Maalouf WE, Mincheva MN, Campbell BK & Hardy ICW 2014 Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility 101:1321-1325

Running Title:
Gender Bias after Assisted Conception

Main Title:
Effects of Assisted Reproductive Technologies (ART) on Human Sex Ratio at Birth

Walid E. Maalouf, PhD¹
Mina N. Mincheva, MMedSc¹
Bruce K. Campbell, DSc¹
Ian C.W. Hardy, PhD²

¹Division of Child Health, Obstetrics & Gynaecology, the University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK, and ²School of Biosciences, the University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK

Correspondence to:
Dr Walid E Maalouf
Tel: 0115 82 30699
Fax: 0115 82 30651
Email: walid.maalouf@nottingham.ac.uk

Capsule
We analyse the gender of over 100,000 UK babies born after assisted reproduction treatment and we find that the type of ART treatment used can affect the sex ratio.
Abstract

Objective: To investigate the effect of assisted reproductive technology (ART) treatments on the sex ratio of babies born.

Design: Direct effects of assisted conception through retrospective data analysis on the progeny sex ratio of treated women in the UK.

Setting: The study uses the anonymised register of the Human Fertilisation and Embryology Authority (HFEA).

Patients: 106,066 babies of known gender born to 76,994 treated mothers and 85,511 treatment cycles between 2000 and 2010 in the UK.

Interventions: Intra-Uterine Insemination (IUI), In Vitro Fertilization (IVF) or Intra-Cytoplasmic Sperm Injection (ICSI)

Main Outcome Measures: Sex ratio of babies born.

Results: IUI, IVF and ICSI lead to different sex ratios, highest after (proportion male = mean 0.521 ± C.I. 0.0056) and lowest under ICSI cleaving stage embryo transfer (0.493 ± 0.0031). We also find that, for both ISCI and IVF, transferring embryos at a later stage (blastocyst) results in around 5% more males than after early cleavage stage embryo transfer.
Conclusions: As the cumulative number of IVF babies born is increasing significantly in Britain and elsewhere, more research is needed into the causes of gender bias after ART and into the public health impact of such gender bias of offspring born observed on the rest of the population.

Keywords Sex ratio, gender bias, embryo, infertility, assisted conception, ART births, IUI, IVF, ICSI
Introduction

The prevalence of infertility worldwide and in European countries is estimated to affect around one in seven couples (1). The number of babies born from assisted conception, assisted reproductive technologies (ART), is increasing rapidly: their numbers have quadrupled in the last twenty years, and, to date, approximately 5 million babies worldwide have been born following ART (2, 3). In the UK, the prevalence of infertility is still higher with one in six couples reported to experience infertility problems (4), and ART births constitute 2-2.5% of all births in the country (5, 6). Despite these numbers, the impact of ART treatments on the general human population is poorly understood.

There are three commonly used methods of ART. Intra-Uterine Insemination (IUI) is generally the first line of infertility treatment (1) before proceeding to more invasive procedures such as In Vitro Fertilization (IVF) and Intra-Cytoplasmic Sperm Injection (ICSI) (7). IUI requires a catheter to deposit an appropriate number of washed and resuspended sperm directly into the uterus, thereafter the spermatozoa swim through fallopian tubes towards the ovulated egg (or eggs if ovarian stimulation drugs are used). During IVF or ICSI, cumulus oocyte complexes are aspirated form the ovaries after an ovarian stimulation regimen. During IVF, oocytes are incubated with a known concentration of motile spermatozoa. In contrast, during ICSI, the operator selects a single spermatozoon for direct injection into an egg that has been stripped of its cumulus cells using the hyaluronidase enzyme. IVF or ICSI embryos can then be cultured up to 6 days in vitro and transferred back to the patient based on their number and morphology. Not only do these three ART methods differ technically, they may differentially affect the sex ratio at birth (8-11), with a general tendency for more males being produced.
compared to among naturally born offspring. The sex ratio at conception (primary sex ratio), defined according to the numbers of oocytes fertilized by X- or Y-bearing spermatozoa, is difficult to assess (12) and is thus usually unknown. In contrast, the secondary sex ratio, SSR, which may be defined as the proportion of live-born males out of all live births (13), is straightforward to assess and it is the SSR that most population censuses report in public databases (14-16). At reproductive age, sex ratio bias has the potential to generate substantial public health concerns (8, 12, 17), leading, for instance, to increased socially disruptive behaviour, transmission of sexually transmitted diseases and mental health problems (18-21).

