hemicellulose) in 

tamarind seeds and pectins in lupin seeds (Burton et al., 2010). 

The plant cell wall is able to provide these various functional requirements 

due to its composition. The primary cell walls of higher plants are 

composed of mainly carbohydrates (up to 90% of the dry weight) and the 

remainder as structural glycoproteins (2 – 10%), esters (less than 2%), 

minerals and enzymes (O'Neill & York, 2003). The carbohydrate portion is 

made up of cellulose fibrils that are embedded in a gel-like matrix of other 

complex polysaccharides. These polysaccharides can be divided into two 

classes – hemicelluloses and pectins. Plant cell walls also contain many 

proteins and glycoproteins (Keegstra, 2010). Hemicelluloses bind to the 

cellulose which, together with cellulose, forms a robust network that gives 

structural support to the plant. Pectins are probably the most complex 

polysaccharides and have several functions. Pectins form hydrated gels 
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that form part of the gel-like matrix of the cell wall that allows for 

deposition and extension of the cellulose-hemicellulose network (Willats et 

al., 2001). They are involved in the control of the porosity and thickness of 

the cell wall, as well as acting as a “glue” to hold cells together by forming 

an adhesive layer known as the middle lamella. Pectins are also very 

important in plant-defence responses, as pectins bound by receptor-like 

kinases can initiate a range of cellular changes in response to a pathogen 

attack (Cosgrove, 2005; Cantu et al., 2008). 

As the cells of higher plants stop growing, their walls thicken as they take 

on a structural role, ‘locking’ the cell into a final shape. The cellulose fibrils 

become laminated and lignin, a large polyphenolic molecule is produced. 

Lignin is impermeable, restricting the passage of small molecules and 

gives structural support by making the wall resistant to compressive 

(‘pushing’) forces (Burton et al., 2010). 

There are two general types of plant cell walls based on two things - the 

structure and amounts of hemicelluloses, and the relative amounts of 

pectins present in the wall. Cellulose accounts for about 30% of plant 

primary cell walls in both types. Type I walls contain around 20-30% 

hemicelluloses (typically xyloglucan and/or glucomannan) and 20-30% 

pectin. Type II walls contain around 40-50% hemicelluloses (typically 

arabinoxylan) and around 10% pectin. Type I walls are found in all 

gymnosperms, dicotyledons and non-graminaceous monocotyledons and 

type II walls are found in the Poales order (Poaceae family) (eg. barley 

and rice) (Carpita, 1996; Nishiyama, 2009; Scheller & Ulvskov, 2010; 

Vanholme et al., 2010). 
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2.1.1 Cellulose 

Cellulose is a common component found in most plants, several marine 

animals, and to a lesser extent in bacteria, fungi, algae and invertebrates. 

Cellulose is one of the most abundant materials, and is the most common 

renewable organic polymer produced on earth (Poletto et al., 2013). In 

general, cellulose is a tough, water-insoluble, fibrous substance that plays 

an important part in plant cell wall structure (Habibi et al., 2010). 

Cellulose is insoluble in water and most organic solvents; however, it can 

be chemically broken down into glucose by concentrated acids and high 

temperature (Tabet & Aziz, 2013). 

Cellulose is an unbranched homopolysaccharide of anhydro-β-D-glucose 

molecules with a high molecular weight. These anhydro-β-D-glucose rings 

are covalently bonded between the C4 of one glucose ring and the oxygen 

bonded to C1 of the adjacent glucose ring (Figure 2.1). This bond is known 

as a β-1,4 glucosidic bond. Due to the angle of the bond, each glucose 

molecule added to the chain is rotated 180°, forming a long straight chain 

(Moon et al., 2011; Tabet & Aziz, 2013). The repeat unit of cellulose is 

cellobiose – a dimer of two anhydro-D-glucose rings, with a formula 

(C6H10O5)n. The overall degree of polymerisation, n, is dependent on the 

source material of the cellulose, and can range up to 20,000 (Collinson & 

Thielemans, 2010; Moon et al., 2011). Each chain has directional chemical 

asymmetry as it has a non-reducing functional group (hydroxyl group) at 

one end of the chain and a reducing functional group (hemiacetal unit) at 

the other end, as shown in Figure 2.1 (Habibi et al., 2010).  
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Figure 2.1 Schematic diagram of cellulose (Cave & Walker , 1994). 

 

The hydroxyl groups of each glucose ring are able to form hydrogen bonds 

with the oxygens of the adjacent glucose rings (intra-chain hydrogen 

bonding), as shown by the dotted lines in the diagram on the right in 

Figure 2.2. These interactions stabilise the β-1,4 glucosidic linkages and 

results in the linear configuration of the cellulose chains (Moon et al., 

2011).  

Cellulose is synthesized and assembled in the plasma membrane within a 

rosette-shaped plasma membrane complex having a diameter of 30 nm. 

Once the cellulose polymers have been synthesized, approximately 36 

molecules are brought together to form elementary fibrils (Habibi et al., 

2010). Many non-covalent complexes – formed through hydrophobic 

interactions (Van der Waals) and intermolecular (inter-chain) hydrogen 

bonds between the hydroxyl groups and oxygens of adjacent molecules – 

promote the stacking of multiple cellulose chains to form the fibrils 

(diagram on left in Figure 2.2) (Moon et al., 2011). These elementary 

fibrils can then aggregate into larger microfibrils, and then further into 

macroscopic cellulose fibres (Habibi et al., 2010). The larger microfibrils 

range between 5 – 50 nm in diameter and several micrometres in length 

(Moon et al., 2011). The intra- and inter-chain hydrogen bonding network 

results in cellulose being a relatively stable polymer, with high axial 

stiffness that is the main reinforcement phase in plants (Poletto et al., 

2013). 
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Figure 2.2 Molecular structure of several cellulose chains, showing the 
inter-chain and intra-chain hydrogen bonding (dotted lines) (Left) and the 
molecular structure of a cellulose repeating unit, showing the β-1,4 

glucosidic linkage and intra-chain hydrogen bonding (dotted lines) (Right) 
(Poletto et al., 2013).  

 

Within the cellulose fibrils there are two different regions – crystalline and 

amorphous regions – and the transition between these regions is gradual. 

The crystalline regions, which make up about two-thirds of the cellulose in 

the cell wall, have a highly ordered structure and are strongly connected 

by hydrogen bonding. The amorphous regions, however, have no definite 

arrangement (Tabet & Aziz, 2013). This crystalline alignment, 

corresponding to the location of hydrogen bonds between and within 

strands, results in four different allomorphs for cellulose – cellulose I (Iα 

and Iβ), cellulose II, cellulose III (IIII and IIIII) and cellulose IV (IVI and 

IVII) (Collinson & Thielemans, 2010). 

Although the fundamental chemical structure of cellulose is almost 

identical between plants, there is a lot of variation in the degree of 

polymerisation, molecular orientation of cellulose, the hydrogen-bonding 

network and also in the degree of crystallinity. These factors result in 

different properties of the cellulose and will ultimately have an influence on 

the digestibility of the cellulose (Burton et al., 2010; Habibi et al., 2010).  

2.1.2 Hemicellulose 

Similar to cellulose, hemicellulose is primarily found in plant cell walls. It is 

a complex carbohydrate that interacts with the cellulose polymers, serving 
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as a connection between the cellulose and the lignin and therefore 

providing rigidity to the plant cell wall (Nishiyama, 2009; Scheller & 

Ulvskov, 2010). The hemicelluloses can form hydrogen bonds with the 

surface of the cellulose fibrils, they can penetrate the fibril disrupting the 

crystalline shape, or they can anchor the cellulose fibrils in the plant cell 

wall by spanning between cellulose fibrils and locking them in (Burton et 

al., 2010). Hemicelluloses are not soluble in hot water or chelating agents, 

but are soluble in aqueous alkali (O'Neill & York, 2003; Tabet & Aziz, 

2013). 

All hemicelluloses are synthesized in the Golgi apparatus and then 

deposited to the cell wall surface by vesicles (Cosgrove, 2005). 

Hemicelluloses are quite small macromolecules compared to cellulose as 

they are usually made of only 150 – 200 monomer units (Tabet & Aziz, 

2013). Unlike cellulose, hemicellulose is a heteropolymeric compound as it 

is made up of different building blocks and often has many branched side 

chains, making it unable to form a crystalline structure. As a result, it is 

easily broken down by using either chemicals or enzymes.  

The building blocks used to make hemicelluloses include pentose sugars, 

hexose sugars and sugar acids. Pentose sugars include D-xylose, L-

arabinose, L-fucose and L-rhamnose; hexose sugars include D-glucose D-

galactose, and D-mannose; and sugar acids include D-glucuronic acid, D-

galacturonic acid, and 4-O-methyl-glucuronic acid (O'Neill & York, 2003; 

Guimarães, 2012). These sugars are combined in different sequences to 

form many different hemicellulose structures, as exemplified in Figure 2.3.  
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Figure 2.3 Schematic diagram of different types of hemicelluloses 

(Scheller & Ulvskov, 2010). 

 

Hemicelluloses include arabinogalactan, xyloglucan, xylans (arabinoxylan, 

glucuronoarabinoxylan, glucuronoxylan), and mannans (galactomannan, 

galactoglucomannan, glucomannan). All hemicelluloses (except 

arabinogalactan) are structurally similar to cellulose as they have a 

backbone of (1,4)-linked β-D-pyranosyl residues such as xylose, glucose 

and mannose (O'Neill & York, 2003). 

Xyloglucan and arabinoxylan are two of the most abundant hemicelluloses. 

Xyloglucan polysaccharides, which have a β-(1,4)-linked glucose backbone 
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with xylose linked side chains on 3 out of 4 glucose residues, are 

predominant in type I plants. The major hemicelluloses found in type II 

plants are xylans, which are comprised of a β-(1,4)-linked β-D-xylose 

backbone. Pure xylans are rare, and most have a xylose backbone with a 

number of side chains coming off it, particularly arabinose – forming 

arabinoxylans. Other examples of hemicelluloses are galactomannans and 

mixed-linked glucans, both of which are high in type 2 plants (Cosgrove, 

2005; Caffall & Mohnen, 2009; Burton et al., 2010). 

2.1.3 Pectins 

Pectin is a structurally complex polysaccharide which encompasses a range 

of polysaccharides rich in galacturonic acid. These polysaccharides are a 

major component of primary cell walls of all land plants and perform 

several roles within and between cells (Willats et al., 2001). As a group 

they contribute to the mechanical strength and stiffness of the cell wall, 

and help with adhesion and porosity of the plant. They also help in many 

plant processes such as intercellular signalling (Caffall & Mohnen, 2009; 

Burton et al., 2010). 

Pectic polysaccharides account for about one-third of all primary cell wall 

macromolecules of type I plants (dicotyledons) and nongraminaceous 

monocotyledons; however, it only makes up about 10% of plant walls of 

the order Poales (family Poaceae) and related orders (Leonetti et al., 

2007; Caffall & Mohnen, 2009). Pectin is the only plant polysaccharide that 

is mostly restricted to primary cell walls, and its presence is greatly 

reduced or even absent in the secondary cell walls of plants (Willats et al., 

2001).   

Pectins are synthesized in the Golgi apparatus and are deposited to the cell 

wall surface by vesicles (Cosgrove, 2005). Three pectic polysaccharide 
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groups have been isolated from primary cells walls – homogalacturonan 

(HGA), substituted galacturonans and rhamnogalacturonans (O'Neill & 

York, 2003). HGA, rhamnogalacturonan I (RG-I) and rhamnogalacturonan 

II (RG-II) are thought to occur in all primary cell walls (Willats et al., 

2001) and a simplified diagram of their composition is shown in Figure 2.4. 

HGA and RG-I occur in larger amounts in the cell wall matrix, with RG-II, 

as well as xylogalacturonan, arabinan, arabinogalactan I, being present in 

smaller amounts (Cosgrove, 2005).  

 

Figure 2.4 Simplified schematic diagram of the three main pectic 

polysaccharides - homogalacturonan (HGA), rhamnogalacturonan-I (RG-I) 
and rhamnogalacturonan-II (RG-II) (Willats et al., 2001) 

 

HGA is a linear homopolymer. It consists of long chains of 1,4-linked α-D-

galacturonic acid residues, with variable amounts of the residues methyl-

esterified at the C6 carboxyl position (Leonetti et al., 2007). When the HGA 

is deposited in the cell wall matrix, the methyl ester groups are removed, 

freeing the carboxyl groups on the galacturonic acid residues. This allows 

the HGA to be cross-linked by calcium, creating a calcium-linked gel 

structure which helps increase the firmness of the wall (Willats et al., 

2001).  

RG-I is a heterogeneous polymer which consists of a backbone of 

alternating rhamnose/galacturonic acid monomers (Caffall & Mohnen, 

2009; Burton et al., 2010). About 20-80% of the rhamnose residues are 

substituted with side chains of varying arrangements and lengths 

(anywhere from a single glycosyl residue to 50 or more). Common 
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features of the side chains include polymeric residues of galactose (1,4-β-

D-galactosyl residues) and arabinose (1,5-α-L-arabinosyl residues) (Willats 

et al., 2001). 

RG-II is a highly complex structure. It consists of long chains of 1,4-linked 

α-D-galacturonic acid residues (same backbone as HGA). Within a stretch 

of seven to nine galacturonic residues there are four well-defined side 

chains, made up of 12 different glycosyl residues (Caffall & Mohnen, 

2009).  

2.1.4 Lignin 

After cellulose, lignin is the second most abundant polymer in nature and 

is also present in the cell wall. During development of the secondary plant 

cell wall, the matrix becomes lignified. This serves to strengthen the cell 

wall by giving it structural support. Lignin is hydrophobic and is 

impermeable to water. Therefore, it acts as a water sealant and plays an 

important part in the control of water transport through the cell wall. 

Lignin also helps the plant resist microbial attack by impeding the 

penetration of microbial enzymes (Boerjan et al., 2003; Collinson & 

Thielemans, 2010; Vanholme et al., 2010).  

Lignin is a heterogeneous aromatic polymer that is 3-dimensional and 

amorphous in structure. It is formed from 4-hydroxyphenyl propanoid 

building blocks. These building blocks are derived from three primary 

precursors (monolignol monomers) – p-coumaryl alcohol, coniferyl alcohol 

and sinapyl alcohol (Boerjan et al., 2003; Vanholme et al., 2010). These 

precursors consist of the same aromatic ring with a three-carbon side 

chain, a hydroxyl group off the aromatic ring, plus two different R-groups 

off the aromatic ring as shown in Figure 2.5.  
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Figure 2.5 Primary precursors of lignin (from left to right): p-coumaryl 
alcohol, coniferyl alcohol, and sinapyl alcohol. Adapted from Collinson and 

Thielemans (2010). 

 

In the lignin polymer, these precursors are synthesized into three types of 

subunits – p-hydroxyphenyl (H-type), guaiacyl (G-type), and syringyl (S-

type) units. Lignins are divided into two major classes – guaiacyl lignins 

and guaiacyl-syringyl lignins. Guaiacyl lignins only contain p-

hydroxyphenyl units (no methoxy (–OCH3) groups on the aromatic ring 

from p-coumaryl alcohol) and guaiacyl units (one –OCH3 group on the 

aromatic ring from coniferyl alcohol). Guaiacyl-syringyl lignins contain p-

hydroxyphenyl units and guaiacyl units, as well as syringyl units (two –

OCH3 groups on the aromatic ring from sinapyl alcohol) (Collinson & 

Thielemans, 2010). 

The composition of the lignin varies between species, and can also vary 

between tissue types within a plant. For example, most gymnosperm cell 

walls contain guaiacyl lignins; whereas angiosperms and herbaceous plant 

cell walls contain guaiacyl-syringyl lignins (Boerjan et al., 2003; Vanholme 

et al., 2010).  
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Figure 2.6  Structural model of a section of lignin (Qiu & Chen, 2006). 

 

 

The dehydrogenative polymerisation of the precursors is initiated by 

enzymes and results in bonds with high stability. There is no single 

repeating bond structure between the subunits of the lignin polymer, but 

there is a random arrangement of at least 10 different types of bonds. 

Some of these bonds include “biphenyl carbon–carbon linkages between 

aromatic carbons, alkyl–aryl carbon–carbon linkages between an aliphatic 

and aromatic carbon, and hydrolysis-resistant ether linkages”, with the 

most common bond being the β-aryl ether (β-O-4) bond (Lankinen, 2004; 

Collinson & Thielemans, 2010).  

Lignin is very hard to digest or separate from cellulose/hemicellulose for 

several reasons. Lignin is a very unique compound in that it has no 

repeating bonds between the subunits. This makes it very hard to break 

down enzymatically (Lankinen, 2004). Lignin is also able to bond to the 

cellulose-hemicellulose network. Since cellulose is hydrophilic and lignin is 
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mainly hydrophobic, compatibility is achieved through hemicelluloses as 

they have both hydrophobic and hydrophilic regions (Collinson & 

Thielemans, 2010). This cross-linking strengthens the cells wall and 

protects the relatively easily degradable cellulose from attack; however, it 

makes it very difficult to access the cellulose and hemicellulose during 

enzymatic digestion (Guimarães, 2012). 

2.2 DIGESTION OF LIGNOCELLULOSIC MATERIAL 

The majority of plant biomass constitutes lignocellulosic material, which 

makes up the plant cell walls. Plant biomass has been used for centuries 

as a source of food and is used in many industries to make products, such 

as pulp and paper, or renewable chemicals. However, these processes 

often result in the accumulation of plant biomass waste, especially agro-

industrial residues, and this can cause serious ecological problems. This 

biomass waste is often composed of lignocellulosic material.  

The polymers of the cell wall can be broken down naturally by the plants 

themselves using various enzymes. However, these polymers can also be 

broken down by microbial enzymes to produce saccharides for energy. 

Therefore, these carbohydrate-rich materials are of economic value as 

they can be used for various biotechnological processes, such as biofuel 

production, and thus have attracted the attention of many researchers and 

industrial sectors. 

2.2.1 Cellulases 

For the complete breakdown of cellulose, an enzymatic complex (known as 

cellulases) is required. Cellulases are modular enzymes belonging to the 

broad group of glycoside hydrolases, which catalyse the hydrolysis of 

oligosaccharides and polysaccharides. Over 100 glycoside hydrolase 

families have been described. This complex consists of three enzymes – 
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endo-1,4-β-D-glucanases (carboxymethyl cellulases), exo-1,4-β-D-

glucanases (cellobiohydrolases) and 1,4-β-glucosidases (cellobiases) 

(Guimarães, 2012). These three groups work together to break down 

cellulose, by creating new hydrolysis sites for each other, as shown in 

Figure 2.7. They also work on the products produced by each other so that 

these products do not accumulate and inhibit enzyme activity (Kumar et 

al., 2008). 

 

Figure 2.7 Molecular structure of cellulose and action sites for three 
cellulase enzymes (endoglucanase, exoglucanase and β-glucosidase) 

(Kumar et al., 2008). 

2.2.1.1  Endo-1,4-β-glucanases (EC 3.2.1.4) 

Endo-1,4-β-D-glucanases, also known as carboxymethyl cellulases, 

degrade cellulose by randomly cleaving the internal β-1,4-D-glycosidic 

linkages of the cellulose chain. Preferably, these enzymes attack the low 

crystallinity regions (amorphous regions) of the cellulose, making it more 

accessible for cellobiohydrolases by creating free chain ends (Xie et al., 

2007; Kumar et al., 2008; Guimarães, 2012).   

2.2.1.2 Exo-1,4-β-glucanases (EC 3.2.1.91) 

Exo-1,4-β-D-glucanases, also known as (CBH), attack the crystalline 

regions of cellulose. They degrade the cellulose by hydrolysing the 

cellobiose units from the free chain ends created by the endoglucanases. 
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There are two main types of cellobiohydrolases, each one functioning on 

different ends of the chain – CBH-I works on the reducing end and CBH-II 

works on the non-reducing end. However, cellobiose, the product of this 

hydrolysis process, inhibits the activity of cellobiohydrolases (Xie et al., 

2007; Kumar et al., 2008). 

2.2.1.3  β-glucosidases (EC 3.2.1.21) 

β-glucosidases, also known as cellobiases, break down cello-

oligosaccharides and cellobiose (produced by exoglucanases) into D-

glucose monomers (Xie et al., 2007; Kumar et al., 2008). This is an 

important step in reducing the inhibition of cellobiose on exoglucanases 

because an increase in cellobiose inhibits the activity of exoglucanases. 

However, the β-glucosidases activity is in turn competitively inhibited by 

the production/presence of glucose (Guimarães, 2012). 

2.2.2 Hemicellulases 

As mentioned previously, hemicellulose is made up of different building 

blocks - pentose sugars, hexose sugars and sugar acids. Theses sugars are 

combined in different sequences to form many different hemicellulose 

structures. Therefore, the degradation of hemicelluloses poses a challenge 

in that several different enzymes are required to work synergistically in 

order to effectively degrade hemicellulose.  

Like cellulases, hemicellulases are also members of the broad group of 

glycoside hydrolases and can be of the endo- or exo- types. Hemicellulases 

can be divided into two main types – enzymes that hydrolyse the 

backbone of the main-chain and enzymes that degrade the sidechain 

substituents or short-end products (Kumar et al., 2008; Mafe et al., 2014). 

The action sites of several of these enzymes are shown in Figure 2.8. 
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Figure 2.8 Structural components found in hemicelluloses and the action 

sites of some enzymes involved in their degradation (Shallom & Shoham, 
2003).  

 

The following enzymes work on xylans (xylan, glucuronoarabinoxylan, 

glucuronoxylan, arabinoxylan) and xylo-oligosaccharides: 

2.2.2.1 Endo-1,4-β-xylanases (EC.3.2.1.8) 

Endo-1,4-β-xylanases (also known as 1,4-β-D-xylan xylanohydrolases) 

catalyse the hydrolysis of the internal β-1,4 xylosidic linkages of xylans, 

which have a backbone of β-D-xylose monomers (Figure 2.9). This 

reaction releases β-D-xylopyranosyl oligomers, reducing the degree of 

polymerisation (Dashtban et al., 2009; Mafe et al., 2014). This is 

considered one of the most important hemicellulases as xylans are the 

major hemicellulose found in type II plants (Poales order), which are of 

agricultural and economic significance (Guimarães, 2012).  
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Figure 2.9 Action sites of some enzymes involved in degradation of xylans 
(Kumar et al., 2008). 

2.2.2.2 Exo-1,4-β-D-xylosidases (EC.3.2.1.37) 

Exo-1,4-β-D-xylosidases (also known as 1,4-β-D-xylan xylohydrolases) 

catalyse the hydrolysis of xylo-oligosaccharides and xylobiose (a dimer of 

xylose) produced from the endo-1,4-β-xylanase reactions, producing β-D-

xylopyranosyl residues (Figure 2.9) (Dashtban et al., 2009; Mafe et al., 

2014). The enzyme specifically bonds to the non-reducing ends of the 

short xylo-oligomers. 

2.2.2.3 Exo-α-L-arabinofuranosidases (EC 3.2.1.55) 

Exo-α-L-arabinofuranosidases work on the arabinofuranosyl sidechain 

residues in arabinoxylan and arabinan by hydrolysing the α-1,2 and α-1,3 

linkages α-1,5 linkages respectively, as shown in Figure 2.9 (Mafe et al., 

2014).  

2.2.2.4 α-D-glucuronidases (3.2.1.139) 

α-D-glucuronidases work on the glucuronic sidechains in xylan by 

hydrolysing the α-1,2 glycosidic linkages as shown in Figure 2.9. This 

reaction produces glucuronic acid which, along with glucose, represses the 

activity of α-D-glucuronidases. 
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Additional enzymes, such as acetyl xylan esterase (EC 3.1.1.72) and 

ferulic acid esterase (EC 3.1.1.73) are required to remove side-chain 

substituents that may be attached to the xylan structure. As a result, this 

creates more sites for subsequent enzymatic hydrolysis reactions (Moreira 

& Filho, 2008).  

 

The following enzymes work on mannans (glucomannan, galactomannan, 

galactoglucomannan): 

2.2.2.5 Endo-1,4-β-mannanases (EC 3.2.1.78) 

Endo-1,4-β-mannanases (1,4-β-D-mannan mannohydrolases) randomly 

cleave the β-1,4 linkages found in mannan backbones to produce 

mannobiose (dimer of mannose) or manno-oligomers (Shallom & Shoham, 

2003). The degradation of mannans is greatly affected by the pattern and 

number of side chains on the mannan backbone (Moreira & Filho, 2008).  

2.2.2.6 Exo-1,4-β-mannosidases (EC 3.2.1.25) 

Exo-1,4-β-mannosidases (1,4-β-D-mannopyranoside hydrolases) break 

down mannobiose and manno-oligomers produced by the reaction of endo-

β-1,4-mannases, producing mannose (Shallom & Shoham, 2003). This 

enzyme works at the non-reducing end of the oligosaccharides (Moreira & 

Filho, 2008). 

2.2.2.7 β-glucosidases (EC 3.2.1.21) 

β-glucosidases (1,4-β-D-glucoside glucohydrolases) works at the non-

reducing ends of the oligosaccharides released by β-mannanases. It 

hydrolyses 1,4-β-D-glucopyranose, releasing D-glucopyranose (Moreira & 

Filho, 2008). 
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Additional enzymes, such as α-galactosidase (1,6-α-D-galactoside 

galactohydrolase; EC 3.2.1.22) and acetyl mannan esterase (EC 3.1.1.6) 

are required to remove side-chain substituents that may be attached to 

the mannan structure. Thus, this creates more sites for subsequent 

enzymatic hydrolysis reactions (Moreira & Filho, 2008).  

2.2.2.8 Endo-β-1,4-galactanases (EC 3.2.1.89)  

Endo-β-1,4-galactanase (also known as endo-1,4-β-galactosidase) 

hydrolyses the 1,4-β-galactosidic linkages found specifically in type I 

arabinogalactans (Mafe et al., 2014).   

2.2.2.9 Endo-α-1,5-arabinanases (EC 3.2.1.99).  

These enzymes remove L-arabinose residues from arabinan polymers by 

cleaving α-1,5 linkages (Mafe et al., 2014). 

2.2.3 Ligninases 

Ligninolytic enzymes are oxidative enzymes that can be divided into two 

main families – phenol oxidases and peroxidases. The main enzymes 

involved in lignin degradation are laccases (phenol oxidase family), 

manganese peroxidases (MnPs) (peroxidase family), and lignin 

peroxidases (LiPs) (peroxidase family). All three enzymes work by 

oxidising phenolic compounds and aromatic amines of the lignin structure 

(Guimarães, 2012; Mafe et al., 2014). A new group of peroxidases, known 

as versatile peroxidases (VPs), are able to oxidise phenolic and Mn2+ 

compounds, as well as nonphenolic compounds. In addition to these 

enzymes, hydrogen peroxide producing enzymes, such as aryl alcohol 

oxidase and glyoxal oxidase, are also considered to belong to the 

ligninolytic system (Lankinen, 2004). The simplified reactions of laccases, 

MnPs and LiPs are shown in Figure 2.10 and Figure 2.11. 
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Figure 2.10  Simplified reaction of enzymes involved in lignin degradation 

– lignin peroxidase (LiP) and glyoxal oxidase (Hatakka, 2001). 

 

 

Figure 2.11  Simplified reaction of enzymes involved in lignin degradation 
– manganese peroxidase (MnP) and laccase (Hatakka, 2001).  

2.2.3.1 Laccases (EC 1.10.3.2) 

Laccases are copper-containing phenol oxidases that require the presence 

of oxygen (O2) as a co-factor. Laccases oxidise phenolic compounds into 

phenoxyl radicals, which degrade spontaneously. During lignin degradation 

by fungi, laccases are usually the first enzymes secreted into the 

surrounding media (Hatakka, 2001; Lankinen, 2004).  

2.2.3.2 Manganese peroxidases (EC 1.11.1.13) 

Manganese peroxidases (MnPs) are heme-containing enzymes that require 

the presence of hydrogen peroxide (H2O2) as a co-factor. MnPs oxidise 

Mn(II) to Mn(III) in the presence of H2O2. Mn(III) in turn oxidises phenolic 
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compounds to phenoxyl radicals which then degrade spontaneously 

(Hatakka, 2001; Collinson & Thielemans, 2010). 

2.2.3.3 Lignin peroxidases (1.11.1.14) 

Similar to MnPs, lignin peroxidases (LiPs) are also heme-containing 

enzymes that require the presence of hydrogen peroxide (H2O2) as a co-

factor. LiPs catalyse the oxidation of nonphenolic aromatic compounds by 

cleavage of C-C bonds and ether (C-O-C) bonds. The aromatic rings are 

oxidised, by removal of one electron, to cation radicals which can be 

further broken down chemically (Hatakka, 2001; Collinson & Thielemans, 

2010).  

2.3 STARCH 

2.3.1 Sources and utilisation of starch 

Starch is produced by plants as a carbohydrate source, and is stored in a 

variety of granular forms and dimensions. Starch can be found in seeds, 

fruit, roots, tubers, pollen, tubes, stem-pith, and leaves. The size of the 

starch granules depends on the botanical source and can vary from 0.5 µm 

up to 175 µm (Zobel, 1988). Starch granules are synthesized on a daily 

basis inside plant plastids and are used as an energy source for respiration 

during periods where photosynthesis does not occur. However, starch is 

also found in amyloplasts in the seeds, roots and tubers of plants, and the 

starch accumulates in these organelles as water-insoluble starch granules 

for long-term storage (El-Fallal et al., 2012). 

Starch is one of the main energy reserves in nature and represents a 

staple food in most human diets; starch is also processed into a variety of 

different food products, such as glucose syrups and fructose (El-Fallal et 

al., 2012). Starch also has many non-food uses. For example, it is used in 
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the textile industry as an adhesive or as a gum, and in the papermaking 

industry. It is also used as a feedstock for the production of many 

products, such as enzymes, biofuels (bioethanol and biogas), biochemicals 

(succinic acid, polylactic acid) to name a few (Laycock & Halley, 2014). 

The main industrial sources of starch come from tapioca, potato, maize 

and wheat.  

2.3.2 Starch structure 

Starch is a naturally occurring blend of two homopolysaccharides – 

amylose, which is mainly linear, and amylopectin, which is highly branched 

and variable. Anhydro-D-glucose is the main building block of both 

polymers. Amylose is a linear chain with α-1,4 glucosidic linkages, and a 

degree of polymerisation ranging up to about 25,000 (Preiss, 2004). 

Amylopectin also has α-1,4 glucosidic linkages, but forms branches with α-

1,6 glucosidic linkages, and the number of glucosyl units ranges between 

105 and 109 (Collinson & Thielemans, 2010). The rate of branching in 

amylopectin is approximately 4–5% (every 20 units) and there are various 

forms of amylopectin (Cheetham & Tao, 1998). The chemical structure of 

these two molecules is shown in Figure 2.12.  

 

Figure 2.12 Chemical structure of starch components – amylose and 

amylopectin (El-Fallal et al., 2012). 
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The α-1,4 linkage in the amylose molecule results in a gradual, natural 

twist in the chain. This is in contrast to the β-1,4 linkage of cellulose which 

results in each adjacent residue being rotated 180 °C, producing a flat 

ribbon (Zobel, 1988) (Figure 2.13).  

 

 

Figure 2.13  Schematic diagram of amylose (α-1,4) and cellulose (β-1,4) 
glucose polymers. Adapted from Zobel (1988). 

 

The ratio of amylose to amylopectin found in starch granules is dependent 

on the species itself, but it usually varies from 1:4 to 1:2 in standard 

starches. ‘Amylose-rich’ starches are high in amylose and ‘waxy’ starches 

are high in amylopectin (Collinson & Thielemans, 2010). The interaction of 

these two chains gives the starch granules alternating crystalline and 

amorphous regions due to the branched amylopectin structure. The 

variation in the amylopectin chains (extent and length of branching) and 

the varying amylose-amylopectin ratios results in several crystalline 

polymorphic forms (Guimarães, 2012). Type A is found in cereals, Type B 

is found mainly in tubers as well as in maize starches, and Type C (a 



The University of Nottingham                                         Literature Review 

30 

 

combination of both type A and type B) is found in legumes, roots and 

fruits (Collinson & Thielemans, 2010; Guimarães, 2012).  

2.3.3 Starch gelatinisation 

Amylopectin is soluble in water, but amylose is not. Therefore, when 

starch granules are placed in cold water they are relatively insoluble. 

However, when heated in excess water, the starch granules undergo 

physical changes known as gelatinisation, and these changes are 

irreversible. Although many techniques have been employed in an attempt 

to understand gelatinisation and several models proposed, no universally 

accepted explanation has been found. During the gelatinisation process 

water penetrates the amorphous regions of the granules, causing 

substantial swelling of the granules and disruption of the semi-crystalline 

structure. As a result, this causes the amylose to progressively leech out, 

making the starch more soluble and generally more viscous (Donald, 

2004). 

The gelatinisation temperature is different for each species as it is 

dependent on the composition and crystallinity of the starch, and the fat or 

protein content. It is also dependent on a number of operating conditions, 

such as the starch-water ratio, the salt or sugar concentration, and the pH. 

Zobel (1988) measured the gelatinisation temperatures for a range of type 

A (oats, rye, wheat, sorghum, waxy maize, amongst others), type B 

(amylomaize, canna, potato), and type C (sweet potato, horse chestnut, 

tapioca) starches and found the temperatures ranged from 60–89 °C.  

2.3.4 Digestion of starch by amylolytic enzymes 

All living organisms produce amylases; however, they vary in specificity, 

activity level and requirements from species to species, and few organisms 

produce a complete set of enzymes which are capable of degrading starch 
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effectively. Starch, being a large, water-insoluble polymer, cannot enter 

into cells. Therefore, starch hydrolysis occurs extracellularly and amylases 

are either found bound to cell membranes or are secreted into the medium 

around cell membranes (El-Fallal et al., 2012).  

