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There is a saying:
Yesterday is history, tomorrow is a mystery, but today is a gift.

That is why it is called the present.

— from Kung Fu Panda

Moim Rodzicom



A B S T R A C T

In this thesis we explore aspects of dynamics of open quantum
systems related to coherence and quantum correlations — nec-
essary resources for enhanced quantum metrology and quan-
tum computation. We first discuss limits to the precision of pa-
rameter estimation when using a quantum system in the pres-
ence of noise. To this end we introduce a variational principle
for the quantum Fisher information (QFI) bounding the estima-
tion errors of any measurement, which motivates an efficient
iterative algorithm for finding optimal system preparations for
noisy estimation experiments. Furthermore, we investigate in-
fluence of noise correlations on the precision in phase and fre-
quency estimation, by delivering bounds for both spatially and
temporarily correlated (non-Markovian) dephasing noise. This
allows us to prove the Zeno limit in frequency estimation, con-
jectured in Phys. Rev. A 84, 012103 (2011) and Phys. Rev. Lett.
109, 233601 (2012). The enhanced estimation precision in quan-
tum metrology can be, however, achieved only using highly en-
tangled states. We propose a scheme of generating such highly
correlated states as outputs of Markovian open quantum sys-
tems near first-order dynamical phase transitions. We show that
the quadratic scaling of the QFI with time is present for ex-
periments within the correlation time of the dynamics and de-
scribe a theoretical scheme for quantum enhanced estimation
of an optical phase-shift using the photons being emitted from
an intermittent quantum system. Finally, we establish the basis
for a theory of metastability in Markovian open quantum sys-
tems, by extending methods from classical stochastic dynamics.
We argue that the partial relaxation into long-lived metastable
states –— distinct from the asymptotic stationary state –— may
preserve initial coherences within decoherence-free subspaces
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or noiseless subsystems, thus allowing for quantum computa-
tion during the metastable regime.
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0
I N T R O D U C T I O N

In this thesis we explore aspects of quantum open systems
dynamics in relation to coherence and quantum correlations,
which are necessary resources for quantum technologies appli-
cations, such as enhanced quantum metrology [1–6] or quan-
tum computation and communication protocols [7].

Experimental realisations of quantum systems can rarely be
considered isolated or closed, due to interactions with external
environments which introduce decoherence to unitary system
dynamics and lead to generally mixed rather than pure sys-
tem states. When the interactions are weak and environment
correlations decay fast in comparison to timescales of the sys-
tem dynamics, the noisy system evolution can be approximated
as Markovian [8, 9]. This type of noise is known to be destruc-
tive for multipartite quantum entanglement — a necessary in-
gredient for the enhanced precision scaling with the size of a
quantum system used in phase or frequency estimation [10,
11] — and the improvement of optimal quantum metrology
over classical strategies is consequently reduced, for typical lo-
cal noise models even just to a constant enhancement [12–16].
Such Markovian noise models are, however, just an approxima-
tion to the true system dynamics, which neglects in particu-
lar the initial regime of necessary slower decoherence [17–20].
Consequently, for the maximally entangled states undergoing
local non-Markovian dephasing noise, it was demonstrated that
the enhancement in the scaling of the spectrocopy precision, al-
though reduced, can be still present [21–23]. In Chapter 1 we
derive a general limit to the spectroscopy precision in the pres-
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introduction 3

ence of non-Markovian dephasing noise [24]. We further show
that the enhanced precision scaling can be achieved only for
the initial regime of slower decoherence and any revivals of
coherence or quantum correlations, usually considered as a sig-
nature of non-Markovian dynamics [25, 26], do not contribute
to the enhancement for large system sizes. In Chapter 1 we also
investigate other aspects of quantum metrology in the presence
of noise. In Sec. 1.3 we derive precision bounds for spatially
correlated noise models, where the noise cannot be described
as local, which bounds show a transition in precision scaling
depending on the decay of noise correlations [27]. In Sec. 1.2
we introduce an efficient numerical algorithm to find optimal
system preparations and measurements for general quantum
parameter estimation [24].

Even when the system dynamics is unitary, preparation of
highly entangled states leading to enhanced parameter estima-
tion is challenging [28]. In Chapter 2 we propose exploiting
open quantum systems characterised by complex and slowly re-
laxing dynamics in order to prepare highly correlated states for
quantum metrology [29]. We consider Markovian open quantum
systems generating, as a result of interaction with the external
environment, output fields [30], e.g. atomic ensembles emitting
photons [31–33]. For the system dynamics in proximity to first-
order dynamical phase transitions [34–36], we show that the
precision of estimating parameters encoded on the output, e.g.
optical phase-shift on emitted photons, can be quadratically en-
hanced for experiment times within the correlation time of the
system dynamics. Furthermore, also the precision of estimating
system parameters can be enhanced, which generalises the re-
cent work on estimation limits for dynamics featuring a single
stationary state [37–39].

For quantum information processing [7] decoherence free sub-
spaces [40–43] and noiseless subsystems [44–46], where parts of
the Hilbert space are protected against external noise, are ideal
scenarios for experimental implementation. Since experiments
are performed in finite time, however, it is sufficient to consider
a larger class of systems whose coherence is only stable over
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experimental timescales, i.e., metastable. In Chapter 3 we lay
grounds for the metastability theory in Markovian open quan-
tum systems by generalising concepts from classical stochas-
tic systems [47–53]. Metastability, a common phenomenon in
classical soft matter [54], with glasses being the paradigmatic
example [55, 56], manifests itself as initial partial relaxation is
into long-lived states with subsequent decay to true stationarity
occurring at much longer times. We show that for Markovian
open quantum systems, metastability corresponds to a separa-
tion in the spectrum of the generator governing the dynamics.
This structure leads to a low-dimensional approximation of a
manifold of metastable states in terms of degrees of freedom
preserved in the metastable regime. Furthermore, those degrees
of freedom can be quantum and correspond to the coherences
inside metastable decoherence free subspaces or noiseless sub-
systems, where quantum computation operations can be imple-
mented [57, 58].
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1
Q U A N T U M M E T R O L O G Y

In this chapter we discuss aspects of quantum metrology. This
area explores possibilities of enhancing the precision in estima-
tion of unknown values of parameters, such as magnetic fields
or optical-shifts, by using quantum systems whose dynamics
depends on the estimated parameters. It is inevitably tied to
experiments with the most prominent applications including
spectroscopy in atomic frequency standards [4–6] and phase
estimation in gravitational interferometers [59–61].

This chapter proceeds as follows. First, main questions and
ongoing research efforts in the field of quantum metrology are
reviewed. This is followed by three sections presenting results
on quantum metrology in the presence of noise: finding op-
timal quantum system preparation for a given dynamics, pa-
rameter estimation in the presence of correlated noise, and pre-
cision limits to frequency estimation in the presence of non-
Markovian noise. In Appendix A complementary derivations
can be found. In the next chapter 2, we will discuss how dy-
namical phase transitions in Markovian quantum systems can
be utilised for preparation of quantum states leading to the en-
hanced precision in quantum metrology.

1.1 background

Let us first review some essential aspects of quantum metrol-
ogy, where a quantum system is employed in order to estimate
the unknown value of a parameter determining the system dy-
namics.

6



1.1 background 7

1.1.1 Quantum metrology setup

We consider a quantum metrology setup [1, 62] in which a
quantum system is first prepared in an initial state represented
by a density matrix ρ (ρ ∈ B(H), ρ > 0 and Tr(ρ) = 1, where H

is the system Hilbert space). The system undergoes dynamics
described by a completely positive and trace-preserving chan-
nel Λφ which is assumed to depend on a parameter φ being
estimated. Information about the parameter φ can retrieved via
a measurement of an observable X (X ∈ B(H) and X = X†) on
the system state ρφ = Λφ(ρ), see Fig. 1.1. As neither the pa-

Figure 1.1: Quantum metrology setup. An initial state ρ undergoes
the dynamics represented by a quantum channel Λφ,
which imprints a parameter value φ on the state. An ob-
servable X is measured to obtain the information about
the parameter. The choice of ρ and X is optimised to ob-
tain the maximum estimation precision.

rameter value φ nor the state ρφ cannot be accessed directly,
but only via measurements with an associated probability dis-
tribution, there are necessarily errors in estimation of the value
φ. This so called quantum noise is present even if no interaction
with an environment takes place and the channel Λφ is unitary.
The aim of quantum metrology is to find the optimal system
preparation ρ and observable X, so that the estimation errors
are minimal.



1.1 background 8

1.1.2 Errors and estimation strategies

1.1.2.1 Estimation errors

There are many ways of quantifying errors given by the so
called cost function C, so that the mean error is

MEφ =
∑
x

pφ(x)C(φ̂(x),φ), (1.1)

where φ̂ is an estimator representing a guess of the parameter
φ value, φ̂(x), when a measurement result x is obtained, and
pφ(x) is the probability of obtaining x. Note that the optimal
choice of ρ and X will depend on the cost function C. A com-
mon choice in statistics is the quadratic function, C(φ̂(x),φ) =
(φ̂(x) − φ)2, due to a scalar-product structure on the parame-
ter space it originates from [63]. This leads to the mean square
error (MSE),

MSEφ(φ̂) =
∑
x

pφ(x)
(
φ̂(x) −φ

)2
(1.2)

= ∆2φφ̂ +
(
Eφφ̂−φ

)2
, (1.3)

where Eφφ̂ is the mean value of the estimator φ̂, Eφφ̂− φ is
its bias, and ∆2φφ̂ :=

∑
x pφ(x) (φ̂(x) − Eφφ̂)

2 its variance. Note
that the mean error is a local notion, as it is calculated with re-
spect to a given value φ of the estimated parameter. This may
seem contradictory, as this value is exactly the quantity to be
estimated, but this choice is well motivated in two following
scenarios. First, consider estimation of a small parameter fluctu-
ation δφ ≈ 0 around a known value φ0, i.e., φ = φ0+δφ, which
is the case e.g. for an optical-shift in gravitational interferome-
ters [59]. For well behaved distribution pφ(x) (e.g. double dif-
ferentiable w.r.t. φ), the error does not vary for small enough
perturbations δφ. In the second scenario, we consider asymp-
totic strategies, where we assume that for large number n of in-
dependent experiments the estimator φ̂(n)(x1, ..., xn) converges
to the true parameter value φ (in probability or almost every-
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where), i.e., is asymptotically consistent, cf. (1.3). This usually
coincides with the bias disappearing asymptotically Eφφ̂

(n) −

φ → 0. This is the case for example when φ̂ is a maximal like-
lihood estimator (see also paragraph below Eq. (1.11)). The re-
sults presented in the three next sections are relevant exactly
for these two scenarios. Another so called mini-max scenario
involves considering minφ̂ maxφMSEφ(φ̂) [63].

For the metrology setup in Fig. 1.1, the result x corresponds
to eigenvalue of an observable X =

∑
x x |x〉〈x| and the associ-

ated probability is given by pφ(x) = Tr(|x〉〈x| ρφ). The estimator
φ̂ corresponds to relabelling of the X spectrum, and for simply
φ̂(x) = x we obtain

MSEφ(X) = ∆2φX +
(
〈X〉φ −φ

)2 . (1.4)

The setup in Fig. 1.1, can be further generalised to a measure-
ment described by a positive-operator-valued measure (POVM)
— a set of positive operators {Πx}x, Πx > 0, with

∑
xΠx = 1H —

with pφ(x) := Tr(Πxρφ) yielding a probability distribution. In
the case of dynamics generating an output, see Sec. 2.1.1, also
continuous measurements of the output can be considered. This
will be considered in Chapter 2.

1.1.2.2 Optimal local strategies and quantum Fisher information

Consider estimation of a small perturbation δφ around a known
value φ0, i.e., φ = φ0+ δφ. We can shift φ̂ by a constant so that
Eφ0φ̂ = φ0, but we would like its prediction to be true on
average also for small perturbations, i.e., locally unbiased, and
hence only its variance to contribute to the MSE, cf. (1.3). There-
fore, we shall consider the rescaled estimator α−1 φ̂+ β, where
α = ∂φ|φ=φ0Eφφ̂ and β = −α−1Eφ0φ̂ + φ0. In particular, for
the setup in Fig. 1.1 and φ̂(x) = x, in such case we have that
the mean square error of estimating φ is given by the inverse
of the signal-to-noise ratio (SNR),

SNRφ0(X) =
(∂φ|φ=φ0〈X〉φ)2

∆2φ0X
, (1.5)
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where the signal ∂φ|φ=φ0〈X〉φ is rescaled by measurement noise
∆2φ0X, which corresponds to the error propagation formula.

Optimal estimator. The variance of any locally unbiased esti-
mator of φ, and thus the MSE, is bounded from below in the
Cramér-Rao inequality [63]

∆2φ0φ̂ > I−1φ0 , where Iφ0 =
∑
x

pφ(x)
(
∂φ log(pφ(x))

)2 ∣∣
φ=φ0

,

(1.6)

where Iφ is the Fisher information and we assumed that support
of pφ does not change with φ, so that Eφ0∂φ|φ=φ0 log(pφ(x)) =
0. The estimator whose variance saturates the inequality is called
efficient. Note that the Fisher information quantifies the quality
of the quantum metrology setup, as it bounds from below the
precision of estimating parameter φ when the probability dis-
tribution of results is given by {pφ(x)}x, and we no longer need
to refer to an estimator. The Fisher information depends on the
state ρφ and the projective measurement on the eigenbasis of X
(or POVM {Πx}x), but not the spectrum of X.

Optimal measurement. The optimal measurement {Πx}x for the
state ρφ is the one that leads to the maximum Fisher informa-
tion, the so called quantum Fisher information (QFI) [64–67],
Fφ(ρφ), which depends only on the quantum state ρφ,

Fφ(ρφ) = Tr(D2ρφ ρφ), where (1.7)
1

2
(Dρφ0ρφ0 + ρφ0Dρφ0 ) = ∂φρφ|φ=φ0 , (1.8)

and Dρφ is so called symmetric logarithmic derivative (SLD).
Note that the QFI and SLD depend on both ρφ and ∂φ ρφ, but we
choose the notation Fφ(ρφ) andDρφ for simplicity. Furthermore,
it follows that the SNR of any observable X is bounded by the
QFI, see e.g. [68],

(∂φ|φ=φ0〈X〉φ)2
∆2φ0X

6 Fφ0(ρφ). (1.9)
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Note that we have SNRφ(Dρφ) = Fφ(ρφ) since 〈Dρφ〉φ = 0 and
∂φ|φ=φ0〈Dρφ0 〉φ = Tr(D2ρφ ρφ). This shows that the projections
on the eigenvectors of the SLD, Dρφ0 , provide the optimal mea-
surement, and the spectrum of Fφ0(ρφ0)

−1(Dρφ0 + φ0) yields
the efficient locally unbiased estimator around φ = φ0.

Optimal initial state. The optimal initial state leads to the maxi-
mum QFI, maxρ Fφ(Λφ(ρ)) and thus to the minimal mean square
error in estimation. Since both the Fisher information, (1.6), and
the QFI are convex with respect to mixing probability distribu-
tions or quantum states,

Fφ(λρ
(1)
φ + (1− λ)ρ

(2)
φ ) 6 λ Fφ(ρ

(1)
φ ) + (1− λ) Fφ(ρ

(2)
φ ), (1.10)

it follows that the optimal initial state can be chosen pure.
The maximum QFI yields an ultimate limit to the estimation

setup in Fig. 1.1 with dynamics Λφ, whatever the initial state,
the measurement and the (locally unbiased) estimator are em-
ployed. When dynamics is not unitary, the state ρφ is in general
mixed, and there is usually no closed formula for the QFI w.r.t.
all input states, which makes maxρ Fφ(Λφ(ρ)) difficult to com-
pute [69]. In Sec. 1.2 we provide a numerical algorithm which
circumvents this problem by providing a variational principle
for calculating the QFI.

1.1.2.3 Asymptotic strategies and quantum Fisher information

Consider performing n independent experiments in order to es-
timate unknown value of φ. We have that the joint probability
pφ(x1, ..., xn) = pφ(x1)...pφ(xn), which corresponds to the sys-
tem state ρ⊗nφ measured by {Πx1 ⊗ ...⊗Πxn}x1,...,xn . This leads to
the following form of Cramér-Rao inequality, cf. (1.6),

∆2φφ̂
(n) > (n Iφ)

−1 (1.11)

for a locally unbiased φ̂(n) estimator representing a guess about
φ from results (x1, ..., xn). In general, however, it is difficult to
find estimators that are unbiased for all φ ∈ Φ. Even when
that is the case, they are usually not efficient except special
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cases, e.g. pφ(x) being Gaussian distribution with mean φ and
φ̂(n)(x1, ..., xn) = n−1

∑n
j=1 xj. Therefore, a concept of asymp-

totic efficiency has been introduced by F. Y. Edgeworth [70] and
R. A. Fisher [71]. First, let us recall that a sequence of estimators
{φ̂(n)}∞n=1 is asymptotically normal if it

√
n−converges in law to a

normal distribution. When it is consistent, we furthermore have
the following convergence in law,

√
n(φ̂(n) − φ)

d−→ N(0, vφ).
Finally, when the asymptotic variance vφ = I−1φ , the estima-
tor is considered asymptotically efficient, as it was shown by
L. M. LeCam [72] that for any asymptotically normal and con-
sistent estimator, the set {φ ∈ Φ : vφ < I

−1
φ } is of measure zero.

An important example of an asymptotically efficient estimator
is the maximal likelihood estimator under some regularity con-
ditions on pφ(x) [63].

We therefore see that the concept of the Fisher information
is meaningful, as in general estimation it can be achieved in
the asymptotic sense. In the quantum setup, however, the prob-
ability distribution of results depends on the choice of mea-
surement and the optimal measurement given by the eigenba-
sis of Dρφ depends in general on an unknown value φ. Adap-
tive strategies need to be employed in which the measurement
is given by the SLD for the current estimate of φ, in order to
achieve the optimal precision given by the QFI in the asymp-
totic sense, see [67, 73, 74].

1.1.2.4 Bayesian estimation

In an opposite scenario to the local and the asymptotic ones dis-
cussed above, when one wants to minimise errors of just a few
experiments — so called one-shot scenario — but information
about the value of φ is partially known, one can use a Bayesian
approach. Prior information about the estimated parameter φ
is represented by a probability distribution g(φ) on the param-
eter space Φ. After a result x is obtained, the prior information
about φ is updated to the posterior distribution,

p(φ|x) =
g(φ)pφ(x)

p̄(x)
, (1.12)
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where p̄(x) =
∫
Φ dφg(φ)pφ(x) is the average probability of

obtaining the result x. When an estimator φ̂ is used, the corre-
sponding average mean error is given by

AME(φ̂) =

∫
Φ

dφg(φ)MEφ =

∫
Φ

dφg(φ)
∑
x

pφ(x)C(φ̂(x),φ).

(1.13)

For application of this approach to phase estimation see e.g. [14,
75, 76], for frequency estimation e.g. [77, 78]. Furthermore, for
the quadratic cost function C, the van Trees inequality [79, 80]
bounds the error of any (not necessarily unbiased) estimator φ̂
from below, by the information contained in the prior distribu-
tion and the average Fisher information,

∫
Φ

dφg(φ)
∑
x

pφ(x) (φ̂(x) −φ)
2 >

(
Iprior +

∫
Φ

dφg(φ) Iφ

)−1

,

where Iprior =
∫
Φ

dφg(φ)
(
∂φ log(g(φ))

)2 , (1.14)

as long as g(φ) = 0 at the boundary of Φ and Iφ is well de-
fined for all φ ∈ Φ. In Sec. 1.3 we will use this inequality to
derive bounds on the MSE in local estimation with a quantum
system in the presence of correlated noise. Let us note here that
in quantum parameter estimation using highly non-Gaussian
states, the so called Ziv-Zakai bound may be tighter than the
van Trees inequality, see [81].

Furthermore, for the quadratic cost function, the optimal es-
timator minimising the average error is known to be simply the
mean of the posterior distribution,

φ̂(x) =

∫
Φ dφg(φ)pφ(x)φ∫
Φ dφg(φ)pφ(x)

and thus (1.15)

Eφ̂(x) = φ0, and (1.16)

AME(φ̂) =

∫
Φ

dφg(φ)(φ−φ0)
2 −
∑
x

p̄(x) (φ̂(x) −φ0)
2, (1.17)
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where φ0 is the mean of the prior distribution, so that the av-
erage error is the difference between the prior distribution vari-
ance and the estimator variance.

Moreover, for the quadratic cost function in quantum pareme-
ter estimation, the optimal measurement can be found and cor-
responds to projections on the eigenvectors of the observable
Dρ, which is the solution of the following equation [66, 77], cf.
the SLD in Eq. (1.8),

1

2

(
Dρ ρ + ρDρ

)
= ρ ′, (1.18)

where ρ =
∫
Φ dφg(φ) ρφ and ρ ′ =

∫
Φ dφg(φ) (φ−φ0)ρφ. More-

over, the shifted observable Dρ +φ01 encodes in its spectrum
the optimal estimator φ̂ for the optimal measurement, which
leads to the average error, cf. Eq. (1.17),

AME(Dρ) =

∫
Φ

dφg(φ)(φ−φ0)
2 − Tr

(
ρD

2
ρ

)
. (1.19)

1.1.3 Ultimate precision limits and quantum correlations

From now on we consider local and asymptotic strategies, where
the Fisher information, (1.6), and the quantum Fisher informa-
tion, (1.7), can be used to quantify the quality of a metrology
setup.

Standard scaling. Consider parameter estimation using a quan-
tum system consisting of N identical subsystems, e.g. N two-
level atoms. A state ρ⊗Nφ with no correlations between subsys-
tems leads to the QFI linear in N, cf. (1.7), as it corresponds
to N independent experiments using just one subsystem, and
thus mean square errors scale ∝ N−1, so called standard (shot-
noise) limit, cf. Eq. (1.11). Furthermore, precision of estimation
setup using any separable state can be shown to be bounded
by NmaxρF(Λφ(ρ)) due to convexity of the QFI [1, 2]. On the
other hand, an entangled state of a quantum system exhibits
stronger than classical correlations, which has been exploited in
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quantum computation and communication protocols [7]. Those
quantum correlations can also result in fast evolution in the
quantum states space, which makes entangled states very sen-
sitive to changes in dynamics parameters and therefore poten-
tially useful for metrology [1, 2, 62]. Entanglement has been in-
deed demonstrated to enhance the precision of estimating un-
known phase (optical shift) in optical setups (first considered
in [3]) and unknown magnetic field via spectroscopy (first dis-
cussed in [4], for experiments see [5, 6]) when system dynamics
is unitary.

Heisenberg scaling in phase and frequency estimation. Let us briefly
consider the example of unitary estimation with the maximally
correlated Greenberger-Horne-Zeilinger (GHZ) state 1√

2
(|GHZ〉 =

|0〉⊗N + |1〉⊗N) consisting of N qubits (e.g. N photons with |0〉,
|1〉 representing modes in two arms in an interferometer, in
which case such a state is called the NOON state, or N two-
level atoms with |0〉, |1〉 describing the ground and the excited
states of an atom). When dynamics introduces a relative phase
difference φ between |0〉 and |1〉, we obtain the evolved state
|GHZφ〉 = 1√

2
(|0〉⊗N + e−iNφ|1〉⊗N) which effectively encodes

the phase Nφ, the phase estimation precision for the optimal
measurement (parity measurement) will scale ∝ N−2, and in-
deed it can be easily shown that the QFI equals F(|GHZφ〉) = N2,
which is actually the maximum value of the QFI for such uni-
tary dynamics. This is referred to as Heisenberg limit or scaling
in N [3]. On the other hand, the uncorrelated state of N atoms,
1√
2
N (|0〉+ e−iφ|1〉)⊗N, the QFI equals only N.
In general, for any phase encoding with unitary dynamics,

i.e., ρφ = UφρU
†
φ where Uφ = e−iφH, we obtain that the QFI

is independent of φ value, Fφ(ρφ) = F(ρ), as the optimal mea-
surements for different φ1 6= φ2 are simply related by the uni-
tary Uφ2−φ1 . Furthermore, from convexity of the QFI, the opti-
mal initial state is pure. For any pure initial state |ψ〉, we sim-
ply have that the QFI is proportional to the Hamiltonian vari-
ance, F(|ψ〉) = 4∆2H. Therefore, when the Hamiltonian is local
with respect to subsystems, H =

∑N
j=1 1

⊗(j−1)⊗h⊗1⊗(N−j), the
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maximum QFI equals N2(hmax − hmin)2 and is achieved for a
GHZ-like state consisting of the extreme eigenvectors of h cor-
responding to eigenvalues hmax, hmin, whereas for separable
states the QFI reaches at most N(hmax − hmin)

2. For frequency
ω estimation in spectroscopy, i.e., the encoded phase being
φ = ωt, it simply follows that the maximum QFI is N2 t2, while
for the uncorrelated state Nt2, see [4].

We note that the Heisenberg scaling can be beaten for states
with a fluctuating number of subsystems, e.g. for states com-
posed of different number of photons, and there is no ultimate
bound as the QFI can even be infinite [82]. When Gaussian states
are considered, however, the Heisenberg scaling is recovered as
the limit, due to the fluctuations of the number of subsystems
being bounded, see e.g. [83, 84].

It should be noted that except for very particular forms of
ρφ, the optimal measurement given by Dρφ is usually difficult
to engineer. Nevertheless, its SNR equals the QFI, Fφ(ρφ), and
thus bounds the (asymptotic) precision of any measurement
that can be performed in practice. Therefore, it provides an ul-
timate benchmark against which performance of measurements
currently used in experiments can be checked, see e.g. [85].
Moreover, as we discuss in the next subsection on quantum
metrology in the presence of noise, when F(ρg) is optimised
over all possible preparations φ, it can be determined whether
there is at all possibility of enhancement in scaling using entan-
gled states of N subsystems.

QFI as a witness of multipartite entanglement. As we discussed
above, when an estimated parameter is encoded via unitary
dynamics with a local Hamiltonian, the corresponding QFI for
a separable state is necessary limited to linear scaling, Fsep =

N(hmax − hmin)
2. Therefore, if there is a way of determining

the QFI for a given state ρ experimentally, or at least a lower
bound for the QFI, it serves as a witness of multipartite entangle-
ment whenever the measured value is higher than Fsep [10, 11].
Moreover, this criterium can be refined by considering limits of
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the QFI for k-producible states (a mixture of tensor products of
at most k-subsystem states), Fk−prod = Nk (hmax − hmin)

2 [10,
86]. Experimental schemes to obtain a QFI value or its lower
bound have been proposed e.g. in [87–89].

It is known, however, that for mixed states there can be quan-
tum correlations present, so called quantum discord [90], even
if the state is not entangled, i.e., separable. It can be shown that
those quantum correlations can be useful for certain metrolog-
ical scenarios where the Hamiltonian encoding a parameter to
be estimated is unknown [91].

1.1.4 Metrology in the presence of noise

In the previous section we discussed how an entangled initial
state preparation can lead to Heisenberg scaling in estimation
precision [2]. This quantum enhancement in precision, however,
may be significantly limited in the presence of additional noise
- decoherence [15, 16, 92].

When the system is interacting with external environments,
quantum correlations may be significantly reduced and thus
the quantum enhancement in precision may be limited for open
quantum systems. This is especially visible in the case when the
noise effects commute with the phase encoding, i.e., Λφ(ρ) =

e−iφHΛ(ρ) eiφH, since it effectively limits the set of possible ini-
tial states from ρ to Λ(ρ). This is the case in the optical interfer-
ometry in the presence of photon losses which reduce the pre-
cision scaling to the standard limit [13, 14]. It was shown later in
that similar results hold for dephasing noise [15, 16, 92].

Markovian noise in frequency estimation. In a frequency estima-
tion setup, an initial system state ρ evolves for time t so that
frequency can be encoded in phases of the evolved state, ρω,t =

Λω,t(ρ), and accessed by a subsequent measurement. For a total
time T given for estimation, the single experiment is repeated
n = T

t times, assuming negligible preparation and measure-
ment times. Single experiment time t is chosen so that the corre-
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sponding estimation errors are minimal, e.g. for local perturba-
tion estimation so that maxt6T Tt Fω(ρω,t) is achieved, cf. (1.11).
In order to do so, the quantum channel Λω,t needs to be spec-
ified as a function of time t. When interactions between the
system and environments are weak and the noise correlation
time is much shorter than the characteristic time of the system
ω−1, environments can be assumed to have no memory and
the quantum channel has a semigroup structure Λω,(t1+t2) =

Λω,t2 ◦ Λω,t1 , which corresponds to a time-homogenous mas-
ter equation for system dynamics [8, 9], see also derivation in
Sec. 2.1.1. For the interaction leading to local Markovian de-
phasing, it was shown in [12] that the GHZ and uncorrelated
states provide exactly the same precision, and together with
generalized Ramsey spectroscopy schemes have standard scal-
ing, see Fig. 1.4 and [93]. It was proved later, also for other
local Markovian noise usually encountered in spectroscopy ex-
periments (depolarisation, spontaneous emissions/amplitude
damping), that the standard scaling indeed holds for any atom
preparation and measurement, and the quantum enhancement
is limited to just a constant [15, 94]. Nevertheless, there are re-
alistic Markovian models in which the standard scaling can
be beaten [95, 96] or even the Heisenberg scaling can be re-
stored using error correction methods [97–99] or due to spatial-
correlations in non-local noise [100].

Non-Markovian noise in frequency estimation and new precision
limits. Markovian noise models are an approximation of the sys-
tem dynamics and not all noise models can be described within
this approximation, resulting in so called non-Markovian mod-
els with noise correlated in time. For example, in magnetic field
sensing using the GHZ state in the presence of semi-classical
dephasing due to unaccounted stationary magnetic fields has
infinite correlation time, the precision of magnetic field sensing
scales ∝ N−3/2 [21, 101]. Furthermore, joint unitary dynamics
of the system and an environment impose an initial quadratic
decay of the probability of observing the system in its initial
state, which leads to the quantum Zeno effect [17–20], whereas
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the semi-group structure of Markovian models imposes a faster
exponential decay of this probability. The authors of [22, 23]
showed that the precision of frequency estimation in the Zeno-
dynamics regime with the atoms prepared in the GHZ state
scales ∝ N−3/2 for numerous local non-Markovian dephasing
models. It was also argued that the Zeno scaling ∝ N−3/2 should
be a limit valid for any system preparation and any local de-
phasing model, as the scaling enhancement for the GHZ state
in comparison to the Markovian noise is due to the slower in-
crease of the noise strength in the Zeno-dynamics regime.

In Sec. 1.4 we derive a bound for the precision of frequency
estimation in the presence of general local dephasing. For de-
phasing featuring the initial Zeno dynamics, we prove that the
Zeno scaling is indeed the best possible precision scaling for all
atom preparations and measurements, and can be achieved only
for experiments performed within the Zeno dynamics-regime,
whereas for other regimes the precision scaling is necessary
standard and thus non-Markovian revivals are not a resource
for metrology asymptotically. Moreover, using already earlier de-
rived bounds [15, 94], the Zeno scaling can be shown to be the
limit for frequency estimation with non-Markovian depolarisa-
tion and damping models. These results have been published
in [24]. The authors of the later work [102] prove that the Zeno
scaling is the precision limit for all models of noise commuting
with phase ωt encoding, Λω,t(ρ) = UωtΛt(ρ)U

†
ωt, which fea-

ture initial Zeno dynamics.

Spatial correlations in noise and limits in phase estimation preci-
sion. In Sec. 1.3 we present a bound for semi-classical model of
Gaussian dephasing derived in [27] which crucially depends
on the noise correlations and thus bridges the gap between
usually considered local noise [13, 15, 16, 94] and fully corre-
lated noise [84, 103]. In particular depending on the correlation
length in the noise we observe transition between linear and
constant scaling of the Fisher information for phase estimation
and Markovian frequency estimation. The bound [27] is later
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used to prove the Zeno scaling in [24]. In [100] the frequency
estimation using atoms interacting with electromagnetic fields
via electric quadrupole moments was considered. For the case
of the dephasing noise with the spatial correlation length in-
creasing linearly with the number N of atoms, it was shown
that the Heisenberg scaling is restored in the limit of an infinite
number of subsystems, N→∞.

Unitary noise. If the parameter being estimated is not encoded
simply as a phase, the precision scaling may be limited, even
when there is no interaction with an environment and the sys-
tem dynamics is unitary, e.g. for Uφ = e−i(φH+ϕH

′) and two
terms in the Hamitonian not commuting, [H,H ′] 6= 0 [104–
106]. This is due to the fact that the parameter φ is effectively
encoded with a parameter-depending Hamiltonian given by
Hφ,ϕ =

∫φ
0 dφ ′ e−iφ

′(H+ϕφ H
′)Heiφ

′(H+ϕφ H
′). In particular, for fre-

quency estimation, t2-scaling of the QFI may not be present
asymptotically [105]. When both H and H ′ are local, however,
the best possible scaling in the number N of subsystems is still
the Heisenberg limit [104, 106].

Estimation of noise parameters. For the optimal estimation of a
noise parameter, see [94] for bounds and [107] for an example
of temperature estimation.

1.1.5 Resources in metrology

In frequency estimation there is an additional parameter of
time t, which can be optimised to lower estimation errors, when
total time T of experiments is given as a resource. In the case
of phase estimation with N subsystems, local phase encoding,
Λ

(N)
φ = Λ⊗Nφ , can be thought as parallel application of N encod-

ing operations Λφ. In such situations enhancement can come
from the initial entangled preparation usually requiring also
an entangled measurement to retrieve the value of φ [1], cf. the
SLD in (1.8). On the other hand, consider applying N encoding
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operations sequentially to one subsystem, ΛNφ , so called multi-
pass interferometry, which for unitary phase estimation leads to
Heisenberg scaling with N without multipartite entanglement be-
tween subsystems or entangled measurement [73, 74]. One can
further consider a general framework treating encoding oper-
ations as a resource, which includes the above two. One con-
siders N encoding operations are applied to a finite number
of initially uncorrelated subsystems, some of which may play
role of ancillas (Λφ is not applied), and interspersed with addi-
tional operations possibly entangling the subsystems, leading
to an entanglement-assisted scenario [2, 108, 109]. For the uni-
tary case, the solution is known [108], but when Λφ is noisy,
a hierarchy of scenarios is known only for special types of noise,
like dephasing and erasure, see [109] for proofs and a general
conjecture.

We note here, when a considered scenario is entanglement-
assisted, i.e., additional operations used beyond the local en-
codings, entangle the subsystems, their implementation cost
should be also taken into account as they are usually difficult
to perform experimentally, possibly within a proper resource
theory framework [110].

Furthermore, we note that usually the above scenarios are
considered with respect to local estimation, cf. Sec. 1.1.2.2. When
there is no initial knowledge about the estimated parameter φ,
it has been shown for the unitary multiple-passes intereforme-
try scenario with a single subsystem, or equivalently the paral-
lel scenario using the GHZ states, that the Heisenberg scaling
of errors can be indeed achieved [73, 74]. For general (possibly
noisy) scenarios, however, it is not known whether the preci-
sion achievable locally can be also achieved in the asymptotic
sense. Note that the standard scenario using separable states
and parallel strategies, simply corresponds to n = N indepen-
dent experiments and thus the local precision is achievable also
asymptotically, cf. Sec. 1.1.2.2.

Non-linear phase estimation. The Heisenberg scaling is a conse-
quence of unitary encoding, Uφ = e−iφH, with a local Hamil-
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tonian H. When there are interactions in the encoding Hamil-
tonian H, so called non-linear/many-body encoding, first pro-
posed in [111], the corresponding QFI can feature faster than
quadratic (even exponential) scaling, in the number of subsys-
tems N used, which can be remedied by careful counting of
resources as Tr(Hρ) − E0, where E0 is the ground energy in
H [112]. Nevertheless, again a question arises about asymptotic
attainability of the corresponding bounds on precision, but the
answer seems to be negative [113].

1.1.6 Multi-parameter estimation

Quantum technology applications require precise characterisa-
tion of their components via quantum tomography [114], where
the density matrix ρ describing a system state is reconstructed
from measurement outcomes, and system identification [37, 115],
where system dynamics is determined. These tasks require es-
timation of usually more than a single parameter.

Multi-parameter Cramér-Rao bound. Considerm parametersφ =

(φ(1), ...,φ(m))T , whose unknown value is to be estimated. The
Cramér-Rao inequality [63] states that the covariance matrix
Σφ(φ̂) of errors of locally unbiased estimators, φ̂ = (φ̂(1), ..., φ̂(m))T ,
is bounded from below by the inverse of the Fisher information
matrix Iφ, cf. (1.6),

Σφ(φ̂) > I−1φ , where (1.20)(
Σ(φ̂)

)
jk

= Cov(φ̂(j), φ̂(k)) = E(φ̂(j) −φ(j))(φ̂(k) −φ(k)) and(
Iφ
)
jk

=
∑
x

pφ(x)
(
∂φ(j) log(pφ(x))

)(
∂φ(k) log(pφ(x))

)
.

Moreover, in the quantum metrology setup, where parameters
to be estimated are encoded by a quantum channel, ρφ = Λφ(ρ),
we further have that the Fisher information matrix is bounded
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from above by the quantum Fisher information matrix [64, 65],
Fφ(ρφ), and thus

Σφ(φ̂) > I−1φ > Fφ(ρφ)
−1 where (1.21)(

Fφ(ρφ)
)
jk

=
1

2
Tr
({
D

(j)
ρφ ,D(k)

ρφ

}
ρφ

)
and

1

2

{
D

(k)
ρφ , ρφ

}
= ∂φ(k)ρφ.

Note however, that the QFI matrix corresponds in general to
m different projective measurements on the eigenbases of the
SLDs, D(k)

ρφ , k = 1, ...,m and thus may not be attainable. The con-

dition of commutation of all SLDs,
[
D

(j)
ρφ ,D(k)

ρφ

]
= 0, j,k = 1, ...,m

is sufficient for the bound to be achievable in local estima-
tion. In Sec. 1.2 we discuss finding a single optimal measure-
ment so that in the multi-parameter estimation, the trace of
the classical Fisher information matrix Iφ, Eq. (1.20), is maxi-
mal. Asymptotically, the estimation precision is bounded in the
Holevo bound [116]. The Holevo bound has been proven to
be achievable recently [117] by methods of Local Asymptotic
Normality, where ρ⊗Nφ is shown to correspond asymptotically
to (in general non-commuting) Gaussian modes. Moreover, the
Holevo bound corresponds to the precision of the optimal (usu-
ally not projective) POVM performed on the modes, and a col-
lective measurement on ρ⊗Nφ . When the Gaussian modes com-
mute, the Holevo bound is simply given by the QFI matrix
(1.21). This takes place when all the SLDs commute on average,
Tr
([
D

(j)
ρφ ,D(k)

ρφ

]
ρφ
)
= 0, for j,k = 1, ...,m. For the case of a pure

states ρφ, the condition of commuting on average was shown
to be necessary in order to achieve the QFI already in [118].

Types of parameters. In quantum imaging, an image is described
by m phases corresponding to m independent modes, which
we refer to as unitary parameters. In [119] it has been shown
for unitary encoding and pure initial states that optimal multi-
parameter estimation yields better results than independent
best estimation of each phase, as the total mean square error
decreases O(m) faster when using initial states entangled w.r.t.
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all the modes. On the other hand, for system identification also
decoherence parameters need to be estimated, e.g. losses in opti-
cal interferometry. For simultaneous estimation of unitary and
decoherence parameters, trade-offs arise due to possible non-
commutativity of optimal measurements, for example of opti-
cal interferometry see [120–122]. A different setup considers a
single parameter changing in time according to an unknown func-
tion that is to be estimated [123].

For a detailed review of background and recent advances in
multi-parameter quantum metrology, see [124].

1.1.7 QFI as a metric

The multi-parameter QFI matrix represents a Riemannian met-
ric on the space of system states [125], which is minimal among
monotone metrics [126, 127]. Therefore, it can be used to detect
singular changes in the structure of system states correspond-
ing e.g. to quantum phase transitions [128–130] or conversely
phase transitions can be used to enhance the estimation pre-
cision [107, 131]. In Chapter 2 we will consider the relation
between enhanced parameter estimation and dynamical phase
transitions [34].

Furthermore, as a metric, the QFI bounds the speed of quan-
tum evolution, in so called Quantum Speed Limits [132–135], which
can be viewed as a generalisation of the Heisenberg uncertain-
ity for time and energy [136, 137]; for other methods of deriv-
ing quantum speed limits see [138–140]. Finally, in turn, the QFI

determines also the minimum frequency of the projective mea-
surement on an initial system state, necessary to observe the
quantum Zeno effect [141].

In sections below we discuss three aspects of metrology in the
presence of decoherence. First in Sec. 1.2, we present a numer-
ical iterative algorithm to find optimal preparation of the ini-
tial state ρ and measurement X for a given evolution Λφ [142].
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Secondly, in Sec. 1.3, we deliver bounds on phase estimation
precision in the presence of arbitrarily correlated Gaussian de-
phasing noise showing transition between the standard scaling
and the constant scaling [27]. Finally in Sec. 1.4, we prove the
Zeno limit ∝ N−32 for frequency estimation in non-Markovian
environments [24].

1.2 variational principle for quantum fisher in-
formation and numerical algorithm for find-
ing optimal system preparation

Since decoherence usually results in a mixed state ρφ, the max-
imal quantum Fisher information, supρ Fφ(ρφ), is difficult to
calculate. In [142] we introduced a variational principle which
delivers a convenient numerical algorithm to calculate the max-
imum QFI for quantum systems of a finite dimension.

1.2.1 Variational principle

Let us consider a quantum metrology setup in which the states
used in the estimation are obtained from a quantum channelΛφ,
i.e., ρφ = Λφ(ρ), and an observable X is measured on ρφ in or-
der to retrieve the information about φ, see Fig. 1.1. In order
to obtain an ultimate limit on precision in local and asymp-
totic estimation strategies, one optimises the setup in Fig. 1.1
by finding the initial preparation ρ leading to the maximum
QFI, F(max)

φ = supρ Fφ(Λφ(ρ)).

As we show below, the ultimate limit F(max)
φ can be expressed

by the following variational principle which includes maximi-
sation w.r.t. both an initial state ρ and an observable X,

F
(max)
φ = sup

ρ
sup
X

Tr
(
Gφ(X) ρ

)
, where (1.22)

Gφ(X) = −Λ†φ
(
X2
)
+ 2

(
∂φΛφ

)†
(X), (1.23)
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where Tr
((
Λφ
)†
(X) ρ

)
= Tr

(
XΛφ(ρ)

)
. A quantum channel Λφ

encoding an unknown value of the parameter φ, does not have
to be unitary and can represent any decoherence of a state ρ.

Proof of the variational principle. Since 2 ∂φΛφ(ρ) = 2 ∂φ ρφ =

{Dρφ , ρφ}, where {·, ·} denotes the anti-commutator, cf. (1.8), we
have that

Tr
(
Gφ(X) ρ

)
= −Tr

(
ρφX

2
)
+ Tr

(
X
{
Dρφ , ρφ

})
= Tr

(
ρφD

2
ρφ

)
− Tr

(
ρφ
(
X−Dρφ

)2) .

Hence, the first supremum in (1.22) leads to the QFI for Λφ(ρ)
supX Tr

(
ρGφ(X)

)
= Tr

(
ρφD

2
ρφ

)
= F(Λφ(ρ)), cf. Eq. (1.7) .

Note that the parabolic function Gφ(X), Eq. (1.23), can be re-
placed by any other function G ′φ(X) such that for a given initial
state ρ, Tr(G ′φ(X) ρ) has a global maximum equal to F(ρφ) at
X = Dρφ .

The value of Fφ(ρ,X) := Tr
(
ρGφ(X)

)
can be viewed as a gen-

eralisation of the quantum Fisher information to any projec-
tive measurement and a generally biased estimator, encoded in
the eigenbasis and the spectrum of an observable X. Note that
Fφ(ρ,X) is a concave function of ρ and X, in contrast to the QFI

being convex in ρ, cf. (1.10). Furthermore, Fφ(ρ,X) for given ρ
and X provides a lower bound for the maximum F

(max)
φ .

Relation to SNR. When the optimisation over X is first done
with respect to an optimal linear transformation X̃ = αX+β of
a given X, it yields Fφ(ρ, X̃) equal the SNR of X, as Fφ(ρ,X) is just
the difference between twice the signal, Tr(∂φ ρφ X), and the
noise, as Tr(ρφ X2) = ∆2φX+ 〈X〉2φ is minimised when 〈X〉φ = 0

or rather β := −α 〈X〉φ. This confirms the inequality between
the SNR of any observable and the QFI [68], see Eq. (1.9).

Furthermore, when Fφ(ρ,X) is optimised only with respect
to the choice of X-spectrum and a measurement is fixed as the
projective measurement on X-eigenbasis, Fφ(ρ,X) yields the cor-
responding Fisher information. In general, for a given POVM

measurement Π = {Πx}x, an analogous variational principle can
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be established for the Fisher information corresponding to the
optimal initial preparation ρ for that measurement,

Iφ(Π) = sup
ρ

sup
φ̂

Tr
(
ρ
(
−Λ†φ(X2) + 2

(
∂φΛφ

)†
(X1)

))
, (1.24)

where φ̂ is a used estimator and Xj :=
∑
x φ̂(x)

jΠx. When Π is
a projective measurement, X2 = X21, and Eq. (1.24) reduces to
Eq. (1.23).

Moreover, from the Jensen’s inequality for operators [143] it
follows that X2 =

∑
xφ(x)

2Πx > (
∑
xφ(x)Πx)

2 = X21, where
POVM operators {Πx}x play a role of weigths, and thus consider-
ing more generally the POVM in the variational principle (1.22),
also leads to a projective optimal measurement.

In the next section we show how the variational principles
introduced above can be used to establish numerical iterative
algorithms to find optimal initial system preparations.

Example of sequential correlated measurements. Now we show
how the variational principle in (1.24) can be used to find an
optimal linear estimator, φ̂(x) =

∑n
j=1 αj xj, in the case when

the result of experiment is multidimensional, x = (x1, ..., xn),
e.g. corresponding to sequential measurements of the system
during its dynamics parametrised by φ [144] (see also param-
eter estimation using continuous measurements [37–39]). The
signal-to-noise ratio for optimal linear estimator is given by

SNR
(linear)
φ = STφ Σ

−1
φ Sφ, (1.25)

where Sφ = (∂φ Eφx1, ...,∂φ Eφx1)
T is the signal vector, whereas

the matrix Σφ = (Eφ(xjxk) − Eφxj Eφxk)jk describes correla-
tions between results. This corresponds to the estimator (rescaled
for local unbiasedness around φ)

φ̂(x1, .., xn) =
(
SNR

(linear)
φ

)−1 n∑
j=1

(
Σ−1φ Sφ

)
j
xj +φ. (1.26)
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In the case when the results are i.i.d. we arrive at the optimal
estimator being simply proportional to the arithmetic mean of
the results, φ̂(x) ∝ 1

n

∑n
k=1 xk, and corresponding SNR being

proportional to n (standard scaling).
We note that the optimal SNR, (1.25), corresponds to the QFI in

estimation with correlated Gaussian variables of the same mean
φ, where we simply have Sφ = (1, ..., 1)T and thus SNR(linear) =∑n
j,k=1(Σ

−1)jk [63]. Moreover, the optimal linear estimator in Eq.
(1.26) is optimal among all estimators, furthermore efficient and
also globally unbiased.

Derivation. The variational principle (1.24) restricted to linear
estimators, φ̂(x) =

∑n
j=1 αj xj+β, and a fixed ρ (or more gener-

ally a fixed probability distribution pφ(x) ), yields

max
α1,..,αn,β

∑
x1,...,xn

(
pφ(x1, ..., xn)

 n∑
j=1

αj xj +β

2

− 2∂φpφ(x1, ..., xn)

 n∑
j=1

αj xj +β

)

= max
α,β

−αT Σφ α −
(
β−αT Aφ

)2
+ 2αTSφ.

Here α = (α1,...,αn)T is the vector of coefficients in the linear
estimator, and Aφ = (Eφx1, ..., Eφxn)

T is the vector of average
results. First, the maximum w.r.t. β is achieved when β = αT Aφ.
Furthermore, the extremum of the above expression is achieved
when the first derivatives w.r.t. α1,..., αn are 0, which corre-
sponds to

1

2

(
ΣTφ + Σφ

)
α = Sφ ⇐⇒ α = Σ−1φ Sφ,

where we used the fact that Σφ is a symmetric matrix. As the
second derivative simply equals minus the correlation matrix,
−Σφ 6 0, the coefficient vector α above indeed corresponds to
the optimal choice of a linear estimator.
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1.2.2 Numerical algorithm to find optimal system preparation

We now introduce an iterative alternating algorithm based on
the variational principle in Eq. (1.23). Its construction is based
on the observation that the order of two suprema in Eq. (1.23)
can be swapped. The convergence of the algorithm to the max-
imum value of the QFI, F(max)

φ , is guaranteed for a system of
finite-dimension by the concavity of F(ρ,X) = Tr (Gφ(X)ρ) on
the convex sets of system observables X and convex and com-
pact set of initial states ρ. The optimal system preparation is
yield by a subsequence of initial states chosen in sequential it-
erations of the algorithm.

Algorithm. Let ρ(n) be the initial system state considered at
n-th step of algorithm. First, we consider the optimal observ-
able X leading to the maximum value of Fφ(ρ(n),X). From (1.8)
it is attained for the SLD, X(n) = D

ρ
(n)
φ

, and equals the QFI for

ρ
(n)
φ . Now we alter the order of suprema, and choose an initial

system state for the next step as the state leading to maximum
value of Fφ(ρ,D

ρ
(n)
φ

). As Fφ(ρ,X) = Tr (Gφ(X) ρ) is linear in ρ,

we obtain ρ = ρ(n+1) as the pure state corresponding to the max-
imum eigenvalue of Gφ(Dρ(n)φ

). Note that the quantum Fisher

information F(ρ(n)φ ) increases with n,

F(ρ
(n)
φ ) = Fφ

(
ρ(n),D

ρ
(n)
φ

)
6 Fφ

(
ρ(n+1),D

ρ
(n)
φ

)
6 Fφ

(
ρ(n+1),D

ρ
(n+1)
φ

)
= F(ρ

(n+1)
φ ). (1.27)

The increase in the QFI is thus achieved by alternatively ‘mov-
ing’ along two perpendicular ‘directions’ of observables X and
initial states ρ. At each step we first go as high as possible in
‘direction’ X and then as high as possible in ‘direction’ ρ. Since
Fφ(ρ,X) is linear w.r.t. ρ, we always choose ρ to be pure, simi-
larly as optimal initial state for a given measurement is always
pure due to the convexity of the QFI, cf. Eq (1.10).