Here we analyse the UK national clinical data for SSR of ART children born between 2006 and 2010 as published by the Human Fertilisation and Embryology Authority (HFEA) which regulates licensing and use of human gametes and embryos across the UK (22). Our main aim is to establish whether the SSR of children born in the UK is affected by the ART method used.

Materials and Methods

Sample data

The Human Fertilisation and Embryology Authority (HFEA) anonymised register was accessed for data published between 2000 and 2010. As the register is anonymised by the HFEA and released as a public document, no ethical approval was needed. The offspring born after 85,511 successful treatment cycles to mothers from across the United Kingdom, with a complete dataset on maternal age, ART method used (IUI, IVF or ICSI), number of eggs collected, number of embryos transferred, the day of embryo transfer
until live birth, were included in this study for analysis: 65,438 of the cycles produced single offspring, 19,595 produced twins, 474 produced triplets and 4 had quadruplets, giving 106,066 babies in total, each of known gender.

Our interest was in evaluating potential influences on the proportion of offspring that were male, i.e. the birth (secondary) sex ratio. The variables considered in this research were: ART procedure (IVF, ICSI or IUI, carried out in 46.00, 46.60 and 7.40% of cycles respectively), the mother’s age (range: 18-50 years overall with 55% of mothers aged <35 years and 80% <38 years), the numbers of previous IUI and IVF/ICSI cycles, whether or not gonadotropin stimulation was used and the year that treatment was carried out. For IVF and ICSI, were also evaluated effects of the day of embryo transfer (day 1-3 for early (cleaving) stage and day 4-7 for late (blastocyst) stage) and the number or embryos transferred.

Statistical analyses

The sex ratio of offspring produced from each successful treatment cycle was used as the response variable in statistical analyses with potential influences entered as discrete or continuous explanatory variables within generalized linear models, specifically logistic analyses (using the Genstat statistical package, version 15.1, VSN International, Hemel Hempstead, UK). A single analysis on the effects of the ART procedure with all variables was not possible because embryology data do not apply to the IUI procedure.

We used backward elimination procedures and aggregation of factor levels to obtain the parsimonious ‘minimal adequate model’ by model simplification (8, 23-25). We report the
percentage of deviance explained (\%Dev) as an approximate analogue of \(r^2 \). The assumption of quasi-binomially distributed errors (based on empirically estimated scale parameters) was adopted to reduce the probability of Type I errors occurring due to over-dispersion (23, 24). Because multiple successful cycles from the same mother (i.e. those mothers who successfully received further treatment in order to have subsequent children) were initially treated as independent observations, which can promote Type I errors, and because the anonymised nature of HFEA anonymised register prevented the entry of maternal identity as a random factor in a Generalized Linear Mixed Model (26), we repeated the analysis using the sub-set of data on only the first successful treatment cycle (n=76,994). As this generated the same conclusions as the full data analysis, we formally report results from the larger set of data.

The relative risk (RR, sex ratio after treatment/population sex ratio, REF NO: Sheskin DJ (2004) Handbook of parametric and nonparametric statistical procedures. 3rd ed. Boca Raton: Chapman & Hall /CRC) that each treatment group generated SSRs different to that of the general population was then calculated, from the full set of data, and reported with 95% confidence intervals (CI). All tests were two sided and \(P<0.05 \) was considered significant.