Thus, similar to cellulose, an enzymatic complex is required for the 

complete breakdown of starch due to its complexity. This enzymatic 

complex consists of four main groups – endoamylases, exoamylases, 

debranching enzymes, and transferases – which all work together to 

hydrolyse starch. 

2.3.4.1 Endoamylases 

Endoamylases, such as α-amylase (EC 3.2.1.1), degrade starch by 

catalysing the cleavage of arbitrary internal α-1,4-glycosidic linkages 

between the glucose molecules of both amylose and amylopectin chain 

(Figure 2.14). Oligosaccharides of varying lengths are released from the 

chains (Butler et al., 2004).   

 

Figure 2.14 Different enzymes involved in the degradation of starch. The 
open end structure represents the reducing ends of a starch molecule (van 
der Maarel et al., 2002). 
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2.3.4.2 Exoamylases 

Exoamylases work by hydrolysing the external glucose residues of the 

amylose and amylopectin chains to release glucose, maltose (dimer of 

glucose) and β-limiting dextrin. Three main exoamylases are: (i) β-

amylases (EC 3.2.1.2); (ii) glucoamylase (amyloglucosidase; EC 3.2.1.3), 

and (iii) α-glucosidase (EC 3.2.1.20) (El-Fallal et al., 2012; Guimarães, 

2012). 

2.3.4.2.1  β-amylases (EC 3.2.1.2) 

β-amylases work specifically on the α-1,4 glycosidic bonds, producing 

maltose and β-limiting dextrin (Figure 2.14). 

2.3.4.2.2  Glucoamylases (EC 3.2.1.3) & α-Glucosidases (EC 3.2.1.20) 

Glucoamylases, as well as α-glucosidases, hydrolyse both the α-1,4 and α-

1,6 glycosidic bonds producing glucose (Figure 2.14). However, these two 

enzymes differ in their preference of substrate length - glucoamylases 

work better on long-chain polysaccharides, whereas α-glucosidases work 

best on short malto-oligosaccharides (van der Maarel et al., 2002) (Figure 

2.14). 

2.3.4.3 Debranching enzymes 

Debranching enzymes exclusively hydrolyse the α-1,6 glycosidic bonds. 

Isoamylases (EC 3.2.1.68) can only degrade amylopectin. Pullulanase type 

1 (EC 3.2.1.41) can degrade both amylopectin and pullulan (Guimarães, 

2012). The action site of both types of debranching enzymes is shown in 

Figure 2.14. Since both act on amylopectin and not amylose, they leave 

long linear polysaccharides (van der Maarel et al., 2002).  
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2.3.4.4 Transferases 

Several enzymes are classified in this group – (i) amylomaltases (EC 

2.4.1.25), (ii) cyclodextrin glycosyltransferases (EC 2.4.1.19), and (iii) 

branching enzymes (EC 2.4.1.18). The action sites of these enzymes are 

shown in Figure 2.14. These enzymes work by cleaving an α-1,4 glycosidic 

bond of one molecule and transferring part of this molecule to another 

place (glycosidic acceptor), producing a new glycosidic bond. 

Amylomaltases and cyclodextrin glycosyltransferases have similar reaction 

mechanisms, forming new α-1,4 glycosidic bonds; however, 

amylomaltases produce a linear product, whereas cyclodextrin 

glycosyltransferases produce a cyclic product with 6–8 glucose residues. 

Branching enzymes have a different reaction mechanism and form new α-

1,6 (rather than α-1,4) glycosidic bonds (van der Maarel et al., 2002; El-

Fallal et al., 2012).   

2.4 BIOFUEL & BIOCHEMICAL PRODUCTION PROCESS 

In order to maximise the production of biofuels or biochemicals, the use of 

the entire crop, including the lignocellulosic material, is important. Also if a 

food crop is used, it is important that the edible part (usually the part high 

in starch/sugars) of the crop is not used for the production of bioenergy. 

Therefore, the non-edible part, which is generally high in lignocellulosic 

material, should be used for the production of bioenergy and biochemicals. 

However, the lignocellulosic material is recalcitrant to breakdown and often 

the enzymes that are used to hydrolyse the carbohydrates into usable 

sugars cannot reach these due to the rigidity of the cell wall, and the 

insoluble nature of the lignin. Therefore, this poses a processing challenge 

in the production of the biofuels and biochemicals, and an efficient method 

for breaking this material down, known as a pretreatment process, may be 
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necessary. The bioethanol and biochemical process from lignocellulosic 

biomass consists of four steps – pretreatment, hydrolysis, fermentation, 

and distillation.  

2.4.1 Pretreatment  

The main goals of the pretreatment process should be the 

separation/solubilisation of the lignin, cellulose and hemicellulose fractions 

allowing easier access for the breakdown of the carbohydrates, either 

directly or by enzymes (Figure 2.15). As well as this objective, focus 

should also be placed on limiting/avoiding the loss of sugars and the 

formation of inhibitory products, and minimising energy demands and 

costs of the process (Sanchez & Cardona, 2008; Sarkar et al., 2012). 

 

Figure 2.15 Schematic diagram showing the role of pretreatment methods 
(Kumar et al., 2009). 

 

The pretreatment process can be separated into several categories - 

physical, chemical, physiochemical, and biological methods; as well as a 

combination of these. The effectiveness of the individual pretreatment is 

dependent on both composition of the biomass substrate and the 

pretreatment operating conditions. Table 2.1 shows a list of the 

pretreatment methods most commonly used and their possible effects.  
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Table 2.1 Some pretreatment methods used to degrade lignocellulosic 

material and their possible effects (DP - degree of polymerisation; SA – 
surface area). Adapted from Talebnia et al. (2010) and Verardi et al. 
(2012). 

Pretreatment Examples Advantages Disadvantages 

Physical pretreatment: 

Mechanical - Milling 
- Grinding 
- Chipping 

- Increase in pore 
size and SA 

- Decrease in DP and 
crystallinity of 
cellulose 

- No inhibitors 
produced 

- High energy 
consumption 

Physiochemical pretreatment: 

Hydrothermal - Steam 
explosion 

- Liquid hot 

water 

- Increase in pore 
size and SA 

- Partial degradation 

of hemicellulose 
- Transformation of 

lignin 
- Fast; inexpensive 

- Acid catalysts may 
be required for high 
lignin biomass 

- Production of 
inhibitors 

- Incomplete 
disruption of lignin-
carbohydrate matrix 

With 

chemicals 

- Ammonia 

fibre 
explosion 
(AFEX) 

- Increases accessible 

SA 
- Partial degradation 

of hemicellulose 
- Transformation of 

lignin 
- Low production of 

inhibitors 
- Short process time 

- Expensive 

- Ammonia recovery 
required 

- Hazardous 
- Not suitable on high 

lignin biomass 

Chemical pretreatment: 

Acid 

hydrolysis 

- Dilute acid 

- Concentrate 

acid 

- Increase in porosity 

and surface area 

due to swelling 
- Decrease in DP and 

crystallinity 
- Degradation of 

hemicellulose 
- Lignin structure 

altered 

- Production of 

inhibitors 

- Acid recovery 
required with 
concentrated acid 

- Corrosion resistant 
equipment required 

 

Alkaline 
hydrolysis 

- NaOH 
- Lime 

- Increases accessible 
SA due to swelling 

- Decrease in DP and 
crystallinity 

- Degradation of 

hemicellulose 
- Removal of lignin 
- Low production of 

inhibitors 

- Slow reaction 
process 

- Residual salts in 
biomass 

Organosolv - Formic acid 
- Methanol 

 

- Degradation of 
hemicellulose 

- Lignin degradation 
- Possible to dissolve 

different biomass 

- Expensive 
- Solvent recovery 

required 

Biological pretreatment: 

Fungal 
treatment 

- White-rot 
- Brown-rot  
- Soft-rot 

- Increase in pore 
size and SA 

- Degradation of 
hemicellulose 

- Degradation of 
lignin 

- Takes a long time 
- Low hydrolysis rate 
- Loss of cellulose 
-  
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2.4.1.1 Physical pretreatment 

Physical pretreatment is essentially processes that increase the surface 

area of the biomass, by reducing the size or disrupting the structure. For 

example, mechanical pretreatment reduces the size of the biomass 

material by milling, chipping or grinding the material. Although a reduction 

in particle size via mechanical pretreatment has been shown to increase 

glucose and xylose hydrolysis yields in several biomass materials, it is not 

used on a commercial scale. This is because there is high energy 

consumption associated with mechanical pretreatment and high capital 

and operating costs of the equipment required (Mafe et al., 2014).  

2.4.1.2 Physiochemical pretreatment 

Physiochemical pretreatment methods usually occur at high temperatures 

and pressure (McCann & Carpita, 2008). Steam explosion is one of the 

most commonly used methods for lignocellulosic biomass. During the 

process, the biomass is exposed to high-pressure saturated steam 

(temperatures of 160 – 260 °C, corresponding pressure of 690 – 4830 

kPa) for a period of time (several seconds – few minutes) before the 

pressure is suddenly reduced to atmospheric pressure. This change in 

pressure causes the materials to undergo an explosive decompression 

(Kumar et al., 2009). The process results in the transformation of lignin 

and degradation of hemicellulose, resulting in more efficient cellulose 

hydrolysis. Sometimes H2SO4 or CO2 is added to the process to decrease 

the process time and temperature. This decreases the number of inhibitors 

produced and degrades the hemicellulose completely. 

Ammonia fibre explosion (AFEX) pretreatment combines liquid ammonia 

with steam explosion. Although this process is fast, it can be hazardous 

and the recovery of ammonia is essential to make it cost-effective due to 
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the high cost of ammonia. The process can’t be used with biomass of high 

lignin content and there is only solubilisation of a very small fraction of the 

solid material, particularly hemicellulose (Sarkar et al., 2012). 

2.4.1.3 Chemical pretreatment 

Several chemicals can be used during chemical pretreatment including 

acid, alkali, ammonia, organic solvent (organosolv), CO2 and other 

chemicals.  

Acid pretreatment is considered one of the most important pretreatment 

techniques, and uses either dilute acid (usually between 0.2 – 5.0 % w/w) 

or concentrated acid, at temperatures ranging from 130 – 210 °C. 

Common acids used include sulphuric acid, hydrochloric acid, nitric acid 

and phosphoric acid (Cardona et al., 2009). The acid causes the 

hemicelluloses to degrade to xylose and other sugars, increasing the 

cellulose hydrolysis significantly. However, the acid can continue to 

degrade the xylose into furfurals and 5-hydroxymethyl furfural (HMF), 

growth inhibitors of microorganisms, which can affect processes like 

fermentation. Therefore, materials usually need to be detoxified after 

pretreatment. Concentrated acids are also toxic and corrosive and require 

corrosion resistant equipment, which makes the process expensive. 

Additionally, recovery of concentrated acid is essential to make it cost-

effective (Kumar et al., 2009). Dilute acid pretreatment has been used to 

degrade various lignocellulosic feedstocks, such as hardwoods, softwoods, 

wheat straw, sugarcane bagasse, rice straw and corncobs (Mafe et al., 

2014).  

Alkaline pretreatment dissolves both lignin and hemicellulose and causes 

swelling of the cellulose, decreasing the crystallinity. However, the 

effectiveness of the pretreatment depends on the lignin content of the 
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biomass. Hydroxides, usually sodium, potassium, calcium and ammonium, 

are used in the process (Sarkar et al., 2012). Alkaline pretreatment is 

usually carried out at room temperature, but take hours to days for 

completion, unlike acid pretreatment. In comparison with acid 

pretreatment, alkaline pretreatment results in the production of fewer 

inhibitors, but this is due to the fact that it causes less sugar degradation 

(Kumar et al., 2009). Alkaline pretreatment has been used to degrade 

various lignocellulosic feedstocks, such as Oil palm empty fruit bunches, 

rice hulls, sorghum straw and barley hulls (Mafe et al., 2014). 

2.4.1.4 Biological pretreatment 

Although much research has been done using physical, chemical and 

physiochemical pretreatment procedures, these can incur high capital 

costs, are energy intensive and a large waste stream is generated which is 

not environmentally friendly. Therefore, an alternative approach is the use 

of biological pretreatment to break down the matter into a nutrient rich 

medium that can be further fermented or anaerobically digested. As well 

as being a relatively safe and environmentally benign process, biological 

pretreatment is carried out under mild conditions and so does not generate 

toxic compounds such as furfural and HMF (Kumar et al., 2009).  

There are many organisms that can break the lignocellulosic material down 

naturally, primarily saprophytic fungi and some bacteria, using a cocktail 

of digestive enzymes, including cellulases and xylanases. Commercial 

versions of these enzymes are frequently derived from plant-decaying 

fungi and can be used in experimental procedures. However, the enzymes 

currently used are slow and unstable, often making the process expensive.  

Also, the correct proportion of the enzymes required needs to be 
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determined (de Vries & Visser, 2001). Therefore, the need to find cheap 

and efficient enzymes to maximise yields is necessary. 

Studies have shown that lignin and carbohydrate polymers can both be 

removed using biological pretreatment (Taniguchi et al., 2005; Shi et al., 

2008). Although many species, such as cellulolytic bacteria, white-rot 

fungi, brown-rot fungi, and soft-rot fungi, have been investigated for this 

process, biological pretreatment is still a relatively new research topic and 

needs further studying.  

2.4.1.4.1  White-rot, brown-rot and soft-rot fungi 

White-rot fungi can effectively degrade all components of the 

lignocellulosic material; while only some can target predominantly the 

lignin component. White-rot fungi have been used in several biological 

pretreatments on a range of lignocellulosic materials (Okano et al., 2005; 

Lee et al., 2007; Shi et al., 2008; Yang et al., 2011; Zeng et al., 2012). 

However, although white-rot fungi produce many lignocellulolytic enzymes, 

they require a long residence time of pretreatment and consume a large 

amount of the cellulose; therefore, they are not a favoured choice for 

production at an industrial scale.  

Brown-rot fungi can only partially break down the lignin component as 

they lack ligninolytic enzymes, but they can break down the cellulose and 

hemicellulose components of lignocellulosic material.  

Soft-rot fungi generally break down the surface layer polysaccharides of 

lignocellulosic material, and although they do not generally attack the 

lignin, soft-rot fungi can produce some lignin modifying enzymes 

(Couturier & Berrin, 2013; Janusz et al., 2013). 
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2.4.2 Hydrolysis 

Polysaccharides can be broken down into their respective monosaccharides 

by either chemical hydrolysis or enzymatic hydrolysis. 

2.4.2.1 Chemical hydrolysis 

Chemical hydrolysis is usually performed using acids, mainly hydrochloric 

acid and sulphuric acid. The acid attacks the amorphous regions of the 

cellulose by disrupting the hydrogen bonding between the cellulose fibrils, 

and it disrupts the ester and ether bonding in hemicellulose to release the 

respective sugars (Verardi et al., 2012). Many factors affect sugar yields 

from acid hydrolysis, including the particle size of the substrate and any 

pretreatment, the concentration of the acid, temperature, retention time, 

and mixing rate of the process.  

Acid hydrolysis is advantageous over enzymatic hydrolysis as it has a 

much faster retention time (usually about two hours). However, the acid 

used in the process can be very corrosive on equipment used and 

therefore corrosion resistant equipment needs to be used, increasing the 

capital and operational costs. The process also releases many acid residues 

which can inhibit yeast cells in the fermentation stage, resulting in a lower 

ethanol production rate (Verardi et al., 2012).  

2.4.2.2 Enzymatic hydrolysis 

Enzymatic hydrolysis is performed using cellulases, hemicellulases and 

ligninolytic enzymes, or usually a combination of the enzymes. During the 

process, the enzymes degrade the lignocellulosic material into its 

respective fermentable sugars.  

The conditions used for enzymatic hydrolysis are mild; therefore, no 

inhibitors, which could affect fermentation, are generated. Since no acids 
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are used in the process, the use of expensive corrosion-resistant 

equipment and the removal of acid residues downstream are not required. 

Due to these factors, enzymatic hydrolysis is often favoured over acid 

hydrolysis for the digestion of biomass. However, enzyme hydrolysis does 

require a pretreatment – usually steam explosion or hot water – and this 

can generate inhibitors. Also, the enzymes used are costly, and can often 

account for one-third of the cost of ethanol production. Low rates of 

hydrolysis are often obtained as the correct pretreatment and enzymes 

combination is necessary, as well as conditions for enzyme hydrolysis 

(Binder & Raines, 2010). 

2.4.3 Production of biofuels and biochemicals 

Fermentable sugars are a valuable commodity as they can be easily 

converted into value added products, such as biofuels and biochemicals.  

2.4.3.1 Bioethanol and biochemical production via fermentation 

The production of bioethanol occurs when sugars are fermented, under 

anaerobic conditions into ethanol (Gibson et al., 2007; Goh et al., 2010). 

This is a well-established process and has been used in the production of 

many products, namely alcoholic beverages. The sugars produced during 

the hydrolysis stage are used as the starting substrate and can be 

fermented by various microorganisms, including yeast and bacteria. Some 

ideal conditions for fermentation are a medium pH of 6.0 – 6.5, incubation 

temperature of 24–28 °C, and fermentation/growth rate substrate 

concentration of 2.0–2.5 % (Gibson et al., 2007). However, these 

conditions are seldom met resulting in yeast stress during fermentation 

that needs to be limited as much as possible, as this can have a negative 

effect on the bioethanol/biochemical production.  
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Several microorganisms have been used in the fermentation process, such 

as Saccharomyces cerevisiae, Escherichia coli, Zymomonas mobilis, 

Pachysolen tannophilus, Candida shehatae, Pichia stipitis, Candida 

brassicae, Mucor indicus. Among these microorganisms, the most common 

used in ethanol production from hexose sugars are the yeast, S. 

cerevisiae, and the bacterium, Z. mobilis. However, since S. cerevisiae 

cannot utilise pentose sugars, such as xylose, it cannot utilise many sugars 

from the degradation of hemicelluloses. Attempts have been made to 

genetically modify S. cerevisiae to use the hexose sugars; however, other 

organisms, like Pichia and Candida species, have been investigated as they 

are able to utilise these pentose sugars. Unfortunately, their ethanol 

production rates are reported as being much lower (Sarkar et al., 2012).  

A similar fermentation process can also be used to produce biochemicals, 

such as succinic acid, using different yeast strains. Some research has 

been performed using a metabolically modified yeast strain of S. cerevisiae 

in order to produce succinic acid (Raab et al., 2010; Raab & Lang, 2011). 

Biochemicals can also be produced using bacteria, such as Actinobacillus 

succinogenes, which produced succinic acid when it fermented wheat flour 

hydrolysate (Du et al., 2007). Succinic acid is a valuable chemical as it is 

used in many processes and products, such as detergents, 

pharmaceuticals, foods and surfactants (Zeikus et al., 1999). 

2.5 ENZYME PRODUCTION VIA FUNGAL SOLID STATE 

FERMENTATION OR SUBMERGED FERMENTATION 

In 2014, the industrial enzyme market was valued at US $4.2 billion, with 

the majority of enzymes used being hydrolytic enzymes. These enzymes 

are used in the food and beverage industry, cleaning agent industry and in 

the animal feed industry, and in the production of biofuels and 
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biochemicals (MarketsandMarkets, 2015). The use of lignocellulosic 

enzymes shows potential in all these industries. 

Solid state fermentation (SSF) and submerged fermentation (SmF) can be 

used for the production of a wide range of fungal hydrolytic enzymes, such 

as cellulases and glucoamylases, and these enzymes have been produced 

using a variety of biomass substrates. SSF utilises solid substrates in the 

absence of free water, on which the microorganisms are able to grow, 

whereas SmF is performed in large tanks utilising free flowing liquid 

substances (Guimarães, 2012; Subramaniyam & Vimala, 2012).  

Although SmF is the preferred method for enzyme generation since it is 

easier to control the culture conditions (pH, temperature, aeration) for 

maximum fungal growth and enzyme production, SSF does have many 

advantages over SmF – such as low energy inputs, operational costs and 

water consumption, reduction in bacterial and yeast contamination 

problems, easier downstream processing, and generation of a protein-rich 

by-product (Moreira & Filho, 2008; Guimarães, 2012). However, many 

conditions can affect the enzyme yield, including factors such as moisture 

content, substrate, nitrogen source and media used, transfer of gases, 

temperature and pH, and therefore these need to be researched in order 

to optimise enzyme yields (Bon & Ferrara, 2007; Kumar et al., 2008).  

The use of agro-industrial residues such as Sago hampas, wheat straw, 

and sugar cane bagasse, could be used as alternative sources of carbon for 

the production of enzymes. However, the initial conversion of 

lignocellulosic biomass to sugars is a key problem and the production of 

more efficient, stable and cost-effective enzymes would help lower the 

overall costs of lignocellulosic conversion. 
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2.6 USE OF UNDERUTILISED CROPS AS SUBSTRATES 

There is no specific definition for an underutilised crop, however, the term 

can be used "as a broad reference to alternative options that have so far 

not received significant research or development attention" (CFF Research, 

2011a). Thus, very little is known about them, in terms of their 

compositional analysis and market potential. Using this definition there are 

a large number of underutilised crops that could, or are, being grown for 

food or energy production. This section will consider only those that have 

been utilised in this thesis. 

2.6.1 Bambara nut (Vigna subterranean) 

Bambara is an annual legume, with a well-developed tap-root system, and 

the pods are harvested by pulling the plant out of the soil (Mkandawire, 

2007). The nuts are an important source of protein in diets of poorer 

communities, particularly in African communities (Baryeh, 2001; 

Mkandawire, 2007; Hillocks et al., 2011). The remaining biomass (leaves, 

stems, and roots) is used for animal feed, medicinal purposes, or added 

back into the soil to increased soil fertility (Mkandawire, 2007; Hillocks et 

al., 2011). Bambara is a choice crop in poorer African communities for its 

high-protein nuts, but also because it is resistant to drought and high 

temperatures, puts very little demand on the soil and can be grown on 

marginal soils (Baryeh, 2001; Mkandawire, 2007).  

2.6.2 Leucaena (Leucaena leucocephala) 

Leucaena is a thornless, leguminous hardwood tree, which grows to 

between 7–20 m tall. It is mainly used as a fodder crop for grazing animals 

but it is also constant forage for honey bees (Rout et al., 1999). It has a 

very fast growth rate, is able to grow on steep slopes and in marginal 

areas and is immune to floods, drought, fire and strong winds. As a result, 
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it is used as a firebreak and windbreak, planted to prevent soil erosion, or 

is used to provide shelter and/or support to other crops, such as cocoa, 

coffee and tea. It can however, be invasive due to its very high growth 

rate (Feria et al., 2011). Leucaena is one of the major sources for paper 

pulp and construction material and is also used in reforestation 

programmes in the tropics due to its high growth rate (Rout et al., 1999). 

It has a lignocellulosic composition of around 38–41% cellulose, 19–21% 

hemicellulose and 24% lignin (Lopez et al., 2010; Feria et al., 2011). 

2.6.3 Napier grass (Pennisetum purpureum) 

Napier grass grows very quickly in robust bamboo-like clumps up to 3 m 

tall (Farrell et al., 2002). It has no nutritional value for humans, and is 

grown mainly as an energy crop. However, it is also used for animal food 

and serves as a firebreak or windbreak due to its size. Napier is also used 

as a trap ‘pull’ crop around the perimeter of maize or sorghum fields in the 

push-pull technology for controlling pests, mainly stemborers (Farrell et 

al., 2002; Khan et al., 2007). The Napier grass protects the maize by 

emitting chemicals to attract the stemborers towards itself, and then it 

secretes a sticky substance which physically traps the pests.  

Napier grass has low water and nutrient requirements for growth. It can be 

grown on land not suitable for food crops, and has a high biomass 

production rate (it can be harvested about 4–6 times/year). Research 

shows it can obtain 50–150 tonnes green matter/ha/year, depending on 

climate, soil conditions and inputs (Farrell et al., 2002; Flores et al., 

2012). It is made up of around 36–46% cellulose, 33% hemicellulose and 

20–30% lignin (Reddy et al., 2012; de Araujo Morandim-Giannetti et al., 

2013).  
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2.6.4 Nipa palm (Nypa Fruticans) 

Nipa is often called the ‘mangrove palm’ as it grows very well in mangrove 

environments. It also grows in brackish water environments, along 

coastlines and in semi-liquid mud areas of rivers (Neri, 1994). Thus, it can 

be grown in areas not suitable for many crops, and needs very little 

fertilisation, herbicides or irrigations (Hamilton & Murphy, 1988). Currently 

there are many uses for the sugar-rich sap, which is stored in the tree 

truck and extracted by cutting off the flowers and draining it. About 

98,600 – 141,000 L/ha can be collected per year (Tamunaidu et al., 

2011), and it is used for animal feed in the dry seasons and for human 

consumption as treacle, or easily fermented to alcohol or vinegar (Tsuji et 

al., 2011). There is very little waste generated during this process, no 

machinery needed, and the sap can be extracted continuously (Hamilton & 

Murphy, 1988; Tamunaidu et al., 2011). The fronds from the Nipa palm 

are currently used for roof thatching, or for making umbrellas and several 

other products (Neri, 1994).  

2.6.5 Sago palm (Metroxylon sagu) 

The Sago palm is an important crop, socio-economically, in South East 

Asia. It grows well in humid, tropical lowlands and can reach about 25 m 

tall. It takes about 8–12 years to reach maturity; at this point it flowers 

and then dies shortly afterwards (Abd-aziz, 2002). Just before flowering 

the plant converts its stored nutrients to starch and stores it in its trunk 

(Abd-aziz, 2002). This is extracted and can be processed into many 

products, such as glucose, syrups, chemicals for the pharmaceutical 

industry, paper industry and many others (Flach, 1983). Sago ‘hampas’ 

which is the fibrous residue left behind after most of the starch has been 

washed out, still contains some starch granules trapped inside a 

lignocellulosic matrix (Vickineswary et al., 1994). This can be used as 
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animal feed, compost for mushrooms, as well as several other processes 

(Singhal et al., 2007). Sago palm trees thrive in most soil conditions, such 

as saline soils, acidic peat soils, swamps  (Flach & Schuilling, 1989), and 

promote a stable agroforestry system, with about 25 tonnes/ha of starch 

produced per year in Malaysia (Singhal et al., 2007).  

2.6.6 Oil palm fronds (Elaeis guineensis) 

Oil palm is not an underutilised crop, as it is commercially grown in several 

tropical countries for the production of palm oil. However, the oil palm 

fronds, which are considered biomass waste, were used in this research. 

Most global palm oil production comes from Indonesia and Malaysia. Oil 

palm is the highest yielding oil crop, and is currently the most widely used 

vegetable oil (Sumathi et al., 2008). Recently, the creation of oil palm 

monocultures has gained much negative press and there have been some 

efforts focused to increase the sustainability chain – economically, socially 

and environmentally – of the oil palm industry (Wilcove & Koh, 2010; 

Malaysia GSIAC, 2011). Palm oil derivatives are used as ingredients in a 

wide range of food products, such as margarines, frying oils, breads, 

biscuits, gravy granules, and in many non-food products, such as 

shampoos, beauty products, candles and detergents. 

The waste remaining after the oil extraction process includes palm oil mill 

effluent and biomass waste, which consists of the fronds and the empty 

fruit bunches. In Malaysia, agricultural waste accounts for much of its 

biomass waste production, with about 90% of this biomass waste coming 

from the oil palm industry (Goh et al., 2010; Crops for the Future (CFF) 

Research, 2011b; Malaysia Palm Oil Council (MPOC), 2012). The biomass 

waste produced during oil extraction can be used to produce various value 

added products, such as bioethanol and biogas (Sumathi et al., 2008). 
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 MATERIALS AND METHODS 

3.1 PLANT MATERIAL 

The underutilised crops, and the parts of these used in this study are 

shown in Table 3.1. All crops were obtained through Crops for the Future 

(CFF) based at the University of Nottingham Malaysia Campus, Semenyih, 

Selangor, Malaysia. Before being shipped to the University of Nottingham 

Sutton Bonington Campus, UK, they were air dried for longer than 10 

days. 

Table 3.1  Crops used during this research. 

Common name Latin name Part of the crop used 

Bambara nut Vigna subterranean Leaves, branches, roots 

Leucaena Leucaena leucocephala Leaves, small branches 

Napier grass Pennisetum purpureum Leaves or stems 

Nipa palm Nypa Fruticans Fronds (leaves) 

Oil palm Elaeis guineensis Fronds (leaves) 

Sago palm Metroxylon sagu Sago hampas* 

 *waste after the processing of Sago palm for starch extraction. 

Although oil palm is not an underutilised crop, the fronds were considered 

in this research as they are biomass waste from the palm oil industry.  

3.2 PREPARATION AND STORAGE OF SAMPLES 

3.2.1 Knife milling 

All samples were oven dried overnight at 70 °C and then knife-milled using 

a Laboratory Mill (Pulverisette 19, Fritsch, Germany) and passed through a 

sieve with a mesh size of 2.0 mm. A portion of this sample was then 

further processed by knife-milling with the same machine to pass through 

a sieve with a mesh size of 0.5 mm. All samples were stored in an air tight 

container at 4 °C until use.  
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3.2.2 Ball milling 

A portion of the sample (passed through a sieve with a mesh size of 0.5 

mm) was ball-milled in a Planetary Mill (Pulverisette 5, Fritsch, Germany) 

at 250 rpm with 2 min milling time, followed by 2 min pause time, for a 

total time of 20 min (total grinding time of 10 min). Each 80 mL stainless 

steel milling pot was filled with 30 steel grinding balls (10 mm diameter) 

and 5 g of sample. All samples were collected and stored in an air tight 

container at 4°C until use in composition analysis. 

3.3 CHEMICALS 

All chemicals were obtained from Sigma-Aldrich, MP Biomedicals, Scientific 

Laboratory Supplies, VWR International, Fisher Scientific, Merck, Oxoid, 

and Acros Organics, and were of analytical grade, unless otherwise stated. 

3.4 MEDIA SOLUTIONS 

Several solutions were used when carrying out solid state fermentations 

and submerged fermentations. These additional nutrients included starch, 

yeast extract (YE), and/or mineral solutions. Two different mineral 

solutions were used, MSI and MSII, and their composition is shown in 

Table 3.2 and Table 3.3 respectively. To each solution 10 mL trace 

elements solution (Table 3.4) was added and then made up to 1.0 L using 

deionised water.  

Table 3.2  Composition of mineral solution I (MSI), with the addition of 10 

mL trace elements solution and then made up to 1.0 L with deionised 
water. 

Mass (g) Substance 

1.0 Ammonium sulphate ((NH4)2SO4)  

0.5 Potassium dihydrogen phosphate (KH2PO4)  

0.5 Dipotassium hydrogen phosphate (K2HPO4) 

0.2 Magnesium sulphate heptahydrate (MgSO47H2O) 
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Table 3.3  Composition of mineral solution II (MSII), with the addition of 

10 mL trace elements solution and then made up to 1.0 L with deionised 
water. 

Mass (g) Substance 

26.0 Potassium chloride (KCl) 

26.0 Magnesium sulphate heptahydrate (MgSO47H2O) 

76.0 Potassium dihydrogen phosphate (KH2PO4) 

 

Table 3.4  Composition of trace elements solution, made up to 1.0 L using 
deionised water.  

Mass (g) Substance 

0.8 Copper (II) sulphate pentahydrate (CuSO45H2O) 

0.8  Ferric chloride (FeCl3) 

0.8 Manganese (II) sulphate monohydrate (MnSO4H2O) 

0.8 Sodium molybdate dihydrate (NaMoO42H2O) 

2.0 Zinc sulphate (ZnSO4) 

 

3.5 MICROORGANISMS 

3.5.1 Microorganisms 

Three fungi, Aspergillus niger N402, Trichoderma reesei, and Aspergillus 

awamori were used in this research. A. niger N402 and T. reesei were 

obtained from the School of Life Sciences, University of Nottingham, UK. 

A. awamori was obtained from Professor Colin Webb, School of Chemical 

Engineering and Analytical Science, University of Manchester, UK.  

3.5.2 Growth of microorganisms 

A. niger and T. reesei were cultured based on procedures described by 

Delmas et al. (2012). Potato dextrose agar (3.9% w/v, as instructed on 

bottle; microbiology grade) was used as the culture medium.  

A. awamori was cultured based on procedures described by Koutinas et al. 

(2001). The culture medium used contained 2.0% (w/v) agar powder 

(microbiology grade) + 5.0% (w/v) Sago hampas + 0.5% (w/v) yeast 

extract (YE) + 0.002% (v/v) silicone anti-foam (molecular biology grade) 

using MSI to make into a solution.  
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Based on initial experimentation performed, these culture mediums proved 

best for the culturing of fungal spores. Unless stated, these culture 

mediums were used for the production of fungal spores for all experiments 

performed.  

The agar solutions were autoclaved at 121 °C and 100 kPa (15 psi) above 

atmospheric pressure for 15 min. After autoclaving, the solution was 

immediately distributed into sterile Petri dishes under sterile conditions 

and allowed to cool. Once the agar was set 0.05 mL of the corresponding 

fungal suspension was added to the agar in each Petri dish and spread 

around the agar. All spore cultures were incubated in a dark, static 

incubator set at 28 °C for up to 7 d and then stored at 4 °C until required. 

3.5.3 Preparation of spore suspension 

The cultured spores were used for inoculation of the underutilised crops 

during solid state fermentation (SSF) and submerged fermentation (SmF) 

procedures. When needed, 10 mL sterile 0.01% (v/v) Tween 80 solution 

was added, under sterile conditions, to a Petri dish containing spores. The 

Petri dish was gently swirled for a few minutes, releasing the spores into 

the solution. This spore suspension was then transferred to a sterile 

centrifuge tube ready for use in SSF or SmF procedures; or the suspension 

could be prepared for long term preservation of the strain. The spore 

concentration (spores/mL) was determined by sampling an aliquot of the 

spore suspension for spore counting using a haemocytometer and 

microscope.  

