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ABSTRACT  

One of the most vital duties for engineers is to preserve life and nature by utilising safe designs that take 

into account environmental standards and monitoring the performance of structures against design 

criteria. Furthermore, monitoring can be used to determine any required maintenance of an important 

structure following a catastrophic event. Numerous different techniques and instruments can be 

employed for such a purpose with different requirements producing different results. For instance, some 

techniques need to embed sensors inside the building, such as Geotechnical Sensors. Others can offer high 

quality, but with a low point density and require fixed stations and targets, like Total Stations (TS). In 

such cases, the location of deformation tends to be known, such as in dams, bridges, and high-rise 

buildings. However, this is not always the case where it might be hard to expect deformation location as 

in the case of historic ruins where each part of the structure could be subject to deformation. The 

challenge in such case is to detect the deformation without any previous knowledge. Remote Sensing (RS) 

techniques, such as Digital Photogrammetry, Synthetic Aperture Radar (SAR), Interferometric Synthetic 

Aperture Radar (InSAR), and Terrestrial Laser Scanner (TLS) can be solutions for such an issue.       

Interestingly, many researchers are focusing on using TLS for monitoring owing to the great spatial 

resolution system can offer. However, there are three challenges in using TLS in monitoring: the first one 

is a huge amount of data and the difficulty of handling it; the second one is the difficulty of comparing 

between two epochs because observations of TLS are not repeatable; and the third issue is the noise 

which is attached to the data.  The first problem is solved by segmentation and point structure while the 

second and the third ones still need more investigation, although some interesting researches have been 

done in this area.  

 The aim of this research is to develop a new approach to detect and localise unpredictable deformation. It 

is based on TLS measurements and Generalised Procrustes Analysis (GPA) techniques to determine 

deformation vectors, while boxing structure and F-test are used to detect and localise deformation. In 

summary, after applying this approach, the whole concerned building is represented as parts, for each of 

which the displacement vector and the deformation probability are estimated. Ultimately, it is possible to 

monitor any part through different epochs. In addition, through this technique, it is possible to determine 

deformations - not just between two epochs, but for sequences of them. This can give more reliable 

results.  
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Four validation experiments have been conducted. The first test was designed to assess the performance 

of the developed software and to fix some variables. Therefore, it was based on simulated data with 

controlled white noise, distributed according to the normal distribution, and simulated deformations. The 

results of this test revealed the success of the proposed algorithm to detect and to localise deformations. 

In addition, it showed the success when no deformations exist. Furthermore, optimistically, it could 

observe deformations with magnitude less than the noise level; however, the probability was only 40%.   

Correspondingly, real scan data with simulated deformations was used in the second test. The purpose of 

this test is to examine the performance of the proposed method in case of real errors budget. However, 

the short range of the test (about 10m), a featureless scanned area (wall only), and scanning from one 

position for all epochs (no need for registration) can reduce errors to a minimum. Results of this test 

showed the success of the proposed method to detect and localise deformations. Potentially, it can give 

indications for areas with deformations less than the noise level. Furthermore, results of the proposed 

method can be considered better than that of CloudCompare software. 

The third test was conducted to examine the performance of the proposed technique regarding different 

materials and textures. For this purpose, the Nottingham Geospatial Building (NGB) was selected with 

more extensive ranges (between 20-25 m). Similar to the second test, all measurements were taken from 

the same scanner position. To some extent, the proposed technique succeeded to detect and to localise 

deformations. However, the researcher does not recommend it for monitoring modern and complicated 

buildings, instead it has been developed for monitoring historic ruins.  

Finally, the proposed method was applied on the Bellmanpark Limekiln, Clitheroe, Lancashire monitoring 

project. This is a live project for Historic England and addresses a historic building that currently has 

some structural issues. The outcome of the proposed method revealed deformations in the faces South 

East (SE) and North East (NE). From examining these faces, three deformed areas were found: two in the 

face SE and one in the face NE, which might cause some cracks appeared in these faces. Alternatively, the 

CloudCompare software has been employed to detect deformation. Although results coincide with the 

proposed method for detected deformations, it cannot locate these deformations very well because it 

diffused over a wide area. In addition, it cannot determine actual directions of the deformations unlike the 

proposed method. 
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 INTRODUCTION CHAPTER One:

1.1 Preface 

Many different instruments have been used in structural monitoring. Frequently, conventional surveying 

instruments are used in deformation monitoring, such as Theodolites, Total Stations (TS), precise levels, 

Global Navigate Satellite System (GNSS) and, recently, Robotic Total Station (RTS). This technique is 

based on measuring direct observations, such as distances, angles, and elevation differences, or indirect 

quantities, such as coordinates and elevations. Although it is considered a highly accurate method, it can 

only offer discrete monitoring points. Therefore, it needs to nominate key locations for these monitoring 

points based on structure design and expected deformation. Unfortunately, it is hard to select these 

points in case of historic ruins and heritage buildings because nobody can expect or they risk predicting 

deformations. 