Results
There were significant sex ratio differences among ART treatment types but none of the other variables influenced the gender of babies born, nor were there significant interactions between any of the explanatory variables (Table 1). The sex ratios of offspring born to IUI, IVF and ICSI are shown separately on Figure 1 but sex ratios from
IVF and IUI did not differ significantly (aggregation of factor levels) \(F_{1,85508}=2.57 \), \(P=0.109 \). Data from ICSI could not be aggregated with either IUI \(F_{1,85508}=4.05 \), \(P=0.044 \) or IVF \(F_{1,85508}=54.53 \), \(P<0.0001 \): the overall result is thus due to significantly lower sex ratios (fewer males) being produced under ICSI than under the other treatment methods.

IVF and ICSI embryos were transferred between 1 and 7 days after oocyte aspiration and fertilisation, with the number of embryos transferred varying between 1 and 4. Sex ratios were uninfluenced by the number of embryos transferred but the ratio of male births was higher when embryo transfer occurred at later stages of development and, as above, under IVF compared to ICSI (Figure 2).

The relative risk of each ART technique and stage of embryo transfer was compared to the SSR of the UK general population in 2011 (Figure 1) as published by the Office of National Statistics (6). The SSR of babies produced from all ART techniques combined was significantly lower from that of the general population \(RR= 0.9889 \), C.I. 0.9827 to 0.9952, \(P= 0.0005 \). Examining only IVF and ICSI showed that each generated significant risks of altering the SSR of offspring \(\text{IVF: } RR= 1.0158 \), C.I. 1.0070 to 1.0246, \(P= 0.0004 \); \(\text{ICSI: } RR= 0.9616 \), C.I. 0.9529 to 0.9705, \(P<0.0001 \), while IUI was not associated with significant risk of altered SSR (\(P= 0.493 \)).

Discussion

We have analysed for the first time the effects of assisted conception on the gender of the children born in the UK after treatment. We have found that the type of ART treatment...
carried out has been affecting the sex ratios of babies. Our results are similar to those from a previous population-based study on IVF and ICSI in the population of New Zealand (8), but we have analysed a significantly larger sample size, and additionally evaluated effects of IUI. IUI and IVF lead to male biased sex ratios while ICSI leads to female bias overall.

The SSR of babies born following IVF (52.05%) and ICSI (49.28%) did differ significantly from that of the general population of England and Wales, 51.27% (6). The apparent lack of risk of SSR alteration under IUI may reflect a genuine lack of effect or it could be due to the relatively small sample size recorded for IUI. Overall, these results are qualitatively consistent with previous observations of lower SSR after ICSI and higher SSR following IVF (8, 27-31).

For both ICSI and IVF, transferring embryos at a later stage of development (days 4-7) result in sex ratios up to 6% higher than after early transfer (days 1-3); this also accords with prior reports (8, 10, 30, 32). It is also notable that single embryo transfer at the blastocyst stage results in significantly higher SSR (RR= 1.056, C.I. 1.0129 to 1.1009, P= 0.0103), when (selective or elective) single embryo transfer is becoming the preferred treatment for all patients as it avoids complications associated with multiple pregnancies which presents a significant public health concern (33). The use of extended culture conditions during IVF and ICSI may favour selection of more male blastocysts for transfer as it is thought male embryos have greater pre-implantation developmental rates (8-11, 34). Evidence increasingly suggests that female and male embryos respond differently to in vitro culture conditions, due to the second X-chromosome present in females but not
males retaining activity to the morula stage (35). The genes controlling glucose uptake and metabolism (glucose-6-phosphate dehydrogenase, G6PD) and anti-oxidants (hypoxanthine phosphoribosyl transferase, HPRT) are located on the X-chromosome, and thus female embryos have been reported to have higher glucose uptake and detoxification of oxygen radicals (36, 37). These radicals also have a growth stimulant effect (38, 39), and are not only involved in mechanisms of cellular damage. Potentially, the double dose of enzyme activity can explain the delayed development of female embryos (35) perhaps resulting in male embryos being more able to withstand stressful in vitro conditions. However, not all studies have observed sexually differential development rates or associated effects on SSR (40-42).