3.5.4 Long-term storage of microorganisms 

For long team storage of spores, the spore suspension and 50% (v/v) 

sterilised glycerol were added in a 1:1 ratio, using sterile pipette tips, to 

1.2 mL sterile cryogenic vials and preserved at -80 °C. 
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3.6 SUBSTRATE COMPOSITIONAL ANALYSIS 

3.6.1 Moisture content  

The moisture content of the biomass samples was determined by the 

standard biomass analytical method “Determination of Total Solids in 

Biomass and Total Dissolved Solids in Liquid Process Samples” provided by 

the National Renewable Energy Laboratory (NREL), prepared for 

publication by Sluiter et al. (2008a). 

3.6.1.1 Preparation of samples 

Aluminium weighing dishes were pre-dried before being used. The dishes 

were labelled and placed in a drying oven set to 105 °C for a minimum of 

4 h, and then cooled in a desiccator. Once cool they were weighed and the 

mass recorded to the nearest 0.1 mg. A 5 g sample (knife-milled to pass 

through a 0.5 mm sieve) of each substrate was weighed out into the 

appropriately labelled aluminium dish, and the mass noted to the nearest 

0.1 mg. All samples were placed into the drying oven set at 105 °C and 

dried for a minimum of 4 h. The samples were removed and cooled to 

room temperature in a desiccator before being weighed. The mass was 

recorded and the samples were placed back into the oven and dried to 

constant mass.  

3.6.1.2 Analysis of samples 

The percent moisture content was calculated using Equation 3.1. 

Equation 3.1 

% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = [
(𝑀𝑎𝑠𝑠𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  −  𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒)

𝑀𝑎𝑠𝑠𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
]  𝑥 100     

𝑤ℎ𝑒𝑟𝑒:  𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 =  𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑓𝑜𝑖𝑙 𝑝𝑙𝑢𝑠 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑓𝑜𝑖𝑙  
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3.6.2 Ash content 

The amount of inorganic material (ash) in the biomass samples was 

determined by the standard biomass analytical method “Determination of 

Ash in Biomass” provided by the National Renewable Energy Laboratory 

(NREL), prepared for publication by Sluiter et al. (2008b).  

3.6.2.1 Preparation of samples 

Ashing crucibles were labelled, dried to constant mass and the mass 

recorded to the nearest 0.1 mg. A 2 g sample of each substrate (knife-

milled to pass through a 0.5 mm sieve) was weighed out into the 

appropriately labelled crucible and the mass recorded to the nearest 0.1 

mg. All samples were placed into the muffle furnace set at 575 ± 25 °C for 

24 h, and then cooled for 1 h in a desiccator. After 1 h they were weighed 

and the mass recorded to the nearest 0.1 mg. The crucibles were placed 

back in the furnace and the samples were dried to constant mass. 

3.6.2.2 Analysis of samples 

The percent ash was calculated using Equation 3.2, and all results were 

reported relative to the 105 °C oven dry weight of the sample.  

Equation 3.2 

% 𝐴𝑠ℎ =  (
𝑀𝑎𝑠𝑠𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑝𝑙𝑢𝑠 𝑎𝑠ℎ− 𝑀𝑎𝑠𝑠𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒

𝑂𝐷𝑊𝑠𝑎𝑚𝑝𝑙𝑒
)  𝑥 100  

𝑤ℎ𝑒𝑟𝑒:  

𝑂𝐷𝑊𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝑀𝑎𝑠𝑠𝑎𝑖𝑟 𝑑𝑟𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 (100−% 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

100
  

3.6.3 Elemental analysis  

A Flash 2000 Organic Elemental Analyser (Thermo Scientific, USA) was 

used to determine the carbon, hydrogen, nitrogen and sulphur contents of 

the underutilised crop samples. The advanced combustion method has 
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been adopted by the Association of Official Analytical Chemists (AOAC), 

official method 972.43 (2006). A 5 mg sample (ball milled) was sealed in a 

tin capsule and the exact mass of the sample was recorded. The samples 

were combusted at approximately 1800 °C for a few seconds, converting 

the substances into elemental gases. These gases were then reduced, 

before being separated by a chromatographic column and detected by a 

highly sensitive thermal conductivity detector. Quantification was achieved 

with Thermo Scientific Eager Xperience software using high purity 

standards (Thermo Scientific, 2008). 

3.6.4 Protein content 

The protein content of the crop samples was measured by a combustion 

measurement performed according to AOAC official method 992.23 

(2005a). The combustion method performed was that of the elemental 

analysis and the percent protein was calculated using Equation 3.3. A 

factor of 6.25 was used to convert nitrogen content into protein content as 

the average nitrogen content of proteins has been found to be about 16 % 

(1/0.16 = 6.25).  

Equation 3.3 

% 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 = % 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑥 6.25  

3.6.5 Starch content 

Starch analysis was performed using the Megazyme total starch assay 

procedure (amyloglucosidase/α-amylase method), using the kit provided 

with the procedure (Megazyme, 2014). This method has been adopted by 

the AOAC (official method 996.11).  



The University of Nottingham                                  Materials and Methods 

55 

 

3.6.5.1 Preparation of samples 

100 mg of sample (knife-milled to pass through a 0.5 mm sieve) was 

weighed into a centrifuge tube and the exact mass recorded. To each tube 

5 mL 80% (v/v) aqueous ethanol was added and then incubated in an 85 

°C water bath for 5 min. The contents of the tubes were mixed on a vortex 

stirrer, before adding an additional 5 mL 80% (v/v) aqueous ethanol. The 

tubes were then centrifuged at 1,800 xg for 10 min and the supernatant 

discarded. The pellet was re-suspended in 10 mL 80% (v/v) aqueous 

ethanol and mixed on a vortex mixer. The tubes were centrifuged again at 

1,800 xg for 10 min and the supernatant carefully discarded.  

A magnetic stirrer bar was added to each test tube and the tubes were 

placed in an ice/water bath over a magnetic stirrer. To each tube, 2.0 mL 

of 2 M potassium hydroxide (KOH) was added and vigorously stirred for 20 

min. After the resistant starch was dissolved, 8.0 mL 1.2 M Na-acetate 

buffer, pH 3.8 was added to each tube, still stirring on magnetic stirrer. 

Immediately after, 0.1 mL thermostable α-amylase (1,600 U/mL on 

Ceralpha reagent at pH 5.0 and 40 °C; supplied in kit) and 0.1 mL 

amyloglucosidase (3,300 U/mL on soluble starch; supplied in kit) were 

added to each tube, and the contents mixed well. The tubes were placed in 

a 50 °C water bath for 30 min, with intermittent mixing on a vortex mixer 

throughout the incubation period. 

After incubation the samples were processed in either one of two ways, 

depending on the percent starch present in the samples.  

STARCH CONTENT >10% 

All tubes were removed from the incubator and the entire contents 

quantitatively transferred to a 100 mL volumetric flask. A wash bottle 

containing deionised water was used to rinse the tube contents thoroughly 
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and the volume adjusted to 100 mL. The contents were mixed thoroughly 

and then an aliquot of this solution was centrifuged at 1,800 xg for 10 min. 

The supernatant was used for further analysis, with the final volume for 

calculations being 100 mL.  

STARCH CONTENT 1-10% 

All tubes were removed from the incubator, the contents mixed thoroughly 

and transferred to centrifuge tubes with no dilution. The tubes were then 

centrifuged at 1,800 xg for 10 min. The supernatant was used for further 

analysis, with the final volume used for calculations being 10.4 mL. 

3.6.5.2 Measurement of glucose using GOPOD Reagent 

Duplicate aliquots of 0.1 mL supernatant were transferred to labelled glass 

test tubes. To each test tube (including the reagent blank and glucose 

control tubes), 3.0 mL Glucose Determination Reagent (GOPOD Reagent) 

was added, and incubated in a 50 °C water bath for 20 min. GOPOD 

Reagent (supplied in kit) contained GOPOD Reagent enzymes (glucose 

oxidase, peroxidase and 4-aminoantipyrine), dissolved in GOPOD Reagent 

buffer (1 M potassium phosphate buffer, pH 7.4, 0.22 M ρ-hydroxybenzoic 

acid, and 0.4% (w/w) sodium azide). 

All the tubes were removed from the water bath and the contents mixed 

using a vortex stirrer. The absorbance of all samples and standard 

solutions was measured using a spectrophotometer set at a wavelength of 

510 nm. The reagent blank was used to zero the spectrophotometer before 

taking readings for the glucose controls and samples, ensuring the 

absorbance readings were in the range of 0.1 – 1.0 A. 
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3.6.5.3 Maize standard, reagent blank and glucose standards 

Maize standard samples were prepared when the substrate samples were 

prepared, following the same procedure for the substrate samples.  

The reagent blank and glucose control tubes were only prepared when the 

GOPOD Reagent was ready to be added to the sample tubes. The reagent 

blank tube contained 0.1 mL deionised water and 3.0 mL GOPOD Reagent 

in a glass test tube. The glucose control tubes (prepared in quadruplicate) 

contained 0.1 mL glucose standard (supplied in kit; 100 µg/0.1 mL) and 

3.0 mL GOPOD Reagent in a glass test tube.  

3.6.5.4 Analysis of samples 

The starch concentration of the substrates was calculated using Equation 

3.4 and Equation 3.5. 

Equation 3.4 

𝑆𝑡𝑎𝑟𝑐ℎ  % 𝑤/𝑤 (𝑎𝑠 𝑖𝑠) =  ∆𝐴 ×𝐹 ×
𝐹𝑉

0.1
 × 

1

1000
 × 

100

𝑊
 ×

162

180
         

                                             =  ∆𝐴 × 
𝐹

𝑊
 ×𝐹𝑉 ×0.9  

𝑤ℎ𝑒𝑟𝑒: 

∆𝐴 =  𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑟𝑒𝑎𝑑 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡ℎ𝑒 𝑟𝑒𝑎𝑔𝑒𝑛𝑡 𝑏𝑙𝑎𝑛𝑘 𝑎𝑡 510 𝑛𝑚 

𝐹 =  
100 (µ𝑔 𝑜𝑓 𝐷−𝑔𝑙𝑢𝑐𝑜𝑠𝑒)

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 100 µ𝑔 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒
 (𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑡𝑜 µ𝑔)  

𝐹𝑉 =  𝐹𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑖𝑒. 𝑒𝑞𝑢𝑎𝑙𝑠 100 𝑚𝐿 𝑜𝑟 10.4 𝑚𝐿) 

1

1000
= 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 µ𝑔 𝑡𝑜 𝑚𝑔 

100

𝑊
=  𝐹𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 “"𝑠𝑡𝑎𝑟𝑐ℎ”" 𝑎𝑠 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑙𝑜𝑢𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 

W =  𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑚𝑔 ("as is" 𝑏𝑎𝑠𝑖𝑠)𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑢𝑟 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 

162

180
=  𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑓𝑟𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑡𝑜 𝑎𝑛ℎ𝑦𝑑𝑟𝑜 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑠𝑡𝑎𝑟𝑐ℎ)  

Equation 3.5 

𝑆𝑡𝑎𝑟𝑐ℎ % 𝑤/𝑤 (𝑑𝑟𝑦 𝑤𝑡. 𝑏𝑎𝑠𝑖𝑠) =  𝑆𝑡𝑎𝑟𝑐ℎ % 𝑤/𝑤 (𝑎𝑠 𝑖𝑠)×  [
100

(100−𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (% 𝑤/𝑤))
]  
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3.6.6 Total sugar content 

Total sugar analysis was performed by a total acid hydrolysis method used 

by Saeman, Bubl & Harris (1945).  

3.6.6.1 Preparation of samples 

All starch was removed from the samples before the total acid hydrolysis 

was performed. To each test tube, containing 0.2 g of sample (knife-milled 

to pass through a 0.5 mm sieve), 0.4 mL 80% (v/v) aqueous ethanol was 

added and mixed. Immediately, 4 mL dimethyl sulphoxide (DMSO) was 

added and the contents of each tube mixed using a vortex mixer. All tubes 

were placed in a vigorously boiling water bath for 5 min. The tubes were 

then centrifuged at 4,696 xg for 10 min and the supernatant was 

removed. This process was repeated several times until all the starch had 

been removed. Once complete, the remaining substrate was transferred to 

an aluminium foil tray and dried overnight in an oven set at 105 °C. Once 

dry, the substrate was used for the total acid hydrolysis procedure.  

For the total acid hydrolysis, 30 mg of each substrate was weighed into 50 

mL Teflon cap tubes (Pyrex, UK) and 1.0 mL 12 M sulphuric acid was 

added. All tubes were incubated in a 37 °C water bath for 1 h. The tubes 

were then removed and 11.0 mL deionised water was added to each. The 

tubes were then placed in a 100 °C water bath for 2 h. Once complete, the 

tubes were removed and the hydrolysate was allowed to cool to room 

temperature. All samples were filtered using 0.2 µm pore size Whatman 

GD/X syringe filters (GF/C 25 mm filter diameter; Whatman International 

Ltd., UK), and diluted 1:100, ready for sugar analysis.  
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3.6.6.2 Preparation of sugar standard solution 

A standard ‘sugar stock solution’ containing arabinose, galactose, glucose, 

and xylose was prepared and then diluted several times to obtain various 

solutions of known concentrations. To make the sugar stock solution, 

exactly 2.000 g of each sugar was weighed, dissolved in deionised water 

and then made up to 1.0 L. The sugar stock solution, of concentration 2 

g/L, was serially diluted to final concentrations as shown in Table 3.5. 

Table 3.5  Sugar standard solution preparation. 

Dilution Volume 

source (L)  

Source Volume 

deionised 

water (L) 

Final conc. 

(g/L) 

Dilution #1 0.500 Stock (2 g/L) Up to 1.0 L 1.000 

Dilution #2 0.500 Dilution #1 Up to 1.0 L 0.500 

Dilution #3 0.500 Dilution #2 Up to 1.0 L 0.250 

Dilution #4 0.500 Dilution #3 Up to 1.0 L 0.125 

 

All sugar standard samples were filtered using 0.2 µm pore size Whatman 

GD/X syringe filters (GF/C 25 mm filter diameter; Whatman International 

Ltd., UK), and diluted 1:100 ready for sugar analysis. 

3.6.6.3 Analysis of samples 

The sugar content of the samples was quantified by high performance 

liquid chromatography (HPLC). The monosaccharides, arabinose, glucose, 

fructose, and xylose, were analysed using Dionex ICS-3000 Reagent-

Free™ Ion Chromatography equipped with Dionex ICS-3000 system, 

electrochemical detection using ED 40 and computer controller. The 

CarboPac™ PA 20 column (3 x 150 mm; Dionex, USA) was used, with a 

column temperature of 30 °C. The solution used for the mobile phase was 

10 mM NaOH, with a flow rate of 0.5 mL/min and an injection volume of 

10 µL. 

The peak area and retention time of each sugar in the standard sugar 

solution was recorded. The peak area for each sugar dilution was plotted 
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against the sugar concentration to draw a standard curve. The 

concentration of each sugar in the substrates was calculated by 

interpolation on the standard curve for each sugar. 

3.6.7 Lignin content 

Lignin analysis was performed using the acetyl bromide method 

(Fukushima & Hatfield, 2001). 

3.6.7.1 Preparation of samples 

100 mg of each substrate (knife-milled to pass through a 0.5 mm sieve) 

was weighed into a 50 mL Teflon cap tube (Pyrex, UK) and dissolved in 4.0 

mL 25% (v/v) acetyl bromide in glacial acetic acid. All samples were 

incubated in a 50 °C water bath for 2 h, and then allowed to cool to room 

temperature. Once cool, the samples were diluted to 16 mL using glacial 

acetic acid (12 mL added) and centrifuged at 3,000 xg for 15 min to 

sediment.  

From each sample, 0.5 mL of supernatant was transferred to a new tube 

and the following reagents were added: 2.5 mL glacial acetic acid, 1.5 mL 

0.3 M NaOH, and 0.5 mL 0.5 M hydroxylamine HCl (laboratory grade). 

Finally, the total volume in each tube was made up to 10 mL with glacial 

acetic acid, as shown in Table 3.6. 

Table 3.6  Reagents added to sample tubes after incubation. 

Reagent Volume (mL) 

Supernatant 0.5 

Glacial acetic acid  2.5 

0.3 M NaOH  1.5 

0.5 M hydroxylamine HCl  0.5 

Sub-total  5.0 

Glacial acetic acid to add  5.0 

Total  10.0 

 

The absorbance of all samples and standard solutions was measured using 

a spectrophotometer set at a wavelength of 280 nm. A quartz cuvette was 
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used for analysis in the spectrophotometer to avoid UV interference, and 

all analysis was performed in a fume hood. The reagent blank was used to 

zero the spectrophotometer before taking readings for the standard 

solutions and samples. 

3.6.7.2 Reagent blank and lignin standard solutions 

The reagent blank was prepared by mixing 0.2 mL dioxane with 0.5 mL 25 

% acetyl bromide in glacial acetic acid. The tube was incubated at 50 °C 

for 30 min (added 1.5 h through incubation period of samples), and then 

allowed to cool down to room temperature.   

A lignin standard stock solution was prepared by dissolving 10 mg of 

isolated lignin in 6.0 mL 80% (v/v) dioxane in a 50 mL Teflon cap tube 

(Pyrex, UK). The standard stock solution was diluted by pipetting 0.2 mL, 

0.3 mL, 0.4 mL, 0.5 mL and 0.6 mL into 50 mL Teflon cap tubes (Pyrex, 

UK), each containing 0.5 mL 25% (v/v) acetyl bromide in glacial acetic 

acid. To prepare the reagent blank, 0.2 mL dioxane was mixed with 0.5 mL 

25% (v/v) acetyl bromide in glacial acetic acid. All tubes were mixed 

thoroughly and incubated at 50 °C for 30 min (added 1.5 h through 

incubation period of samples), and then allowed to cool down to room 

temperature.   

After cooling, 2.5 mL glacial acetic acid, 1.5 mL 0.3 M NaOH and 0.5 mL 

0.5 M hydroxylamine HCl (laboratory grade) were added to each tube. 

Finally, the final volume in each tube was made up to 10 mL with glacial 

acetic acid. The total amounts of reagents added to each tube are shown 

in Table 3.7.  
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Table 3.7  Reagents added to standard lignin solutions. 

Reagent Volume added to each stock solution 

dilution (mL) 

Stock solution  0.2 0.3 0.4  0.5 0.6 

25% acetyl bromide  0.5 0.5 0.5 0.5 0.5 

Glacial acetic acid  2.5 2.5 2.5 2.5 2.5 

0.3 M NaOH  1.5 1.5 1.5 1.5 1.5 

0.5 M hydroxylamine HCl  0.5 0.5 0.5 0.5 0.5 

Glacial acetic acid to add  4.8 4.7 4.6 4.5 4.4 

3.6.7.3 Analysis of samples 

The absorbance readings of the standard lignin solutions were plotted 

against their lignin concentrations to obtain a standard curve. The lignin 

concentration of the substrates was calculated by interpolation on the 

standard curve for lignin. The percent lignin was obtained using Equation 

3.6. 

Equation 3.6  

𝐿𝑖𝑔𝑛𝑖𝑛 (%) = 𝐿𝑖𝑔𝑛𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × (
16 𝑚𝐿

0.5 𝑚𝐿
) × (

1

0.100𝑔 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
)  

3.6.8 Lipid content 

Following the AOAC official method 945.16 (AOAC, 2005b) lipid content of 

the substrates was analysed using a Soxtherm Fat Analyser (Gerhardt®) 

using petroleum ether as a solvent. 

3.6.8.1 Preparation of samples 

Up to 2 g of substrate (ball milled) was weighed onto an 11 cm qualitative 

grade filter paper, and the exact mass recorded to 0.1 mg. The filter paper 

was loosely folded to enclose the sample, and labelled with a pencil. Each 

filter paper was placed inside an extraction thimble, gently pushing it to 

the bottom of the thimble, and a plug of cotton wool placed on top.  

Three anti-bump stones were added to each of the six glass extraction 

flasks. The mass of the flasks plus the stones was recorded, along with the 

number on the flask. The flasks, which had been oven-dried and cooled in 
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a desiccator before addition of the anti-bump stones, were returned to the 

desiccator until use.  

3.6.8.2 Extraction of lipid using Gerhardt Soxtherm Fat Analyser 

The Soxtherm hotplates were heated to 150 °C and the water flow was 

checked, ensuing it was 2.5 L/min or greater. Six glass flasks containing 

the anti-bump stones were placed into the large aluminium rack and 155 

mL petroleum ether (40-60° fraction; laboratory grade) was added to each 

in a fume hood. The corresponding thimble, containing the substrate 

samples, was added to each glass flask, pushing firmly into place and 

ensuring the green “O” rings at the bottom of the flask were present and 

properly seated. The aluminium rack with the glass flasks was installed on 

the Soxtherm and the lipid extraction started when the hotplates had 

reached 150 °C. 

Once all the solvent in the flasks had disappeared, the flasks were 

removed from the Soxtherm. The thimbles were removed from the flasks 

and the flasks were placed in an oven set at 100 – 103 °C for 1 h. The 

flasks were then transferred to a desiccator to cool to room temperature. 

Once cool, the flasks (containing the anti-bump stones and fat extract) 

were weighed and the mass recorded.  

3.6.8.3 Analysis of samples 

The mass of Soxhlet fat present (extract) was quantified as the weight of 

the glass flask after extraction and solvent recovery. The percent Soxhlet 

fat present in the substrates was calculated using Equation 3.7. 

Equation 3.7 

𝑆𝑜𝑥ℎ𝑙𝑒𝑡 𝑓𝑎𝑡 (%) = (
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑔)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔) 
) ×100  
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3.7 SOLID STATE FERMENTATION 

3.7.1 Preparation of substrates 

For each condition and incubation period tested, 6 g substrate (knife-

milled to pass through a 2.0 mm sieve, except Sago hampas which was 

used as is) was weighed and placed into a Duran bottle. A moisture 

content (MC) of 80% (w/v) was obtained with the addition of deionised 

water. Depending on the substrate used and its initial MC, this 

corresponded to a solid to liquid ratio ranging from 1:3.25 to 1:3.50 (w/v). 

The contents of the Duran bottles were autoclaved at 121 °C and 100 kPa 

(15 psi) above atmospheric pressure for 15 min, and then allowed to cool.  

If required, the addition of nutrients – which included starch (0.0070 g/g 

substrate), yeast extract (YE; 0.0175 g/g substrate) and/or mineral 

solutions (MSI or MSII) – were added to the substrates before autoclaving. 

Either MSI or MSII was added instead of deionised water to adjust to 80% 

(w/v) MC.  

3.7.2 Addition of spore suspensions and incubation 

For cellulase production either A. niger N402 or T. reesei were used. For 

both fungi a spore concentration of 1.0 x 106 spores/g of dry substrate 

was added to each Duran bottle. For amylase production either A. awamori 

or A. niger N402 were used. For A. awamori a spore concentration of 4.0 x 

106 spores/g of dry substrate was added to each bottle. For A. niger N402 

a spore concentration of 1.0 x 106 spores/g of dry substrate was added to 

each bottle. The inoculum was distributed evenly throughout the substrate 

using a sterilised spatula, and then distributed evenly between three Petri 

dishes. After the addition of the spore suspension, all petri dishes were 

incubated in a static incubator at 28 °C for up to 7 d. 
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3.7.3 Extraction of fungal enzymes 

3.7.3.1 Extraction for cellulase analysis 

Extraction of fungal enzymes was performed using a method described by 

Pensupa et al. (2013). At the end of the incubation period, the fermented 

mash from each Petri dish was transferred into a blender. For each 1 g of 

fermented mash added, 15 mL of 0.05 M Na-citrate buffer, pH 4.8 was 

added to the blender. The mixture was blended for 10 seconds on ‘high’ 

power, and then transferred to a beaker and stirred at 300 rpm on a 

magnetic stirrer, at 4 °C for 30 min. The mechanical force of the blitzing 

helped break apart the fungal spores, allowing the enzymes to be released 

into the buffer solution during stirring, improving enzyme extraction. 

The mixture was then transferred to centrifuge tubes and centrifuged at 

4,696 xg for 10 min. The clear supernatant (fungal extract) was removed 

and analysed for enzyme production (described in Section 3.9). The 

remaining biomass (fungal and undigested substrate) was oven-dried at 

70 °C overnight and then stored at 4 °C for future use/analysis. 

3.7.3.2 Extraction for glucoamylase analysis 

Extraction of fungal enzymes was performed using a modified method 

described by Du et al. (2008). At the end of the incubation period, the 

fermented mash from each Petri dish was transferred into a beaker and 

6.0 mL 0.2 M Na-acetate buffer, pH 4.5 was added per gram of substrate 

(not deionised water as done by Du et al. (2008)). The mixture was stirred 

at 300 rpm on a magnetic stirrer, at 4 °C (not room temperature as done 

by Du et al. (2008)) for 60 min, extracting the enzymes from the spores.  

The mixture was then transferred to centrifuge tubes and centrifuged at 

4,696 xg for 10 min. The clear supernatant (fungal extract) was removed 
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and analysed for glucoamylase and glucose production (described in 

Section 3.9). The remaining biomass (fungal and undigested substrate) 

was oven-dried at 70 °C overnight and then stored at 4 °C for future use 

and/or analysis. 

3.8 SUBMERGED FERMENTATION 

3.8.1 Preparation of substrates 

For each condition and incubation time tested, 6 g substrate (knife-milled 

to pass through a 2.0 mm sieve, except Sago hampas which was used as 

is) was weighed and placed into a 250 mL glass conical flask. A moisture 

content of 80% (w/v) was obtained with the addition of deionised water. 

The contents of the flasks were autoclaved at 121 °C and 100 kPa (15 psi) 

above atmospheric pressure for 15 min, and then allowed to cool. 

Afterwards, autoclaved deionised water was added to the flasks to adjust 

the total volume of liquid added to 100 mL (6% w/v), and the pH of the 

mixture was adjusted. 

If required, the addition of nutrients – which included starch (0.0070 g/g 

substrate), yeast extract (YE; 0.0175 g/g substrate) and/or mineral 

solutions (MSI or MSII) – were added to the conical flasks before 

autoclaving. When MSI or MSII were added, the amount added was equal 

to the total amount added in the SSF procedure, and the remaining 

volume (up to 100 mL working volume) was achieved using deionised 

water. 

3.8.2 Addition of spore suspensions and incubation 

For cellulase production either A. niger N402 or T. reesei were used. For 

both fungi a spore concentration of 1.0 x 106 spores/g of dry substrate 

was added to each flask. For amylase production either A. awamori or A. 
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niger N402 were used. For A. awamori a spore concentration of 4.0 x 106 

spores/g of dry substrate was added to each bottle. For A. niger N402 a 

spore concentration of 1.0 x 106 spores/g of dry substrate was added to 

each bottle. After the addition of the spore suspension all flasks were 

recapped and incubated in a shaking incubator, set at 250 rpm and 28 °C, 

for up to 7 d.  

3.8.3 Enzyme extraction 

At the end of the incubation period, the mixture in each conical flask was 

transferred to 50 mL centrifuge tubes and centrifuged at 4,696 xg for 10 

min. The clear supernatant (fungal extract) was removed and analysed for 

enzyme and glucose production (described in Section 3.9). The remaining 

biomass (fungal and undigested substrate) was oven-dried at 70 °C 

overnight and then stored at 4 °C for future use/analysis. 

3.9 ENZYME AND GLUCOSE ASSAYS 

3.9.1 Cellulase assay (filter paper units) 

Filter paper cellulase activity was analysed according to National 

Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure for 

cellulase activity, prepared for publication by Adney & Baker (1996). The 

substrate used was a 50 mg Whatman No. 1 filter paper strip.  

3.9.1.1 Preparation of samples 

The sample tubes were prepared by adding a rolled filter paper strip and 

1.0 mL 0.05 M Na-citrate buffer, pH 4.8 to each test tube, ensuring the 

filter paper was saturated. The tubes were then placed in a 50 °C water 

bath for 5 min to equilibrate the contents of the tubes. After 5 min, 0.5 mL 

of the corresponding enzyme extract was added to the sample tubes. The 
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reaction mixtures were incubated at 50 °C for exactly 60 min and at the 

end of the incubation period the tubes were removed from the water bath.  

The released reducing sugar (as glucose) was measured using the 

dinitrosalicylic (DNS) method (Miller, 1959). The enzyme reaction was 

terminated by adding 3.0 mL 3,5-Dinitrosalicylic acid (DNS) solution to 

each test tube, mixing well. The tubes were then placed in a boiling water 

bath for exactly 5 min and then transferred to an ice-water bath until 

cooled. The contents of each test tube were mixed using a vortex mixer 

and the absorbance was read using a spectrophotometer set at a 

wavelength of 540 nm. The reagent blank was used to zero the 

spectrophotometer before taking readings for the standards and samples, 

ensuring all absorbance readings were in the range of 0.1 – 1.0 A. 

3.9.1.2 Preparation of reagent blank and controls 

All substrate control, reagent blank and experimental control tubes were 

prepared at the same time as the experimental tubes. The reagent blank 

tube was prepared by adding 1.5 mL 0.05 M Na-citrate buffer to a glass 

test tube. The substrate control tube was prepared by adding a rolled filter 

paper strip to a glass test tube plus 1.5 mL 0.05 M Na-citrate buffer, pH 

4.8, ensuring the filter paper was saturated. The experimental control 

tubes were prepared by adding 1.0 mL 0.05 M Na-citrate buffer, pH 4.8 to 

each tube, plus the addition of 0.5 mL enzyme extract after the 5 min 

equilibration period.   

3.9.1.3 Preparation of glucose standards 

Glucose standards were prepared from a 10.0 mg/mL working stock 

solution of anhydrous glucose as shown in Table 3.8. Glucose standard test 

tubes were prepared by adding 0.5 mL of each of the below glucose 
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dilutions to 1.0 mL 0.05 M Na-citrate buffer, pH 4.8, incubating the tubes 

along with control and sample tubes.  

Table 3.8  Preparation of glucose standard solutions. 

Addition 

working stock 

solution (mL) 

Addition 0.05M 

Na-citrate 

buffer, pH 4.8 

(mL) 

Final 

concentration 

(mg/mL) 

Final 

concentration 

(mg/0.5 mL) 

1.0 0.0 10.00 5.00 

1.0 0.5 6.70 3.35 

1.0 1.0 5.00 2.50 

1.0 2.0 3.30 1.65 

1.0 4.0 2.00 1.00 

  

3.9.1.4 Analysis of samples 

The absorbance readings of the standard glucose solutions were plotted 

against their concentrations to obtain a standard curve. The glucose 

concentration of the substrates was calculated by interpolation on the 

standard curve, after subtraction of the enzyme and substrate controls.  

The cellulase activity (U/mL) was then calculated and converted to U/g of 

dry weight substrate using Equation 3.8 and Equation 3.9 (Adney & Baker, 

1996). 

Equation 3.8 

𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐹𝑃 𝑈 𝑚𝐿⁄ ) =  (
0.37

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 2.0 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 
)  

𝑤ℎ𝑒𝑟𝑒:  

0.37 𝜇𝑚𝑜𝑙/𝑚𝑖𝑛𝑢𝑡𝑒 − 𝑚𝐿 =  (
(2.0 𝑚𝑔 𝑔𝑙𝑢𝑜𝑐𝑠𝑒 0.18016 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒/𝜇𝑚𝑜𝑙⁄ )

(0.5 𝑚𝐿 𝑒𝑛𝑧𝑦𝑚𝑒 𝑥 60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
)  

Equation 3.9 

𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐹𝑃𝑈 𝑔⁄ ) =  (
𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) 𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑛𝑔𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑚𝐿)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑆𝐹 (𝑔)
)  

 

3.9.2 Carboxymethyl cellulase (endo-β-1,4-glucanase) assay 

Carboxymethyl cellulase (endo-β-1,4-glucanase) was determined by the 

method of the International Union of Pure and Applied Chemistry, 

prepared for publication by Ghose (1987). The substrate solution used was 
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2% (w/v) carboxymethyl cellulose (CMC), dissolved in 0.05 M Na-citrate 

buffer, pH 4.8.  

3.9.2.1 Preparation of samples 

The sample tubes were prepared by adding 0.5 mL substrate solution to 

each glass test tube. The tubes were then placed in a 50 °C water bath for 

5 min to equilibrate the contents of the tubes. After 5 min, 0.5 mL of the 

corresponding enzyme extract was added to the sample tubes. The 

contents of the tubes were mixed well and incubated at 50 °C for 30 min, 

and then removed from the water bath.  

The released reducing sugar (as glucose) was measured using the 

dinitrosalicylic (DNS) method (Miller, 1959). The enzyme reaction was 

terminated by adding 3.0 mL 3,5-Dinitrosalicylic acid (DNS) solution to 

each test tube, mixing well. The tubes were then placed in a boiling water 

bath for exactly 5 min and then transferred to an ice-water bath until 

cooled. The contents of each test tube were mixed using a vortex mixer 

and the absorbance was read using a spectrophotometer set at a 

wavelength of 540 nm. The reagent blank was used to zero the 

spectrophotometer before taking readings for the standards and samples, 

ensuring all absorbance readings were in the range of 0.1 – 1.0 A. 

3.9.2.2 Preparation of reagent blank and controls 

All substrate control, reagent blank and experimental control tubes were 

prepared at the same time as the experimental tubes. The reagent blank 

was prepared by adding 1.0 mL 0.05 M Na-citrate buffer, pH 4.8 to a glass 

test tube. The substrate control tube was prepared by adding 0.5 mL 

substrate solution and 0.5 mL 0.05 M Na-citrate buffer, pH 4.8 to a glass 

test tube. The experimental control tubes were prepared by adding 0.5 mL 
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0.05 M Na-citrate buffer, pH 4.8 to a glass test tube, plus the addition of 

0.5 mL enzyme extract after the 5 min equilibration period.   

