Modelling fracture of aged graphite bricks under radiation and temperature

Hashim, Atheer, Kyaw, Si and Sun, Wei (2017) Modelling fracture of aged graphite bricks under radiation and temperature. Nuclear Materials and Energy, 11 . pp. 3-11. ISSN 2352-1791

Full text not available from this repository.

Abstract

The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1, 2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM) is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/855626
Keywords: Nuclear graphite, neutron dose, irradiation temperature, damage model, crack growth
Schools/Departments: University of Nottingham, UK > Faculty of Engineering > Department of Mechanical, Materials and Manufacturing Engineering
Identification Number: https://doi.org/10.1016/j.nme.2017.03.038
Depositing User: Sun, Wei
Date Deposited: 09 Mar 2017 16:07
Last Modified: 04 May 2020 18:41
URI: https://eprints.nottingham.ac.uk/id/eprint/41208

Actions (Archive Staff Only)

Edit View Edit View