Furthermore, some monitoring sensors can be used, such as inclinometers, accelerometers, pendulums, 

dial gauges, extensometers, piezometers, pressure cells, and crack meters. These sensors are usually 

integrated with other sensors (Gonzalez-Aguilera et al., 2008, Meng, 2002). However, they can be used 

alone to give continuous data. The main drawback of these sensors is that they have the ability to acquire 

only one-dimensional measurements (Hill and Sippel, 2002, Park et al., 2007). Furthermore, the precision 

of their measurement decreases over time. Therefore, they need calibration for each period (Meng, 2002). 

In addition, regarding preservation, there are caveats in place in using the sensors in historic ruins and 

heritage buildings because they require contact or may need to be embedded in structures.  

Moreover, there are a few remote sensing options that can be used in monitoring, such as Interferometric 

Synthetic Aperture Radar (InSAR) which can be used in architectural surveying as well as in multi-

temporal observation in case of monitoring changes (Pesci et al., 2013). The drawback of this technique is 

that it only can measure one-dimension deformation which is in the line of sight direction and it cannot 

be used for structural condition monitoring. 

 Digital Photogrammetry and TLS may be considered as the best monitoring technique for historic ruins 

and heritage buildings due to their ability to offer high spatial resolution, and they do not require any 

prediction for deformations location. 
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1.2 Aims and Objectives  

The aim of this research is to develop a new approach for heritage and historic buildings monitoring 

where deformations location are unpredictable. Therefore, the suggested method should have the ability 

to examine each part of the buildings and give the probability of its deformation. In addition, for more real 

results, it should exploit as many epochs as possible to estimate deformation vectors. 

The proposed approach utilises TLS measurements and Generalised Procrustes Analysis (GPA) technique. 

To reach the aim mentioned above, the following objectives are fulfilled: 

1) Investigate TLS based deformation monitoring techniques: 

It helps to point out the shortcoming of previous methods. 

2) Explore registration and georeferencing techniques: 

Registration and georeferencing need to be investigated because there is a strong correlation 

between them and deformations monitoring using TLS. Furthermore, many monitoring 

techniques are based on registration methods. The decision about proper registration technique 

is taken. 

3) Investigate TLS error sources: 

To propose an approach with minimum error, we need to explore TLS error sources and their 

behaviour through measurement and post processing.  

4) Investigate Procrustes Analysis techniques: 

There are different applications for Procrustes Analysis, which is defined as a mathematical tool 

used to estimate similarity between data sets. Also, it has not been employed in TLS deformations 

monitoring. Therefore, it needs modification to satisfy this purpose.  

5) Propose a new monitoring approach: 

This approach is based on TLS measurements and the Procrustes Analysis technique.  

6) Undertake validation experiments: 

Simulated data and practical testing for the proposed method are conducted and compared with 

other known methods. 
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1.3 Methodology 

The following methodology needs to be conducted to fulfil objectives: 

1- Identify the shortcoming of known TLS based monitoring methods to fulfil the research aim. 

2- Review registration and georeferencing methods and select the most suitable one for the 

proposed approach. 

3- Review TLS error sources and propose a suitable procedure to reduce them to a minimum.  

4- Review Procrustes Analysis and select proper version. 

5- Develop software that can implement the developed technique. 

6- Undertake simulation data testing to assess performance for the developed software and to 

determine some variables of the proposed approach. 

7- Undertake practical testing for the proposed approach to detect simulated deformations with 

minimum error contribution. All measurements, all epochs, are taken from one position of TLS on 

the same day. This mitigates effects of atmospheric and geometric errors. In addition, the range is 

chosen to be about ten metres.  

8- Undertake practical testing (as in point 7) with farther range, about 25 metres. 

9- Undertake practical testing with real scanning and real deformations. 

1.4 Contribution to Knowledge 

Interestingly, the proposed method in this research has got attention from some interested. For instance, 

the published paper in “5th International Conference on Heritage and Sustainable Development” 

conference (Appendix A) has been considered as one of the top eight papers. In addition, Historic England 

(Historic, 2015b) has wondered the possibility of commercialising the proposed method because they 

keen on employing it in their monitoring projects. Essentially, the contribution of Knowledge for this 

research can be seen from different sides: 

1) Proposing a new monitoring method which has the ability to detect and localise changes with 

unpredicted locations that may happen in heritage and historic buildings.  

2) The proposed method is considered as a non-invasive method which can conduct monitoring 

remotely (without any contact). This is vital for monitoring of historic and heritage buildings. 
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3) The proposed technique can provide 3D visualisation of changes. This can help non-engineering 

clients to understand their building conditions. Also, it helps to present and discuss monitoring 

results with non-experts. 

4) The proposed method has a good ability to localise changes by using voxel approach with 

estimating the probability of deformations. 

5) The proposed method can provide more reliable outcomes because they result from multiple 

epochs. 

6) Through noise mitigation, the proposed method can detect deformation below the noise level. 

7) Utilising voxel approach, the proposed method has a better solution for obtaining displacements. 

8) Due to dealing with data as matrices, the proposed method has the flexibility to add radiometric 

data (intensity) to detect deformations. Also, it can be used with point clouds created by digital 

photogrammetry after modifying the part of errors mitigation. 

1.5 Thesis outline 

This thesis is divided into nine chapters, and the contents of the next chapters are summarised here: 

Chapter Two: the laser scanner technology will be described and overviewed in the first part of this 

chapter, while, the second part of this chapter will be assigned for addressing and defining concepts of the 

deformation monitoring and reviewing present monitoring techniques for heritage and historic buildings. 