In Appendix A.1 we prove that for a system of finite dimen-
sion, the algorithm provides the maximum quantum Fisher in-
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formation, limn→∞ Fρ(n)φ

= F
(max)
φ . In the proof we exploit con-

cavity of F(ρ,X) w.r.t. convex sets of observables X and com-
pact and convex set of initial states ρ. The optimal initial state
is given by a subsequence of ρ(n). Although the convergence of
the algorithm may not be faster than other algorithms, such as
gradient methods, it only requires diagonalising two operators
at each step, ρ(n)φ and Gφ(Dρ(n)φ

) and a storage of only one op-

erator at each step.

An analogous algorithm for the variational principle in the
case of a fixed POVM, see Eq. (1.24), can be proved to converge
as in Appendix A.1. Let us also note that convergence of similar
algorithm used in quantum Bayesian estimation [76, 77] can be
proved analogously. We note as well that the algorithm is for-
mally similar to the Expectation Maximisation algorithm [145]
and similar extensions as in the case of the EM algorithm may
be applicable [146].

Restricted set of initial states. If we restrict the set of initial
states in Eq. (1.23) to a subset S, e.g. to matrix-product states or
Gaussian states, we obtain a variational principle for the maxi-
mum quantum Fisher information in S,

sup
ρ∈S

F(ρφ) = sup
ρ∈S

sup
X

Fφ(ρ,X) (1.28)

Furthermore, when the set S is convex (or at least there exist an
open convex neighbourhood around optimal (ρ,Dρφ), see Ap-
pendix A.1), an analogous alternating iterative algorithm will
converge to supρ∈S F(ρφ), which we demonstrate on the follow-
ing example.

Example of frequency estimation. Consider estimation of the fre-
quency ω of N two-level atom in the presence of collective

Markovian dephasing, i.e., ρω,t = e
− i2ωt

∑N
j=1 σ

(j)
z Λt(ρ) e

i
2ωt

∑N
j=1 σ

(j)
z ,

where σ(j)z = −|0(j)〉〈0(j)|+ |1(j)〉〈1(j)| with |0(j)〉 being the ground
and |1(j)〉 the excited state of j-th atom, whereas Λt represents
action of dephasing noise. In particular, for fully symmetric



1.2 variational principle for qfi 31

states we have 〈n|Λt(ρ)|m〉 = e−γt(n−m)2〈n|ρ|m〉, where γ is
dephasing rate and |n〉 denotes the state of n atoms excited
and the rest, N− n, in the ground state. In order to fully opti-
mise the estimation setup, one need not only consider an ini-
tial state ρ and an observable X, but also possibility of divid-
ing a total time T into n = T

t single experiments each last-
ing time t, in which case the corresponding total quantum
Fisher information equals F(total) = T

t F(ρω,t). Fig. 1.2 shows

Figure 1.2: Optimal frequency estimation with collective dephasing:
F(total) for the optimal symmetric states (green) found us-
ing the algorithm, the Berry-Wiseman states [75] (red) and
the uncorrelated states (blue). Black curve corresponds to
the bound 2T/γ [84]. The inset shows corresponding opti-
mal times of a single experiment.

results for optimal choices of t and symmetric initial state ob-
tained using the algorithm, which achieve an ultimate bound
for frequency estimation in the presence of collective dephas-
ing, F(total) 6 T

t t
2 (N−2 + 2γt)−1 6 2T/γ, which can be derived

from a phase-estimation bound in [84]. This confirms that the
algorithm indeed converges to F

(max)
ω . The bound is also ap-

proached by the optimal separable states for large N, but the
convergence rate is bigger for entangled preparations. One-axis
and two-axes squeezed states [28] perform as well as the opti-
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mal fully symmetric states for moderate and large N.

Experimental implementation of the algorithm. If diagonalisation
of the operators Gφ(X) and ρφ is difficult, the algorithm can be
generalised as follows. In the n-th step an observable X(n) is
fine to be chosen as long as Fφ(ρ(n),X(n)) > Fφ(ρ

(n),X(n−1)),
and a state for the next step ρ(n+1) when Fφ(ρ

(n+1),X(n)) >

Fφ(ρ
(n),X(n)). This way an increasing sequence Fφ(ρ(n),X(n)) is

obtained. This can be further refined by considering in each
step after choice X̃(n), its linear transformation X̃(n) leading to
Fφ(ρ

(n),X(n)) being its SNR. Furthermore, this generalised algo-
rithm can be actually implemented experimentally or through
random sampling techniques without any knowledge of X or ρ
beyond the signal ∂φ〈X〉φ and the noise ∆2φX which determine
Fφ(ρ,X), cf. (1.23). Although the series Fφ(ρ(n),X(n)) does not
necessary converge to F(max)

φ , it provides a way of consistently
improving the estimation setup.

1.2.3 Multi-parameter case

Multi-parameter variational principle. Consider quantum dynam-
ics which depends on a vector ofm parameters,φ = (φ(1), ...,φ(m))T ,
so that ρφ = Λφ(ρ), see Sec. 1.1.6. We introduce a multi-parameter
variational principle that yields the maximum sum of the Fisher
informations w.r.t. a single projective measurement, and thus
the trace of the corresponding Fisher information matrix Iφ,
which is not necessary diagonal, see Eq. (1.20),

sup
ρ,Π

n∑
k=1

Iφ(k)(ρ,Π) = sup
ρ

sup
X,f

m∑
k=1

F
(k)
φ

(
ρ, f(k)(X)

)
, where

F
(k)
φ (ρ,X) = Tr

(
G

(k)
φ (X) ρ

)
, (1.29)

with the parabolic functions of an observable, similarly as in
one-parameter case of Eq. (1.23), are

G
(k)
φ (X) = −Λ†φ

(
X2
)
+ 2

(
∂φkΛφ(ρ)

)†
(X), (1.30)
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and in order to consider any estimator for each parameter cor-
responding to just one projective measurement given by the
eigenbasis of X, we introduce a set of polynomial functions,
f = (f(1), ..., f(m))T , of an observable X of the order of the system
space dimension d = dim(H),

f(k)(X) =

d∑
j=1

α
(k)
j Xk +β(k). (1.31)

Note that in order to be able to reproduce any estimator, we
need a non-degenerate spectrum of X. That is why we con-
sider the optimisation w.r.t X and f together, cf. supX,f in (1.30).
Note that we consider optimisation with respect to only d×m
more variables than in one-dimensional case. Note that using
Lagrange multipliers for commuting observables Y1,..., Ym cor-
responding to m parameters, i.e., the variational principle with∑m
k=1 F

(k)
φ (Yk, ρ), with a condition of all m observables commut-

ing requires d(d− 1)/2×m(m− 1)/2 multipliers.

Trade-off in multi-parameter estimation. Note that in the varia-
tional principle each term F

(k)
φ (ρ,X) is maximised at in general

different X = D
(k)
ρφ , and the principle represents a trade-off be-

tween the estimation precision for different parameters, cf. [121,
122].

Optimal projective measurement for a given state. From the supre-
mum over X and polynomials f, we can derive the equations for
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optimal projective measurement for a given state ρ and dynam-
ics Λφ as follows.

−

m∑
k=1

d∑
j=1

α
(k)
j

(
d∑
j ′=1

α
(k)
j ′

j+j ′∑
l=1

Xl−1 (ρφ)X
j+j ′−l

+2β(k)
j∑
l=1

Xl−1 (ρφ)X
j−l +

j∑
l=1

Xl−1 (∂φkρφ)X
j−l

)
= 0, (1.32)

Tr
(
Xj
{
−f(k)(X) +D

(k)
ρφ , ρφ

})
= 0, for k = 1, ...,m, j = 1, ...,d, (1.33)

Tr
(
f(k)(X) ρφ

)
= 0, for k = 1, ...,m, (1.34)

where D(k)
ρφ is the SLD corresponding to φk and above equations

corresponds to derivatives w.r.t to X in (1.32), α(k)
j in (1.33), and

β(k) in (1.34). Note that when there exist k such that f(k)(X) has
a non-degenerate spectrum, we can simply choose f(k)(X) = X,
since X is varied as well.

Iterative alternating algorithm. When Eqs. (1.32-1.34) can be
solved, we can also introduce an iterative numerical algorithm
to find both the optimal state and the optimal measurement.
Again, a generalised algorithm can be performed via experi-
ment/random sampling techniques, without knowing X of ρ
only with control over φ, but higher moments of X, up to d-th
moment, need to be measured, cf. Eq. (1.31).

If we fix X (with non-degenerate spectrum) and consider op-
timisation with respect to an initial state ρ and polynomials f
only, we obtain the maximum sum of the Fisher informations
for the projective measurement on the eigenbasis of X, cf. (1.24).
If instead of polynomials, we simply consider linear transfor-
mations, we obtain the maximum sum of the SNRs for the ob-
servable X. The latter approach can be useful in the generalised
algorithm, in the case when it would take a long time to gather
the data to estimate the higher moments of X.
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1.2.4 Summary

In this section we presented a variational principle for the max-
imum quantum Fisher information. This variational principle
leads to a computationally efficient iterative algorithm. We il-
lustrated its good performance on the example of frequency
estimation in the presence of collective dephasing. Moreover,
in the case of multi-parameter estimation, we derived a varia-
tional principle maximising the trace of Fisher information ma-
trix w.r.t. to a single projective measurement, and delivered the
equations for the optimal projective measurement given a sys-
tem preparation.

1.3 precision limits for phase estimation in the

presence of correlated dephasing noise

In this section we come back to the simplest quantum metrol-
ogy setup of interferometry, in which parameter φ being esti-
mated is just a phase, cf. Fig. 1.1. We consider a phase encoded
by a local Hamiltonian in the presence of dephasing which com-
mutes with the phase encoding, i.e., ρφ = e−iφHΛ(N)(ρ)e−iφH,
where the Hamiltonian H =

∑N
j=1Hj with Hj = 1⊗(j−1) ⊗ h⊗

1⊗(N−j). It is known that for local (independent) dephasing
noise, Λ(N) = Λ⊗N, the scaling of the QFI is at most standard
in the number N of subsystems [15, 16], while for collective
(fully correlated) dephasing, the scaling is at most constant [84].

In [27] we derived an upper bound on the QFI for phase es-
timation in the presence of semi-classical spatially-correlated
Gaussian dephasing, see Eq. (1.37), which shows a transition
between the standard and the constant scaling, depending on
the form of the decay of noise correlations. Below we sketch the
derivation and discuss main results of [27].
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1.3.1 Semi-classical correlated Gaussian dephasing

Semi-classical dephasing noise can be simply viewed as intro-
ducing additional random phases {φj}

N
j=1 to the subsystems dy-

namics, beyond the phase φ we want to estimate. Those ran-
dom phases vary from one experiment to another, and the av-
erage state is given by

Λφ(ρ) =

∫
dϕ1...dϕN g(ϕ1, ...,ϕN) e−i

∑N
j=1(φ+ϕj)Hjρ ei

∑N
j=1(φ+ϕj)Hj ,

(1.35)

where we assume a Gaussian distribution of random phases
p(ϕ1, ...,ϕN) =

√
2π detΣe−

1
2

∑N
j,k=1(ϕj−µj)(Σ

−1)jk(ϕk−µk), which
is determined by the covariance matrix of correlations, Σjk =

E(ϕjϕk) − µj µk, and the means, µj = Eϕj, of the random
phases. Without loss of generality we can assume µj = 0, which
corresponds to the measurement of an observable X unitar-
ily tranformed as ei

∑N
j=1 µjHj Xe−i

∑N
j=1 µjHj . When the random

phases are independent and identically distributed phases, the
dephasing is local, whereas the fully correlated phases, ϕj = ϕk,
1 6 j,k 6 N, correspond to collective dephasing. Correlations
in noise can be due to e.g. spatial correlations in unaccounted
magnetic fields, or interactions with common baths [100].

1.3.2 Bound on phase estimation precision

Note that there are two contributions to estimation errors.
Firstly, the quantum noise related to the fact that phases en-

coded in a quantum state cannot be observed directly, but can
be retrieved only via probabilistically distributed results of mea-
suring an observable X. Even, when system dynamics is unitary,
the mean square error is always at least equal to the inverse of
the QFI, cf. (1.7), which takes into account available resources,
i.e., the number N of subsystems and multipartite correlations
in an initial state ρ.
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Secondly, in the presence of correlated Gaussian dephasing,
even if the phases encoded in the evolved system state could
be observed directly and values of {φ+ϕj}j=1,...,N could be re-
constructed, the randomness of {ϕj}j=1,...,N would yield classical
noise in estimating φ given by the minimum error of estimating
the mean φ of Gaussian random phases φ+ϕjj=1,...,N, which
error we denote as ∆2Σ.

Using Bayesian estimation tools exploiting knowledge about
the random phases distribution, see Sec. 1.1.2.4, we derive a
lower bound on the mean square error in phase estimation for
all locally unbiased estimators φ̂,

∆2φφ̂ > Fφ(UφρU
†
φ)

−1 +∆2Σ (1.36)

> N−2(hmax − hmin)
−2 +∆2Σ.

Furthermore, note that this bound corresponds to an upper
bound on the QFI,

Fφ(Λφ(ρ)) 6
(
Fφ(UφρU

†
φ)

−1 +∆2Σ

)−1
(1.37)

6
(
N−2(hmax − hmin)

−2 +∆2Σ

)−1
.

The bound is tight for weak decoherence, since it recovers the
Heisenberg scaling as dephasing strength decreases to 0. We
will exploit this feature in the next Sec. 1.4, in order to de-
rive limits on the frequency estimation in the presence of non-
Markovian dephasing noise. As we demonstrate in the exam-
ples below, for fully correlated random phases the bound yields
a constant limit [84], which is also the case whenever the cor-
relations do not decay to 0. For i.i.d. random phases we obtain
the standard limit, as earlier derived in [15, 16], and this limit
is also preserved for exponentially decaying correlations, see
Fig. 1.3.

Universality of the bound. Although in the derivation of the
bound (1.36) we consider semi-classical dephasing model, in
which Gaussian random phases are introduced to subsystems
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dynamics while encoding a phase φ, the bound is not necessary
limited only to this model.

First, let us consider the case of the i.i.d. phases with variance
σ2, in which case the dephasing is local and fully determined
by its action on a single subsystem. In particular, for subsystem
of a qubit and h = 1

2σz, we obtain (in the eigenbasis of σz)

Λφ(ρ) =

 ρ00 ρ01 e
iφ−σ

2

2

ρ10 e
−iφ−σ

2

2 ρ11

 , where ρ =

 ρ00 ρ01

ρ10 ρ11

 ,

(1.38)

which is a general structure of any dephasing channel acting
on a qubit. Furthermore, in phase estimation, the ultimate pre-
cision of measuring a state Λφ(ρ), given by the inverse of QFI,
depends only the state ρ, and thus depends on the noise only
via the strength value σ2/2, not any other details of the model.
As the variance σ2 is not limited for uncorrelated Gaussian ran-
dom phases in the semi-classical model, any other model of
local dephasing can be mimicked by this model, and thus the
bound (1.36) holds true.

Furthermore, for a system consisting of N subsystems under-
going correlated dephasing described by the following Lind-
blad master equation [8, 9],

d
dt
ρω(t) = −iω

[ N∑
j=1

Hj, ρω(t)
]

(1.39)

+
1

2

N∑
j,k=1

Σ(t)jk

(
Hj ρω(t)Hk −

1

2

{
HjHk, ρω(t)

})
,

the resulting system dynamics at time t is identical to that
of a semi-classical Gaussian model with the covariance matrix∫t
0 duΣ(u) and the average φ = ωt. Therefore, the bound (1.36)

is also true for such a class of dephasing noise. For example of
such a quantum noise model derived from unitary dynamics of
subsystems interacting with baths, see [100].
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Derivation. Let us first consider a thought experiment in which
phases encoded in an evolved system state can be accessed di-
rectly in each realisation of the experiment, i.e., thr phases of
the state e−i

∑N
j=1(φ+ϕj)Hjρ ei

∑N
j=1(φ+ϕj)Hj . Furthermore, let us

assume that we can reconstruct all the values {φ+ϕj}j=1,...,N, in
contrast to e.g. an initial state ρ chosen as the GHZ state that en-
codes only the phase Nφ+

∑N
j=1ϕj. We have that ϕ̃j = φ+ϕj,

j = 1, ...,N, are Gaussian variables with the covariance ma-
trix Σ and identical means φ. From Eqs. (1.25) and (1.26), the
mean φ is then efficiently estimated with a linear estimator
ϕΣ =

∑N
j=1 γjϕ̃j, where γj =

∑N
k=1(Σ

−1)jk/
∑N
j,k=1(Σ

−1)jk gives
the unbiased estimator as

∑N
j=1 γj = 1. The mean square error

of this estimator is ∆2Σ =
∑N
j,k=1(Σ

−1)jk. Note that this linear
estimator ϕΣ itself is just a random phase whose distribution is
Gaussian with mean φ and variance ∆2Σ, and it contains all the
information about φ therefore giving so called sufficient statis-
tics [63].

In a real estimation experiment, however, phases in an evolved
system state cannot be accessed directly, but only through a
POVM measurement performed on the state. Nevertheless, as
we know the Gaussian distribution of random phases {ϕj}

N
j=1,

in order to estimate φ = φ0 + δφ from a measurement result
x, we first use Bayesian estimation to construct optimal esti-
mators of {ϕ̃}Nj=1 (assuming their means equal φ0), which we
denote as {ϕ̃j(x)}

N
j=1, and then simply use the linear estimator,

φ̂(x) =
∑N
j=1 γj ϕ̃j(x), to estimate φ. From Bayesian estimation,

we have
∑
x pφ0(x) φ̂(x) = φ0. Moreover, this estimator is opti-

mal (up to a linear transformation guaranteeing local unbiased-
ness around φ = φ0),

Fφ0 = SNRφ0(φ̂) =

(
∂φ|φ=φ0Eφ φ̂

)2
∆2φ0φ̂

= (∆2Σ)
−2∆2φ0φ̂, (1.40)

where we also used the fact that the signal ∂φ|φ=φ0Eφ φ̂ =

(∆2Σ)
−1∆2φ0φ̂ (for all derivations see Appendix A.2.2).
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On the other hand, φ̂ is also the optimal Bayesian estimator
for the phase ϕΣ (see Appendix A.2.1). Hence, from Eq. (1.17)
we have that its average mean square error

AME(φ̂) = ∆2Σ −∆
2
φ0
φ̂. (1.41)

The estimator necessary obeys the van Trees inequality [79, 80],
see Eq. (1.14),

AME(φ̂) >

(
(∆2Σ)

−1 +

∫
R

dϕΣ p(ϕΣ) FϕΣ

)−1

, (1.42)

where we used the easy fact that for Gaussian distribution of
ϕΣ we have Iprior = (∆2Σ)

−1. Moreover, ϕΣ indeed plays a role of
a phase and is encoded in the system state via the same Hamilto-
nian H (see Appendix A.2.3). Thus, the Fisher information FϕΣ
for any measurement can be shown to be no more than the QFI

with unitary dynamics, FϕΣ 6 F(UφρU
†
φ).

Therefore, combining Eqs. (1.41) and (1.42) we arrive at

∆2φ0φ̂ 6 ∆2Σ −
(
(∆2Σ)

−1 + Fφ0(Uφ0ρU
†
φ0
)
)−1

, (1.43)

which together with Eq. (1.40) yields the main result

Fφ0 6
(
Fφ0(Uφ0ρU

†
φ0
)−1 +∆2Σ

)−1
. (1.44)

Optimisation with respect to a performed POVM measurement
leads to Eq. (1.36).
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1.3.3 Examples

Let us consider two examples of correlated dephasing with co-
variance matrices given by

Σ1 = σ2



1 α · · · α

α 1 α · · · α
... . . . . . . . . . ...

α · · · α 1 α

α · · · α 1


, (1.45)

Σ2 = σ2



1 α α2 · · · αN−1

α 1 α · · · αN−2

... . . . . . . . . . ...

αN−2 · · · α 1 α

αN−1 · · · α2 α 1


, (1.46)

which leads to

∆2Σ1 = σ
2

(
α+

1−α

N

)
, ∆2Σ2 = σ

2N−1 1+α

1−α+ α
N

. (1.47)

Therefore, from Eq. (1.36), for any value 0 < α < 1, for constant
correlations, Σ1, the lower bound on the mean square error con-
verges to a constant, σ2 α, whereas for exponentially decaying
correlations, Σ2, we obtain asymptotically the standard scaling
∼ σ2N−1 1+α

1−α , see Fig. 1.3. Note that, both for Σ1 and Σ2, the
case α = 1 corresponds to collective dephasing and

∆2φφ̂ >

(
σ2 +

1

F(UφρU
†
φ)

)
>
(
σ2 +N−2

)
, (1.48)

where in the second inequality we assumed (hmax −hmin)
2 = 1,

as is the case in the two-arm interferometry. An analogous
bound was derived for two-arm interferometry with Gaussian
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Figure 1.3: Error scaling in phase estimation with correlated dephas-
ing Lower bounds on the errors in phase estimation using
N two-level atoms, cf. Eq. (1.36). The difference in scaling
with N, between independent ∝ N−1 (red solid) and col-
lective dephasing ∝ 1 (blue solid) is clearly visible. Expo-
nentially decaying correlations preserve the∝ N−1 scaling
(red dashed; α = 0.9), whereas non-decaying correlations
limit the precision scaling to a constant error (blue dashed;
α = 0.2). Dephasing strength σ2 = 0.5.

state of photons [84]. The case of α = 0 corresponds to indepen-
dent random phases and local dephasing with

∆2φφ̂ > N−1

(
σ2 +

N

F(UφρU
†
φ)

)
> N−1

(
σ2 +N−1

)
. (1.49)

In [16] a different bound has been derived, ∆2φ0φ̂ > N−1(eσ
2
−

1), which works better for strong dephasing, eσ
2
− 1 � N−1,

but does not provide the Heisenberg scaling for weak noise
when σ2 → 0. Both bounds show the standard scaling ∝ N−1

when N→∞.

1.3.4 Comments and summary

Derivation of the bounds (1.48) and (1.49) lends a simple ex-
planation to the constant and linear precision scaling with the
collective [84] and local dephasing noise [16], respectively. For
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fully correlated random phases, leading to collective dephasing
noise, all the subsystems experience a shift by the same random
phase φ + ϕ, and therefore noise of ϕ cannot be eliminated,
leading to the estimation error bounded by the random phase
variance, σ2. Only by repeating the experiment n times when
there are no correlation in the noise between experiments, one
can further reduce the errors to σ2/n. On the other hand, N
i.i.d. random phases leading to local dephasing noise, always
give a contribution to estimation errors that scales as N−1 due
to the Central Limit Theorem (CLT) for the classical noise.

In this section we derived a bound on phase estimation preci-
sion in the presence of correlated Gaussian dephasing noise, cf.
Eq. (1.36), which delivers the standard limit for exponentially
decaying correlations, while for correlations not decaying to 0
asymptotically, imposes the constant limit. In derivation of the
bound, we exploited the fact that the dephasing channel Λφ
can be represented as an average over a Gaussian distribution
of unitary channels, cf. Eq. (1.35). Therefore, this bound should
extend to other channels by modifying the local classical simula-
tion method of deriving bounds on the QFI [16], in which the
encoding channel is also represented as an average over a prob-
ability distribution over the space of quantum channels. This
way, new bounds on the QFI in the presence of other correlated
noise can be found, and such bounds will be tight for weak
decoherence.

1.4 precision limits for frequency estimation with

non-markovian dephasing , damping and depo-
larising noise

An entangled state can be very sensitive to changes introduced
to its dynamics and thus can be used as a precise sensor of dy-
namics parameters. For unitary dynamics of N entangled two-
level atoms, precision in frequency estimation is Heisenberg-
limited and scales as N−2, whereas uncorrelated states give
only the standard-limited precision that scales as N−1. How-
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ever, when interactions with external environment lead to local
Markovian noise 1 such as dephasing, depolarisation or ampli-
tude damping, the precision scales at most as N−1 for all atom
preparations and the quantum enhancement is limited just to a
constant [12, 15, 16, 93, 94], see discussion in Sec. 1.1.4.

In this section we discuss frequency estimation in the pres-
ence of non-Markovian noise [22, 23, 27, 102]. Markovian dy-
namics are defined by their semi-group structure, which to-
gether with complete positivity of the dynamics leads to their
characterisation by a Lindblad master equation [8, 9], see also
Sec. 2.1.1. Such a general description, which is a consequence
of approximation of weak system-environment interaction and
much shorter environment timescales, is missing, however, when
those approximations do not hold and system dynamics are
non-Markovian. Nevertheless, using a universal bound on phase
estimation precision in the presence of local dephasing derived
in the previous section, for models featuring initial Zeno dy-
namics, we show that the Zeno limit ∝ N−3/2 in frequency preci-
sion is indeed the best possible scaling for all atom preparations
and measurements [27]. This limit was demonstrated for sys-
tem initially prepared in the GHZ state and the parity measure-
ment [22, 23]. Furthermore, the Zeno limit can be achieved only
for experiments performed within the Zeno dynamics-regime,
whereas for longer experiments the precision scaling is neces-
sarily standard. Moreover, using similar arguments as given
for dephasing noise below, we can show that the Zeno limit
also holds for local non-Markovian models of depolarisation or
amplitude damping noise. In [102], the Zeno limit result was
proven for all noise models commuting with frequency encod-
ing.

1 Here the Markovian noise refers to time-homogenous Markovian noise, so
that Λt1+t2 = Λt2 ◦Λt1 , and any other case we refer to as non-Markovian.
We remark that in the literature on non-Markovianity it is common to con-
sider any divisible dynamics to be Markovian, i.e., Λt1+t2 = Λ̃t2,t1 ◦ Λt1 ,
where Λ̃t2,t1 represents some quantum dynamics, and in general Λ̃t2,t1 6=
Λt2 .
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1.4.1 Frequency estimation

Let us recall that a frequency estimation experiment with a
system of N two-level atoms consist of three stages: system
preparation in an initial state ρ, evolution into ρω,t = Λ

(N)
ω,t(ρ)

within time t and measurement of an observable X on ρω,t,
which leads to estimation precision given by the inverse of
the SNR,

(
(∂ω〈X〉ω,t)

2/∆2ω,tX
)2, see Fig. 1.4 for an example of

Ramsey interferometry. Within total time T , this single experi-
ment is repeated T

t times, assuming that preparation and mea-
surement times are negligible, which leads to total precision(
T
t (∂ω〈X〉ω,t)

2
/
∆2ω,tX

)−1
when the experiments are indepen-

dent.

Figure 1.4: Ramsey spectroscopy [4, 147]. N two-level atoms in the
ground state |0〉⊗N are prepared using the Ramsey π

2

pulse, which drives each atom into the superposition of
the ground and excited states, 1√

2
N (|0〉+ |1〉)⊗N. Next, the

atoms evolve for time t, each gaining a relative phase
φ = ωt. Finally, to retrieve φ, another π2 pulse is applied
and the excited state population is measured via stimu-
lated emission, X = Jx. SNR equals Nt2 when the dynam-
ics is unitary and φ = π

2 . This figure originally appeared
in [24].

We want to establish an ultimate limit to the estimation preci-
sion, by optimising the system preparation ρ, a measurement X
and time t of a single experiment, for frequency estimation us-
ing N atoms within total time T . Firstly, for a given initial state
ρ and time t of dynamics, the optimal X is a linear function of
the SLD, Dρω,t , see Eqs. (1.8) and (1.7), so that the correspond-
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ing SNR equals QFI, Fω(ρω,t). Secondly, the optimal initial state
is the one leading to the maximum QFI, maxρ Fω(ρω,t). Finally,
by optimizing time t of a single time, we arrive at the limit,

∆2ωω̂ > min
t6T

(
T

t
sup
ρ
Fω(ρω,t)

)−1

. (1.50)

Relation to phase estimation. Consider unitary dynamics given
by ρω,t = e−iωtHρe−iωtH, where the Hamiltonian is given as
H = 1

2

∑N
j=1(−|0(j)〉〈0(j)|+ |1(j)〉〈1(j)|) with |0(j)〉, |1(j)〉, being the

ground and the excited state of j-th atom, respectively. In this
case, the bound in Eq. (1.50) reduces to

∆2ωω̂ > N−2T−2. (1.51)

This limit corresponds to the optimal GHZ preparation encod-
ing effectively a relative phase Nφ, where φ = ωT , see discus-
sion in Sec. 1.1.3. Moreover, for any system preparation fol-
lowed by the unitary dynamics, the frequency ω is encoded in
ρω,t always via the phase φ = ωt. Therefore, we have Fω(ρω,t) =

t2 Fφ(e
−iφHρeiφH), and moreover, the QFI Fφ(e

−iφHρeiφH) is in-
dependent from φ value and we denote Fφ(e−iφHρeiφH) =: F(ρ).
It simply follows that the optimal time of a single experiment
is t = T , when the encoded phase φ is the largest.

Consider now dynamics with local noise, Λ(N)
ω,t = Λ

⊗N
ω,t , which

commutes with frequency encoding, so that the frequency ω is
again encoded via the phase, ρω,t = e−iωtHΛ⊗Nt (ρ) eiωtH and
the corresponding QFI equals t2 F(Λ⊗Nt (ρ)). In this case the opti-
mal time of frequency estimation will result from the trade-off
between the phase φ = ωt growing with time and coherence
in the state Λ⊗Nt (ρ) being suppressed with the increasing noise
strength.

1.4.2 Universal bounds on frequency estimation precision

The above discussed connection between frequency estimation
and phase estimation, enables us to address the question of
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the optimal estimation setup by using bounds on the phase
estimation precision.

First, consider local dephasing noise. We will use the bound
in Eq. (1.37) derived for semi-classical correlated Gaussian de-
phasing, which in the local independent takes the form of Eq. (1.49).
We obtain

∆2ωω̂ > min
t6T

(
1

N2
+
2Reγ(t)
N

)/
T t, (1.52)

where γ(t) describes the dephasing noise strength. The estima-
tion errors are bounded by the quantum noise, 1/N2 T t, which
bounds the precision of frequency estimation using N atoms
when the atoms dynamics is unitary, and the classical noise,
2Reγ(t)/NT t, which represents the errors caused by random
phases introduced to atom dynamics in the semi-classical noise
model, and would be present even if the system state could be
read out directly.

Note that for any local dephasing noise, due to locality, dy-
namics of N atoms are determined just by dynamics of a single
atom, Λ(N)

ω,t = Λ
⊗N
ω,t , where

Λω,t(ρ) =

 ρ00 ρ01e
iωt−γ(t)

ρ10e
−iωt−γ(t)∗ ρ11

 , (1.53)

and Reγ(t) determines the dephasing strength, whereas Imγ(t)

effectively shifts the phase φ = ωt. The precision in phase es-
timation depends on the noise model only via γ(t), not any
other details of the model, as measurements are performed on
the system alone. Note that for a given time t, the action of
any local dephasing model can be mimicked by the indepen-
dent semi-classical Gaussian model, and therefore, the bound
in Eq. (1.52) is valid for all dephasing models.

Similarly, for non-Markovian noise models of local depolari-
sation or spontaneous emission, we can modify bounds on fre-
quency estimation precision in the presence of Markovian noise
derived with Channel Extension method in [15, 94]. As those
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types of noise commute with frequency encoding, in deriva-
tion of the bounds, bounds on phase estimation precision are
established first. These bounds do not explicitly assume Marko-
vian dynamics and are valid for non-Markovian models as well,
see Tab. 1.1. Note that for a given local dephasing model, the

Noise CE bound
Dephasing

(
η(t)−2 − 1+ 1

N

)
/NTt

Depolarisation
[(
η(t)−2 + η(t)−1 − 2

)
+ 2
N

]
/2NTt

Spon. Emission
(
η(t)−1 − 1+ 4

N

)
/4NTt

Table 1.1: Channel Extension bounds on frequency estimation preci-
sion for local noise [15, 94]. We have 0 6 η(t) 6 1, for
dephasing η(t) = |eγ(t)| = eReγ(t).

bound (1.52) can be used to determine the best possible preci-
sion scaling withN by finding the optimal experiment time topt.
In Fig. 1.5 we consider the quantum dephasing model solved
in [148] and discussed in [22], in which interaction of atoms
with bosonic baths with the cut-off frequency ωc and at inverse
temperature β, leads to local dephasing, γ(t) = ln (1+ω2ct

2) +

2 ln (
sinh(πtβ−1)
πtβ−1

). The optimal precision asymptotically scales as
∝ N−3/2, the Zeno limit [22, 23]. Below we show that this re-
sult holds for all local dephasing models featuring initial Zeno
dynamics [17–20].

1.4.3 Zeno limit

Quantum models of noise are derived assuming that global dy-
namics of the system and environment is unitary and the initial
state of the system and environment is a tensor product. Local
decoherence models originate from the situation where each
subsystem, in our case a single atom, interacts with a differ-
ent environment, so that the global Hamiltonian is a sum of
individual Hamiltonians for N subsystem-environment pairs.
For identical subsystems and environments this leads to ρω,t =

Λ⊗Nω,t(ρ). Furthermore, the initial behaviour of any quantum
model is is characterised by a quadratic decay of the proba-
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Figure 1.5: Frequency estimation with non-Markovian dephasing
from [148]. Main plot: bound (1.52) (continuous lines) is
compared to GHZ state performance (short-dashed lines),
for different experiment times t and number of atoms
N = 10 (blue), 50 (red), 100 (green). Optimal values both
for the bound and GHZ state are achieved at t ∝ N−1/2

inside Zeno-dynamics regime, but noise strength is not
negligible leading to worse precision than in unitary case
(for N=100 see continuous black line). Inset: optimal pre-
cision for different number N of atoms. Precision in the
bound (continuous gray) and for GHZ state (triangles)
scales ∝ N−3/2 in contrast to standard scaling for uncor-
related state (long-dashed gray) and unitary Heisenberg
scaling (continuous black). Plot parameters were chosen
ωc =

π√
3
β−1, which leads to β−1 =

√
3
2πσ. This figure orig-

inally appeared in [24].

bility of observing the system in its initial state, so called sur-
vival probability, 〈ψ|ρω,t|ψ〉 = 1 − c

2t
2 + O(t3), which enables

the quantum Zeno effect [17–20]. We refer to this time regime
this quadratic decay takes place as Zeno dynamics regime. In
the case of local dephasing noise, the dynamics is parametrised
by γ(t), see Eq. (1.53), which by construction does not depend
on N, but on the interaction details [22, 23]. We now show how
the initial behaviour of γ(t) is fully determined by the quadratic
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decay of the survival probability. Consider a single atom ini-
tially in the state |ψ〉 = 1√

2
(|0〉+ |1〉), we have

〈ψ0|ρω,t|ψ0〉 =
1

2

[
1+ e−Reγ(t) cos(ωt− Imγ(t))

]
,

which, when expanded around small t, implies

Reγ(t) =
σ2

2
t2 +O(t3) and (1.54)

Imγ(t) = −µ t+O(t2), (1.55)

where σ corresponds to the fastest energy scale in the bath dy-
namics [22, 23]. Let τ be chosen so that for t < τ the above
approximation is valid. Note that σ, µ and τ do not depend on
N, as γ(t) does not. The general characterization of initial dy-
namics given in Eq. (1.54) will allow us now to derive the Zeno
limit ∝ N−3/2 for frequency estimation precision in the pres-
ence of any non-Markovian dephasing noise with initial Zeno
dynamics. Moreover, as we show in Tab. (1.2), the quadratic
decay of the survival probability allows for similar characteri-
sation of initial dynamics in noise models of depolarisation and
spontaneous emission.

For local semi-classical models of dephasing, random classi-
cal fields independently acting on atoms are considered. For a
random field h, e−γ(t) = E ei

∫t
0 h(s)ds [22], where E is the aver-

age over the field probability distribution. When h is Gaussian,
γ(t) depends only on the field correlations in time. Constant
correlations lead to γ(t) = σ2

2 t
2 − iµt, where σ2, µ are simply

the variance and mean of the time-independent field h(t) =

h(0) [149]. Such behaviour of γ(t) is analogous to Zeno dynam-
ics regime in quantum models. When there are no time correla-
tions (white noise), we obtain the linear behaviour, γ(t) = γt.

The linear behaviour is a characteristic feature of Markovian
models, where dynamics obey a master equation [8, 9] and a
semi-group structure, Λω,t1+t2(ρ) = Λω,t2(Λω,t1(ρ)), thus im-
posing γ(t) = γt [12].
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Let us now consider the following time regimes in atom dy-
namics with non-Markovian dephasing: the quantum regime
when the classical noise is much smaller than the quantum
noise, i.e., 2Reγ(t)/N � 1/N2, the quantum-classical regime
when the noises are of the same order, and the classical regime
when the classical noise dominates. From now on we will con-
sider a large numberN of atoms. WhenN→∞, in the quantum-
classical regime the dephasing strength gets arbitrarily small,
Reγ(t) ≈ 1/N −→ 0. For models without complete revivals
in which Reγ(t) = 0 only at t = 0, this implies that in the
quantum-classical regime time t → 0 as N → ∞ and thus,
for large enough N one must enter the Zeno-dynamics regime,
where Reγ(t) = σ2

2 t
2 +O(t3).

For experiments in the quantum time regime, the frequency
estimation precision is just like in the unitary case, see Fig. 1.5,
as initial quantum correlations are preserved. The phase φ =

ωt encoded in the state is, however, very small due to the short
experiment time t leading to,

∆2ωω̂ & min
t�N−1/2/σ

N−2/ T t � N−3/2 σ/ T . (1.56)

For experiments in the classical time regime, the precision obeys
the standard scaling, which is a consequence of suppression of
quantum correlations in the dephased system state Λ(N)

t (ρ),

∆2ωω̂ & min
t�N−1/2/σ, t6T

N−1 2Reγ(t)/ T t = N−1C/ T . (1.57)

The quantum-classical regime is optimal when N → ∞, as it
lays asymptotically in the Zeno-dynamics regime and Eq. (1.52)
reduces to Zeno limit

∆2ωω̂ > min
t=O(N−1/2/σ)

(
1

N2
+
σ2t2 +O(t3)

N

)
/ T t

= N−3/2 2σ/ T +O(N−2), (1.58)

where the minimum is achieved at topt = N−1/2/σ. The bound
in Eq. (1.58) is also valid for semi-classical models whose dy-
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namics within the random field correlation time τ is analogous
to the Zeno dynamics, for examples see [22].

Let us recall from [22, 23] the results on frequency estimation
in the presence of non-Markovian dephasing using atoms pre-
pared in the GHZ state and the parity measurements. The total
precision for optimal locally unbiased estimator is

∆2ωω̂ = min
t6T

N−2e2NReγ(t)/ T t = N−3/2
√
2e σ/ T , (1.59)

where we used the fact that for large N, the optimal time enters
the Zeno-dynamics and topt = N−1/2/σ. This proves that the
Zeno limit is achievable. Note that the GHZ state performs opti-
mally for experimental times t . 0.4N−1/2/σ, see Fig. 1.5, but
it may not be optimal as the constant in the bound (1.58) is not
achieved.

Markovian dephasing noise. For Markovian dephasing the noise
strength increases faster for initial times, as γ(t) = γt. Conse-
quently, phases encoded in the system state in the quantum-
classical regime are so small that the scaling remains standard,

∆2ωω̂ >
2Reγ
T

N−1. (1.60)

Other types of noise. By considering a modification of the bounds
on frequency estimation precision in the presence of Markovian
noise, derived with Channel Extension method in [15, 94], see
Tab. 1.1, one analogously arrives at the Zeno limit ∝ N−3/2 for
depolarisation and spontaneous emission, as long as a noise
model features initial Zeno dynamics, see Tab. 1.2. In [102] it
was shown that the Zeno limit holds for all noise models that
commute with frequency encoding and feature initial Zeno dy-
namics.
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Noise 〈ψ|ρω,t|ψ〉 η(t) at t < τ η(t) Markov
Dephasing (1+ η(t) cos(ωt))/2 1− σ2

2 t
2 +O(t3) e−γt

Depolarisation (1+ η(t) cos(ωt))/2 1− 2σ2

3 t
2 +O(t3) e−

4
3γt

Spon. Emission η(t) (1+ cos(ωt))/2 1− 4σ2t2 +O(t3) e−8γt

Table 1.2: The survival probability for an initial state |ψ〉 = 1√
2
(|0〉+

|1〉) of a single atom and parametrisations of noise in the
Zeno regime and with Markovian assumption that lead to
bounds (1.58) and (1.60).

1.4.4 Non-Markovianity is (not) a resource

Let us note that the fact that the bound in Eq. (1.57) proving the
standard scaling of frequency estimation precision in the classi-
cal time regime, has important consequences for regarding non-
Markovianity as a resource. It shows that no matter what type
of non-Markovian dynamics takes place after the initial Zeno
dynamics it does not lead to enhancement in the precision scal-
ing for estimation in the presence of dephasing noise. In par-
ticular, any revivals in coherence or in quantum correlations,
usually considered as a signature of non-Markovian dynam-
ics [25, 26], will asymptotically not enhance the precision scaling
with the numberN of subsystems used, for example see Fig. 1.6.
This is due to the fact that choosing a revival time tr, which is
independent of N, leads to a finite strength of the local noise
and thus the standard scaling. Choosing topt as above, which
approaches t = 0 as the number of subsystems grows, however,
can reduce the noise strength with N due to a slow quadratic
increase of noise strength in the Zeno regime, cf. Eqs. (1.54), in
contrast to much the faster linear growth in the case of Marko-
vian noise [12]. See also the discussion in [102].

1.4.5 Summary and outlook

Summary. The Zeno limit ∝ N−3/2 in the precision of frequency
estimation was first demonstrated for the GHZ state [22, 23]. In
this section we presented the results of [27], where the Zeno
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Figure 1.6: Asymptotic irrelevance of non-Markovian revivals in
frequency estimation. Upper panel: Example of non-
Markovian dephasing channel from [150], where eγ(t) =

e−
t
2τ

(
cos(µ t2τ) +

1
µ sin(µ t2τ)

)
and µ =

√
(4aτ)2 − 1,

where a is system-bath coupling strength and τ deter-
mines preferred interaction frequencies, µ = iτ (red), µ =
0 (blue), µ = 10τ (green). The inset depicts dependence of
the bound from Tab. 1.1 for N = 100 on the single exper-
iment time t. Lower panel: Numerical optimisation of t in
all time regimes. For large N the Zeno limit in precision,
N− 3

2 2σ/T , and topt = N− 1
2 /σ (inset) is obtained. Note

that not only τ, but also µ determines σ =
√
2+ |µ|2/ 2τ

for this model and thus the optimal times are different for
the chosen parameters.
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limit has been proven to hold for any frequency estimation ex-
periments in the presence of local dephasing noise featuring ini-
tial Zeno dynamics. Moreover, the Zeno scaling can be achieved
only for experiments performed in the Zeno-dynamics regime
and for other regimes the precision is standard-limited.

Future work. In this section and other works on frequency es-
timation in the presence of non-Markovian noise [22, 23, 102],
the noise was assumed to be independent in individual experi-
ments, so that the signal to noise ratio of n = T/t experiments
lasting time t is simply n times the SNR of a single-experiment,
cf. Eq. (1.25). In general, however, one should consider correla-
tions between measurements results due to correlations in time
of random fields in semi-classical models, or perturbations in
the environment state introduced by measurements on the sys-
tem evolving coherently with the environment. Those pertur-
bations, together with correlations created between the system
and its environments, are two core ingrediends of the parent
definition of non-Markovian dynamics [151, 152], and should
not be easily discarded.

Interestingly, in the quantum metrology setup, the scenario
simplifies as follows. Of course, the evolved and then measured
system state is replaced by a new initial preparation in each ex-
periment, thus removing the correlations between the system
state and its environments, but due to exactly those correla-
tions created in the coherent system-environment, the evolved
environment state is in general different from its initial state.
As, in every individual experiment, the system is assumed to
be initialised in the same state that is uncorrelated with the
environment, this imposes Markovian dynamics of the environ-
ment. Asymptotically, for large total time T of experiments, the
environment will approach the stationary state of that Marko-
vian dynamics, which will in general depend on time t and an
initial state of the system [153]. In turn, the system dynamics
should be considered as a collection of quantum channels in-
dexed by the single experiment time t [152], as a consequence
of different stationary states of the environment. Furthermore,
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bounds on frequency estimation precision should be derived
for that collection of system quantum channels. We intend to
apply this idea to non-Markovian models in which the system
couples strongly to a part of the environment, while dynamics
with respect to the rest of the environment obeys the Marko-
vian approximation [154].



2
D Y N A M I C A L P H A S E T R A N S I T I O N S A S A
R E S O U R C E F O R Q U A N T U M E N H A N C E D
M E T R O L O G Y

The estimation of unknown parameters is a crucial task for
quantum technology applications such as state tomography [114],
system identification [115], and quantum metrology [1, 2, 4–6,
59].

In the previous chapter 1 we discussed how the enhancement
in the estimation precision can be achieved by using highly cor-
related/entangled quantum states which encode the unknown
parameter, like the GHZ state |GHZ〉 = 1√

2
(|0〉⊗N + e−iNφ|1〉⊗N)

constructed out of N qubits and encoding an unknown phase
φ. Since the phase effectively encoded in the state is Nφ, the
estimation errors obey the Heisenberg scaling ∝ N−2 [3], in-
stead of the standard ∝ N−1 scaling for a separable state (|0〉+
e−iφ|1〉)⊗N. For large N, however, such highly correlated pure
states are challenging to prepare in practice [155], either as the
ground state of a closed many-body system, or as the stationary
state of some dissipative dynamics [156, 157], which typically
requires careful system engineering, since generic open quan-
tum systems have mixed rather than pure stationary states, see
Sec 2.1.1.

The key property that makes correlated states such as |GHZ〉
useful for enhanced metrology is that they can be thought of as
“bimodal”, in the sense that the probability of an appropriate
observable is peaked in two (or more) “phases” (the states |0〉⊗N
and |1〉⊗N in the case of |GHZ〉). This bimodality is reminiscent
of what occurs near a first-order phase transition. In fact, en-

57
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hanced estimation of parameters in a system Hamiltonian can
be achieved with a pure ground state at quantum phase transi-
tions [130, 131]. In this chapter we discuss how to exploit the dy-
namics of open quantum systems (for example, driven atomic
or molecular ensembles emitting photons [31], or quantum dots
[32]) to generate states for quantum enhanced metrology. This
can be achieved by using both the system and its output when
the system dynamics is in proximity of a dynamical phase tran-
sition, which is characterised by singular changes in dynamical
observables on the output, in contrast to static observables on
the system, see [34] and Sec. 2.1.2. In particular, we show how
using an intermittent system near a dynamical first-order transi-
tion for preparation of a photonic state, quantum enhancement
in optical phase-shift estimation can be achieved [29].

2.1 background

Before presenting the results of [29], we first sketch a derivation
of Markovian dynamics [8, 9] and introduce the input-output
formalism [30]. This is followed by a short introduction to dy-
namical phase transitions [34] in Sec. 2.1.2, which notion we
later generalise. Finally, as we will quantify the precision using
the quantum Fisher information (QFI), in Sec. 2.1.4 we recall a
convenient way of its calculation using the fidelity of quantum
states.

2.1.1 Markovian dynamics of open quantum system and input-output
formalism

Our goal is to explore open quantum systems as resources for
parameter estimation. We consider systems whose reduced dy-
namics, after tracing out the environment, is given by a Marko-
vian master equation [8, 9],

dρ

dt
= Lρ = −i[H, ρ] +

∑
j

(
JjρJ

†
j −

1

2
{J
†
j Jj, ρ}

)
, (2.1)
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where H is the system’s Hamiltonian, and Jj are so called jump
operators describing the interaction with the environment1.

Sketch of derivation (based on [30]). Markovian dynamics is
a result of three approximations [8, 9]. We consider the joint
unitary dynamics governed by Hamiltonian H = HS ⊗ 1E +

1S ⊗HE +HSE, where an initial system-environment state is in-
dependent, ρSE(t) = ρS(0) ⊗ ρE, and the interaction between
the system and its environment, HSB, is weak. In the inter-
action picture with respect to the non-interacting dynamics,
Hint(t) = e

it(HS⊗1E+1S⊗HE)HSE e−it(HS⊗1E+1S⊗HE), we have

d

dt
ρ
(int)
SE (t) = −i

[
Hint(t), ρ

(int)
SE (t)

]
, which gives

ρ
(int)
SE (t) = ρ

(int)
SE (0) − i

∫ t
0

dt ′
[
Hint(t

′), ρ(int)SE (t ′)
]

, and thus

d

dt
ρ
(int)
SE (t) = −i[Hint(t), ρ

(int)
SE (0)] −

∫ t
0

dt ′
[
Hint(t),

[
Hint(t

′), ρ(int)SE (t ′)
]]

.

We are interested now in the reduced state of the system, ρS(t) =
TrE(ρSE) = e−itHSTrE(ρ

(int)
SE )eitHS . In Born approximation the joint

state of the system and environment is assumed to factorise,
ρSE(t) = ρS(t)⊗ ρE, and the environment state to be stationary
w.r.t. HE. This is motivated by the fact that environment state is
perturbed weakly by the interaction and its is assumed signifi-
cantly bigger than the system and thus less affected. We obtain

d

dt
ρ
(int)
S (t) = −

∫ t
0

dt ′ TrE
([
Hint(t),

[
Hint(t

′), ρ(int)S (t ′)⊗ ρE
]])

,

where we assumed the first-order term to be 0 (which can be
done by redefining HS). In Markov approximation, the correla-
tions in the environment dynamics depending on ρE are fur-
ther assumed to disappear much faster than the rate at which
system state changes, thus giving

d

dt
ρ
(int)
S (t) = −

∫∞
0

dt ′′ TrE
([
Hint(t),

[
Hint(t− t

′′), ρ(int)S (t)⊗ ρE
]])

,

1 The calligraphic font denotes super-operators, such as the generator L,
while the Roman font denotes normal operators, such as the Hamiltonian H
or the jump operators Jj.
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where t ′′ = t− t ′. We have thus arrived at an equation in which
the change in a system state depends only on its present state,
and thus dynamics is Markovian. Furthermore, when the corre-
lations depend only on the time difference, t ′′, due to station-
arity of ρE (and usually within the rotating wave approximation),
this equation becomes time-homogenuous and leads to Eq. (2.1),
where for simplicity we dropped the lower index S. Note that
Eq. (2.1) yields a dynamical semi-group, i.e., Tt1+t2(ρ) = Tt2(Tt1(ρ)),
where Tt(ρ) = ρ(t) is the solution of (2.1) for an initial state ρ
of the system. It can be shown that Eq. (2.1) defines actually
the most general form of completely positive dynamical semi-
group, see e.g. [158].