3.9.2.3 Preparation of glucose standards 

Glucose standards were prepared from a 2.0 mg/mL working stock 

solution of anhydrous glucose as shown in Table 3.9. 

Table 3.9  Preparation of glucose standard solutions. 

Addition 

working stock 

solution (mL) 

Addition 0.05M 

Na-citrate 

buffer, pH 4.8 

(mL) 

Final 

concentration 

(mg/mL) 

Final 

concentration 

(mg/0.5 mL) 

1.0 0.0 2.00 1.00 

1.0 0.5 1.33 0.67 

1.0 1.0 1.00 0.50 

1.0 3.0 0.50 0.25 

  

Glucose standard test tubes were prepared by adding 0.5 mL of each of 

the above glucose dilutions to 0.5 mL 0.05 M Na-citrate buffer, pH 4.8, 

incubating the tubes along with the control and experimental tubes.  

3.9.2.4 Analysis of samples 

The absorbance readings of the standard glucose solutions were plotted 

against their known concentrations to obtain a standard curve. The glucose 

concentration of the substrates was calculated by interpolation on the 

standard curve, after subtraction of the enzyme and substrate controls. 

One unit (U) of enzyme was defined as the amount of enzyme required to 

release 1 µmol of glucose from carboxymethyl cellulose per min, where 1 

µmol of glucose is equal to 0.18 mg glucose. The activity (U/mL) was 

calculated and then converted to U/g of dry weight substrate using 

Equation 3.10 and Equation 3.11 (Ghose, 1987). 
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Equation 3.10 

𝐸𝑛𝑑𝑜𝑔𝑙𝑢𝑐𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) =  (
0.185

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 0.5 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 
)  

𝑤ℎ𝑒𝑟𝑒:  

0.185 𝜇𝑚𝑜𝑙/𝑚𝑖𝑛𝑢𝑡𝑒 − 𝑚𝐿 =  (
(0.5 𝑚𝑔 𝑔𝑙𝑢𝑜𝑐𝑠𝑒 0.18016 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒/𝜇𝑚𝑜𝑙⁄ )

(0.5 𝑚𝐿 𝑒𝑛𝑧𝑦𝑚𝑒 𝑥 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
)  

 

Equation 3.11 

𝐸𝑛𝑑𝑜𝑔𝑙𝑢𝑐𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑔⁄ ) =  (
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) 𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑛𝑔𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑚𝐿)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑆𝐹 (𝑔)
)  

 

3.9.3 Avicelase (exo-1,4-β-glucanase) assay 

Avicelase (exo-1,4-β-glucanase) activity was determined by a modified 

method of the International Union of Pure and Applied Chemistry, 

prepared for publication by Ghose (1987). The substrate used was 1% 

(w/v) Avicel, dissolved in 0.05 M Na-citrate buffer, pH 4.8. 

3.9.3.1 Preparation of samples 

The sample tubes were prepared by adding 0.5 mL substrate solution to 

each glass test tube. The tubes were placed in a 50 °C water bath for 5 

min to equilibrate the contents of the tubes. After 5 min, 0.5 mL of the 

corresponding enzyme extract was added to the sample tubes. The 

contents of the tubes were mixed well and incubated at 50 °C for 30 min, 

and then removed from the water bath.  

The released reducing sugar (as glucose) was measured using the 

dinitrosalicylic (DNS) method (Miller, 1959). The enzyme reaction was 

terminated by adding 3.0 mL 3,5-Dinitrosalicylic acid (DNS) solution to 

each test tube, mixing well. The tubes were then placed in a vigorously 

boiling water bath for exactly 5 min and then transferred to an ice-water 

bath until cooled. The contents of each test tube were mixed using a 

vortex mixer and the absorbance was read using a spectrophotometer at a 
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wavelength of 540 nm. The reagent blank was used to zero the 

spectrophotometer before taking readings for the standards and samples, 

ensuring all absorbance readings were in the range of 0.1 – 1.0 A.  

3.9.3.2 Preparation of reagent blank and controls 

All substrate control, reagent blank and experimental control tubes were 

prepared at the same time as the experimental tubes. The reagent blank 

was prepared by adding 1.0 mL 0.05 M Na-citrate buffer, pH 4.8 to a glass 

test tube. The substrate control tube was prepared by adding 0.5 mL 

substrate solution and 0.5 mL 0.05 M Na-citrate buffer, pH 4.8 to a glass 

test tube. The experimental control tubes were prepared by adding 0.5 mL 

0.05 M Na-citrate buffer, pH 4.8 to a glass test tube, along with 0.5 mL 

enzyme extract after the equilibration period. 

3.9.3.3 Preparation of glucose standards 

Glucose standards were from a 2.0 mg/mL working stock solution of 

anhydrous glucose as shown in Table 3.10. 

Table 3.10  Preparation of glucose standard solutions. 

Addition 

working stock 

solution (mL) 

Addition 0.05M 

Na-citrate 

buffer, pH 4.8 

(mL) 

Final 

concentration 

(mg/mL) 

Final 

concentration 

(mg/0.5 mL) 

1.0 0.0 2.00 1.00 

1.0 0.5 1.33 0.67 

1.0 1.0 1.00 0.50 

1.0 3.0 0.50 0.25 

  

Glucose standard test tubes were prepared by adding 0.5 mL of each of 

the above glucose dilutions to 0.5 mL 0.05 M Na-citrate buffer, pH 4.8, 

incubating the tubes along with the control and experimental tubes.  
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3.9.3.4 Analysis of samples 

The absorbance readings of the standard glucose solutions were plotted 

against their known concentrations to obtain a standard curve. The glucose 

concentration of the substrates was calculated by interpolation on the 

standard curve, after subtraction of the enzyme and substrate controls. 

One unit of enzyme was defined as the amount of enzyme required to 

release 1 µmol of glucose from Avicel per min, where 1 µmol of glucose is 

equal to 0.18 mg glucose. The activity (U/mL) was calculated and then 

converted to U/g of dry weight substrate using Equation 3.12 and Equation 

3.13 (Ghose, 1987). 

Equation 3.12 

𝐸𝑥𝑜𝑔𝑙𝑢𝑐𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) =  (
0.185

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 0.5 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 
)  

𝑤ℎ𝑒𝑟𝑒:  

0.185 𝜇𝑚𝑜𝑙/𝑚𝑖𝑛𝑢𝑡𝑒 − 𝑚𝐿 =  (
(0.5 𝑚𝑔 𝑔𝑙𝑢𝑜𝑐𝑠𝑒 0.18016 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒/𝜇𝑚𝑜𝑙⁄ )

(0.5 𝑚𝐿 𝑒𝑛𝑧𝑦𝑚𝑒 𝑥 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
)  

 

Equation 3.13 

𝐸𝑥𝑜𝑔𝑙𝑢𝑐𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑔⁄ ) =  (
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) 𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑛𝑔𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑚𝐿)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑆𝐹 (𝑔)
)  

 

3.9.4 β-glucosidase assay 

β-glucosidase activity was determined by the method of Herr (1979). The 

substrate solution used was 2 mM ρ-nitrophenol-β-glucoside (ρNPG), 

dissolved in 0.05 M Na-acetate buffer, pH 5.0.  

3.9.4.1 Preparation of samples 

The samples tubes were prepared by adding 1.0 mL ρNPG substrate 

solution to each glass test tube. The tubes were placed in a 50 °C water 

bath for 5 min to equilibrate the contents of the tubes. After 5 min, 0.1 mL 

of the corresponding enzyme extract was added to the sample tubes. The 
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contents of the test tubes were mixed well and placed back in the 50 °C 

water bath for exactly 5 min. At the end of the incubation period, the 

tubes were removed from the water bath. The enzyme reaction was 

terminated by adding 2.0 mL 1.0 M sodium carbonate (Na2CO3) to each 

test tube and the contents mixed using a vortex mixer.  

The absorbance of the samples was read using a spectrophotometer set at 

a wavelength of 405 nm. The reagent blank was used to zero the 

spectrophotometer before taking readings for the standard solutions and 

samples. The absorbance readings of the standard ρ-nitrophenol solutions 

were plotted against their known concentrations to obtain a standard 

curve. 

3.9.4.2 Preparation of reagent blank and controls 

All substrate control, reagent blank and experimental control tubes were 

prepared at the same time as the experimental tubes. The reagent blank 

was prepared by adding 1.1 mL 0.05 M Na-acetate buffer, pH 5.0 to a 

glass test tube. The substrate control tube was prepared by adding 1.0 mL 

substrate solution and 0.1 mL 0.05 M Na-acetate buffer, pH 5.0 to a glass 

test tube. The experimental control tubes were prepared by adding 1.0 mL 

0.05 M Na-acetate buffer, pH 5.0 to a glass test tube, plus the addition of 

0.1 mL enzyme extract after the equilibration period. 

3.9.4.3 Preparation of ρ-nitrophenol standards 

Standards of ρ-nitrophenol were prepared from a working stock solution of 

2 mg/mL ρ-nitrophenol as shown in Table 3.11. Test tubes of ρ-

nitrophenol standards were prepared by adding 0.1 mL of each of the 

below ρ-nitrophenol dilutions to 1.0 mL 0.05 M Na-acetate buffer, pH 5.0, 

incubating along with the control and experimental tubes. 
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Table 3.11  Preparation of ρ-nitrophenol standard solutions. 

Addition 

working stock 

solution (mL) 

Addition 0.05M 

Na-acetate 

buffer, pH 5.0 

(mL) 

Final 

concentration 

(mg/mL) 

Final 

concentration 

(mg/0.1 mL) 

1.0 0.0 2.00 0.20 

1.0 1.0 1.00 0.10 

1.0 2.0 0.66 0.066 

1.0 3.0 0.50 0.05 

1.0 7.0 0.25 0.025 

  

3.9.4.4 Analysis of samples 

The ρ-nitrophenol concentration of the substrates was calculated by 

interpolation on the standard curve, after subtraction of the enzyme and 

substrate controls. One unit of enzyme was defined as the amount of 

enzyme required to release 1 µmol of ρ-nitrophenol from ρ-nitrophenol-β-

glucoside per min, where 1 µmol of ρ-nitrophenol is equal to 0.139 mg ρ-

nitrophenol. The activity (U/mL) was calculated and then converted to U/g 

of dry weight substrate using Equation 3.14. 

Equation 3.14 

𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑔⁄ ) =  (
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ )𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑛𝑔𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑚𝐿)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑆𝐹 (𝑔)
)  

 

3.9.5 Glucoamylase assay 

Glucoamylase activity was assayed using a modified method described by 

Koutinas et al. (2001), with the modifications being the assay time and the 

gelatinisation of the starch suspension. The substrate solution used was 

2% (w/v) soluble starch suspension, dissolved in 0.2 M Na-acetate buffer, 

pH 4.5. The suspension was placed on a magnetic hot plate, set at 85 °C 

and 300 rpm, for 20 min to gelatinise the starch.  
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3.9.5.1 Preparation of samples 

The sample tubes were prepared by adding 0.5 mL substrate solution to 

each test tube. The tubes, and the enzyme solution, were then placed in a 

60 °C water bath for 5 min to equilibrate the contents of the tubes. After 5 

min, 0.5 mL of the corresponding enzyme extract was added to the sample 

test tube. The contents of the test tubes were mixed well and incubated at 

60 °C for up to 60 min. At the end of the incubation period, the tubes were 

removed from the water bath.  

The released reducing sugar (as glucose) was measured using the 

dinitrosalicylic (DNS) method (Miller, 1959). The enzyme reaction was 

terminated by adding 3.0 mL 3,5-dinitrosalicylic acid (DNS) solution to 

each test tube, mixing well. The tubes were then placed in a vigorously 

boiling water bath for exactly 5 min and then transferred to an ice-water 

bath until cooled. The contents of each tube were mixed using a vortex 

mixer and the absorbance was read using a spectrophotometer at a 

wavelength of 540 nm. The reagent blank was used to zero the 

spectrophotometer before taking readings for the standards and samples, 

ensuring all absorbance readings were in the range of 0.1 – 1.0 A. 

3.9.5.2 Preparation of reagent blank and controls 

All substrate control, reagent blank and experimental control tubes were 

prepared at the same time as the experimental tubes. The reagent blank 

was prepared by adding 1.0 mL 0.2 M Na-acetate buffer, pH 4.5 to a glass 

test tube. The substrate control tube was prepared by adding 0.5 mL 

substrate solution and 0.5 mL 0.2 M Na-acetate buffer, pH 4.5 to a glass 

test tube. The experimental control tubes were prepared by adding 0.5 mL 

0.2 M Na-acetate buffer, pH 4.5 to a glass test tube, plus the addition of 

0.5 mL enzyme extract after the equilibration period. 
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3.9.5.3 Preparation of glucose standards  

Glucose standards were prepared from a 10 mg/mL working stock solution 

of anhydrous glucose as shown in Table 3.12. 

Table 3.12  Preparation of glucose standard solutions. 

Addition 

working stock 

solution (mL) 

Addition 0.2M 

Na-acetate 

buffer, pH 4.5 

(mL) 

Final 

concentration 

(mg/mL) 

Final 

concentration 

(mg/0.5 mL) 

1.0 0.0 10.00 5.00 

1.0 0.5 6.70 3.35 

1.0 1.0 5.00 2.50 

1.0 2.0 3.30 1.65 

1.0 4.0 2.00 1.00 

  

Glucose standard test tubes were prepared by adding 0.5 mL of each of 

the above glucose dilutions to 0.5 mL 0.2 M Na-acetate buffer, pH 4.5, 

incubating the tubes along with the control and experimental tubes.  

3.9.5.4 Analysis of samples 

The absorbance readings of the standard glucose solutions were plotted 

against their known concentrations to obtain a standard curve. The glucose 

concentration of the substrates was calculated by interpolation on the 

standard curve, after subtraction of the enzyme and substrate controls. 

One unit (U) of glucoamylase was defined as the amount of enzyme 

required to generate 1 mg of reducing sugars equivalent to glucose per 

min under the assay conditions. The activity (U/mL) was calculated and 

then converted to U/g of dry weight substrate using Equation 3.15.  

Equation 3.15 

𝐺𝑙𝑢𝑐𝑜𝑎𝑚𝑦𝑙𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑔⁄ ) =  (
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈 𝑚𝐿⁄ ) 𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑛𝑔𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑚𝐿)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑆𝐹 (𝑔)
)  
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3.10 STATISTICAL ANALYSIS 

All samples were performed at least in triplicate, and analysis was 

performed using Microsoft Excel, 2016. Statistical analysis was performed 

using IBM SPSS Statistics, version 24. One-way ANOVA test and Tukey 

Post Hoc multiple comparisons tests or two-way ANOVA tests were 

performed to compare the mean values, using a confidence interval of 

p<0.05 to designate a significant difference.  
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 COMPOSITIONAL ANALYSIS 

4.1 INTRODUCTION 

In this chapter, characterisation of the underutilised crops was 

investigated to determine the basic composition of these substrates. In 

order to understand what products could potentially be produced from 

using these materials, we need to know what’s in them, in particular the 

starch, hemicellulose, cellulose and lignin content. Since not much 

information can be found in the literature, basic information on the 

properties of these crops is important information.  

The crops used in this research were chosen after discussions with the 

sponsors of this research, Crops for the Future (CFF), and are shown in 

Table 3.1. The characteristics measured included moisture, elemental 

(carbon, hydrogen, sulphur, nitrogen), ash, protein, starch, total sugar, 

lignin and lipid contents. The methodologies for analysing these 

characteristics are described in Chapter 3. All characteristics were 

calculated on a dry weight basis.  

4.2 RESULTS 

4.2.1 Moisture content  

The moisture content was determined by the standard biomass analytical 

method “Determination of Total Solids in Biomass and Total Dissolved 

Solids in Liquid Process Samples” provided by the National Renewable 

Energy Laboratory (NREL), prepared for publication by Sluiter et al. 

(2008a), as described in Section 3.6.1. 

The moisture content of the crops ranged between 10 – 16 % w/w. Nipa 

fronds had the lowest moisture content (10.19 ± 0.62 % w/w) and 
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Leucaena had the highest moisture content (16.18 ± 0.14 % w/w), as 

shown in Figure 4.1. 

 

Figure 4.1 Moisture content for samples of underutilised crops. The results 
are the mean + SD (n=3). Bars with different letters are significantly 
different (p<0.05). 

 

4.2.2 Ash content 

The amount of inorganic material (ash) in the biomass samples was 

determined by the standard biomass analytical method “Determination of 

Ash in Biomass” provided by the National Renewable Energy Laboratory 

(NREL), prepared for publication by Sluiter et al. (2008b), as described in 

Section 3.6.2. 

The ash content of the crops ranged between 23 – 130 mg/g substrate, 

giving a total percentage ranging from 2 – 13 % of the dry weight value, 

as shown in Figure 4.2. There were significant differences between all six 

crops. Bambara (12.85 ± 0.15 % w/w) and Leucaena (13.07 ± 0.16 % 

w/w) had the highest ash contents and these were similar (p=0.352); all 

other substrates had ash contents that were significantly different 

(p<0.05) with Sago hampas having the lowest ash content (2.33 ± 0.02 % 

w/w). 
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Figure 4.2 Ash content (dry weight basis) for samples of underutilised 
crops. The results are the mean + SD (n=3). Bars with different letters are 
significantly different (p<0.05). 

4.2.3 Elemental content 

The elemental analysis of the biomass samples was determined by the 

advanced combustion method, adopted by the Association of Official 

Analytical Chemists (official method 972.43 (2006)), using a Flash 2000 

Organic Elemental Analyser (Thermo Scientific, USA), as described in 

Section 3.6.3. 

4.2.3.1 Nitrogen, carbon, hydrogen and sulphur content 

The total elemental content of nitrogen, carbon, hydrogen and sulphur in 

the crops ranged between 51 - 62 % of the dry weight value. Sago 

hampas (51.76 ± 0.24 % w/w) and Bambara (52.86 ± 0.31 % w/w) had 

the lowest total elemental content and these were statistically similar 

(p=0.212). Napier (54.26 ± 0.32 % w/w) was statistically similar to 

Bambara (p=0.092), but not to Sago hampas. Oil palm fronds (54.90 ± 

0.39 % w/w) was statistically similar to Napier (p=0.654), but not to 
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0.06 % w/w) and this was statistically different from Nipa fronds (57.57 ± 

0.30 % w/w), which had the second highest content (p<0.05).  

The nitrogen content of the crops ranged from 0 – 5 % (dry weight basis), 

with Sago hampas having the lowest nitrogen content (0.19 ± 0.00 % 

w/w) and Leucaena having the highest nitrogen content (4.90 ± 0.01 % 

w/w), as shown in Figure 4.3. There were significant differences between 

all the six crops (p<0.05). Napier (1.35 ± 0.01 % w/w) and Nipa fronds 

(1.49 ± 0.11 % w/w) had nitrogen contents that were similar (p=0.323); 

all other crops had nitrogen contents that were significantly different 

(p<0.05). 

 

Figure 4.3 Nitrogen, carbon, hydrogen and sulphur present in samples of 
underutilised crops. The results are the mean + SD (n=3). Bars with 
different letters are significantly different (p<0.05). 

 

The carbon content of the crops ranged from 43 – 50 % (dry weight basis) 

and there were statistically significant differences between the six crops 

(p<0.05) (Figure 4.3). Bambara had the lowest carbon content (43.53 ± 

0.49 % w/w), and this was similar to Sago hampas (44.21 ± 0.23 % 

w/w), (p=0605). Leucaena had the highest carbon content (50.10 ± 0.10 

% w/w) and this was similar to Nipa fronds (49.51 ± 0.15 % w/w), 
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(p=0.710). Napier (46.17 ± 0.24 % w/w) and Oil palm fronds (47.16 ± 

0.34 % w/w) had similar carbon contents (p=0.283). 

The hydrogen content of the crops ranged from 6.5 – 7.4 % of the dry 

weight value (Figure 4.3) with Nipa fronds having the lowest hydrogen 

content (6.57 ± 0.04 % w/w) and Sago hampas having the highest 

hydrogen content (7.37 ± 0.01 % w/w). Sago hampas had a hydrogen 

content that was significantly different from all the other crops (p<0.05), 

except Leucaena which had a hydrogen content of 6.92 ± 0.03 % w/w 

(p=0.086). All the other crops, including Leucaena, had hydrogen contents 

that were similar (p=0.206).  

The sulphur was undetectable for all the underutilised crops analysed (data 

not shown). 

4.2.4 Protein content 

The protein content of the crop samples was measured by a combustion 

measurement performed according to AOAC official method 992.23 (AOAC, 

2005a). The combustion method performed was that carried out for the 

elemental analysis and the protein content was calculated using the N x 

6.25 conversion factor, as described in Section 3.6.4. 

Since the nitrogen content of the crops was used to calculate the protein 

content, this followed a similar trend to the nitrogen content of the crops. 

The protein content ranged from 1 – 31 % (dry weight basis), with Sago 

hampas having the lowest protein content (1.17 ± 0.01 % w/w) and 

Leucaena having the highest protein content (30.62 ± 0.08 % w/w), as 

shown in Figure 4.4. There were significant differences between all the six 

crops (p<0.05). Napier (8.41 ± 0.07 % w/w) and Nipa fronds (9.30 ± 0.66 

% w/w) had protein contents that were similar (p=0.323); all other 

substrates had protein contents that were significantly different (p<0.05).  
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Figure 4.4 Protein content of samples of underutilised crops. The results 
are the mean + SD (n=3). Bars with different letters are significantly 
different (p<0.05). 

 

4.2.5 Starch content 

The starch content was analysed using the Megazyme total starch assay 

procedure (amyloglucosidase/α-amylase method), as described in 3.6.5.  

Sago hampas (not shown in Figure 4.5) had a very high starch content of 

51.91 ± 3.23 % w/w and this was significantly higher than that from all 

the other crops (p<0.05). A much smaller amount of starch (0 – 3 % of 

the dry weight value) was found in Bambara, Leucaena, Napier, Nipa 

fronds and Oil palm fronds (Figure 4.5), with significant differences 

between the five crops. Nipa fronds (0.38 ± 0.06 % w/w), Leucaena (0.54 

± 0.13 % w/w) and Oil palm fronds (0.56 ± 0.24 % w/w) had very little 

starch and these were similar (p=0.987). Bambara (2.66 ± 0.67 % w/w) 

and Napier (2.67 ± 0.11 % w/w) had slightly higher starch contents and 

these were similar (p=1.000).  
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Figure 4.5 Starch content in samples of underutilised crops. The results 
are the mean + SD (n=3). Bars with different letters are significantly 
different; Sago hampas (not shown on graph) was significantly different 
(p<0.05). 

 

4.2.6 Total sugar content 

Total sugar analysis was performed using a total acid hydrolysis method 

outlined by Saeman, Bubl & Harris (1945), and quantified by high 

performance liquid chromatography (HPLC), as described in Section 3.6.6. 

The total sugar content of the crops ranged from 113 – 628 mg/g 

substrate (dry weight basis), with Leucaena having the lowest total sugar 

content (113.3 ± 11.9 mg/g substrate) and non-starchy Sago hampas 

having the highest total sugar content (628.0 ± 29.0 mg/g substrate). 

There were significant differences between all the crops. Nipa fronds 

(274.5 ± 19.9 mg/g substrate) and Bambara (322.4 ± 18.5 mg/g 

substrate) had total sugar contents that were similar (p=0.234); all the 

other crops were significantly different (p<0.05).  

The arabinose content of the crops ranged from 0 – 32 mg/g substrate of 

the dry weight value. Arabinose was found in only Napier (26.3 ± 1.3 

mg/g substrate) and starchy Sago hampas (32.3 ± 1.9 mg/g substrate), 

and these two were significantly different (p<0.05) (Figure 4.6).  
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The glucose content of the crops varied from 84 – 451 mg/g substrate of 

the dry weight value, and there were statistically significant differences 

between all the crops (p<0.05), as shown in Figure 4.6. Leucaena had the 

lowest glucose concentration (84.9 ± 9.4 mg/g substrate). Starchy Sago 

hampas (450.7 ± 6.3 mg/g substrate) and non-starchy Sago hampas 

(415.5 ± 18.8 mg/g substrate) had the highest glucose concentration and 

these were similar (p=0.131). Oil palm fronds (279.6 ± 40.1 mg/g 

substrate), Bambara (254.0 ± 12.6 mg/g substrate) and Napier (256.4 ± 

23.4 mg/g substrate) all had similar glucose concentrations (p=0.485). 

The xylose content of the crops varied from 28 – 214 mg/g substrate of 

the dry weight value, and there were statistically significant differences 

between all the crops (p<0.05), as shown in Figure 4.6. Leucaena had the 

lowest xylose concentration (28.3 ± 3.7 mg/g substrate); non-starchy 

Sago hampas (213.5 ± 11.1 mg/g substrate) and Napier (198.1 ± 8.4 

mg/g substrate) had the highest xylose concentration and these were 

similar (p=0.391). Sago hampas starchy (66.0 ± 1.4 mg/g substrate), 

Bambara (68.4 ± 6.0 mg/g substrate) and Nipa fronds (81.5 ± 6.1 mg/g 

substrate) all had similar xylose concentrations (p=0.385). 

There was no galactose detected in any of the underutilised crops; 

however, this could mean that there was either little or no galactose 

present or that the galactose had been degraded during the total acid 

hydrolysis.  
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Figure 4.6 Sugar concentration for samples of underutilised crops. The 
results are the mean + SD (n=5). Bars with different letters are 
significantly different (p<0.05). 

 

The mole percent for the sugar content of the underutilised crops is shown 

in Figure 4.7, and there were statistically significant differences for 

arabinose, glucose and xylose between the underutilised crops. The 

arabinose mole percent ranged from 0 – 6.81 %, with no arabinose 

detected in Bambara, Leucaena, Nipa fronds, Oil palm fronds and non-

starchy Sago hampas. Napier (6.01 ± 0.44 %) and starchy Sago hampas 

(6.81 ± 0.32 %) were significantly different (p<0.05). The glucose mole 

percent of the crops ranged from 48 – 79 %. There were significant 

differences between all the six crops (p<0.05), with Napier (48.71 ± 1.59 

%) having the lowest mole percent and starchy Sago hampas (79.26 ± 

0.24 %) having the highest mole percent. The xylose mole percent for the 

crops ranged from 13 – 45 %, and there were significant differences 

between all the six crops (p<0.05). Starchy Sago hampas (13.93 ± 0.44 

% w/w) had the lowest mole percent and Napier (45.27 ± 1.26 % w/w) 

had the highest mole percent. Nipa fronds (33.69 ± 2.48 % w/w) and Oil 
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palm fronds (35.93 ± 1.77 % w/w) had similar xylose mole percent 

(p=0.308); Oil palm fronds and non-starchy Sago hampas (38.20 ± 0.63 

% w/w) had similar xylose mole percent (p=0.296).   

 

Figure 4.7 Sugar content for samples of underutilised crops. The results 
are the mean + SD (n=5). Bars with different letters are significantly 

different (p<0.05). 

 

In general, the glucose-xylose ratio for the underutilised crops ranged 

from roughly 6:1 to 1:1. Bambara and Leucaena (roughly 3:1), had similar 

glucose-xylose ratios, as did Nipa fronds and Oil palm fronds (2:1). Napier 

had a 1:1 glucose-xylose ratio. Starchy Sago hampas (6:1) and non-

starchy Sago hampas (1.6:1) had very different ratios.  

4.2.7 Lignin content 

The lignin content of the biomass samples was performed using the acetyl 

bromide method (Fukushima & Hatfield, 2001), as described in Section 

3.6.7. 

The lignin content of the six crops ranged between 0 – 30 % of the dry 

weight value (Figure 4.8), with significant statistical differences between 
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all the six crops (p<0.05). Nipa fronds (30.16 ± 4.11 % w/w) and Oil palm 

fronds (25.64 ± 1.06 % w/w) had the highest lignin contents and these 

were similar (p=0.166); Sago hampas had either no lignin present or an 

extremely small amount of lignin present that was hard to measure using 

the acetyl bromide method.  

 

Figure 4.8 Lignin content (dry weight basis) for samples of underutilised 
crops. The results are the mean + SD (n=3). Bars with different letters are 

significantly different (p<0.05). 

 

4.2.8 Lipid content 

The lipid content of the biomass samples was determined by the AOAC 

official method 945.16 (AOAC, 2005b) using a Soxtherm Fat Analyser 

(Gerhardt®) using petroleum ether as a solvent, as described in Section 

3.6.8. 

The lipid content of the underutilised crop samples ranged from 0.3 - 31 

mg/g substrate, accounting for up to 3.1 % of the total dry weight of the 

sample (Figure 4.9). There were significant differences between all the six 

crops (p<0.05), with Leucaena having the highest lipid content (3.09 ± 

0.05 % w/w) and Sago hampas having an extremely small amount of lipid 

(0.03 ± 0.01 % w/w).   
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Figure 4.9 Lipid content (dry weight basis) in samples of underutilised 
crops. The results are the mean + SD (n=3). Bars with different letters are 
significantly different (p<0.05). 

 

4.2.9 Mass balance 

The mass balance for the crops ranged from 69.92 – 110.34 % w/w (dry 

weight basis), as shown in Table 4.1. Leucaena had the lowest total, 

accounting for only 69.92 ± 1.75 % (w/w) of the total dry weight value, 

with protein accounting for much of this at 30.62 ± 0.08 % (w/w). Sago 

hampas had the highest total, accounting for 110.34 ± 4.15 % (w/w) of 

the total value. Based on the analyses performed, polysaccharides (starch, 

cellulose, hemicellulose) accounted for 106.81 % (w/w) of this total.  

Table 4.1 Mass balance for underutilised crops analysed. 

 

Sample 

Percent (% w/w, dry weight basis) 

Ash Protein Starch Lignin Lipid 
Total 

sugar 
Total 

Bambara 12.85 16.77 2.76 17.54 1.79 32.24 83.95 

Leucaena 13.07 30.62 0.54 11.28 3.09 11.33 69.92 

Napier 6.72 8.41 2.67 21.77 0.94 48.07 88.58 

Nipa 

fronds 
5.59 9.30 0.38 30.16 0.68 27.45 73.56 

Oil palm 

fronds 
7.71 5.79 0.56 25.64 1.31 41.10 82.10 

Sago 

hampas 
2.33 1.17 51.91 0.00 0.03 54.90 110.34 
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Leucaena may have been under reported due to the low lignin content and 

the low cellulose and hemicellulose content (total sugar). The low sugar 

content could have been due to the acid hydrolysis conditions not being 

suitable for the hydrolysis of the cellulose/hemicellulose in the biomass, or 

the biomass could have contained polymers made up of other sugar 

monomers not detected in this method. For the Sago hampas, potentially 

not all the starch was removed before performing the total acid hydrolysis. 

This could have resulted in a higher value than actually present for the 

cellulose and hemicellulose, leading to over-reporting on the mass 

balance. In general, there may have been other components that were not 

measured in all the underutilised crops. For example, waxes may not have 

been fully accounted for and therefore not reported in the mass balance 

calculations.  
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 PRODUCTION OF CELLULASES 

5.1 INTRODUCTION 

Biological pretreatment of cellulosic biomass has been used as an 

alternative to physical, chemical and physiochemical pretreatment 

methods as it is usually operated under milder conditions, requiring less 

energy input and producing less inhibitors and a more environmentally 

friendly waste stream. However, it requires a long retention time and this 

can result in the loss of sugars used for fungal growth, making it 

unfavourable compared with the other methods.  

During bioethanol or biochemical production, the cost of enzymes for the 

enzymatic hydrolysis step is one of the major barriers to an economically 

viable process. Therefore, the on-site production of enzymes is an 

attractive option, especially if they are produced using cheap carbohydrate 

sources, such as agricultural waste. For example, wheat straw, corn 

stover, potato waste and sugarcane bagasse have all been used as 

substrates. 

The production of enzymes can be carried out in both solid state 

fermentation and submerged fermentation. Although submerged 

fermentation is the preferred method, because it is easier to control the 

culture conditions for maximum enzyme production, solid state 

fermentation has many advantages – such as low energy inputs, water 

consumption and operational cost, easier downstream processing, and is 

closer to the fungus’ natural environment. However, many conditions can 

affect the enzyme yield and therefore lignocellulosic conversion, including 

factors such as moisture content, substrate, nitrogen source and ratio to 

carbon, depth of culture, transfer of gases, temperature and pH (Bon & 

Ferrara, 2007; Kumar et al., 2008). 
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As a result, many different fungal strains, as well as the effect of different 

conditions on cellulase production have previously been investigated. For 

example, a broad range of moisture contents, ranging from around 50% - 

95%, have been examined as well as incubation periods ranging from 7 d 

– 150 d (Xu et al., 2010; Zeng et al., 2011). Aeration, addition of various 

nutrients, pH, and temperature have also been investigated. 

In this chapter, several underutilised crops were investigated for use as 

substrates for the production of cellulases during biological pretreatment 

by two fungal strains. The underutilised crops were initially screened to 

determine which crop(s) had the highest potential as a substrate for fungal 

cellulase production during solid state fermentation (SSF) and submerged 

fermentation (SmF) procedures. The two different fungi used were 

Aspergillus niger and Trichoderma reesei. These fungal strains have been 

shown to have high cellulase production (Mrudula & Murugammal, 2011); 

T. reesei can produce high levels of endoglucanases and exoglucanases, 

and A. niger can produce high levels of β-glucosidase and endoglucanases 

(Verardi et al., 2012). Therefore, these strains were chosen to determine 

whether they were effective strains for these specific substrates. Other 

factors examined in this chapter include incubation period, addition of 

starch, addition of a nitrogen source (as yeast extract (YE)), as well as the 

addition of different mineral elements.  