Chapter Three: the potentials of using TLS for monitoring purpose will be discussed in first part of this 

chapter. Commonly, five techniques can be employed to detect deformations from TLS data: using targets, 

direct cloud to cloud comparison, interpolation models, surfaces matching, and some specific solutions. 

The advantages and disadvantages of these methods will be clarified. The second part will be assigned for 

registration and georeferencing. Registration is the procedure of transforming reference system of scan 

scenes to a common reference system. There are three registration methods: targets base, natural and 

geometrical features, and surface matching. On the other hand, georeferencing is the procedure of 

transforming intrinsic reference system to ground reference system. Two methods are available for this 

procedure: direct and indirect methods. 
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Chapter Four: the TLS error sources will be discussed. Additionally, types and magnitudes of these 

errors will be figured out. Furthermore, some procedure of eliminating laser scanner outliers and 

reducing noise will be introduced.  

Chapter Five: the Procrustes technique will be reviewed, which is the mathematical tool that is used to 

estimate least-squares matching between data sets up to their maximal agreement. In addition, the 

revisions and application of the Procrustes analysis will be discussed. In the second part of this chapter, 

the steps of the proposed technique and the background theories will be clarified, and mathematical 

models will be derived. It has six steps: registration, removing outliers, Voxel approach, noise mitigation, 

determination of deformation vectors, and localisation of deformation. 

Chapter Six: the validation experiments for the proposed method in simulated data with simulated 

deformations will be summarised. The aims of using simulated data are checking the performance of the 

proposed algorithm, and fixing some variables in the proposed technique. 

Chapter Seven: the second stage of the validation experiments will be discussed, which is testing the 

proposed technique in the real scan data with simulated deformations to examine its performance in the 

case of real errors budget. 

Chapter Eight: the validation test in real scanning data with real deformations will be summarised, which 

will be included the results of applying the proposed method on the Bellmanpark limekilns monitoring 

project. 

Chapter Nine: the general findings and conclusions of this research will be presented. In addition, 

recommendations and the prospects of future research will be listed.  
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 BACKGROUND AND CONCEPTS  CHAPTER Two:

2.1 Introduction 

 Since terrestrial laser scanner has been suggested in this research, this chapter will describe and 

overview the laser scanner technology. It begins with presenting the laser light properties that made it 

unique and different from light from other sources and ends with measurement techniques of the laser 

scanner. The second part of this chapter will be assigned for addressing and defining concepts of the 

deformation monitoring and reviewing present monitoring techniques for heritage and historic buildings. 

2.2 Laser Light 

Laser is an acronym for Light Amplification by Stimulated Emission of Radiation which was firstly 

demonstrated in May 1960 by Theodore Maiman at Hughes Research Laboratories. Hence, the laser is the 

device which is able to generate or amplify a wave of light employing only a narrow band of spectrum 

similar to transistors that generate and amplify electronic signals at audio, radio or microwave 

frequencies. In contrast to a light source such as the incandescent light bulb, which emits into a large solid 

angle and over a wide spectrum of wavelengths, a typical laser emits light in a narrow, low-divergence 

beam with a well-defined wavelength (Van Genechten et al., 2008). 

Accordingly, the laser light, which generated by a laser device, has some very special properties (Figure 

2-1), which distinguishes it from light from other sources (ibid): 

 Due to coherence, laser beam propagates in a well-defined direction with minimum divergence. 

The term coherence means that the electric signal oscillates with a rigid phase relationship at 

different locations across the beam profile. Hence, the laser beam can propagate over long 

distances and can be focused to very small spots (footprint). 

  Laser light has a high degree of temporal coherence which means long coherence lengths that 

imply a rigid phase relationship over relatively long time intervals, and therefore large 

propagation distances (often many kilometres). 

 Visible laser beams have a certain pure colour, e.g. red, green or blue, but not white or magenta, 

as combining a large temporal coherence with a large coherence time or coherence length results 

in a narrow spectral bandwidth. For example, most laser measuring devices have a wavelength of 
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1064 nm (near infrared) or 532 nm (green laser). It should be noted that laser speckle 

phenomenon is resulting from a large coherence length which can be seen when a laser beam hits 

a metallic surface. 

 Due to linear polarisation of laser light, the electric field oscillates in a particular spatial direction. 

 Waves of laser light travel with a finite and constant velocity in a certain medium, and therefore 

it is highly suited to the measurement. 

For all above remarkable properties, lasers are employed in everyday life such as optical storage devices 

(compact disc and DVD players), bar code readers, laser pointers, etc. Also, the laser is employed in the 

industry for cutting materials such as steel and marble. Furthermore, it has different applications in 

military and medical (ibid).  

 
Figure 2-1 Laser light properties (Laser Technologies, 2016). 

2.3 Laser Scanner Classifications 

Laser scanning describes a method where object surface is sampled or scanned using laser devices. 