Input-output formalism. In this chapter we consider initial states
of the system being pure, as so are the optimal states for quan-
tum parameter estimation. Moreover, we are interested in sys-
tems where the system-environment interaction leads to emis-
sions of quanta to the environment, and corresponding jumps
operators Jj acting on the system. Such quanta do never again
interact with the system, due to Markovian approximation, but
can be detected, e.g. as in quantum optics one can perform a
continuous measurement on an output field. This assumption
is crucial, as in order to achieve enhanced parameter estima-
tion we aim to exploit not only open quantum systems, but
especially their outputs.

When the environment (input) is initially in the vaccum, we
can represent the system evolution as a superposition of all pos-
sible emission records and corresponding conditional states of
the system, with respective probability amplitudes of observing
such an emission record in a continuous measurement [30],

|Ψ(t)〉 =
∞∑
m=0

∑
j1,...,jm

∫ t
0

dt1

∫ t
t1

dt2 · · ·
∫ t
tm−1

dtm

×
(
e−i(t−tm)Heff Jjm e

−i(tm−tm−1)Heff

· · · Jj2 e−i(t2−t1)Heff Jj1 e
−it1Heff |χ〉

)
⊗ |(j1, t1), (j1, t2), ..., (jm, tm)〉. (2.2)
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A sequence ofm quantum jumps {j1, ..., jm} that happen at times
{t1, ..., tm} corresponds to an output state |(j1, t1), (j1, t2), ..., (jm, tm)〉.
The probability of the sequence depends on an initial pure state
of the system |χ〉, waiting times between the jumps, when the
evolution is governed by the effective non-Hermitian Hamilto-
nian, Heff = H− i

2

∑
j J
†
j Jj, and types of jumps/emitted quanta.

The term m = 0 in the first sum corresponds to no jumps/no
emissions, when the output state remains unchanged in the in-
put vacuum, and the corresponding probability, so called wait-
ing time probability, is given by dynamics only with Heff. The
structure of the joint system and output state in Eq. (2.2) is a
continuous matrix product state (CMPS) [35, 128, 159–161].

For simplicity, the CMPS can be approximated by a regular
matrix product state (MPS) by discretising time into time steps
of length δt, see [35, 128, 159, 160],

|Ψ(t)〉 =
∑
jn,...,j1

Kjn · · ·Kj1 |χ〉 ⊗ |j1, ..., jn〉 , (2.3)

where n = t/δt and the Kraus operators

K0 = e−iδtH
√
1− δt

∑
j

J
†
j Jj,

Kj>0 = e−iδtH
√
δtJj. (2.4)

Here the output state |j1, ..., jn〉 describes the time record of type
of jumps or no jumps that happened at each time step δt, as
sketched in Fig. 1(a).

2.1.2 Dynamical phase transitions

A state of a quantum system can be accessed only by perform-
ing a measurement. For example, a system state described by a
density matrix ρ can be fully reconstructed in quantum tomog-
raphy [114], where the set of system observables being mea-
sured constitutes a basis in the space of observables, so that all
the information about ρ is retrieved.
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Static phase transitions. Consider the system interacting weakly
with an environment, so that the system dynamics can be ap-
proximated as Markovian, see Sec. 2.1.1. For any initial state
the system asymptotically approaches the stationary state, ρss

such that Lρss = 0, e.g. a thermal equilibrium state when in-
teracting with a thermal bath. When parameters of dynamics
are varied, e.g. the system Hamiltonian or the temperature of
the bath, such a stationary state can undergo singular changes
— static phase transitions — which correspond to a cumulant
of a system observable diverging faster than linearly with the
increasing system size. For a first-order phase transition, the
expected value of such an observable, e.g. spin magnetisation,
constitutes an order parameter. In the case, when the stationary
state is thermal and at zero temperature, it corresponds to a
ground state of the system Hamiltonian and its transitions are
referred to as quantum phase transitions [162].

Dynamical phase transitions [34–36, 163, 164]. For Markovian
systems whose dynamics features an output, for example pho-
ton emissions from atoms corresponding to their decay from
higher to lower energy, one can consider performing a continu-
ous measurement of the output, e.g. counting of emitted photons.
Let Pt(Λ) be the probability of observing in time t, Λ photons
associated with the jump J1. In this case the cumulant generat-
ing function (CGF) can be related to a deformation of the master
operator L [34],

Θt(s) = log

(∑
Λ

e−sΛPt(Λ)

)
= log Tr(etWsρin), where (2.5)

Ws ρ = L ρ+ (e−s − 1) J1 ρ J
†
1. (2.6)

For examples of CGF for homodyne and heterodyne continu-
ous measurement see [164]. We have 〈Λ(t)〉 = −∂sΘt(s)|s=0 and
∆2Λ(t) = ∂2sΘt(s)|s=0. When we are interested in the asymp-
totic behaviour of the Λ(t) cumulants, we consider the long
time limit of the CGF,

θ(s) = lim
t→∞ 1tΘt(s). (2.7)
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This function plays the role of a density of dynamical free-energy
for the ensemble of records (trajectories) of photon emissions [34].
When θ(s) is differentiable, the distribution of photon number
Λ(t) obeys Large Deviations Principle, i.e., its tails decay expo-
nentially,

Pt(Λ(t) > Λ) ≈ e−tϕ(
Λ
t ) for Λ > µt, (2.8)

Pt(Λ(t) < Λ) ≈ e−tϕ(
Λ
t ) for Λ 6 µt, (2.9)

where µ = limt→∞〈Λ(t)〉/ t is the asymptotic emission rate,
and ϕ(λ) = −infs (λs+ θ(s)), see Gärtner-Ellis theorem in [165,
166]. The function ϕ(λ) acts as an entropy density for ensem-
ble of emission records and its minimum corresponds to µ =

limt→∞〈Λ(t)〉/ t. Moreover, when ϕ(λ) is twice differentiable
around λ = µ, dΛ(t) obeys CLT [166] with asymptotic variance
given by d2

dλ2ϕ(λ)|
−1
s=µ. For CLT in continuous measurements statis-

tics see also [37, 39].
A singularity of θ(s) at some sc is an indication of a phase

transition in the ensemble of quantum jump trajectories. When
sc = 0, we have a singular change in the actual dynamics of
the open system, which we term a dynamical phase transition
(DPT). This singular behaviour in n-th derivative corresponds
to divergence of the n-th cumulant of Λ(t) and is necessary
associated with the vanishing spectral gap of L ≡ W0 [34, 35].
Note that a dynamical transition of higher than the first order
does not have to be accompanied by a static transition in the
stationary state [36]. For a finite quantum system with a single
stationary state, θ(s) is simply the maximal eigenvalue of Ws,
and thus the perturbation theory for linear operators [167] w.r.t.
s, implies analyticity of θ(s) at s = 0 and the asymptotic linear
behaviour in time of all Λ(t) cumulants.

We note that there are other definitions of dynamical phase
transitions in the literature, see e.g. [168–170].
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2.1.3 Parameter estimation using both system and output

Ability to access not only the system, but also the output, allows
for improved precision of estimating parameters of the master
equation L. This is due to the fact that the effective “size” of the
system and output is now Nt, where t is the observation time
and N is the system size. Furthermore, considering both the
system and the output provides the ultimate bound on estima-
tion precision by considering the most general measurement
exploiting all the available resources, see recent work on pa-
rameter estimation with single stationary states of open quan-
tum systems [37–39]. Later in this chapter, we present results
of [29] where estimation of dynamical parameters is enhanced
near or at a DPT, similarly as estimation of Hamiltonian param-
eters at quantum phase transitions [131]. We show that at a
first-order DPT [34, 36], the QFI of the system-and-output may
become quadratic in t giving rise to the Heisenberg scaling, while
away from the transition point the Heisenberg scaling is present
for times shorter than the correlation time of the dynamics, and
asymptotically standard scaling is recovered. Moreover, both a
first and a second-order DPT correspond to diverging correla-
tion time in dynamics, which is related to closing of the master
operator gap [35]. Those correlations correspond to multipartite
entanglement in the system-output state, since it is pure, and
can be exploited to achieve enhanced parameter estimation of
extrinsic parameters encoded on the output, which is the main
result of this chapter. We illustrate this idea with a simple ex-
ample of enhanced estimation of optical phase-shift encoded
on photons emitted by an intermittent system near a first-order
DPT.

2.1.4 Fidelity of pure states and QFI

Considering a pure joint state of system and output circum-
vents a problem of calculating the best possible precision of pa-
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rameter estimation for mixed states, which is usually difficult,
except for particular cases such as thermal states [69].

Quantum Fisher information. Let us recall essential aspects of
quantum parameter estimation introduced in Chapter 1. We
are interested in estimating a parameter g, not necessary a
phase, encoded in a state ρg. By measuring an observable X,
the asymptotic estimation precision is given by the inverse of
the signal to noise ratio (SNR) [68], which is always bounded by
the quantum Fisher information,

SNRg(X) = (∂g〈X〉g)2/∆2gX 6 Fg(ρg) = ∆
2
gDg, (2.10)

where
1

2
{Dg, ρg} = ∂gρg, (2.11)

and the symmetric logarithmic derivative Dg is the optimal ob-
servable [64, 65, 67]. Although generically Dg is difficult to en-
gineer, its SNR given by the QFI, Fg(ρg), bounds the precision of
any measurement that can be performed in practice.

QFI for pure states and fidelity. For a pure state, |ψg〉, the QFI can
be obtained from the fidelity 〈ψg1 |ψg2〉 [39, 130, 131] according
to,

F(|ψg〉) = 4∂g1∂g2 log〈ψg1 |ψg2〉|g1=g2=g , (2.12)

see Appendix B.1 for the proof2. A simple situation, which will
turn out to be relevant for the results of this chapter, is when the
parameter g is encoded as a phase in a unitary transformation
on a pure state, |ψg〉 = e−igG|ψ〉. Here the fidelity 〈ψg1 |ψg2〉 is
the characteristic function of G at g1 − g2, and the QFI is given
by its variance, F(|ψg〉) = 4∆2gG. Note that while the QFI is given
by the variance of bothDg and G, these two operators play very
different roles. The optimal measurement to recover the param-
eter g is Dg, and its SNR is maximal, SNRg(Dg) = Fg(|ψg〉). In

2 We refer here to the scalar product 〈ψg1 |ψg2〉 instead of the absolute
value |〈ψg1 |ψg2〉| as the fidelity. The phase φ(g1,g2) of 〈ψg1 |ψg2〉 =

eiφ(g1,g2)|〈ψg1 |ψg2〉| does not contribute to the result of the differentation
in Eq. (2.12), as it is an antisymmetric function, φ(g1,g2) = −φ(g2,g1).



2.1 background 66

contrast, G encodes g in the quantum state, but measuring it
provides no information about g since SNRg(G) = 0.

For the example of the GHZ state |GHZ〉 and the genera-
tor G =

∑
j(1 + σ

(j)
z )/2, the optimal measurement is Dg =⊗N

j=1 e
−igGσ

(j)
y e

igG, where σ(j)a are Pauli operators acting on qubit
j. The QFI for the GHZ state then obeys Heisenberg scaling,
Fg(|GHZg〉) = N2, which is related to the fact that the distribu-
tions of both G and Dg are bimodal In contrast, the QFI of the
uncorrelated state is standard, Fg((|0〉+ e−ig|1〉)⊗N) = N, given
by the fact that the corresponding distributions of G and Dg

are unimodal, which is a consequence of the CLT. We show be-
low that an analogous change from bimodal to unimodal also
accompanies a change in the scaling with time of the QFI when
approaching a first-order DPT.

Fidelity and generalised phase transitions. As the fidelity corre-
sponds to Bures distance on the space of quantum states [7], de-
fined as DB(|φg1〉, |φg2〉) =

√
2(1− |〈φg1 |ψg2〉|), it can be used

to capture singularities of the state |ψg〉 with respect to the pa-
rameter g [128–130]. In praticular, singularities of the fidelity
may allow for identification of quantum phase transitions of
ground states in situation where typical observables do not fea-
ture any singularities, e.g. the ground state energy is constant,
Eg = E0 [128]. Therefore, considering the joint system-output,
Eq. (2.2), as a resource, not only allows to find the best achiev-
able estimation precision, but also provides a generalisation to
the definition of DPT, cf. Sec. 2.1.2, as we discuss in detail in
Sec. 2.5.

After this short introduction to concepts of Markovian open
quantum dynamics, an output of open quantum system and
dynamical phase transitions, let us present the results on the
enhanced parameter estimation in the presence of dynamical
phase transitions. First, in Sec. 2.2 we discuss an example of
enhanced optical-shift estimation for a system with intermit-
tent photon emissions. In this example the Heisenberg enhance-
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ment in precision is a consequence of a macroscopic optical
phase-shift effectively encoded in the joint system-output state
as a consequence of bimodal distribution of photon statistics.
In Sec. 2.3 we discuss estimation of a general parameter and
show how enhanced estimation precision is again related to
a bimodal distribution of an observable distinguishing the dy-
namical phases at a first-order DPT, and also to a static transi-
tion in the stationary state of the system. In Sec. 2.4, we discuss
possibility of enhancement for certain classes of parameters, fea-
tures of the corresponding optimal measurement and influence
of noise on the estimation precision. Finally, in Sec. 2.5, we fin-
ish the chapter by discussing the generalised DPTs and ways
of detecting their signatures in experiments. Derivations of the
results of this chapter are presented in Appendix B.

2.2 intermittency and enhanced estimation of op-
tical shift

Here we present a simple example of the relation between dy-
namical phase transitions and enhanced metrology. We discuss
a scheme for enhanced optical-shift estimation using a photon
output of a quantum system near a first-order DPT in photon
emissions.

Consider a setup in which an unknown value φ of optical
shift is unitarily encoded on photons emitted from a quan-
tum system initially in a pure state, see Fig. 2.1. This trans-
forms the MPS |Ψ(t)〉 of the system and the output as follows,
|Ψφ(t)〉 = e−iφΛ(t)|Ψ(t)〉, where Λ(t) is the operator that counts
the number of photons emitted up to time t. The optimal es-
timation precision is given by the inverse of the QFI, which in
turn, for pure states, is related to the second derivative of log-
arithm of the fidelity, see Eq. (2.12). In the case of optical shift,
the fidelity corresponds simplyto the characteristic function of
the number of photons emitted,

〈Ψφ ′(t)|Ψφ(t)〉 = 〈Ψ(t)|e−i(φ−φ
′)Λ(t)|Ψ(t)〉
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and, thus, the QFI is proportional to its variance,

F(|Ψφ(t)〉) = 4∆2Λ(t). (2.13)

Note that the QFI is the same for any value of φ. Eq. (2.13)
shows the relation between the photon counting problem and
the optical-shift estimation precision using an open quantum
system initially in a pure state. In the next subsections we dis-
cuss the behaviour of the variance ∆2Λ(t) away, at and near a
DPT, and thus the QFI for initial pure state.

2.2.1 Away from a DPT

For a finitely dimensional open quantum system with a unique
stationary state, ρss, both the average and the variance of the
total number of photons, Λ(t), can be shown to asymptoti-
cally scale linearly in time, which is a consequence of the Lo-
cal Asymptotic Normality (a quantum analogue of the CLT) for
photon counting [37, 39]. Therefore, the enhancement in estima-
tion precision is only limited to a constant. In Appendix B.2 we
derive the linear limits of the photon emission average (µ) and
variance (ν), and thus QFI, which turn out to be independent
from the initial system state,

µ = lim
t→∞ 〈Λ(t)〉t = Tr

{
J
†
1J1 ρss

}
(2.14)

ν = lim
t→∞ ∆

2Λ(t)

t
= Tr

{
J
†
1J1 ρss

}
(2.15)

−2Tr
{
J
†
1J1

[
L−1

]
I−Pss

(
J1 ρss J

†
1

)}
where [ · ]I−Pss restricts a superoperator to the complement of
the stationary state and it was assumed for simplicity that pho-
ton emissions are associated with the jump operator J1. Note
that the second line in Eq. (2.15) describes the photon emis-
sion correlations in otherwise Poissonian distribution, see Ap-
pendix B.3.1.
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Figure 2.1: General scheme of enhanced quantum metrology using
output of system near a DPT (a) Open quantum system
with dynamics that depends on the unknown parameter
g in the vicinity of a first-order DPT with two dynamical
phases differing in activity. The output shows strong in-
termittency with active/inactive periods of length deter-
mined by the correlation time τ. (b) The QFI of the com-
bined system-output state scales quadratically for obser-
vation times t � τ. In the example of optical phase-shift,
this regime features a bimodal photon count distribution
corresponding to two dynamical phases, while for t � τ

the distribution becomes unimodal and consequently, the
QFI scales linearly with t. (c) Wigner distribution W(Q,P)
of the state (2.41) after being projected on an appropriate
system state (|I〉+ |A〉). The two peaks are located at radii
that corresponds to the square root of the count rates µI,A
of the inactive/active phase. The homodyne measurement
is not optimal, however, as the highly oscillatory fringe
pattern [with period ∝ [t(µA − µI)]

−1] between the peaks,
characteristic for a Schrödinger cat state, is simply rotated
by φ. This figure originally appeared in [29].

2.2.2 At a first-order DPT in photon emissions

For a system at a first-order DPT, the gap of the master operator
L closes, i.e., λ2 = 0, which for a finite system causes the asymp-
totic state to be no longer unique and the linear limit ν of the
variance may diverge (see Eq. (2.15)). Below we show that the
variance scales quadratically with with time for a first-order DPT
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in photon emissions.

For two-fold degeneracy of 0-eigenvalue of L, there exist two
stationary states, ρ̃A and ρ̃I, supported within orthogonal sub-
spaces HA, HI of the system Hilbert space, HA ⊕HI ⊂ H.
Let us further assume that there is no decay subspace, i.e.,
HA ⊕HI = H (for a general case see Sec. 2.3). In this case
dynamics leave these subspaces invariant, i.e., the jump and
Hamiltonian operators in Eq. (2.1) are block-diagonal in this
decomposition, H = HA ⊕HI and Jj = JAj ⊕ JIj. As we consider
a first-order DPT in photon emissions, we assume that the dy-
namics within HA corresponds to a higher average number of
emissions per unit of time than dynamics within HI, and term
the respective dynamics “active” and “inactive”.

Let us consider the system initially in a pure state supported
both in HA and HI with probability weights pA and pI, i.e.,
|χ〉 =

√
pA |χA〉 +

√
pI |χI〉 , where |χA〉 ∈ HA and |χI〉 ∈ HI.

The corresponding MPS at time t is a macroscopic superposition
|Ψ(t)〉 = √pA |ΨA(t)〉+

√
pI |ΨI(t)〉 of the orthogonal states |ΨA(t)〉

and |ΨI(t)〉, as the system state within |ΨA,I(t)〉 is supported
only on HA,I due to the Hamiltonian H and jumps {Jj}j preserv-
ing the subspaces. Moreover, as the photon emission number
Λ(t) is an observable on the output state only, the system states
remain orthogonal, and there is no interference between |ΨA(t)〉
and |ΨA(t)〉 in the photon emission statistics, which is just a mix-
ture of distributions for |ΨA〉 and |ΨI〉. Thus, the leading terms
in the average and the variance of the photon emission number
are

〈Λ(t)〉 = t (pAµA + pIµI) +O(1) (2.16)

∆2Λ(t) = pA∆
2
AΛ(t) + pI∆

2
IΛ(t)

+pApI
(
〈Λ(t)〉A − 〈Λ(t)〉I

)2
= t2 pApI (µA − µI)

2 + O(t), (2.17)

where 〈Λ(t)〉A,I and ∆2A,IΛ(t) are the average and variance, re-
spectively, of the number of emissions for the system initially in
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the state |χA,I〉. Note that the leading terms in (2.16) and (2.17)
depend on the initial state only via the probabilities pA and pI.
For a DPT in photon emissions, the emission rates within HA

and HI are different, µA > µI, and the variance grows quadrat-
ically in time. The photon statistics are bimodal and do not fol-
low the CLT. Note that in the case of higher-degeneracy of the
0-eigenvalue of L, the photon statistics may feature more than
two modes, but the variance will again scale quadratically with
time. Finally, the quadratic scaling of variance of photon emis-
sions corresponds to different averages of a system observable
M = J†1J1 in two stationary states (see Eq. (2.14)) and thus, to a
stationary first-order phase transition.

Macroscopic optical shift. The quadratic scaling of the photon
number variance implies that the QFI in optical-shift estimation
using photons emitted form the system initially in the pure
state, also scales quadratically, see Eq. (2.13). In the case of a
first-order DPT, this is a consequence of a macroscopic optical-
shift difference effectively encoded on the two states |ΨA(t)〉
and |ΨI(t)〉 in the superposition of the MPS |Ψφ(t)〉. In the first
order of φ, the difference in complex phase is t (µA −µI)φ. This,
analogously as in the case of optical-shift estimation with the
GHZ state, leads to the Heisenberg scaling in time.

2.2.3 Near a first-order DPT in photon emissions

Generically, open quantum system dynamics feature a single
stationary state, ρss, and thus photon counting statistics obeys
the central limit theorem, and both the variance of photon emis-
sions and the QFI scale linearly in time, see Eq. (2.15). The
emission records, however, can be intermittent with dynamics
switching between long periods with distinct emission charac-
teristics [32–34, 36], see also Fig. 2.1 (b). Below we explain that
intermittency corresponds to proximity to a first-order DPT. Fur-
thermore, it leads to bimodal photon emission statistics with the
quadratically growing variance for times shorter than the corre-
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lation time τ of the dynamics [36].

Regime of quadratic scaling in photon emission variance. The av-
erage length τA, τI of “active" and “inactive" periods in the
dynamics is the longest (observed) timescale in the dynamics.
Let us assume that there does not exist any other (direct or con-
tinuous) measurement on the system demonstrating a longer
timescale. Then τA, τI is necessary proportional to the dynam-
ics correlation time τ = (−λ2)

−1, given by the inverse of the
lowest-lying eigenvalue of the master operator L. For times
much shorter than the correlation time τ — and thus τA and
τI — photon emission records are mostly inside “active" or “in-
active" periods. The photon statistics is approximately bimodal,
see also Fig. 2.1 (b) and [36]. This implies a quadratic increase
of the variance with time, and thus also of the QFI,

∆2Λ(t) ≈ t2 pApI (µA − µI)
2 +O(t). (2.18)

Here µA and µI are the average counting rates in “active" or
“inactive" periods, while pA and pI are probabilities of observ-
ing an “active" or “inactive" period. For t� τ there is a macro-
scopic,∝ t, difference between the number of photons observed
in emission records. When the photon output is used for optical-
shift estimation, this will lead to encoding in the MPS, |Ψφ(t)〉,
the macroscopic parameter t(µ1−µ2)φ, and thus to the quadratic
scaling of the QFI with time.

For times much longer than τ, in each emission record the dy-
namics switch between periods of distinct emission rates many
times, giving rise to the intermittent behaviour [34, 36]. The
eventual distribution of the photon count is unimodal centered
around the overall average with the variance scaling linearly in
time, cf. Fig. 2.1 (b) and Fig. 2.2. There is no macroscopic optical
shift encoded in the MPS anymore.

In Fig. 2.2 we show the QFI for optical-shift estimation using
photon output of a 3-level system, with a Hamiltonian H =

Ω1H1 +Ω2H2, where Hj = |j〉〈0|+ |0〉〈j|, j = 1, 2, and a single
jump operator J =

√
κ |0〉〈1| that corresponds to an emission of
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a photon. When Ω2 � Ω1, system trajectories can be “shelved”
for long times in |2〉, giving rise to intermittency in observed
quantum jumps [33]. The intermittency can be seen as the prox-
imity to a first-order DPT [34] and is a consequence of a small
gap in the master operator L [35]. In Fig. 2.2 the estimation pre-
cision is enhanced as long as initial state evolves into mixtures
of "active" and "inactive" records, cf. Eq. (2.35). Furthermore, in
the quadratic regime of the QFI, the resource used – average
number of photons – scales linearly with time, see the inset of
Fig. 2.2.

Figure 2.2: Enhanced estimation of optical phase-shift using inter-
mittent 3-level system: The precision is enhanced quadrat-
ically in the regime τ ′ � t � τ for the initial state
1√
2
(|1〉+ |2〉) (purple), while for initial states |1〉 (red) and

|2〉 (blue), it is absent. This corresponds to the initial state
1√
2
(|1〉+ |2〉) evolving into mixture of active and inactive

records, see the average photon number in the inset for the
initial states and Eq. (2.18). At times t� τ a linear scaling
of the QFI is recovered, cf. Eq. (2.15). The parameters were
chosen as Ω1 = 4κ and Ω2 = Ω1/50.

Intermittency as proximity to a DPT in photon emissions. For in-
termittent records of photon emissions, the correlation time τ is
much longer than any other timescales, e.g. time between indi-
vidual emissions in “active" periods. This implies a separation
of the eigenvalues of the master operator L, which determine
all the dynamics timescales. In particular, for two distinct emis-
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sion characteristics appearing in a record, −λ2 = τ−1 � −Reλ3.
Therefore, L has a small gap, which is necessary to be near a
DPT.

At times much longer than the correlation time, t � τ, the
system reaches the stationary state ρss and the initial state is
forgotten. However, correlations in photon emissions records
do not disappear. The correlation between numbers of photons
emitted in different time intervals [t1, t1 + ∆t], [t2, t2 + ∆t] de-
pends only on the time |t1 − t2| between them, due to stationar-
ity of the system state, ρ(t) = ρss, and decays approximately as
eλ2|t1−t2| for the interval length chosen as (−Reλ3)−1 � ∆t� τ.
Since the variance of the total number of photons emitted up
to time t is simply the double integral over the correlations, for
t� τ we have

∆2Λ(t) ≈
t/∆t∑
k,j=1

∆2Λ(∆t) eλ2|k−j|∆t,

where ∆2Λ(∆t) is the variance of the number of photons emit-
ted within ∆t for the system in the stationary state. Together
with Eq. (2.18) this gives a leading contribution to the asymp-
totic linear behaviour

ν = lim
t→∞ ∆

2Λ(t)

t
≈ 2 τ pssApssI (µA − µI)

2 , (2.19)

where pssA , pssI are probabilities of observing an “active" or “in-
active" period for the observation time ∆t � τ and the system
in the stationary state. Thus, the variance diverges as the corre-
lation time τ, see also Eq. (2.15) and Fig. 2.2. This demonstrates
that an intermittent system dynamics is indeed near a DPT in
photon emissions. As only finitely many eigenvalues of L are
close to 0-eigenvalue (in the case above only λ2), the intermit-
tent dynamics manifests proximity to a first-order DPT.

The relation of parameter estimation to second-order DPTs,
which can only appear in the thermodynamic limit of the sys-
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tem size as well as to transitions in ensembles of trajectories,
will be discussed in the next subsection.

2.2.4 Optical-shift encoding and deformation of master dynamics

The MPS of the system and the output is an unravelling of the
system master dynamics, which purifies a mixed state of the
system. Note that the MPS represents the perfect knowledge on
the joint system-environment evolution, as there exist various
gauge choices of H, and {Jj}j leading to the same master dynam-
ics L, but different MPSs.

As the optical-shift encoding is an operation that can be im-
plemented sequentially in time, it can be included as a part
of the joint system-environment evolution. For simplicity let
a photon emission event be associated with the jump opera-
tor J1. The MPS with the encoded optical shift φ, |Ψφ(t)〉 =

e−iφΛ(t)|Ψ(t)〉, is identical to the MPS for the master dynamics
with the jump J1,φ := e−iφJ1 now depending on the optical shift,
and the Hamiltonian H and the other jump operators as before,
Hφ = H, Jj,φ = Jj, j > 1. Note that although the jump operator
J1,φ depends on the parameter φ, the master dynamics of the
system state Lφ = L remains unchanged, as the optical shift is
encoded on the output only. Optical-shift encoding is thus an
example of a gauge transformation of L, i.e., a transformation
of H and L that do not alter the master operator L itself, for
other examples see Appendix B.3.3.

The fidelity between the MPSs with different optical-shift val-
ues can be expressed on the system level as

〈Ψφ ′(t)|Ψφ(t)〉 = Tr
(
etLφ ′,φ |χ〉〈χ|

)
, with (2.20)

Lφ ′,φρ = −i [H, ρ] + e−i(φ−φ
′)JjρJ

†
j +
∑
j>1

Jj · J†j −
1

2

∑
j

{
J
†
j Jj, ρ

}
(2.21)

being a deformation of the master operator L, which is not trace-
preserving (for the derivation see the next Sec. 2.3). In the case
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of a single stationary state, from Eq. (2.24), the QFI is related to
Lφ1,φ2 as follows

lim
t→∞ 1tF(|Ψφ(t)〉) = 4 ∂φ1∂φ2λ1(φ1,φ2)

∣∣
φ1=φ2=φ

, (2.22)

where λ1(φ1,φ2) is the eigenvalue of Lφ1,φ2 with the maximal
real part.

More on relation to photon counting. In the case of optical-shit
encoding the fidelity corresponds to a characteristic function of
the number of photons emitted up to time t and thus its log-
arithm encodes the cumulants of the photon number statistics.
As we discussed in Sec. 2.1.2, the cumulants can also be en-
coded in the CGF, Θt(s), and its long-time limit, θ(s), which are
given by dynamics with a deformation Ws of the master opera-
tor L, see Eqs. (2.5), (2.7) and (2.6). Note that Ws is the same as
Lφ ′,φ with (φ−φ ′) = −is. As the QFI is related to the variance
of the photon emission number (2.13), we arrive at

lim
t→∞ 1tF(|Ψφ(t)〉) = 4 ∂2sθ(s)

∣∣∣
s=0

. (2.23)

For a DPT in photon emissions of a first or second order (which
happens only in the limit of the infinite system size), the QFI

scaling with time will be enhanced and no longer linear. For a
transition in the ensemble of quantum jump trajectories, when
the function θ(s) has a first- or second-order singularity at some
|sc|, although the QFI necessary scales linearly, the constant en-
hancement in Eq. (2.23) can be large when |sc| ≈ 0. Note that
from Eq. (2.15), this can be also seen as a consequence of the
fact that the gap in L must be small when |sc| ≈ 0.

2.3 general parameter estimation and dpts

In the previous section 2.2 we discussed optical-shift estimation
using a photon output of an open quantum system, see Fig. 2.1.
We showed how the corresponding QFI can be enhanced from a
linear to a quadratic scaling in time for the system at a first-
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order DPT in photon emissions. Moreover, we demonstrated
that near such a first-order DPT, when the photon emissions
are intermittent, although the asymptotic scaling is linear, there
exist an intermediate time regime when the QFI scales quadrat-
ically with time. Furthermore, the constant in the linear scaling
of the QFI diverges as one approaches the transition due to in-
creasing correlations in photon emissions. In this section we
show that analogous results hold for a general parameter esti-
mation.

We consider estimation of a parameter g in the joint system-
and-output evolution, such as g being an intrinsic parameter of
the system dynamics or a extrinsic parameter encoded locally in
time on the output. Thus, we assume that the Hamiltonian, Hg,
and jump operators, Lj,g may depend on g analytically, but the
type of emitted quanta does not depend on g. It follows that the
MPS representing the system-output state, |Ψg(t)〉, also depends
on g, see Eqs. (2.2) and (2.3). In contrast, the master operator Lg,
Eq. (2.1), depends on g only when varying g changes the actual
system dynamics. This is not the case for encoding a parameter
on the output, which is a gauge transformation of L.

2.3.1 Parameter estimation and deformation of master dynamics

In order to consider optimal precision of the estimation, we in-
vestigate the QFI related to the fidelity, 〈Ψg ′(t)|Ψg(t)〉, see Eq. (2.12).
Similarly, as in the case of the optical shift encoded on a photon
output, the fidelity can be expressed on the level of the system
state as

〈Ψg ′(t)|Ψg(t)〉 = Tr
(
etLg ′,g |χ〉〈χ|

)
, (2.24)

where Lg ′,g is a deformation of the master operator

Lg ′,gρ = − iHgρ+ iρHg ′ (2.25)

+
∑
j

[
Jj,gρJ

†
j,g ′ −

1

2

(
J
†
j,gJj,gρ+ ρJ

†
j,g ′Jj,g ′

)]
.
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Note that the operator Lg ′,g in general is not trace-preserving
and thus, it does not explicitly correspond to any system dy-
namics, but nonetheless can be (indirectly) realised experimen-
tally, for details see Sec. 2.5.2.

Proof. In order to prove Eq. (2.24), let us consider the discrete
MPS in (2.3). We have

〈Ψg ′(t)|Ψg(t)〉 = TrSTrO
(
|Ψg(t)〉〈Ψg ′(t)|

)
= TrS

 ∑
jn,...,j1

Kjn,g · · · Kj1,g |χ 〉〈χ|K†jn,g ′ · · · K
†
j1,g ′

 ,

where TrS,O stands for the trace over the space of the system (S)
or output (O). In the rest of this chapter we will simplify the
notation and use Tr instead of TrS.

In the limit δt → 0, we obtain Eq. (2.24) analogously as the
discretisation in the master dynamics converges to the continu-
ous dynamics given by Lg,

ρg(n) =
∑
jn,...,j1

Kjn,g · · · Kj1,g |χ 〉〈χ|K†jn,g · · · K
†
j1,g

−→
δt→0

ρg(t) = e
tLg |χ〉〈χ| .

The result in Eq. (2.24) has been already discussed in [38, 39].

2.3.2 Linear scaling of QFI away from a DPT

For dynamics with a single stationary state, the QFI asymptot-
ically scales linearly with time with the constant enhancement
related the largest eigenvalue λ1(g1,g2) of Lg1,g2 [38, 39], as
from Eqs. (2.12) and (2.24) it follows that

lim
t→∞ t−1F(|Ψg(t)〉) = 4 ∂g1∂g2λ1(g1,g2)|g1=g2=g . (2.26)
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Eq. (2.26) can be expressed via the master operator L as fol-
lows (see Appendix B.2 or non-hermitian perturbation theory
in [38]),

lim
t→∞ t−1F(|Ψg(t)〉) = 4Tr (∂g1∂g2Lg1,g2 ρss) (2.27)

−8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−Pss

∂g2Lg,g2 ρss

)
g1=g2=g

,

where [ · ]I−Pss restricts a superoperator to the complement of
the stationary state. One can already see that something inter-
esting may occur as the system approaches a DPT when the gap
in Lg closes at some g, and

[
L−1
g

]
I−Pss

diverges as (λ2)
−1. Con-

sequently, closing of the gap in Lg may cause λ1(g1,g2) to be
non-analytic at g1 = g2 = g.

2.3.3 Quadratic scaling of QFI, bimodality and first-order DPTs

Regime of quadratic scaling of QFI near a first-order DPT. Near a
first-order DPT the gap of the master operator Lg is necessary
small [35], i.e., there is a separation in real parts of the Lg

spectrum, e.g. −λ2 � −Reλ3. Therefore, there exist an inter-
mediate time regime τ ′ � t � τ, where τ is the dynamics
correlation time given by the gap, τ = (−Re λ2)−1, while τ ′ is
the longest timescale associated with the rest of the spectrum,
τ ′ = (−Re λ3)−1. In this regime the slowest second dynamical
mode appears stationary whereas the contribution from all the
other eigenmodes in Lg can be neglected. This further leads
to the QFI being quadratic in time (see Appendix B.2 for the
derivation),

F(|Ψg(t)〉) = 4 t2
(
−
∣∣∣∂g1Tr (Lg1,gP|χ〉〈χ|)

∣∣∣2 (2.28)

+∂g1∂g2Re Tr (Lg1,gPLg,g2P|χ〉〈χ|)
)
g1=g2=g

+ t2O(tλ2) + O(t),
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where P is a projection onto the eigenmatrices of Lg corre-
sponding to the eigenvalues within the gap, e.g. for −λ2 �
−Reλ3, P projects onto first two eigenvectors of Lg. At a first-
order DPT, the gap closes, λ2 → 0 and Eq. (2.28) becomes valid
for all times t � τ ′ with the projection P becomes the projec-
tion on the stationary manifold P0 of two stationary states ρ̃1,
ρ̃2 supported in orthogonal subspaces H1, H2.

Quadratic scaling and bimodality. We will now show that the
quadratic scaling with time of the QFI, corresponds to bimodal
statistics of an observable acting on both the system and the
output. The way the MPS |Ψg(t)〉 changes with g is encoded in
the observable (see Sec. 2.5.1 for the precise definition)

Gg(t) |Ψg(t)〉 := i ∂g ′ |Ψg ′(t)〉|g ′=g. (2.29)

From Eq. (2.12) it follows that the QFI is again simply pro-
portional to the variance of Gg(t) when measured on the MPS

|Ψg(t)〉,

F(|Ψg(t)〉) = 4∆2Gg(t). (2.30)

This establishes the relation between the precision of parameter
g estimation with a system initially in a pure state and statistics
of an observable on the joint system-output state.

The generator Gg(t) is a stochastic integral of an observable
local in time, see Sec. 2.5.1. Therefore, it follows that the finite-
time interval before the system relaxes to its asymptotic state,
t . τ, contributes negligibly to the asymptotic behaviour of
leading terms in Gg(t) cumulants. Note that in general, at a
first-order DPT with two stationary states, for a system state ρin

with initial coherences between the subspaces H1, H2, the co-
herences will persist in the joint system-output MPS and lead to
interferences in statistics of Gg(t). Since coherences are absent
in the asymptotic state of the system, limt→∞ ρ(t) = p1ρ̃1 +

p2ρ̃2, leading orders in the average, variance of Gg(t) will not,
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however, depend on the coherences, but on the probabilities p1
and p2.

We first discuss the average of Gg(t). We have

〈Gg(t)〉 = −i ∂g ′ 〈Ψg ′(t)|Ψg(t)〉g ′=g = −i ∂g ′ Tr(etLg ′,g |χ〉〈χ|)g ′=g

= −i

∫ t
0

duTr(∂g ′Lg ′,gρ(u))g ′=g and (2.31)

µg = lim
t→∞ 1t 〈Gg(t)〉 = −iTr(∂g ′Lg ′,g P0|χ〉〈χ|)g ′=g (2.32)

Note that the instant rate at which Gg(t) is accumulated is given
by −iTr(∂g ′Lg ′,gρ(t))g ′=g. Moreover, this result holds also for
mixed initial states ρin. In the case of the single stationary state
P0 = ρssTr(·) and thus the average of Gg(t) per unit time, µg =
−iTr(∂g ′Lg ′,g ρss)g ′=g, is independent from the initial state. In
the case of two-fold degeneracy of the 0-eigenvalue of Lg, the
asymptotic rate

µg = p1µ1 + p2µ2, (2.33)

where p1,2 are probabilities in the asymptotic state, p1ρ̃1+ p2ρ̃2,
and µ1, µ2 are asymptotic rates of Gg(t) for initial states relax-
ing to H1 and H2, respectively. Note that the asymptotic rate
indeed does not depend on the initial coherences between H1

and H2 which are absent for times t� τ ′.
Let us now discuss the variance of Gg(t). For the case of the

single stationary state, the variance ∆2Gg(t) necessary scales
linearly in time for t � (−λ2)

−1, cf. Eq. (2.27). In contrast,
when the master operator Lg has a degenerate 0-eigenvalue,
the asymptotic scaling of the variance may become quadratic
in time, see Eq. (2.28). For two-fold degeneracy of 0-eigenvalue,
the leading quadratic term of the variance, similarly as the av-
erage, will not depend on the coherences (see Appendix B.3.1)

∆2Gg(t) = t2 p1p2 (µ1 − µ2)
2 + O(t). (2.34)
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For the system state relaxing only to one of the subspaces H1

or H2 (for example initialised in those subspaces), the variance
scales linearly as in the case of dynamics with a single station-
ary state. In particular, when there is no decay subspace, the lin-
ear and constant terms are given exactly as in Eqs. (2.27), (B.6),
with I−Pss replaced by IH1,2 −P

(1,2)
ss . For a general initial state

the linear terms in Eq. (2.34) will also depend also on initial
coherences between H1 and H2, see Appendix B.3.2.

We have shown that quadratic scaling of ∆2Gg(t) for dynam-
ics featuring two stationary states, Eq. (2.34), is a consequence
of bimodal statistics of the observable Gg(t). In the case of a
higher than two-fold degeneracy of the 0-eigenvalue of Lg, the
Gg(t) statistics may feature several modes, but the variance scal-
ing will be always at most quadratic with time, cf. derivation
of Eq. (2.28) in Appendix B.2. For higher-fold degeneracy some
of the initial coherences in the system may not decay, in which
case the leading quadratic term may crucially depend also on
those initial coherences. For general discussion of enhanced pa-
rameter estimation in the case of higher-fold degeneracy, see
Appendix D.3.

Quadratic scaling and macroscopic phase-shift. We have shown
that for a pure initial state of the system the quadratic scaling
of QFI is related to the bimodality of variance of the observable
Gg(t), (2.29). The observable Gg(t) encodes the parameter via a
"phase" in the MPS state

|Ψg ′(t)〉 = Te−i
∫g ′
g dhGh(t) |Ψg(t)〉,

where T is the g-ordering (cf. time-ordering) operator, see also [104,
105, 171]. The quadratic behaviour of the QFI can be associated
with a macroscopic phase shift encoded via Gg(t) in the MPS, since,
in the first order with respect to ∆g := g ′ − g, two parts of the
MPS initialised in H1 and H2 differ in the complex phase by a
macroscopic effective parameter t (µ1 − µ2)∆g. For a finite sys-
tem, it is this macroscopic phase-shift that leads to the Heisen-
berg scaling in time, similarly as in the case of GHZ states.
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No quadratic scaling for classical systems. Let us note that the
t2-scaling of the QFI is an intrinsically quantum feature. This be-
haviour cannot occur in finitely dimensional systems for which
the associated MPS is real, as the average of the observable Gg(t)
is 0, 〈Gg(t)〉 = −i∂g ′ 〈Ψg ′(t)|Ψg(t)〉 ∈ iR∩R = {0}, and thus also
the rate µg = 0. Therefore, only terms linear in t will survive in
Eq. (2.34). In other words, the parameter g cannot be encoded
via unitary transformation of the MPS and there cannot be any
macroscopic phase shift.

Bimodal statistics near a first-order DPT. We assume that the
master operator Lg with a single stationary state features a
small gap, i.e., there is a split in its spectrum. This leads to a sep-
aration of dynamics timescales which manifest itself in the sys-
tem dynamics as a broad intermediate time regime, τ ′ � t� τ,
when the system state ρ(t) appears stationary before eventually
relaxing to the true stationary state ρss at times t� τ.

In the time regime τ ′ � t � τ, the instant rate of Gg(t),
µg(t) = Tr(∂g ′Lg ′,gρ(t))g ′=g, is approximately constant. There-
fore, for times t towards the end of the regime, the average is
dominated by 〈Gg(t)〉 ≈ tTr(∂g ′Lg ′,gρ(t))g ′=g. Since the instant
rate depends on the initial system state via ρ(t), let consider
the initial states leading to the maximal µ1 and the minimal
µ2 instant rate for the metastable regime τ ′ � t � τ, and
thus also the extremal averages 〈Gg(t)〉1 and 〈Gg(t)〉2. Further-
more, the initial states can be chosen pure, |χ1〉 and |χ2〉. In
the case of one-low lying eigenvalue in the Lg spectrum, i.e.,
−λ2 � −Reλ3, for the system initially in a superposition of those
initial states, |χ〉 = √p1 |χ1〉+

√
p2 |χ2〉, the statistics of Gg(t) can

be shown to be bimodal as follows. The system state in the in-
termediate regime can be well described by an approximately
stationary contribution of the second dynamical mode — one
degree of freedom — while all the other modes are negligible.
Thus, the initial coherences can no longer be present in ρ(t).
Consequently, as the statistics of Gg(t) for time t at the end of
the regime is dominated by the contribution during the regime,
the statistics is necessary close to that of the system initially in
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a mixture of the two initial states, ρin = p1|χ1〉〈χ1|+ p2|χ2〉〈χ2|.
Therefore, the statistics of Gg(t) for times τ ′ � t� τ is bimodal
and its variance scales quadratically with time,

∆2Gg(t) ≈ t2 p1p2 (µ1 − µ2)
2 + O(t). (2.35)

Moreover, for any initial state the instant rate in the intermedi-
ate regime can be expressed as p1µ1 + p2µ2 for some probabili-
ties p1, p2 = 1− p1. As this fixes the only degree of freedom in
this regime, the corresponding system state in the intermediate
regime can be approximated by the system state initialised in a
mixture ρin = p1|χ1〉〈χ1|+ p2|χ2〉〈χ2|. It follows that the statistics
Gg(t) is bimodal and the variance can be expressed as in (2.35)
for any initial state of the system. For a formal proof of corre-
spondence between Eqs. (2.28) and (2.35) see Appendix D.1.

Note that for classical systems the instant rate is always 0, and
thus there is no quadratic regime in the variance scaling.

The quadratic scaling of the variance in (2.35) is related to
correlations in the dynamics which disappear as exp(−λ2t) and
thus in the intermediate regime are approximately constant. As
the observable Gg(t) is a stochastic integral (see Sec. 2.5.1), let
us consider it as a sum of contributions from time intervals
∆t within the intermediate regime length, τ ′ � ∆t � τ. As
after t � τ the system is in the stationary state the asymptotic
variance can be approximated well as (see also Appendix B.3.2)

∆2Gg(t) ≈
t/∆t∑
k,j=1

∆2Gg(∆t) e
λ2|k−j|∆t,

where ∆2Gg(∆t) is the variance for the system in the stationary
state. Together with Eq. (2.35) this gives a leading contribution
to the asymptotic linear scaling of the variance

νg = lim
t→∞ ∆

2Gg(t)

t
≈ 2 τ pss1 pss2 (µ1 − µ2)

2 . (2.36)
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where pss1 , pss2 are probabilities determined by the asymptotic
rate µg = −iTr(∂g ′Lg ′,g ρss)g ′=g = pss1 µ1 + p

ss
2 µ2. Thus, the lin-

ear limit of the variance diverges as the correlation time τ, see
also Eq. (2.27) and the formal proof in Appendix D.1.

In Chapter 3 we discuss metastability in Markovian open quan-
tum systems. We argue how this phenomena is related to a sep-
aration in the spectrum of a master operator and how it mani-
fests itself in the dynamics on the level of the system and output
observables. In particular, we show how, in the case of one low-
lying eigenvalue of the master operator, i.e., −λ2 � −Re λ3, one
can observe intermittent system dynamics. Furthermore, in Ap-
pendix D.1 we prove that the system states in the metastable
regime which lead to the extremal averages of Gg(t), corre-
spond to extreme metastable states — metastable phases. More-
over, the quadratic scaling of the QFI with time for a pure ini-
tial state of the system, is also related to a macroscopic phase-
shift encoded in the MPS state during the metastable regime,
see Appendix D.1. As we discuss in the next section, the in-
stant rate of Gg(t) corresponds to an expected values of a sys-
tem observable, see Eq. (2.37). Therefore, if metastability of a
finite system is a consequence of a first-order static transition
occuring in the thermodynamic limit of the system size, so that
limN→∞ µ1

N 6= limN→∞ µ2
N , the QFI displays also the Heisenberg

scaling in the system size, F(|Ψg(t)〉)N2 ∝ t2N2, cf. Eq. 2.36 and
see example of photon emissions corresponding to spin mag-
netisation in a dissipative Ising chain with transverse field [36,
172].

2.4 estimation schemes

In this section we discuss enhancement in optimal parameter
estimation for several class of parameters, we consider param-
eter regimes in which such enhancement is present and study
features of any efficient measurement that can exploit this en-
hancement.
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2.4.1 Parameters

Here we discuss enhancement in parameter estimation near
a first-order dynamical phase transition for parameters in the
free system dynamics, strength of system-environment interac-
tion and output parameters.

Let us first note that for a general parameter g the instant
rate of Gg(t) observable, µg = −iTr(∂g ′Lg ′,gρ(t)), corresponds
to the average, µg = Tr(Mgρ(t)), of the system observable

Mg = H
′
g +

i

2

∑
j

[
J
†
j,gJ
′
j,g − (J ′j,g)

†Jj,g
]

, (2.37)

where we have introduced the notation X ′g = ∂g ′Xg|g ′=g. The
quadratic behaviour of QFI at a DPT is a consequence of differ-
ence in the rates for two stationary states, µ1 = Tr(Mgρ̃1) 6=
µ2 = Tr(Mgρ̃2), see Eq. (2.34). Therefore, Mg can be used to
determine the multiplicative constant in the quadratic scaling
of QFI with time. Furthermore, for a system near a DPT, the
observable Mg determines the quadratic scaling of the QFI in
the intermediate regime τ ′ � t � τ, see (2.30) and (2.35). This
criterion can be further simplified, as it is sufficient to check
whether 〈Mg〉 is different for metastable phases discussed in
Chapter 3, see Appendix D.1.

We consider the following class of parameters of the system-
output dynamics, see Eq. (2.1),

• Coupling constants Ω in free system dynamics.

We consider the Hamiltonian HΩ = H0+ΩH1. We simply
obtain

MΩ = H1. (2.38)

• Strength of the system-environment interaction.

We assume Jj,κj =
√
κj Jj, where κj > 0. Since

Mκj = 0 ∀j, (2.39)
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the corresponding rate for any state is always 0 and thus
there in no quadratic term in (2.34). Hence, there is no
enhancement in estimation of the strength of the system-
environment interaction. This is a consequence of the fact
that κj is encoded in the MPS, |Ψκj(t)〉, as a classical parame-
ter, which when varied, changes only the absolute values
of amplitudes in the MPS, not their phase, cf. Eq. (2.2).
Therefore, there is no macroscopic phase encoded on the
MPS, similarly as in the case of a classical system. Fur-
thermore, the QFI takes a simple form, cf. Appendix B.2,

F(|Ψκj(t)〉)) =
(
tTr

(
J
†
j Jj ρss

)
+ Tr

(
J
†
j Jj

[
etLg − I

Lg

]
I−Pss

|χ〉〈χ|
))

,

(2.40)

which corresponds to the variance of the uncorrelated
Poissonian statistics of jumps Jj.

• A phase in a unitary transformation of the output that can
be implemented locally in time.

Here we can consider a gauge transformation of the mas-
ter dynamics, when all Hg and {Jj,g}j can depend on g, but
Lg ≡ L. In particular, the generator may be independent
from the parameter value, Gg(t) = G(t), in which case
also its instant rate µg = µ, as the observable Mg =M.

