Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate

Soukoulis, Christos, Behboudi-Jobbehdar, Solmaz, Macnaughtan, William, Parmenter, Christopher D.J. and Fisk, Ian D. (2017) Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids . ISSN 1873-7137

Full text not available from this repository.

Abstract

The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25°C), in descending order, was κ-CAR/LBG>HSA>GEL>LSA=PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4°C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6 to 4.3-fold increase at 25°C. Furthermore probiotic films based on HSA/WPC and κ-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/855553
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Biosciences > Division of Food Sciences
Identification Number: https://doi.org/10.1016/j.foodhyd.2017.04.014
Depositing User: Fisk, Dr Ian
Date Deposited: 13 Apr 2017 12:57
Last Modified: 04 May 2020 18:41
URI: https://eprints.nottingham.ac.uk/id/eprint/41913

Actions (Archive Staff Only)

Edit View Edit View