Consequently, object shape and its appearance (colour) are collected during this process which can be 

used to construct digital, two-dimensional drawings or three-dimensional models useful for a wide 

variety of applications. The most obvious advantage of the laser scanner is that it can collect enormous 

numbers of points in a relatively short period (Van Genechten et al., 2008). However, the huge amount of 

data has been shifted difficulties from data collection stage at the field to the office stage where data is 

processed (Belton and Lichti, 2006). 

In general, laser scanners are divided into two types: static and kinematic (dynamic or mobile) each of 

them has its own applications (Figure 2-2). Static laser scanners normally remain stationary during the 
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data acquisition. Relatively, it is considered as a higher precision and point density compared with the 

kinematic laser scanner (Van Genechten et al., 2008). On the other hand, kinematic laser scanners are 

mounted on a mobile platform such as cars, trolleys, helicopters, aircrafts, from an unmanned aerial 

vehicle (UAV). Usually, mobile scanners are integrated with other positioning systems such as Inertial 

Navigation Systems (INS) or Global Navigate Satellite System (GNSS) which makes the system more 

complex and expensive (Ingensand, 2006). In this research, static laser scanners are concerned and 

wherever Terrestrial Laser Scanners (TLS) are mentioned we mean static laser scanner. 

Additionally, laser scanners can be classified according to working range: close, mid, and long. At the 

beginning, close-range scanners were mainly employed in the automotive and industrial design process 

to facilitate the Computer Aided Design (CAD) process which helped in the mass production of consumer 

products. On the other hand, developing of mid-range scanning is credited to the petrochemical industry 

where laser scanning led to the full 3D management of the complex plants which were only documented 

as 2D drawings. Recently, the obvious advantages of laser scanning like: contactless measurement, high 

accuracy, long range, fast data acquisition, etc., many other disciplines are starting to steadily adopt this 

technology such as cultural heritage, architecture, urban development, forensics, and the entertainment 

(Figure 2-2) (Van Genechten et al., 2008). In this research, we are focusing in mid-range scanning.   

 
Figure 2-2 Classification of laser scanners (Van Genechten et al., 2008). 
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2.4 TLS Measurements 

The principle of TLS operation is based on the transmission of a laser beam from TLS instrument with 

visual wavelength or near Infrared which is reflected by objects and return to the instrument, and the 

distance is estimated by the time of flight (TOF) or by the phase difference. The direction of the laser 

beam is determined as vertical Φ and horizontal θ angle by encoders and combined with distance. Then 

Cartesian coordinates (x, y, z)  of objects is obtained from distance R and angle θ and Φ (Armesto et al., 

2010). In addition, the intensity I of the reflected laser beam is often recorded which represents a fourth 

dimension (x, y, z, I). The result of a scan is millions of 4D points which are called point cloud.  

Although the raw measurements are R, θ, and Φ, most scanner software packages provide x, y, and z at 

the output, which are treated as measurements. The relationship between these measurements (Figure 

2-3) can be expressed as follows (Reshetyuk, 2009): 

𝑃𝑖 = [

𝑥𝑖

𝑦𝑖

𝑧𝑖

] = [

𝑅𝑖  𝐶𝑜𝑠∅𝑖  𝐶𝑜𝑠𝜃𝑖

𝑅𝑖 𝑆𝑖𝑛∅𝑖  𝐶𝑜𝑠𝜃𝑖

𝑅𝑖  𝑆𝑖𝑛𝜃𝑖

] ( 2.1 ) 

 

Where Ri, φj and θi are the measured range, horizontal and vertical angle, respectively, to the i-th point in 

the point cloud, and (xi, yi, zi) are its rectangular (Cartesian) coordinates in the scanner coordinate 

system. 

 
Figure 2-3 The principle of TLS measurements (Reshetyuk, 2009). 
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2.4.1 Angle Measurement and Deflection System 

The angle measurement system in TLS consists of deflection system, which directs the laser beam to 

different directions, and attached high-resolution angular encoders, which measure the horizontal and 

vertical angle of the laser beam (Ingensand, 2006).  There are different types of beam deflection units 

used in TLS, yet they rely on oscillating mirrors or rotating polygonal mirrors (Figure 2-4).  Normally, the 

field-of-view (FOV) of the TLS is determined by the technique of deflecting laser beam, hence, three 

different types of scanners exist (Figure 2-4) (Reshetyuk, 2009):   

1) Camera-scanner: in this type, the scanner head remains stationary during the data acquisition 

so it is called “fixed-head”. The laser beam is deflected by only mirrors oscillating about the 

horizontal and vertical axes. Consequently, it has a limited FOV, e.g. the laser scanner Leica HDS 

2500 has only 40˚x 40˚ FOV.    

2) Hybrid- scanners: in this scanner, the laser beam is deflected in two steps. First, a vertical 

deflection is made with the oscillating mirror or rotating polygonal mirror to obtain a vertical 

profile. And then, with the help of the servomotor, the scanner head rotates horizontally in small 

steps around the vertical axis, and the next vertical scan is made. In this way, the scanner has 

360˚ horizontal FOV, but a limited vertical FOV, e.g. Trimble GX has 60˚ vertical FOV. 