In the example of the optical shift φ encoded on photons
emitted by the system, we have J1,φ := e−iφJ1 and the
system observable is independent from φ, M = J†1J1. Sim-
ilarly, for the parameter encoded by the homodyne current
associated with photon emissions J1, we have the opera-
tors J1,g := J1 − ige

−iφ and Hg := H+ g
2

(
e−iφJ1 + e

iφJ
†
1

)
which leads to M = e−iφJ1 + e

iφJ
†
1 being related to the

average current rate, see Appendix B.3.3 for derivation.
Note, however, that for the g = φ being the angle asso-
ciated with the homodyne measurement, we have J1,φ :=

J1 − ie
−iφ and Hφ := H+ i

e−iφJ1−e
iφJ
†
1

2 . This again leads
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to the average current rate given by the observable Mφ =

e−iφJ1 + e
iφJ
†
1, which in this case depends on the parame-

ter φ, as so does the generator Gφ.

In Fig. 2.3 we show the QFI for estimation of the intrinsic
parameters in dynamics of the 3-level system (see the upper
inset)Ω1,Ω2, κ. The quadratic enhancement is absent due to no
difference in the extreme rates µ1, µ2, cf. Eq. (2.35). In contrast,
for a parameter encoded as an amplitude (g) or an angle (φ)
of homodyne current, cf. Appendix B.3, the quadratic scaling
is present for φ 6= kΠ, k ∈ Z, see the inset of Fig. 2.3, which is
analogous to enhancement in the optical phase-shift estimation
in Fig. 2.2.

Figure 2.3: Estimation of intrinsic dynamical parameters in 3-level
system: The quadratic enhancement is absent for Ω1
(green), Ω2 (red), and the classical parameter - decay rate
κ (blue), and the asymptotic linear scaling is obtained at
earlier timescales τ ′ = (−Reλ3)−1 � τ = (−Reλ2)−1, as
the lowest-lying mode does not contribute to the asymp-
totic precision. In contrast, for a parameter g encoded as
the amplitude or the angle of homodyne current, the en-
hancement in precision is present for φ 6= kΠ, k ∈ Z (for
φ = kΠ we have that Mg equals MΩ1 = H1 up to a linear
transformation, see Appendix B.3.3). The initial state was
chosen as |χ〉 = 1√

2
(|1〉+ |2〉) and the Rabi frequencies as

Ω1 = 4κ and Ω2 = Ω1/50.
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2.4.2 Sensitivity over broad parameter range

In order to use an open quantum system and its output as
a resource for enhanced parameter estimation, the sensitivity
of the joint system-and-output state should be present over
a broad parameter range. Otherwise, the system-output MPS

can be used to mark a fixed point in the parameter range. This
is analogous to requirements for classical sensors, e.g. thermome-
ters, which should give an accurate temperature prediction over
a broad range of temperatures, between fixed points usually
given by thermal phase transitions in various classical systems
[173]. Note that at those fixed points the accuracy can scale bet-
ter than linear with the size of a classical system, as the accu-

racy for a thermal state ρT = e
− H
kBT /Tr(e−

H
kBT ) is proportional

to the variance of the system Hamiltonian, ∆2H [131]. Away
from the transition, however, the accuracy scaling is necessary
linear from the very definition of a phase transition.

Extrinsic parameters. Consider an extrinsic parameter g encoded
as a phase by an output observable O(t), |Ψg(t)〉 = eigO(t)|Ψ(t)〉,
so that the corresponding system state does not change ρg(t) ≡
ρ(t). Let us further assume that O(t) is an integral of local-
in-time quantity, i.e., an observable representing a continuous
measurement, e.g. a total number of photons or an integrated
homodyne current. In this case the MPS |Ψg(t)〉, can be expressed
as the MPS obtained for dynamics with parameter dependent
operators: the Hamiltonian Hg and the jump operators {Jj,g}

k
j=1.

The master dynamics of the system, however, will be indepen-
dent from the value of g, Lg ≡ L, as is the reduced state of the
system obtained from |Ψg(t)〉〈Ψg(t)| by tracing out the output
degrees of freedom. This emphasizes that the resource used for
the estimation for all values of g is the same MPS, on which
an unknown value of g is encoded.

Let system dynamics be close to a first-order DPT, so that L
features a separation in spectrum which leads to ∆2O(t) scaling
linearly in time with a large constant, see Eq. (2.27), which is
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directly related to quadratic scaling in the regime τ ′ � t � τ

due to distinct instant rates of O(t). As the QFI is the same for
all g, cf. (2.30), the optimal estimation precision is enhanced for
the whole range of g. Therefore, a system near such a first-order
DPT can be used as a resource for enhanced estimation of the
parameter g.

For a general parameter g encoded by a stochastic integral,
i.e., |Ψg(t)〉 = eiOg(t)|Ψ(t)〉, whereOg(t) 6= gO(t), we haveGg(t) =
∂gOg(t). When at g = g0 dynamics is close to a DPT with
∆2Gg0(t) scaling linearly in time with a large constant, there ex-
ist a finite range of g, where, in spite of varying g, the extremal
rates of Gg(t) in the regime τ ′ � t � τ stay non-negligibly
different, (µ1 − µ2) � (−λ2). In this parameter range the QFI

features the quadratic scaling regime and the constant of the
asymptotic linear scaling is large (see (2.35) and (2.36)).

Intrinsic parameters. Let us now consider an intrinsic parame-
ter g of dynamics such that the master operator Lg depends on
the value of g. We distinguish two types of intrinsic parameters.

Parameters driving a transition. When a parameter g drives
a stationary or dynamical phase transition at g = g0, the cor-
responding MPS undergoes a singular change at g = g0. It is
this singularity that allows for estimating with high precision
the value of g in the vicinity of g0, and in the case of a first-
order DPT, it manifests itself as a regime of quadratic scaling of
the QFI (2.35). Varying g in broader range, however, takes sys-
tem away from the transition point and increases the gap in Lg

thus shortening the quadratic regime, which further leads to a
moderate constant in linear scaling of the QFI (2.27). Although
such open dynamics cannot be used for estimation of g in a
broad regime, it can be used to mark a fixed point g = g0.

Other parameters for which varying a parameter in Lg does
not move the system away from a phase transition or increase
the gap significantly, but changes the properties of the station-
ary state and the low-lying modes analytically. On the phase
diagram this is manifested by a horizontal or a vertical line of
the phase coexistence. As the gap is not changed significantly
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by varying g in some finite range, the estimation precision may
be enhanced due to persisting long correlation time in the dy-
namics. Similarly as in the case of an extrinsic parameter, this re-
quires the extremal instant rates µ1,µ2 in the regime τ ′ � t� τ,
to be non-negligibly different, see Eqs. (2.35) and (2.36).

Example I. Let us consider a finite open quantum system with
two-fold degeneracy of 0-eigenvalue in Lg0 and estimation of
the field g in the system Hamiltonian Hg = gH. It follows that
g0H = H

(1)
g0 ⊕ H

(2)
g0 and Jj = J

(1)
j ⊕ J

(2)
j for the decomposition

H = H1 ⊕H2. This implies that H1 and H2 are invariant for
all values of g, since Hg = g

g0

(
H

(1)
g0 ⊕H

(2)
g0

)
. Furthermore, when

two stationary states ρ̃1,g, ρ̃2,g supported within H1, H2 corre-
spond to different rates Tr(Hρ̃1,g) 6= Tr(Hρ̃2,g), the value of g
can be estimated with the QFI scaling quadratically in time, see
Eq. (2.34). This is due to the fact that the macroscopic phase
encoded in the MPS, is actually here a global phase on the sys-
tem, which can be resolved only when the output is accessed,
and thus the quadratic scaling is absent when measurements
are considered on the system only, see also Appendix D.3.

Example II. Let Lg0 feature m > 4 eigenvalues with real part
0 (but possibly non-zero imaginary parts). When asymptotic
states preserve some initial coherences, there is a part of the
system space where dynamics is unitary — a decoherence free
subspace (DFS) [40–43] or a noiseless subsystem (NSS) [44–46],
see also Sec. 3.1.3. Let g be a coupling constant in the Hamil-
tonian H ′g = gH ′ governing such a unitary evolution inside a
DFS or NSS. The corresponding QFI for the reduced system state,
ρg(t), is independent from g. Moreover, for an initial state being
a superposition of H ′ eigenvectors with different eigenvalues,
the QFI scales quadratically in times, as phases growing linearly
with time t are encoded in the coherences of ρg(t), therefore it
is enough to use just the system to achieve enhanced estima-
tion. Using the output as well can provide a higher constant in
quadratic scaling, see Appendix D.3 for details.

Example III. Consider Lg0 with all eigenvalues with 0 real
part corresponding just to a single DFS or a NSS. As the output
statistics is the same for all states in DFS/NSS due to no infor-
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mation leak from the inside guaranteed by unitary evolution,
there is no quadratic enhancement in estimation of any parameter
encoded on the output. It is the difference in the output states
corresponding to different stationary states that may lead to
multiple modes in statistics of an output observable and fur-
ther to quadratic scaling in the QFI for parameter encoded using
such an observable.

2.4.3 Optimal measurement

We have shown that near a DPT the system-output state can
have a large QFI. In order to exploit this, and achieve quantum
enhanced sensitivity, it is necessary to measure an appropri-
ately chosen observable. The optimal observable is known to
be the SLD Dg defined as the solution of (2.11). For pure states
this can be solved and Dg = 2∂g|ψg〉〈ψg|. However, the mea-
surement of Dg will be difficult to engineer in most practical
situations. One needs therefore to find an alternative which is
both practical and whose SNR is as close as possible to the QFI.
Despite the fact that the intricacy of the optimal measurement
makes it impractical, we can still formulate general characteris-
tics for a measurement that achieves enhanced precision.

Support of measurement observable. The first consideration is
whether the measurement should be on the system or output,
or both. Consider Lg with 2 low-lying eigenvalues, i.e., close
to the two-fold degeneracy of 0-eigenvalue. In this case, in the
regime of quadratic scaling the optimal measurement whose
precision is given by the QFI involves measuring both system and
output. This is a consequence of the fact that the macroscopic
phase t (µ1 − µ2)g encoded in the MPS during this regime is
present neither in the reduced state of the system or the out-
put, as they act as a reference for each other. In particular, at
a DPT the precision achievable by measuring only the output
is bounded by p1F(|Ψ

(1)
g (t)〉) + p2F(|Ψ(2)

g (t)〉), which scales lin-
early in time, see Appendix B.2. Here |Ψ

(1,2)
g (t)〉 are the MPSs
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associated to two stationary states, and p1,2 are their proba-
bilities. This last result is the precision of an idealised proto-
col given by a first measurement of the system to project onto
one of the subspaces associated with the competing stationary
states, followed by an optimal measurement of the conditioned
system-output state |Ψ1,2(t)〉. On the other hand, the precision
of a measurement performed just on the system is asymptot-
ically a function of the stationary state, F(limt→∞ ρg(t)) and
therefore is constant. A similar situation holds for dynamics fea-
turing multiple stationary states, but not preserving any initial
coherences. For a higher degeneracy than three-fold, however,
the dynamics can be unitary on a part of the system space, thus
preserving some initial coherences. This corresponds to a DFS

or a NSS. In this case the asymptotic state of the system may
depend on time via this unitary evolution, possibly leading to
quadratic scaling of the precision of a measurement performed
just on the system, see Example II in the previous subsection
and Appendix D.3.

Optimal measurement time. The second consideration is what
should be the time extension t of a single measurement run.

Here we imagine that the total time available to the exper-
iment is T and one performs n = T

t independent repetitions
of the optimal system-output measurement of the state |Ψg(t)〉.
This corresponds to a measurement of the joint state |Ψg(t)〉⊗n,
and the optimal time t is that which maximises the QFI of the
joint state, F(|Ψg(t)〉⊗n) = nF(|Ψg(t)〉) = T

t F(|Ψg(t)〉).
For dynamics at a first-order DPT, when the QFI asymptot-

ically has quadratic, linear and constant terms, see Eq. (2.34)
and Appendix B.2, and the quadratic behaviour is due to non-
decaying correlations in the MPS. All correlations present are
exploited by the choice t = T , which is confirmed by a positive
derivative of the QFI for times t� τ ′. Near a DPT the quadratic
regime is limited to t � τ, when the correlations do not decay,
cf. Eq. (2.35). The optimal time t is necessary longer than the
metastable regime in order to fully exploit correlations in the
dynamics t ≈ O(τ), see Fig. 2.2 and the inset of Fig. 2.3, but
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longer experiments with t � τ cannot provide significant en-
hancement.

Optimal measurement in optical phase-shift estimation. For the
case of optical phase-shift estimation at a DPT, the bimodality
of the system-output state in the counting statistics means that
it is essentially of the form of a “Schrödinger cat” state. Assum-
ing for simplicity that the competing stationary states are pure
and the photon emission statistics from each stationary state is
Poissonian, it reads,

|Ψφ(t)〉 =
√
pI |I〉 ⊗ |αI(φ)〉+

√
pA |A〉 ⊗ |αA(φ)〉 (2.41)

where |αA(φ)〉 are coherent states with amplitudes αI,A(φ) =

eiφ
√
t µI,A, where µI,A are the photon emission rates of the dy-

namical phases, see Eqs. (2.19) and Fig. 2.1 (c). In fact, as shown
in Ref. [174], the state (2.41) is approximately a GHZ state
with an effective parameter t(µA − µI)φ. Note that for (2.41)
neither counting nor homodyne measurements achieve Heisen-
berg scaling, which highlights the general challenge of identi-
fying optimal measurements, see also Fig. 2.1 c). However, one
might think of instead employing interferometric protocols, re-
lated to the ones put forward in Refs. [174–176] for superposi-
tions of coherent states, in order to exploit the enhanced preci-
sion scaling.

Optical-shift estimation in the presence of noise. It is known that
for the optical-shift estimation in the presence of Markovian
noise typically arising in experiments, i.e., dephasing or pho-
ton losses, the QFI scales necessary linearly in the mean number
of photons in the interferometer [12–16]. Therefore, the quan-
tum enhancement is limited just to a constant. In the numerical
study [161] it was shown, however, that MPSs perform optimally
in the presence of losses, i.e., achieve the optimal constant in the
linear scaling of the QFI. This can be understood as follows us-
ing the sequential structure of MPS [35, 128, 159]. For photon
loss occurring at rate η, the average waiting time for a pho-
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ton loss to occur is η−1, therefore for correlations in the MPS of
a shorter length τ � η−1, are not affected by the noise. This
corresponds to bounds of [15, 94] approaching the Heisenberg
scaling in that regime. Moreover, this argument generalises to
other local noise models such as local dephasing.

2.5 generalised dpts

When changing a parameter g of the system dynamics, the
joint system-output state |Ψg(t)〉 can undergo a singular change.
This could correspond to a static phase transition in the sta-
tionary state of the system or to a dynamical phase transition
that happens in the output. Both kinds of transitions can be de-
tected by discontinuities in the average or a higher cumulant
of an observable; in the case of a static transition, the observ-
able should act on the system, whereas for a dynamical transi-
tion — a continuous measurement should be perfomed on the
output. Yet, it is not obvious how to choose such an observ-
able or a continuous measurement. More generally, however,
the changes in the structure of any state |ψg〉 with varying g,
can be captured by the way the distance between states |ψg ′〉
and |ψg〉 changes when g and g ′ are varied. Let us consider ḡ
being a vector of state parameters. The information-geometric
approach [125] using Bures distance, which is based on the fi-
delity between states, DB(|ψḡ ′〉, |ψḡ〉) =

√
2(1− |〈Ψḡ ′ |Ψḡ〉|), es-

tablishes a Riemannian metric on the quantum state space. The
singularities of the metric in the thermodynamics limit of the
system size going to infinity, have been successfully used to
identify transitions in ground states of many classes of Hamil-
tonians, also in the cases when the corresponding ground state
energy does not feature any singularities with respect to the
parameters ḡ [129, 130]. Moreover, the metric determines the
state distinguishability, as it is proportional to the QFI matrix
for the parameters ḡ [127], see Eq. (1.21), thus bounding the
optimal precision in the multi-parameter estimation of ḡ [131].
In particular, the information-geometric approach has been ap-
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plied to Hamiltonians with ground states being matrix-product
states [177] (note the difference in the normalisation to the joint
system-output state in (2.3)).

The results presented in this chapter and [29] extend the
geometric approach to open quantum systems with accessi-
ble outputs, thus generalising the notion of dynamical phase
transitions [34–36, 163, 164]. The thermodynamic limit of in-
finite system size is replaced by the limit of infinite time t. In
the one-parameter case the asymptotic metric is simply given
by limt→∞ F(|Ψg(t)〉) / 4t = ∂g1∂g2λ1(g1,g2)|g1=g2=g, cf. (2.26).
In the multi-parameter case of a vector ḡ of parameters, it is
the matrix of second derivatives of the maximal eigenvalue in
the modified master operator Lḡ ′,ḡ, see also [178]. The notion
of phase transitions in the metric, although more general and
better suited for theoretical investigations than singularities of
observable cumulants, does not give a recipe for detection of
such a transition in an experiment. In the section 2.3 we have
introduced the observable Gg(t), (2.29), whose variance corre-
sponds to the metric, cf. (2.30). Below we characterise Gg(t) as a
stochastic integral, and consider the necessary conditions under
which measuring Gg(t) could be used to detect the generalised
DPTs of the first and the second-order. Furthermore, we discuss
some experimental approaches in which the maximal eigen-
value λ1(g1,g2) of the modified operator Lg1,g2 in Eq. (2.25) can
be accessed directly, and also the limit limt→∞ t−1 log(〈Ψg1(t)|Ψg2(t)〉).

2.5.1 Observable distinguishing dynamical phases

The generator Gg(t) characterises how the system-output MPS

changes when g is varied. We have shown that for a finite sys-
tem the variance ∆2Gg(t) scales linearly except a phase transi-
tion point when the stationary state is degenerate and the scal-
ing may be quadratic, in which case measuring rates of Gg(t)
distinguishes two dynamical phases, cf. (2.34). Here we discuss
the structure of the generator in detail. We note that an analo-
gous notion to the generator Gg(t) has been introduced in [130]
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for a general family of states |ψḡ〉, but, as we discuss below, the
generator can be used to detect a phase transition only if it it-
self features finite correlations.

Generator as a stochastic integral. Let us first consider the case
of a closed system with parameter g = Ω being a coupling
constant in the Hamiltonian, i.e., HΩ = H0 +ΩH1 and Jj = 0,
which corresponds to all D2 eigenvalues of Lg having real part
0, where D is the system space dimension. In this case we have
(see also [104, 105])

GΩ(t)|ψΩ(t)〉 =

∫ t
0

due−i(t−u)HΩ H1 e−iuHΩ |ψ(0)〉 (2.42)

=

∫ t
0

due−i(t−u)HΩ H1 ei(t−u)HΩ |ψΩ(t)〉,

so that GΩ(t) =
∫t
0 due−i(t−u)HΩ H1 ei(t−u)HΩ is an integrated

observable. We note, however, that t2-scaling of the correspond-
ing QFI, F(|ψΩ(t)〉), is not always present when H0 and H1 do
not commute [105].

In the case of an open quantum system which can be de-
scribed by the input-output formalism the evolution is no longer
unitary, but can be described by stochastic unitaries, which will
lead to Gg(t) being a stochastic integral. Let us first consider dy-
namics discretised by δt, see Eq. (2.3), where the joint system
and output MPS can be described by a co-cycle Ug(n, 0),

|Ψg(n)〉 = Ug(n, 0) |χ〉⊗ |vac〉 = Un,g · · ·U1,g |χ〉⊗ |vac〉, (2.43)

where n = t/δt, andUi,g is the unitary acting on the system and
a part of the input at time t = iδt, and as the identity on the the
output. Ui,g can be expressed by the evolution Kraus operators,
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(2.4), as Ui,g |χ〉 ⊗ |vac(i)〉 =∑j Kj,g|χ〉 ⊗ |j〉. We therefore arrive
at the discrete generator, cf. [171],

Gg(n)|Ψg(n)〉 = i
n∑
l=1

Un,g · · ·Ul+1,gU ′l,gUl−1,g · · ·U1,g |χ〉 ⊗ |vac〉

= i

n∑
l=1

Un,g · · ·Ul,gU†l,gU ′l,gU
†
l,g · · ·U†n,g |Ψg(n)〉

=

n∑
l=1

Ug(n, l− 1)Gl,gUg(n, l− 1)† |Ψg(n)〉, (2.44)

where U ′g(l) := ∂g ′Ug ′(l)|g ′=g and Gl,g := iUg(l)
†U ′g(l). Note

that Eq. (2.44) is analogous to Eq. (2.42). In the continuous time
Ug(t, 0) is a stochastic unitary

dUg(t, 0) =

−iHgdt+
k∑
j=1

(
Jj,gdA†j,t − J

†
j,gdAj,t −

1

2
J
†
j,gJj,gdt

)Ug(t, 0)
(2.45)

In order to mimic the structure of the co-cycle in the discrete
case, let us introduce

dUt,g = Ug(t+ dt, t) = Ug(t+ dt, 0)Ug(t, 0)†

= [Ug(t, 0) + dUg(t, 0)]Ug(t, 0)†

= 1− iHgdt+
∑
j

(
Jj,gdA†j,t − J

†
j,gdAj,t −

1

2
J
†
j,gJj,gdt

)
, (2.46)
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which leads to

dGt,g = idU†g,tdU
′
g,t

= i

1+ iHgdt+
∑
j

(
J
†
j,gdAj,t − Jj,gdA†j,t −

1

2
J
†
j,gJj,gdt

)
×

−iH ′gdt+
∑
j

(
J ′j,gdA†j,t − (J†j,g)

′dAj,t −
1

2
(J†j,gJj,g)

′dt
)

=

H ′g + i

2

∑
j

(
J
†
j,gJ
′
j,g − (J†j,g)

′Jj,g
)dt

+i
∑
j

(
J ′j,gdA†j,t − (J†j,g)

′dAj,t
)

, (2.47)

where the last equality is due to dAj,tdA
†
j,t = dt and all the

other cross terms disappearing according to the quantum Ito
rule, see e.g. [39]. Furthermore, note that the term which acts
on the system only is the observable Mg dt, (2.37). This is the
only term that will contribute to the average 〈Gg(t)〉 (see Ap-
pendix B.3.1), which is consistent with (2.31). The generator
Gg(t) is a stochastic integral

Gg(t) =

∫ t
0
Ug(t,u)dGu,gUg(t,u)† (2.48)

and thus its variance of ∆2Gg(t) is an integral of correlations
(covariance) between dGu,g and dGv,g, 0 6 u, v 6 t, see Ap-
pendix B.3.1 for discussion. We therefore see that if the Hamil-
tonian Hg and jumps {Jj,g}j depend analytically on g, also Gg(t)
is well-behaved.

In particular, for Ω being a coupling constant in the system
Hamiltonian, HΩ = H0 +ΩH1, we obtain

GΩ(t) =

∫ t
0

duUΩ(t,u)H1UΩ(t,u)†, (2.49)

which is analogous to Eq. (2.42).
Let us finally note that the generator Gg(t) is not fully de-

termined by Eq. (2.29), since the matrix product states for all
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initial system states, with respect to which the generator is de-
fined, do not span the whole system and output state space. In
particular, any dCt such that dJt |Ψ(t)〉 = 0 on any MPS |Ψ(t)〉
leads to equivalent definitions of the generator with dG̃t,g =

dGt,g + dCt. Moreover, Eq. (2.47) can be used to solve the in-
verse problem of identifying Hg and {Jj,g}j for a given generator
Gg(t), see Appendix B.3.3 for the example of Gg(t) being the
homodyne current of the output.

Using the generator to detect a DPT. We see that in the case of a
first-order DPT measuring rates of Gg(t) distinguishes two dy-
namical phases and can be also related to the variance ∆2Gg(t)
scaling quadratically.

In order to use Gg(t) as an observable measured to detect
a DPT, all its cumulants, in particular the variance, must scale
at most linearly with t for any MPS — not only |Ψg(t)〉 — that
corresponds to dynamics with a single stationary state on the
same system-output space, e.g. |Ψg ′(t)〉 at g ′ 6= g as long as
Lg ′ has non-degenerate 0-eigenvalue. This corresponds to in-
finite differentiability of the long-time limit of its CGF, which
result is not known in general. Moreover, even a weaker result
of the Central Limit Theorem, which states that the distribu-
tion shifted by minus its average and rescaled by

√
t asymptot-

ically converges to a Gaussian distribution, is not yet establish
apart from the case of a continuous measurement of the output
where results following from the Local Asymptotic Normality
(LAN) [37, 39, 171], which we explain below.

The LAN theorem states that for the finite system dynam-
ics with single stationary state the asymptotic behaviour of the
fidelity is asymptotically Gaussian,

lim
t→∞〈Ψg+ v√

t
(t)|Ψg+ u√

t
(t)〉 = e−

(u−v)2

2νg , (2.50)

where νg is the linear limit of the variance ∆2Gg(t), cf. (2.27)
and (2.30). For the phase encoded unitarily on the output or in
the amplitude of homodyne current (see Appendix B.3.3), the
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fidelity corresponds to a characteristic function of the respec-
tive integrated continuous measurement, Gg(t). Therefore, the
Local Asymptotic Normality result yields the CLT for that mea-
surement performed on |Ψg(t)〉. Moreover, since for g encoded
as a phase of the output observable, the generator does not
depend on g, Gg(t) ≡ G(t), and all its cumulants measured on
|Ψg(t)〉 are the same for all g. Thus, the CLT holds for measuring
any joint system-output state corresponding to a single station-
ary state.

Measuring the generator. Nevertheless, let us assume for now
that Gg(t) is well-behaved when measured on any MPS corre-
sponding to single-stationary-state dynamics. We now discuss
further aspects of relation between measurement of Gg(t) and
DPTs.

In the case of a system near a first-order dynamical transition,
due to the small gap, dynamics exhibits metastability, which can
be observed as a broad time-regime where the average of the
system observable Mg, (2.37), appears stationary before relax-
ing to the value corresponding to the true stationary state ρss.
Approximate stationarity of 〈Mg〉 implies a quadratic regime
in the variance ∆2Gg(t) and a large constant in its asymptotic
linear scaling, see (2.35) and (2.36). This highlights the relation
of first-order dynamical phase transitions to first-order station-
ary phase transitions [36]. In general, however, approximate
stationarity of a particular system observable in some broad
time-regime does not imply separation in the spectrum of the
master operator, as that observable may not capture behaviour
of all dynamical modes or, even if the separation is present, the
metastable dynamics may not be related to a DPT.

Therefore, in order to observe signatures of being in proxim-
ity of first-order or higher-order DPTs, it is necessary to con-
sider not only the system, but also the output. For a DPT cor-
responding to a diverging cumulant of a continuous measure-
ment, the fidelity of states with parameter g encoded with that
measurement as a generator, is simply the characteristic func-
tion of the generator and thus a DPT corresponds to singular-
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ities of log〈Ψg ′(t)|Ψg(t)〉 with respect to g ′. For a general pa-
rameter g, such singularities will corresponds to diverging be-
haviour of time-ordered cumulants of Gg(t), see Appendix B.3.1
and it is left to investigate whether diverging behaviour of
time-ordered cumulants implies the divergence of cumulants
defined in standard fashion. However, instead of measuring
Gg(t), the long-time limit limt→∞ t−1 log〈Ψg ′(t)|Ψg(t)〉 can also
be accessed in the experiments, and thus the time-ordered cu-
mulants, see Sec. 2.5.2.

Generalised transitions in ensembles of quantum trajectories. Be-
yond dynamical phase transitions, a notion of transitions in
ensembles of dynamical trajectories has been introduced for
continuous measurements, such as photon counting [34] or het-
erodyne/homodyne measurement [164]. Furthermore, a simi-
lar notion has been introduced for time-integrated observables
of a closed quantum system [179]. Here we introduce a gener-
alised notion of the transitions in ensembles of open quantum
system trajectories.

We have discussed how cumulants of a continuous measure-
ment can be encoded in a characteristic function corresponding
to the fidelity between quantum states. The cumulants can be
also encoded in the CGF associated to a modified master oper-
ator [34, 164], see also Sec. 2.1.2. The long-time limit of such
CGF corresponds to "free energy" density, whose singularities
at s 6= 0 manifest non-analytic features among the continuous
measurement records, referred to as transitions in the ensemble of
quantum trajectories. In the case of a closed quantum system one
can consider cumulants of a time-integrated system observable
and investigate the singularities of the related long time-limit
CGF [179]. We now extend this approach to the case of an open
quantum system and a system observable X, and consider cu-
mulants of G(t) =

∫t
0 duU(t,u)XU(t,u)†, analogous to the gen-

erator associated with encoding of a coupling constant of the
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system Hamiltonian (H1 = X and Ω = 0 in (2.49)), as follows.
We define

Θt(s) = log 〈Ψ(t)|e−
∫s/2
−s/2

dhGh(t)|Ψ(t)〉
= log 〈Ψi s2 (t)|Ψ−i s2

(t)〉
= log Tr(etWs |χ〉〈χ|), (2.51)

where (see Eq. (2.25) for g = Ω being a coupling constant in the
Hamiltonian H)

Ws(ρ) := Li s2 ,−i s2
(ρ) = L(ρ) −

s

2
{X, ρ}. (2.52)

Θt(s) is related to G(t) via derivatives w.r.t. s up to the second
cumulant, and to higher cumulants up to time ordering, exactly
as it is the case for the fidelity, see Appendix B.3.1 for detailed
discussion. This is also the case (but not mentioned) for the
closed case in [179] and full counting statistics approach [180].
Asymptotically, Θt(s) ≈ tθ(s), where θ(s) is the maximal eigen-
value of Ws. A singularity of θ(s) at s 6= 0 will correspond to
a new type of transition in ensemble of quantum trajectories.
Moreover, this transition can be observed experimentally, see
Sec. 2.5.2.

The notion can be extended even further to the case of a gen-
eral parameter g as follows,

Θt(s) := log Tr
(
e
tLg+i s

2
,g−i s

2 |χ〉〈χ|
)

= log 〈Ψg+i s2 (t)|Ψg−i s2 (t)〉

= log 〈Ψg(t)|Te−
∫s/2
−s/2

dhGh(t) |Ψg(t)〉. (2.53)

2.5.2 Direct measurement of fidelity

Here we present two experimental schemes obtaining the val-
ues of the fidelity between two MPSs, 〈Ψg ′(t)|Ψg(t)〉 or Θt(s)
defined in (2.51). From the experimental results the numerical
derivatives can be further determined, in particular the second
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derivative corresponding to the QFI (cf. (2.12) and (2.30)).

Interferometry with two-level ancilla (proposed in [181, 182]).
We consider an extended master dynamics LSA of the system
and a two-level ancilla in which the ancilla controls the system
dynamics as follows

HSA =

 Hg 0

0 Hg ′

 , JSAj =

 Jj,g 0

0 Jj,g ′

 , j = 1, ...k,

(2.54)

where matrices are expressed in the ancilla basis |0〉A, |1〉A. For
example, for the ancilla initially in the state |1〉A the system
dynamics is given by Lg ′ , whereas for the initial state |0〉A the
system evolves with Lg. For the system and ancilla initially in
a separable state |χ〉S ⊗ (|0〉A + |1〉A)/

√
2 we have

ρSA(t) =

 etLg(|χ〉〈χ|) etLg,g ′ (|χ〉〈χ|)
etLg ′,g(|χ〉〈χ|) etLg ′ (|χ〉〈χ|)

 . (2.55)

Note that the off-diagonal term in the joint system-ancilla state
ρSA10 corresponds to the modified master dynamics Lg ′,g in (2.25).
Furthermore, the corresponding off-diagonal term in the ancilla
state ρA10 = TrA(ρA(t)σA−) = TrS

(
etLg,g ′ (|χ〉〈χ|)

)
yields exactly

the MPS fidelity 〈Ψg ′(t)|Ψg(t)〉, cf. (2.24). Therefore, the modi-
fied dynamics is simply encoded in the dephasing strength and
the rotation experienced by the ancilla atom. As 〈σA−〉 can be de-
termined via measurements of Pauli operators σAx and σAy on
the ancilla, σA− = σAx − σAy , this interferometric scheme provides
a direct access to the value of the fidelity, from which its numer-
ical derivatives can be further determined.

Waiting time distribution. For a parameter being a coupling
constant in the free system dynamics, e.g. Ω with HΩ = H0 +

ΩH1, the fidelity can be related to the modified master operator
Ws, analogously as a characteristic function is related to a CGF,
cf. Eqs. (2.51) and (2.52). Although the operator Ws is not trace-
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preserving, it can be related to physical dynamics of L, but
with additional jumps operators corresponding to interactions
with more modes of the environment, as follows. For s > 0,
without loss of the generality, let us assume that the observable
X is positive, X > 0, as the shift by a constant will not change
the (time-ordered) cumulants of its time-integral. We consider
a master operator

W̃s(·) := L(·) +
∑
j ′

(
s̃Jj ′(·)̃J†j ′ −

s

2
{̃J
†
j ′ J̃j ′ , (·)}

)
(2.56)

= Ws(·) + s
∑
j ′

J̃j ′ (·) J̃†j ′ ,

where we have only assumed that the additional jump opera-
tors {̃Jj ′}j ′ obey

∑
j ′ J̃
†
j ′ J̃j ′ = X for s > 0, and when s < 0 we

consider X shifted by a constant so that X 6 0. In the case of
physical dynamics generated by W̃s(·), Θt(s) = Tr(etWsρin) is
logarithm of the probability of observing none of the additional
jumps {̃Jj ′}j ′ up to time t for the system initially in the state ρin,
cf. the effective Hamiltonian Heff in (2.2). Note that the wait-
ing time distribution, and thus Tr(etWsρin), can be accessed in
an experiment with dynamics given by W̃s or in Monte Carlo
simulations of that dynamics. We note that this approach has
been originally proposed for closed systems, i.e., Lρ = −i[H, ρ],
in [179].

Continuous measurements. For a parameter encoded as a phase
of output observable, i.e., a continuous measurement, the fi-
delity corresponds simply to a characteristic function of that
observable and can be reconstructed from moments of the mea-
surement statistics.

2.6 conclusions

We have shown that, close to a first-order dynamical phase tran-
sition, the output of an open quantum system can be seen as
a resource for quantum metrology applications, in which the
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parameter to be estimated in encoded on the output state. For
times of the order of the dynamics correlation time, the system-
output QFI scales quadratically with time, while in the long
time limit, the QFI scales linearly in time with the multiplica-
tive constant that diverges when the spectral gap closes, as in a
DPT. Furthermore, the precision of estimating intrinsic param-
eters of the system dynamics may also be enhanced, but only
around the parameter values corresponding to dynamics being
in the proximity to a DPT. The regime of the quadratic scaling of
the QFI in time, corresponds to a bimodal distribution of the dy-
namical observable encoding the parameter, and thus a macro-
scopic relative phase encoded in the joint system-output state.
Asymptotically, the distribution becomes unimodal and the rel-
ative phase is lost, which results in the linear scaling of the QFI.
It remains an open issue what experimentally realisable mea-
surement can exploit the large QFI of the system-output close
to a DPT. Finally, exploiting the fact that the QFI corresponds to
a metric on the space of quantum states, we have discussed how
its singularities for the joint system-output state correspond to
generalised DPTs.



3
M E TA S TA B I L I T Y I N M A R K O V I A N O P E N
Q U A N T U M S Y S T E M S

In Chapter 2 we explored the possibility of quantum enhance-
ment in parameter estimation by using Markovian open quan-
tum systems together with their output. The crucial property
we exploited was a small or zero (at a DPT) gap in the spec-
trum of the Markovian master operator governing the system
dynamics.

In this chapter we show that a splitting in the spectrum re-
sults in the separation of timescales of the system dynamics,
corresponding to initial partial relaxation is into long-lived states,
with subsequent decay to true stationarity occurring at much
longer times. This phenomenon is referred to as metastability
and has evident experimental manifestations, for example in
two-step decay of time correlation functions of system observ-
ables [183].

Metastability is a common occurrence in classical stochas-
tic many-body systems often displaying complex and slow re-
laxation, including classical soft matter [54], glasses being the
paradigmatic example [55, 56]. On the other hand, in the non-
equilibrium dynamics of quantum many-body systems, both
closed and open, questions about timescales and partial versus
full relaxation play central roles in issues such as thermalisa-
tion [184–187], many-body localisation [188–190], and an aging
and glassy behaviour [183, 191–195].

Given this broad range of problems, it would be highly de-
sirable to have a unified theory of quantum metastability. In
this chapter we present results of [196], where we lay grounds

107
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for such a theory for the case of open quantum systems with
Markovian dynamics. By generalising concepts from classical
stochastic systems [47–53], we develop an approach for quan-
tum Markovian systems based on the spectral properties of the
generator of the dynamics. We show how to exploit its spec-
tral structure to obtain a low-dimensional approximation to
the dynamics in terms of motion in a manifold of metastable
states constructed from the low-lying eigenmatrices of the gen-
erator, and consider the associated behaviour of time correla-
tions. Based on perturbative calculations for finite systems, we
argue that the manifold of metastable states is in general com-
posed of disjoint states, decoherence-free subspaces (DFSs) [40–
43] and noiseless subsystems (NSSs) [44–46]. We illustrate these
possibilities with simple examples.

Let us note that from the quantum information perspective,
decoherence free subspaces and noiseless subsystems, where
parts of the Hilbert space are protected against external noise,
are ideal scenarios for implementing quantum information pro-
cessing [7]. Since experiments are performed in finite time, how-
ever, it is sufficient to consider a larger class of systems whose
coherence is only stable over experimental timescales, i.e., meta-
stable.

3.1 background

Before discussion of the results for metastability in Markovian
open quantum systems, we briefly review the notion of metasta-
bility in classical equilibrium systems. Next, we sketch the ba-
sics of the metastability theory for classical Markovian dynam-
ics [48, 51]. We also recall the general structure of manifolds of
stationary states in Markovian open quantum systems.
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3.1.1 Phenomenology of metastability in classical equilibrium sys-
tems

A finite classical system at equilibrium with a bath of certain
temperature, can be described by its free-energy functional, which
determines the probability of observing a given (usually col-
lective) configuration (a microstate) [197]. For a large system
size, the minimum of the free-energy functional corresponds to
the macrostate observed on average in experiments (up to ther-
mal fluctuations, which disappear in the thermodynamic limit).
Due to thermal fluctuations, the system undergoes stochastic
dynamics between configurations. When the dynamics is time-
reversible, the difference of free-energy functional for two con-
figurations, i and j, determines the ratio between the escape
rates in detailed balance condition,wjk/wkj = e−β(f(j)−f(k)), where
wjk is the escape rate from the configuration k to j, f(j) is the
free energy of j-configuration, and β is the inverse temperature
rescaled by the Boltzmann constant kB.

Let us consider an example of a classical ferromagnet at low
temperatures, where metastability is a dynamical consequence
of the static features of the system. In the thermodynamic limit,
this system features a first-order static phase transition at zero
magnetic field (and the Landau free energy w.r.t. the spin mag-
netisation features two equal minima). If the ferromagnet is
close to the coexistence point (e.g. at small positive magnetic
field), but initially at a state belonging to the unfavoured phase
(in this case with negative magnetisation corresponding to lo-
cal minimum of Landau free-energy) there will be an initial
fast relaxation within this phase, before a much longer relax-
ation to the eventual equilibrium state within the stable phase
(of positive magnetisation corresponding to global minimum
of Landau free-energy). This occurs due to the existence of a
large, but finite, free-energy barrier that needs to be crossed
from the metastable phase to the stable phase due to small ther-
mal fluctuations. The barrier height is related to the surface ten-
sion of creating domains of the stable phase in the background
of the other. At the zero field there is a strict coexistence be-
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tween the phases of positive and negative magnetisation, and
dynamics is no longer ergodic. At finite size, however, the phase
transition is absent and the dynamics is necessary metastable,
with the metastable states being those of non-zero magnetisa-
tion, and the true equilibrium state being paramagnetic, due
to intermittent dynamics between two metastable phases [197].
In this sense, metastability does not require the presence of a
phase transition, only that the distinct states are long lived and
only weakly connected by dynamics, which is exactly the case
of many-body systems with complex collective dynamics and
slow relaxation, such as glasses [55, 56].

In Sec. 3.3 we show that for an open quantum system with
small gap, i.e., a single low-lying master operator eigenvalue
close to 0, the system dynamics always features two metastable
phases and the long-time dynamics corresponds to a classical
motion between two minima of a free-energy functional sepa-
rated by a barrier, although the underlying system dynamics is
quantum.

3.1.2 Metastability in classical stochastic systems

Let us now recall the metastability theory for classical Marko-
vian systems of finite size, developed by B. Gaveau and L. S.
Schulman [48, 51]. As Markovian dynamics in general does not
obey detailed balance nor their stationary states are thermal,
the metastability theory [48, 51] comprises also large class of
non-equilibrium dynamics that can be approximated as Marko-
vian.

Consider a Markovian master equation for a vector of proba-
bilities p = (p1, ...,pd)T , (pk > 0, k = 1, ..,d,

∑d
k=1 pk = 1) on a

discrete space of d system configurations,

d
dt
p = Wp. (3.1)

As dynamics preserves positivity of p, the off-diagonal entries
of the master operator W are positive wjk := (W)jk > 0, and
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correspond to escape rates from j-th to k-th configuration, j 6=
k = 1, ...,d. Furthermore, as the total probability is conserved,∑d
k=1 pk = 1, we also have that

∑d
j=1,j 6=kwjk = −wkk, k = 1, ...,d,

and hence the diagonal entries are negative. The differential
equation in (3.1) can be solved formally as p(t) = etWpin by
finding the eigenmodes of the master operator W. In particular,
when W is diagonalisable, we have p(t) =

∑d
k=1 e

tλkrk l
T
kpin,

where rk and lk are right and left eigenvectors of W corre-
sponding to an eigenvalue λk (ordered with decreasing real
part). When dynamics are ergodic, we have that Re(λk) < 0

for k = 2, ..,d and the first eigenvalue equals 0, λ1 = 0, which
corresponds to the stationary probability distribution, r1 = pss,
and lT1 = (1, 1, .., 1).

In [48, 51] W is considered to have a separation in real parts
of eigenvalues. This implies that there exists metastable time
regime when only low-lying eigenmodes contribute to the dy-
namics of the probability distribution, p(t), and their decay
is negligible. In this regime it can be shown that any meta-
stable system state is simply a mixture of multiple phases char-
acterised by approximately disjoint probability distributions,
which is a structure analogous to that at a first-order transi-
tion.

Sketch of the proof. Consider m low-lying eigenmodes and as-
sume that in the metastable regime their decay is negligible, so
that p(t) ≈∑m

k=1 e
tλkrk l

T
kpin is determined by so called observ-

able representation of state space, i.e., the coefficients ck = lTkpin,
k = 2, ...,m , (c1 = 1 for all pin), where the low-lying spectrum
has been assumed real and without Jordan blocks. It will be
shown that the set C of c = (c2, ..., cm) for all possible initial
distributions pin is approximately a simplex, i.e., a convex set
whose interior points uniquely represent probability distribu-
tions on m vertices via barycentric coordinates. Moreover, the
vertices can be uniquely associated with disjoint sets of initial
configurations — basins of attraction —- evolving into meta-
stable states with the coefficients c close to a given vertex. Fi-
nally, each vertex represents one ofmmetastable phases, which
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are approximately proportional to pss on the respective basins
of attraction.

Consider m extreme points in the set C, such that the point
(0, .., 0) corresponding to the stationary distribution pss can be
represented as their convex combination. The dynamics of p(t)
for any initial system configuration, will feature decay of the
low-lying modes, i.e., time-dependent c(t), but due to sepa-
ration in the spectrum during metastable regime the decay is
small, c(t) − c =: O(δ) (including the initial system configura-
tions corresponding to the chosen extreme points, with respec-
tive δl, l = 1, ..,m). For a given extreme point, cl, one can choose
an affine transformation such that the given extreme point is
the origin of the new local (in general non-orthogonal) coordi-
nates, and all points in C have non-negative coordinates. This
is possible since C is a subset of a cone originating at cl as C
consists of finitely many, at most d, extreme points. Consider a
set Xl(al) of initial system configurations s.t. the corresponding
coefficients c are not further away, in the local coordinates, from
cl than al. One can show that probability pl(t) corresponding
to the extreme point cl, is supported on configurations belong-
ing to Xl(al) up to m δl

al
. As one does not want to choose sets

Xl(al) overlapping for different l, we need an assumption (I),
so called separation hypothesis, that the m extreme points, c1,
. . . , cm, are separated by O(1), when the left eigenvectors lk,
k = 1, . . . ,m, of W are normalised in the max norm. Further-
more, this separation needs to be maintained also in the local
coordinates (assumption II). In such a case one can choose al
s.t. δl � al � O(1), which guarantees Xl(al) to capture the
supports of pl(t) up to m δl

al
, l = 1, ...,m, and be disjoint. More-

over, pss is supported on
⋃m
l=1 Xl(al) up to m×maxl=1,..,m

δl
al

,
and this is also the case for any metastable state.

Furthermore, assuming that in the inverse affine transforma-
tion from the local coordinates back to the original coordinates
of the coefficients c, distances are only changed by order O(1)
(assumption III), one also obtains that the left eigenvectors lk,
k = 1, ...,m, are constant on each Xl(al) up to corrections of the
order O(al). This leads, for any initial configuration y, to the
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corresponding coefficients, c(y), being a convex combination of
them extreme points cl, up to corrections of the O(al), and thus
the corresponding probability distribution being simply a mix-
ture of the extreme probability distributions pl(t), l = 1, ...,m.
This finally proves that C is approximately a simplex and the
choice of the extreme points is unique up to O(al). .

In [51] the effective long-time dynamics is obtained as coarse-
graining of the space of system configurations over disjoint basins
defined above, and necessary corresponds to transition between
metastable phases. As we show in this chapter for quantum sys-
tems, such transitions can be observed in coarse-graining in time
of quantum jump trajectories of the Markovian open quantum
system, although such dynamics may not be ergodic and thus
coarse-graining in space does not have clear interpretation.

We finally note here that the observable representation have
been utilised to define dynamical distance between system con-
figurations, which can be further used in pattern recognition in
classical stochastic trajectories, see [52, 198].

3.1.3 Stationary manifolds of quantum semi-group dynamics

In the previous subsection, we recalled the results of [48, 51]
stating that metastable states of classical Markovian systems
can be represented as a probabilistic mixture of approximately
disjoint metastable phases. This resembles the general situa-
tion at a first-order phase transition when more phases are sta-
ble than just a single one, which for Markovian systems corre-
sponds to non-uniqueness of a stationary probability distribu-
tion.

Let us now present the general structure of degenerate sta-
tionary states in Markovian open quantum dynamics [199]. We
consider dynamics of a finite quantum system with the Hilbert
space H, described by a Lindblad master equation [8, 9], so that
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the system state ρ(t) obeys d
dtρ(t) = Lρ(t), with the generator

of the dynamics L,

Lρ = −i[H, ρ] +
∑
j

(
JjρJ

†
j −

1

2
{J
†
j Jj, ρ}

)
, (3.2)

where H is the system Hamiltonian, and Jj quantum jump oper-
ators describe the system interaction with an environment. Any
stationary state of such dynamics, Lρss = 0, is in general of the
following form [199],

ρss = 0H0 ⊕
m ′⊕
l=1

plρ̃l ⊗ωl, (3.3)

where the system space is divided into orthogonal subspaces
H = H0 ⊕

⊕m ′

l=1Hl ⊗Kl, and ρ̃l are fixed full-rank states on
Hl, while arbitrary states ωl on Kl and probabilities pl de-
pend on an initial state of the system. When dim(Kl) > 1 and
dim(Hl) = 1, Kl is a decoherence free subspace (DFS) protected
from the noise [40–43]. When dim(Kl) > 1 and dim(Hl) > 1,
Kl is also protected from noise, but in general the correspond-
ing state ρ̃l ⊗ωl cannot be pure, and Kl is termed a noiseless
subsystem (NSS) [44–46]. When dim(Kl) = 1 there are no coher-
ences preserved in Hl ⊗Kl. The subspace H0 corresponds to
the decay subspace, which is not supported asymptotically, see
also [199, 200]. In general the master dynamics within DFSs and
NSSs is unitary and corresponds to purely imaginary eigenval-
ues of L [199].

Idea of the proof for the case of no decay (based on [158],
for the general case see [199]). One may ask about the struc-
ture of stationary observables, which always include 1H due to
trace-preservation. It can be easily shown that when an oper-
ator commutes with all the operators appearing in the master
equations: with the Hamiltonian, H, and the jumps operators
(both Jj and J†j ), it is stationary. A set of such operators is a von
Neumann algebra, i.e., all linear combinations of such opera-
tors and their conjugates commute as well. When there is no
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decay, dim(H0) = 0, it can be shown that there are no other sta-
tionary operators. It is known that any von Neumann algebra
on a finite Hilbert space H has a general form

Mss =

m ′⊕
l=1

1Hl ⊗Ml, (3.4)

where Ml is an arbitrary operator on Kl and H =
⊕m ′

l=1Hl ⊗
Kl. Conversely, the algebra generated by H and {Jj, J

†
j }j (which

becomes a von Neumann algebra by including 1H) necessary
commutes with the stationary operators. Therefore, we arrive
at the decomposition of the Hamiltonian and jump operators
as

H =

m ′⊕
l=1

H(l) ⊗ 1Kl and Jj =

m ′⊕
l=1

J
(l)
j ⊗ 1Kl , (3.5)

leading to the stationary states of the form given in Eq. (3.3).

From, Eq. (3.3), we see that the asymptotic state of the system
depends on its initial state not only via probabilities between
the disjoint stationary states, but also initial coherences pre-
served within DFSs and NSSs. This much richer structure allows
us to anticipate that the metastability theory in such systems
should be more complex than in the classical case reviewed in
Sec. 3.1.2.

3.2 towards metastability theory in open quantum

systems with markovian dynamics

The aim of this chapter is to lay ground for metastability theory
for the case of open quantum systems evolving with Markovian
dynamics. Our starting point is a well-established approach for
metastability in classical stochastic systems [47, 48, 50–52, 201]
we reviewed in Sec. 3.1.2. We develop an analogous method for
quantum Markovian systems based on the spectral properties
of the generator of the Markovian dynamics.
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First we show that metastability, which is a manifestation
of separation of timescales, requires a splitting in the gener-
ator spectrum. Using this spectral division allows us further
to construct a low-dimensional description of metastable states
from the low-lying eigenmatrices of the generator. Moreover,
we show that the long-time dynamics reduce to a low–dimensional
effective motion in the metastable manifold (MM). We also show
how both the metastability and the effective motion can be
probed by considering the behaviour of time correlations in re-
sults of measurements performed sequentially on the system.