Several conditions were not optimised as these had been previously 

optimised in the lab by other PhD students, Dr Nattha Pensupa and Dr 

Jwan Abdullah Al-Dabbagh. A crop moisture content (MC) of 80% (w/v) 

was used for all SSF experiments, an incubation temperature of 28 °C was 

used for all experiments, both SSF and SmF, and a rate of 300 rpm was 

used for all SmF incubations. If added, the quantity of starch, yeast 

extract and minerals added remained the same. For the addition of 
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minerals, two different mineral solutions were examined, mineral solution I 

(MSI) and mineral solution II (MSII). The composition of these nutrients is 

described in Section 3.4. The addition of these nutrients and/or mineral 

solutions was based on results reported by Pensupa et al. (2013), which 

showed that the addition of starch, YE and mineral solution increased 

cellulolytic activity by A. niger N402 when cultured on wheat straw. These 

conditions were investigated to determine if they were also optimum for 

the crops used in this research. 

5.2 RESULTS 

5.2.1 Growth of fungus on underutilised crops 

The underutilised crops were first screened to determine if the 

microorganisms, A. niger and T. reesei, could utilise the crops as 

substrates and grow on them during the solid state fermentation process.  

The fungi were grown on PDA for 7 days and the spores were collected and 

used in the SSF process. The moisture content of the underutilised crops 

was adjusted to 80% (w/v) with the addition of deionised water and no 

extra nutrients were added. The SSF process commenced with the addition 

of fungal spores, as described in Section 3.7, and the growth of the fungus 

was observed over the 5 d incubation period. These conditions were 

designated as the baseline conditions.   

The initial moisture content of the crops was used to calculate the solid-to-

liquid ratio required to obtain the 80% (w/v) MC required for the SSF 

process (Table 5.1).  
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Table 5.1 Initial moisture content and final moisture content of substrates 

for SSF process. 

  

Initial moisture 

content (% w/v) 

Solid : liquid 

ratio (w/v) 

Final moisture 

content (% w/v) 

Bambara 12.08 ± 0.20 1 : 3.50 80.46 

Leucaena 16.18 ± 0.14 1 : 3.25 80.28 

Napier 12.52 ± 0.18 1 : 3.50 80.56 

Nipa fronds 10.19 ± 0.62 1 : 3.50 80.04 

Oil palm fronds 11.55 ± 0.11 1 : 3.50 80.34 

Sago hampas 10.77 ± 0.27 1 : 3.50 80.17 

 

The growth of T. reesei and A. niger mycelium on the underutilised crops 

over the 5 d incubation period was non-uniform. Spore formation could be 

seen after 24 h incubation and the number of spores increased over the 

culture period; however, the rate of growth varied between the crops. 

Figure 5.1 shows the growth of A. niger on Sago hampas and the growth 

of T. reesei on Oil palm fronds after 5 d incubation. In both cases, the 

fungus had completely spread over the substrate within the 5 d period. 

Based on these observations it was concluded that the fungi were able to 

utilise all the crops as substrates and grew well under the solid state 

fermentation conditions (80% (w/v) MC, 28 °C in a dark, static incubator).  

    

Figure 5.1 Growth of fungi on underutilised crops during solid state 
fermentation (28 °C in a static incubator for 5 d; substrates at 80% (w/v) 
MC). A: growth of A. niger on Sago hampas; B: growth of T. reesei on Oil 
palm fronds.  
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5.2.2 Initial screening of crops, using solid state fermentation 

Once it was determined that the fungi could utilise the underutilised crops 

as substrates, the crops were then used as substrates for the production of 

cellulases. The crops were screened to determine whether fungal cellulases 

could be produced and if so, the level of activity that could be obtained for 

each crop during the SSF process.  

During the initial screening the microorganism A. niger was used, and the 

fungal cellulase activity under the baseline conditions (spores grown on 

PDA; substrates at 80% (w/v) MC with no additional nutrients; 5 d 

incubation period) was investigated. The SSF process commenced with the 

addition of A. niger spores and the samples were analysed after the 5 d 

incubation period, as described in Section 3.7. 

Figure 5.2 shows the production of cellulases by A. niger during the SSF 

process, under the baseline conditions. The fungal cellulase activity ranged 

from 1 – 17 FPU/g substrate (dry weight basis) and there were statistically 

significant differences between the crops (p<0.05).  

 

Figure 5.2 Cellulase activity recovered during SSF, using underutilised 

crops as substrates (fermentation by A. niger at 28 °C in a static incubator 
for 5 d incubation; substrates at 80% (w/v) MC). The results are the mean 
+ SD (n=3). Bars with different letters are significantly different (p<0.05). 
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The highest cellulase activity was obtained using Napier as a substrate 

(17.18 ± 0.44 FPU/g substrate dry weight), and this was significantly 

different from all other crops (p<0.05). Using Bambara as a substrate 

resulted in the second highest cellulase activity (7.17 ± 0.43 FPU/g 

substrate), and this was statistically similar to Sago hampas (6.77 ± 2.05 

FPU/g substrate), (p=0.997). The lowest cellulase activity was reported 

with the use of Oil palm fronds (1.08 ± 0.06 FPU/g substrate) and this was 

similar to both Nipa fronds (1.78 ± 0.33 FPU/g substrate) and Leucaena 

(2.45 ± 0.26 FPU/g substrate), (p=0.646).  

Based on these results, the use of all the crops as substrates resulted in 

cellulase production; however, there was a large range of activity with 

very little activity for some crops (Nipa, Leucaena and Oil palm fronds) and 

a much higher activity for others (Napier). Based on these results, Napier 

seemed to be more suited as a substrate for the production of cellulases 

by A. niger under the designated SSF conditions.  

5.2.3 Optimisation of SSF conditions 

It has been reported that there are many factors which can affect cellulase 

activity production during the SSF process. Some of these factors include 

the microorganism used, composition of the substrate, temperature, pH, 

moisture content, addition of nutrients and the incubation time. In this 

investigation, the incubation period and the addition of nutrients were 

studied to determine their effect on the cellulase activity during the SSF 

process. Several different nutrients were added and these included the 

addition of starch (0.0070 g/g substrate), a nitrogen source (in the form of 

yeast extract (0.0175 g/g substrate)), and inorganic minerals (in the form 

of a mineral solution, MSI).  
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During the initial screening of the crops, the use of Napier grass as a 

substrate resulted in the highest cellulase activity. Therefore, it was used 

as the choice crop for the optimisation of conditions for the SSF process. 

The nutrients were added to the substrates before they were autoclaved. 

The MSI was added instead of deionised water to obtain an 80% (w/v) MC 

of the substrates. The SSF process commenced with the addition of A. 

niger spores (grown on PDA) and samples were taken at 1, 3, 5 and 7 d 

incubation periods, as described in Section 3.7.  

In the first round of optimisation the effect of the addition of starch, YE, 

and MSI on cellulase production was compared to the baseline conditions 

(addition of no nutrients). Additionally, starch, YE and MSI were added 

separately to the Napier to determine their individual effect on the 

production of cellulases. These results are shown in Figure 5.3.  

 

Figure 5.3 Effect of different nutrients on cellulase production by A. niger 
during SSF process (28 °C in a static incubator for up to 7 d incubation), 
compared to baseline conditions (no nutrients; addition of deionised water 
to 80% (w/v) MC). Nutrients added to the Napier included 0.0070 g/g 
starch, 0.0175 g/g YE and/or MSI to 80% (w/v) MC. The results are the 
mean + SD of each data set (n=3). 
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conditions at this point (p=0.868). Over the 7 d incubation period the 

cellulase activity increased for all the conditions; however, the production 

rate varied between the conditions. All four experiments with the addition 

of nutrients increased the cellulase activity when compared with the 

baseline conditions; however, not all increases were significant.  

The cellulase activity for the baseline conditions (addition of no nutrients) 

increased slightly between 1 d (9.33 ± 0.55 FPU/g substrate) and 3 d 

(14.32 ± 2.79 FPU/g substrate), before plateauing. There were no 

significant differences between the cellulase activities for the 3, 5 and 7 d 

incubation periods (p=1.000). The cellulase activity after 5 d incubation 

(15.49 ± 1.07 FPU/g) was similar to the activity obtained in the previous 

experiment for Napier on day 5 under similar conditions (17.18 ± 0.44 

FPU/g).  

The rate of increase in cellulase activity was greatest with the addition of 

all three nutrients (starch, YE and MSI). This increased between the 1 d 

incubation period (11.11 ± 1.15 FPU/g substrate) and the 5 d incubation 

period (28.07 ± 2.16 FPU/g substrate), and there were significant 

differences between the 1 d, 3 d and 5 d cellulase activities (p<0.05). 

After 5 d, the cellulase activity began to plateau, resulting in a similar 

cellulase activity after 7 d incubation (28.39 ± 3.00 FPU/g substrate) 

(p=1.000). These values corresponded to an increase in cellulase activity 

of 19.1% (1 d), 50.3% (3 d), 81.2% (5 d) and 94.2% (7 d) when 

compared with the cellulase activities for the baseline conditions on the 

respective days.  

When comparing the activity with the other experiments, the 3 d cellulase 

activity (21.52 ± 1.99 FPU/g substrate) was statistically different from the 

3 d baseline conditions (p=0.002) and the 3 d addition of starch 

experiment (p=0.023); but it was similar to the cellulase activity for the 3 
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d MSI experiment (20.05 ± 1.96 FPU/g substrate; p=1.000) and the 3 d 

YE experiment (19.18 ± 1.35 FPU/g substrate; p=0.985). The 5 d and 7 d 

cellulase activities were significantly different from the cellulase activities 

for all the other experiments on the respective days (p<0.05).  

The experiments with the addition of either starch, YE or MSI followed a 

similar trend to the baseline conditions - an increase in cellulase activity 

between 1 d and 3 d incubation periods, before beginning to plateau. The 

addition of MSI to the Napier resulted in the second highest cellulase 

activity by A. niger. This increased from 10.07 ± 0.06 FPU/g on day 1 to 

20.05 ± 1.96 FPU/g substrate on day 3, before plateauing to 22.82 ± 0.98 

FPU/g substrate on day 7. Besides the 1 d cellulase activity, all the other 

cellulase activities were significantly different from those for the baseline 

conditions on the respective days (p=0.024, p=0.006, p=0.0001 

respectively). When compared to the addition of starch experiments, the 

cellulase activity was similar on day 3 (p=0.225) but significantly different 

after 5 d and 7 d incubation periods (p=0.022, p=0.003 respectively). 

However, the 3 d, 5 d and 7 d cellulase activities were similar to the 

cellulase activities for the addition of YE experiments on the respective 

days (p=1.000, p=0.238, p=0.103 respectively). 

The experiment with the addition of starch reached a cellulase activity of 

16.14 ± 0.72 FPU/g substrate (5 d). However, the cellulase activity for 

each incubation period was statistically similar to the cellulase activity for 

the baseline conditions for each respective day (p=1.000 for each 

incubation period). The same was true for the experiment with the addition 

of YE, which reached a cellulase activity of 19.18 ± 1.35 FPU/g substrate 

(3 d). This was statistically similar to the 3 d baseline cellulase activity 

(p=0.110). The cellulase activities for the 5 d YE and 7 d YE experiments 
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were also similar to the baseline conditions on the respective days 

(p=0.992; p=0.694 respectively).  

Although the addition of only starch or YE separately did not significantly 

increase the cellulase activities from the baseline conditions, they did have 

an effect on the cellulase activity when added together with the MSI. This 

is inferred as the addition of all three nutrients resulted in a significantly 

higher cellulase activity when compared with the effect of the addition of 

MSI only. In order to determine if the addition of two out of the three 

nutrients would have an effect on the cellulase production a second round 

of optimisation experiments were run.  

During these optimisation experiments the addition of starch, YE and MSI 

as well as the baseline condition experiments were redone. Additionally, 

three more experiments were run with the addition of only two out of the 

three nutrients (starch and YE; starch and MSI; YE and MSI). All 

experiments were incubated for 1, 3, 5, and 7 d. These results are shown 

in Figure 5.4. 

 

Figure 5.4 Effect of different nutrients on cellulase production by A. niger 

during SSF (28 °C in a static incubator for up to 7 d), compared to baseline 
conditions (no nutrients; addition of deionised water to 80% (w/v) MC). 
Nutrients added to the Napier included 0.0070 g/g starch, 0.0175 g/g YE 
and/or MSI to 80% (w/v) MC. The results are the mean + SD (n=3).  
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The initial (1 d) cellulase activity for all the conditions ranged between 8 – 

12 FPU/g substrate and there was no significant difference between the 

conditions at this point (p=0.161). As with the first round of optimisation, 

the cellulase activity increased over the 7 d incubation period for all the 

conditions; however, the production rate varied between the conditions.  

The cellulase activity for the baseline conditions (addition of no nutrients) 

increased between day 1 (8.42 ± 0.55 FPU/g substrate) and day 5 (19.18 

± 1.55 FPU/g substrate), before beginning to plateau. There were 

significant differences in cellulase activity for 1 d, 3 d and 5 d incubation 

periods (p<0.05); however, there were no differences between the 5 d 

and 7 d cellulase activities (p=0.996). The cellulase activity after 5 d 

incubation was slightly higher than the activity obtained in the previous 

optimisation experiment (16.14 ± 0.72 FPU/g). The addition of nutrients 

increased the cellulase activity when compared with the baseline 

conditions; however, not all increases were statistically significant. 

The addition of starch and YE to Napier resulted in a cellulase activity that 

increased over the 7 d incubation period from 11.37 ± 0.50 FPU/g 

substrate (1 d) to 25.29 ± 2.39 FPU/g substrate (7 d), with statistical 

differences between all four incubation periods (p<0.05). When compared 

with the baseline conditions, the cellulase activity was similar on all the 

incubation days, except day 7 (p=0.031). 

The addition of starch and MSI and the addition of YE and MSI followed 

similar cellulase activity trends. For the starch plus MSI experiment, the 

activity increased from 10.68 ± 0.71 FPU/g substrate (1 d) to 25.94 ± 

0.72 FPU/g substrate (5 d), before beginning to plateau to 26.68 ± 1.34 

FPU/g substrate (7 d). For the YE plus MSI experiment, the activity 

increased from 10.20 ± 0.31 FPU/g substrate (1 d) to 26.55 ± 0.32 FPU/g 

substrate (5 d), before beginning to plateau (27.81 ± 1.99 FPU/g 
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substrate on day 7). There were no differences between the results 

obtained for the two different experiments on the respective days 

(p=1.000 for all four incubation periods). When compared with the 

baseline conditions, the cellulase activities for both experiments were 

significantly different on all the incubation days (p<0.05). 

The addition of all three nutrients (starch, YE and MSI) resulted in the 

highest cellulase production over the 7 d incubation period. The activity 

increased from 12.15 ± 0.43 FPU/g substrate (1 d) to 31.02 ± 1.01 FPU/g 

substrate (5 d), and the cellulase activities for all three incubation periods 

(1 d, 3 d and 5 d) were significantly different (p<0.05). The activity then 

began to plateau, reaching a final cellulase activity level of 31.80 ± 1.65 

FPU/g (day 7) and this was similar to the 5 d cellulase activity (p=1.000). 

These values corresponded to an increase in cellulase activity of 44.3% (1 

d), 61.9% (3 d), 61.7% (5 d) and 53.0% (7 d) when compared with the 

cellulase activities for the baseline conditions on the respective days. When 

comparing the cellulase activity to the other experiments, the 3 d activity 

was similar to the 3 d cellulase activity for both the addition of starch and 

MSI and the addition of YE and MSI experiments (p=0.680, p=0.994 

respectively). However, the 5 d cellulase activity was significantly different 

from the cellulase activities for all the other 5 d experiments (p<0.05). 

The addition of YE and MSI gave the second highest cellulase activity on 

this day (26.55 ± 0.32 FPU/g), and the addition of all three nutrients 

resulted in a cellulase activity that was 16.8% higher (31.02 ± 1.01 

FPU/g) than this activity. The 7 d cellulase activity was significantly 

different from all the other experiments, except the experiment with the 

addition of YE and MSI (p=0.097); the cellulase activity was still 14.4% 

higher for the addition of all three nutrients when compared to the addition 

of only YE and MSI. 
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Based on these results, it was determined that the addition of all three 

nutrients (starch, YE and MSI) resulted in the highest cellulase production. 

For these conditions an incubation period of 5 d was chosen as the 

optimal, as the rate of cellulase production started to decline between day 

5 and day 7. These conditions were designated the optimised conditions 

for the production of cellulase during the SSF process.  

5.2.4 Effect of growth media on fungal cellulase activity 

In all the previous experiments, Aspergillus niger had been grown on PDA 

and the spores were then used in the solid state fermentations. In this 

investigation, the fungus was grown on different growth media to 

determine if the growth media would have an effect on the cellulase 

activity obtained after 5 d SSF process. Since Napier had resulted in the 

best cellulase activity, it was used in this investigation.  

A. niger was grown on either PDA or on one of two different agar 

suspensions – (i) agar (2% w/v) containing Napier (5% w/v) or (ii) agar 

(2% w/v) containing Napier (5% w/v), starch (0.2% w/v), YE (0.5% w/v) 

and MSI (instead of deionised water). After 7 d growth, the spores were 

removed and used in the SSF process. The optimised SSF conditions 

(addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI to the Napier; 

incubation for 5 d at 28 °C in static incubator) were used for all 

experiments and the cellulase activity was analysed after 5 d incubation. 

The effect of the growth media on cellulase activity is shown in Figure 5.5. 

The fungal spores grown on PDA resulted in the highest cellulase activity 

during the SSF process (26.12 ± 0.11 FPU/g substrate), and this was 

significantly different from the cellulase activity for spores grown on agar 

(p<0.05). The spores grown on the two different agar suspensions had 

lower cellulase activities (22 - 23 FPU/g substrate) than the spores grown 
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on PDA and there was no difference in activity between the two groups 

(p=0.118).  

 

Figure 5.5 Effect of fungal growth media on cellulase production by 
Aspergillus niger during SSF under optimised conditions (Napier with the 
addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI to 80% (w/v) MC; 5 
d static incubation at 28 °C). The results are the mean + SD (n=3). Bars 
with different letters are significantly different (p<0.05). 

 

Based on these results the A. niger grown on PDA resulted in the highest 

cellulase activity during the 5 d SSF process and this was designated the 

optimised fungal growth conditions for fungal cellulase production with A. 

niger. However, the cellulase activity was not compared on either 1 d or 3 

d incubation periods and this may have resulted in different results.  

5.2.5 Production of individual cellulase enzymes during SSF 

The fungal extracts obtained in the previous section (Section 5.2.4) were 

further examined to determine the production of the individual cellulase 

enzymes – endoglucanase, exoglucanase, and β-glucosidase – during the 

optimised SSF process.  

As previously mentioned, A. niger was grown on either PDA or agar (2% 
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removed and used in the SSF process. The optimised SSF conditions 

(addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI to 80% (w/v) to 

the Napier; incubation for 5 d at 28 °C in static incubator) were used for 

the experiments and the endoglucanase, exoglucanase and β-glucosidase 

activity was analysed after 5 d incubation. The activity of the individual 

enzymes is shown in Figure 5.6.  

There were significant differences between the activities of all three 

cellulase enzymes (p<0.05), with β-glucosidase having the highest activity 

and exoglucanase having the lowest activity. However, there were no 

significant differences between the activities of each enzyme when 

comparing the fungal growth media used (p=0.629). 

 

Figure 5.6 Production of individual cellulase enzymes (endoglucanase, 
exoglucanase and β-glucosidase) by A. niger during SSF under optimised 
conditions (Napier with the addition of 0.0070 g/g starch, 0.0175 g/g YE 

and MSI to 80% (w/v) MC; 5 d static incubation at 28 °C), when A. niger 
spores grown on different growth media (PDA or Agar + Napier + starch 

+YE + MSI). The results are the mean + SD (n=3).  
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U/g substrate for the spores grown on PDA, and 19.51 ± 0.98 U/g 

substrate for the spores grown on agar, and there was no significant 

difference in activity between the two groups (p=0.052). The β-

glucosidase activity was 463.05 ± 33.41 U/g substrate for the spores 

grown on PDA, and 470.83 ± 26.65 U/g substrate for the spores grown on 

agar, and there was no significant difference in activity between the two 

groups (p=0.558).  

Based on these results, the fungal growth media had no effect on the 

individual enzyme activities. However, there was a significant difference in 

the individual enzyme production levels by A. niger. A. niger was able to 

produce more β-glucosidase than endoglucanase or exoglucanase.  

5.2.6 Screening of crops under optimised SSF conditions 

During the optimisation of the SSF conditions using Napier, it was 

determined that the addition of all three nutrients (starch, YE and MSI) 

and a 5 d incubation period was optimal for cellulase production. However, 

these conditions were optimised using Napier as a substrate. From the 

previous chapter, it was determined that the composition of the 

underutilised crops varied from one to another. Since the composition of 

the substrate can affect the cellulase activity, the crops were screened 

again under the optimised conditions for Napier. This was done to 

determine whether the new conditions would have a similar effect on 

cellulase production for the other underutilised crops.  

The optimised conditions (addition of starch, YE and MSI to 80% (w/v) 

MC) were compared to the baseline conditions (addition of deionised water 

to 80% (w/v) MC). The SSF process commenced with the addition of A. 

niger spores (grown on PDA) and samples were taken at 5 d incubation 

period, as described in Section 3.7.  
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Figure 5.7A shows the fungal cellulase activity for the underutilised crops, 

under the optimised conditions. The cellulase activity ranged from 3 – 24 

FPU/g substrate (dry weight basis) and there were statistically significant 

differences between the crops (p<0.05). The highest cellulase activity was 

obtained using Napier as a substrate (23.64 ± 0.59 FPU/g substrate dry 

weight), and this was statistically different from Bambara, which resulted 

in the second highest cellulase activity (14.64 ± 0.58 FPU/g substrate) 

(p=0.0004). Using Leucaena as a substrate resulted in the lowest cellulase 

activity (3.31 ± 0.32 FPU/g substrate) and this was statistically similar to 

Sago hampas (3.67 ± 0.68 FPU/g substrate), Oil palm fronds (6.49 ± 0.06 

FPU/g substrate) and Nipa fronds (7.23 ± 3.32 FPU/g substrate), 

(p=0.138).  

 

104.1 35.0 37.6 305.6 499.7 -45.9 

Fold increase (%) from baseline conditions 

 

 

Figure 5.7 Comparison of cellulase production by A. niger using 
underutilised crops under optimised SSF conditions (addition of 0.0070 
g/g starch, 0.0175 g/g YE and MSI to 80% (w/v) MC); SSF at 28 °C in a 

static incubator for 5 d incubation (A); and percent increase, compared 
with cellulase activity for the baseline conditions (B). The results are the 
mean + SD (n=3). Bars with different letters are significantly different 
(p<0.05). 
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When comparing the optimised SSF conditions with the baseline SSF 

conditions for the underutilised crops there were mixed results, with the 

cellulase activity either increasing or decreasing, as shown in Figure 5.7B. 

When compared to baseline conditions, the addition of nutrients to Napier, 

Bambara, Oil palm fronds, and Nipa fronds all resulted in a significant 

increase in fungal cellulase activity, with the greatest impact occurring 

with Oil palm fronds. The cellulase activity increased from 1.08 ± 0.06 

FPU/g to 6.49 ± 0.06 FPU/g substrate (499.7%), and this was significantly 

different (p=0.006). However, using Napier as a substrate resulted in the 

highest cellulase activity (23.64 ± 0.59 FPU/g substrate). This had 

increased by 37.6% with the addition of nutrients, compared to the 

baseline conditions (17.18 ± 0.44 FPU/g substrate), and this increase was 

statistically significant (p=0.0007). The addition of nutrients to Bambara 

also resulted in an increased cellulase activity (104.1%) that was 

significantly different from the baseline conditions (p=0.0001). However, 

the addition of nutrients to Leucaena and Sago hampas resulted in a slight 

increase in cellulase activity and a decrease in activity respectively, 

although there were no statistically significant differences from the 

baseline conditions in either case (p=0.999, p=0.329 respectively).  

The mixed results obtained under the optimised SSF conditions suggests 

that different conditions are necessary for different substrates used, and 

therefore different optimisation experiments would potentially need to be 

performed for each substrate.  

5.2.7 Comparison of MSI & MSII, with Aspergillus niger 

A second mineral solution (MSII) was also investigated at the same time to 

determine if this solution would have an impact on the cellulase activity of 

A. niger when using the underutilised crops as substrates. Conditions 



The University of Nottingham                                        Results Chapter 2 

111 

 

optimised for Napier were used in this screening process, with the addition 

of starch (0.0070 g/g substrate) and YE (0.0175 g/g substrate) plus either 

MSI or MSII to 80% (w/v) MC. The mineral solutions were added to the 

substrates instead of adding deionised water, as described in Section 3.7. 

The SSF process was started with the addition of A. niger spores and the 

samples were removed and analysed after 5 d incubation.  

Figure 5.8A shows the effect of MSII on cellulase production. The fungal 

cellulase activity ranged from 0 – 20 FPU/g substrate (dry weight basis) 

and there were statistically significant differences between the crops 

(p<0.05). The use of Napier as a substrate resulted in the highest cellulase 

activity (19.44 ± 0.06 FPU/g substrate) and this was statistically different 

from Bambara, which resulted in the second highest cellulase activity 

(11.62 ± 1.74 FPU/g substrate) (p=0.00001). The use of Nipa fronds as a 

substrate resulted in the lowest cellulase activity (0.22 ± 0.00 FPU/g 

substrate), and this was similar to Sago hampas (1.03 ± 0.89 FPU/g 

substrate) and Leucaena (2.50 ± 0.32 FPU/g substrate), (p=0.166). 

 

 

 



The University of Nottingham                                        Results Chapter 2 

112 

 

 

 

Figure 5.8 (A) Effect of MSII on fungal cellulase production during SSF 
(substrates at 80% (w/v) MC with the addition of 0.0070 g/g starch, 
0.0175 g/g YE and MSII); (B) Comparison of addition of MSI and MSII to 
baseline conditions (addition of no nutrients). Fermentation by A. niger at 

28 °C in a static incubator for 5 d incubation. The results are the mean + 
SD (n=3). Bars with different letters are significantly different (p<0.05). 

 

When comparing the addition of MSI and MSII to the baseline conditions 

(regardless of crop), overall there was a significant difference in cellulase 

activity with the addition of MSI (p<0.05), but there was no significant 

difference in the cellulase activity with the addition of MSII (p=0.159). 

When looking at each crop, the addition of MSII did not have a significant 

effect on the cellulase activity in Leucaena (p=1.000), Napier (p=0.350) 

and Nipa fronds (p=0.815), but it did have an effect on the cellulase 

0.00

5.00

10.00

15.00

20.00

25.00

Bambara Leucaena Napier Nipa fronds Oil palm
fronds

Sago
hampas

C
e
ll

u
la

s
e
 a

c
ti

v
it

y
 (

U
/

g
 s

u
b

s
tr

a
te

)

C

A

A, B

D

A

B

A

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Bambara Leucaena Napier Nipa fronds Oil palm
fronds

Sago
hampas

P
e
r
c
e
n

t 
in

c
r
e
a
s
e
 f

r
o

m
 b

a
s
e
li

n
e

Starch + YE + MSI Starch + YE + MSIIB



The University of Nottingham                                        Results Chapter 2 

113 

 

activity in Bambara, Oil palm fronds and Sago hampas (p<0.05). The 

addition of MSII resulted in a significant increase in cellulase activity in 

Bambara (61.97%) and Oil palm fronds (341.04%), but in a significant 

decrease in activity in Sago hampas (-84.79%), (Figure 5.8B).  

The addition of MSI resulted in a higher cellulase activity for all the 

underutilised crops, when compared to the addition of MSII, as shown in 

Figure 5.8B. Overall, the highest cellulase activity was achieved using 

Napier as a substrate, with the addition of MSI. The addition of MSII to 

Napier resulted in a cellulase activity that was slightly higher (13.12%) 

than the baseline conditions (7.17 ± 0.43 FPU/g substrate), although 

these were statistically similar (p=0.820). The addition of MSI to Napier 

resulted in a higher cellulase activity (23.64 ± 0.59 FPU/g substrate, which 

was a 37.61% increase when compared with the baseline conditions 

(p=0.000118), and a 21.64% increase when compared with the addition of 

MSII (p=0.040).  

Based on the results it was determined that MSI had more of an impact on 

the enzyme activity than MSII, when using A. niger. Therefore, it was 

determined that the addition of MSI would be used, as this resulted in a 

higher enzyme activity than the addition of MSII.  

5.2.8 Comparison of Trichoderma reesei and Aspergillus niger 

The underutilised crops were also screened using a different fungus, 

Trichoderma reesei, to compare the cellulase production under the same 

conditions as with Aspergillus niger. Starch powder (0.0070 g/g), YE 

(0.0175 g/g) and either MSI or MSII to 80% (w/v) MC were added to each 

substrate. The SSF process commenced with the addition of either T. 

reesei or A. niger spores and the samples were analysed after 5 d 

incubation period.  
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Figure 5.9 compares the effect of the addition of starch, YE and MSI to the 

underutilised crop on cellulase production by T. reesei and A. niger during 

SSF. Under these conditions very low cellulase production by T reesei was 

observed for all the underutilised crops (less than 4 FPU/g substrate). Oil 

palm fronds (3.10 ± 0.06 FPU/g) and Napier (3.05 ± 0.22 FPU/g) resulted 

in the highest cellulase activity and these were similar (p=1.000), as 

shown in Figure 5.9A.  

 

 

Figure 5.9 (A) Cellulase production by Trichoderma reesei during 5 d SSF 

under optimal conditions (addition of 0.0070 g/g starch, 0.0175 g/g YE 
and MSI, to 80% (w/v) MC); and (B) cellulase production by Aspergillus 
niger during 5 d SSF under the same conditions. The results are the mean 
+ SD (n=3). Bars with different letters are significantly different (p<0.05). 
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When compared with the cellulase production by A. niger, the T. reesei 

was significantly outperformed by the A. niger under these conditions 

(p<0.05). As shown in Figure 5.9B, the cellulase activity for the A. niger 

ranged from 3 – 24 FPU/g substrate. The lowest activity achieved by A. 

niger was 3.31 ± 0.32 FPU/g using Nipa fronds as a substrate, and this 

activity was higher than the cellulase production achieved by T. reesei 

using any of the crops. The use of Napier as a substrate resulted in the 

highest cellulase activity by A. niger (23.64 ± 0.59 FPU/g substrate) and 

this was 676.47% higher than the cellulase activity achieved by T. reesei 

using Napier (3.05 ± 0.22 FPU/g substrate).  

Since the addition of MSI had resulted in very low cellulase activity by T. 

reesei, the addition of MSII was investigated and compared with the 

results for the cellulase production by T. reesei with the addition of MSI, as 

shown in Figure 5.10.  

 

Figure 5.10 Impact of MSI and MSII on cellulase production by 
Trichoderma reesei during SSF under optimised conditions (substrate at 

80% (w/v) MC with the addition of 0.0070 g/g starch, 0.0175 g/g YE and 
either MSI or MSII; Incubation at 28 °C for 5 d). The results are the mean 
+ SD (n=3). Bars with different letters, within the same data set, are 
significantly different (p<0.05). 
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When MSII was used, the cellulase activity by T. reesei was higher for all 

the crops except Sago hampas, which had a similar activity as that with 

the addition of MSI. The activity ranged from 0.75 – 17 FPU/g substrate 

and there were significant differences between all the crops (p<0.05). The 

use of Bambara and Napier as substrates resulted in the highest cellulase 

activities (16.45 ± 1.89 FPU/g and 15.75 ± 0.81 FPU/g, respectively) and 

these were statistically similar (p=0.989). Leucaena (8.61 ± 0.55 FPU/g), 

Nipa fronds (6.73 ± 1.14 FPU/g and Oil palm fronds (6.10 ± 1.26 FPU/g) 

had similar activities (p=0.316). 

When comparing MSI versus MSII, the addition of MSII to the substrates 

resulted in a significantly higher cellulase activity for Bambara (2,600%), 

Leucaena (2,500%), Napier (400%), Nipa fronds (350%) and Oil palm 

fronds (100%), (p<0.05). The cellulase activity with the addition of MSII 

to Sago hampas was 200% higher than the activity with the addition of 

MSI to Sago, however, these values were similar (p=0.999).  

Overall the cellulase production by T. reesei was much better with the 

addition of MSII to the underutilised crops, rather than with the addition of 

MSI. Since T. reesei performed better with the addition of MSII and A. 

niger performed better with the addition of MSI, these two conditions were 

compared to determine which resulted in the highest cellulase activity 

Figure 5.11).   
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Figure 5.11 Comparison of cellulase production by Aspergillus niger during 
SSF under optimised conditions (substrate at 80% (w/v) MC with the 
addition of 0.0070 g/g starch, 0.0175 g/g YE and MSI) and cellulase 
production by Trichoderma reesei during SSF under optimised conditions 

(substrate at 80% (w/v) MC with the addition of 0.0070 g/g starch, 
0.0175 g/g YE and MSII). The results are the mean + SD (n=3).  

 

Significantly different results were obtained for the two conditions when 
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activity using Napier, the use of MSI and A. niger resulted in a higher 
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(15.75 ± 0.81 FPU/g), and these were significantly different (p=1.67 x 10-

7). However, the opposite was achieved using Leucaena, with the use of 

MSII and T. reesei resulting in a higher cellulase activity (8.61 ± 0.55 

FPU/g), than the use of MSI and A. niger (3.31 ± 0.32 FPU/g), (p= 0.001).  