3) Panoramic-scanners: it is similar to Hybrid-scanner which deflects the laser beam horizontally 

in small steps with the help of servomotor, but the only difference is that its vertical deflection is 

made by a flat rotating mirror with a single reflecting facet centred on the rotational axis. This 

type of scanners have 360˚ horizontal FOV and nearly the same vertical FOV, the space under 

scanner only cannot be captured. Usually, this type is useful in indoors scanning where the whole 

space around the scanner can be captured, e.g. Imager 5003 from Z+F has 360˚ horizontal FOV 

and 310˚ vertical FOV. 

As aforementioned, oscillating or rotating mirrors, and rotating polygonal mirrors are used to deflect the 

laser beam. Comparatively, the oscillating mirrors are slow and provide a limited vertical FOV (90˚ 

maximum). They are usually used in pulsed laser scanner such as Leica HDS 3000. The instantaneous 

scanning angle of an oscillating mirror can be described by the following equation (Reshetyuk, 2009): 

𝜃(𝑡) =  
𝜃𝑚𝑎𝑥

2
 sin (𝜔𝑡) ( 2.2 ) 

Where, where θmax is the maximum scan angle, ω is the oscillating frequency of the mirror and t is time. 



CHAPTER TWO: BACKGROUND AND CONCEPTS 

11 
 

On the other hand, the rotating polygonal mirrors are very fast with constant velocity and can provide 

vertical FOV as large as 180˚, e.g. Riegl LMS-Z series. The maximum vertical scanning angle, which can be 

achieved with this scanner, can be computed as follows (Reshetyuk, 2009): 

𝜃 =  
720˚ . 𝐶

𝑛𝑓𝑎𝑐𝑒𝑡𝑠

 ( 2.3 ) 

Where, nfacets is the number of facets in the polygon and C is the duty cycle, i.e. the ratio of the active scan 

time to the total time. Also, the number of the scan lines per second can be computed as follows 

(Reshetyuk, 2009): 

𝑓𝑠𝑐 = 𝑛𝑓𝑎𝑐𝑒𝑡𝑠  . 𝑣 ( 2.4 ) 

Where, fsc is the line per second, and v is the rotation speed.  

   
Figure 2-4 Top: types of laser beam deflection units used in TLS with scanner types. Bottom: types of laser 
scanners according to FOV (Reshetyuk, 2009).  

2.4.2 Distance Measurements 

The distances in TLS are measured in two well-known methods: time of flight (TOF), and phase 

difference. However, recently, a new technique has emerged, combines these methods, which is called 

Wave Form Digitizer (WFD). 
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2.4.2.1 Time of Flight  

The distance is calculated by measuring time delay created by light travelling from the instrument to the 

object and back to the instrument (Figure 2-5), according to the following formula (Van Genechten et al., 

2008): 

𝐷 =
𝑐. 𝑡

2
 

( 2.5 ) 

Where, c is the speed of light in air, and t is the time between sending and receiving the signal. 

 
Figure 2-5 Time-of-flight laser scanner principle (Van Genechten et al., 2008). 

TOF scanners are also called pulse based because they scan their entire field of view by laser pulses, i.e. 

measuring range for one point at a time. It should be noted that for a non-ambiguous measurement, the 

time measured (t) should be greater than the pulse width, Tpulse, hence (ibid): 

 
𝑡 > 𝑇𝑝𝑢𝑙𝑠𝑒  

( 2.6 ) 

Or 

𝑑 >
1

2
 𝑐. 𝑇𝑝𝑢𝑙𝑠𝑒  ( 2.7 ) 

 

Evidently, this technique requires very accurate clocking mechanism, e.g. for 1 mm distance accuracy it 

needs to be able to measure a time delay of about 3.33 picoseconds (10-12 second), taking into account  

the speed of light in a vacuum is c = 299,792,458 m/s. In addition, it should be noted that measuring the 

time of return pulse depends on the desired time resolution, the counting rate and the required dynamic 

range of the pulse (Van Genechten et al., 2008).  
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In addition, the maximum pulse repetition frequency is restricted by the fact that the transmitter cannot 

send another pulse until receiving the echo from the previous one, in order to avoid confusion in the 

pulses arriving at the time interval counter. This is called the maximum unambiguous range and it 

depends on the pulse duration and its frequency (Figure 2-6) (ibid).  

 
Figure 2-6 Maximum Unambiguous Range versus pulse repetition frequency (Van Genechten et al., 2008). 

The advantage of TOF scanners is that its capability to measure accurate long ranges (few hundred 

metres)  owing to the high concentration of transmitted laser power which makes it possible to achieve 

the required SNR (signal to noise ratio) needed. In addition, the error of this scanner is almost 

independent of the distance itself (except for the laser footprint, will discuss later). On the other hand, 

due to the changeable nature of the optical threshold and atmospheric attenuation, the drawback is the 

problem of detecting the exact arrival time of the returned laser pulse. 

2.4.2.2 Phase Difference 

To avoid using high precision clocks, another distance measuring technique is existed which is based on 

the phase-shift between the emitted and reflected signal and the number of full wavelengths (Figure 2-7). 

This can be done by modulating the power of the laser beam with different methods (Van Genechten et 

al., 2008): sinusoidal, amplitude based (AM), frequency based (FM), pseudo-noise, or polarization 

modulation. 
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Figure 2-7 Phase-difference distance measurement principle (Maar and Zogg, 2014). 