In the next Sec. 3.3 we show that in the case of two low-lying
modes, which we also discussed in Chapter 2, the structure
of the MM is classical and it is composed of two metastable
phases. Consequently, the effective long-time dynamics is clas-
sical stochastic – consisting of jumps between the metastable
phases. We argue how intermittency of continuous measure-
ment records corresponds directly to that effective dynamics
and is therefore a signature of metastability.

In Sec. 3.4 we move on to considering higher-dimensional
metastable manifolds. First, we demonstrate that for the class
of systems perturbed away from a degenerate stationary mani-
fold, the metastable manifold is in general composed of disjoint
states, noiseless subsystems and decoherence-free subspaces.
We also provide the metastable regime and the effective long-
time dynamics, which is trace-preserving and approximately
completely positive. The complementary derivations can be found
in Appendix C, while in Appendix D we show how such metasta-
bility can be exploited for enhanced parameter estimation.

In general case of higher-dimensional metastable manifolds,
e.g. for a class of system dynamics in which metastability emerges
with increasing system size, it is not yet known what is the
structure of the MM, but based on perturbative results, we for-
mulate a conjecture. We finish this chapter by discussing pos-
sible methods of unfolding classical and quantum components
of a general structure of the MM, and extensions of the metasta-
bility theory to non-Markovian and closed quantum system dy-
namics.
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3.2.1 Review of spectral properties

We consider a finite open quantum system evolving under Marko-
vian dynamics, so that the system state ρ(t) obeys Lindbladian
master equation d

dtρ(t) = Lρ(t) [8, 9], where the generator of
the dynamics L is given by Eq. (3.2). As the generator L is a
linear operator on the system state ρ(t), the formal solution of
Eq. (3.2) is simply given by ρ(t) = etLρin, where ρin is an initial
state of the system. Therefore, when the eigendecomposition
of the generator L can be found, the system dynamics can be
expressed into exponentially decaying, possibly oscillatory, dy-
namics of the eigenmodes, which we elaborate on below using
basic linear algebra.

While in general the generator L is not diagonalisable, one
can find its eigenvalues {λk,k = 1, 2, . . .}, each corresponding
to an eigenspace or a Jordan block (generalised eigenspace).
We order the eigenvalues by decreasing real part, i.e., Re λk >

Re λk+1. Let us first note that L generates a trace-preserving dy-
namics of ρ(t), and thus there is an eigenvalue λ1 = 0 with the
corresponding left eigenmatrix being the identity, L1 = 1 and
L1L = λ1L1 = 0. Moreover, together with positivity-preserving,
it further implies the corresponding right eigenmatrix R1, LR1 =
λ1R1 = 0, can be chosen positive [158], R1 > 0, which yields the
stationary state of the dynamics, R1 = ρss after normalisation
Tr(R1) = 1 . Generically, the stationary state is unique and the 0-
eigenvalue is non-degenerate. In the case when there are more
eigenvalues with real part equal 0, the associated Jordan blocks
are only 1-dimensional and the basis of the (right) 0-eigenspace
can be chosen as consisting of only positive matrices, cf. Sec.
3.1.3. Here, for simplicity of the presentation, we assume the 0-
eigenvalue to be non-degenerate. The other right (generalised)
eigenmatrices, {Rk}k>1, corresponding to the eigenvalues with
Reλk 6= 0, cannot be positive due to orthogonality between
the left and the right (generalised) eigenmatrices of different
eigenvalues, in this case Tr(L1Rk) = Tr(Rk) = 0 for k > 1.
Hence, dynamics preserving positivity of ρ(t) requires Re λk <
0, so that the Rk eigenmatrices represent exponentially decay-
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ing eigenmodes with the relaxation rates (−Re λk) (or exponen-
tially damped polynomial time-dependence for non-trivial Jor-
dan blocks).

Although the generator L is in general not Hermitian, L 6= L†

and thus Lk 6= Rk, it is Hermiticity-preserving, i.e., (Lρ)† = Lρ†.
Therefore, the complex eigenvalues necessarily come in conju-
gate pairs, i.e., when LRk = λkRk and LkL = λkLk, we also
have LR

†
k = λ∗kR

†
k and L

†
kL = λ∗kL

†
k

1. As we are interested
in the dynamics of Hermitian matrices, we notice that on top
of the exponential decay there will be oscillations with a fre-
quency ωk = Im λk, between the Hermitian Rk + R

†
k and the

anti-Hermitian part −i(Rk − R
†
k) of the (generalised) eigenma-

trix Rk. Moreover, when the real part of an eigenvalue is non-
degenerate, it must be real, λk = Re λk, and we can choose
the corresponding left and right eigenmatrix to be Hermitian.
Finally, we normalise the left and right (generalised) eigenma-
trices so that Tr(LjRk) = δjk.

The real parts of eigenvalues {λk>1} determine the timescales
of relaxation of the modes of the system dynamics. In particu-
lar, the second eigenvalue λ2 determines the spectral gap, whose
inverse is related to the longest timescale τ of the relaxation of
the system to the stationary state, i.e., ‖ρ(t) − ρss‖ ∼ e−t/τ with
τ ∼ (−Re λ2)−1 (where ‖A‖ := Tr

√
A2).

3.2.2 Metastability and separation in generator spectrum

Metastability manifests itself as a long time regime when the
system appears stationary, before eventually relaxing to ρss. A
quantum state of the system can be probed by measuring an
observable M in repeated realisation of the same experiment in
order to obtain the average value 〈M(t)〉 = Tr(Mρ(t)), and at
different times t after the initialisation of the system in a state
ρin to get the average dependence on time t. When metastabil-

1 In the case of a generalised eigenmatrix Rk, we have LRk = λkRk + Rk−1,
and thus also LR

†
k = λ∗kR

†
k + R

†
k−1.
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ity occurs, there will be a plateau in 〈M(t)〉 when the system
state ρ(t) is metastable for any observable M.

As we show below, metastability will occur if and only if the
low-lying eigenvalues of L become separated from the rest of
the spectrum in terms of their real part.

Let us first assume that this separation takes place between
the m-th mode and the rest, that is, (−Re λm) � (−Re λm+1).
The system evolution from an initial state ρin is then

ρ(t) = etLρin = ρss +

m∑
k=2

etλkckRk +
[
etL
]
I−P

ρin, (3.6)

where ck = Tr(Lkρin) are coefficients of the initial state de-
composition into the eigenbasis of L, and we have introduced
the projection P on the subspace of the first m eigenmatri-
ces, Pρ := ρssTr(ρ) +

∑m
k=2 RkTr(Lkρ), and

[
etL
]
P
:= PetLP. In

Eq. (3.6) we have assumed there are no Jordan blocks in the low-
lying spectrum relevant for our analysis, which assumption is
motivated by the structure of the 0-eigenspace, cf. Sec. 3.1.3, as
non-trivial Jordan blocks would lead to an unbounded norm of
ρ(t) in the limit of gap→ 0 [158]. More precisely, Jordan blocks
may be considered as long as they do not contribute signifi-
cantly, so that Eq. (3.7) holds true with appropriately redefined
corrections being small (see also discussion in Sec. 3.4).

Expanding the exponentials in the sum, and assuming λ1, . . . ,
λm are real, Eq. (3.6) can be rewritten as,

ρ(t) = ρss +

m∑
k=2

ckRk

+O (‖[tL]P‖) +O

(∥∥∥∥[etL]I−P

∥∥∥∥) , (3.7)

where the norm ‖·‖ of a super-operator S, is the norm induced
by the trace norm, ‖A‖ := Tr

√
A2, of Hermitian matrices A on

which S acts ‖S‖ := sup‖A‖=1 Tr ‖SA‖. Dynamics will appear
stationary for any initial state ρin when the last two terms in
Eq. (3.7) are small. This defines a time regime τ ′′ � t � τ ′

where metastability occurs. Intuitively, the last term in (3.7) can
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be discarded if τ ′′ ∼ (−Re λm+1)
−1 and the overlap of the ini-

tial state with the suppressed modes is not too large, so that
the sum over many modes of small amplitude can still be ne-
glected. Thus, for times τ ′′ � t the system relaxes into a state
determined by decomposition into the low-lying eigenmodes,
ρ(t) = ρss +

∑m
k=2 e

tλkckRk +O
(∥∥∥[etL]I−P

∥∥∥). Apparent station-
arity of this state further requires ‖[tL]P‖ � 1, which defines
the upper limit of the metastable interval, τ ′ ∼ (−Re λm)−1 (for
m not too large) and yields the corresponding metastable state
as ρMS = ρss +

∑m
k=2 ckRk.

More generally, eigenvalues λk, k = 2, ...,m, can be complex,
appearing in conjugate pairs, λk1 = λ∗k2 , with imaginary parts
that cannot be discarded, i.e., |Im(λk)| � (−Reλk). Taking this
into account, a state ρMS in the MM would read in general,

ρMS = ρss +

m∑
k

c ′k(t)R
′
k. (3.8)

When λk is real, we simply keep c ′k(t) := ck and R ′k := Rk.
For conjugate pairs, λk1 = λ∗k2 , we introduce pairs of Hermi-
tian operators, R ′k1 := Rk1 + R

†
k1

and R ′k2 := i(Rk1 − R
†
k1
), be-

tween which the oscillations with frequency ωk1 := Im λk1 take
place as follows, c ′k1(t) := |ck1 | cos(ωk1t + δk1) and c ′k2(t) :=

|ck1 | sin(ωk1t+ δk1) with δk1 := arg(ck1)
2. Due to the remaining

time dependence in (3.8) the state ρMS is in general not station-
ary in the metastable regime, τ ′′ � t� τ ′, defined above. How-
ever, the set of ρMS for all initial conditions ρin – the metastable
manifold – remains invariant, as the time dependence in Eq.
(3.8) simply constitutes rotations within the MM. Therefore, Eq.
(3.8) corresponds to non-dissipative evolution for τ ′′ � t � τ ′,
which we further discuss in Sec. 3.4.

Note that In Eq. (3.8) we have discarded the second line of Eq.
(3.7) where ‖[tL]P‖ by ‖∑m

k=2 Reλk Rk Tr(Lk·)‖ corresponding to
the real part of the low-lying spectrum. Note that truncating of
the terms in Eqs. (3.7), (3.8) leads ρMS to be approximately pos-

2 The orthonormalised choice of the left basis will be L ′k1 := (Lk1 + L
†
k1
)/2

and L ′k2 := (Lk1 − L
†
k1
)/2i, but note c

′
k(t) 6= Tr(L ′kρin) in general.
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itive with its negative part bounded by the corrections to the
invariance of the MM.

In order to prove that separation in the real parts of the L

spectrum is necessary, consider the opposite case of no pro-
nounced separation in the spectrum. For the choice of an ob-
servable M = Lk, where for simplicity we assume λk ∈ R and
thus Lk is Hermitian, we have 〈M(t)〉 = etλkTr(Lkρin) (with an
extra polynomial term for a generalised eigenmatrices Lk, Rk).
This shows it is possible to single out dynamics of each eigen-
mode. Hence, when there is no separation in the spectrum, one
cannot find an approximately stationary regime valid for all
the modes and for any initial state ρin. Therefore, the system
dynamics cannot be metastable, which proves that separation
in the real parts of the L spectrum is necessary.

Note that if the set of observables which can be measured in
a given experiment is limited to {Mj}j, one can observe effective
metastability when the observables couple only to a subset of
modes, i.e., Rk such that ∃j Tr(Mj Rk) 6= 0, and the eigenvalues
in that subset are separated in their real parts.

Similarly, when preparation of only some initial system states
ρin is feasible, some modes may never be present in the dynam-
ics, i.e., Tr(Lk ρin) = 0. In particular, for ρin = ρss, we simply
have 〈M(t)〉 = 〈M〉ss = Tr(Lkρss) and there is no dynamics in
measurement averages. Note however, that performing a mea-
surement usually changes the system state, and thus dynamics
can be unfolded by correlations of sequential measurements,
even for ρin = ρss, which we present in detail in Sec. 3.2.5.

3.2.3 Geometrical description of quantum metastable manifold

The MM can be described geometrically by generalising the clas-
sical method of Refs. [48, 50, 51, 53].

In the metastable regime, the system state is well approxi-
mated by a linear combination of the m low-lying modes, see
Eq. (3.7). Hence, a metastable state ρMS in Eq. (3.7) is deter-
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mined by a vector of the coefficients (c ′2, . . . , c
′
m) that belongs

to Rm−1. Thus, the MM is (m− 1)-dimensional, although each
point on this manifold (approximately) represents a d2 density
matrix ρMS, where d = dim(H) is the dimension of the Hilbert
space H of the system. This effective dimensional reduction due
to a separation of timescales will be exploited in next sections
to unfold the structure of the metastable states and the long-
time dynamics. Note that the coefficients (c ′2, . . . , c

′
m) represent

(m− 1) degrees of freedom preserved for times t � τ ′. As we
show in Sections 3.3 and 3.4 those can correspond to both to
classical probabilities and quantum coherences.

Since the MM is an image of the linear projection P of the
convex set of initial states ρin, it is itself convex. The coefficients
{c ′k}

m
k=2 are bounded by the maximum and the minimum eigen-

values of {L ′k}
m
k=2, respectively, and thus the MM is also bounded.

3.2.4 Effective long-time dynamics

For times t & τ ′, only the first m modes contribute significantly
to the system dynamics,

ρ(t) = etLρin = ρss +

m∑
k=2

etλkckRk +O

(∥∥∥∥[etL]I−P

∥∥∥∥) . (3.9)

Therefore, dynamics takes place essentially only inside the MM,
ρ(t) ≈ [etL]Pρin = et[L]P (Pρin). The MM contracts exponentially
towards the stationary state ρss, which is reached at times t� τ.
Note that this low-dimensional evolution in the MM is well de-
scribed by an effective generator Leff := [L]P. The knowledge
about the structure of the MM gives further interpretation to
Leff as a generator of the dynamics on that structure. For exam-
ple, in the case of classical MM, the effective long-time dynamics
is classical dynamics with probabilities, with Leff being a gen-
erator stochastic transitions between metastable phases, whose
trajectories further correspond to coarse-graining in time of con-
tinuous measurement records, see Sec. 3.3.2.
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3.2.5 Experimental observation of metastability

As we discussed a quantum state of the system ρ(t) can be
probed via measurements of the average of an observable M,
〈M(t)〉 = Tr(Mρ(t)). Observation of the metastability requires
non-trivial system dynamics triggered by preparation of the ini-
tial state ρin 6= ρss. In practice, when preparation of a given
initial state is difficult, metastability can be observed through
the double-step decay of correlations [183] in sequential measure-
ments of M, even in the case of the stationary state, ρin = ρss.
We consider the autocorrelation

C(t) := Tr(MetLMρss) − Tr(Mρss)
2, (3.10)

where M is the superoperator describing the action of measur-
ing of M on the system (the average of a result and the corre-
sponding conditional system state); for M =

∑d
i=1mi|mi〉〈mi|,

we have M(ρ) =
∑d
i=1mi〈mi|ρ|mi〉 |mi〉〈mi|.

Performing a measurement generically perturbs the station-
ary state ρss, M(ρss) 6= Mρss, unless the eigenbasis of M and
ρss coincide. Consider the system state conditioned on a result
of the first measurement of M. For time t . τ ′′ it relaxes (par-
tially) towards the MM. Since only (m− 1) degrees of freedom
are preserved, a part of the information about the initial result
is erased, which manifests in an initial decay of correlations.
During the metastable regime, τ ′′ � t � τ ′, in the case when
where all low-lying eigenvalues are real, correlations show a
plateau, C(t) ≈ Tr(MPMρss) − Tr(Mρss)

2, due to the approxi-
mate stationarity of the dynamics, see Fig. 3.1(e). When low-
lying eigenvalues are complex, undamped oscillations of C(t)
can occur in the metastable regime, cf. Eq. (3.7), e.g. coherent
rotation in Fig. 3.2(d). At later times, when t & τ ′, dynamics
begins to relax back towards ρss, further erasing the informa-
tion about the initial result. This corresponds to the second fi-
nal decay of correlations governed by the effective dynamics of
m− 1 degrees of freedom, C(t) ≈ Tr(M

[
etLeff

]
P
Mρss). At times
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t � τ, when any initial state relaxes to ρss, all the information
is erased and C(t) ≈ 0.

3.3 bimodal case of two low-lying modes

We first consider the case of m = 2 low-lying modes and derive
the classical structure of the MM with the effective classical dy-
namics. Note that, since the real part of λ2 is non-degenerate,
it is real, λ2 ∈ R, and L2 can be assumed Hermitian. Moreover,
we have τ ′ = τ = (−Re λ2)−1.

3.3.1 Classical structure of the metastable manifold

The metastable manifold is 1-dimensional and convex and there-
fore corresponds to an interval. Indeed, a metastable state, ρMS =

ρss + c2R2, is determined by the single coefficient c2 = Tr(L2ρin),
whose value is between the maximum cmax

2 and minimum cmin
2

eigenvalues of L2. As c2 = p1c
max
2 + p2c

min
2 , where p1 = 1 −

p2 ∈ [0, 1], any metastable state is simply a mixture, ρMS =

p1ρ̃1 + p2ρ̃2, of two extreme metastable states,

ρ̃1 = ρss + c
max
2 R2 , ρ̃2 = ρss + c

min
2 R2. (3.11)

Note that ρ̃1 and ρ̃2 correspond to the metastable states ob-
tained for the system initialised in pure states chosen as the
L2 eigenvectors with the eigenvalues cmax

2 and cmin
2 , respectively.

Consequently, in contrast to the R2 eigenmode being non-positive
with Tr(R2) = 0, we obtain that the each extreme metastable
state (eMS) fulfils Tr(ρ̃1,2) = 1 and is positive up to corrections
of the order of non-stationary terms neglected in the metastable
regime, cf. Eq. (3.7). Therefore, ρ̃1, ρ̃2 represent (approximately)
quantum states of the system.

The probabilities for any initial state ρin to evolve during the
metastable regime into each of two eMSs are given by p1,2 =

Tr(P̃1,2ρin) (up to corrections in Eq. (3.7)), where the observables

P̃1 =
(
L2 − c

min
2 1

)
/∆c2 , P̃2 =

(
− L2 + c

max
2 1

)
/∆c2 , (3.12)
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with ∆c2 := cmax
2 − cmin

2 . Note that P̃1,2 > 0 and P̃1 + P̃2 = 1,
and hence two observable P̃1, P̃2 constitute a POVM, which is a
consequence of the MM being a simplex. Finally, as we also have
Tr(P̃i ρ̃j) = δij, i, j = 1, 2, the eMSs ρ̃1, ρ̃2 and the observables P̃1,
P̃2 constitute a (right and left) basis of the MM.

Let us note that properties of any metastable state are fully
characterised by its decomposition into the two eMSs and their
properties. Hence, in analogy with the Maxwell construction in
equilibrium classical systems [197], we refer to ρ̃1, ρ̃2 as meta-
stable phases. Moreover, when a finite system features two sta-
tionary states (phases), it is known their supports are mutually
disjoint (see 3.1). It can be shown this is approximately the case
also for the metastable phases (see Appendix C.1).

Example I: 3-level system. Consider the 3-level system in Fig. 3.1
(a), with the HamiltonianH = Ω1 (|1〉〈0|+ |0〉〈1|)+Ω2 (|2〉〈0|+ |0〉〈2|)
and a single jump operator J =

√
κ |0〉〈1|. When Ω2 � Ω1, dy-

namics can be “shelved” for long times in |2〉, giving rise to
intermittency in quantum jumps [33], which can be seen as
coexistence of “active” and “inactive” dynamical phases [34].
Fig. 3.1 (b) shows the spectrum of L: the gap is small for Ω2 �
Ω1, the two leading eigenvalues detach from the rest (m = 2),
and the dynamics is metastable. The MM for this m = 2 case
is a one-dimensional simplex, see Fig. 3.1 (c). Fig. 3.1 (d) illus-
trates the trace distance of the state ρ(t) to the MM starting from
ρin 6= ρss: an initial decay on times of order of τ ′′ to the nearest
point on the MM (in this case to an eMS) is followed by decay to
ρss on times of order τ described by Leff.

For the example of metastability withm = 2 low-lying modes,
appearing as a collective effect with an increasing system size,
see the analysis for a dissipative quantum Ising chain with
transverse field [172]. In this model there exists a region in pa-
rameter space for which there are two metastable phases: fer-
romagnetic (spins down) and paramagnetic (spins close to the
fully mixed state) one.
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Figure 3.1: Example of metastability in a 3-level system: (a) Level
scheme and transitions. (b) Spectrum of L showing separa-
tion between eigenvalues (λ1, λ2) (full, dashed) and {λk>2}

(shaded), for the case κ = 4Ω1, Ω2 = Ω1/10. (c) Illustra-
tion of the distance of the state, ρ(t), to the MM. We con-
sider ρ(t) starting from pure states corresponding to the
eigenvectors of L2 with maximal (red) and minimal eigen-
values (blue), cmax

2 and cmin
2 . The full curves indicate the

nearest state on the MM, ρMS(t), to the full state ρ(t). The
shaded region indicates the scale of the “approximation”
‖ρ(t)−ρMS(t)‖. On times of order τ ′′ (open circle) the state
ρ(t) relaxes to the MM (in this case to the eMSs, ρ̃1,2), as
seen by the shaded region decreasing to zero. On times of
order τ (filled circle) there an eventual relaxation to the sta-
tionary state ρss takes place (black line). Ω2 = Ω1/25. (d)
The MM is a one-dimensional simplex. (e) Normalised au-
tocorrelation, C(t), of the observable |1〉〈1|− |2〉〈2|, in ρss.
For a decreasing ratio of Ω2/Ω1, the gap decreases and
the metastable regime between τ ′′ (open symbols) and
τ (filled symbols) is increasingly pronounced. This figure
originally appeared in [196].

3.3.2 Effective classical long-time dynamics

For times t & τ = (−λ2)
−1 only two low-lying eigenmodes, R2

and ρss, contribute non-negligibly to the system dynamics

ρ(t) = [etL]P ρin +O

(∥∥∥∥[etL]I−P

∥∥∥∥) .

= ρss + etλ2 c2R2 +O

(∥∥∥∥[etL]I−P

∥∥∥∥) . (3.13)
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Thus, long-time dynamics effectively take place only on the
metastable manifold, etL ≈ [etL]P, which contracts exponen-
tially towards the steady state ρss.

As we have showed above, due to the MM being an interval,
and thus a simplex, all metastable states can be represented
as the probability distributions (p1,p2) between the metastable
phases ρ̃1, ρ̃2. Since, the effective long-time dynamics, [etL]P,
transforms the MM into itself, it necessary preserves the prob-
ability distribution structure: positivity (p1,2(t) > 0) and total
probability (p1(t) + p2(t) = 1). We indeed have p1(t)

p2(t)

 =
[
etL
]
P

 p1

p2


=

1

∆c2

 cmax
2 etλ2 − cmin

2 −cmin
2 (1− etλ2)

cmax
2 (1− etλ2) cmax

2 − cmin
2 etλ2

 p1

p2

 , (3.14)

where [etL]P is expressed in the basis of the metastable phases,
see Eqs. (3.11) and (3.12), and the initial probability distribu-
tion is p1,2 = Tr(P̃1,2ρin). Note that [etL]P features only posi-
tive entries (positivity) and its columns sum to 1 (total prob-
ability preservation). The asymptotic probability distribution,

(pss1 ,pss2 ) = (
−cmin
2

∆c2
, c

max
2
∆c2

), corresponds directly to the stationary
state ρss, see Fig. 3.1 (c-d).

Let us note that although long-time dynamics is classical, the
underlying system in general features quantum effects which
are present at shorter t < τ ′′ times, cf. Eq. (3.2).

Classical trajectories. Let us note that the classical dynamics of
probabilities given in (3.14) can be viewed as generated by the
classical stochastic generator Leff := [L]P,

d
dt

(
p1(t)

p2(t)

)
= Leff

 p1(t)

p2(t)


=

−λ2
∆c2

 −cmax
2 −cmin

2

cmax
2 cmin

2

 p1(t)

p2(t)

 . (3.15)
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The stochastic trajectories generated by Leff consist of transi-
tions between two metastable phases ρ̃1, ρ̃2.

Note that the dynamics in Eq. (3.15) satisfies the detailed bal-
ance condition due to the space of effective configurations con-
sisting only of two macrostates, ρ̃1 and ρ̃2 . Therefore, the de-
composition of the stationary state ρss between the metastable
phases is determined by the ratio of the off-diagonal terms,
−cmin

2 /cmax
2 , which is independent from λ2. Dynamics of clas-

sical trajectories generated by Leff can be characterised by the
mean time a metastable phase survive in a (so called mean exit
time), which is given by the inverse of the related diagonal en-
try, e.g. (−cmax

2 λ2)
−1 = τ (cmax

2 )−1 for ρ̃1 and proportional to τ.
Therefore, the average ratio of time a trajectory spends in each
of the phases is given by the ratio −cmin

2 /cmax
2 , and thus cor-

responds to the decomposition of the stationary states between
two phases, confirming that classical dynamics of Leff is ergodic.

The long-time dynamics obeys details balance, although we
consider general, including non-equilibrium and driven, Marko-
vian quantum dynamics, see Eq. (3.2).

Finally, let us note the similarity of trajectories of Leff to the
long-time equilibrium dynamics of a particle in a double well
potential. This model, although simple, captures dynamics of
classical equilibrium systems close to a first-order phase transi-
tion featuring two stable phases, such as a ferromagnet at low
temperatures, see Sec. 3.1.1. The potential of a particle repre-
sents the Landau free-energy functional of the equilibrium sys-
tem, while the spacial coordinates correspond to configurations
of the system. The long-lasting states/probability distributions
are represented by two states initially equilibrated within each
well (t � τ ′′). Thermal fluctuations allow for particle move-
ment between the wells, but at much longer time scales in-
versely proportional to the barrier height (t ∼ τ), which asymp-
totically (t � τ) leads the system to the final equilibrium state.
The division of the equilibrium probability between the two
wells depends on the difference of the free energies of the wells,
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but not on the barrier height (proportional to τ).

In the next subsection we argue that classical trajectories of
Leff can be viewed as coarse-graining in time of quantum trajec-
tories over intervals longer than the initial relaxation time τ ′′.

3.3.2.1 Metastability as intermittence of quantum trajectories

In the discussion so far we considered the dynamics of the sys-
tem state described by a density matrix ρ(t), which represents
the average state of the system obtained at time t in a given
experimental realisation of the dynamics (3.2). Let us consider
additional continuous monitoring of the environment state in a
given experimental realisation of system dynamics. Results of
such a continuous measurement up to time t, can be used to
reconstruct a conditional state of the system at all times t ′ 6 t,
and thus unravel the system dynamics into quantum trajecto-
ries [30, 33], see also in the input-output formalism used in
Chapter 2.

A quantum trajectory of time t is a record of a system state
at all times t ′ 6 t, which state is conditioned on the continu-
ous measurement results. Consider Example I of 3-level system
above with an experimental realisation as follows: the levels
|0〉, |1〉, |2〉, are electronic levels of an atom interacting with sur-
rounding it electromagnetic vacuum and driven by Rabi laser.
The interaction with the vacuum leads to photon emissions
described by the action of the jump, J =

√
κ |0〉〈1|. Emitted

photons can be further detected. Based on the measurement
record of photon emission times up to time t, the conditional
pure state |ψ(t ′)〉 of the system can be reconstructed for all
times t ′ 6 t, thus yielding a quantum trajectory. In this case,
the density matrix ρ(t) is simply the conditional system state
|ψ(t)〉〈ψ(t)| averaged over all possible photon emission records.

Metastability and intermittence. We now discuss how metasta-
bility with two phases can manifest itself in intermittence of
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quantum trajectories, and thus can be observed also in individ-
ual realisations of the experiment.

Consider a state evolving into just one of the metastable phases,
ρ̃1, ρ̃2, e.g. the pure states |1〉 or |2〉 for the 3-level system. Fur-
thermore let us consider an integrated record Λ(t) of a con-
tinuous measurement, e.g. total number of photons emitted
up to time t by the system. For time t much longer then the
initial system relaxation time, t � τ ′′, the main contribution
to the integrated observable Λ(t) comes from the period af-
ter the initial relaxation, when, on average, the system state
is metastable (ρ(t) ≈ ρ̃1,2). Since the instant rate µ at which
Λ(t) is accumulated depends only on the system state, and
thus corresponds to the mean of a system observable, e.g. µ =

Tr(J†J ρ) = Tr(|1〉〈1| ρ), the value taken by Λ(t) will be on aver-
age determined by 〈Λ(t)〉 =

∫t
0 dt ′ µ(t ′) ≈ t µ1,2, where µ1,2 is

the rate for the metastable phase ρ̃1,2. Furthermore, the variance
of Λ(t) will necessary scale linearly, as any correlations in dy-
namics inside a metastable phase support, must decay at most
at the timescale τ ′′ corresponding to the faster eigenmodes Rk,
k > m = 2. If we now consider the activity k(t) = Λ(t)/t of
trajectories, we have that its fluctuations ∆2k(t) ∝ t−1 around
its mean, µ1,2, will be small if the metastable regime is long
enough. In this case, trajectories/measurement records can be
classified as "active" and "inactive" (µ1 6= µ2). So far we have
considered initial states evolving into just one of two metastable
phases, but for a general initial state the system evolves into a
mixture of two metastable phases, ρ(t) ≈ p1ρ̃1 + p2ρ̃2, and it
follows that emission records are a mixture of active and in-
active records with probabilities p1 and p2, since the statistics
of activity is determined mostly by the contribution from the
metastable regime.

Consider now coarse graining in time of measurement records,
where a record is divided into time bins of a size tbin and pho-
ton emissions are replaced by the activity in individual time
bins. From the previous paragraph it follows that, the coarse-
grained record consist of active and inactive time-bins with
activity k ≈ µ1,2, when tbin is long enough. Furthermore, the
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periods of active and inactive dynamics (so called dynamical
phases [34, 36, 172]) correspond directly to the two metastable
phases of the system, ρ̃1, ρ̃2.

Coarse-grained measurement records and effective trajectories. We
now argue that the coarse-grained trajectories are directly re-
lated to classical trajectories of Leff in Eq. (3.15).

Classical trajectories of Leff are ergodic, with the ratio of the
average time spent in metastable phases given by stationary
probabilities, pss1 /p

ss
2 . We now argue that this also true for active

and inactive periods in continuous measurement records. Since
for times t � τ the system state is stationary, the asymptotic
activity is given by the stationary rate, 〈k〉ss := limt→∞ 〈k(t)〉 =
µss with fluctuations disappearing as t−1 (see also CLT for con-
tinuous measurements [37, 39]). Therefore, the ratio of times
spent in active (k ≈ µ1) and inactive (k ≈ µ2) periods, must
be given approximately by the stationary probabilities, pss1 /p

ss
2 ,

so that 〈k〉ss ≈ pss1 µ1 + pss2 µ2 = µss. This implies that measure-
ment records are ergodic with probability 1. In particular, for
coarse graining of a single measurement record, a histogram of
time-bin activities must be bimodal [36, 172], with probabilities
of two modes corresponding to the stationary probabilities pss1
and pss2 .

Moreover, the average time of active dynamics (or inactive dy-
namics rescaled by the ratio pss1 /p

ss
2 ) in coarse-grained records

is necessary not longer than O(τ), as τ is the longest timescale
of the system dynamics. It also cannot be shorter, as otherwise
the mean activity 〈k(t)〉 for the initial states evolving into ρ̃1,
ρ̃2, would not be given by µ1,2, but values in between. Conse-
quently, the coarse-grained measurement records and classical
trajectories of Leff are equivalent (with probability 1).

One can further ask about equivalence of quantum trajec-
tories to the classical dynamics Leff, i.e., whether time-coarse
grained conditional system state, t−1bin

∫t+tbin
t dt ′ |ψ(t ′)〉〈ψ(t ′)|,

corresponds to two metastable states for tbin chosen as above.
Let us note that this would imply ergodicity of quantum tra-
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jectories, i.e., time-averaged state of the system approaching
the stationary state, limt→∞ t−1 ∫t0 dt ′ |ψ(t ′)〉〈ψ(t ′)| = ρss. Con-
versely, if quantum trajectories were ergodic, as the supports of
metastable phases are approximately disjoint (see Appendix C.1),
quantum trajectories would be ergodic also inside the phases
for long enough metastable regime τ ′′ � t� τ. It is not gener-
ally known, however, whether quantum trajectories are ergodic
for open Markovian dynamics featuring a unique stationary
state.

Beyond activity. The relation of effective dynamics to coarse-
graining of measurement records can be extended to the case
when metastable phases do not differ in activity, µ1 = µ2 = µss,
and there is no apparent intermittency in the records. In that
case one needs to consider fluctuations of the integrated ob-
servable instead of its activity and double coarse-graining of
records. For first coarse-graining we choose δt = n−1 tbin �
τ ′′ and look at fluctuations, Λ(2)(t+ kδt) := (δt)−1[Λ(t+ (k+

1)δt) − Λ(t + kδt) − δt µss]
2, 0 6 k 6 n − 1. In the second

coarse graining we consider time-average of fluctuations over
tbin, Λ(2)(t) := n−1

∑n−1
k=0 Λ

(2)(t+ kδt). Note that ∆2Λ(2)(t) ∝
n−1, as the correlations of fluctuations inside metastable phases
decay at times t ∼ τ ′′. Hence, for a long enough metastable
regime, one observes "intermittency" between small and large
fluctuations in measurement records. Using analogous argu-
ments as for activity k(t), we obtain that the ratio of average
lengths of those periods is again determined by pss1 /p

ss
2 and the

average length corresponds to the longest timescale τ.

3.3.3 Biased QJMC - how to investigate metastability without diag-
onalising master operator

We now show how to use dynamical large-deviation approach [166]
to identify dynamically the metastable phases by biasing en-
sembles of quantum trajectories [34]. These methods can be im-
plemented numerically by generalising classical path sampling
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[202] and/or cloning techniques [203]. In particular, for many-
body systems where direct diagonalisation of the master oper-
ator L is not feasible, this provides a computational scheme to
unfold the classical metastable manifold structure.

We discuss here biasing towards the number of jumps J1 in
a quantum trajectory, e.g. the number of photon emissions in
3-level system. First, let us recall that cumulants of total num-
ber of jumps J1 that happened up to time t, Λ(t), are given
by the derivatives of the cumulant generating function (CGF)
Θt(s) [34],

Θt(s) = log Tr(etWsρin), (3.16)

Ws ρ = Lρ+ (e−s − 1) J1ρJ
†
1, (3.17)

see also Sec. 2.1.2. The asymptotic linear limits of Λ(t) cumu-
lants are given by respective derivatives of

θ(s) = lim
t→∞ t−1Θ(s, t). (3.18)

Let us note that, although Ws is not a master operator for s 6= 0,
in particular it is not trace-preserving, the related evolution pre-
serves positivity of ρ. This can be easily seen from the fact
that trajectories of Ws can be sampled analogously as quantum
trajectories of L in quantum jump Monte Carlo (QJMC) simu-
lations [204], but with probability of the jump J1 rescaled by
e−s, so that s > 0 decreases the activity of trajectories, while
s < 0 enhances it. As ρs(t)/Tr(ρs(t)), where ρs(t) = etWsρin, is
the average of conditional system state |ψs(t)〉〈ψs(t)| over all
such trajectories, it must be positive. The limiting state ρs =

limt→∞ ρs(t)/Tr(ρs(t)) obtained in biased QJMC is the eigenma-
trix of Ws corresponding to its maximum eigenvalue is exactly

θ(s) = Tr(Wsρs). (3.19)

State ρs as metastable phase. Here we consider the parameter s
to be small, and we treat Ws −L = (e−s − 1) J1ρJ

†
1 as a pertur-

bation (for classical Markovian systems see Chapter 5.2 in [53]).
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Since the first two eigenmodes of L are not degenerate (λ2 < 0),
for the perturbation small in comparison with −λ2 we have
that [167]

λ1(s) = θ(s) = −s̃Tr(J†1J1ρss) +O(s̃2), (3.20)

λ2(s) = λ2 − s̃Tr(L2 J1R2J
†
1) +O(s̃2), (3.21)

where s̃ = (1− e−s), with the corresponding eigenmodes sim-
ply given by ρs = ρss +O(s) and R2 +O(s). In particular, we re-
cover the asymptotic activity, limt→∞〈Λ(t)〉/t = µss = Tr(J†1J1ρss).

When the perturbation is larger, (−λ2) � s̃κ1 � (−Re λ3),
where κ1 = ‖J1(·)J†1‖, in order to find the asymptotic CGF, θ(s),
and the corresponding eigenmatrix ρs, we need to consider al-
most degenerate perturbation theory of the first two modes [167],

[Ws]P =

 −s̃Tr(J†1J1ρss) −s̃Tr(J†1J1R2)

−s̃Tr(L2 J1ρssJ
†
1) λ2 − s̃Tr(L2 J1R2J

†
1)

 , (3.22)

which in the basis of metastable phases gives, cf. Eqs. (3.11) and
(3.12),

[Ws]P = Leff − s̃

 Tr(P̃1 J1ρ̃1J
†
1) Tr(P̃1 J1ρ̃2J

†
1)

Tr(P̃2 J1ρ̃1J
†
1) Tr(P̃2 J1ρ̃2J

†
1)

 . (3.23)

When s̃ is big enough, Leff is just a perturbation of the sec-
ond matrix. Furthermore, as we show in Appendix D.2, the
off-diagonal terms Tr(P̃1 J1ρ̃2J

†
1) and Tr(P̃1 J1ρ̃2J

†
1) are of the or-

der O(max(λ2t, ‖[etL]I−P‖)1/2 × κ1), and thus the last matrix is
diagonal up to those corrections. Therefore, up to corrections
given by Leff and the off-diagonal terms,

θ(s) ≈ max((e−s − 1)µ1, (e−s − 1)µ2) and ρs ≈ ρ̃k (3.24)

for k ∈ {1, 2} such that µk is chosen in θ(s). We see that indeed
s > 0 biases the system dynamics towards less active trajecto-
ries with respect to jumps J1, while s < 0 otherwise, and the
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average state ρs obtained asymptotically corresponds to a re-
spective metastable phase.

Timescales in biased dynamics. For Ws with s chosen so that
(−λ2) � s̃κ1 � (−Re λ3) the initial relaxation timescale equals
τ ′′ for unbiased dynamics, W0 = L (cf. Appendix C.2.2). This
is followed by a metastable regime, τ ′′ � t � s̃−1κ−11 , due to a
persisting separation in spectrum of Ws, and the asymptotic
state ρs is achieved for times t � s̃−1κ−11 , cf. (3.23). To cir-
cumvent those timescales and achieve ρs in simulations, one
should bias ensembles of quantum trajectories instead of bias-
ing jumps probabilities, which can be implemented numerically
by generalising classical path sampling [202] and/or cloning
techniques [203].

3.4 higher dimensional metastable manifolds and

their effective dynamics

In the previous section we exploited the fact that for m = 2

the convex set of the coefficients, which represent the MM, is
one-dimensional and thus a simplex with two eMSs. For m > 2,
however, the set of possible coefficients can have more than
m extreme points. For classical dynamics it has been proven,
that this set is well approximated by a (m− 1)-dimensional sim-
plex [51], see Sec. 3.1.2. The simplex vertices correspond to m
approximately disjoint eMSs and its barycentric coordinates to
the probabilities of a metastable state decomposed as a mixture
of the eMSs, cf. Fig. 3.1 (d).

For quantum dynamics and m > 3, we expect the structure
of the MM to be richer than just a simplex. As we describe be-
low, the MM can in general include decoherent free subspaces
(DFSs) [40–43] and noiseless subsystems (NSSs) [44–46], which
are protected from dissipation during the metastable regime.

We consider two classes of systems for which the master
operator L has a small gap: (A) finite systems where the gap
closes at some limiting values of the parameters in L (such as
Ω2 → 0 in Example I above, and Ω1,2 → 0 in Example II below);
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(B) scalable systems consisting of N subsystems where the gap
may close only in the thermodynamic limit of N → ∞ (such
as the dissipative Ising chain with transverse field in Refs. [36]
and [172]).

3.4.1 Metastability in class A systems

We first discuss metastability in dynamics of a finite open quan-
tum system for which the gap closes at some value of parame-
ters in the master equation, L = L0, see Eq. (3.2). The station-
ary state ρss is no longer unique and has a general structure
of Eq. (3.3). Using perturbation theory of linear operators [167],
we show that there is a separation in the L spectrum for dy-
namics which are close to the degenerate case of L0. We fur-
ther derive the metastable time regime during which the sys-
tem state has approximately the structure given in Eq. (3.3) and
the long-time effective dynamics, which is trace-preserving and
approximately completely positive.

Example II: Collective dissipation and a metastable DFS. Consider
a two-qubit system with Hamiltonian H = Ω1σ

x
1 +Ω2σ

x
2, and a

collective jump operator J =
√
γ1n1σ

−
2 +
√
γ2(1−n1)σ

+
2 . When

Ω1,2 � γ1,2 there is a small gap and the four leading eigen-
values of L detach from the rest, Fig. 3.2 (a). This is related to
the fact that any superposition of |01〉 and |10〉 is annihilated by
jump J. Fig. 3.2 (b) maps out the MM by randomly sampling all
(pure) initial states ρin from H and obtaining their correspond-
ing metastable state via Eq. (3.8): the MM is an affinely trans-
formed Bloch ball corresponding to a DFS of a qubit within the
metastable regime τ ′′ � t � τ ′. It important to note: (i) this
coherent structure is not the consequence of a symmetry, as for
γ1 6= γ2 the system dynamics neither has a U(2) nor an up-
down nor a permutation symmetry, cf. [205]; (ii) the smallest m
for which we can obtain a DFS in class A systems is m = 4, as
in this case.
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Figure 3.2: Example of a coherent metastable manifold: (a) Spectrum
of L for Example II (γ1 = 4γ2, Ω1 = 2Ω2 = γ2/50). The
first four eigenvalues (m = 4) split from the rest (shaded).
(b) Dots representing the metastable states reached from
random initial pure states map out an affinely trans-
formed Bloch ball (shaded) and the MM is a qubit, see (3.8).
The large dot (green) is ρss; curves indicate paths in the
MM taken by the states evolving from the extreme eigen-
vectors of L2 (red and blue), L3 and L4 (purple) towards
ρss. (c) Time evolution in the MM (affinely transformed to
a Bloch ball): the MM contracts towards a one-dimensional
simplex before relaxing eventually to ρss, due to the split-
ting of between the first two eigenvalues and the next two,
see (a). (d) Normalised auto-correlation C(t) for σz1 − σ

z
2

(green/solid). Same for the case with an extra perturbing
Hamiltonian ∆H = Ωσx1⊗σx2 that induces a rotation in the
MM, manifesting in oscillations of C(t) during the meta-
stable regime (black/dashed). This realises in a metastable
system the proposal of [57, 58] for implementing unitary
gates. This figure originally appeared in [196].

3.4.1.1 Spectrum of perturbed generator

Consider the dynamics L(x) with the Hamiltonian H(x) and
jumps operators Jj(x), see Eq. (3.2). Let the Hamiltonian H(x) =
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H+ xH(1) and the jumps operators Jj(x) = Jj + x J
(1)
j be linear

perturbations of the Hamiltonian and jump operators of the
degenerate dynamics L0, where H(1) is Hermitian and x is a di-
mensionless scale parameter. Results of this section can be eas-
ily generalised to the case of analytic perturbation H(x), Jj(x).
The perturbed generator L(x) is then given by

L(x) = L0 + xL
(1) + x2L(2), where

L(1) ρ = −i[H(1), ρ] +
∑
j

(
J
(1)
j ρJ

†
j −

1

2

{
J
†
j J

(1)
j , ρ
}
+ h.c.

)

L(2) ρ =
∑
j

(
J
(1)
j ρJ

(1)
j

†
−
1

2

{
J
(1)
j

†
J
(1)
j , ρ
})

, (3.25)

where we fix x so that max(‖L(1)‖, ‖L(2)‖) = O(τ−10 ), where τ0
is the relaxation time in L0 dynamics (see Eqs. (3.27) and (3.28)
for precise definition).

From the perturbation theory of linear operators [167] it is
known that the perturbation of L0 changes its eigenvalues con-
tinuously with respect to x. Therefore, when λ is an eigenvalue
of L0 with algebraic multiplicity m, for x small enough, m
eigenvalues of L(x) cluster around the unperturbed value λ,
and we refer to these eigenvalues as λ-group. Consider L0 with
m-fold degeneracy of the stationary state manifold (SSM), cf.
Eq. (3.3), and assume that Im λk = 0 for k = 1, ..,m, so that
there are no unitary rotations in the stationary state manifold.
For x small enough, the 0-group clusters around 0 and the sepa-
ration to the (m+ 1)-th eigenvalue is maintained, see Fig. 3.2 (a).
Moreover, as both L0 and L(x) are completely positive trace-
preserving (CPTP) generators and there are no Jordan blocks in
0-eigenspace of L0, we show below that

λk(x) = x λ
(1)
k +x2 λ

(2)
k +o

(
x2
(
‖L(1)‖+ ‖L(2)‖

))
, k = 1, ...m,

(3.26)

where Re λ(1)k = 0 and Re λ(2)k 6 0, so that the spectrum struc-
ture of a positive trace-preserving generator is reproduced in
the second order. Eq. (3.26) follows from two facts: λ(1)k being
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an eigenvalue of [L(1)]P(x) that is a unitary generator on the SSM,
and λ(2)k being an eigenvalue of a CPTP generator on the SSM.

Derivation. Although the eigenvalues of L(x) may not be ana-
lytic in x and projections on eigenmatrices may feature alge-
braic poles, projections onto subspace spanned by λ-groups
are analytic [167]. In particular, the P(x) projection on the low-
lying modes is analytic and it follows that restriction of L(x) to
this subspace is analytic as well. In particular due to no-Jordan
blocks in 0-eigenspace of L0, we have that [167]

P(x) = P0 + x
(
−SL(1)P0 −P0L

(1)S
)
+O(x2) (3.27)

=: P0 + xP
(1) +O(x2),

[L(x)]P(x) = x [L(1)]P0 + x
2
(
[L(2)]P0 −P0L

(1)SL(1)P0+ (3.28)

−SL(1)[L(1)]P0 − [L(1)]P0L
(1)S
)
+O(x3(‖L(1)‖+ ‖L(2)‖))

=: x L̃(1) + x2 L̃(2) +O(x3(‖L(1)‖+ ‖L(2)‖)),

where S is the reduced resolvent of L0 at 0, i.e., SL0 = L0 S =

I−P0 and SP0 = P0 S = 0. Note that the resolvent S is related to
the relaxation time as ‖S‖ = O(τ0), as for diagonalisable L0 we
have S(·) =∑k>m λ

−1
k Rk Tr(Lk·). In Eqs. (3.27) and (3.28) for con-

venience we define the scale x of the perturbation in Eq. (3.25)
so that max

(
‖L(1)‖, ‖L(2)‖

)
= ‖S‖−1.

First-order perturbation. As we show in Appendix C.2.1, L̃(1) is
a CPTP generator on the SSM of L0, and thus its eigenvalues have
non-positive real parts. But L(−x) is a CPTP generator as well
and its first-order correction L̃(1) is of the opposite sign. Hence,
L̃(1) eigenvalues must be imaginary, which will correspond to
coherent dynamics in the MM during the metastable regime.
In [57, 58] it was shown that the first order indeed yields unitary
dynamics and the corresponding Hamiltonian was derived, see
also Fig. 3.2 (d).

Second-order perturbation. The generator L̃(1) partially lifts de-
generacy of the first m eigenvalues of L0 and the higher-order
corrections should be considered separately for each eigenspace
of L̃(1) (cf. reduction process in [167]). Since the unitary genera-
tor L̃(1) features only trivial Jordan blocks, for the eigenspace
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Pl related to its λ(1)l eigenvalue, l = 1, ...,m ′′, we obtain (cf.
Eq. (3.28))

Pl(x) = Pl + x
(
−PlL

(1)S− SL(1)Pl −PlL̃
(2)S̃l − S̃lL̃

(2)Pl

)
+O(x2), (3.29)

[L(x)]Pl(x) = x λ
(1)
l Pl(x) + x

2
[
L̃(2)

]
Pl

+O(x3), (3.30)

where S̃l is the resolvent of L̃(1) at λ(1)l restricted to P0, i.e.,
S̃l (L̃

(1) − λ
(1)
l ) = (L̃(1) − λ

(1)
l ) S̃l = P0 − Pl and S̃l Pl = Pl S̃l =

03. From (3.30), the restriction of the second-order correction
L̃(2) to λ(1)l eigenspace, [L̃(2)]Pl , further lifts degeneracy in 0-
eigenspace of L0. Therefore, the second-order corrections in 0-
group eigenvalues are simply given by x λ(1)l + x2 λ

(2)
l,j + o(x2),

where {λ
(2)
l,j }j are eigenvalues of [L̃(2)]Pl , l = 1, ...,m ′′. In order

to argue Re λ(2)l,j 6 0 and thus prove (3.26), we use the fact that
[L̃(2)]P0 = [L(2)]P0 − P0L

(1)SL(1)P0 is a CPTP generator on the
SSM of L0 (see Appendix C.2.1) and

m ′′∑
l=1

[
L̃(2)

]
Pl

= lim
t→∞ t−1

∫ t
0

due−uL̃
(1)
[
L̃(2)

]
P0
euL̃

(1)
. (3.31)

The generator in (3.31) corresponds to first-order perturbation
theory for weak dissipation, where the fast unitary evolution
given by L̃(1) erases all the contributions of the slow dissipation
[xL̃(2)]P0 that would create any coherence with respect to the
Hamiltonian of L̃(1), see also dynamics in the metastable regime
below, see also Fig. 3.2 (d).

Finally, note that when the eigenvalues of [L̃(2)]Pl are non–
degenerate, the corresponding eigenvalues in 0-group of L(x)

are analytic, and projections on the corresponding eigenmatri-
ces are analytic as well.