When using Bambara as a substrate, the use of MSII and T. reesei resulted 

in a slightly higher cellulase activity (16.45 ± 1.89 FPU/g) than the use of 

MSI and A. niger (14.64 ± 0.58 FPU/g); however, these two results were 

similar (p=0.979). There were also no significant differences when using 

Oil palm fronds or Nipa fronds as a substrate (p=1.000 for both).  

Overall, the use of Napier as a substrate, with the addition of starch 

(0.0070 g/g), YE (0.0175 g/g) and MSI and A. niger spores resulted in the 
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highest cellulase activity after the 5 d SSF incubation period and this was 

significantly different from the cellulase activity for the different conditions 

for all the underutilised corps (p<0.05).  

5.2.9 Screening of crops, using submerged fermentation 

The underutilised crops were screened to determine whether fungal 

cellulases could be produced during submerged fermentation and if so, the 

level of activity that could be obtained for each crop. The crops were 

screened under the baseline conditions as well as the optimised conditions 

that were used during the SSF process, using the microorganism, A. niger.  

The optimised conditions (addition of 0.0070 g/g starch, 0.0175 g/g YE 

and MSI) were compared to the baseline conditions (addition of deionised 

water) during both SmF and SSF procedures. Both processes commenced 

with the addition of A. niger spores (grown on PDA) and samples were 

taken after 5 d incubation period, as described in Sections 3.7 and 3.8.  

Figure 5.12 shows the results for the cellulase activity for the two different 

conditions examined for both SmF (Figure 5.12A) and SSF (Figure 5.12B) 

procedures.  
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Figure 5.12 Cellulase production by A. niger under optimised conditions 
(addition of starch, YE and MSI) and baseline conditions (no nutrients) 
during SmF (A) and SSF (B). The results are the mean + SD (n=3). Bars 

with different letters, within the same data set, are significantly different 
(p<0.05). 
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Under the baseline conditions, the fungal cellulase activity during SmF 

procedure ranged from 0 – 12 FPU/g substrate (dry weight basis); and 

there were statistical differences between the crops (p<0.05) (Figure 

5.12A). The highest cellulase activity was obtained using Napier as a 

substrate (12.34 ± 0.37 FPU/g substrate), and this was significantly 

different from all other crops (p<0.05).  

The addition of nutrients (starch, YE and MSI) to the crops resulted in a 

significant increase in the cellulase activity during the SmF procedure for 

all crops (p<0.05) except Oil palm fronds (p=0.967). Under these 

optimised conditions, the cellulase activity during the SmF procedure 

ranged from 2 – 19 FPU/g substrate; and there were statistical differences 

between the crops (p<0.05) (Figure 5.12A). The highest cellulase activity 

was obtained using Bambara as a substrate (19.76 ± 0.89 FPU/g 

substrate); representing an increase of 121.9 %, when compared with the 

baseline conditions. However, this activity level was similar to Leucaena 

(18.68 ± 0.90 FPU/g substrate; 134.0 % increase when compared to the 

baseline conditions, p=0.967) and Napier (18.97 ± 2.27 FPU/g substrate; 

53.8 % increase when compared to the baseline conditions, p=0.997). The 

lowest cellulase activity was reported with the use of oil palm fronds (3.16 

± 0.35 FPU/g substrate) and this was similar to Sago hampas (5.73 ± 

0.03 FPU/g substrate), (p=0.128). 

As with previous experiments, the addition of nutrients to the crops 

significantly increased cellulase activity during the SSF procedure for all 

crops (p<0.05), except Leucaena and Sago hampas (p=0.998 and 

p=1.000, respectively). The cellulase activities obtained during the SSF 

procedure for the optimised and baseline conditions were comparable with 

the cellulase activities obtained for previous SSF experiments under the 

same conditions (see Sections 5.2.2 and 5.2.6).  
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The comparison of the SmF results (Figure 5.12A) with the SSF results 

(Figure 5.12B) under optimised conditions indicates mixed results as to 

which procedure worked best and was dependent on the crop. Looking at 

the three highest performing crops from the SmF procedure (Bambara, 

Leucaena and Napier), the cellulase activity using Bambara as a substrate 

was similar in both procedures (p=0.937); the cellulase activity using 

Leucaena was significantly higher in the SmF procedure (p<0.05); and the 

cellulase activity using Napier was significantly higher in the SSF procedure 

(p<0.05).  

5.3 SUMMARY 

Overall, the highest cellulase activity was achieved using Napier as a 

substrate during SSF under optimised conditions (27.24 ± 1.55 FPU/g 

substrate), and this was significantly higher than any other activities 

achieved during SSF or SmF procedures (p<0.05). This cellulase activity 

was 37.9% higher than the highest cellulase activity achieved during SmF 

under the same conditions – using Bambara as a substrate (19.76 ± 0.89 

FPU/g substrate), (p<0.05). The cellulase extracted using Napier as a 

substrate would ultimately need to be further analysed further, 

investigating whether it could be used to effectively degrade Napier into 

fermentable sugar to be used for bioethanol production.  

Although very little cellulase activity was achieved using Sago hampas as a 

substrate the fungus grew very well on the substrate. This suggests that 

the fungus was hydrolysing something other than cellulose to produce 

glucose for growth, potentially starch. Based on this observation the Sago 

hampas was further investigated to determine if it could be used as a 

substrate for glucoamylase production, rather than cellulase production.  
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 PRODUCTION OF GLUCOAMYLASES & 

GLUCOSE FROM SAGO HAMPAS 

6.1 INTRODUCTION 

The Sago palm is an important crop, socio-economically, in South East 

Asia. The starch, stored in the trunk, is extracted and processed into many 

products, such as glucose, syrups, and chemicals for the pharmaceutical 

and paper industries. During this extraction process a waste stream, 

known as Sago hampas, is produced. Although the process is designed to 

extract starch, this fibrous residue left over still contains some starch 

granules trapped inside a lignocellulosic matrix. Currently, this is used as 

animal feed, compost for mushrooms, as well as several other processes.  

Potentially, the Sago hampas could be used as a source for the production 

of biofuels and/or biochemicals, from either the starch or the 

lignocellulosic material, in a biorefining process. However, the enzymes 

needed to hydrolyse the starch into fermentable sugars are produced by 

other bio-industries, increasing the biofuel production costs. Therefore, the 

on-site production of enzymes is an attractive option, especially if they are 

produced using the Sago hampas, which is a cheap carbohydrate source. 

These enzymes can be produced via solid state fermentation, and then 

extracted to be used in the hydrolysis step. The fermentable sugars 

produced can then be fermented into bioethanol and/or biochemicals, 

providing value added products whilst eliminating some of the Sago 

hampas waste from the starch extraction process. 

Based on the compositional analysis performed there was still just over 

50% w/w (dry weight basis) starch present in the Sago hampas used in 

this research. Although very little cellulase activity was achieved during 

the SSF (Section 5.2.2 and Section 5.2.6) or SmF (Section 5.2.9) 
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processes when using the Sago hampas as a substrate, the fungus grew 

well suggesting that it was probably hydrolysing the starch, rather than 

the lignocellulosic material of the Sago hampas. Therefore, in this chapter 

the Sago hampas was investigated to determine if it could be used as a 

substrate during solid state fermentation (SSF) to produce glucoamylases 

in the first stage of the biorefining process. The fungus, Aspergillus 

awamori, was chosen for the SSF process as it is known to be a good 

producer of a wide variety of enzymes, namely glucoamylases, pectinases, 

proteases, lipases, phosphatases, cellulases and xylanases (Koutinas et 

al., 2004). The Sago hampas was also used as a substrate to determine 

how much fermentable sugars could be produced during the solid state 

fermentation process using the A. awamori, and whether this amount was 

enough to make it a viable process for production of fermentable sugars 

for the fermentation step. 

The SSF conditions optimised in the previous chapter (addition of YE and 

MSI) were used in this work. The composition of these nutrients is 

described in Section 3.4. The methodologies for the SSF process, glucose 

analysis and glucoamylase analysis are described in Sections 3.7, 3.6.6 

and 3.9.5, respectively.  

6.2 RESULTS 

6.2.1 Free sugars in Sago hampas 

The compositional analysis of the Sago hampas was repeated to determine 

whether there was any free glucose and/or maltodextrins present in the 

sample as described in Section 3.6.5. Two slightly different procedures 

were followed at the beginning of the experiment. For the removal of the 

glucose and maltodextrins (measurement of starch only), the procedure 

described in Section 3.6.5 was followed. To determine if any glucose 
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and/or maltodextrins were present, the same procedure was followed; 

however, the initial two steps involving the addition of 80% (v/v) ethanol 

(designed to remove free glucose and maltodextrins) were skipped and 

instead only 0.2 mL 80% (v/v) ethanol was added before adding the 

magnetic stir bar and KOH.  

As seen in Figure 6.1, the starch content (without the removal of D-

glucose and/or maltodextrins) was slightly higher (52.83 ± 3.68 % w/w 

dry weight basis) than the starch content alone (50.88 ± 1.96 % w/w dry 

weight basis). However, there was no significant difference between these 

two values (p=0.345), indicating that whilst there may have been some 

free D-glucose and/or maltodextrins present this was not significant. These 

values are comparable to previous measurements (Section 4.2.5) of the 

starch content of the Sago hampas (51.91 ± 3.23 % w/w).  

 

Figure 6.1 Starch content, as well as D-glucose and/or maltodextrin 
content, in samples of Sago hampas. Values are means + SD (n=3).  

 

6.2.2 Growth of Aspergillus awamori on different growth media  

Before determining if the Sago hampas could be used as a substrate for 
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which conditions were best for spore culturing. This was done as the 

culturing of the spores was based on procedures described by Koutinas et 

al. (2001), who used whole wheat flour as a substrate for culturing. Since 

this experiment used Sago hampas as a substrate, the culturing of the A. 

awamori spores was repeated, investigating four different growth media. 

The compositions of the different growth media are shown in Table 6.1. 

The growth media were autoclaved and then inoculated with A. awamori 

spores, as described in Section 3.5.2, and incubated for 7 days in a dark, 

static incubator at 28 °C. 

Table 6.1 Media conditions used for growth of A. awamori spores. 

Experiment 

Media conditions for spore growth 

Addition of 

2% (w/v) 

agar 

Addition of 

5% (w/v) 

Sago 

hampas 

Addition 

of 0.5% 

(w/v) YE 

Solution used to 

make up to volume 

A Yes Yes No Deionised water 

B Yes Yes Yes Deionised water 

C Yes Yes No MSI 

D yes yes Yes MSI 

 

 

Figure 6.2 shows the spore growth after the incubation period on the 

different growth media conditions. The A. awamori spores grew best on 

the growth media containing YE and MSI, and grew the least on the 

growth media containing just the Sago hampas. The growth media 

containing either YE or MSI had around the same amount of spore growth 

as one another. When compared to the media containing only Sago 

hampas they showed more spore growth; however, they did not show as 

much growth as the media containing both YE and MSI. Based on these 

observations, the optimal growth conditions for the A. awamori spore 

culturing included 2% (w/v) agar + 5% (w/v) Sago hampas + 0.5% (w/v) 

YE + MSI to make up to solution, and this growth medium was used for all 

further experiments. 
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Figure 6.2 Growth of Aspergillus awamori spores on different growth 
media. All media contained 2% (w/v) agar + 5% (w/v) Sago hampas plus 
(A) deionised water, (B) 0.5% (w/v) YE + deionised water, (C) MSI, (D) 
0.5% (w/v) YE + MSI. All samples were incubated for 7 d at 28 °C in a 
dark static incubator.  

 

6.2.3 Glucoamylase activity recovered from SSF process 

After the optimal growing conditions for the A. awamori spores were 

determined, the spores were used in a solid state fermentation to 

investigate whether the A. awamori could produce glucoamylase using 

Sago hampas as a substrate.  

To prepare the Sago hampas, 0.0175 g/g YE and MSI (up to 80% (w/v) 

MC) were added and autoclaved. The SSF process commenced with the 

addition of A. awamori spores and the samples were analysed after a 5 d 

incubation period, as described in Section 3.7. The glucoamylase activity of 

A B 
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the recovered fungal filtrate was assayed using the original method 

described by Koutinas et al. (2001), and not the modified method as 

described in Section 3.9.5. In this investigation, the same substrate 

solution was used (2% (w/v) soluble starch suspension, dissolved in 0.2 M 

Na-acetate buffer, pH 4.5); however, the starch suspension was not 

gelatinised. Also, the duration of the assay was measured at times 0, 5, 

and 10 min, as described by Koutinas et al. (2001). The rest of the 

procedure was followed as described in Section 3.9.5.  

Figure 6.3 shows the activity of glucoamylase activity recovered in the 

fungal filtrate after the SSF incubation period. The concentration of glucose 

did not increase over the 10 min glucoamylase assay period, and stayed 

around 2.0 mg/mL (p=0.507). 

 

Figure 6.3 Glucoamylase activity of fungal filtrate. The fungal filtrate was 
collected after 5 d incubation and glucoamylase activity was determined 

as glucose production from non-gelatinised soluble starch. The assay was 

carried out at pH 4.5 and 60 °C for up to 30 min. The results are the mean 
+ SD (n=3).  

 

This indicated that no or little glucoamylase activity was detected in the 

recovered SSF fungal filtrate, as the starch was not broken down into 

glucose during the assay period. This could have been due either to there 
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incubation period, or that the glucoamylase assay was not working 

correctly.  

6.2.4 Glucoamylase activity using commercial glucoamylase 

To determine whether the glucoamylase assay was working correctly the 

assay was performed using a commercial glucoamylase. Several trials 

were carried out to first determine if the assay worked using the 

commercial enzyme and then to determine the optimal conditions 

(substrate preparation procedure, dilution, time, pH, and temperature) for 

the glucoamylase assay.   

6.2.4.1 Gelatinised starch versus non-gelatinised starch solution 

The glucoamylase assay was originally performed using non-gelatinised 

soluble starch. In the first experiment, the impact of gelatinisation was 

tested. The substrate solution used was 2% (w/v) soluble commercial corn 

based starch suspension, dissolved in 0.2 M Na-acetate buffer, pH 4.5. For 

gelatinisation, the suspension was placed on a magnetic hot plate set at 85 

°C and 300 rpm, for 20 min. The length of the assay was also modified, 

with measurements being taken at 0, 10, 30 and 60 min. The assay was 

carried out at 37 °C following the remainder of the procedure as described 

in Section 3.9.5. 

Figure 6.4 shows the production of glucose using the commercial 

glucoamylase (300 U/mL, Sigma-Aldrich, UK), at a 200-fold dilution. 

Extremely little glucose was produced over the 60 min assay period when 

using the non-gelatinised starch (maximum yield = 0.58 ± 0.12 mg/mL) 

(p=0.166). However, the use of gelatinised starch showed a rapid increase 

in glucose within the first 10 min after which the activity plateaued, 

reaching a maximum of 21.32 ± 0.58 mg/mL.  
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Figure 6.4 Effect of starch gelatinisation on the glucoamylase assay. A 
commercial glucoamylase (200-fold dilution) was assayed using either 
gelatinised or non-gelatinised soluble starch. The assay was carried out at 
pH 4.5 and 37 °C for up to 60 min. The results are the mean + SD (n=3).     

 

Using a conversion factor of 1.11 (theoretical conversion of glucose from 

starch), it was calculated that the maximum glucose that could be 

produced during the assay experiment was 22.0 mg. Therefore, the 

amount of glucose yielded with the gelatinised starch reached almost 

maximal within 10 min. Since extremely little glucose was present at time 

0, the glucose produced was due to the starch being broken down by the 

commercial glucoamylase. This showed that the enzyme assay worked 

with gelatinised starch, but it did not work with non-gelatinised starch.  

6.2.4.2 Optimisation of enzyme concentration and assay time 

In the previous experiment the enzyme concentration of the commercial 

glucoamylase was too high, as the reaction reached completion within 10 

min. Therefore, the next experiment was set up to determine the optimal 

enzyme concentration required for the assay, as well as to determine the 

assay time to be used for further experiments.  

Several different enzyme concentrations were investigated and prepared 

as shown in Table 6.2.  
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Table 6.2 Preparation of commercial glucoamylase (AMG) dilutions. 

 AMG stock 

added 

(mL)* 

Buffer 

added 

(mL)* 

Total 

volume 

(mL) 

Final AMG 

conc. 

(U/mL) 

200-fold 

dilution 

0.10 19.90 20.00 1.50 

1000-fold 

dilution 

0.10 99.90 100.00 0.30 

2000-fold 

dilution 

0.10 199.90 200.00 0.15 

3000-fold 

dilution 

0.10 299.90 300.00 0.10 

4000-fold 

dilution 

0.10 399.90 400.00 0.08 

*AMG stock – 300 U/mL; Buffer used was 0.2 M Na-acetate buffer, pH 4.5 

 

 

Once the dilutions had been prepared, 0.5 mL of each was used for the 

glucoamylase assay. The glucoamylase assay was performed using 

gelatinised starch as the substrate, and measurements were taken at 0, 

10, 30 and 60 min. The assay was carried out at 37 °C and pH 4.5, 

following the remainder of the procedure as described in Section 3.9.5. 

Figure 6.5 shows the production of glucose over time during the 

glucoamylase assay for the 200-fold and 4000-fold enzyme dilutions.  

 

Figure 6.5 Production of glucose from gelatinised starch by commercial 
glucoamylase at different concentrations. Stock glucoamylase had an 
activity of 300 U/mL. The assay was carried out at pH 4.5 and 37 °C for up 
to 60 min. The results are the mean + SD (n=3).  
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As previously noted the reaction for the 200-fold enzyme reached 

completion within the first 10 min, yielding a glucose concentration of 

19.87 ± 0.26 mg/mL before beginning to plateau. However, the reaction 

for the 4000-fold enzyme was much slower, with the increase in glucose 

being more gradual over the 60 min assay period. The glucose 

concentration had reached 17.46 ± 0.42 mg/mL at the end of the 60 min 

period; however, it had not begun to plateau.  

Figure 6.6 shows a linear line of best fit drawn through the glucose 

production values over time for the glucoamylase at 4000-fold dilution.  

 

Figure 6.6 Production of glucose over time due to activity of commercial 

glucoamylase (1-4000 dilution) on gelatinised starch. The assay was 
carried out at pH 4.5 and37 °C for up to 60 min. The results are the mean 
+ SD (n=3). 

 

An R2 value of 0.9935 was obtained indicating that the production of 

glucose over time followed a linear pattern. Therefore, the rate of change 

of glucose over time was the same, and so this enzyme dilution was 

chosen for further experiments. An assay time of 30 min was also chosen 

for further experiments, as at this time point it was estimated that just 

under 50% of the starch had been broken down.  
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6.2.4.3 Optimisation of pH 

Based on the literature, the optimal pH for glucoamylase is around pH 4.5. 

However, to determine if this was optimal for our assay, 11 different pH 

levels were investigated, ranging from pH 3.0 – pH 8.0, with an 

incremental increase of 0.5. The assay was performed using gelatinised 

starch suspension and the 4000-fold enzyme dilution. In order to obtain 

the correct pH level, both the gelatinised starch suspension and the 

enzyme dilution were made with 0.2 M Na-acetate buffer, adjusted to the 

corresponding pH. For example, for the pH 3.0 value, the 2% (w/v) starch 

suspension was made using 0.2 M Na-acetate buffer, pH 3.0 and the 

enzyme dilution was made by taking 2.5 µL enzyme stock (300 U/mL) and 

making it up to 10 mL solution with 0.2 M Na-acetate buffer, pH 3.0. This 

was done for all the pH levels. The starch suspensions were then 

gelatinised and the enzyme dilutions were left for 10 min before being 

placed in the water bath for 5 min to adjust to temperature.  

Once the enzyme dilutions and starch suspensions were made, 0.5 mL of 

each was used for the glucoamylase assay. The assay was carried out at 

37 °C for 30 min, following the remainder of the procedure as described in 

Section 3.9.5, and the results are shown in Figure 6.7. 

The optimal pH for the glucoamylase activity was determined to be 

between pH 3.5 and pH 5.5. Based on this observation, a pH of 4.5 was 

chosen as the pH to be used for the assay.  
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Figure 6.7 Effect of pH on activity of commercial glucoamylase (4000-fold 
dilution). The assay was carried out on gelatinised soluble starch at 37 °C 
for 30 min. Results are the mean (n=3).  

 

6.2.4.4 Optimisation of temperature 

Finally, the optimal temperature for the assay was investigated. Several 

different temperatures were investigated, ranging from 37 – 100 °C. The 

assay was performed using gelatinised starch suspension and the 4000-

fold enzyme dilution at pH 4.5. Once the enzyme dilutions and starch 

suspensions were made, they were added to the water bath of the 

corresponding temperature and left for 5 min to acclimate to that 

temperature. The assay was then started and was carried out for 30 min, 

following the remainder of the procedure as described in Section 3.9.5.  

Figure 6.8 shows the relative activity of glucoamylase activity at the 

different temperatures. The optimal temperature for the glucoamylase 

activity was determined to be 60 °C. At temperatures higher than 60 °C, 

the glucoamylase activity dropped rapidly, with a relative activity of 36.4% 

at 70 °C. Temperatures higher than 80 °C showed no glucoamylase 

activity.  
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Figure 6.8 Effect of temperature on activity of commercial glucoamylase 
(4000-fold dilution). The assay was carried out on gelatinised soluble 
starch at pH 4.5 for 30 min. Results are the mean (n=3).  

 

6.2.5 Glucoamylase analysis of fungal filtrate revisited 

Based on the results obtained for the commercial glucoamylase, it was 

determined that the original glucoamylase assay did work and that the 
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MSI up to 80% (w/v) MC. The SSF process commenced with the addition 
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incubation period, as described in Section 3.7. The glucoamylase activity 

was assayed using the optimised conditions, with the method being 
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significant change in glucose concentration over time (maximum glucose 

reached 0.489 ± 0.216 mg/mL), (p=0.161).  

 

Figure 6.9 Glucoamylase activity of fungal filtrate. The fungal filtrate was 
collected after 5 d incubation and glucoamylase activity was determined 
as glucose production from gelatinised soluble starch. The assay was 
carried out at pH 4.5 and 60 °C for up to 30 min. The results are the mean 
+ SD (n=3).  

 

Although the glucoamylase activity of the fungal filtrate was low, it was 

noted that the glucose concentration of the fungal filtrate itself was 

relatively high. The experimental control (which contained 0.5 mL fungal 

filtrate + 0.5 mL 0.2 M Na-acetate buffer, pH 4.5) gave a value 7.839 

mg/mL glucose. Therefore, most of the glucose present in the 

experimental tube was from the fungal filtrate, and was present at the 

beginning of the assay.  
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fungus could have broken down the Sago starch during the SSF process, 

or the sugars present could have been a result of the autoclaving process 

before the SSF process. To determine the reason for the presence of 

sugars, two different SSF experiments were set up. 

The substrate used for both experiments was Sago hampas + 0.0175 g/g 

YE + MSI to 80% (w/v) MC. Two substrate samples were autoclaved and 

then A. awamori spores added to one of these; the second one was not 

inoculated with spores. Both experiments were then incubated for 5 d at 

the same time, as described in Section 3.7. The extraction of the fungal 

filtrate and performance of the glucoamylase assay were carried out the 

same way for both experiments, as described in Sections 3.7 and 3.9.5, 

respectively. 

Over the 30 min glucoamylase assay period, there was little change in the 

glucose concentration for both SSF experiments (data not shown). This 

indicated that there was no enzyme or little enzyme activity detected, as 

the gelatinised starch was not broken down into glucose. However, as 

found in the previous experiment, the glucose concentration of the enzyme 

control tube (the fungal filtrate) was much higher, and there was a 

significant difference between the glucose concentrations of the two 

enzyme control tubes, as shown in Table 6.3 (p=8.554 x 10-10).  

Table 6.3 Glucose concentration of enzyme control tubes (0.5 mL SSF 
fungal filtrate + 0.5 mL 0.2 M Na-acetate buffer, pH 4.5) for inoculated 
and non-inoculated substrates. Both experiments were incubated for 5 d 

at 28 °C. The glucoamylase assay was carried out on gelatinised starch at 

pH 4.5 and 60 °C for 30 min (n=3). 

Experiment Glucose concentration (mg/mL) 

No spores added 0.262 ± 0.003 

Spores added 10.398 ± 0.049 

 

 

The glucose concentration of the fungal filtrate from the experiment that 

was not inoculated was much lower compared with the fungal filtrate from 

the inoculated experiment, indicating that the glucose present was not due 
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to the autoclaving process, but must have been produced afterwards, 

presumably from fungal activity.  

6.2.5.2 Determining if fungal filtrate was inhibiting glucoamylase activity  

Since the glucose present in the fungal filtrate was from the SSF process, 

it was assumed the fungus must have been producing some enzymes in 

order to break down the Sago starch into glucose during the SSF process. 

However, no or very little glucoamylase activity was detected. This may 

have been due to several reasons – (i) either the background level of 

sugars (reducing groups) in the solution was saturating the solution, or (ii) 

there was no or little glucoamylase activity at the time. This second reason 

could have been due to either no enzyme being present or the enzyme 

was present but the sugars in the solution were inhibiting the enzyme.  

In order to determine if there were factors in the fungal filtrate that were 

inhibiting glucoamylase activity, assays were carried out using the 

following enzyme solutions: (i) D5 SSF fungal filtrate, (ii) commercial 

enzyme (4000-fold dilution), (iii) D5 SSF fungal filtrate + commercial 

enzyme (4000-fold dilution). The glucoamylase assay was carried out on 

the three enzyme solutions as described in Section 3.9.5. For the enzyme 

solution containing a mixture of the D5 SSF fungal filtrate + the 

commercial enzyme (2000-fold dilution), the enzyme solution was made 

by mixing the two enzyme solutions in a 1:1 ratio. To carry out the 

glucoamylase assay, 0.5 mL of this solution was added to the test tubes.  

Table 6.4 shows the glucoamylase activity after the 30 min assay for the 

different enzyme solutions. All three solutions had a glucose concentration 

close to 0 mg/mL at the beginning of the assay. The glucose concentration 

for the D5 SSF fungal filtrate did not change over the assay period. 

However, the glucose concentration for the commercial enzyme, as well as 
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the D5 SSF fungal filtrate + commercial enzyme did change significantly 

over the 30 min period (p<0.05). The glucose concentration increased to 

8.363 ± 0.531 mg/mL for the commercial enzyme, and increased to 6.975 

± 0.664 mg/mL for the D5 SSF fungal filtrate + commercial enzyme.  

Table 6.4 Glucoamylase activity for three enzyme solutions – (i) D5 SSF 
fungal filtrate, (ii) Commercial enzyme (4000-fold dilution), (iii) D5 SSF 

fungal filtrate + Commercial enzyme (4000-fold dilution). Glucoamylase 
activity was determined as glucose production from gelatinised soluble 
starch. The assay was carried out at pH 4.5 and 60 °C for 30 min (n=3).  

Experiment Glucose concentration 

at 30 min (mg/mL) 

Fungal filtrate 0.003 ± 0.019 

Commercial enzyme  8.363 ± 0.531 

Fungal filtrate + Commercial enzyme 6.975 ± 0.664 

 

This implied that the fungal filtrate does not contain any factors that inhibit 

the commercial enzyme. However, the fact that the commercial enzyme 

plus fungal filtrate gave a slightly lower result than the commercial 

enzyme implies that the enzyme assay is indeed becoming “saturated” 

with glucose potentially due to the high background level of sugar in the 

filtrate. 

A glucoamylase assay was also carried out on the D5 fungal filtrate 

following dialysis to remove the sugars. Whilst the enzyme control in this 

instance showed a much lower glucose concentration, the assay itself 

failed to detect any glucoamylase activity (data not shown). 

6.2.5.3 Glucoamylase activity during the SSF 

The experiments described above have shown that there was little or no 

glucoamylase activity present in a fungal filtrate after 5 d incubation but 

that there was an appreciable amount of free reducing sugars being 

produced. To determine if the enzyme could be detected earlier in the SSF 

process, the glucoamylase assay was repeated on fungal filtrates 

recovered from shorter SSF incubation periods.  
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To do this three fungal SSF experiments were set up with varying 

incubation periods. The Sago hampas (with the addition of 0.0175 g/g YE 

and MSI to 80% (w/v) MC) was inoculated with A. awamori spores and 

then incubated for either 6 h, 24 h or 5 d at 28 °C. The enzymes (fungal 

filtrate) were extracted as described in Section 3.7, and the glucoamylase 

assay was carried out as described in Section 3.9.5. 

Over the 30 min glucoamylase assay period, there was little change in the 

glucose concentration for all the SSF experiments (data not shown). This 

indicated that there was no enzyme or little enzyme activity detected, as 

the gelatinised starch was not hydrolysed. However, similar to previous 

experiments, there was a significant difference between the glucose 

concentrations of the enzyme control tubes. As shown in Table 6.5, the 

glucose concentration increased significantly over the three time periods 

from 0.414 ± 0.002 mg/mL (6 h SSF filtrate), to 12.096 ± 0.024 mg/mL 

by D5 (p<0.05).  

Table 6.5 Glucose concentration of enzyme control tubes (0.5 mL SSF 
fungal filtrate + 0.5 mL 0.2 M Na-acetate buffer, pH 4.5). 6 h, 24h h, D5 

fungal SSF were carried out for 6 h, 1 d and 5 d, respectively (n=3). 

Experiment Glucose concentration (mg/mL) 

6 h SSF fungal filtrate 0.414 ± 0.002 

24 h SSF fungal filtrate 1.891 ± 0.006  

D5 SSF fungal filtrate 12.096 ± 0.024 

 

From these results, it was concluded that there were sugars already 

present at 6 h and this increased over the 5 d incubation period. 

Therefore, the fungal enzymes must have been hydrolysing the starch; 

however, there was still no glucoamylase activity detected.  

6.2.6 Production of glucose during SSF process 

Since glucoamylase activity could not be detected in the fungal filtrate, the 

production of glucoamylases for extraction and concentration was not 

viable. However, glucose was being produced during the SSF process, and 
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it was assumed this was due to the breakdown of Sago starch by the 

fungal enzymes. Therefore, the focus of the research was shifted to the 

production and extraction of glucose directly during the SSF process.  

In the first instance, the digestibility of the starch in the Saga hampas was 

determined. This was done by performing an enzymatic hydrolysis of the 

Sago hampas, using a commercial glucoamylase (300 U/mL, Sigma-

Aldrich, UK). The amount of Sago hampas used was 6 g and this was 

made up to 21 mL with 0.2 M Na-acetate buffer, pH 4.5 and autoclaved as 

for the SSF experiments. The mash was then made up to 10% (w/v) Sago 

hampas by adding a further 39 mL autoclaved buffer (totalling 60 mL). The 

commercial enzyme was added and the experiment was placed in a 

shaking incubator set at 60 °C and 150 rpm for up to 24 h. The enzyme 

concentration used was 0.25 U/g Sago hampas (addition of 5.0 µL) and 

samples were taken over 24 h. The sugar composition for all samples was 

quantified by HPLC and prepared as described for the previous SSF 

experiments. The glucose produced over the 24 h hydrolysis period is 

shown in Figure 6.10.  

 

Figure 6.10 Production of glucose using a commercial glucoamylase (stock 
– 300 U/mL) at 0.25 U/g Sago hampas. 6 g Sago hampas, made up to 
10% (w/v), was used as substrate; hydrolysis performed in shaking 
incubator at 60 °C and 150 rpm. The results are the mean + SD (n=3). 
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A glucose concentration of 17.92 ± 0.30 g/L was reached within the 24 h 

period, with the fastest rate of production occurring within the first 2 h 

(13.03 ± 0.35 g/L). The represented a 31.72% conversion of glucose after 

the 24 h period (0.179 ± 0.003 g/g Sago).  

This experiment demonstrated that the Sago hampas starch, as prepared 

for the SSF experiments, could be readily digested by the commercial 

enzyme. Thus indigestibility of the starch would not be a factor in 

determining the efficiency of glucose production. In order to assess the 

efficiency of glucose production from the Sago hampas during SSF, three 

experiments were set up – one continuous SSF, and two SSF experiments 

with washing. The substrate preparation, addition of fungal spores, 

incubation, and extraction of the fungal filtrate were carried out the same 

for all three experiments, as described in Section 3.7. The fungal filtrate 

for all samples were filtered using 0.2 µm pore size Whatman GD/X 

syringe filters (GF/C 25 mm filter diameter; Whatman International Ltd., 

UK), and diluted 1:100. The samples were quantified by high performance 

liquid chromatography (HPLC), as described in Section 3.6.6.3. Sugar 

standards were prepared, as described in Section 3.6.6.2, and analysed 

with samples. The remaining pellet (fungus and undigested biomass) was 

oven dried overnight, and then weighed and analysed for starch content, 

as described in Section 3.6.5. 

In the continuous SSF experiment, the total time that the inoculated mash 

was incubated for was 21 d. However, enough Sago was prepared to take 

17 time points at the following times - 0 h, 3 h, 6 h, 8 h, 12 h, 1 d, 1.5 d, 

2 d, 3 d, 4 d, 5 d, 6 d, 7 d, 10 d, 14 d, 19 d and 21 d. At each time point, 

three Petri dishes containing inoculated mash (3 x 2 g Sago hampas each) 

were removed from incubation and the fungal filtrate extracted and 
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analysed for sugars. The pellet remaining after the extraction was oven 

dried overnight, weighed and analysed for starch.  

In the SSF with washing experiments, two sets of petri dishes with mash 

were set up. These were incubated under the same conditions as the 

continuous SSF, but plates from one set were washed (to recover the 

fungal filtrate) every 3 days and the other set every 5 days. After washing, 

the mash was left to continue incubation. For the D3 SSF washing 

experiment there were six sampling points giving a total 18 d incubation, 

and for the D5 SSF washing experiment there were four sampling points 

giving a total 20 d incubation. After the last extraction, the remaining 

pellets were oven dried overnight, weighed and analysed for starch.  