Similar to TOF, the phase-difference scanners can be related to a time delay. This can be clarified in    the 

relationship between phase difference (ΔΦ), modulation frequency (fmodulated), and time delay (t), is (Van 

Genechten et al., 2008): 

𝑡 =
∆Φ

2𝜋 . 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑  
 

( 2.8 ) 

Then distance is calculated according to the distance measuring equation of TOF scanners (ibid): 

 

𝐷 =
𝑐. 𝑡

2
=  

𝑐. ∆Φ 

4𝜋. 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑

  
( 2.9 ) 

This type of scanners also has a maximum unambiguous range which is limited to that one causes a phase 

delay in the sine wave of one complete cycle. Hence, the maximum unambiguous (Zamb) can be expressed 

by the following equation (ibid): 

 

𝑍𝑎𝑚𝑏 =
𝑐

2 . 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑  
 

( 2.10 ) 

It is worth to mention that phase-difference scanners have higher speeds and better resolution, but less 

precision than TOF scanners which is limited by (Van Genechten et al., 2008): 

 The modulated frequency. 

 Stability of the modulation oscillator. 

 Atmospheric conditions. 

 The accuracy of the phase-measurement loop which in turn depends on SNR.  
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2.4.2.3 Wave Form Digitizer 

The WFD is a kind of TOF method, yet combines advantages of phase-difference and TOF techniques into 

one system. In this technique, the distance is calculated based on the time delay between a start and stop 

pulse which is digitized out of the received signal. Hence, to precisely recognize and extract the start and 

stop pulses, the waveform of all reflected signals is constantly evaluated, digitized and accumulated (Maar 

and Zogg, 2014).  

Accordingly, the distance is not calculated from a single shot, but from multiple pulses. For each pulse, a 

small portion (fragment) is directed through an internal channel inside the instrument which is called 

start pulse. On the other hand, the major portion of the pulse leaves instruments and reflects back from 

the object. The backscattered signal is detected by the photosensor inside the instrument which is known 

as the stop pulse. Both start and stop pulses are digitised as a full waveform and accumulated from 

multiple signals. Then, the time delay between accumulated start and stop pulse is estimated, and 

therefore the distance is calculated similar to TOF technique (ibid). 

Hence, the more pulses the better the signal-to-noise ratio (SNR). Consequently, the better estimation of 

the time delay and more accurate distances can be determined (Figure 2-8). According to Maar and Zogg 

(2014), the SNR increases with the square root of the measurement time, e.g. 9 seconds leads to a SNR 

about three times better than for a measurement time of 1 second. 

 
Figure 2-8 Single shot signal (above) and 100 times accumulated signal (below) (Maar and Zogg, 2014). 
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Consequently, the WFD can be considered a better overall measurement performance Compared to a 

pure time-of-flight measurement method. Table 2-1 reveals the comparison among three different 

techniques: TOF, Phase-Shift (Phase-Difference), and WFD. 

Table 2-1 Comparison among different distance measurements techniques (Maar and Zogg, 2014). 

 

2.5 Deformation Monitoring  

According to the dictionary, monitoring is defined: ‘observe and check the progress or quality of 

(something) over a period of time; keep under systematic review’. In surveying, deformation monitoring 

(also called deformation survey or monitoring survey) is defined as the systematic measurements which 

are tracking the change in the shape or dimensions of an object due to changes in circumstances (Moore, 

1992). Hence, the monitoring surveying is conducted at regular time intervals rather than by continuous 

measurements that are more typical of geotechnical instrumentation. The interval between deformation 

surveys is normally correlated to conditions of the structure and it varies according to the purpose for 

monitoring. Also, it is essential allowing sufficient time to permit at least two sets of observations to 

establish datum measurements before possible deformation takes place (ibid). 

Due to direct concern with the human life and safety, deformation monitoring has an important status 

among various engineering surveying (Kalkan et al., 2010). In general, the main purpose of the 

deformation monitoring is (USACE, 2002): 
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 In order to detect unpredicted deformations at an early stage, checking the behaviour of the 

investigated object and its environment whether they follow predicted pattern. 

  In the case of abnormality, estimating as accurately as possible the actual deformation which can 

be employed for the determination of causative factors that trigger the deformation. 

In general, coordinate differencing and observation differencing are the two principal methods used to 

estimate deformations from surveying data. Coordinate differencing methods are suggested for most 

applications that require long-term periodic monitoring. Whereas observation differencing is mainly used 

for short-term monitoring projects or as a quick field check on the raw data meanwhile it is collected 

(USACE, 2002).  

2.5.1 Structural Deformation 

Deformation is defined as the alteration in the shape and the form of an object. The shape is the 

geometrical information which remains after filtering out location, scale, and rotational effects. On the 

other hand, the form is the geometrical representation of an object which can be represented by a set of 

landmarks. In addition, the form of an object is the characteristic which remains invariant under rigid 

body transformation (Anwary, 2012). 