3 Note that the first-order terms in Pl(x) – the projection on the λ
(1)
l -

group – correspond to the first-order perturbation of all the low-lying
modes given by P(1), and to the first-order perturbation of Pl inside P0

due to L̃(1) + x[L̃(2)]P0 , respectively. Thus, as
∑m ′′
l=1 Pl = P0, we recover∑m ′′

l=1[L(x)]Pl(x) = [L(x)]P(x) up to O(x3).
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3.4.1.2 Initial dynamics and metastable regime

We now discuss how the perturbations in Eq. (3.25) change the
system dynamics. We derive the metastable regime when the
system dynamics appears stationary as a consequence of the
separation in the L(x) spectrum discussed above. As in Eq. (3.6)
we consider separately the low-lying modes with the projection
P(x) and the rest of modes

etL(x) = [etL(x)]P(x) + [etL(x)]I−P(x). (3.32)

Initial relaxation timescale τ ′′(x). The metastable regime begins
when the contribution from the fast decaying modes of the
eigenvalues λm+1(x), λm+2(x), ..., λd2(x), given by [etL(x)]I−P(x)

in (3.32), becomes negligible. When λm+1 of L0 is non-degenerate,
the perturbed eigenvalue λm+1(x) is analytic in x,

λm+1(x) = λm+1 + xTr(Lm+1L
(1) Rm+1) +O(x2∆m+1)

where ∆k = max(‖L(2)‖, ‖L(1)‖2‖Sk‖) with Sk being the reduced
resolvent of L0 at λk, cf. Eq. (3.28). When the system space di-
mension d is not too large, this implies that initial relaxation
timescale τ ′′(x) is also analytic in x, τ ′′(x) ≈ λm+1(x)

−1 ≈ τ0 −

xTr(Lm+1L
(1) Rm+1) + O(x2∆m+1). In fact, it can be shown in

general that the choice

τ ′′(x) = τ0, (3.33)

leads to correctionsO(x)+ tO(x2‖L(1)‖) in the metastable regime
(see Appendix C.2.2 and corrections in Eq. (3.34)), thanks to
[etL(x)]I−P(x) being analytic in x, which is a consequence of both
etL(x) and I−P(x) being analytic in x, cf. Eqs. (3.25) and (3.27).

Unitary dynamics and final relaxation timescale τ ′(x). The meta-
stable manifold given by projection P(x) is mapped by the dy-
namics [etL(x)]P(x) into itself. By definition, the longer timescale
τ ′(x) of the metastable regime bounds from above time t when
the system dynamics leaves the MM approximately invariant.
As the first-order correction to the low-lying eigenvalues of
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L(x), (3.26), corresponds to the unitary dynamics with genera-
tor L̃(1), the timescale τ ′(s) is necessary related to higher-order
corrections in x. In Appendix C.2.3 we show that

[etL(x)]P(x) = etxL̃
(1)

P0 + x
(
−SL(1)etxL̃

(1)
P0 − e

txL̃(1)
P0L

(1)S
)
+ O(x2) +

+ t x2 etxL̃
(1)

(
t−1
∫ t
0

due−uxL̃
(1)
[
L̃(2)

]
P0
euxL̃

(1)

)
+

+ tO(x3 ‖L̃(2)‖) + t2O(x4‖L̃(2)‖2). (3.34)

where the corrections to the invariance of the MM are given by
the second and third line representing the contribution from
the dissipative dynamics in the interaction picture (see also
Eq. (3.31)), whereas the first line describes unitary dynamics in
the MM (cf. Eq. (3.27)). Thus, the metastable regime is limited
to times t for which all the terms in the second and third line
of (3.34) are small. As the second line is bounded by tx2‖L̃(2)‖,
this is satisfied for times t� τ ′(x), where

τ ′(x) =
(
x−2 + O(x−1)

)∥∥∥L̃(2)
∥∥∥−1

> x−2O(τ0) + O(x−1τ0), (3.35)

We used Taylor expansion in the first line and ‖L̃(2)‖ 6 ‖L(2)‖+
‖L(1)‖2‖S‖, cf. Eq. (3.28), together with the definition of the
scale x, max(‖L(1)‖, ‖L(2)‖) = ‖S‖−1 = O(τ0)

−1, to conclude
that ‖L̃(2)‖ 6 O(τ0)

−1.
In order to find the timescale of approaching the stationary

state ρss at times t � τ(x), we need to consider effective dy-
namics Leff(x) := [L(x)]P(x) in the MM, see below.

No Jordan blocks in the metastable regime. Let us note that no
matter whether there are Jordan blocks in the low-lying spec-
trum of L(x), they do not contribute in the metastable regime, cf.
Eqs. (3.34), which motivates our assumption on the low-lying
spectrum in the metastability theory for a general open dynam-
ics as in Eq. (3.2).
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3.4.1.3 Metastable manifold

We now consider projection of a system state during the meta-
stable regime, τ ′′(x) � t � τ ′(x), onto the MM of low-lying
modes, ρMS(t) = P(x)ρ(t). From (3.34) we find

ρMS(t) = etxL̃
(1)

P0ρin + x
(
−SL(1)etxL̃

(1)
P0 − e

txL̃(1)
P0L

(1)S
)
+ O(x2) ,(3.36)

where the imaginary parts of the m low-lying eigenvalues ap-
pear in the (non-negligible) first order by means of the unitary
dynamics xL̃(1) within the MM, compare Eqs. (3.27) and (3.34).
Therefore, as O(x ‖S‖‖L(1)‖) = O(x), we have that metastable
states are approximately given by a general structure of a man-
ifold of stationary states of open quantum Markovian dynam-
ics [199],

ρMS(t) = 0H0 ⊕
m ′⊕
l=1

plρ̃l ⊗Ul(ωl) +O(x), (3.37)

with H being the orthogonal sum H = H0⊕
⊕
lHl⊗Kl, where

H0 is the decay subspace, ρ̃l are fixed states on Hl (cf. eMS in
classical dynamics and the case of m = 2), ωl are arbitrary
states on Kl (representing a DFS/NSS), and pl are probabilities.
Time dependence ρMS(t) during the metastable regime is due
to the unitary dynamics Ul inside a DFS/NSS of Kl, given by
Ul := 1Kl e

txL̃(1)
1Kl , see Fig. 3.2 (b,d), and there is no dynamics

for classical case of dim(Kl) = 1.
Furthermore, let us note the correction in (3.37) is of the same

order as the dissipative corrections to invariance of the MM, for
times t = O(x(‖L(1)‖+‖L(2)‖)−1 = O(x−1τ0) within the meta-
stable regime τ ′′(x)� t� τ ′(x), see Eq. (3.34).

Coefficients of the MM. Note when dim(Kl) = 1, the l-th block
is a disjoint eMS. It is known for classical systems the MM is
always approximately a simplex of m disjoint eMSs [51] with
probabilities corresponding classical degrees of freedom. In quan-
tum open systems this is the case for m = 2, where there are
two eMSs, ρ̃1,2, with metastable states being mixtures of them.
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For class A systems we have that, when dim(Kl) > 1, ωl inside
a DFS/NSS respresents quantum degrees of freedom (ωl), which do
not appear in the case of classical dynamics [51]. This is the case
in Example II where the MM is a qubit. In general the number
of blocks in Eq. (3.37) is m ′ 6 m, with equality occurring only
when there are no DFS or NSS. As we show below the (m− 1)

coefficients (c ′2, . . . , c
′
m) that determine ρMS, see Eq. (3.8), corre-

spond approximately to an affine transformation of the m entries
of plωl (l = 1, . . . ,m ′) in Eq. (3.37), where

∑m ′

l=1 pl = 1. There-
fore, the MM approximately represents the degrees of freedom
of the classical-quantum space in Eq. (3.37).

Consider the generic case of degeneracy of the first m eigen-
values of L0 being lifted in the second-order perturbation the-
ory. In this case the projections on the individual eigenmatrices
of L0 are analytic and in the 0-th order simply given by pro-
jections on the [L̃(2)]Pl eigenspaces, l = 1, ..,m ′′, where Pl is a
projection on an L̃(1) eigenspace. As for a left eigenmatrix Ll,j
of [L̃(2)]Pl corresponding to an eigenvalue λ(2)l,j , we have that the
left L(x) eigenmatrix Ll,j(x) ∝ Ll,jPl,j(x) is analytic in x. When
it is further normalised in the spectral norm, or rescaled by the
difference of its extreme eigenvalues, thanks to Hermitian per-
turbation theory for Ll,j(x), the coefficient c ′l,j(x) = Tr(Ll,j(x)ρin)

can be expressed as a series in x (see Appendix C.2.4 for de-
tails).

Therefore, for x small enough, the set of coefficients repre-
senting the MM is well approximated by the image of an affine
transformation of the (m− 1) degrees of freedom describing the
SSM of L0, i.e., the entries of plωl, l = 1, ...m ′ with

∑m ′

l=1 pl = 1,
see Fig. 3.2 (b). This affine transformation is determined by the
invertible linear transformation from the basis of the SSM of the
entries in plωl, l = 1, ...m ′, to the right eigenmatrices, {Rl,j}j, of
[L̃(2)]Pl , for l = 1, ...,m ′′, see Fig. 3.2 (b-c).

3.4.1.4 Effective dynamics in metastable manifolds

During the metastable regime the dynamics is approximated
by unitary transformation of the MM with generator L̃(1), see
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Eq. (3.36). For times following the metastable regime, τ ′(x) .

t � x−1 τ ′(x) = x−3O(τ0), we show in Appendix C.2.5 that
effective dynamics in the MM is dissipative and characterised
by a CPTP generator on the SSM of L0,

L̃(x) := xL̃(1) + x2[L̃(2)]P0 , (3.38)

as follows

[etL(x)]P(x) = etL̃(x)P0 + x
(
−SL̃(1)etL̃(x)P0 − e

tL̃(x)P0L̃
(1)S
)
+

+O(x2) + tO(x3τ−10 ), (3.39)

see Fig. 3.2 (c). Note that ‖Leff(x) − L̃(x)‖ = O(x2‖L̃(1)‖), see
Eq. (3.28), which may seem puzzling when there is non-trivial
coherent dynamics during metastable regime, L̃(1) 6= 0. It fol-
lows, however, from Eqs. (3.29-3.30) that this order of the differ-
ence is due to first-order corrections outside P0 to the eigenspaces
of L̃(1), represented by the projections {Pl(x)}

m ′′
l=1, not the differ-

ence between the eigenvalues of Leff(x) and L̃(x), which is of
a higher order o(x2(‖L(1)‖+ ‖L(2)‖)), cf. Eq. (3.26). Therefore,
the order O(x2‖L̃(1)‖) of corrections above, does not determine
the postmetastable regime when L̃(x) is a valid approximation
for long-time dynamics4 (for details see derivation in Appendix
C.2.5). Dynamics generated in the SSM by L̃(x) was previously
discussed in [206] for the case of a Hamiltonian perturbation
and L̃(1) = 0, cf. Eq. (3.25).

Let us comment on the relation between L̃(x) above and the
interaction picture appearing in (3.31) and (3.34). Again, the dif-
ference in eigenvalues of those two generators is of the higher
order o(x2(‖L(1)‖ + ‖L(2)‖)), so that L̃(x) can be replaced by
L̃(1) +

∑m ′′

l=1[L̃
(2)]Pl in Eq. (3.39).

Finally, note that from the fact that L(x) is trace-preserving,
it follows that it features the left eigenmatrix 1H correspond-
ing to 0-eigenvalue, which, by construction, also holds true for

4 When corrections in the eigenvalues are considered with respect to the an-
alytic operator Leff(x) − L̃(x), they contribute as Leff(x) − x

∑m ′′
l=1 λ

(1)
l Pl(x),

which is of the order O(x3(‖L(1)‖ + ‖L(2)‖)) = O(x3τ−10 ), see Eq. (3.30),
which determines the bound where Eq. (3.39) is valid.
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Leff(x) = [L(x)]P(x). Therefore, together with (3.39) it implies
that long-time effective dynamics in the MM is trace-preserving
and approximately completely-positive. This is a consequence
of the effective motion preserving the structure of Eq. (3.37).
Note that decoupling of (slower) classical dynamics from (faster)
quantum evolution in the MM requires further separation in
low-lying eigenvalues of L(x). This is illustrated in Fig. 3.2 (c)
for Example II.

Stationary state. We note that a stationary state of the dy-
namics perturbed away from the degeneracy has been studied
in [199]. In the case when the degeneracy of the stationary state
is lifted in the second order of the perturbation theory, we have
that (cf. Eq. (3.29))

ρss(x) = ρss + x
(
− SL(1) ρss − S̃1 L̃

(2) ρss − S̃1,1 L̃
(3)
1 ρss

)
+ O(x2),

Tr ρss(x) = 1+O(x2), (3.40)

where ρss is the unique stationary state of the generator in
Eq. (3.31), so that the corresponding eigenvalues λ(1)1 = 0 and
λ
(2)
1,1 = 0. The linear corrections in ρss(x) depend on the way

the degeneracy in 0-eigenvalue of L0 is lifted, and the three
terms represent following contributions. The first term is due
to the first-order perturbation of low-lying modes given by P(1)

in (3.27). The second one is a result of the first-order perturba-
tion of 0-eigenspace of L̃(1) by x[L̃(2)]P0 , cf. L̃(x) above, where
S̃1 denotes the reduced resolvent of L̃(1) at λ(1)1 = 0 inside P0.
Finally, the third term is a linear correction to the 0-eigenmatrix
of [L̃(2)]P1 perturbed by the third-order correction in [L(x)]P1(x)

(see Eq. (C.16)), where P1 is the projection on the 0-eigenspace
of L̃(1) and S̃1,1 denotes the resolvent of [L̃(2)]P1 at λ(2)1,1 = 0 re-
stricted to P1. Therefore, considering analogously the first and
third correction for the stationary state of L̃(x), one obtains
ρss(x) up to O(x2). The normalisation of ρss(x) follows directly
from orthonormality of right and left eigenmatrices of the gen-
erator in Eq. (3.31), and L1,1 = 1H.
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Timescale τ(x). Let us recall that negative real parts of the
low-lying spectrum are recovered in the second order of per-
turbation theory, cf. Eq. (3.26), and are given by the generator∑m ′′

l=1[L̃
(2)]Pl , see Eqs. (3.31,3.34,3.39). Therefore, when the de-

generacy of the stationary state is lifted in the second order, the
timescale τ(x) can be approximated by

τ(x) = x−2
∥∥∥S̃∥∥∥ , (3.41)

where S̃ is the resolvent for
∑m ′′

l=1[L̃
(2)]Pl at 0, i.e., S̃ =

∑m ′′

l=1 S̃l,0

with Sl,0 being the resolvent for [L̃(2)]Pl at 0.

Metastability and oscillations in system measurements. For sys-
tems in class A, in the metastable regime, τ ′′(x) � t � τ ′(x),
metastable states appear stationary or perhaps rotate within the
MM which is then solely a consequence of coherent motion in
a DFS/NSS where the matrices ωl of Eq. (3.37) evolve unitar-
ily in time, see also [57, 58]. In the latter case oscillations of
correlations in a system observable, C(t) in (3.10), can occur
during the metastable regime. Furthermore, in the case of no
oscillations in the metastable regime, those can be induced by
additionally perturbing the MM with a scale y, cf. (3.25), such
that 1� y� x2 so that the almost degenerate perturbation the-
ory applies to the perturbed low-lying modes, see Fig. 3.2 (d).
Hence, (approximately) unitary gates can be applied to the
quantum degrees of freedom in the MM, thus making it use-
ful for quantum computation, analogously to degenerate SSMs
in proposals of [57, 58]. For times after the metastable regime,
when t & τ ′(x), evolution follows approximately CPTP dynam-
ics towards ρss(x) and the correlations decay as a sum of expo-
nential contributions, see Fig. 3.2 (d).

3.4.2 Metastability in class B systems

So far we have discussed metastability in systems of a finite
size that can feature degenerate stationary manifold for some
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parameter values in the master equation, L = L0. Now we
will focus on scalable systems of size N in which the gap may
close only in the thermodynamic limit N → ∞, i.e., due to the
structures of interactions in the system and the dissipation, the
system evolution is irreducible and features a unique stationary
state for any finiteN. In this chapter we refer to those dynamics
as class B.

The choice to limit ourselves to class B systems is motivated
by a question important for classical and quantum Statistical
Physics, mainly, what is the structure of metastable states emerg-
ing due to collective effects. In classical systems, collective meta-
stable behaviour typically occurs in two distinct situations. The
first one is in the dynamics near a usually first-order static
phase transition, where metastable dynamics is intimately re-
lated to the existence of static phases in the thermodynamic
limit, although the transition is avoided either through finite
size or due to other kind of fluctuations [197]. The second one
is in glass forming systems [54] where metastable behaviour
is not obviously related to any static features (see e.g. [55] for
various viewpoints). The results by B. Gaveau and L. S. Schul-
man [47, 48, 51, 201] show that for classical systems whose dy-
namics can be described by a stochastic master equation, the
structure of metastable states is analogous to that of a first-
order phase transition, i.e., metastable states are probabilistic
mixtures of approximately disjoint metastable phases, see Sec. 3.1.2.

Conjecture for class B systems. For the case of m = 2 low-
lying modes, also in open quantum systems with dynamics
governed by a master equation (3.2), both the metastable man-
ifold and the long-time dynamics are necessary classical, see
results in Sec. 3.3 and [36, 172]. On the other hand, from per-
turbative calculations for finite open quantum systems of class
A in Sec. 3.4.1, we know that the manifold of metastable states
must in general include disjoint states, noiseless subsystems
and decoherence-free subspaces, cf. Eq. (3.37). Therefore, for
class B we conjecture that the coefficients representing the MM

approach degrees of freedom of a classical-quantum space as in
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Eq. (3.37), as the separation in the spectrum becomes more and
more pronounced when N → ∞. Note that when the dimen-
sionality of the MM does not change with N, the convergence
is well defined. In particular, when a first-order transition oc-
curs in the thermodynamic limit, we expect its structure to be
resembled by the metastable manifold of a finite-size system,
for dynamics close in parameters to those at which the transi-
tion is present. We note, however, that the general structure of
first-order phase transition in open quantum systems described
by (3.2) is not known [207–209]. Our general conjecture is based
on the necessary condition that the low-lying spectrum of L fea-
tures only trivial Jordan blocks or they do not significantly con-
tribute in the metastable regime, so that Eq. (3.7) holds true
with appropriately redefined corrections5.

Note that a conjecture of the ρMS structure being approxi-
mately that of stationary states, cf. Eq. (3.37) with disjoint sub-
spaces Hl⊗Kl and protected subsystems Kl, is a stronger claim.
Proof of both conjectures for class B appear challenging at this
moment, as we explain below.

Note that the convex analysis tools used in the classical proof
of [48, 51] (see also Sec. 3.1.2) cannot be used for the quantum
case as they rely on the finite number d of system configura-
tions. Note, however, that by using any tools of convex analy-
sis for the MM represented by the set of coefficients (c2, . . . , cm),
and exploiting (approximate) positivity of the metastable states,
one could at most prove the structure of fixed points of positive
(cf. completely positive) maps, which is richer than Eq. (3.3), see
e.g. [210]. For example, for the degeneracy m = 3 of the mani-
fold of fixed points there can exist non-commuting metastable
states represented by 2 × 2 real Hermitian matrices [210], in
contrast to m > 4 required for a smallest DFS/NSS of a qubit, cf.
Fig. 3.2 (a-b). In order to exploit complete positivity one would
need to work with the dynamics extended to etL⊗ IB(H), which
has m×d2 low-lying eigenvalues and thus the simplicity of the
geometric representation of the MM is lost.

5 Non-trivial Jordan blocks would lead to an unbounded norm of ρ(t) when
gap→ 0 in the thermodynamic limit [158].



3.4 higher dimensional metastable manifolds 150

For the latter conjecture determining also the structure of the
extreme metastable states, cf. ρ̃l in (3.37), the difficulty lies in
the fact that the existing proofs of the SSM structure [158, 199]
rely on the property that left eigenmatrices corresponding to
strictly zero eigenvalue of a CPTP generator L0 (or the eigen-
value 1 of a CPTP quantum channel) form a von-Neumann alge-
bra and thus stationary states are of the form given in Eq. (3.3).
We cannot rely on the algebra structure of metastable states as
for states e.g. with approximately the block structure, this struc-
ture will not be preserved with the same approximation for
products of them.This corresponds to the corrections to com-
plete positivity of the dynamics (of the same order as the cor-
rections to the stationarity, cf. Eq. (3.7) being progressively accu-
mulated with each multiplication of the eigenmatrices (cf. the
proof of the SSM structure in [158]). It is likely one could use a
proof such as in [211] deriving Eq. (3.7) by exploiting properties
of a projection P0 on the SSM, without its multiple applications,
so that corrections do not accumulate. Finally, note that such
a proof would not exploit the existence of the thermodynamic
limit and the quantum-classical structure of Eq. (3.37) would be
valid for any open quantum system with the separation in the
master operator spectrum being pronounced enough.

Quantum degrees of freedom in the thermodynamic limit and self-
correcting topological memories. One can ask whether the quan-
tum structures could occur only due to collective effects in a
quantum open systems without underlying symmetry protect-
ing part of the Hilbert space from noise also at a finite size [205].
Is the manifold always classical [36, 172]? To argue the converse,
let us recall topological quantum memories, such as Kitaev’s
code [212], in which a ground state of the system Hamiltonian
is degenerate due to topological properties of the system, (for
Kitaev’s code on a torus, it corresponds to two qubits). In the
presence of dissipation, however, the system of a finite size
features only single stationary state, but error-correction tech-
niques can be employed to eliminate local errors occurring with
frequency under certain threshold (< 11% for Kitaev’s code) so
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that the quantum state stored in the ground space of the Hamil-
tonian is protected. In it is possible to achieve a self-correcting
code in 4 dimensions, where the errors are suppressed expo-
nentially in the system size by the Hamiltonian itself, thus pro-
viding an example of quantum degrees of freedom featuring in
a first-order phase transition appearing only in the thermody-
namic limit.

Glassy quantum memories. Metastable behaviour is most promi-
nent in glasses where relaxation times diverge as temperature
going to zero, which is widely exploited in glass products made
of fastly cooled liquid. There is no obvious transition, however,
in the equilibrium state of those systems [54]. For various mod-
els both the dimensionality of the metastable manifold (e.g.
longest-lived states in the hierarchy ∼ N) and the relaxation
time (∼ log(N)) grows with the system size N [213]. Therefore,
it is promising to investigate quantum analogues of glassy mod-
els, such as East model or FA model, where not only classical
degrees of freedom [35, 193], but also quantum coherences can
be long-lived [214]. Finding even richer than classical collective
dynamics and possibly glassy DFSs/NSSs would pave a way for
a new class of quantum memories.

3.5 summary and outlook

In this chapter we established basics of the metastability the-
ory for Markovian open quantum systems [196] by generalising
methods for classical stochastic dynamics [48, 51]. We showed
how to construct a low-dimensional description of the meta-
stable manifold by exploiting the separation in the spectrum
of the Markovian generator. We further argued how the exper-
imentally observable two-step decay of time correlation func-
tions of system observables corresponds to effective long-time
dynamics within the MM. For the case of two low-lying eigen-
values we derived the classical structure of the MM consisting of
two approximately disjoint metastable phases, where the effec-
tive long-time dynamics corresponds to intermittent dynamics
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of quantum trajectories. For general case, based on perturbative
calculations for systems with degenerate stationary state, we ar-
gued that the MM includes disjoint states, noiseless subsystems,
and decoherence-free subspaces and formulated a general con-
jecture.

Let us briefly propose how using the low–dimensional repre-
sentation of metastable states for a given system dynamics, in
Eq. (3.8), the structure of MM can be unfolded for a given model.
Those methods will be extended in future work.

Classical MMs. The classical structure of the MM corresponds
to the set of coefficients being approximately a simplex. There-
fore, for given dynamics, one could construct a simplex inside
the MM that gives the maximum volume and check whether
the MM is well approximated as probabilistic mixtures of its
vortices. Such a simplex could be constructed from a subset of
the coefficients corresponding to the initial states chosen as ex-
treme eigenvectors of the low-lying left eigenmatrices, L2,...,Lm.
Furthermore, as the effective dynamics maps the MM into itself,
for a classical MM, the effective generator Leff will correspond
to classical stochastic transitions between m metastable phases
represented by the simplex vertices, which can be understood
as coarse-graning in time of continuous measurement records,
exactly as in the case of m = 2 in Sec. 3.3.

Coherences in the MM. As discussed in Sec. 3.4.1, perturbing a
stationary state manifold that features a DFS or a NSS, may re-
sult in coherent oscillations with frequency of the lower order in
the perturbation, than the destructive decay of coherences. This
corresponds to rotations within the MM during the metastable
regime. Therefore, by considering time-averaging of metastable
states over the metastable regime, such oscillating coherences
can be approximately discarded, which in general reduces the
MM solely to classical degrees of freedom that could be further
analysed by the former method. For a general case of Marko-
vian dynamics displaying metastability which is not classical,
one could consider introducing a random Hamiltonian pertur-
bation in order to mix the low-lying eigenmodes and possibly
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induce coherent oscillations.

Metastability in non-Markovian dynamics. We have considered
the Lindblad generator with a separation in the spectrum which
leads to a metastable regime in the system dynamics. It should
be possible to extend our approach to the case of non-Markovian
dynamics. In particular, one can formulate non-Markovian evo-
lution in terms of a the time-dependent master equation L(t), cf.
Eq. (3.2), where the system Hamiltonian and the rates of jumps
in the master equation are time-dependent (and not necessarily
positive at all times).

In the non-Markovian case, despite the non-positive rates, the
system evolution Tt from an initial state to the state at any time
t is completely positive (in the Markovian case Tt = etL). For
a given time t one can consider the spectrum of Tt in order to
identify how many modes contribute to the system state for any
initial state, in particular, whether the system state can be de-
scribed by the reduced number of degrees of freedom m < d2,
in analogy with how we define the metastable manifold. We ex-
pect that with appropriate conditions on the time-dependence
of the master equation, L(t), a metastable regime could thus
be determined. There is an important difference to the Marko-
vian case, as non-Markovian evolution after such a metastable
regime could take place outside the metastable manifold, for
example when some of the lost coherences are recovered (due
to information backflow from the environment).

Interestingly, in [215], metastability for one specific model
has been derived from the full Hamiltonian dynamics of the
system and an environment.

Metastability in closed systems. A significant challenge is to ex-
tend the ideas presented here to study metastability in closed
quantum systems. By this we understand conditions under which
dynamics of a subsystem in a closed quantum system is meta-
stable. Possible directions here include considering: quantum
analogues of classical chaotic systems whose dynamics can be
described effectively by a master operator, and quantum sys-
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tems with almost degenerate gaps, e.g. due to a perturbation.
Results on metastability in closed systems would be relevant to
the fundamental problems of thermalisation [185] and many-
body localisation [188].



Part III

A P P E N D I X



A
A P P E N D I X T O C H A P T E R 1

In this appendix we provide a proof for the iterative alternating
algorithm introduced in Sec. 1.2, and derivation of the bounds
for quantum parameter estimation in the presence of correlated
Gaussian dephasing, see Sec. 1.3.

a.1 proof of the convergence of iterative alter-
nating algorithm

We assume F(max)
φ to be finite, so the increasing sequence f(n)φ :=

Fφ(ρ
(n)
φ ) is bounded from above and therefore converges to a

limit f∗φ.

Proof. First, we prove that if the algorithm gets stuck, i.e.,
Fφ(ρ,Dρφ) = Fφ(ρ

′,Dρφ), where ρ ′ = |ψ〉〈ψ| is chosen as the
pure state corresponding to the maximum eigenvalue ofGφ(Dρφ),
it follows that ρ is the optimal initial preparation achieving
the maximum quantum Fisher information, Fφ(ρφ) = F

(max)
φ .

Note that we have F(ρ,Dρφ) = F(ρ ′,Dρφ) imposes ρ = ρ ′,
when the maximal eigenvalue eigenspace ofΛ†

(
G(Dρφ)

)
is non-

degenerate. For now we assume that the choice of ρ is unique
at all the steps of the algorithm (see discussion after the proof).
Using this fact we prove now that ρ corresponds to the maxi-
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mum, i.e., Fφ(ρφ) = F
(max)
φ . From the definition of Fφ(ρ,X) in

Eq. (1.23) it follows that

Fφ
(
ρ+ δρ,Dρφ + δX

)
=

= −Tr
(
(ρ+ δρ)Λ†φ

( (
Dρφ + δX

)2 ))
+ 2Tr

(
(ρ+ δρ) (∂φΛφ)

† (Dρφ + δX
))

= −Tr
(
(ρ+ δρ)Λ†φ

(
D

)
ρφ

)
+ 2Tr

(
(ρ+ δρ) (∂φΛφ)

† (Dρφ))+
−Tr

(
(ρ+ δρ)Λ†φ

({
Dρφ , δX

}))
− Tr

(
(ρ+ δρ)Λ†φ

(
(δX)2

))
+

+2Tr
(
ρ (∂φΛφ)

† (δX)
)
+ 2Tr

(
δρ (∂φΛφ)

† (δX)
)

= Fφ
(
ρ+ δρ,Dρφ

)
+O

(
δX2, δXδρ

(
‖∂φΛφ‖+ ‖Λ†φ

(
Dρφ

)
‖
)

,
)

< Fφ(ρ,Dρφ) +O
(
δX2, δXδρ

(
‖∂φΛφ‖+ ‖Λ†φ

(
Dρφ

)
‖
)

,
)

,

where the inequality follows from ρ being the optimal initial
state for X = Dρφ . Since Fφ(ρ,X) is concave w.r.t. to the con-
vex set (ρ,X), the above inequality implies that Fφ(ρ,Dρφ) is

the global maximum F
(max)
φ . Note that for this argument it is

enough that that there exists an open convex neighbourhood
around (ρ,Dρφ), note necessary that the considered set of ini-
tial states and the observables are convex.

Secondly, consider the case when the algorithm gets stuck,
i.e., f(n)φ = Fφ(ρ

(n),D
ρ
(n)
φ

) = Fφ(ρ
(n+1),D

ρ
(n)
φ

). We have f(n)φ =

Fφ(ρ
(n+1),D

ρ
(n+1)
φ

) = f
(n+1)
φ and we have arrived at the maxi-

mum FQ, thus ending the proof for this case.
Consider the opposite case in which f

(n)
φ < f

(n+1)
φ for all

n = 1, 2, ... (which requires Fφ(ρ(n),Dρ(n)φ

) 6= Fφ(ρ
(n+1),D

ρ
(n)
φ

)).

We assume that the dimension of the system Hilbert H space is
finite from now on. As ρ(n) belong to the set of density matrices,
which is compact for a system of a finite dimension, one can
choose a convergent subsequence {ρ(nm)}∞m=1; let ρ∗ denote the
limit of this subsequence. We further assume that Dρφ is contin-
uous w.r.t. ρ, then, together with the continuity of Fφ(ρ,X) w.r.t.
(ρ,X), it implies F(ρ∗,Dρ∗φ) = limm→∞ F(ρ(nm),Dρ(nm))φ

) = f∗φ.
The eigenvector ρ ′∗ corresponding to the maximum eigenvalue
of Gφ(Dρ∗φ) is the limit of the shifted subsequence {ρ(nm+1)}m∈N
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and thus ρ ′∗ = ρ∗. Therefore, if Gφ(Dρ∗φ) has a unique state cor-
responding to the maximal eigenvalue, we obtain f∗φ = Fφ(ρ

∗,Dρ∗φ) =

F
(max)
φ according to the first part of the proof.
Therefore, we have proved the convergence to the maximum,

i.e., f∗φ = F
(max)
φ , as long as, at each step the choice of ρ(n) is

unique (see the discussion below).

The above proof is based on the Chapter 10.3 in [216], where
a proof of convergence is presented for an alternating algorithm
in the case of supu1∈A1 supu2∈A2 f(u1,u2), where f is a strictly
concave real-valued function and Ak is a compact and convex
subset of Rnk , k = 1, 2. In our case the function Fφ(ρ,X) is lin-
ear w.r.t. ρ and strictly concave w.r.t. X.

Unique choices in the algorithm. As stated above, the unique
choice of ρ(n) at each step is crucial, as we show below it is re-
lated to unique choice of D

ρ
(n−1)
φ

in the preceding step. For sim-

plicity we consider here the case of phase encoding commuting
with noise, so that Λφ(ρ) = e−iφHΛ(ρ)eiφH = Λ(e−iφHρeiφH),
or unitary dynamics.
Dρφ is uniquely defined only whenΛ(ρ) has a maximum pos-

sible rank, which we argue as follows. Let ρφ =
∑d ′

j=1 λj |λj(φ)〉〈λj(φ)|,
where d ′ is the rank of ρφ and {|λj(φ)〉}d

′
j=1 are its orthonormal

vectors corresponding to non-zero eigenvalues. The definition
of the SLD implies the following form of Dρφ ,

Dρφ =

d ′∑
j,k=1

(
2
λj − λk
λj + λk

〈λj(φ)|iH|λk(φ)〉
)

− 2 PV⊥iHPV +2 PViHPV⊥ + DAρφ ,

(A.1)

where V⊥ is the orthogonal complement of V = span({|λj(φ)〉}d
′
j=1),

PV , PV⊥ are the orthogonal projections on V and V⊥ respectively
andDAρφ : V⊥ → V⊥ represents the part ofDρφ which can be de-
fined arbitrarily. It follows Dρφ is only uniquely defined when
V = H.
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If Dρφ is not uniquely defined, we set DAρφ = 0 in the algo-
rithm. In the case of a unitary channel Λ, the state Λ(|ψ〉〈ψ|)
has rank equal to 1. Nevertheless, we observed numerically
that as long as the initial state |ψ0〉 in the first step in the al-
gorithm, leads to Λ(|ψ0〉〈ψ0|) having non-zero expansion coef-
ficients in the eigenbasis of H, the algorithm converges to the
maximum value F(max) = 4 sup|ψ〉

(
〈ψ|H2|ψ〉− 〈ψ|H|ψ〉2

)
. This

condition is related to the fact that when ρ(n) is block-diagonal
in the eigenbasis of H, it is preserved by Λ. Thus D

ρ
(n)
φ

is also

block-diagonal according to Eq. (A.1) and, moreover, this is pre-
served at all the following steps of the algorithm. Assuming the
non-degeneracy of the maximal eigenvalue of Gφ(Dρ(n)φ

), ρ(n+1)

is only supported on one of the blocks. Therefore, D
ρ
(n+1)
φ

is

not uniquely defined and, from this point on, the algorithm
is effectively restricted to the subspace of H corresponding to
this block. Therefore, in such a case the algorithm will fail to
provide the maximum quantum Fisher information F(max), un-
less that maximum corresponds to the state which is supported
only on this block.

Therefore, we make the following

Proposition. If at each step of the algorithm ρ(n) is irreducible
w.r.t. the direct sums of the eigenspaces of H, the algorithm will
converge to the maximum value F(max).

By saying that ρ is irreducible w.r.t. the direct sums of the
eigenspaces of H, we understand the following: if for a sub-
space V ⊂ H we have both ρV ⊂ V and HV ⊂ V , then either
V = {0} or V = H.



A.2 derivations for estimation with correlated dephasing 160

a.2 derivations for the bound on phase estimation

precision in the presence of correlated gaus-
sian dephasing

a.2.1 Reduction from multi-parameter to single-parameter Bayesian
estimation

We are interested in Bayesian estimation a random phase ϕΣ =∑N
j=1 γjϕ̃j, where the random phases {ϕ̃1, ..., ϕ̃N} have a multi-

dimensional Gaussian distribution with a covariance matrix Σ
and the same means equal φ, i.e.,

gφ(ϕ̃1, .., ϕ̃N) =
√
2πdetΣe−

1
2

∑N
j,k=1(ϕ̃j−φ)(Σ

−1)jk(ϕ̃k−φ),

whereas the coefficients in the phase ϕΣ are given as γj =∑N
k=1(Σ

−1)jk∑N
j,k=1(Σ

−1)jk
, j = 1, ...,N. It follows that the distribution of ϕΣ is

Gaussian with the variance equal ∆2Σ =
(∑N

j,k=1(Σ
−1)jk

)−1
and

the mean equal φ; we denote this one-dimensional distribution
by g ′φ(ϕΣ).

We cannot observe a ϕΣ value directly, but only via a result
x of a POVM measurement {Πx}x. In a single realisation of an ex-
periment the probability of obtaining a result x ∈ X depends on
all the random phases, pϕ̃1,...,ϕ̃N(x) = Tr(Πx e−i

∑N
j=1 ϕ̃jHjρ ei

∑N
j=1 ϕ̃jHj).

The probability of obtaining a result x conditioned on the value
of ϕΣ is

∫
MϕΣ

gφ(ϕ̃1, ...., ϕ̃N)pϕ̃1,...,ϕ̃N/g
′
φ(ϕΣ) =: p ′ϕΣ(x), where

the set MϕΣ = {{ϕ̃1, ..., ϕ̃N} ∈ RN :
∑N
j=1 γjϕ̃j = ϕΣ}. Therefore,

the optimal Bayesian estimator of ϕΣ is, see Sec. 1.1.2.4,

ϕ̂Σ(x) :=

∫
R dϕΣ g ′φ(ϕΣ)p

′
ϕΣ

(x)ϕΣ∫
R dϕΣ g ′φ(ϕΣ)p

′
ϕΣ

(x)
=

N∑
j=1

γjϕ̃j(x), (A.2)

where ϕ̃j(x) :=
∫

RN
dϕ̃1...dϕ̃N gφ(ϕ̃1,....,ϕ̃N)pϕ̃1,....,ϕ̃N

(x) ϕ̃j∫
RN

dϕ̃1...dϕ̃N gφ(ϕ̃1,....,ϕ̃N)pϕ̃1,....,ϕ̃N
(x)

is the best

Bayesian estimator of a random phase ϕ̃j with respect to the
multi-dimensional distribution gφ(ϕ̃1, .., ϕ̃N).
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a.2.2 Bayesian estimator as optimal local estimator

Let us prove that the choice of φ̂(x) =
∑N
j=1 γjϕ̃j(x), which is

the best Bayesian estimator for ϕΣ is optimal for local estima-
tion up to a linear transformation guaranteeing local unbiased-
ness.

Signal. If in Bayesian estimation of ϕΣ we assume the mean
φ = φ0 in the distribution of ϕ̃1,..., ϕ̃N, see Eq. (1.16), it fol-
lows Eφ0φ̂ = φ0. Furthermore, as a consequence of Gaussian
distribution of random phases we have

∂φ|φ=φ0Eφφ̂ =
∑
x

Tr
(
Πx ∂φ|φ=φ0Λφ(ρ)

)
φ̂(x),

∂φ|φ=φ0Λφ(ρ) =

∫
RN

dϕ̃1...dϕ̃N ∂φ|φ=φ0gφ(ϕ̃1, ..., ϕ̃N) ρϕ̃1,...,ϕ̃N

= (∆2Σ)
−1

∫
RN

dϕ̃1...dϕ̃N gφ0(ϕ̃1, ..., ϕ̃N)

× ρϕ̃1,...,ϕ̃N

 N∑
j=1

γjϕ̃j −φ0

 .

Moreover, from the definition of φ̂ as the Bayesian estimator of
the phase ϕΣ =

∑N
j=1 γjϕ̃j we obtain

∫
RN

dϕ̃1...dϕ̃N gφ0(ϕ̃1, ..., ϕ̃N) × Tr(Πx ρϕ̃1,...,ϕ̃N)

 N∑
j=1

γjϕ̃j −φ0


= (φ̂(x) −φ0)Tr(ΠxΛφ0(ρ)),

which leads to

Tr(∂φΛφ(ρ)Πx)|φ=φ0 = Tr(ΠxΛφ0(ρ)) (∆
2
Σ)

−1 (φ̂(x) −φ0). (A.3)

Thus, as
∑
x Tr

(
Πx ∂φ|φ=φ0Λφ(ρ)

)
= ∂φ|φ=φ01 = 0, we arrive at

∂φ|φ=φ0Eφφ̂ =
∑
x

Tr
(
Πx ∂φ|φ=φ0Λφ(ρ)

)
(φ̂(x) −φ0) (A.4)

= (∆2Σ)
−1
∑
x

Tr
(
ΠxΛφ0(ρ)

)
(φ̂(x) −φ0)

2 = (∆2Σ)
−1∆2φ0φ̂.
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Noise. From Eq. (A.3) it also follows that

φ̂(x) −φ0 = ∆2Σ
Tr(∂φ|φ=φ0Λφ(ρ)Πx)

Tr(ΠxΛφ0(ρ))
= ∂φ|φ=φ0 log(Tr(ΠxΛφ(ρ))),

∆2φ0φ̂ =
∑
x

Tr(ΠxΛφ0(ρ)) (φ̂(x) −φ0)
2 = (∆2Σ)

2 Fφ0 , (A.5)

where in the last line we used a definition of the Fisher infor-
mation Fφ0 , see Eq. (1.6).

Signal-to-Noise Ratio. From Eqs. (A.4) and (A.5) it simply fol-
lows that the SNR of φ̂ is equal to the Fisher information Fφ0
and thus φ̂ is optimal estimator up to a linear transformation
guaranteeing local unbiasedness around φ = φ0.

a.2.3 Phase encoding

Below we prove that the phase ϕΣ is encoded in the system
state with the the very Hamiltonian encoding the phase φ being
estimated locally.

In a single realisation of estimation experiment, we perform a
POVM measurement {Πx}x on a system state ρϕ̃1,...,ϕ̃N =e−i

∑
j=1 ϕ̃jHjρ ei

∑
j=1 ϕ̃jHj ,

and the probability of obtaining a result x equals pϕ̃1,...,ϕ̃N(x) =

Tr(ρϕ1,...,ϕNΠx). The probability of obtaining a result x condition
on a value of the phaseϕΣ is p ′ϕΣ(x) =

∫
MϕΣ

gφ(ϕ̃1, ...., ϕ̃N)pϕ̃1,...,ϕ̃N ,

where the set MϕΣ = {{ϕ̃1, ..., ϕ̃N} ∈ RN :
∑N
j=1 γjϕ̃j = ϕΣ}, and

thus corresponds to a mixed quantum state

ρ ′ϕΣ = (g ′φ(ϕΣ))
−1

∫
MϕΣ

gφ(ϕ̃1, ...., ϕ̃N) ρϕ̃1,...,ϕ̃N .

Below we show that ∂ϕΣρ
′
ϕΣ

= −i
[
H, ρ ′ϕΣ

]
, where H =

∑N
j=1Hj

is the Hamiltonian encoding the phase φ estimated locally.
We know that the Fisher information of measuring {Πx}x on

ρ ′ϕΣ is not smaller than the QFI related to unitary encoding with
Hamiltonian on the state ρ ′0 = eiϕΣHρ ′ϕΣe

iϕΣH, which does not
depend on the value of ϕΣ and we can choose ϕΣ = φ. Fur-
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thermore, as the quantum Fisher information is convex w.r.t.
density matrices, we have

Fφ(ρ
′
φ) 6 (g ′φ(φ))

−1

∫
M0

g0(ϕ1, ....,ϕN) Fφ(ρϕ1+φ,...,ϕN+φ)

= Fφ(UφρU
†
φ),

as we have Fφ(ρϕ1+φ,...,ϕN+φ) = Fφ(UφρU
†
φ).

Proof. As
∑N
j=1 γj = 1, we obtain

ρ ′ϕ = (g ′φ(ϕΣ))
−1

 N∑
j=1

γj

 ∫
MϕΣ

gφ (ϕ̃1, ..., ϕ̃N) ρϕ̃1,...,ϕ̃N

= g ′φ(ϕΣ)
−1

N∑
j=1

γj

∫
RN−1

dϕ̃1...dϕ̃j−1dϕ̃j+1...dϕ̃N

× gφ

ϕ̃1, ..., ϕ̃j−1,γ−1j ϕΣ − γ
−1
j

N∑
k=1,k 6=j

γkϕ̃k, ϕ̃j+1, ..., ϕ̃N


× ρ

ϕ̃1,...,ϕ̃j−1,γ−1j ϕΣ−γ
−1
j

∑N
k=1,k6=j γkϕ̃k,ϕ̃j+1,...,ϕ̃N

, and

g ′φ(ϕΣ) =

N∑
j=1

γj

∫
RN−1

dϕ̃1...dϕ̃j−1dϕ̃j+1...dϕ̃N

×gφ

ϕ̃1, ..., ϕ̃j−1,γ−1j ϕΣ − γ
−1
j

N∑
k=1,k 6=j

γkϕ̃k, ϕ̃j+1, ..., ϕ̃N

 .
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Therefore,

∂ϕΣg
′
φ(ϕΣ) =

N∑
j=1

γj

∫
RN−1

dϕ̃1...dϕ̃j−1dϕ̃j+1...dϕ̃N

×gφ

ϕ̃1, ..., ϕ̃j−1,γ−1j ϕΣ − γ
−1
j

N∑
k=1,k 6=j

γkϕ̃k, ϕ̃j+1, ..., ϕ̃N


× (−γ−1j )

 N∑
k=1,k 6=j

(Σ−1)jk(ϕ̃k −φ) + (Σ−1)jj

γ−1j ϕΣ − γ−1j N∑
k=1,k 6=j

γkϕ̃k −φ


= −

N∑
j=1

∫
MϕΣ

gφ(ϕ̃1, ..., ϕ̃N)
N∑
k=1

(ϕ̃k −φ) (Σ
−1)jk

= −

∫
MϕΣ

gφ(ϕ̃1, ..., ϕ̃N)
N∑
k=1

(ϕ̃k −φ)γk (∆
2
Σ)

−1

= −

∫
MϕΣ

gφ(ϕ̃1, ..., ϕ̃N) (ϕΣ −φ) (∆2Σ)
−1

= −(∆2Σ)
−1 (ϕΣ −φ)g

′
φ(ϕΣ).
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Hence,

∂ϕΣρ
′
ϕΣ

= (g ′φ(ϕΣ))
−1

N∑
j=1

γj

∫
RN−1

dϕ̃1...dϕ̃j−1dϕ̃j+1...dϕ̃N

×gφ

ϕ̃1, ..., ϕ̃j−1,γ−1j ϕΣ − γ
−1
j

N∑
k=1,k 6=j

γkϕ̃k, ϕ̃j+1, ..., ϕ̃N


×
[
−iγ−1j Hj, ρϕ̃1,...,ϕ̃j−1,γ−1j ϕΣ−γ

−1
j

∑N
k=1,k6=j γkϕ̃k,ϕ̃j+1,...,ϕ̃N

]
+(g ′φ(ϕΣ))

−1
N∑
j=1

γj

∫
RN−1

dϕ̃1...dϕ̃j−1dϕ̃j+1...dϕ̃N

×gφ

ϕ̃1, ..., ϕ̃j−1,γ−1j ϕΣ − γ
−1
j

N∑
k=1,k 6=j

γkϕ̃k, ϕ̃j+1, ..., ϕ̃N


×(−γ−1j )

 N∑
k=1,k 6=j

(Σ−1)jk(ϕ̃k −φ) + (Σ−1)jj

γ−1j ϕΣ − γ−1j N∑
k=1,k 6=j

γkϕ̃k −φ


× ρ

ϕ̃1,...,ϕ̃j−1,γ−1j ϕΣ−γ
−1
j

∑N
k=1,k6=j γkϕ̃k,ϕ̃j+1,...,ϕ̃N

−ρ ′ϕΣ(g
′
φ(ϕΣ))

−1∂ϕΣg
′
φ(ϕΣ)

= −i
[
H, ρ ′ϕΣ

]
− ρ ′ϕΣ (∆

2
Σ)

−1 (ϕΣ −φ) + ρ
′
ϕΣ

(∆2Σ)
−1 (ϕ−φ)

= −i
[
H, ρ ′ϕΣ

]
.
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b.1 fidelity and qfi

In this Appendix we prove Eqs. (2.12) and (2.24). We have:

∂g1∂g2 log〈ψg1 |ψg2〉|g1=g2=g =
〈ψ ′g|ψ ′g〉
〈ψg|ψg〉

−
〈ψ ′g|ψg〉〈ψg|ψ ′g〉
〈ψg|ψg〉2

= 〈ψ ′g|ψ ′g〉−
∣∣〈ψg|ψ ′g〉∣∣2

where |ψ ′g〉 := ∂g1 |ψg1〉|g1=g and we have used the normalisa-
tion of the state, 〈ψg|ψg〉 = 1.

On the other hand, for a family of pure states ρg = |ψg〉〈ψg|
the symmetric logarithmic derivative isDg = 2(|ψg〉〈ψ ′g|+ |ψ ′g〉〈ψg|).
Therefore

F(|ψg〉) = Tr(ρgD2g)

= 4(〈ψ ′g|ψ ′g〉+ 〈ψ ′g|ψg〉〈ψg|ψ ′g〉
+〈ψ ′g|ψg〉2 + 〈ψg|ψ ′g〉2)

= 4(〈ψ ′g|ψ ′g〉− |〈ψ ′g|ψg〉|2)
= 4 ∂g1∂g2 log |〈ψg1 |ψg2〉|g1=g2=g,

where we used 〈ψ ′g|ψg〉 = −〈ψg|ψ ′g〉 resulting from differentiat-
ing 〈ψg|ψg〉 = 1.

b.2 time dependence of qfi

In this section we first discuss the general dependence of the
QFI of the MPS |Ψ(t)〉 on time t. This will enable us to prove

166
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the asymptotic linear behaviour of the QFI for dynamics with a
unique stationary state, see Eq. (2.26). Using the general time
dependence of the QFI, we then prove the existence of a quadratic
scaling regime of the QFI for dynamics near a first-order DPT, cf.
Eq. (2.28).

b.2.1 General time dependence of QFI

In order to express the QFI of the MPS |Ψ(t)〉, we use Eqs. (2.12)
and (2.24),

F(|Ψg(t)〉) = 4 ∂g1∂g2 log Tr {etLg1,g2 |χ〉〈χ|}g1=g2=g,

and obtain

F(|Ψg(t)〉) = − 4

∣∣∣∣Tr
∫ t
0

dt ′ ∂g1Lg1,g ρg(t
′)

∣∣∣∣2
g1=g

+ (B.1)

+ 4Tr
(∫ t

0
dt ′ ∂g1∂g2Lg1,g2 ρg(t

′)
)
g1=g2=g

+

+ 8Re Tr

(∫ t
0

dt ′
∫ t−t ′
0

dt ′′ ∂g1Lg1,ge
t ′′Lg ∂g2Lg,g2 ρg(t

′)

)
g1=g2=g

,

where ρg(t) := etLg |χ〉〈χ|, |χ〉 is an initial pure state of the sys-
tem, Lg is the Master operator, see Eq. (2.12), and Lg1,g2 is the
modified Master operator, see Eq. (2.25). Eq. (B.1) above results
from the following calculations. Firstly (cf. Dyson-Philips ex-
pansion),

∂g1∂g2 log Tr
(
etLg1,g2 |χ〉〈χ|

)
g1=g2=g

=

= −

∣∣∣∣∂g1Tr
(
etLg1,g |χ〉〈χ|

)
g1=g

∣∣∣∣2 + ∂g1∂g2Tr
(
etLg1,g2 |χ〉〈χ|

)
g1=g2=g

.
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Secondly,

∂g1Tr
(
etLg1,g |χ〉〈χ|

)
g1=g

=

= Tr
(∫ t

0
dt ′ e(t−t

′)Lg1,g∂g1Lg1,g e
t ′Lg1,g |χ〉〈χ|

)
g1=g

= Tr
(∫ t

0
dt ′ ∂g1Lg1,g ρg(t

′)
)
g1=g

,

where the third line results from the operator etLg being trace-
preserving. Similarly, the second and third line in Eq. (B.1) cor-
respond to ∂g1∂g2Tr {etLg1,g2 |χ〉〈χ|}g1=g2=g.