To set up each washing experiment, 3 x 6 g Sago hampas samples were 

prepared and inoculated with fungal spores. Each 6 g sample of inoculated 

mash was distributed equally amongst three Petri dishes and incubated 

together for either 3 d or 5 d. For the D3 SSF washing experiment, the 

Petri dishes (three sets of three dishes) were removed after the 3 d 

incubation period. Each 6 g sample of inoculated mash was mixed in a 

blender with 36 mL 0.5 M Na-acetate buffer, pH 4.5 (6 mL/g Sago) and 

the fungal filtrate recovered. The pellet remaining after centrifugation (and 

removal of the filtrate) was redistributed amongst three Petri dishes and 

incubated for another 3 d before repeating the washing and incubation 

cycle. The same procedure was carried out for the D5 SSF washing 

experiment; however, the samples were incubated for 5 d before being 

removed, the filtrate extracted and then the pellet incubated for another 5 

d before repeating the extraction process.  

The glucose concentration in the fungal filtrate for the continuous SSF 

experiment is shown in Figure 6.11. Over the 21-day incubation period, 

the glucose concentration in the recovered fungal filtrates increased, 
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reaching 0.077 ± 0.006 g, and this increase was significant (p<0.05). The 

trend of glucose production generally slowed, resulting in it beginning to 

plateau around day 12. However, there were oscillations around this 

general trend. For example, a similar glucose concentration was recovered 

in the day 14 fungal filtrate (0.081 ± 0.002 g), (p=0.786); but the glucose 

concentration in the D19 fungal filtrate was much lower at 0.059 ± 0.006 

g (p<0.05). This might indicate that the fungus was breaking down the 

starch, releasing glucose into the solution. However, at times the rate of 

consumption was greater than the rate of production (resulting in the 

glucose concentration of the solution decreasing). The concentrations of 

arabinose, galactose and xylose were measured for all incubation time 

points; however, the concentrations of these sugars in the recovered 

fungal filtrates was negligible (data not shown).  

 

Figure 6.11 Glucose recovered in continuous SSF fungal filtrates over 21 d 
incubation period. SSF carried out using A. awamori on Sago hampas (with 
addition of 0.0175 g/g YE and MSI to 80% (w/v) MC), at 28 °C in a static 
incubator for up to 21 d. The results are mean + SD (n=3). 

 

During the 21 d SSF incubation period there was an initial increase in the 

mass of the pellet after 1 d incubation and then a significant decrease over 
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(p<0.05). It was interesting to note that the mass of the 0 d dried pellet 

was 1.27 ± 0.01 g (63.67 ± 0.47 % w/w initial mass), meaning around 

36% of the total mass (just over 2 g) was lost during the autoclaving, 

extraction and drying process. The initial mass of starch added was 1.02 ± 

0.03 g, and this calculation was based on previous determination of the 

starch content of Sago hampas (50.88 ± 1.96 % w/w dry weight basis). 

The starch content of the pellet after the autoclaving, extraction and 

drying process was 0.71 ± 0.03 g. This corresponded to 69.88 ± 2.04 % 

(w/w initial starch) starch remaining before the SSF began. During the 21 

d SSF incubation period, the starch content of the pellet gradually 

decreased to 0.36 ± 0.02 g by day 21, corresponding to 35.06 ± 1.94 % 

(w/w initial starch) starch remaining, and this loss was significant 

(p<0.05). Based on this information, 0.35 g of starch was used up during 

the SSF process, indicating that the fungus was breaking the starch down 

into glucose during the SSF.  

The glucose recovered in the fungal filtrate for the D3 and D5 washing 

experiments is shown in Figure 6.12. For the D3 washing experiment, the 

inoculated mash was washed every 3 days, for a total of 6 washes (18 d 

incubation), and for the D5 washing experiment, the inoculated mash was 

washed every 5 days, for a total of 4 washes (20 d incubation). The 

glucose recovered after each wash was similar for both washing 

experiments (Figure 6.12A), with the highest glucose being recovered after 

wash 2 (7.76 ± 0.06 g/L for D3 washing and 7.00 ± 0.25 g/L for D5 

washing). Overall, a small amount of glucose was recovered after wash 1, 

followed by a spike in wash 2, and then a steady decrease in glucose 

recovered after subsequent washes.  
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Figure 6.12 Glucose recovery from washed SSF experiments. (A) Glucose 
recovered in SSF fungal filtrates and (B) Accumulation of glucose in fungal 
filtrate for D3 and D5 washing experiments. SSF carried out using A. 
awamori on Sago hampas (with addition of 0.0175 g/g YE and MSI to 80% 

(w/v) MC), at 28 °C in a static incubator for up to 20 d incubation. The 
results are mean + SD (n=3). 

 

Figure 6.12B shows the accumulation of glucose recovered from the fungal 

filtrates over the SSF incubation period. For the D3 washing experiment, a 

total of 0.848 ± 0.018 g glucose was recovered over the 18 d SSF. For the 

D5 washing experiment, a total of 0.684 ± 0.016 g glucose was recovered 

over the 20 d SSF, and these were significantly different (p=0.001).  
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both the D3 and D5 washing experiments, since the D3 washing 

experiment was washed every 3 d, an extra two washes were collected 

within the same time period as the D5 washing experiment. This resulted 

in the accumulation of more glucose in a similar period of time. When 

comparing the continuous SSF experiment with the washing experiment, 

the total glucose recovered from the washing experiments was significantly 

greater than the glucose recovered from the 21 d continuous SSF 

experiment (0.077 ± 0.0.05 g) (p<0.05).  

To confirm that the continuous SSF experiment was performing similar to 

the washing experiments, the glucose recovered from the time points 

which were under the same conditions were compared. The fungal filtrate 

from day 3 of the continuous SSF (1.58 ± 0.08 g/L) was compared with 

the first wash of the D3 washing experiment (1.53 ± 0.10 g/L) and found 

to be similar (p=0.594). The same was done with the fungal filtrate from 

day 5 of the continuous SSF (2.66 ± 0.07 g/L) and the fungal filtrate from 

the first wash of the D5 washing experiment (2.63 ± 0.21 g/L) which were 

again similar (p=0.872). These results indicate that the fungal spores in 

the continuous SSF were performing the same as the fungal spores in the 

washing experiments. Therefore, it can be concluded that the higher 

glucose recovered from the washing experiments, was due to the washing 

of the inoculated mash throughout the SSF process. 

During the SSF process there was a decrease in the starch content of the 

pellet for both washing experiments. The starch remaining after the 20 d 

D5 washing experiment (16.76 ± 1.40 % (w/w initial starch)) was slightly 

higher than the starch remaining after the 18 d D3 washing experiment 

(13.96 ± 1.72 % (w/w initial starch)). These values were similar 

(p=0.295); however, both values were significantly lower than the starch 
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remaining after the continuous SSF experiment (35.06 ± 1.94 % (w/w 

initial starch), (p<0.05).  

Overall, the washing experiments produced higher levels of glucose and 

resulted in a greater utilisation of starch. To determine which experiment 

was most efficient at starch conversion, the actual glucose produced was 

compared with the theoretical (maximum) glucose production that could 

have been achieved for each experiment, and these results are 

summarised in Table 6.6. The continuous SSF had the least efficient 

conversion of glucose at 10.11%. The SSF with washing experiments were 

much more efficient at converting starch to glucose, with the D3 SSF 

washing experiment being the most efficient at producing glucose 

(29.10%). 

Table 6.6 Mass balance showing starch consumed and glucose produced 
during the three different experiments, and the efficiency of the 
conversion.  

 

SSF with D3 Washes SSF with D5 Washes Continuous SSF 

In Out Net In Out Net In Out Net 

Sago (g) 6.00 - 
 

6.00 - 
 

2.00 - 
 

Starch (g) 3.05 0.43 -2.63 3.05 0.51 -2.54 1.02 0.36 -0.66 

Theoretical 
glucose 
produced (g) 

- 2.92 2.92 - 2.82 2.82 - 0.73 0.73 

Actual glucose 
produced (g) 

- 0.85 0.85 - 0.68 0.68 0.002 0.077 0.074 

Efficiency (%) - - 29.10 - - 24.25 - - 10.11 

 

 

Although the washing experiments resulted in a higher production of 

glucose compared with the breakdown of starch, the efficiency was just 

below 30%, meaning some starch and/or glucose was lost in the process. 

This could have been due to either consumption of glucose by the fungus, 

or the starch could have been lost in the fungal filtrate during washing 

before it was converted to glucose. To determine how much, if any, starch 

was lost in the washing process, the fungal filtrates from wash 1 of both 

washing experiments were treated with commercial glucoamylase (300 
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U/mL, Sigma-Aldrich, UK) to determine if any sugars were produced. The 

glucoamylase assay was performed using the fungal filtrate as the 

substrate (0.5 mL), and the commercial enzyme was diluted 4000-fold. 

The assay was carried out at 60 °C and pH 4.5 for 30 min as described in 

Section 3.9.5.  

The starch recovered in the fungal filtrate from wash 1 was 1.790 ± 0.098 

and 1.031 ± 0.043% of the total in the mash for D3 and D5 washing, 

respectively. The starch lost from the D3 washing experiment was 

significantly more than the starch lost from the D5 washing experiment 

(p=0.001). Although only a minimal amount of starch was lost from wash 

1, the starch lost from washes 2 – 6 were not analysed and so this may 

have increased or decreased. If starch was lost during these washes, the 

total starch lost during the SSF process could become significant and have 

a significant effect on the glucose production and efficiency of the process.   

6.2.6.1 Optimisation of SSF with washing for the production of glucose 

The previous experiment determined that SSF with washing resulted in a 

higher accumulation of glucose when compared with the continuous SSF. 

It was also shown that the timing of the wash cycle period was important, 

as the D3 washing resulted in a higher yield of glucose than the D5 

washing. Therefore, the washing experiments were repeated, looking at 

washing cycles shorter than the 3 d cycle. The washing solution used to 

extract the filtrate was also examined, using either buffer (0.2 M Na-

acetate, pH 4.5) or 0.0175 g/g YE + MSI to 80% (w/v) MC.   

The substrate preparation, addition of fungal spores, incubation, and 

extraction of the fungal filtrate were carried out the same for all 

experiments, as described in Section 3.7. The sugar composition of the 

fungal filtrates for all samples was quantified by HPLC, as described in 
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Section 3.6.6.3. The remaining pellet was oven dried overnight, and then 

weighed and analysed for starch content, as described in Section 3.6.5. To 

set up each washing experiment, 6 g Sago hampas samples were prepared 

and inoculated with fungal spores (in triplicate). Seven experiments were 

set up and were all incubated for 6 d, with periodic washing for the 

different experiments.  

Four different washing experiments were set up looking at different 

washing cycles. The inoculated mash was either washed (with buffer) 

every day (D1 washing), every second day (D2 washing), every third day 

(D3 washing), or after three days and then every day there-after (D3,D1 

washing). The D3 washing experiment was performed as a comparison to 

the D3 washing experiments run previously. Three more experiments were 

set up to look at the effect of wash solution on the glucose production. 

These were washed (with YE + MSI) every day (D1 washing), every 

second day (D2 washing), or after three days and then every day there-

after (D3,D1 washing).   

The glucose concentrations in the recovered fungal filtrate for the seven 

different experiments is shown in Figure 6.13. When comparing the wash 

solution used (buffer or YE + MSI), the glucose recovered after wash 1 

was similar (between 1.5 – 2.0 g/L), regardless of wash solution 

(p=0.066, p=0.133, p=1.000 for D1, D2 and D3,D1 washing experiments 

respectively). However, for subsequent washes, the experiments washed 

with buffer solution resulted in a significantly higher glucose concentration 

recovered in the filtrate for all experiments (p<0.05).  

Overall, very little glucose was produced over the 6 d SSF for the three 

experiments washed with YE+MSI. The highest glucose concentration was 

recovered after wash 1 and this was followed by a decrease in glucose 

production in subsequent washes, as seen in Figure 6.13.  
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Figure 6.13 Effect of washing cycle and wash buffer on glucose 
production. SSF was carried out using A. awamori on Sago hampas (with 
the addition of 0.0175 g/g YE and MSI to 80% (w/v) MC on day 0), at 28 
°C in a static incubator for up to 6 d. The glucose recovered in SSF fungal 

filtrates was measured for (A) D1 washing, (B) D2 washing, (C) D3 
washing, (D) D3,D1 washing experiments, respectively. The fungal filtrate 
was extracted using either 0.2 M Na-acetate, pH 4.5 buffer or 0.5% (w/v) 
YE + MSI. The results are the mean + SD (n=3). 

 

Comparing the results for the experiments washed with buffer, the glucose 

recovered in the fungal filtrates after each wash followed a similar trend, 

regardless of wash cycle (Figure 6.13). Overall, a small amount of glucose 

was recovered after wash 1, followed by a spike in wash 2, and then a 

steady decrease in glucose recovered after subsequent washes. The 

glucose recovered after each wash for the D1, D2 and D3 washing 

experiments was similar (around 2 g/L, 8 g/L and 5 g/L recovered after 

washes 1, 2 and 3 respectively). However, although the D3,D1 washing 

experiment followed the same trend, it produced slightly less glucose in 

wash 2 (5.09 ± 0.38 g/L), wash 3 (3.41 ± 0.26 g/L) and wash 4 (2.12 ± 

0.08 g/L), and these were significantly different (p<0.05).  

Figure 6.14 shows the accumulation of glucose recovered from the fungal 

filtrates over the SSF incubation period, when washed with buffer solution. 
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The glucose accumulated for each wash cycle was significantly different 

from one another, with the D1 washing experiment resulting in the highest 

glucose accumulation (a total of 0.885 ± 0.022 g glucose recovered from 

the 6 washes over the 6 d SSF incubation period), (p<0.05). Although a 

similar amount of glucose was produced after each wash for the D1, D2 

and D3 washing experiments, since the D1 washing experiment was 

washed every day, at least an extra three washes were performed within 

the same time period. This resulted in the accumulation of more glucose in 

a similar period of time.  

 

Figure 6.14 Accumulation of glucose in fungal filtrate for D1, D2, D3, and 

D3,D1 washing experiments. SSF carried out using A. awamori on Sago 
hampas (with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC on day 
0), at 28 °C in a static incubator for up to 6 d incubation. Filtrates were 
collected by washing with 0.2 M Na-acetate buffer, pH 4.5. The results are 
the mean + SD (n=3). 

 

At the beginning of the SSF, 6 g of Sago hampas was used (in triplicate) 
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each wash cycle was similar (p=0.904, p=0.864 and p=0.165 for the D1, 

D2 and D3,D1 washing experiments respectively). 

However, when comparing the percent starch remaining between the 

washes, the experiments that were washed with YE + MSI had significantly 

less starch remaining than the experiments washed with buffer (p<0.05), 

even though the pellet remaining was similar (Figure 6.15).  

 

Figure 6.15 Percent starch (based on 50.88% starch in Sago hampas) 
remaining at end of SSF incubation. SSF carried out using A. awamori on 
Sago hampas (with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC 
on day 0), at 28 °C in a static incubator for up to 21 d. The results are the 
mean + SD (n=3). Bars with different letters, within the same data set, 

are significantly different (p<0.05). 
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the YE + MSI washing solution contained a lot of nutrients that the fungus 

could make use of and capitalise on growth.  

When looking at the experiments washed with buffer, the starch remaining 

after each experiment was significantly different (p<0.05), with the D1 

washing experiment resulting in the lowest starch remaining (0.60 ± 0.05 

g, 19.80 ± 1.76 % (w/w)) and the D3 washing experiment resulting in the 

highest starch remaining (1.03 ± 0.03 g, 33.73 ± 1.03 % (w/w)). The D1 

washing experiment had also been washed the most times, and the D3 

washing experiment washed the least. 

To determine which experiment (washed with buffer) was most efficient at 

starch conversion, the actual glucose produced was compared with the 

theoretical (maximum) glucose production that could have been achieved 

for each experiment, and these results are summarised in Table 6.7. The 

D1 washing experiment was the most efficient at converting starch to 

glucose, with an efficiency of 32.14%. This was followed by the D2 

washing experiment (20.78 %) and then the D3 washing and D3,D1 

washing experiments were the least efficient (16.31 % and 16.18% 

respectively). 

Table 6.7 Mass balance showing starch consumed and glucose produced 
during the four different experiments, and the efficiency of the conversion.  

 

D1 washing D2 washing D3 washing D3,D1 washing 

In Out Net In Out Net In Out Net In Out Net 

Sago (g) 6.00 - 
 

6.00 - 
 

6.00 - 
 

6.00 - 
 

Starch (g) 3.05 0.60 
-

2.45 
3.05 0.78 

-

2.27 
3.05 1.03 

-

2.02 
3.05 0.52 

-

2.53 

Theoretical 

glucose 

(g) 

- 2.72 2.72 - 2.52 2.52 - 2.25 2.25 - 2.81 2.81 

Actual 

glucose 

(g) 

- 0.87 0.87 - 0.52 0.52 - 0.37 0.37 - 0.46 0.46 

Efficiency 

(%) 
- - 32.1 - - 20.8 - - 16.3 - - 16.2 

 

 

Overall the D1 washing experiment resulted in the highest accumulation of 

glucose in this experiment. This was compared with the highest achieving 
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experiment from the previous experiment, which was the D3 washing 

experiment (over 18 d incubation). The glucose accumulated after each of 

the 6 washes was similar in both (p=0.136) and the mass of pellet 

remaining at the end of each experiment was similar (p=0.640). However, 

the starch remaining at the end of the D1 washing experiment (19.80 ± 

1.76 % (w/w)) was significantly higher than the starch remaining at the 

end of the D3 washing experiment (13.96 ± 1.70 % (w/w) (p=0.00034). 

This resulted in a slightly higher conversion of starch for the D1 washing 

experiment (32.14%) compared with 29.14% for the D3 washing 

experiment. Also, the D1 washing experiment achieved this level of 

glucose in 6 d versus 18 d for the D3 washing experiment. 

Since the performance of the fungus was similar in each experiment, any 

improvement in the glucose production in Experiment 2 is likely a result of 

the wash cycle or wash solution, and not due to the fungus performing 

better. Based on this information it was concluded that the decrease in 

wash cycle from 3 d to 1 d was better as the 1 d wash cycle achieved the 

same glucose concentration in one-third of the time, and consumed less 

starch.  

6.2.6.2 Optimisation of nutrient composition 

The previous experiment determined that shorter washing cycles 

performed best in terms of glucose production, and that washing with 

buffer solution was better than washing with YE + MSI. In this set of 

experiments four different experiments were run, changing either the 

nutrients added to the Sago hampas before autoclaving or the 

concentration of fungal spores added at the start of the SSF, as shown in 

Table 6.8. These were set up as in the previous experiment. All 

experiments were incubated for 6 d, with 1 d washing. The fungal extract 
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was used instead of YE, and was obtained from the previous experiment 

(the dried pellet remaining from the D1 washing was crushed up and used 

in this experiment).  

Table 6.8 Nutrients and fungal spore concentration added for four 
different SSF experiments, all carried out for 6 d with washing every day.  

Experiment Nutrients added before 

autoclaving 

Fungal spore 

concentration 

(spores/g Sago) 

Sago + water Water to 80% (w/v) MC 4.0 x 106 

Sago + YE + MSI 

(Control) 

0.0175 g/g YE  

+ MSI to 80% (w/v) MC 

4.0 x 106 

Sago + FE + MSI 0.0175 g/g fungal extract 

+ MSI to 80% (w/v) MC 

4.0 x 106 

40 x 106 spores/g 0.0175 g/g YE  

+ MSI to 80% (w/v) MC 

40.0 x 106 

 

The glucose concentration of the fungal filtrates for the four different 

experiments is shown in Figure 6.16A. Very little glucose was produced 

when no nutrients were added to the Sago hampas (Sago + water 

experiment), indicating that the addition of YE and MSI had an impact on 

glucose production by the fungus. The glucose recovered after each wash 

for the control experiment (addition of Sago + YE + MSI) followed a 

similar trend to that seen in previous experiments, with a similar amount 

of glucose being recovered after each wash. 

The glucose recovered from the experiment with the addition of fungal 

extract (FE) to the Sago hampas (instead of YE), followed a similar pattern 

to the control; however, more glucose was recovered after each wash, 

with significant differences occurring in washes 1, 3, 4 and 6 (p<0.05). 

The same was true for the experiment with the addition of 40.0 x 106 

spores/g. This resulted in a significantly higher glucose recovery after each 

wash (except wash 2) when compared with the control experiment 

(p<0.05). When compared with the Sago + FE + MSI experiment, a 

similar amount of glucose was recovered from washes 1 (p=1.000) and 2 
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(p=0.996); however, after this, a significantly higher glucose was 

recovered from the 40.0 x 106 spores/g experiment (p<0.05).  

 
 

 

Figure 6.16 Effect of nutrients and fungal spore loading on glucose 

production. (A) Glucose recovered in fungal filtrates after each wash and 
(B) Accumulation of glucose over SSF. SSF carried out using A. awamori 
on Sago hampas, at 28 °C in a static incubator for up to 6 d incubation. 
Nutrients and spores added on day 0 – (i) Sago + water (addition of 
deionised water to 80% (w/v) MC); (ii) Sago + YE + MSI (addition of 
0.0175 g/g YE and MSI to 80% (w/v) MC); (iii) Sago + FE + MSI (addition 
of 0.0175 g/g fungal extract and MSI to 80% (w/v) MC); (iv) 40.0 x 106 

spores/g (addition of 0.0175 g/g YE and MSI to 80% (w/v) MC, plus 40.0 
x 106 spores/g). For all other experiments 4.0 x 106 spores/g added. 
Filtrates were collected by washing with 0.2 M Na-acetate buffer, pH 4.5. 
The results are the mean + SD (n=3). 
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The accumulation of glucose from the fungal filtrates over the SSF 

incubation period was significantly different for all washing experiments 

(p<0.05), as shown in Figure 6.16B. The experiment with the addition of 

40.0 x 106 spores/g resulted in the highest glucose accumulation with a 

total of 1.577 ± 0.072 g glucose being recovered from the 6 washes over 

the 6 d SSF incubation period (p=0.000006 when compared with control). 

The experiment with the addition of FE + MSI resulted in the next highest 

glucose accumulation with a total of 1.303 ± 0.029 g glucose being 

recovered over the 6 d SSF incubation period (p=0.000249 when 

compared with control). The efficiency of glucose conversion for the 

experiment with the addition of 40.0 x 106 spores/g was 46.53 % and the 

efficiency for the experiment with the addition of FE + MSI was 38.44%. 

The starch content remaining after the SSF incubation period was not 

calculated and so this could not be used when calculating the glucose 

conversion efficiency. If some starch was remaining in the pellet at the end 

of the washing process, the efficiency of glucose conversion would 

increase. However, even without taking this into account, both these 

values were still much higher than the efficiency achieved for the D1 

washing experiment in the previous experiment (32.14%). This indicates 

that the addition of FE is better for glucose production than YE, and the 

addition of more fungal spores results in a higher glucose production. 

6.2.7 Production of glucose during submerged fermentation  

The Sago hampas was used as a substrate in submerged fermentation to 

compare the production of glucose with that of the SSF experiments. The 

same amount of Sago hampas was used as was used in the SSF 

experiments (6 g). Two different experiments were run, changing the 

nutrients added to the Sago hampas during preparation. Either 21 mL 0.2 

M Na-acetate buffer, pH 4.5 was added to the Sago hampas (Sago + 



The University of Nottingham                                        Results Chapter 3 

158 

 

Buffer experiment), or 0.105 g YE (0.0175 g/g Sago) + 21 mL MSI, pH 4.5 

was added to the Sago hampas (Sago + YE + MSI experiment). All 

samples were autoclaved, as with the SSF experiments, and were then 

made up to 100 mL (6% w/v Sago) with a further 79 mL autoclaved 

buffer. MSI was not used for the Sago + YE + MSI experiment so as to 

keep the amount of MSI added the same as the amount added in the SSF 

experiments (21 mL). The fungal spores used for the inoculation came 

from the same batch used in the last of the SSF washing experiments and 

were incubated at the same time. Incubation was carried out in a shaking 

incubator set at 28 °C and 150 rpm for 6 d. Samples were taken daily as 

described in Section 3.8, and were prepared for HPLC as described 

previously. 

The glucose produced in the two different experiments is shown in Figure 

6.17. The Sago + Buffer experiment showed very little glucose production 

over the 6 d incubation period (highest glucose concentration was 0.279 ± 

0.046 g/L after 6 d incubation), (p=0.887).  

 

Figure 6.17 Glucose production from Sago hampas substrate by A. 

awamori during submerged fermentation (SmF). Sago hampas prepared 
with addition of 0.2 M Na-acetate buffer, pH 4.5 to 80% (w/v) MC or 
prepared with addition of 0.0175 g/g YE and MSI to 80% (w/v) MC; SSF 
carried out at 28 °C in a shaking incubator at 150 rpm for up to 6 d 
incubation. The results are the mean + SD (n=3). 
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However, the glucose production for the Sago + YE + MSI experiment 

increased significantly to around 3.35 g/L on days 2 and 3 (representing 

8.39% conversion yield), but then began to decrease on subsequent time 

points, reaching close to zero by day 6. This indicates that the fungus was 

breaking down the starch into glucose during the SmF process. Initially (0 

– 2 d) the rate of production was faster than the rate of consumption by 

the fungus. However, after day 2, the growth rate of the fungus was much 

faster, dictating how quickly the substrate was being used up. The starch 

could have been depleted by day 5 and day 6. Overall, however, the 

glucose production during SmF was not as efficient as the glucose 

production from SSF. 

6.3 SUMMARY 

No glucoamylases could be detected in the recovered fungal filtrate during 

the glucoamylase assay; however, reducing sugars were detected and the 

level of reducing sugars present increased with incubation period. Since no 

glucoamylases activity was detected, the focus of the research shifted to 

the production and extraction of glucose directly during the SSF process. 

The washing experiments resulted in the accumulation of much higher 

glucose levels than the continuous fermentation experiments. Therefore, 

the removal of glucose from the SSF medium was critical for the 

accumulation of high glucose levels as it prevented product inhibition, 

catabolite repression and/or consumption of glucose by the fungus. In this 

research the use of SSF proved better than the use of SmF. Overall the 

highest glucose recovery was obtained under a one-day washing cycle, 

with the use of 40.0 x 106 spores/g and the addition of nutrients. This 

resulted in 43.79 ± 2.01 g/L glucose being accumulated over the six day 

SSF, giving a 46.5% saccharification yield. 
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 DISCUSSION, CONCLUSIONS & 

FURTURE WORK 

7.1 DISCUSSION 

The main focus of this research was to investigate the possibility of using a 

short-term biological process as an efficient way of producing fungal 

hydrolytic enzymes, which could then be used as a platform for the 

production of value-added products in a biorefining process. Several 

underutilised crops were investigated, including Bambara, Leucaena, 

Napier grass, Nipa palm and Sago hampas. This project had three main 

areas of research – (i) characterisation of the underutilised crops, (ii) 

production of cellulases from the underutilised crops, and (iii) production 

of glucoamylases and a sugar-rich solution from Sago hampas – and the 

results obtained from these three areas are discussed below.  

7.1.1 Characterisation of underutilised crops 

Since not much information could be found on the basic composition of the 

underutilised crops, the first objective of this research was characterisation 

of the crops (refer to Table 4.1 for results). Based on the results obtained, 

all the crops had a very low/negligible lipid content (Figure 4.9) and all 

crops, except Sago hampas, had a very low/negligible starch content 

(Figure 4.5). There were significant variations in the ash content of the 

crops (Figure 4.2); and, these variations could have been due to the crop 

part analysed.  

Napier, Nipa fronds and oil palm fronds all had similar ash contents and for 

all these crops only the leaves/fronds were analysed. Huge variations have 

been reported in the literature for the ash content of oil palm fronds, with 

the ash content obtained in this research falling within this range (Hong et 

al., 2012; Yuliansyah & Hirajima, 2012). The ash content obtained for 
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Napier was also similar to results reported in the literature (de Morais et 

al., 2009; Mohammed et al., 2015). The ash content for Bambara and 

Leucaena were similar and significantly higher than the other crops. For 

these crops, the leaves, as well as the branches, were analysed, 

suggesting that branches may have a higher ash content. Since samples of 

these crops were a mixture of the leaves and branches (and roots in the 

case of Bambara) no data could be found in the literature for ash content 

of samples consisting of a mixture of plant tissues. The ash content for 

Sago hampas was significantly lower than all the other crops. This was 

likely because Sago hampas is the waste remaining after the starch 

extraction from the Sago.  

Other components analysed included protein, lignin and 

cellulose/hemicellulose contents. Since these relate directly to cellulase 

and amylase production, they will be discussed later in the discussion 

where applicable.  

7.1.2 Production of cellulases 

Once the crops had been characterised, the next objective was to 

investigate whether the underutilised crops could be used as substrates for 

the production of cellulase enzymes during SSF and SmF. The initial 

screening of the crops under baseline conditions (addition of deionised 

water to 80% w/v MC) with A. niger, suggested that all the crops could 

potentially be used as substrates for the production of cellulases via SSF. 

Cellulases were also produced during SmF with all the underutilised crops, 

although a higher production was achieved during SSF, suggesting that 

SSF was better suited for cellulase production. Several other reports have 

also obtained better results for cellulase production using SSF when 

compared with SmF (Mrudula & Murugammal, 2011; Reddy et al., 2015). 
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Although all the crops could be used as substrates for the production of 

cellulases, a large range in enzyme activities was achieved, with the use of 

Napier resulting in the highest activity and the use of oil palm fronds 

resulting in the lowest activity (Figure 5.2). According to the literature, a 

range of cellulase activities (0.3 – 84 U/g) from A. niger during SSF have 

been recorded for various substrates, such as rice hulls, wheat bran, 

wheat straw, and sugarcane bagasse (Kim et al., 1997; Lee et al., 2011; 

Mrudula & Murugammal, 2011; Bansal et al., 2012; Reddy et al., 2015). 

Although different media and operating conditions were used, many 

researchers performed comparable tests where several crops were tested 

under the same conditions and different cellulase activities were achieved. 

This highlights the fact that the substrate used has an effect on the 

enzyme activity achieved, and this could be due to the composition of the 

crops themselves.   

The use of Sago hampas resulted in low cellulase activity, even though A. 

niger was able to grow well on the Sago hampas. The Sago hampas had a 

very different composition when compared to the other crops screened. 

The ash and protein contents were much lower, and no lignin could be 

detected with the methods used; however, it had a significantly higher 

starch content. The composition of Sago hampas has been analysed by 

several other researchers, all reporting similar ranges as in this research 

for the protein, lipid, ash and lignin contents (Abd-aziz, 2002; Kumoro et 

al., 2008; Linggang et al., 2012; Awg-Adeni et al., 2013; Vincent et al., 

2015). However, a large range in values for both the starch content and 

the hemicellulose and cellulose contents were reported by the various 

researchers. The starch content of the Sago hampas can vary greatly since 

Sago hampas is the waste product remaining from the starch extraction 

process. As a result, the starch content of the Sago hampas will vary 
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between processing facilities depending on the sophistication of the 

methods used and the quality of the extraction process (Kamal et al., 

2007).  

Although the starch content observed in this research fell within the range 

reported by other researchers, the cellulose and hemicellulose content 

observed (Figure 4.7) was quite high compared with other reports. 

However, variation in the values obtained could be due to differences in 

the methods used for analysis. Nevertheless, although the Sago hampas 

contained a large amount of hemicellulose and cellulose, much of the dry 

weight of the Sago hampas was starch. As a result, the A. niger was 

probably preferably utilising the starch, as it is more readily hydrolysed.  

Very little starch was present in any of the other crops, and so the fungus 

was forced to hydrolyse the cellulose and hemicellulose into usable sugars 

for its growth, producing cellulases and hemicellulases. The production of 

cellulases is complex and is affected not only by the presence of cellulose, 

but also by the structure of the cellulose, as well as the interactions 

between the cellulose and the hemicellulose and lignin fractions. Although 

the fundamental chemical structure of cellulose is almost identical between 

the crops, there is a lot of variation in the degree of polymerisation, the 

molecular orientation of the cellulose, the hydrogen-bonding network and 

in the degree of crystallinity (Burton et al., 2010; Habibi et al., 2010). 

Ultimately, these factors result in different properties of the cellulose and 

as a result will affect the ability of the fungus to digest it. Furthermore, the 

hemicellulose fraction serves as a connection between the cellulose and 

the lignin, and therefore, the way the hemicellulose interacts with the 

cellulose via hydrogen bonding can affect the digestibility of the cellulose 

and as a result the cellulase activity. Finally, the presence of lignin, which 

is very hard to digest or separate from the cellulose/hemicellulose, makes 
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it very difficult to access the cellulose. Since the amount present, as well 

as the composition of the lignin may vary between species, the 

interactions with the hemicellulose/cellulose fractions will also vary and 

this will affect the cellulase activity of the various crops.  

This explanation may help explain the large range in cellulase activities 

recorded for the other crops screened. Of all the crops analysed, Napier 

contained the highest cellulose/hemicellulose content, followed by oil palm 

fronds and then Bambara. However, although the oil palm fronds had a 

high cellulose/hemicellulose content, it also contained a much higher lignin 

content than both Napier and Bambara. When compared with values 

reported in the literature, similar values were obtained for the lignin 

contents, but the cellulose/hemicellulose values obtained in this research 

were slightly lower for both Napier and oil palm fronds; no information 

could be found for Bambara (Hong et al., 2012; Reddy et al., 2012; 

Yuliansyah & Hirajima, 2012; de Araujo Morandim-Giannetti et al., 2013; 

Mohammed et al., 2015).  