One of the features common to all three techniques is the procedure used to separate motile spermatozoa with normal morphology from seminal plasma and other cells in the ejaculate (43, 44). A Cochrane systematic review of the two most common sperm preparation techniques has concluded that there is no difference in pregnancy rates after using swim-up or density gradient preparation (43). However, density gradient, which is the predominant method in the cohort of patients in our study, can lead to enrichment of Y-bearing spermatozoa (45-47), which could contribute towards increased sex ratios under IVF and IUI. IVF and IUI are closer to natural conception as the sperm compete for fertilization, whereas in ICSI the fertilizing spermatozoon is selected by the embryologist. A low SSR after ICSI has been attributed to male-factor infertility, since ICSI is the technique of choice in cases of semen quality deficit (30) and Y-bearing spermatozoa in infertile men may bear morphological changes which lead to selection bias under this technique (48). However, Luke et al. (2009) suggested iatrogenic mechanisms by which
ICSI biases sex ratio towards females, because decreased SSR was observed even in the study group with non-male factor infertility (31). Irrespective of the mechanisms involved, this and prior studies collectively indicate that infertility forms part of the panoply of medical conditions (e.g. (49)) that directly influence human sex ratios.

Conclusion
Irrespective of the cause leading to the deviation of SSR of babies born to ART procedures, our data and those of others, indicate a trend to produce more males, mainly after IVF and also after blastocyst-stage transfer in IVF and ICSI, and single embryo transfer. At the present time, ART births constitute a small proportion of all births (2-3%) and therefore it is not likely that a gender bias within that proportion will be a cause for concern. However, the impact of deviation in SSR should be considered for the future if the proportion of ART births in Human populations continues to rise, and this is particularly so given the trends for using more single embryo transfers and for transferring at the blastocyst-stage.
Author’s Role
W.E.M. conceived the project, analysed the data, interpreted the results, and wrote the manuscript. M.N.M. prepared and discussed the data. B.K.C. discussed reproductive physiology aspects. I.C.W.H. analysed the data and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Simon Gates, W.H. James and Adrian Pratt for help and discussion.
We dedicate this article to the memory of our colleague Professor Keith H. Campbell (1954-2012).

Funding
This study was supported by the University of Nottingham, and no competing interests to declare.

Details of Ethics
The data used in this study is from the patient anonymised patient register published by the HFEA and therefore no ethical approval was needed.

Conflict of Interest
The authors declare no competing interest.
References

33. HFEA. Multiple births and single embryo transfer review. In, 2013.

Table 1. Factors affecting sex ratios of offspring born following IUI, IVF or ICSI.
Results are from logistic Analysis of Covariance