Note that Lg is a linear operator on the space of matrices act-
ing on the system Hilbert space H. For clarity of further presen-
tation, we assume that Lg can be diagonalised with right and
left eigenmatrices {Rk}

d2

k=1, {Lk}
d2

k=1, ordered s.t. the correspond-
ing eigenvalues 0 = λ1 > Re λ2 > Re λ3 > ... > Re λd2 and
normalised Tr (Lj Rk) = δjk, j,k = 1, ...,d2, where d = H and
we have explicitly assumed one stationary state R1 = ρss and
from trace-preservation it follows L1 = 1H. For convenience,
apart from the standard matrix notation, the eigenmatrices will
be also denoted as vectors {||Rk〉〉}d

2

k=1, {〈〈Lk||}d
2

k=1 in the space of
matrices, with the scalar product 〈〈L||R〉〉 := Tr (LR). Note the
contrast to vectors (pure states) |χ〉 in H. One can now simply
write Lg = 0 ||ρss〉〉〈〈1H||+

∑d2

k=2 λk||Rk〉〉〈〈Lk||. The discussion be-
low will be similar for a general Jordan decomposition of Lg.

As Eq. (B.1) involves integrals of etLg , we need to consider
the 0-eigenspace of Lg, i.e. the stationary state ρss, separately
from the rest of eigenmatrices whose eigenvalues differ from 0.
We introduce the projection on the stationary state ρss, Pss =

||ρss〉〉〈〈1H||, and its complement I − Pss :=
∑d2

k=2||Rk〉〉〈〈Lk|| and
denote the restriction of an operator X to this complement by
[X]I−Pss := (I−Pss)X(I−Pss).

We now express the finite time behaviour of QFI using deriva-
tives of the modified Master operator and the diagonal decom-
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position of the original Master operator Lg. From Eq. (B.1) it
follows

F(|Ψg(t)〉) =

−4

∣∣∣∣∣ tTr (∂g1Lg1,g ρss) + Tr

(
∂g1Lg1,g

[
etLg − I

Lg

]
I−Pss

|χ〉〈χ|
)∣∣∣∣∣
2

g1=g

+4

(
tTr (∂g1∂g2Lg1,g2 ρss) + Tr

(
∂g1∂g2Lg1,g2

[
etLg − I

Lg

]
I−Pss

|χ〉〈χ|
))

g1=g2=g

+4 t2 |Tr (∂g1Lg1,g ρss)|
2

+8Re Tr (∂g1Lg1,g ρss)Tr

(
∂g2Lg,g2

[
etLg − I− tLg

L2g

]
I−Pss

|χ〉〈χ|
)
g1=g2=g

+8Re Tr

(
∂g1Lg1,g

[
etLg − I− tLg

L2g

]
I−Pss

∂g2Lg,g2 ρss

)
g1=g2=g

−8Re Tr

(
∂g1Lg1,g

[
L−1
g

]
I−Pss

∂g2Lg,g2

[
etLg − I

Lg

]
I−Pss

|χ〉〈χ|
)
g1=g2=g

+8Re Tr

(
∂g1Lg1,g

[
etLg

Lg

(∫ t
0

dt ′ e−t
′Lg ∂g2Lg,g2 e

t ′Lg

)]
I−Pss

|χ〉〈χ|
)
g1=g2=g

,(B.2)

where I =
∑d2

k=1||Rk〉〉〈〈Lk|| is an identity operator on the space
of matrices on H and one can show that[

etLg

Lg

(∫ t
0

dt ′ e−t
′Lg ∂g2Lg,g2 e

t ′Lg

)]
I−Pss

=

= t

d2∑
k=2

etλk

λk
〈〈Lk||∂g2Lg,g2 ||Rk〉〉 ||Rk〉〉〈〈Lk||

+

d2∑
j 6=k,j,k>1

etλj − etλk

λk(λj − λk)
〈〈Lk||∂g2Lg,g2 ||Rj〉〉 ||Rk〉〉〈〈Lj||.

The first line and the second line in Eq. (B.2) correspond to
the first and the second line in Eq. (B.1), respectively. All other
terms in Eq. (B.2) correspond to the third line in Eq. (B.1). We
see that the quadratic contribution t2 |Tr (∂g1Lg1,g ρss)|

2 cancels
out and for one stationary state there is no explicit quadratic
behaviour. Eq. (B.2) will be further used for investigating the
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asymptotic and the quadratic time regime of QFI in the next
subsections.

We note that as an alternative route, one can use the eigende-
composition of the modified Master operator Lg1,g2 defined in
Eq. (2.25),

etLg1,g2 =

d2∑
k=1

etλk(g1,g2) ||Rk(g1,g2)〉〉〈〈Lk(g1,g2)||. (B.3)

From Eqs. (2.12) and (2.24), we obtain for a single stationary
state

F(|Ψg(t)〉) =

−4

t2 |∂g1λ1(g1,g)|2 + 2 tRe∂g1λ1(g1,g)
d2∑
k=1

etλk∂g2 ck(g,g2)+

+

d2∑
j,k=1

et(λk+λj)∂g1 cj(g1,g)∂g2 ck(g,g2)


g1=g2=g

+

+4

t2 |∂g1λ1(g1,g)|2 + t ∂g1∂g2λ1(g1,g2) + d2∑
k=1

etλk∂g1∂g2 ck(g1,g2)+

+2 tRe
d2∑
k=1

etλk∂g1ck(g1,g)∂g2λk(g,g2)


g1=g2=g

(B.4)

where ck(g1,g2) = Tr (Lk(g1,g2) |χ〉〈χ|)×Tr(Rk(g1,g2)) and ck =
ck(g,g), λk = λk(g,g), k = 1, ...,d2. The first line corresponds to
the first line of Eq. (B.2) and the second to the rest of terms
in Eq. (B.2). We see again that quadratic terms t2 |∂g1λ1(g1,g)|

2

cancel out and there is no explicit quadratic behaviour. In deriva-
tion of Eq. (B.4) we have used the fact that, for a single station-
ary state, c1(g,g) = 1 and ck(g,g) = 0, k = 2, ...d2, which fol-
lows from the orthogonality and normalisation of the Lg eigen-
basis, 〈〈Li||Rj〉〉 = δi,j, and as L1 = 1H we have Tr (Rk) = δ1,k.

We note that in general the eigenvalues λk(g1,g2) and the
related coefficients ck(g1,g2) may not be analytic in g1 or g2,
even when Lg1,g2 is analytic (which we always assume). There
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are analytic for example in the case when the corresponding
eigenvalue λk of Lg is non-degenerate [167]. In general case,
however, all non-analyticities must cancel out, as etLg1,g2 is an
analytic function of analytic Lg1,g2 .

b.2.2 Asymptotic QFI for a unique stationary state

When the stationary state is unique, the second eigenvalue of
the Master operator Lg is different from 0, λ2 6= 0. As we have
limt→∞ [etLg]I−Pss

= 0, from Eq. (B.2) we obtain an asymptotic
linear behaviour of the QFI,

lim
t→∞ t−1F(|Ψg(t)〉) = 4Tr (∂g1∂g2Lg1,g2 ρss) + (B.5)

−8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−Pss

∂g2Lg,g2 ρss

)
g1=g2=g

=: f1,g

and the limit is independent from the initial state. The result (B.5)
was also obtained using different methods in [38, 39]. We see
that Eq. (B.5) can diverge at a first-order DPT when λ2 → 0

for g → gc, as
[
L−1
g

]
I−Pss

has then a diverging eigenvalue λ−12 .
Analogously we can obtain constant terms in the asymptotic
QFI:

f0,g := lim
t→∞

(
F(|Ψg(t)〉) − tf1,g

)
= −4

∣∣∣∣Tr
(
∂g1Lg1,g

[
L−1
g

]
I−Pss

|χ〉〈χ|
)∣∣∣∣2
g1=g

−4Tr
(
∂g1∂g2Lg1,g2

[
L−1
g

]
I−Pss

|χ〉〈χ|
)
g1=g2=g

−8Re Tr (∂g1Lg1,g ρss)Tr
(
∂g2Lg,g2

[
L−2
g

]
I−Pss

|χ〉〈χ|
)
g1=g2=g

−8Re Tr
(
∂g1Lg1,g

[
L−2
g

]
I−Pss

∂g2Lg,g2 ρss

)
g1=g2=g

+8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−Pss

∂g2Lg,g2

[
L−1
g

]
I−Pss

|χ〉〈χ|
)
g1=g2=g

.(B.6)

We see that the asymptotic constant f0,g depends on the ini-
tial system state |χ〉 and may diverge at a first-order DPT when
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λ2 → 0.

The asymptotic linear behaviour of the QFI can be also ob-
tained from Eq. (B.4) as

f1,g = 4 ∂g1∂g2λ1(g1,g2)
∣∣
g1=g2=g

, (B.7)

f0,g =
(
∂g1∂g2c1(g1,g2) − |∂g1c1(g1,g)|

2
)
g1=g2=g

. (B.8)

cf. Eq. (2.26). Note that the eigenvalue λ1(g1,g2) of Lg1,g2 with
maximal real part, and the corresponding c1(g1,g2), are ana-
lytic functions for small enough g1 and g2 as λ1(g,g) = 0 is a
non-degenerate eigenvalue of Lg [167]. By comparing Eqs. (B.5)
and (B.7), we see that when the gap closes at gc, λ2 = 0, the max-
imal eigenvalue of Lg1,g2 can be non-analytic at g1 = g2 = gc,
which we discuss in detail at the end of the next subsection.

b.2.3 Quadratic time-regime of QFI

In this subsection we describe the quadratic regime in the QFI

scaling with time, which can be present for systems at and near
a first-order DPT.

Quadratic behaviour near a DPT. For a system near a DPT the
gap is much smaller than the gap associated with the rest of the
spectrum. For simplicity we consider only one low-lying eigen-
value, i.e. (−Reλ2)� (−Reλ3), but the discussion is similar for
the general case of several low-lying eigenvalues. Note that the
eigenvalues of Lg come in conjugate pairs as Lg preserves the
Hermiticity of a matrix ρ, and thus (−Reλ2)� (−Reλ3) implies
λ2 ∈ R.

The separation in the eigenvalues introduces the intermedi-
ate time regime (−Reλ3)−1 = τ ′ � t � τ = (−λ2)

−1. In this
regime we expect the second eigenmatrix R2 of Lg to be almost
stationary and determine, with the stationary state ρss, domi-
nant terms in the QFI in Eq. (B.2), whereas other eigenmatrices
not to play any significant role. We introduce the projection
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P :=||ρss〉〉〈〈1H||+||R2〉〉〈〈L2|| on the subspace spanned by the ρss
and ρ2. We also introduce the projection on their complement
I− P =

∑d2

k=3||Rk〉〉〈〈Lk|| and denote by [X]I−P = (I− P)X(I− P)

the restriction of an operator X to this complement.
The general behaviour of the QFI in Eq. (B.2) simplifies to

F(|Ψg(t)〉) =

−4

∣∣∣∣ tTr (∂g1Lg1,g P |χ〉〈χ|) − Tr
(
∂g1Lg1,g

[
L−1
g

]
I−P

|χ〉〈χ|
)∣∣∣∣2
g1=g

+4

(
tTr (∂g1∂g2Lg1,g2 P |χ〉〈χ|) − Tr

(
∂g1∂g2Lg1,g2

[
L−1
g

]
I−P

|χ〉〈χ|
))

g1=g2=g

+4 t2 Re Tr (∂g1Lg1,g P∂g2Lg,g2 P |χ〉〈χ|)g1=g2=g

−8Re Tr

(
∂g1Lg1,g P∂g2Lg,g2

[
I+ tLg
L2g

]
I−P

|χ〉〈χ|
)
g1=g2=g

−8Re Tr

(
∂g1Lg1,g

[
I+ tLg
L2g

]
I−P

∂g2Lg,g2 P |χ〉〈χ|
)
g1=g2=g

+8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−P

∂g2Lg,g2

[
L−1
g

]
I−P

|χ〉〈χ|
)
g1=g2=g

+ t2O(λ2t)O
(
c2(c2 + 1)C

2
1

)
+ t
{
O(λ2t)

[
O
(
c2C

2
1C2

)
+ O (c2C3)

]
+

+ O

(
(1+ c2)C

2
1C2

∥∥∥∥[etLg]I−P

∥∥∥∥) + O
(
c2C

2
1C2

)
O

(
λ2
λ3

)}
+O(λ2t)O(c2C

2
1C

2
2) +O

(
(1+ c2)C

2
1C

2
2

∥∥∥∥[etLg]I−P

∥∥∥∥)
+O

(
C2C3

∥∥∥∥[etLg]I−P

∥∥∥∥) + O(c2C
2
1C

2
2)O

(
λ2
λ3

)

+O

C1
∥∥∥∥∥∥

d2∑
j 6=k,j,k>2

etλj − etλk

λk(λj − λk)
||Rk〉〉〈〈Lk||∂g2Lg,g2 ||Rj〉〉〈〈Lj||

∥∥∥∥∥∥

g2=g

, (B.9)

where corrections in the approximation are given by c2 = ‖ ||R2〉〉〈〈L2|| ‖,
C1 = ‖∂g1 |g1=gLg1,g‖, C2 =

∥∥∥[L−1
g

]
I−P

∥∥∥, C3 = ‖∂g1∂g2 |g1=g2=gLg1,g2‖.
The above-introduced norm ‖X‖ is an operator norm for X act-
ing on matrices ρ on the system Hilbert space H, induced by
the trace-norm of the matrices, ‖ρ‖ := Tr{

√
ρ†ρ}, i.e., ‖X‖ :=

supρ ‖Xρ‖ / ‖ρ‖. We note that the estimate of the approxima-
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tion error in Eq. (B.9) is very rough and implies strong condi-
tions on the Master dynamics near a DPT, i.e. when the correc-
tions are negligible. For a given model one should check the
approximation by comparing to the exact results of Eq. (B.2).

Assuming that the corrections in Eq. (B.9) are negligible, there
are quadratic, linear and constant terms in Eq. (B.9). In particu-
lar, the quadratic terms in Eq. (B.9) correspond to Eq. (2.28).

Let us note that using Eq. (B.4) does not provide clear re-
sults for the regime τ ′ � t � τ. From comparing Eq. (B.7)
to Eq. (B.5), we see that when the gap λ2 → 0, many terms in
Eq. (B.4) diverge. Thus, in order to simplify (B.4) when (−λ2)�
(−Reλ3) one needs to go back to the operators ∂g1Lg1,g|g1=g and
∂g1∂g2Lg1,g2 |g1=g2=g and to Eqs. (B.2) and (B.9).

Quadratic behaviour at a first-order DPT. At a first-order DPT we
have λ2 = 0 and the considered time-regime is infinitely long,
τ = ∞. Moreover, in the limit of long time t all the corrections
in Eq. (B.9) are 0. Therefore, Eq. (B.9) gives asymptotic quadratic
behaviour of the QFI, see also Eq. (2.28) in the main text,

lim
t→∞ t−2 F(|Ψg(t)〉) = − 4 |Tr (∂g1Lg1,g P0 |χ〉〈χ|)|2g1=g + (B.10)

+ 4Re Tr (∂g1Lg1,g P0 ∂g2Lg,g2 P0 |χ〉〈χ|)g1=g2=g =: f2,g,

where P0 is projection on the stationary manifold of Lg con-
siting of two disjoint stationary states [199]. This formula can
be further simplified this structure, see Appendix B.3.2 and
Eq. (B.19).
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The linear and constant terms in the asymptotic behaviour of
QFI are given by

f1,g := lim
t→∞ t−1

(
F(|Ψg(t)〉) − t2f2,g

)
= 4Tr (∂g1∂g2Lg1,g2 P0 |χ〉〈χ|)g1=g2=g

−8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−P0

∂g2Lg,g2 P0 |χ〉〈χ|
)
g1=g2=g

−8Re Tr
(
∂g1Lg1,g P0 ∂g2Lg,g2

[
L−1
g

]
I−P0

|χ〉〈χ|
)
g1=g2=g

+8Re Tr (∂g1Lg1,g P0 |χ〉〈χ|)Tr
(
∂g2Lg,g2

[
L−1
g

]
I−P0

|χ〉〈χ|
)
g1=g2=g

(B.11)

and

f0,g := lim
t→∞

(
F(|Ψg(t)〉) − t2f2,g − tf1,g

)
= −4

∣∣∣∣Tr
(
∂g1Lg1,g

[
L−1
g

]
I−P0

|χ〉〈χ|
)∣∣∣∣2
g1=g

−4Tr
(
∂g1∂g2Lg1,g2

[
L−1
g

]
I−P0

|χ〉〈χ|
)
g1=g2=g

−8Re Tr
(
∂g1Lg1,g P0 ∂g2Lg,g2

[
L−2
g

]
I−P0

|χ〉〈χ|
)
g1=g2=g

−8Re Tr
(
∂g1Lg1,g

[
L−2
g

]
I−P0

∂g2Lg,g2 P0 |χ〉〈χ|
)

+8Re Tr
(
∂g1Lg1,g

[
L−1
g

]
I−P0

∂g2Lg,g2

[
L−1
g

]
I−P0

|χ〉〈χ|
)
g1=g2=g

.(B.12)

Let us note that linear and constant terms in the asymptotic be-
haviour QFI depend not only on the asymptotic state P0 (|χ〉〈χ|),
but also on the initial state, which corresponds to the contri-
butions from decaying eigenmodes of Lg. For detailed discus-
sion of dependence on initial state and its coherences see Ap-
pendix B.3.2.
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The asymptotic quadratic behaviour of the QFI can be also
obtained from Eq. (B.4) as

F(|Ψg(t)〉) ≈ 4 t2 c1 c2
∣∣∂g1λ1(g1,g) − ∂g1λ2(g1,g)∣∣2g1=g

+ 4 t (c1 ∂g1∂g2 λ1(g1,g2) + c2 ∂g1∂g2 λ2(g1,g2))g1=g2=g
+ 8 tRe (c2∂g1c1(g1,g) − c1∂g1c2(g1,g))

× (∂g2λ1(g,g2) − ∂g2λ2(g,g2))g1=g2=g
+ 4 ∂g1∂g2 (c1(g1,g2) + c2(g1,g2))g1=g2=g

− 4
∣∣∂g1c1(g1,g) + ∂g1c2(g1,g)∣∣2g1=g, (B.13)

where λ1(g1,g2), λ2(g1,g2) are first two eigenvalues of the modi-
fied master operator Lg1,g2 with the largest real part and L1(g1,g2),
L2(g1,g2), R1(g1,g2), R2(g1,g2) are the corresponding left and
right eigenmatrices, and c1,2(g1,g2) := Tr(L1,2(g1,g2) |χ〉〈χ|) ×
Tr(R1,2(g1,g2)) with c1,2 := c1,2(g,g).

We note that the 0-eigenspace of Lg is two-fold degenerate,
λ1(g,g) = λ2(g,g). When this degeneracy is lifted in the first
order of perturbation theory (i.e. by P0∂g1 |g1=gLg1,gP0 or equiv-
alently the Hermitian conjugate P0∂g2 |g2=gLg,g2P0) λ1,2(g1,g2)
and also c1,2(g1,g2) are analytic in g1 or g2 [167]. In the next
section we show that this is indeed the case, and moreover
P0∂g1 |g1=gLg1,gP0 is diagonal in the basis of the disjoint station-
ary states ρ̃1 and ρ̃2, which further gives c1,2 = p1,2 with p1,2
being the asymptotic probabilities, limt→∞ ρ(t) = p1ρ̃1 + p2ρ̃2.

Higher-fold degeneracy of stationary state. In general, the degen-
eracy of 0-eigenspace of Lg can be higher than two-fold. This
may correspond not only to more disjoint stationary states, but
also to some of initial coherences being preserved asymptoti-
cally within decoherence free subspaces (DFSs) or noiseless sub-
systems (NSSs), see Sec. 3.1.3 for derivation of general structure
of stationary state manifold (SSM). The asymptotic behaviour
of the QFI is in general quadratic and again given by Eqs.(B.10-
B.12) with P0 being the projection on the SSM. Due to the struc-
ture of the SSM, cf. Eq. 3.3, the QFI behaviour can further under-
stood in terms of unitary rotations, see Appendix D.3. More-
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over, for Lg with a separation in its spectrum, −Re λm � −Re λm+1,
we have that Eqs. (B.10-B.12) hold in the time regime (−Re λm+1)

−1 �
t � (−Re λm)−1, with P0 replaced by projection P on m low-
lying eigenmodes and with appropriate corrections, cf. Eq. (B.9).

b.3 stochastic generator of parameter encoding

In this section we focus on the generator of the parameter en-
coding Gg(t), see Eq. (2.29). We study its average and variance,
see B.3.1 and their asymptotic behaviour B.3.2. Furthermore,
in B.3.3 we show how for a generator being a continuous mea-
surement to find the corresponding parameter dependence of
system-output dynamics.

b.3.1 Average and variance of the stochastic generator

Here we discuss the average and variance of the stochastic inte-
gral Gg(t) defined in Eqs. (2.47) and (2.48).

We have that, cf. Eq. (2.31),

〈Gg(t)〉 = 〈Ψg(t)|Gg(t) |Ψg(t)〉 =
∫ t
0

du〈Ψg(u)|dGu,g |Ψg(u)〉

=

∫ t
0

du 〈Ψg(u)|

H ′g − i

2

∑
j

(
J
†
j,gJ
′
j,g − (J†j,g)

′Jj,g
) |Ψg(u)〉

=

∫ t
0

duTr(Mg ρg(t)),

where the second line follows from the fact that dAj,t and dA†j,t
act in the interval (t, t+ dt], see Eqs. (2.47) and (2.46), at which
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the output of the state |Ψg(t)〉 is still in vacuum. Futhermore,
this also simplifies the second moment of Gg(t):

〈Gg(t)2〉 =
∫ t
0

∫ t
0
〈Ψg(u)|dGu,gUg(t,u)Ug(t, v)† dGv,g |Ψg(v)〉

=

∫ t
0

∫ t
0
〈Ψg(u)|dGu,gUg(t,u)Ug(t, v)† dGv,g |Ψg(v)〉

=

∫ t
0

∫ t
0
〈Ψg(u)|

(
Mgdu− i(J†j,g)

′dAj,u
)
Ug(t,u)Ug(t, v)†

×
(
Mgdv+ iJ ′j,gdA†j,v

)
|Ψg(v)〉

=

∫ t
0

du
∫u
0

dv
(
〈Ψg(u)|MgUg(u, v)Mg |Ψg(v)〉+

+〈Ψg(v)|MgUg(u, v)†Mg |Ψg(u)〉
)

+

∫ t
0

du
∫u
0

(
i 〈Ψg(u)|MgUg(u, v) J ′j,gdA†j,v |Ψg(v)〉+

−i 〈Ψg(v)| (J†j,g) ′dAj,vUg(u, v)†Mg |Ψg(u)〉
)

+

∫ t
0

du 〈Ψg(u)|(J†j,g) ′J ′j,g |Ψg(u)〉, (B.14)

where in the last equality we again used the fact that when u >
v, Ug(u, v) acts on the output on times (v,u] and thus dAj,u acts
within times (u,u+du] when the output is in vacuum and thus
the contributions

∫t
0

∫u
0 〈Ψg(u)| (J

†
j,g)
′ dAj,uUg(u, v)dGv,g |Ψg(v)〉 =

0 and
∫t
0

∫u
0 〈Ψg(v)|dGv,gUg(u, v)† J ′j,g dA†j,uMg |Ψg(u)〉 = 0. Note

that the last term above corresponds to the second line in Eq. (B.1),
while the other two terms correspond to the third line of Eq. (B.1),
as tracing out the output initially in vacuum, we obtain

〈Gg(t)2〉 = 2Re
∫ t
0

du
∫u
0

dvTr
(
Mg e

(u−v)LgMg (e
vLgρin)

)
+2Re

∫ t
0

du
∫u
0

Tr
(
Mg e

(u−v)Lg i
(
J ′j,g (e

vLgρin)J
†
j,g − J

†
j,gJ
′
j,g(e

vLgρin)
))

+

∫ t
0

duTr
(
(J†j,g)

′J ′j,g e
uLgρin

)
, (B.15)

where ρin = |χ〉〈χ| in the second line we usedUg(u, v) J ′j,gdA†j,v =
Ug(u, v+dv)dUg,v J

′
j,gdA†j,v = Ug(u, v+dv)(J ′j,gdA†j,v− J

†
j,gJ
′
j,gdv),
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from Eq. (2.46) and the quantum Ito rule (see e.g. [30, 39]).

Variance of the generator as integral of correlations. Note that the
first line of (B.14) expresses ∆2Gg(t) as a double integral of
the correlations between the system-output observable dGt,g,
similarly as in the case of a closed system with Hamiltonian
depending linearly on Ω, HΩ = H0 +ΩH1, cf. Eq. (2.42),

〈ψΩ(t)|GΩ(t)2|ψΩ(t)〉 =
∫ t
0

du
∫ t
0

dv 〈ψΩ(u)|H1 e−i(u−v)HΩ H1 |ψΩ(v)〉

= 2Re
∫ t
0

du
∫u
0

dv 〈ψΩ(u)|H1 e−i(u−v)HΩ H1 |ψΩ(v)〉.

Note that the above formula does not simply represent, however,
a measurement of H1 on the system at successive times v and u
and then double integral of such a auto-correlation function, un-
less H1 commutes with the evolution, i.e. HΩ. Both in the closed
case of GΩ(t) [105] and the open case of Gg(t) of (2.48), how-
ever, the correlations decay analogously as the auto-correlations
of a measurement performed on the system, cf. Eq. (B.15). This
decay is due to information being spread over the whole sys-
tem (closed case) or also leaking to the environment (open case
described by noisy stochastic evolution Ug(t, 0)).

Consider the special case of parameter estimation, when the
parameter g is encoded by an integrated continuous measure-
ment, and the fidelity plays a role of a characteristic function
for that continuous measurement. The variance is a double in-
tegral of the correlations in that continuous measurement out-
comes [217], which in turn correspond to the correlations of a
POVM measurement on the system. For system dynamics close
to a first-order DPT, there is a metastable regime where the
correlations in system measurements display a plateau before
eventual exponential decay to 0, which is exactly the reason
for the variance of the integrated continuous measurement to
grow quadratically in time during the metastable regime, see
Sec. 3.3.2.



B.3 stochastic generator of parameter encoding 180

Fidelity vs. characteristic function of the generator. When the
generator is independent from the encoded parameter value,
Gg(t) ≡ G(t), it follows directly from (2.29) that the fidelity
is the characteristic function of the generator, 〈Ψg ′(t)|Ψg(t)〉 =
〈Ψ(t)|ei(g ′−g)G(t)|Ψ(t)〉. This is exactly the case for the phase en-
coded on the output J1,φ = e−iφJ1, or the parameter being the
amplitude of the homodyne current, see Eqs. (B.24) and (B.23),
as we show in the next Sec. B.3.3. Here we show why for other
cases, including the case of coupling constants in closed system
dynamics, Hg = H0 + gH1, Jj = 0, considered in full counting
statistics [180], the fidelity does not simply correspond to the
characteristic function of the distribution of the generator Gg(t)
measured on |Ψg(t)〉 when higher than second derivatives are
considered.

Consider the system-output MPS, |Ψg(t)〉 = Ug(t, 0) |χ〉⊗ |vac〉,
expressed using the stochastic evolution Ug(t, 0), cf. Eqs. (2.45)
and (2.46). First let us consider g being a coupling constant, so
that dGt,g = dGt = H1 dt is parameter independent and we
have (cf. Dyson expansion)

(i)k ∂kgUg(t, 0) =

= k!
∫ t
0

∫ tk
0

...
∫ t2
0
Ug(t, tk)dGtkUg(tk, tk−1)dGtk−1 ...Ug(t2, t1)dGt1U(t1, 0)

= k!
∫ t
0

dtk

∫ tk
0

dtk−1 ...
∫ t2
0

dt1Ug(t, tk)H1Ug(tk, tk−1)H1...Ug(t2, t1)H1U(t1, 0).
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Note that in all evolution operators Ug(tj−1, tj) we have tj−1 >
tj. Now, in analogy to the parameter encoded on the output, let
us consider the n-th derivative of 〈Ψ

g+∆g2
(t)|Ψ

g−∆g2
(t)〉,

∂n∆g〈Ψg+∆g2 (t)|Ψ
g−∆g2

(t)〉
∣∣∣
∆g=0

=
1

2n

n∑
k=0

(−1)k 〈χ|⊗ 〈vac|∂n−kg U†g(t, 0)∂
k
gUg(t, 0) |χ〉 ⊗ |vac〉

=
in

2n

n∑
k=0

k!(n− k)!∫ t
0

dtk+1

∫ tk+1
0

dtk+2 ...
∫ tn−1
0

dtn
∫ t
0

dtk

∫ tk
0

dtk−1 ...
∫ t2
0

dt1

〈χ|⊗ 〈vac|U†g(tn, 0)H1U†g(tn−1, tn)H1...U
†
g(tk+1, tk+2)H1U

†
g(t, tk+1)

×Ug(t, tk)H1Ug(tk, tk−1)H1...Ug(t2, t1)H1U(t1, 0) |χ〉 ⊗ |vac〉.

As for t > t ′ we have U†g(t, t ′)Ug(t, t ′) = 1, we can formally
consider U†g(t, t ′) = Ug(t

′, t) in analogy to closed case. As in
general H1 does not commute with U(tj+1, tj), we can classify all
the terms above considering possible patterns of signs in time
differences (tn − tn−1, ..., t2 − t1) appearing in U(tk, tk − 1) be-
tween H1 for n > 1 (first and the last operator have fixed signs,
+ and − respectively). The patterns are of the following form:
(i) for 0 < k < n we have (−...−︸ ︷︷ ︸

n−k−1

± +...+︸ ︷︷ ︸
k−1

), where the middle

sign of tk+1 − tk can vary as it corresponds to composition of
two stochastic unitaries, U†g(t, tk+1)Ug(t, tk) = U(tk+1, tk); (ii)
(−...−︸ ︷︷ ︸
n−1

) for k = 0 and (+...+︸ ︷︷ ︸
n−1

) for k = n. Note that we have

time-ordering in the patterns so that all (+) appear before (−).
On the other hand considering n− th moment of Gg(t) we

obtain

〈Ψg(t)|Gg(t)k |Ψg(t)〉 =

=

∫ t
0

∫ t
0

...
∫ t
0
〈χ|⊗ 〈vac|U†g(tn, 0)dGt1,gU

†
g(t, tn)

×Ug(t, tn−1)dGtn−1,gU
†
g(t, tn−1)...Ug(t, t1)dGt1,gU(t1, 0) |χ〉 ⊗ |vac〉.
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Note that as the limits in integrals are independent, we ob-
taine all possible patterns of the signs of time differences in
U
†
g(t, tk+1)Ug(t, tk) = U(tk+1, tk), e.g. for n = 3 corresponding

to the 3-rd moment, there exists a pattern (+−), which cannot
appear in time-ordered derivatives of the fidelity (see above).
This is the reason why also for methods in closed system dy-
namics [179] and for full counting statistics [180], where deriva-
tives of the fidelity are effectively accessed, in general only the
first and the second cumulant of an integrated system observ-
able can be recovered, with higher derivatives corresponding to
time-ordered moment-like expressions.

Note that for a general parameter g, dGt,g is parameter de-
pendent. Hence, when the n-th derivative of 〈Ψg1(t)|Ψg2(t)〉 is
considered for n > 1, there are additional contributions featur-
ing ∂kgdGt,g, which lead to even further difference from the n-th
moment of Gg(t).

In contrast, for g encoded in the system-output MPS simply
as a phase of output observable we have that the encoding com-
mutes with dynamics, i.e. encoding can be done as a modifica-
tion of the Hamiltonian and jumps operators which leads to
a modified MPS |Ψg(t)〉, or as a phase encoded on the already
existing MPS, |Ψg(t)〉 = e−igG(t)|Ψ(t)〉. This leads to the fidelity
directly corresponding to a characteristic function.

Therefore, we explained why the fidelity is not simply related
to a characteristic function of Gg(t) for a general parameter g in

dynamics. We have instead 〈Ψg1(t)|Ψg2(t)〉 = 〈Ψg(t)|Te
−i
∫g2
g1
dg ′Gg ′(t) |Ψg(t)〉.

b.3.2 Asymptotic average and variance

Here we derive the asymptotic expressions for the variance of
Gg(t) given in Eq. (2.34) corresponding to Eq. (2.28) at a first-
order DPT when the gap closes, λ2 → 0 leading to two-fold
degeneracy of the 0-eigenvalue of Lg. For higher-order degen-
eracy see Appendix D.3.

For two-fold degeneracy of the 0-eigenvalue of Lg, there are
two stationary states ρ̃1, ρ̃2 supported on orthogonal subspaces
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H1, H2. The projection on the stationary manifold is given by
P0(·) =

∑
k=1,2 ρ̃k Tr(P̃k(·)) where the positive left eigenmatrices

corresponding to 0-eigenspace of Lg fulfil P̃k > 1Hk , k = 1, 2,
(see e.g. [158]), so that Tr(P̃kρ̃l) = δk,l for 1 6 k, l 6 2. We further
have P̃k = 1Hk , k = 1, 2, when the system space H = H1 ⊕H2,
in which case the subspaces H1 and H2 are invariant under
action of Hg and Lj,g, j = 1, ...,k, and there exist a stationary
state of full rank, pρ̃1 + (1− p)ρ̃2 with 0 < p < 1.

As the master operator Lg generates trace-preserving dynam-
ics, we have P̃1 + P̃2 = 1H. Moreover, multiplying this equal-
ity by positive 1H2 from both sides, we conclude [P̃1]1H2

=

1H2P̃11H2 = 0 due to P̃2 > 1H2 and analogously [P̃2]1H1
= 0.

Therefore, for an initial state |χ1,2〉 in the subspace H1,2, we
have that the asymptotic state is within the same subspace,
limt→∞ ρ(t) = ρ̃1,2. Now we show that initial coherence be-
tween H1 and H2 does not contribute asymptotically to the
leading linear term in the average ofGg(t), cf. (2.33). For |Ψ(1,2)

g (t)〉
being the MPS corresponding to the initial system state |χ1,2〉 we
have

lim
t→∞ t−1 〈Ψ(1)

g (t)|Gg(t)|Ψ
(2)
g (t)〉 = i lim

t→∞ t−1∂g ′〈Ψ(1)
g (t)|Ψ

(2)
g ′ (t)〉g ′=g =

= i lim
t→∞ t−1∂g ′Tr

(
etLg ′,g |χ2〉〈χ1|

)
g ′=g

= i∂g ′ Tr
(
Lg ′,gP0 |χ2〉〈χ1|

)
g ′=g = 0, (B.16)

where we used P0 |χ2〉〈χ1| = 0 which we argue as follows. As
positivity of P̃1 implies positivity of

[
P̃1

]
1H1⊕H2

, also the Schur

complement w.r.t. H1-block must be positive,

[
P̃1

]
1H2

−(1H2P̃11H1)
[
P̃1

]−1
1H1

(1H1P̃11H2) = −
[
P̃11H1P̃1

]
1H2

> 0.

But we also have
[
P̃11H1P̃1

]
1H2

> 0 and hence P̃1 is block-

diagonal w.r.t. H1 and H2, and 1H2P̃1 = P̃11H2 = 0. Analogously,
1H1P̃2 = P̃21H1 = 0.
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For the second moment of Gg(t) (cf. Eq. (2.28)) we similarly
have no asymptotic contribution from the initial coherence be-
tween H1 and H2,

lim
t→∞ t−2 〈Ψ(1)

g (t)|G2g(t)|Ψ
(2)
g (t)〉 = lim

t→∞ t−2∂g1∂g2〈Ψ(1)
g1 (t)|Ψ

(2)
g2 (t)〉g1=g2=g

= ∂g1∂g2 Re Tr (Lg1,gP0Lg,g2P0 |χ2〉〈χ1|)g1=g2=g = 0. (B.17)

The general behaviour of the variance with leading quadratic
term given by rates corresponding to ρ̃1 and ρ̃2, cf. Eq. (2.34),
can be argued as follows. Note that from Eq. (2.28) and P0(·) =∑
k=1,2 ρ̃k Tr(P̃k(·)) we can write

∆2Gg(t) = t2
[
− (p1µ1 + p2µ2)

2 +

−i
(
p1µ1 Tr(P̃1LRgρ̃1) + p2µ2 Tr(P̃2LRgρ̃2)

)
+

−i
(
p1µ2Tr(P̃2LRgρ̃1) + p2µ1Tr(P̃1LRgρ̃2)

) ]
+O(t), (B.18)

where p1,2 = Tr(P̃1,2ρin) are the asymptotic probabilities be-
tween two stationary states ρ̃1 and ρ̃2, µ1,2 := iTr(LLg ρ̃1,2) are the
rates for ρ̃1,2, and LRg := ∂g ′Lg,g ′ |g ′=g =

(
∂g ′Lg ′,g

)†
g ′=g =: (LLg)

†

are the first-order deformations of the master operator Lg. Note
that in general LRg connects the subspaces H1 and H2, where the
stationary states ρ̃1 and ρ̃2 are supported, especially when Lg ′

features a unique stationary state at g ′ 6= g. Yet, on average the
connection is 0, i.e. Tr(P̃1LRgρ̃2) = 0 = Tr(P̃2LRgρ̃1). This is due
to the fact that for the MPS |Ψ

(1)
g (t)〉 and the system state ρ(1)g (t)

corresponding to the initial state |χ1〉 inside H1 we have∣∣∣Tr(P̃2LRgρ̃1)
∣∣∣ = lim

t→∞ t−1
∣∣∣∂g ′〈Ψ(1)

g ′ (t)|P̃2 ⊗ 1output|Ψ
(1)
g (t)〉g ′=g

∣∣∣
6 lim
t→∞

√
t−2 〈Ψ(1)

g (t)|Gg(t)2|Ψ
(1)
g (t)〉

√
Tr(P̃22 ρ

(1)
g (t))

6
√
∂g1∂g2 Re Tr (Lg1,gP0Lg,g2 ρ̃1)g1=g2=g

√
Tr(P̃2 ρ̃1) = 0,

where the first inequality is the Schwarz inequality and the sec-
ond inequality simply follows from P̃22 6 P̃2 due to 0 6 P̃2 6 1H.
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Moreover, since P̃1 + P̃2 = 1H, we also have Tr(P̃1LRgρ̃1) =

Tr(LRgρ̃1) = iµ1 and Tr(P̃2LRgρ̃2) = iµ2. Thus, we arrive at

∆2Gg(t) = t2 p1p2 (µ1 − µ2)
2 + O(t), (B.19)

as in Eq. (2.34). The above argument can be generalised to the
case of Lg with a unique stationary state, but with small gap,
i.e. 0 > λ2 � Re(λ3), see derivation in D.1.

Note that the result in Eq. (B.19) can be also obtained when
the eigendecomposition of Lg,g ′ is considered explicitly, see (B.3).
Due to a diagonal first-order perturbation, P0∂g ′ |g ′=gLg,g ′P0 in
Lg,g ′ , for the first moment of Gg(t), we have

lim
t→∞ t−1 〈Ψ(1)

g (t)|Gg(t)|Ψ
(2)
g (t)〉 = i lim

t→∞ t−1∂g ′Tr
(
etLg ′,g |χ2〉〈χ1|

)
g ′=g

=

= i
(
p1 ∂g ′λ1(g

′,g) + p2 ∂g ′λ2(g ′,g)
)
g ′=g ,

and thus we conclude µ1,2 = i∂g ′λ1,2(g
′,g)|g ′=g. Finally, the

quadratic terms of the variance are simply given by the dif-
ference of the first derivatives of the leading Lg1,g2 eigenvalues,
t2 p1 p2

∣∣∂g ′λ1(g ′,g)−∂g ′λ2(g ′,g)∣∣2g ′=g (cf. Eq. (B.13))), which gives
the result in (B.19). This approach cannot be used, however, to
argue the quadratic regime in the variance, when λ2 < 0, see
Sec. B.2.3.

ForGg(t) corresponding to a continuous measurements, such
as photon counting or homodyne current, it can be analogously
argued for higher cumulants that the leading terms do not de-
pend on initial coherences between H1 and H2, but only on the
probabilities in the asymptotic state, p1ρ̃1 + p2ρ̃2 and the corre-
sponding rates, µ1 and µ2.

Sub-leading terms in asymptotic statistics. Let us now focus on
sub-leading linear and constant terms in the asymptotic be-
haviour of the variance ∆G2g(t) which depend not only at the
asymptotic state, but also initial state, see Eqs. (B.11) and (B.12).
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Let us first consider constant terms in the average 〈Gg(t)〉, for
an initial state ρin. We have

lim
t→∞

(
〈Gg(t)〉− t(p1µ1 + p2µ2)

)
=

= i lim
t→∞

(
Tr
(∫ t

0
dt ′ ∂g ′Lg ′,g et

′Lgρin

)
− Tr

(∫ t
0

dt ′ ∂g ′Lg ′,g P0ρin

))
g ′=g

=

= −iTr
(
∂g ′Lg ′,g

[
L−1
g

]
I−P0

ρin

)
g ′=g

. (B.20)

Therefore, all the other decaying modes give a constant con-
tributions, as after their decay there do not contribute to the
dynamics. In particular, the initial coherence between the sub-
spaces H1 and H2 asymptotically contributes only to the con-
stant in the average 〈Gg(t)〉. When there is no decay subspace
H0, we can separate the contribution from all coherences be-
tween H1 and H2, as the structure of Lg = L

(1)
g ⊕L

(2)
g ⊕L

(12)
g ⊕

L
(21)
g separates into blocks (as we have H = H(1) ⊕H(2), Jj =
J
(1)
j ⊕ J

(2)
j ) and the coherences undergo generalised dephas-

ing [199].
For discussion of sub-leading terms in the variance ∆2Gg(t),

let us assume that Lg dynamics features no decay subspace
H0. First, consider an initial system state ρin initially supported
within only one of the subspaces H1 or H2, so that it evolves
into one of the stationary states, ρ1, ρ2, respectively. Note that
dynamics is reduced to L

(1)
g , L(2)

g , respectively. Therefore, the
variance scales linearly, as in the case of dynamics with a sin-
gle stationary state, see Eq. (2.27), but with I − Pss replaced
by IH1,2 − Pss

(1,2), and the constant terms given as in (B.6), cf.
Eqs. (B.11) and (B.12). Secondly, for an initial state being a mix-
ture of states supported in H1 and H2, ρin = p1ρin

(1) + p2ρin
(2),

so that it evolves into a mixture of the stationary states, p1ρ̃1 +
p2ρ̃2, we have that the distribution of Gg(t) is just a mixture of
the distributions for ρin

(1) and ρin
(2). We have

∆2Gg(t) = p1∆
2
ρin

(1)Gg(t) + p2∆
2
ρin

(2)Gg(t) +

+p1p2

(
〈Gg(t)〉ρin

(1) − 〈Gg(t)〉ρin
(2)

)2
.
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The variances for ρin
(1) and ρin

(2) with probabilities p1, p2 gives
linear (see the first two lines of (B.11)) and constant contri-
bution and the difference in averages asymptotically leads to
quadratic terms as in Eq. (2.34) and additional linear (last two
lines of (B.11)) and constant terms (see the first line of (B.12))
when the asymptotic constants in the Gg(t) average are differ-
ent, cf. Eq. (B.20). When there are initial coherences in ρin be-
tween H1 and H2, ρ

(coh)
in = ρ

(12)
in + ρ

(21)
in with Tr(ρ(coh)in ) = 0, as a

consequence of interference we have an additional contribution
to the linear terms of the variance given by

2 p2(µ2 − µ1)Re Tr
(
iLg,g ′

[
L−1
g

]
I−P0

ρ
(12)
in

)
g ′=g

+ 2 p1(µ1 − µ2)Re Tr
(
iLg,g ′

[
L−1
g

]
I−P0

ρ
(21)
in

)
g ′=g

This additional linear contribution disappears when

(∂g ′ |g ′=gLg,g ′1H1)1H2 = 0 = (∂g ′ |g ′=gLg,g ′1H2)1H1 ,

see e.g. in the case of photon counting, see Sec. 2.2.4. The con-
stant contributions due to coherences in order to disappear re-
quire also that ∂g1∂g2 |g1=g2=gLg1,g2 is block-diagonal, cf. (B.12).

Higher-fold degeneracy of stationary manifold. We have shown
that quadratic scaling of ∆2Gg(t) for dynamics featuring two
stationary states, Eq. (2.34), is a consequence of bimodal statis-
tics of the observable Gg(t). In the case of a higher than two-
fold degeneracy of the 0-eigenvalue of Lg, the stationary state
might have preserved coherences, see Sec. 3.1.3, but the vari-
ance scaling is at most quadratic with time, cf. Eq. (2.28). When
there are no coherences preserved, and the stationary mani-
fold is classical composed of m stationary states, ρ̃1,..., ρ̃m, sup-
ported on orthogonal subspaces, H1 ⊕H2 ⊕ ...⊕Hm ⊂ H, the
Gg(t) statistics can be understood as featuring m modes with
the leading orders in the average and variance determined by
the asymptotic probabilities, limt→∞ ρ(t) = ∑m

l=1 pl ρ̃l and dif-
ferent rates of m stationary states (due to a first order DPT).
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In general, however, the leading quadratic term may crucially
depend on initial system coherences that do not decay and
quadratically scaling precision may be achieved even when there
is no first-order DPT and measurements are performed on the
system only, cf. Sec. 2.4.3, which is due to change of g inducing
a unitary dynamics of coherences. See Appendix D.3 for further
discussion.

b.3.3 Reverse engineering of dynamics for a given stochastic gener-
ator

Here we present how the parameter dependence of the Hamil-
tonian and jump operators in the master equation, see Eq. (2.1),
can be found for a given stochastic generator. We consider an
example of a parameter g encoded either as the amplitude or
the phase in homodyne current.

Let us first consider the stochastic equation for the homodyne
current on quanta emitted due to a jump J1 (see e.g. [30, 39]),

Zt = e−iφA1,t + e
iφA

†
1,t, (B.21)

dZ(out)
t,g = e−iφdA1,t + eiφdA†1,t +

(
e−iφJ1,g,t + e

iφJ
†
1,g,t

)
dt ,(B.22)

where Z(out)
t,g = Ug(t, 0)†ZtUg(t, 0) and J1,g,t = Ug(t, 0)†J1,gUg(t, 0)

is the Heisenberg picture. As in the Heisenberg picture we have
thatUg(t, 0)†Gg(t)Ug(t, 0) =

∫t
0Ug(u, 0)†dGu,gUg(u, 0), by com-

paring to the increment in Eq. (2.47), Ug(t, 0)dZ
(out)
t,g Ug(t, 0)† =

dGt,g, we obtain

eiφ = iJ ′1,g,

e−iφJ1,g + e
iφJ
†
1,g = H ′g +

i

2

(
J
†
1,gJ

′
1,g − (J†1,g)

′J1,g
)

= H ′g +
1

2

(
eiφJ

†
1,g + e

−iφJ1,g

)
,
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which further leads to

Hg = H0 +
g

2

(
eiφJ

†
1 + e

−iφJ1

)
, (B.23)

J1,g = J1 − ige
iφ (B.24)

Lg,g ′ ρ = L0 ρ− i(g− g
′)(eiφρJ†1 + e

−iφJ1ρ) −
(g− g ′)2

2
ρ, (B.25)

Mg = eiφJ
†
1 + e

−iφJ1, (B.26)

and we see that the chosen parameter encoding corresponds
to g encoded as the amplitude of the homodyne current. On the
other hand, for the choice of the parameter encoded as the angle
of the homodyne current, g = φ, the generator depends on the
parameter value, and we arrive at

Hφ = H0 −φ+
i

2

(
eiφJ

†
1 − e

−iφJ1

)
, (B.27)

J1,φ = J1 − ie
iφ (B.28)

Lφ,φ ′ ρ = L0 ρ− (eiφ − eiφ
′
)ρJ†1 + (e−iφ − e−iφ

′
)J1ρ+

−(1− cos(φ−φ ′))ρ, (B.29)

Mφ = eiφJ
†
1 + e

−iφJ1. (B.30)

Note that the first two derivatives of Lφ,φ ′ in both cases of the
amplitude g and the angle φ are exactly the same, leading to
the same QFI for estimation of those parameters. The higher
order derivatives, however, disappear for the amplitude, but
are non-zero for the angle.

Similarly, consider counting measurement associated with quanta
emitted as a result of jump J1. We have dΛ(out)

t,φ = dΛt+ J
†
1,φ,tdA1,t+

J1,φ,tdA
†
1,t+ J

†
1,φ,tJ1,φ,tdt. Note that we can shiftΛt,φ byΛt which

≡ 0 on the considered MPS states, as they feature the output ini-
tially in vacuum. After a short calculation, we arrive at J1,φ =

e−iφJ1 and the rest of jumps and the Hamiltonian independent
from φ, exactly as discussed in Sec. 2.2.4.

Let us note that in all three cases Lg = L0, which is a conse-
quence of the fact that the parameter g is encoded on the output.
The transformation in Eqs. (B.24, B.23) and (B.28, B.27) are ex-
amples of a non-unique representation of L, see also Chapter 7.
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in [158].

Purifications and QFI. Different representations of Lg corre-
spond, via the MPSs |Ψg(t)〉, to different purifications of the sys-
tem state ρg(t). In [15, 68] it was demonstrated how the quan-
tum Fisher information of the system state ρg(t) can be ob-
tained as a minimum QFI over all possible purifications of ρg(t).
Note that in the case when the generator is encoded on the
output, one can choose the Hamiltonian and jump operators at
g = 0, which leads to no dependence on the parameter g and
thus QFI being exactly 0, reflecting the fact that the system state
ρg(t) = ρ(t) is independent from the value of g.