In terms of structural deformation, any indication of an abnormal behaviour may threaten the safety of 

the structure which causes by external loads is known as deformation (USACE, 2002). Normally, 

structures are affected by daily factors (solar effects, heavy rainfalls), long period factors (dead load), and 

dynamic factors (resonance, wind, and loads) that might cause deformations (Abdullahi and Yelwa, 

2016). This deformation can be in two forms according to construction materials and influencing factors 

(Callister and Rethwisch, 2007, USACE, 2002): 

 Elastic deformation: or as so-called reversible deformation because structures are returns to its 

original shape after the influencing factors are no longer applied. For instance, deformation of 

concrete dams due to reservoir water pressure and temperature variations. Monitoring of this 

type of deformation is based on the design criteria of the structure. 

 Plastic deformation: or well-known as a permanent deformation because the deformation in 

this case is irreversible which remains even if the influencing factors are no longer existed. For 

example, cracks and settlement in any type of structures which usually happen due to buildings 
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aging and fatigue. It should be noted that such type of deformation is not considered unsafe if it 

does not go beyond a predetermined critical value.  

In this research, the permanent deformation is concerned. 

2.5.2 Expected Deformation and Required Accuracy 

The expected deformation in structure deformation depends on the size and type of the structure, and the 

cause of deformation. For instance, the effects deforming foundation of superstructure under load or 

incipient instability may be of quite different magnitudes and form (Moore, 1992). Normally, the 

magnitude of expected deformation is estimated using either deterministic modelling (by finite or 

boundary element methods), or empirical (statistical) prediction models. For example, the displacement 

trends may be predicted from geotechnical instruments or documented in design memorandums 

prepared for construction (USACE, 2002). However, the expected deformation likely to be millimetres, up 

to 10 or 20, but cracks will often require extending over months or even years before a valid assessment 

of performance can be made (Moore, 1992). 

On the other hand, the required accuracy is directly related to the expected deformation occurring under 

normal operating conditions. According to Moore (1992),  the required accuracy (at the 95% probability 

level) should be equal to one-fourth (0.25 times) the expected deformation for the given span of time 

between the epochs. Yet, in the case of any abnormal deformations are noticed, maximum possible 

accuracy is required to determine the mechanism of any unpredicted deformations. Hence, deformation 

monitoring may need to update the initial measurement accuracy over the duration of the monitoring 

project (ibid).  

For guidance, the following table (Table 2-2) suggests the required accuracy for performing dam 

deformation surveys. These figures represent either absolute or relative target point accuracies which are 

observed from external reference points. Evidently, the accuracy of the external reference network 

should exceed these accuracies (USACE, 2002). 
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Table 2-2 Accuracy requirements for structure monitoring (USACE, 2002).  

Case Required accuracy 

concrete structure dams, outlet works, locks, intake 
structures: 

 

long-terms movement ± 5-10 mm 

relative short-term deflections 
crack/joint movements 
monolith alignment 

± 0.2 mm 

vertical stability/settlement ±2 mm 

embankment structures earth-rock-fill dams, levees:  

slope/crest stability ±20-30 mm 

crest alignment ± 20-30 mm 

settlement measurements ± 10 mm 

control structures spillways, stilling basins, 
approach/outlet channels, reservoirs 

 

scour/erosion/silting ±0.2 to 0.5 foot 

 

In this research, from all above discussion, the expected deformation is about centimetres and the 

required accuracy is sub centimetre.   

2.6 Monitoring Techniques  

Different monitoring techniques are employing different instruments. Many researchers have classified 

these instruments according to their criteria consequently, there are different classifications. For 

instance, Moore (1992) identified the principal of monitoring approaches according to the type of 

measurements such as vertical movements, inclination (out of plumb), horizontal movements, and cracks 

. For instance, he suggested precise levelling and electrical transducers for vertical movements, laser 

system and precise optical plummets for inclination, theodolite and EDM for horizontal movements, and a 

calliper gauge for cracks. 

Hill and Sippel (2002) have categorised instruments that are used in deformation monitoring into three 

groups: surveying, geotechnical, and meteorological. According to Hill and Sippel (2002), one-dimension 

measurements can be provided by geotechnical and meteorological instruments, while, three-

dimensional displacement can be determined by using surveying sensors. They did not mention to 

Photogrammetry and Remote Sensing and just focused on Total Station and Global Navigate Satellite 

System (GNSS) for surveying method. Geotechnical Sensors such as extensometers, inclinometers, 

piezometers, strain gauges, pressure cells, tilt sensors, and crack meters are widely used for monitoring. 

Whereas, meteorological instruments collect data about temperature, relative humidity, barometric 

pressure, wind speed, wind direction, global radiation (solar energy) and precipitation are usually used to 

calibrate other sensors (ibid). 
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Park et al. (2007) grouped sensors that are employed in monitoring functionally: sensors used to check 

safety and sensors used to check serviceability, e.g. safety sensor such as strain gauges and serviceability 

sensors like accelerometers and GNSSS. However, there are vision-based sensors used for safety and 

serviceability such as photogrammetry techniques. 

Other researchers (Kalkan et al., 2010, USACE, 2002) divided monitoring sensors into two groups: 

geodetic sensors, and non-geodetic (geotechnical) sensors (Table 2-3).  

Table 2-3 Geodetic and non-geodetic methods and instruments (Kalkan et al., 2010). 