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>Deviance</th>
<th>Mean Deviance</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART Treatment type (IUI, IVF or ICSI)</td>
<td>2</td>
<td>76.468</td>
<td>38.234</td>
<td>27.33</td>
<td><0.001</td>
</tr>
<tr>
<td>Mother’s age</td>
<td>5</td>
<td>8.348</td>
<td>1.670</td>
<td>1.19</td>
<td>0.309</td>
</tr>
<tr>
<td>Number of previous IUI cycles</td>
<td>1</td>
<td>0.603</td>
<td>0.603</td>
<td>0.43</td>
<td>0.511</td>
</tr>
<tr>
<td>Number of previous IVF/ICSI cycles</td>
<td>1</td>
<td>0.538</td>
<td>0.538</td>
<td>0.38</td>
<td>0.535</td>
</tr>
<tr>
<td>Gonadotropin Stimulation</td>
<td>1</td>
<td>0.046</td>
<td>0.046</td>
<td>0.03</td>
<td>0.856</td>
</tr>
<tr>
<td>Year of Treatment</td>
<td>1</td>
<td>1.698</td>
<td>1.698</td>
<td>1.21</td>
<td>0.270</td>
</tr>
<tr>
<td>ART Treatment type × Mother’s age</td>
<td>10</td>
<td>12.208</td>
<td>1.221</td>
<td>0.87</td>
<td>0.558</td>
</tr>
<tr>
<td>ART Treatment type × Previous IUI</td>
<td>2</td>
<td>1.287</td>
<td>0.643</td>
<td>0.46</td>
<td>0.631</td>
</tr>
<tr>
<td>ART Treatment type × Previous IVF/ICSI</td>
<td>2</td>
<td>0.396</td>
<td>0.198</td>
<td>0.14</td>
<td>0.868</td>
</tr>
<tr>
<td>ART Treatment type × Stimulation</td>
<td>2</td>
<td>1.780</td>
<td>0.890</td>
<td>0.64</td>
<td>0.529</td>
</tr>
<tr>
<td>ART Treatment type × Year</td>
<td>2</td>
<td>1.237</td>
<td>0.618</td>
<td>0.44</td>
<td>0.643</td>
</tr>
<tr>
<td>Mother’s age × Previous IUI</td>
<td>5</td>
<td>1.679</td>
<td>0.336</td>
<td>0.24</td>
<td>0.945</td>
</tr>
<tr>
<td>Mother’s age × Previous IVF/ICSI</td>
<td>5</td>
<td>1.385</td>
<td>0.277</td>
<td>0.20</td>
<td>0.963</td>
</tr>
<tr>
<td>Mother’s age × Stimulation</td>
<td>5</td>
<td>8.221</td>
<td>1.644</td>
<td>1.18</td>
<td>0.318</td>
</tr>
<tr>
<td>Mother’s age × Year</td>
<td>5</td>
<td>2.696</td>
<td>0.539</td>
<td>0.39</td>
<td>0.859</td>
</tr>
<tr>
<td>Previous IUI × Previous IVF/ICSI</td>
<td>1</td>
<td>0.351</td>
<td>0.351</td>
<td>0.25</td>
<td>0.616</td>
</tr>
<tr>
<td>Previous IUI × Stimulation</td>
<td>1</td>
<td>0.509</td>
<td>0.509</td>
<td>0.36</td>
<td>0.546</td>
</tr>
<tr>
<td>Previous IUI × Year</td>
<td>1</td>
<td>4.480</td>
<td>4.480</td>
<td>3.20</td>
<td>0.074</td>
</tr>
<tr>
<td>Previous IVF/ICSI × Stimulation</td>
<td>1</td>
<td>0.014</td>
<td>0.014</td>
<td>0.01</td>
<td>0.919</td>
</tr>
<tr>
<td>Previous IVF/ICSI × Year</td>
<td>1</td>
<td>0.314</td>
<td>0.314</td>
<td>0.22</td>
<td>0.636</td>
</tr>
<tr>
<td>Stimulation × Year</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.991</td>
</tr>
<tr>
<td>Residual</td>
<td>85455</td>
<td>119534.663</td>
<td>1.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>85510</td>
<td>119658.920</td>
<td>1.399</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Sex ratio at birth following IUI, IVF and ICSI. Confidence Intervals at 95% are shown around each mean. The dashed horizontal line shows the overall sex ratio of babies born following all treatments (0.507±0.02). The dotted horizontal line shows the England and Wales population sex ratio (0.513, (6)).

Figure 2. Sex ratio at birth following the IVF and ICSI at late and early stage embryo transfer. Confidence intervals are shown around each mean. The dotted horizontal line shows the England and Wales population sex ratio (0.513 males, (6)).
Figure 2.

![Figure 2.](image-url)