A similar pattern was seen for Nipa fronds and this also resulted in a very 

low cellulase activity similar to that of oil palm fronds. The lignin content 

obtained in this research was similar to that reported in the literature; 

however, the hemicellulose/cellulose content was much lower (27% 

reported in this research; 55 – 62% reported in the literature) (Jahan et 

al., 2006; Phaiboonsilpa & Tamunaidu, 2011; Tamunaidu & Saka, 2011). 

This much lower content could be a reason why the mass balance achieved 

for Nipa fronds in this research was only 74%.  

Nevertheless, the increased lignin content of both Nipa and oil palm 

fronds, or a combination of this increased lignin with the factors listed 

above, could have affected the digestibility of these crops, resulting in 

either the Napier being easier to digest or the oil palm fronds and Nipa 
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fronds being harder to digest, ultimately leading to differences in cellulase 

activities. Alternately, the oil palm fronds and Nipa fronds could lack other 

nutrients that are required for growth and enzyme production in the 

fungus.  

Besides the substrate used, several other factors can also have an effect 

on the production of enzymes. Such operating parameters include 

moisture content, temperature, pH, addition of nutrients, and fungus used; 

and optimisation of these parameters will influence the enzyme activity 

achieved (Shanmugam et al., 2008). Therefore, once it was established 

that cellulases could be produced using the underutilised crops, the most 

suitable crop for cellulase production (Napier in this case) was used for 

further optimisation, looking at the effect of fungus used, incubation 

period, and addition of nutrients on cellulase activity. Based on previous 

optimisation work performed by fellow PhD student, Dr Nattha Pensupa, 

some conditions, such as moisture content, pH and temperature, were 

kept constant. However, a slightly lower moisture content was used than 

that used by Pensupa et al. (2013), and this was kept constant at 80 % 

w/v. While Pensupa et al. (2013) found a moisture content of 88.8 % w/v 

to be best for cellulase production using A. niger on wheat straw, many 

other researchers found lower moisture contents to be better performing 

(Lee et al., 2011; Bansal et al., 2012; Narra et al., 2012; Delabona et al., 

2013). Although SSF is operated under low moisture conditions, if the 

moisture content is too low, this can result in inefficient heat exchange, 

oxygen transfer and dispersal of nutrients throughout the culture (Pandey, 

2003; Shahrim et al., 2008). These conditions ultimately affect the fungal 

growth and therefore reduce the enzyme activity. On the other hand, if the 

moisture content is too high the fungal growth and enzyme production can 

also be negatively affected as the increased water could block spaces in 
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the material structure, resulting in reduced diffusion of gases (oxygen) and 

solutes (Satyanarayana & Johri, 2005; Shahrim et al., 2008). The method 

of blending designed by Pensupa et al. (2013) was also used during 

enzyme extraction, as they showed that blending wheat straw mash before 

mixing resulted in a 71% increase in the cellulase activity, compared with 

just mixing on a magnetic stirrer. 

During the optimisation process, the incubation period was examined to 

determine if this had an effect on cellulase production. A broad range of 

incubation periods have previously been studied, ranging from 7 – 150 

days (Xu et al., 2010; Zeng et al., 2011). However, in this research a 

relatively short incubation period was chosen as this is preferred 

commercially since it is more cost effective. Using the Napier as a 

substrate, the optimum incubation period for cellulase production was five 

days, after which the production plateaued. This slowing of cellulase 

production could have been due to reduction, and potentially depletion, of 

the cellulose content, or the nutrients added could have been depleted by 

the fungus (Singh et al., 2011). Alternately, since the cellulose was being 

broken down into glucose, the accumulation of glucose could have 

inhibited the synthesis of cellulases due to catabolite repression (Hanif et 

al., 2004). Another potential reason, as described by Couri et al. (2000), 

could be the production of protease enzymes by the fungus, which would 

hydrolyse the cellulases, leading to reduced activity.  

In order to grow during the fermentation process (solid-state or 

submerged), the fungus not only requires a carbon source, but also a 

nitrogen source and the necessary minerals/trace elements needed for 

growth. The nitrogen source and the composition of the minerals, as well 

as the concentrations needed for both, will be dependent on the carbon 

source used, in this case the underutilised crops, as well as on the 
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microorganism used. A number of different nitrogen sources, both organic 

and inorganic, could be used and their effects on cellulase activity have 

been studied by various researchers (Hanif et al., 2004; Kachlishvili et al., 

2006; Maeda et al., 2010; Azzaz et al., 2012). Several reports have also 

suggested that the addition of starch to the fermentation medium 

improved fungal growth and induced the expression of cellulolytic 

enzymes, which would result in increased enzyme activity (Liang et al., 

2012; Inoue et al., 2013; Khokhari et al., 2013).  

When starch, yeast extract (as a nitrogen source) and minerals were 

added to Napier, there was a significant increase in the cellulase activity 

by A. niger, when compared with the baseline conditions, corresponding to 

an increase in cellulase activity of up to 81.2%. Although the minerals 

content of Napier was not analysed, the protein content of Napier was only 

8%, and this was similar to results reported in the literature (Reddy et al., 

2012; Mohammed et al., 2015). Therefore, it would be expected that the 

addition of protein to the Napier would result in an increase in cellulase 

activity. However, it was found that the addition of only starch or YE 

separately did not significantly increase the cellulase activities from the 

baseline conditions in this research (Figure 5.3). Although, when they were 

added together with MSI, they did have a positive effect on the cellulase 

activity. This was inferred as the addition of all three nutrients resulted in 

a significantly higher cellulase activity when compared with the effect of 

the addition of MSI only. Additionally, when comparing the addition of two 

of the three nutrients, the addition of just starch and YE did not 

significantly increase the cellulase activity from baseline conditions (Figure 

5.4). This was in contrast to results reported by Pensupa et al. (2013) who 

found that the addition of starch and YE to wheat straw significantly 

increased the cellulase activity by A. niger to 18.6 ± 1.64 U/g after five 
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days of incubation, when compared with baseline conditions (9.515 ± 0.54 

U/g) and this may be due to the different substrates being employed in 

each case. However, although the addition of starch and YE did not 

significantly increase the cellulase activity in this research, the addition of 

all three nutrients resulted in a significantly higher cellulase activity than 

the experiments with just the addition of two of the three nutrients.   

Although the optimisation process had resulted in a significant increase in 

the cellulase activity achieved using Napier as a substrate, it was uncertain 

whether the same impact would occur with the other underutilised crops. 

When screened again under the optimised conditions, a significant increase 

in the cellulase activity was achieved for all the crops, except Leucaena 

and Sago, which showed no significant changes. These results indicate that 

the addition of starch, YE and minerals was important for the production of 

cellulases by A. niger in most of the crops. However, although significant 

increases were achieved, a range in cellulase activity was still seen. As 

previously mentioned, the cellulase production under the baseline 

conditions for oil palm fronds and Nipa fronds was the lowest, and this 

could have been due to structure of, and interactions between, the 

cellulose, hemicellulose and lignin fractions, or due to a lack of nutrients. 

The addition of nutrients to these crops did result in a significant increase 

in cellulase production, indicating that nutrients could have been lacking in 

these crops. Since the protein content of both crops was rather low, with 

similar values being reported in the literature, this could make sense 

(Tamunaidu & Saka, 2011; Hong et al., 2012). However, the cellulase 

activity achieved under the optimised conditions was still much higher for 

Napier, indicating that Napier could still be better suited to digestion by A. 

niger than oil palm fronds and Nipa fronds. Another factor that could be 

considered is that the lower cellulase activity could be due to different 
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nutrients being needed for these crops, since conditions were optimised 

using Napier.  

The cellulase activity obtained with the use of Leucaena under baseline 

conditions was very low (around 2.5 FPU/g) and the addition of nutrients 

to Leucaena had no effect on the cellulase activity. Since the addition of 

nutrients had a positive effect on cellulase activity in all the other crops 

(except Sago hampas as it was assumed that the fungus was utilising the 

starch), one would assume the same would be true for Leucaena. 

However, this may not have been the case for a couple reasons. The 

protein content of Leucaena was significantly higher than all other crops 

and very high in general at 30% (w/w), and this corresponded with data 

from the literature (Ghosh & Bandyopadhyay, 2007; Xuan et al., 2013). 

This high protein content would mean that the fungus already had a supply 

of some nutrients for growth and enzyme production, resulting in little 

difference between the cellulase activity obtained under baseline 

conditions and optimum conditions. However, although this high level of 

protein may explain why there were no differences in cellulase activity, it 

does not explain why the cellulase activity was very low in general.  

Leucaena is used as animal fodder as it has a rich palatable protein in the 

leaves. However, high levels of mimosine (non-protein amino acid) limits 

its use as this can be toxic to animals (Ghosh & Bandyopadhyay, 2007). 

Mimosine is found in all parts of the Leucaena plant; however, is greatest 

in the leaves (Xuan et al., 2006). In the plant, mimosine is used as an 

allelochemical, preventing the growth of other plants (Xuan et al., 2013). 

Furthermore, several studies have also shown that mimosine negatively 

affects the growth of certain bacteria and fungi (Murugesan & Radha, 

1994; Anitha et al., 2005; Xuan et al., 2013). Therefore, the low cellulase 

activity obtained with the use of Leucaena during SSF could be due to the 
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composition of the cellulose, hemicellulose and lignin fractions, or it could 

be because the mimosine was inhibiting the growth of the fungus, 

resulting in a low cellulase activity. During SmF, it was interesting to note 

however that the cellulase activity achieved using Leucaena increased 

significantly with the addition of nutrients, achieving an activity similar to 

that of Bambara and Napier (which achieved the highest cellulase activity).  

The results discussed so far showed that cellulase activity could be 

achieved with the various underutilised crops when using A. niger as the 

microorganism. When screened using the microorganism Trichoderma 

reesei, it was found that cellulase activity was also achieved using all the 

crops as substrates. However, as seen with the A. niger, there were 

differences in the cellulase activities achieved. When comparing the two 

fungi, A. niger generally performed better than T. reesei, resulting in 

higher cellulase activities. Similar results were found by Lee, Darah and 

Ibrahim (2011), who reported that the cellulase production by A. niger was 

35.3% higher compared to T. reesei when incubated on palm kernel cake 

and sugarcane bagasse at 1:1 (w/w) ratio over five to six days SSF 

incubation.  

However, what was more interesting was that the mineral solutions used 

(MSI or MSII) had a different effect on cellulase activity, depending on the 

fungus used, suggesting the fungi require different minerals and 

potentially in different quantities. The use of MSI resulted in better results 

with A. niger and MSII resulted in better results with T. reesei. Many 

researchers have investigated the effects of different minerals on cellulase 

production and have also reported significant effects; although, depending 

on the strain and substrate used, these have varied (Muniswaran et al., 

1994; Andrade et al., 2011; Lee et al., 2011; dos Reis et al., 2015).  
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The use of the two mineral solutions had the greatest impact on T. reesei, 

with the addition of MSI to the underutilised crops significantly hampering 

cellulase production. However, since T. reesei performed well with the 

addition of MSII, the differences in the composition of MSI and MSII (see 

Section 3.4 for composition) could indicate a few things about the minerals 

required by T. reesei for cellulase production. The concentration of the 

salts added to each mineral solution varied greatly, with MSII containing 

much higher concentrations than MSI. This could indicate that T. reesei 

required, or could tolerate, a much higher salt concentration in general. In 

terms of the actual minerals added, there were differences between MSI 

and MSII. Potassium chloride was missing from MSI. Since potassium ions 

were added from the addition of potassium dihydrogen phosphate, this 

could suggest that T. reesei required chloride ions for enzyme production. 

On the other hand, as reported by Sinegani and Emtiazi (2006), the 

presence of the ammonium ions in MSI could have inhibited cellulase 

production in T. reesei. Finally, the lack of cellulase activity could also be 

due to insufficient magnesium ions being present, as the concentration 

was reduced from 26.0 g magnesium sulphate heptahydrate in MSII to 

only 0.2 g in MSI. It has been shown that the absence of magnesium can 

result in slow growth and a lack of cellulase production; however, at higher 

concentrations, magnesium can show some inhibitory effect on production 

(Mandels & Reese, 1957). The low levels of magnesium ions in MSI could 

have resulted in the slow growth and lack of cellulase production in T. 

reesei; however, the higher concentrations did not appear to inhibit 

cellulase production. On the other hand, the higher concentrations in MSII 

could have inhibited cellulase production in A. niger, and several other 

reports also indicated that higher concentrations of magnesium ions 

impaired cellulase activity (Gautam et al., 2010; dos Reis et al., 2015).  
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Overall, the underutilised crop that resulted in the highest cellulase activity 

was Napier grass. With the addition of starch, YE and minerals to the 

Napier grass, the best activity was achieved during SSF using A. niger 

spores (up to 31 FPU/g). This was higher than activities achieved using T. 

reesei during SSF or activities achieved using A. niger during SmF. These 

results are comparable with other cellulase activities reported in the 

literature, and better than cellulase activities reported by Pensupa et al. 

(2013), who achieved 24.0 ± 1.76 FPU/g using A. niger on wheat straw 

under optimised conditions. Therefore, the results obtained in this research 

show promise for the biological production of cellulases and further 

optimisation could potentially achieve higher activity levels. Furthermore, 

the use of these cellulase enzymes for the on-site hydrolysis of Napier into 

fermentable sugars could be possible.   

7.1.3 Production of glucoamylases and fermentable sugars 

Another main objective of this research was to investigate whether the 

Sago hampas could be used as a substrate for the production of 

glucoamylase enzymes during SSF, using Aspergillus awamori. The Sago 

hampas was chosen since it had a high starch content. However, 

glucoamylase activity could not be detected in the fungal filtrate recovered 

from the SSF, even though reducing sugars were present in the fungal 

filtrate. Based on experiments performed, these sugars were produced 

during the SSF process and not during the autoclaving or extraction 

process, and it was assumed they were a result of the fungus hydrolysing 

the starch.  

Although no glucoamylase activity was recorded in this research, 

glucoamylase activity by A. awamori during SSF has been reported in the 

literature, using a range of substrates such as wheat straw, wheat bran, 

corn cobs, sugarcane bagasse, mustard cake, and potato starch. The 
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glucoamylase activity recorded ranged from 2 – 24 U/mL or 21 – 64 U/g 

after two to four days of incubation, depending on values used for 

reporting (Bertolin et al., 2003; Du et al., 2008; Pavezzi et al., 2008; Ali et 

al., 2014). Glucoamylase activity has also been reported using Sago 

hampas as a substrate during SSF and various fungi (Trichoderma sp. 

KUPM0001, Myceliophthora thermophila and Chalara sp.), with activity 

ranging from 2 – 11 U/mL after two to four days of incubation 

(Vikineswary et al., 1996; Shahrim et al., 2008). 

No reports could be found using Sago hampas as a substrate and A. 

awamori as the fungus in SSF. However, since glucoamylase activity was 

detected when A. awamori was grown on various other substrates, and 

when Sago hampas was used as a substrate with other microorganisms, it 

was assumed that A. awamori would be able to produce glucoamylases 

when incubated on Sago hampas. Therefore, the lack of glucoamylase 

activity in this research was puzzling and several potential reasons for this 

lack of activity were investigated – including determination of whether the 

glucoamylase assay was working correctly, whether the background level 

of sugars in the glucoamylase assay solution was saturating the solution, 

whether the enzyme was being deactivated by high sugars in the fungal 

filtrate, and finally whether glucoamylase activity could be detected earlier 

in the SSF process.  

Since the assay procedure was found to be adequate and was not 

saturated with reducing sugars, the lack of glucoamylase activity could 

have been due to two possibilities. The level of reducing sugars in the 

fungal filtrate could have been so high that even when diluted in the assay 

this still resulted in product inhibition of the enzyme. However, this was 

not the case as no glucoamylase activity was observed in early SSF 

filtrates (with very low sugar levels), or after dialysis to remove the sugar. 
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Even though no glucoamylase activity was detected earlier in the SSF 

process, the concentration of sugars in the fungal filtrate continued to 

increase with incubation time. Therefore, the most likely explanation for 

the lack of glucoamylase activity is that the levels of glucose in the SSF 

were sufficient to repress the synthesis of the glucoamylase in the first 

place. The fungus was thus able to keep a very tight control on the 

synthesis, and the enzyme never accumulated to levels high enough to be 

detected by the assay. 

Why other research groups have managed to get glucoamylase activity in 

similar experiments is difficult to explain. Where other fungi have been 

used this may be that these have a less effective repression system and 

make higher levels of the enzyme even in the presence of glucose. Since 

no glucoamylases activity could be detected, the focus of the research 

shifted to the production and extraction of glucose directly during the SSF 

process.  

To do this, the Sago hampas was used as a substrate during SSF with A. 

awamori, and the results showed that the production and extraction of 

glucose directly from the SSF process was possible. A continuous SSF over 

21 days of incubation showed that the highest glucose achievable was 

0.080 ± 0.0002 g/g starch. A novel process where the mash was 

periodically washed throughout the incubation period resulted in a 

significant increase in the glucose accumulated during the SSF process 

(0.278 ± 0.006 g/g starch). Furthermore, this resulted in a greater 

utilisation of starch, and a more efficient conversion of starch to glucose 

(29.1 % yield for SSF with washing versus only 10.1 % yield for 

continuous SSF).  

The significant increase in glucose recovered from the washing 

experiments versus the continuous SSF experiment could be explained by 
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either product inhibition or catabolite repression of the enzymes involved 

in starch mobilisation. In the continuous SSF experiments, the glucose 

concentration in the fungal filtrate increased with time up to a plateau at 

around day 12, with oscillations around this general trend. A similar trend 

has been shown by other researchers who reported that glucoamylase 

activity is fungal growth-related and fluctuates during SSF (Vikineswary et 

al., 1996; Sivaramakrishnan et al., 2007). This fluctuation in enzyme 

activity could be due to enzyme inhibition by the reducing sugars produced 

during hydrolysis, or it is also possible that this is due to catabolite 

repression. The significantly higher glucose concentration recovered from 

the SSF with washing experiments would then simply arise from the 

continuous removal of the sugars, thus negating any product inhibition or 

catabolite repression effects (Kumoro et al., 2008). Furthermore, removal 

of the glucose from the culture medium not only meant that the fungus 

was unable to consume the glucose; but it also meant the food source for 

the fungus was removed, forcing it to continue hydrolysing the starch into 

glucose to meet its energy demands. 

What was interesting from these initial washing experiments was that the 

most efficient conversion of starch to glucose was seen with the SSF 

experiments with one-day washing, as these experiments achieved the 

same amount of accumulated glucose, but had better starch utilisation. In 

further optimisation experiments, two findings were worth noting – 

nutrients (composition and timing of addition) and spore concentration 

used had a significant effect on the glucose accumulated during the SSF.  

As previously reported, the composition and the concentration of minerals 

and nitrogen added to the culture medium is important, and can affect 

both amylolytic enzyme production and glucose consumption (Mandels & 

Reese, 1957; Bertolin et al., 2003; Sinegani & Emtiazi, 2006; Gautam et 
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al., 2010; dos Reis et al., 2015). Since SSF is performed in the absence of 

free water, even minor variations in the C/P ratio and C/N ratio can affect 

fungal growth and enzyme production. A lack of minerals can result in slow 

growth and lack of enzyme production. On the other hand, ample nutrients 

can result in faster growth and enzyme production, which leads to a higher 

glucose production, but also a higher glucose consumption.  

Most experiments performed in this research used the addition of YE as a 

nitrogen source and this appeared to be beneficial. Several reports have 

shown conflicting views on the effect of YE on microbial growth and 

enzyme production. Sivaramakrishnan et al. (2007) reported that the 

addition of nitrogen sources, either in organic form (such as YE) or in 

inorganic form (such as ammonium sulphate), actually resulted in lower 

production of amylolytic enzymes, which in turn would result in lower 

glucose production. In their research (performed on wheat bran using A. 

oryzae), the addition of YE resulted in the lowest enzyme production. On 

the other hand, Hamilton, Kelly and Fogarty (1999) reported that the 

addition of YE to starch or lactose resulted in the best production of starch 

degrading enzymes by Bacillus sp. IMD 435. These conflicting results 

suggest that the effect of nutrients (in this case nitrogen source) is quite 

complex and is probably affected by both the substrate used as well as the 

microorganism.  

In this research, the addition of YE had a positive effect on glucose 

production by A. awamori from the Sago hampas, and therefore probably 

enzyme production. However, optimisation of the nitrogen source used 

showed that the addition of fungal extract (FE) instead of YE resulted in a 

significantly higher glucose production thus FE may be more suitable, as a 

nitrogen source for the A. awamori, than YE. The fungal extract consisted 

of dried pellet remaining from previous washing experiments, which was 
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milled and added in the same quantities as the YE. The FE therefore, may 

have contained some residual nutrients and starch that the fungus could 

utilise. Alternately, the fungus in the previous experiments had assimilated 

the nutrients added (YE and MSI) into more usable nutrients for itself, 

making the nutrients in the FE more readily available for the fungus and in 

a form that is specific to the metabolic needs of A. awamori. Overall, these 

results show that the source of nutrients added to the Sago hampas is 

important and further optimisation of nutrients could potentially result in 

additional increases in glucose recovered.  

The spore concentration used for inoculation also had a significant effect 

on the glucose accumulated and the addition of a spore concentration ten-

times greater achieved a significant increase in glucose accumulated. One 

might predict that at the higher spore concentration the initial biomass 

would be greater. Thus, since amylolytic enzyme production is growth 

related, the larger initial biomass would result in a higher enzyme activity 

and therefore higher glucose production. However, this could also lead to 

increased glucose utilisation. Eventually one might also predict that the 

fungal masses in each case could converge as nutrient depletion occurred 

for the higher spore loading and the lower spore loading was catching up. 

However, in these experiments this did not occur in the incubation period 

examined. As a result, the higher spore loading resulted in an increase in 

glucose recovery and did not show any detrimental effects to this with 

time.  

Although the addition of FE (instead of YE) and the addition of increased 

spores resulted in a higher overall glucose accumulation, it was observed 

that the glucose produced between washes followed a similar pattern for 

all experiments performed, regardless of optimisation (day, nutrients or 

spore concentration). For all buffer washed experiments, the glucose 
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recovered was low on day one, maximal on days two and three, and then 

it declined in subsequent washes.  

The small amount of glucose recovered from wash one was likely due to 

the fungus needing time to ‘acclimatise’ to the substrate and turn on the 

genes encoding starch degrading enzymes. The production of the starch 

hydrolysing enzymes not only requires the absence of inhibitors, but it also 

requires the presence of inducers (Ghosh et al., 1990; Sivaramakrishnan 

et al., 2007). This process of enzyme production and starch degradation 

takes some time; delaying the production of glucose. After the fungus had 

become acclimatised to its substrate, it most likely entered a phase of 

rapid growth and enzyme production, resulting in a huge increase in 

glucose recovered. One would assume that the starch degrading enzymes 

were still present in the culture medium, and were still active. Assuming 

this, the starch would be hydrolysed to glucose more quickly, resulting in a 

higher concentration of glucose recovered. Furthermore, since the glucose 

was suddenly removed from the culture medium (due to washing in wash 

one), the fungus needed to produce glucose quickly to meet its higher 

glucose demands, resulting in a higher accumulation of glucose in wash 

two.  

After washes two and three, some inhibition of growth occurred and this 

could have been caused by several factors, such as substrate depletion, 

nutrient depletion or lack of other nutrients, lack of oxygen, or a decrease 

in spore viability. At the end of all the washing experiments there was still 

some starch remaining. However, during hydrolysis of the starch, the more 

easily digested starch would be broken down first, leaving the less 

digestible starch (Polakovic & Bryjak, 2004). As a result, this could take 

longer to hydrolyse, which may explain why the glucose levels decreased 

with subsequent washes. Nutrient depletion or a lack of other nutrients 
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could also have resulted in a decrease in glucose production as it could 

cause a decrease in the production of enzymes or in fungal growth. 

Potentially, reduced gas volume, as well as reduced gaseous diffusion, due 

to less viscosity and structure of the Sago hampas, could have resulted in 

low oxygen transfer. Oxygen transfer during SSF is a major concern and 

for aerobic fungi, like A. awamori, depletion of oxygen can limit growth 

and cause a decrease in metabolite production (Rahardjo et al., 2005; 

Sivaramakrishnan et al., 2007). Finally, the fungal biomass could have 

been decreasing with each wash, leading to a decrease in the glucose 

recovered with each wash. In order to get a better understanding of what 

was happening between washes, the starch, protein and nutrient levels, as 

well as the glucose and other reducing sugar concentrations, would need 

to be analysed after each wash. The glucosamine levels could also be 

analysed and used as an indication of biomass concentration, since it has 

been shown to have a direct correlation with fungal cell growth (Hsieh et 

al., 2007).  

Overall, the highest starch saccharification yield achieved with the SSF 

with one-day washing was 46.53 %, and this could potentially be 

increased with further optimisation. In the literature, no reports could be 

found using a similar washing approach for glucose production. Most 

researchers reported the use of Sago hampas as a substrate for the 

production of glucose using commercial enzymes. However, this research 

obtained similar conversion yields as some of these reports using the 

washing approach. For example, Awg-Adeni et al. (2013) reported a 52.72 

% yield through a three cycle saccharification process using the 

commercial enzyme, dextrozyme (Novozyme, Denmark), which was a 

mixture of glucoamylase and pullulanase, suggesting a high degree of 

saccharification.  
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Furthermore, from their findings, Awg-Adeni et al. (2013) reported that 

the hydrolysate collected during all stages of Sago hampas starch 

hydrolysis was composed of a mixture of glucose, dextrin, maltose and 

maltotriose, with around 85 – 90% being glucose. This mixture of 

substances could have been due to partial hydrolysis of the starch or it 

could have been due to the fact that the hydrolysis of malto-

oligosaccharides to glucose is reversible. Therefore, if the glucose 

concentrations in the culture medium are high this can occur, leading to an 

equilibrium constant with a certain concentration of malto-oligosaccharides 

(Polakovic & Bryjak, 2004; Kumoro et al., 2008). Since only the glucose 

concentration was measured in this research and not the total reducing 

sugars concentration, it is hard to know exactly how many intermediary 

substances had not yet been converted to glucose, and if this would 

influence the overall glucose accumulated. 

The fact that the glucose conversion yields achieved so far in this research 

are also comparable with yields achieved using commercial enzymes is 

promising as the use of commercial enzymes can be expensive. Although 

commercial amylases are cheaper and potentially have a higher efficacy 

than commercial cellulases, the ability to produce fermentable sugars 

directly from the Sago hampas using fungi could be advantageous. 

A few reports were found where Sago hampas was used as a substrate for 

the production of fungal enzymes and/or reducing sugars. Linggang et al. 

(2012) reported the production of crude cellulases from A. fumigatus UPM2 

using Sago hampas as a substrate. They then used the crude cellulases in 

the hydrolysis of 5 % (w/v) Sago hampas, producing 20.77 g/L reducing 

sugars, resulting in an overall hydrolysis percentage of 73%. Shahrim et 

al. (2008) reported glucoamylase activity using Trichoderma sp. 

KUPM0001, and obtained a maximum reducing sugar concentration of 46 
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g/L after a five day SSF. This corresponded to 0.66 g reducing sugars/g 

starch. In this research, using the optimised washing method, a total of 44 

g/L glucose was recovered and this corresponded to 0.52 g glucose/g 

starch. Although only the glucose was measured in this research, and not 

the total reducing sugars as done in the reports above, the glucose 

concentrations achieved so far in this research are still comparable with 

other research performed.  

Feasibility of using the fermentable sugars in a fermentation to produce 

bioethanol or biochemicals would need to be assessed. However, if the 

glucose recovered from the washing procedure were fermented to 

bioethanol, theoretically 21.99 g/L ethanol could be produced (2.2 % w/v). 

Various bioethanol conversion yields have been reported, ranging up to 

93% (Kumoro et al., 2008; Awg-Adeni et al., 2013; Vincent et al., 2015). 

Since no pre-treatments (other than autoclaving) were used in this 

research, it is assumed that very few inhibitors would be present in the 

fermentation medium and therefore very high glucose to bioethanol 

conversion yields could be achieved in this research.  

7.2 CONCLUSIONS 

In this study a short-term SSF using soft-rot fungi was developed for the 

production of cellulases and a glucose-rich hydrolysate, using underutilised 

crops as substrates. Several underutilised crops were investigated, 

including Bambara, Leucaena, Napier grass, Nipa palm, Oil palm, and Sago 

hampas.  

It was shown that all crops tested could be used as substrates for the 

production of cellulases during SSF and SmF, although a large range in 

cellulase activities was observed. The highest cellulase activity was 

achieved using A. niger in a five day SSF with the addition of nutrients to 
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the crops. The use of Napier as a substrate resulted in the highest 

cellulase activity, reaching 31.02 ± 1.01 FPU/g after five days of 

incubation. 

Sago hampas was further studied to determine if it could be used as a 

substrate during SSF for the production of glucoamylases, using the soft-

rot fungus A. awamori. No glucoamylases could be detected in the 

recovered fungal filtrate during the glucoamylase assay; however, 

reducing sugars could be detected and this increased with incubation 

period. Since no glucoamylases activity was detected, the focus of the 

research shifted to the production and extraction of glucose directly during 

the SSF process. It was found that the highest glucose recovery was 

obtained under a one-day washing cycle, with the use of 40.0 x 106 

spores/g and the addition of nutrients. This resulted in 43.79 ± 2.01 g/L 

glucose being accumulated over the six day SSF, giving a 46.5% 

saccharification yield.  

Pre-treatments shown in this work will enable the creation of novel 

biorefining processes, using the cellulase enzymes on-site to hydrolyse the 

underutilised crops to a sugar-rich hydrolysate. This, as well as the sugar-

rich filtrate produced with the Sago hampas, could then be used in the 

production of biofuels and/or biochemicals. 

7.3 FUTURE WORK 

The cellulases produced by Aspergillus niger during the five day SSF 

incubation, using Napier grass as a substrate were in quantities 

comparable with literature results obtained for other crops. For future work 

the feasibility of using these enzymes for onsite hydrolysis of Napier grass 

to a fermentable-sugar rich solution could be investigated to determine the 

efficacy of such enzymes in biomass conversion. Optimisation of the 

hydrolysis step, including enzyme and substrate loading rates, time, 
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temperature and pH, would be required to ensure maximum sugar 

production. The sugar production from hydrolysis of untreated Napier 

(besides autoclaving for sterilisation) could be compared with Napier that 

has been modified using other pre-treatments, such as acid-soaking. The 

sugar-rich hydrolysate produced from the hydrolysis of the Napier grass 

(both untreated and treated) could be fermented into bioethanol or 

biochemicals to determine the conversion efficiency of fermentable sugars.  

The use of SSF for the production of cellulases could be further optimised, 

looking at several aspects. Firstly, A. niger could be co-cultured with T. 

reesei during SSF as the level of individual cellulase enzymes in the 

recovered filtrate can affect the total cellulase activity, which will 

ultimately affect the hydrolysis step. Since A. niger is known to produce 

high levels of β-glucosidases and endoglucanases, but low levels of 

exoglucanases, while T. reesei produces high amounts of endoglucanases 

and exoglucanases but a lower level of β-glucosidase (Verardi et al., 

2012), combining the spores during SSF, could potentially result in a 

better cellulase activity obtained.  

This research showed that the addition of nutrients increased cellulase 

production significantly. However, the use of YE can be expensive and 

varies in form, therefore finding cheaper alternates for this could be 

investigated. One possibility could be the use of fungal extract (FE) 

obtained from pellets of previous SSF experiments, as this resulted in a 

significant increase in glucose production over the addition of YE in the 

Sago washing experiments. Also the effect of initial moisture content of 

the Napier could be examined as this can greatly affect cellulase activity.  

The glucose-rich solution recovered from the SSF washing experiments 

using Sago hampas could be further used in a fermentation to produce 

bioethanol or biochemicals, with optimisation of the process being 
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performed. To improve glucose recovered from the SSF, further 

optimisation of the SSF washing experiments could be performed, such as 

looking at the use of fungal extract with the addition of a higher spore 

concentration. Since it was discovered that FE performed better as a 

nitrogen source than YE, it would be interesting to determine if the 

addition of FE to the Sago hampas as well as the addition of a higher spore 

concentration would result in a further accumulation of glucose. 

Furthermore, it would be beneficial to determine the ideal spore 

concentration required for maximal glucose accumulation. Although 

increased spore concentration leads to increased glucose accumulation, at 

some point the culture can become over-crowded, leading to competition 

for space, oxygen and nutrients which can have a negative effect on 

microbial activity and ultimately glucose produced. Knowing the 

concentration at which this occurs would be important. The addition of new 

spores and/or nutrients later in the SSF (such as after wash three when 

glucose recovery began to decline) could also be investigated to determine 

if these are possible causes for the drop in glucose production. Extraction 

methods used for the recovery of the glucose could be analysed to 

determine if further improvements could be made to the amount of 

glucose recovered from the washes.  

Although glucoamylases could not be detected in the recovered filtrate, 

they were being produced, since the starch was being broken down. This 

was probably due to the fact the enzymes were being turned on and off. 

Therefore, genetically engineering the fungus to keep the enzymes always 

turned on could result in higher production of amylases, and therefore 

higher glucose yields achieved during the washing cycles. Furthermore, 

strategies to reduce the consumption of glucose by the fungus could be 

investigated, as this probably reduced the glucose yields achieved.  
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Finally, the pellet that was remaining after the SSF washing experiments, 

which contained a much lower starch concentration, could be analysed for 

cellulose and hemicellulose and then either re-used as a substrate for the 

SSF using A. niger to determine if cellulases could be produced. 

Alternately, the cellulases produced using Napier grass during the SSF with 

A. niger could be used to hydrolyse the remaining Sago hampas into 

fermentable sugars, increasing the yield of glucose achieved.  
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