C
A P P E N D I X T O C H A P T E R 3

c.1 metastability in bimodal case

Below we prove that in the bimodal case m = 2, the extreme
metastable states are approximately disjoint. We show that by
constructing a division of the system Hilbert space, H = H1 ⊕
H2, so that each of the two eMS is approximately supported
within the respective subspace, Tr

(
1H1,2 ρ̃1,2

)
> 1−O(C), where

C are the corrections to the stationarity in the metastable regime,
cf. Eq. (3.8).

Proof. The stationary state ρss is a mixture of the two eMS,
ρss = p

ss
1 ρ̃1 + p

ss
2 ρ̃2, with pss1 = −cmin

2 /∆c2 and pss2 = cmax
2 /∆c2.

We define the orthogonal subspaces

H1 = span
{
|ψk〉,k = 1, ..,D : 〈ψk|P̃1|ψk〉 > pss1

}
, (C.1)

H2 = span
{
|ψk〉,k = 1, ..,D : 〈ψk|P̃2|ψk〉 > pss2

}
, (C.2)

where {|ψk〉}Dk=1 is the orthonormal eigenbasis of L2 and also of
P̃1 and P̃2 = 1− P̃1, cf. (3.12).

Let |ψ1〉 and |ψ2〉 denote the eigenvectors of L2 corresponding
to the extreme eigenvalues cmax

2 and cmin
2 and let ρ1(t), ρ2(t) be

the system state initially in |ψ1〉, |ψ2〉, respectively. From the
orthogonality of the L eigenmodes (also in the case of Jordan
blocks in I−P), it follows that

Tr
(
P̃1ρ2(t)

)
= pss1 (1− etλ2), (C.3)

Tr
(
P̃2ρ1(t)

)
= pss2 (1− etλ2). (C.4)

191
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From positivity of the state ρ1(t) and the fact that 1H1 is diago-
nal in the eigenbasis of P̃1, we also have

Tr
(
P̃1ρ2(t)

)
> Tr

(
1H1P̃1ρ2(t)

)
> pss1 Tr

(
1H1ρ2(t)

)
(C.5)

where we used the definition of H1. Together with Eq. (C.3) it
follows that

Tr
(
1H1 ρ̃2

)
6 Tr

(
1H1ρ2(t)

)
+O(C) 6 (1− etλ2)+O(C) = O(C),

(C.6)

where C are the corrections to the stationarity in the metastable
regime, cf. Eq. (3). Analogously, Tr

(
1H2 ρ̃1

)
< O(C), which ends

the proof. Let us note that this argument is analogous to the
case of m = 2 in classical systems [48].

c.2 metastability of perturbed dynamics with de-
generate stationary manifold

c.2.1 Complete positivity of dynamics projected on SSM

Here we prove that [L̃(2)]P0 and L̃(1), Eq. (3.28), generate CPTP

dynamics on the SSM given by P0.
We will use Theorem 3.17 from [218] on convergence of one-

parameter semigroups, whose statement we recall here for the
special case of finite dimensional spaces. Let Z(x), Z be genera-
tors of one-parameter semigroups Tt(x) := etZ(x), Tt := etZ on
a Banach space B, and assume that for each Y in a spanning
set of B there exist Y(x) ∈ B such that limx→0 Y(x) = Y and
limx→0 Z(x)(Y(x)) = Z(Y). Then for all T the limit limx→0 supt6T‖Tt(x)(Y)−
Tt(Y)‖ = 0, where ‖·‖ is the norm in B.

Proof for [L̃(2)]P0 . To prove the CPTP property consider |ψ〉 =
1√
D

∑D
i=1 |ei〉 ⊗ |ei〉 ∈ H⊗H, where {|ei〉}Di=1 is an orthonormal

basis of the system space H. We choose Y = (P0 ⊗ I) (|ψ〉〈ψ|) ∈
B(H ⊗H) and Z = [L̃(2)]P0 ⊗ I so that Mt := Tt(Y) is the
Choi matrix for eL̃

(2)
P0. By choosing appropriate CPTP gener-
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ators Z(x) and matrices Yx we will show that Mt is a limit of
Choi matrices of quantum channels. Thus for all t, Mt is pos-
itive and Tr1(Mt) = 1

DIH, where Tr1 denotes the partial trace
over the first subsystem in H⊗H, and consequently L̃(2) gen-
erates CPTP dynamics on the SSM given by P0. To prove this, we
choose Z(x) = x−2(L(x) − x[L(1)]P0)⊗ I, which is a CPTP gen-
erator on H⊗H as [L(1)]P0 is a generator of unitary quantum
dynamics. By defining Y(x) = Y + xY(1) + x2Y(2), where Y(1) =
−
(
SL(1) ⊗ I

)
Y and Y(2) =

(
SL(1)SL(1) ⊗ I

)
Y −

(
SL(2) ⊗ I

)
Y

are the first and second order perturbation of Y when L̃(1) = 0,
cf. (3.27), we arrive at the conditions of the theorem 3.17 in [218]
with the norm ‖·‖ being the trace norm. We note that the gener-
ator property of [L̃(2)]P0 was previously discussed in [206] for
the special case of the Hamiltonian perturbation and L̃(1) = 0

(see Eq. (3.25)).
Proof for L̃(1). Similarly, to prove that L̃(1) = [L(1)]P0 gener-

ates CPTP dynamics on the SSM given by P0, we need to choose
Y = (P0 ⊗ I) (|ψ〉〈ψ|) and Z = L̃(1) ⊗ I. By considering Z(x) =

x−1L(x) ⊗ I and Y(x) = Y − x
(
SL(1) ⊗ I

)
Y we arrive at the

conditions of the theorem 3.17 in [218]. We note that L̃(1) was
proven to be a unitary generator in [57, 58].

c.2.2 Initial relaxation timescale

Here we prove the initial relaxation timescale τ"(x) of the meta-
stable regime follows Eq. (3.33).

Proof. Consider the Dyson-Philips expansion for etL(x), see
also Lemma 7.1 in [158],

etL(x) = etL0 +

∫ t
0

due(t−u)L0 δL(x) euL(x), (C.7)

where δL(x) := L(x) − L0 = sL(1) + x2L(2) is considered as a
perturbation of L0, cf. Eq. (3.25). As both L(x) and L0 are CPTP

generators, and ‖T‖ = 1 for T positive and trace-preserving [219],
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we have ‖etL(x)‖ = ‖etL0‖ = 1. Using the expression (3.27) for
P(x), we obtain

[etL(x)]I−P(x) = (I−P0) e
tL0 (I−P0)

+ x
[
−(I−P0) e

tL0 P(1) − P(1) etL0 (I−P0)
]
+ O(x2)

+ (I−P0)

∫ t
0

due(t−u)L0 δL(x) euL(x)(I−P0) + tO(x
2 ‖L(1)‖). (C.8)

In the second line we used the multiplicativity of the norm,
and ‖P(x) − P0‖= O(x). In the third line we bound the in-
tegral in Eq. (C.7) by t ‖δL(x)‖ 6 t (x‖L(1)‖ + x2‖L(2)‖) and
together with ‖P(x) − P0‖= O(x) we arrive at the correction
tO(x2 ‖L(1)‖).

We now use the following definition of the relaxation time
τ0 of dynamics L0, as the shortest timescale such that for any
initial state ρin, the system state relaxes to the stationary state
as ‖etL0ρin − P0ρin‖ 6 2e−t/τ0 , which implies ‖etL0(I− P)‖ 6

4e−t/τ0 due to multiplicativity of the norm. From Eq. (C.8) we
get

‖[etL(x)]I−P(x)‖ 6 ‖[etL0 ]I−P0‖ + 2 x ‖[etL0 ]I−P0‖ ‖S‖ ‖L(1)‖ + O(x2)

+ 2

∫ t
0

du ‖[e(t−u)L0 ]I−P0‖ ‖δL(x)‖ + tO(x2 ‖L(1)‖)

6 4e−t/τ0(1 + 2 x) + 8x τ0‖L(1)‖ + O(x2) + tO(x2 ‖L(1)‖)
6 4e−t/τ0(1 + 2 x) + O(x) + tO(x2 ‖L(1)‖). (C.9)

Note that the correction tO(x2 ‖L(1)‖) for times t � τ ′(x) is
of the same order as the leading corrections to the invariance
of the MM, cf. Eq. (3.34), and hence does not determine the
timescale τ ′′(x) of the initial relaxation. Therefore, for times
τ0 � t � τ ′(x), the contribution from the fast decaying modes
is a sum of terms of the order O(x) and of the same order as the
corrections to the invariance of the MM. Similar results would
be obtained for τ0 defined so that

∫τ0
0 dt ‖etL0 ρsup − P0ρsup‖ =

supρin
1
2

∫∞
0 dt ‖etL0ρin −P0ρin‖, where ρsup is ρin that gives the

supremum.



C.2 metastability in class a systems 195

Note that iteration of Eq. (C.7) for euL(x) leads to Dyson-
Philips series in x. This series is analytic, due to L(x) being ana-
lytic, cf. Eq. (3.25). As I−P(x) is also analytic in x, Eq. (C.8) cor-
responds to the analytic series in x, which we exploit to show
that the initial relaxation timescale for L(x) can be chosen as
τ ′′(x) = τ0.

c.2.3 Effective long-time dynamics timescale

Here we derive Eq. (3.34) which shows the dissipative correc-
tions to the dynamics inside the MM, [etL(x)]P(x), and thus deter-
mines the longer timescale τ ′(x) of the metastable regime, see
Eq. (3.35).

Derivation. The derivation below is analogous to the results
of the appendix in [58]. For times t � τ ′(x) the unitary con-
tribution to the dynamics, txL̃(1) = tx[L(1)]P0 , cannot be ne-
glected (see also [57]). In order to derive the perturbation series
in x for [etL(x)]P(x), we consider the Dyson-Philips expansion
for [L(x)]P(x) with δL̃(x) := [L(x)]P(x) − xL̃

(1) is treated as a per-
turbation,

[etL(x)]P(x) = P(x) et[L(x)]P(x)P(x)

= P(x)

(
etxL̃

(1)
+

∫ t
0

due(t−u)xL̃
(1)
δL̃(x) eu[L(x)]P(x)

)
P(x), .(C.10)

Using P(x) = P0+xP
(1)+O(x2), see Eq. (3.27), and ex[L(x)]P(x)P(x) =

P(x) euL(x) P(x) we obtain

[etL(x)]P(x) = P0 e
txL̃(1)

P0 + x
(
P(1) etxL̃

(1)
P0 + P0 e

txL̃(1)
P(1)

)
+ O(x2) +

+ P0

∫ t
0

due(t−u)xL̃
(1)
δL̃(x)P(x) euL(x)P0 + tO(x3 ‖L̃(2)‖), (C.11)

where the higher-order corrections are explained below. First,
as both xL̃(1) and L(x) are CPTP generators, we have ‖etxL̃(1)‖ =
‖etL(x)‖ = 1 and ‖P0‖ = 1 [219]. The first line in Eq. (C.11) corre-
sponds to P(x) etxL̃

(1)
P(x) and the higher-order corrections are
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of the order ‖P(x) −P0 − xP
(1)‖ ‖P(x)‖+ x2‖P(1)‖2 = O(x2) due

to the norm ‖·‖ being submultiplicative. Furthermore, the cor-
rections in the second line, which corresponds to the integral
term in (C.10), are of the order∥∥∥∥∫ t

0
due(t−u)xL̃

(1)
δL̃(x) euL(x)

∥∥∥∥ ‖P(x)‖‖P(x) −P0‖ 6

6 ‖P(x)‖‖P(x) −P0‖ × t ‖δL̃(x)‖
= O(x)× t

(
x2‖L̃(2)‖+O(x3‖L̃(3)‖)

)
= tO(x3‖L̃(2)‖),

where L̃(3) is the third order correction in [L(x)]P(x), see (C.15),
and we used δL̃(x) = x2L̃(2)+O(x3‖L̃(3)‖)). Furthermore, it also
follows that

P0

∫ t
0

due(t−u)xL̃
(1)
δL̃(x)P(x) euL(x)P0 =

= x2 P0

∫ t
0

due(t−u)xL̃
(1)

L̃(2) P(x) euL(x)P0 + tO(x
3 ‖L̃(3)‖),

and further

x2 P0

∫ t
0

due(t−u)xL̃
(1)

L̃(2)
(
P(x) euL(x)

)
P0 =

= x2
∫ t
0

due(t−u)xL̃
(1)

P0 L̃
(2) P0 e

uxL̃(1)
P0 + tO(x

3 ‖L̃(2)‖) + t2O(x4 ‖L̃(2)‖2),

where we have used Eq. (C.10), with corrections being the in-
tegral and the unitary evolution outside the SSM given by P0. Fi-
nally, we note that ‖L̃(2)‖ = O(‖L(2)‖ + ‖L(1)‖2‖S‖) = O(‖L(1)‖+
‖L(2)‖), cf. Eq. (3.28), and similarly ‖L̃(3)‖ = O(‖L(1)‖ ‖L(2)‖ ‖S‖+
‖L(1)‖3‖S‖2) = O(‖L(1)‖ + ‖L(2)‖), cf. Eq. (C.15)), which com-
pletes the proof of Eq. (3.34).

c.2.4 Coefficients of the metastable manifold

Consider the generic case of degeneracy of the first m eigenval-
ues of L0 being lifted in the second-order perturbation theory.
In this case the projections on the individual eigenmatrices of
L0 are analytic and in the 0-th order simply given by projec-
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tions on the eigenbases of [L̃(2)]Pl , l = 1, ..,m ′′, where Pl is a
projection on the eigenspace of L̃(1). Therefore we have

Ll,j(x) ∝ Ll,j Pl,j(x)

= Ll,j + x
(
−Ll,jL

(1)S − Ll,jL̃
(2)S̃l − Ll,jL̃

(3)
l S̃l,j

)
+ O(x2), (C.12)

where Ll,j is a left eigenmatrix of [L̃(2)]Pl with eigenvalue λ(2)l,j ,
Pl,j is the corresponding projection, S̃l is the reduced resolvent
for L̃(1) at λ(1)l restricted to P0, S̃l,j is the reduced resolvent for
[L̃(2)]Pl at λ(2)l,j restricted to Pl, and L̃

(3)
l is the third-order cor-

rection in [L(x)]Pl(x) − xλ
(1)
l Pl(x) (see (C.16)), cf. the reduction

process in [167] and Eq. (3.29). Note that since the projection
Pl,j(x) is of rank 1, the eigenmatrix Ll,j can be replaced by any
matrix L such that LPl,j(x) 6= 0.

Let us assume Ll,j is Hermitian (see Eq.(3.8) and paragraph
afterwords on how to choose Hermitian basis from the eigen-
matrices), so that the coefficient cl,j = Tr(Ll,jρin) is real.

Consider rescaling the coefficient cl,j(x) = Tr(Ll,j(x)ρin) by
the spectral norm of the left eigenmatrix Ll,j(x), which is de-
fined as ‖Ll,j(x)‖∞ := max|ψ〉∈H,〈ψ|ψ〉=1 |〈ψ|Ll,j(x)|ψ〉|. The spec-
tral norm corresponds to the maximal absolute value of the
Ll,j(x) eigenvalues and we also have ‖Ll,j(x)‖∞ = maxρin |cl,j(x)|.
From the Hermitian perturbation theory for Ll,j(x), the eigen-
values of Ll,j(x) are analytic for x small enough [167], but ‖Ll,j(x)‖∞
does not have to be differentiable at x = 0, which happens only
when the extreme eigenvalues of Ll,j obey |cmax

l,j | = |cmin
l,j |. Nev-

ertheless, for a given sign of x, ‖Ll,j(x)‖∞ is analytic for x small
enough. Therefore, we arrive at

cl,j(x) =
Tr(Ll,j(x)ρin)

‖Ll,j(x)‖∞ = cl,j(1− x c
ex,(1)
l,j ) +

− xTr
[(
Ll,jL̃

(3)
l S̃l,j − Ll,jL̃

(2)S̃l − Ll,jL
(1)S
)
ρin

]
+ O(x2), (C.13)

where we assumed ‖Ll,j‖∞ = 1 and cex,(1)
l,j related to the first-

order correction in cmin
l,j (x) or cmax

l,j (x), with its sign depending
on the sign of x. Therefore, for x small enough the set of coef-
ficients representing the MM is simply an affine transformation
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of the degrees of freedom of the SSM of L0 as given in Eq. (3.37)
of the main text.

Consider an alternative case in which the coefficient cl,j(s) is
rescaled by the difference of the extreme eigenvalues of Ll,j(x),
∆cl,j(x) := cmax

l,j (x) − cmin
l,j (x). This is convenient as the range

of all coefficients determining the MM is of the same length 1,
which is also the case for probabilities in a simplex or a Bloch
ball, see Fig. 3.2 (b,d). in the main text. Again, from the Her-
mitian perturbation theory for Ll,j(x) it follows that ∆cl,j(x) is
analytic in x for x small enough and

cl,j(x) =
Tr(Ll,j(x)ρin)

∆cl,j(x)
= cl,j(1− x (∆c

(1)
l,j )

−1) +

− xTr
[(
Ll,jL̃

(3)
l S̃l,j − Ll,jL̃

(2)S̃l − Ll,jL
(1)S
)
ρin

]
+ O(x2), (C.14)

where we assumed ∆cl,j(0) = 1 and ∆c(1)l,j is the difference be-
tween first-order corrections in cmax

l,j (x) and cmin
l,j (x).

c.2.5 Effective long-time dynamics

Below we obtain Eq. (3.39) which demonstrates how the effec-
tive long times dynamics is approximately CPTP and given by
the generator L̃(x) = L̃(1) + [L̃(2)]P0 , cf. Appendix C.2.1.

Derivation. From Eq. (3.28) we write Leff(x) = [L(x)]P(x) =:

L̃(x) + ∆L(x), with ∆L(x) regarded as a perturbation whose
size is in general ‖∆L(x)‖ = O(x2 ‖L̃(1)‖), while in the case
when L̃(1) = 0 we have ‖∆L(x)‖ = O(x3 (‖L(1)‖+ ‖L(2)‖)), see
the third-order correction for [L(x)]P(x) in Eq. (C.15) below. The
Dyson-Philips expansion for Leff(x) with ∆L(x) as the pertur-
bation is

[etL(x)]P(x) = P(x) etL̃(x)P(x)+P(x)

∫ t
0

due(t−u)L̃(x)∆L(x)P(x) euL(x)P(x),
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where we used euLeff(x)P(x) = P(x) euL(x)P(x). We further have

[etL(x)]P(x) = P0 e
tL̃(x)P0 + x

(
−SL̃(1)etL̃(x)P0 − e

tL̃(x)P0L̃
(1)S
)
+ O(x2) +

+P0

∫ t
0

due(t−u)L̃(x) P0∆L(x)P0 euL(x)P0 +

+ tO(x3 ‖L̃(1)‖ + x4 (‖L(1)‖+ ‖L(2)‖)),

Note that ‖etL̃(x)‖ = ‖etL̃(x)P + (I − P)‖ 6 3 since L̃(x) is a
CPTP generator on P0. Due to submultiplicativity of the norm,
the second order corrections to P(x) etL̃(x)P(x) in the first line
are O(x2(‖L(1)‖ ‖S‖)2) = O(x2). In the second and the third line
corresponding to the integral, the corrections are bounded by
tO(x ‖L(1)‖ ‖S‖ ‖∆L(x)‖) = tO(x3 ‖L̃(1)‖ + x4 (‖L(1)‖+‖L(2)‖)).
Although, ‖∆L(x)‖ = O(x2 ‖L̃(1)‖+ x3 (‖L(1)‖+ ‖L(2)‖)), from
Eq. (3.28) we obtain ‖[∆L(x)]P0‖ = O(x3 (‖L(1)‖ + ‖L(2)‖)) =

O(x3τ−10 ) which implies that the leading correction in the sec-
ond line of the equation above is O(x3τ−10 ). Note that this re-
duction to the higher order is a consequence of the fact that
L̃(1) + xL̃(2) and L̃(1) + x[L̃(2)]P0 differ in the norm of the order
O(x‖L̃(1)‖) due to the first-order corrections in the L̃(1) eigen-
projections, cf. Eq. (3.29), but not in the eigenvalues that differ
in o(x2(‖L(1)‖+ ‖L(2)‖)), cf. Eq. (3.26).

c.2.6 Higher-order corrections

We have that [L(x)]P(x) = xL̃(1)+x2L̃(2)+x3L̃(3)+O(x4(‖L(1)‖+
‖L(2)‖)), where L̃(1) and L̃(2) are given in Eq. (3.28) and the
third-order correction is [167]

L̃(3) = −P0L
(1)P0L

(2)S − P0L
(2)P0L

(1)S − P0L
(1)SL(2)P0 +

−P0L
(2)SL(1)P0 − SL(1)P0L

(2)P0 − SL(2)P0L
(1)P0 +

+P0L
(1)P0L

(1)SL(1)S + P0L
(1)SL(1)P0L

(1)S + P0L
(1)SL(1)SL(1)P0 +

+ SL(1)P0L
(1)P0L

(1)S + SL(1)P0L
(1)SL(1)P0 + SL(1)SL(1)P0L

(1)P0 +

−P0L
(1)P0L

(1)P0L
(1)S2 − P0L

(1)P0L
(1)S2L(1)P0 +

−P0L
(1)S2L(1)P0L

(1)P0 − S2L(1)P0L
(1)P0L

(1)P0. (C.15)
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Due to reduction process for [L(x)]P(x) we further obtain that
[L(x)]Pl(x) = xλ

(1)
l Pl(x)+x

2[L̃(2)]Pl+x
3L̃

(3)
l +O(x4), where Pl(x)

is a projection on the λ(1)l -group with λ(1)l being an eigenvalue
of L̃(1), see Eq. (3.29) and

L̃
(3)
l = [L̃(3)]Pl + λ

(1)
l PlL

(1)S2L(1)Pl +

−PlL̃
(2)PlL

(1)S − SL(1)PlL̃
(2)Pl +

−PlL̃
(2)S̃lL̃

(2)Pl − PlL̃
(2)PlL̃

(2)S̃l − S̃lL̃
(2)PlL̃

(2)Pl, (C.16)

for l = 1, ...,m ′′.



D
A P P E N D I X

In this appendix we merge results of Chapters 2 and 3, in order
to provide proofs that precision of quantum parameter estima-
tion can be enhanced when the system dynamics is metastable.
In particular, we consider two metastable phases which differ
in activity, so that the system is close to a first-order DPT, see
Sec. D.1. Furthermore, we also consider quantum parameter es-
timation using quantum systems with dynamics close to higher
than two-fold degeneracy of the stationary state, see Sec. 3.4.1,
and show how the unitary dynamics during the metastable
regime is related to the quadratic enhancement in the param-
eter estimation precision, see Sec. D.3.

d.1 metastability as a resource in enhanced param-
eter estimation

Consider a master equation Lg, see Eq. (3.2), in which the Hamil-
tonian Hg and jump operators Jj,g depend on a parameter g.
Furthermore, let us assume that the stationary state dynam-
ics is unique, but the gap of Lg is small, i.e., there is a sep-
aration between the second and the third eigenvalues of Lg,
0 < −λ2 � −Re λ3. This leads to metastability in the system dy-
namics with metastable states being mixtures of two metastable
phases ρ̃1, ρ̃2 in the metastable regime (−Re λ3)−1 = τ ′′ � t �
τ = (−λ2)

−1, see Sec. 3.3.
We are interested in estimating a value of the parameter g

using the joint system-output MPS at time t, |Ψg(t)〉, precision
of which is quantified by the QFI, cf. Eq. (2.12), see Chapter 2.

201
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Here we provide a proof that during the metastable regime,
the QFI can grow quadratically with time with a multiplicative
constant determined by the two metastable phases, as in (2.35)
and (2.15). Furthermore, we show that the asymptotic linear
behaviour of the QFI, a consequence of the stationary state being
unique, is also determined by the metastable phases and the
final relaxation time, as given in (2.36) and in (2.19).

Quadratic scaling of QFI. First, let us recall that the QFI is pro-
portional to the variance of the generator Gg(t) that encoded
the parameter g in the joint system-output MPS |ψg(t)〉, cf. Eqs. (2.29)
and (2.30-2.10). Before considering the variance, let us show
how the average of the generatorGg(t) in the metastable regime
can be approximated by the rate of the corresponding to two
metastable phases ρ̃1, ρ̃2, see Eq. (3.11). We have, cf. (2.25),

t−1 〈Ψg(t)|Gg(t)|Ψg(t)〉 = i t−1∂g ′〈Ψ(1)
g (t)|Ψ

(2)
g ′ (t)〉g ′=g =

= i t−1 Tr
(
∂g ′e

tLg ′,g ρin

)
g ′=g

= iTr
(
∂g ′Lg ′,gP ρin

)
g ′=g +

+ i
etλ2 − 1

t
Tr
(
∂g ′Lg ′,gR2

)
g ′=g Tr (L2ρin) +

+ iTr

(
∂g ′Lg ′,g

[
etLg − I

tLg

]
I−P

ρin

)
g ′=g

= p1µ1 + p2µ2 +

+O
(
λ2
∥∥∂g ′Lg ′,g‖g ′=g∥∥)+O

(∥∥∂g ′Lg ′,g‖g ′=g∥∥
∥∥∥∥∥
[
etLg − I

tLg

]
I−P

∥∥∥∥∥
)

, (D.1)

where P is the projection on the two metastable phases, P (·) =∑
k=1,2 ρ̃k Tr(P̃k(·)), so that P ρin = p1ρ̃1+p2ρ̃2, see Eq. (3.12), µ1,

µ2 are the rates of the metastable phases, ρin = |χ〉〈χ| is a pure
initial state of the system, and R2, L2 are the right, left eigenma-
trices of Lg corresponding to λ2 eigenvalue. The first correction
in (D.1) is due to corrections to the stationarity during the meta-
stable regime, and the second correction is the contribution be-
fore the metastable regime from faster decaying modes. Note
that the latter correction is negligible only when the metastable
regime is long enough (cf. corrections

∥∥∥[etLg]I−P

∥∥∥ to the sta-

tionarity in Eq. (3.8)), so that
∥∥∥[(tLg)−1]I−P

∥∥∥ is negligible. From
Eq. (D.1) system states leading to the extremal averages ofGg(t)
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in the metastable regime correspond to metastable phases, see
Sec. 2.3.3.

In the case of the variance of the generator Gg(t) encoding g
in |Ψg(t)〉, ∆2Gg(t) := 〈G2g(t)〉− 〈G2g(t)〉, the quadratic terms are
given by, cf. (B.9) for corrections,

∆G2g(t) = t2
[
−
∣∣∣Tr

(
LLg P ρin

)∣∣∣2 + Re Tr
(
LLg PLRg P ρin

) ]
+O(t)

= t2
[
− (p1µ1 + p2µ2)

2 − i
(
p1µ1 Tr(P1LRgρ1) + p2µ2 Tr(P2LRgρ2)

)
+

−i
(
p1µ2Tr(P2LRgρ1) + p2µ1Tr(P1LRgρ2)

) ]
+O(t), (D.2)

where LRg := ∂g ′Lg,g ′ |g ′=g =
(
∂g ′Lg ′,g

)†
g ′=g =: (LLg)

† are the first-
order deformations of the master operator Lg. We now show
that the cross terms Tr(P̃1LRgρ̃2), Tr(P̃2LRgρ̃1) are of the order of
a square root of corrections to the stationarity during the meta-
stable regime, O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖). Thus the cross
terms can be neglected when the separation in the spectrum
of Lg, −λ2 � −Re λ3, is pronounced enough. Moreover, since
P̃1 + P̃2 = 1H, we also have

−i Tr(P̃1L
R
gρ̃1) = −i Tr(LRgρ̃1) +O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖)

= µ1 +O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖),
−i Tr(P̃2L

R
gρ̃2) = µ2 +O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖),

leading to the quadratic behaviour of ∆2Gg(t) and hence the QFI

in the metastable regime given by the rates of the metastable
phases,

∆2Gg(t) = t2 p1p2 (µ1 − µ2)
2 + O(t) + O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖). (D.3)

Proof. Consider the MPS |Ψ
(1)
g (t)〉 and the system state ρ(1)g (t)

corresponding to the initial state |vmax〉 being the eigenvector of
L2 corresponding to the maximal eigenvalue cmax

2 , so that dur-
ing the metastable regime, ρ(1)g (t) = ρ̃1+O(tλ2)+O(‖[etLg ]I−P‖),
cf. (3.8) and (3.11). For time twell within the metastable regime,
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so that the leading terms in 〈Ψ(1)
g (t)|Gg(t)

2|Ψ
(1)
g (t)〉 are quadratic,

cf. (B.9), we have∣∣∣Tr(P̃2LRgρ
(1)
g (t))

∣∣∣ = t−1
∣∣∣∂g ′〈Ψ(1)

g ′ (t)|P̃2 ⊗ 1output|Ψ
(1)
g (t)〉g ′=g

∣∣∣
6
√
t−2 〈Ψ(1)

g (t)|Gg(t)2|Ψ
(1)
g (t)〉

√
Tr(P̃22 ρ

(1)
g (t))

6
√
∂g1∂g2 Re Tr

(
LLgPL

R
gρ1
)
+O(C(t))

√
O(tλ2) +O(‖[etLg ]I−P‖)

= O(‖LRg‖)
√

O(tλ2) +O(‖[etLg ]I−P‖) = O(max(λ2t, ‖[etLg ]I−P‖)1/2‖LRg‖),

where the first inequality is the Schwarz inequality and the sec-
ond inequality simply follows from 0 6 P̃2 6 1H and thus
P̃22 6 P̃2, cf. (3.12).

Furthermore the asymptotic linear scaling of the variance
∆G2g(t) and hence the QFI, cf. Eq. (2.27), is also influenced by
the presence of metastability as we have

lim
t→∞ t−1∆G2g(t) = Tr

(
LLRg ρss

)
− 2Re Tr

(
LLg

[
L−1
g

]
I−Pss

LRg ρss

)
,

where I − Pss is the projection on the complement of the sta-
tionary state ρss, and LLRg := ∂g1∂g2Lg1,g2 |g1=g2=g. Note that the
leading contribution is due to the low-lying second mode, so
that we have (cf. Eqs. (2.36) and (2.19))

lim
t→∞ t−1∆G2g(t) ≈ −2 τRe Tr

(
LLg R2

)
Tr
(
L2L

R
g ρss

)
≈ −2 τ pss1 p

ss
2 (µ1 − µ2)

2, (D.4)

where τ = (−λ2)
−1 is the correlation time/metastable regime

length, pss1,2 = Tr(P̃1,2ρss) and we used R2 = (ρ̃1 − ρ̃2)/∆c2, L2 =
cmax
2 P̃1+c

min
2 P̃2, cmax

2 /∆c2 = p
ss
2 , cmin

2 /∆c2 = −pss1 , cf. (3.11), (3.12),
and neglected the cross terms Tr(P̃1LRgρ̃2), Tr(P̃2LRgρ̃1) due to
the proof above. For discussion of relation between Eqs. (D.3)
and (D.4) see Sec. 2.3.3.

Eqs. (D.1) and (D.3) show that the statistics of Gg(t) is bimodal
and therefore the QFI in the metastable regime grows quadrati-
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cally with time t with constant determined by the rates of two
metastable phases. Moreover, from Eq. (D.4) enhancement in
the asymptotic linear scaling of the QFI is also determined by
the rates of the metastable phases and the length τ of the meta-
stable regime. As the enhancement depends on the rates given
by the expected value of the system observable Mg, (2.37), in
the two metastable phases, this gives a method to determine
whether a given open quantum system dynamics is useful for
estimation of a given parameter g.

Finally, note that the quadratic scaling of the QFI in time dur-
ing the metastable regime is a consequence of a macroscopic
phase encoded in the system-output MPS during the metastable
regime, e.g. for a initial state |χ〉 = √p1 |vmax〉+√p2 |vmin〉 evolv-
ing into a mixture of metastable phases, p1 ρ̃1 + p2 ρ̃2 and the
joint MPS given by |Ψg(t)〉 =

√
p1 |Ψ

(1)
g (t)〉+√p2 |Ψ(2)

g (t)〉, as fol-

lows. We have that |Ψg ′(t)〉 = Te
−i
∫g
g ′ dg

′′Gg ′′(t) |Ψg(t)〉 = |Ψg(t)〉−
i(g ′ − g)Gg(t)|Ψg(t)〉+ O((g ′ − g)2) and thus the macroscopic
phase for 〈Ψ(1,2)

g (t)|Gg(t)|Ψ
(1,2)
g (t)〉 ≈ tµ1,2 and the off-diagonal

terms do not contribute, analogously as in the proof of (D.3)
above.When measurement is performed only on the system,
this relative macroscopic phase is lost and there is no quadratic
enhancement in precision, which corresponds to the fact that
system state is approximately stationary, p1ρ̃1 + p2ρ̃2 in the
metastable regime, cf. Eq. (D.8).

d.2 metastable phases in biased qjmc

When we are interested in the cumulants of an integrated con-
tinuous measurement, such as photon counting or an integrated
homodyne current, those can be encoded in a cumulant generat-
ing function (CGF) or the logarithm of a characteristic function.
Interestingly, both of those can be obtained by deformation of a
master operator, cf. the superoperator Ws in Eq. (3.17) for count-
ing CGF and Eqs. (2.21) and (B.25) for the generators leading to
respective characteristic functions.
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As exploited in the Chapter 2, the characteristic function of
a continuous measurement is identical to the fidelity between
joint system-output MPSs with different values of a parameter
encoded using exactly that continuous measurement as a gener-
ator of encoding and the corresponding modified master opera-
tor is given by for counting by Lφ,φ ′ in (2.21) and for homodyne
current by Lg ′,g in (B.25), where the difference between param-
eter values is the argument of the characteristic function. There-
fore, we have that Ws = Lφ,φ ′ for ∆φ = φ ′ −φ = is, and there
is analogous relation for a homodyne current, see CGF in [164].
In particular, for homodyne current in quanta associated with
jump J1, it follows that

∂s|s=0Ws ρ = −i∂φ ′ |φ ′=φLφ,φ ′ ρ = J1 ρ J
†
1. (D.5)

Therefore, from the results of the previous Sec. D.1, we ob-
tain that Tr(P̃1 J1ρ̃2J

†
1) and Tr(P̃2 J1ρ̃1J

†
1) are of the order are

of the order of a square root of corrections to the stationarity
during the metastable regime, O(max(λ2t, ‖[etL]I−P‖)1/2 × κ1),
cf. the proof of Eq. (D.3), where κ1 := ‖J1 (·) J†1‖. This leads
to one of the metastable phases ρ̃1 or ρ̃2 to be approximately
(up to O(max(λ2t, ‖[etL]I−P‖)1/2 × κ1)) the Ws eigenmatrix ρs
corresponding to the maximal eigenvalue θ(s) for (−λ2) �
(1− e−s)κ1 � (−Re λ3), with the choice of the metastable phase
depends on sign of the parameter s, see Sec. 3.3.3. Analogous
results hold for any other integrated continuous measurement,
e.g. an integrated homodyne current.

d.3 metastability in perturbed degenerate ssm and

enhanced parameter estimation

In this appendix we establish connection between the unitary
rotation in a perturbed SSM during the metastable regime, cf.
the first-order correction [L(1)]P0 in Eq. (3.28), and quadratic
scaling of the QFI in the parameter estimation using joint system-
output MPS.
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Consider dynamics Lg close to L0 which features degenerate
stationary manifold, as given in Eq. (3.3). Let us assume that
L0 features a state of full rank, i.e., there is no decay subspace
H0, and ρss =

⊕m ′

l=1 plρ̃l ⊗ωl. In this case for no rotation in
the SSM, it can be shown that the Hamiltonian and jump opera-
tors are of the form preserving the block structure of (3.3), i.e.,
H =

∑m ′

l=1Hl ⊗ 1Kl and Jj =
∑m ′

l=1 Jj,l ⊗ 1Kl . This case has been
assumed in [206], where for Lg given byHg = H+gH(1)+O(g2)

and Jj,g = Jj,0 + gJ
(1)
j + O(g2), the Hamiltonian governing the

unitary dynamics during the metastable regime, i.e., gL̃(1) =

g[L(1)]P0 = −ig[H̃(1), (·)], has been derived as

H̃(1) =

m ′∑
l=1

1Hl ⊗ TrHl

H(1) +
i

2

∑
j

(
JjJ

(1)
j − (J

(1)
j )†Jj

) ρ̃l ⊗ 1Kl
 (D.6)

=:

m ′∑
l=1

1Hl ⊗ H̃
(1)
l ,

which preserves the block diagonal structure. Moreover, as H̃(1)

is derived simply as [206]

iP0

(
−iH(1)(·) + J(1)j (·)Jj −

1

2

(
JjJ

(1)
j + (J

(1)
j )†Jj

)
(·)
)
P0

= iP0 ∂g ′Lg ′,g

∣∣∣
g ′=g=0

P0,

where Lg ′,g is the deformation master operator yielding fidelity
of MPSs corresponding to system-output dynamics at the pa-
rameter value g and g ′, as 〈Ψg(t)|Ψg ′(t)〉 = Tr(etLg ′,gρin), cf. (2.25),
we have the following relation to the observable Mg (2.37), de-
termining quadratic enhancement in the QFI,

H̃(1) =

m ′∑
l=1

1Hl ⊗ TrHl
(
Mg ρ̃l ⊗ 1Kl

)
. (D.7)

Let us recall hereMg for generic types of parameters, see Sec. 2.4.1.
For g = Ω being a coupling constant in the system Hamiltonian,
i.e., HΩ = H0 +ΩH1, we simply have MΩ = H1. On the other
hand, for a classical parameter g = κj with Jj,κj =

√
κjJj, there
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is no enhancement possible, exactly like in the m = 2 phases
case, since Mg = 0 and thus H̃(1) = 0.

d.3.1 Estimation using system only

For DFSs and NSSs, given by Kl with dim(Kl) > 1, l = 1, ...,m ′,
we have that perturbation of g away from 0 introduces non-
trivial unitary dynamics, so that in the metastable regime, cf.
Eq. (3.36), we have ρg(t) =

∑m ′

l=1 plρ̃l ⊗ e−igtH̃
(1)
l ωle

igtH̃
(1)
l +

O(g) + O(‖[etLg ]I−P(g)‖), where P(g) is the projection of low-
lying modes of Lg corresponding to the lifted degeneracy of
the SSM in L0. Consider estimation of a value of the parameter
g during the metastable regime by performing measurement
on the system. We will have that for g ≈ 0 the corresponding
QFI,

F(ρg(t)) = t
2
m ′∑
l=1

pl Fl(ωl)+ t
(
O(1) +O(g) +O

(
t‖[etLg ]I−P(g)‖

))
,

(D.8)

where Fl(ωl) is the QFI for phase encoded by H̃(1)
l on ωl as

e−iφH̃
(1)
l ωl e

iφH̃
(1)
l , and the leading linear corrections are due to

first-order corrections to the metastable manifold, cf. Eq. (3.36).
Note that we have quadratic scaling of the QFI with time t for a
measurement performed solely on the system, cf. the symmet-
ric logarithmic derivative in (2.11), which is due to coherence
preserved during the metastable regime inside a DFS/NSS repre-
sented by ωl. In particular, when an initial system state evolves
into pureωl, we further have that the QFI is simply given by the
variance Fl(ωl) = 4∆2ωlH̃

(1)
l . The quadratic enhancement in the

scaling of the QFI is absent for classical phases where dim(Kl) =

1, since those are not affected by the unitary dynamics during
metastable regime as the Hamiltonian introduces only a global
phase tTr(Mgρ̃l) on ρ̃l since H̃(1)

l = 1Hl × Tr(Mgρ̃l). Similarly,
when an initial system state evolves into ωl being a mixture of
H̃

(1)
l eigenstates there is no quadratic enhancement. As we show
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below, in these two cases it is necessary to consider measuring
also the output in order to retrieve the enhancement in preci-
sion, cf. the case of two phases in Sec. 2.4.3.

At times t > τ ′(g) the effective dissipative dynamics Leff

begins in the MM leading to exponential decay of coherences,
so that at t > τ(g) the unique stationary state ρss(g) of Lg is
achieved by the system, see Eqs. (3.36) and (3.39). In particular,
the asymptotic QFI is independent of time t, F(ρss(g)). There-
fore, for total time T for estimation of the parameter g it is op-
timal to perform n = T/t experiments, where t 6 τ ′(g), which
leads to the total QFI

T

t
F(ρg(t)) ≈ 4 T τ ′(g)

m ′∑
l=1

pl∆
2
ωl
H̃

(1)
l , (D.9)

where we assumed pure ωl, l = 1, ...m ′, and we have τ(g ′) ∝
g−2, cf. Sec. C.2.3. See also the discussion in Sec. 2.4.3. When
g = 0, the optimal choice of time is t = T , since the quadratic
scaling of the QFI is present for all times.

In the case when dynamics governed by Lg features a DFS/NSS

also at g 6= 0, the measurements using solely the system can
achieve the quadratic scaling of the estimation precision, for
all times t, if and only if, varying of g introduces unitary dy-
namics within that DFS/NSS in the first-order, cf. (D.6). See also
Example II in Sec. 2.4.2.

Let us finally note that the enhanced scaling in (D.8) can be
present even if there is no DPT present in the dynamics, e.g
when there is only a single DFS present (m ′ = 1) and thus after
t � τ0 there are no jumps taking place, or for all NSSs, Kl, the
associated dissipative dynamics in Hl is identical.
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d.3.2 Estimation using both system and output

In contrast, for a pure initial state ρin of the system and the
optimal estimation scheme using the joint system-output MPS,
|Ψg(t)〉, we have in the metastable regime (see Appendix B.2.3)

F(|Ψg(t)〉) = 4 t2

[
Re∂g1∂g2 Tr (Lg1,gP(g)Lg,g2 P(g) ρin)g1=g2=g +

−
∣∣∣∂g1Tr (Lg1,g P(g) ρin)g1=g

∣∣∣2 ] + O(t)

= 4 t2

[
Re∂g1∂g2 Tr (Lg1,gP0Lg,g2 P0 ρin)g1=g2=0 +

−
∣∣∣∂gTr

(
Lg,0 P0 ρin

)
g=0

∣∣∣2 ] +

+O(t) + t2O

(
g ‖∂g|g=0Lg,0‖

×
(
‖∂g1 |g=0Lg,0‖+ ‖∂g1∂g2 |g1=g2=0Lg1,g2‖+ ‖∂2g|g=0Lg,0

))
, (D.10)

where we used expansion of P(g) from (3.27). Note that the
quadratic scaling of F(|Ψg(t)〉) at g = 0 holds also asymptot-
ically when time t → ∞. Since H̃(1) := iP0 ∂gLg,0

∣∣∣
g=0

P0, we

further obtain that the leading quadratic terms in the QFI are
simply proportional to the variance of H̃(1) in the metastable
state P0ρin,

F(|Ψg(t)〉) ≈ 4 t2

[
Re Tr

(
H̃(1) (P0 ρin) H̃

(1)
)
−
∣∣∣Tr
(
H̃(1) P0 ρin

)∣∣∣2 ]
= 4 t2∆2P0ρin

H̃(1)

= 4 t2

[
m ′∑
l=1

pl∆
2
ωl
H̃

(1)
l +

m ′∑
l6=l ′=1

plpl ′ (µl − µl ′)
2

]
, (D.11)

where µl = Tr(H̃(1)
l ωl) = Tr(Mg ρ̃l ⊗ωl), cf. (D.7). We know

that due to the system-output MPS being pure, the QFI is given
by the variance of the stochastic generator Gg(t), see Sec. 2.3.3
in the MPS |Ψg(t)〉. We see that in the case of the perturbed
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degenerate dynamics L0 we further have that leading terms in
the QFI simplify to the variance of the observable observable
H̃(1) in the metastable state P0ρin.

Firstly, let us note when all phases are classical, dimKl = 1 ∀l
so that m ′ = m, we obtain from Eq. (D.11) that the quadratic
scaling QFI is a consequence of the Gg(t) distribution being
a mixture of m distributions corresponding to the stationary
states {ρ̃l}

m
l=1 which differ in the rates µl = Tr(Mg ρ̃l). See the

bimodal case of m = 2 in Sec. 2.3.3. The enhancement is ab-
sent when measurements are performed only on the system,
cf. (D.8), as the information about the parameter g value is
not stored in coherences, but in the joint system-outputMPS.
This encoding uses resources that can be quantified as the av-
erage of Gg(t), which grows linearly with time t, 〈Gg(t)〉 =∑m
l=1 plµl + O(1). Again, there is a quadratic behaviour of the

QFI with time, due to correlations in the MPS that are preserved
in the metastable regime (t � τ ′′(g), cf. Eq.(3.33)). Moreover,
note that tTr(Mgρ̃l) is the macroscopic phase encoded on the MPS

for the state initially inside Hl, and thus the quadratic scaling is
again a consequence of a difference in the macroscopic phases,
see Sec. 2.3.3.

Secondly, when the state ωl inside a DFS/NSS is mixed, the
output provides additional information about g value, as it pu-
rifies the system state and Fl(ωl) 6 4∆2ωlH̃

(1)
l . Moreover, the

global phases of ωl given by tµl = tTr(Mgωl ⊗ ρ̃l) can be re-
solved as well. This corresponds to the second term in (D.11).

d.3.3 Estimation using output only

When at g 6= 0, the degeneracy of stationary state is lifted and
the asymptotic scaling of the QFI is necessary linear, cf. (2.27),

lim
t→∞ t−1F(|Ψg(t)〉) = 4Tr {∂g1∂g2Lg1,g2 ρss(g)}

−8Re Tr
{
∂g1Lg1,g

[
L−1
g

]
I−Pss(g)

∂g2Lg,g2 ρss(g)

}
g1=g2=g

,
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where Pss(g)(·) = ρss(g)Tr(·) is the projection on the stationary
state ρss(g) and we assumed that Lg features no Jordan blocks.
In particular, the leading terms are due to the low-lying eigen-
modes of Lg given by the projection P(g), and thus we can
replace [L−1

g ]I−Pss(g) by the resolvent of the effective dynamics
operator Leff(g) = [Lg]P(g). We have that the eigenvalues of
Leff(g) are given, up to the second order in g, by the eigen-

values of ˜̃L(g) = −i[H̃(1), (·)] +∑m ′′

r=1[L̃
(2)]Pr , where Pr are the

projections on the eigenspaces of −i[H̃(1), (·)], see Eq. (3.31). The
stationary state ρss belongs to P1 corresponding to 0 eigenvalue,
up to linear corrections in g. Thus, when the degeneracy of the
stationary state is lifted in the second-order of peturbation the-
ory, we have

lim
t→∞ t−1F(|Ψg(t)〉) ≈ −8Re Tr

(
H̃(1)

[˜̃
L(g)−1

]
P0−Pss

(
ρssH̃

(1)
))

,

= −g−2 8Re Tr
(
H̃(1)

[
[L̃(2)]−1P1

]
P1−Pss

(
ρssH̃

(1)
))

, (D.12)

where in the second line we used the fact that ρssH̃
(1) also be-

longs to P1. Note that the asymptotic linear scaling can be un-
derstood in terms of the decay of the long-lived correlations

in the effective dynamics ˜̃L(g), i.e., Re Tr (H̃(1)et
˜̃
L(g) (ρssH̃

(1))) −

|Tr (H̃(1) ρss)|
2, see also Sec. 2.3.3.

Note that as coherences w.r.t. tHf are absent in ρss, the en-
hancement in precision requires measuring the output. Actu-
ally, the measurement can be performed on the output only [37],
as quantum trajectories become uncorrelated at the timescale
τ(g) ∝ g−2, when the system state reaches the stationary state,
see Sec. C.2.5, and the information leaks from DFSs/NSSs to the
output. Therefore, this can be viewed as an alternative method
of extracting the quadratic scaling of the QFI, instead of exploit-
ing the unitary dynamics induced inside DFSs/NSSs, cf. Sec. D.3.1.
Note, however, that such measurements on the output only nec-
essary last at least t � τ(g) > τ ′(g), in contrast to the optimal
system measurements of the length t� τ ′′(g).
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d.3.4 Enhanced estimation and metastability in general open quan-
tum system

Finally, let us note that when the MM of a general open sys-
tem can be approximated by the structure of a SSM with the
same number m of degrees of freedom (cf. Eq. (3.3) and see
the second conjecture in Sec. 3.4.1), the quadratic enhancement
in the scaling of the QFI in the metastable regime can be ex-
plained analogously to the degenerate case above. The presence
of coherences during metastable regime will lead to quadratic
enhancement in precision also for measurements on the sys-
tem only, cf. Eq. (D.8), whereas metastability of classical phases
differing in rates, cf. (D.10), will lead to the quadratic enhance-
ment requiring a measurement both of the system and the out-
put. This will be analogous to the case of m = 2 when the struc-
ture of the metastable manifold (see 3.3) is known and simpifies
the quadratic behaviour of the QFI, see Appendix D.1.

For general metastable dynamics with a unique stationary
state, the asymptotic linear scaling can also be enhanced, see
Eq. (2.27). Moreover, this enhancement can be obtained by mea-
suring the output only, since the correlation length τ of the
system dynamics is finite [37].
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76R. Demkowicz-Dobrzański, “Optimal phase estimation with
arbitrary a priori knowledge,” Phys. Rev. A 83, 061802 (2011).

77K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański,
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tum Magnetometry beyond the Standard Quantum Limit,”
Phys. Rev. X 5, 031010 (2015).

97E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin,
“Quantum Error Correction for Metrology,” Phys. Rev. Lett.
112, 150802 (2014).

98W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, “Improved
Quantum Metrology Using Quantum Error Correction,” Phys.
Rev. Lett. 112, 080801 (2014).

99G. Arrad, Y. Vinkler, D. Aharonov, and A. Retzker, “Increas-
ing Sensing Resolution with Error Correction,” Phys. Rev.
Lett. 112, 150801 (2014).

100J. Jeske, J. H. Cole, and S. F. Huelga, “Quantum metrology
subject to spatially correlated Markovian noise: restoring the
Heisenberg limit,” New J. Phys 16, 073039 (2014).

101S. Simmons, J. A. Jones, S. D. Karlen, A. Ardavan, and J. J.
L. Morton, “Magnetic field sensors using 13-spin cat states,”
Phys. Rev. A 82, 022330 (2010).
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