 Methods Instruments and Equipment 

Geodetic  Alignment Survey Theodolite, Laser Optic, Invar Wire…etc. 
Conventional Survey Theodolites and Electronic Distance 

Measurement Instruments (EDM) 
Satellite Base Survey GPS, GLONASS and GALILEO Receivers 

Precise Trigonometric Levelling Precise Theodolite and EDM 

Precise Geometric Levelling Precision Levelling Equipment 

Laser Scanner Technique Laser Scanner 
Interferometry SAR Image Processing of SAR Images 

Non-geodetic Slope Measurement Inclinometer 
Displacement Measurement Settlement Column 
Length Change Measurement Extensometer 
Pore Water Measurement Piezometer 
Vertical Displacement Measurement Reversed Pendulum 
Grouting Measurement Joint meter 
Crack Measurement Crack meter 

 

2.7 Monitoring of Historic and Heritage Buildings 

Broadly, historic and heritage buildings can be monitored by any technique that listed in the previous 

section. However, not all available techniques are equally suitable for monitoring of such buildings due to 

the size, complexity of the shape, and the level of detail of the building.  Also, the costs of the technique, 

the time required for operating, and the required skill level of the user are important when choosing a 

suitable measurement system (van Dijk et al., 2016). Furthermore, there are some critical constraints 

which particularly restrict the used method in this type of buildings: 

 Unpredicted deformations 

Normally, the largest parts of historic and heritage buildings are made of ancient masonry 

constructions characterized by a wide range of uncertainties such as the lack of knowledge about 

the construction techniques, the structural changes over time and the effects of the decay and 

local damages  (De Stefano et al., 2016). Hence, even when based on accurate field survey, the 

structural model of a historic building always involves simplified hypothesis and different 
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uncertainties in the material properties and their distribution, in the geometric layout and in the 

boundary conditions (Saisi et al., 2016a, Yardım and Mustafaraj, 2015). Therefore, it is difficult to 

predicate type and location of deformations of this type of buildings that made some researchers 

recommend, for an effective structural health monitoring, distributing redundant sensors (De 

Stefano, 2007). Other researchers have proposed a numerical modal analysis using finite 

elements (FE) to choose the appropriate locations for monitoring sensors (Bilello et al., 2016, 

Elyamani et al., 2016), or employing digital photogrammetry and terrestrial laser scanning  to 

obtain the finite element model (FEM)(Yardım and Mustafaraj, 2015). Consequently, the required 

technique should have the ability to detect unpredictable deformations.   

 Required accuracy 

Because cracks are the most frequent cause of masonry performance failure, heritage and 

historic masonry buildings are likely to experience cracking (Masciotta et al., 2016). According to 

Masciotta et al. (2016), no limiting values of crack width are provided in the actual codes and 

regulations for unreinforced stone masonry structures. However, he adapted, from original 

reference Burland et al. (1978), five levels of damage based on observed crack widths and ease of 

repair of masonry (Table 2-4). The target of this research is to detect moderate cracks. Hence, the 

required technique should have sub-centimetre accuracy.   

Table 2-4 Classification of visible damage in masonry walls (Masciotta et al., 2016). 

Degree of damage Description of damage Approximate crack width 

Negligible Hairline cracks < 0.10 mm to 0.15 mm 

Very slight 
Fine cracks which can easily be treated during 
normal conservation  ~ 1 mm 

Slight 

Cracks which can be easily filled and probably 
require re-decoration. Possible need of 
repointing to ensure weather-tightness. < 5 mm 

Moderate 
Moderate cracks which can be easily patched 
or masked by suitable linings. 5 mm to 15 mm 

Severe 
Large cracks which require extensive repair 
work. Impair of functionality. 15 mm to 25 mm 

Very severe 
Very large cracks which require major repair 
job. Danger of instability. > 25 mm 

 

 Non-invasive 

Preservation of heritage and historic building needs a balance between the requirement of the 

structural safety and the respect for their architectural and cultural value (De Stefano et al., 
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2016). In this context, the required technique should be a minimal invasiveness with the 

minimum number of sensors that conforming the international criteria and protocols on cultural 

heritage preservation (Ubertini et al., 2016). Currently, a large number of contactless (remote 

sensing) monitoring systems are available as a more convenient method (van Dijk et al., 2016). 

  Static monitoring 

Dynamic monitoring is usually employed to monitor elastic deformation which provides 

information about the whole-body response and the overall structural integrity. For this purpose, 

for flexible structures, vibration tests with modal parameters are used. On the other hand, the 

static monitoring is fundamental for assessing the structural performance and identifying changes 

(plastic deformation) (De Stefano et al., 2016, Masciotta et al., 2016). 

Regarding heritage and historic building, due to aging and fatigue, the plastic deformation is 

dominant, and therefore the static monitoring technique is required (Tang et al., 2016). 

In the following sections, the implications of the above criteria on the monitoring techniques that are 

presently being used in heritage and historic building are discussed. 

2.7.1 Conventional Surveying Technique 

 This technique is based on measuring direct observations, like distances, angles, and elevation 

differences, or indirect quantities, such coordinates and elevations. Usually, conventional surveying 

instruments are used in this method, such as theodolites, Total Stations (TS), precise level, and recently 

Robotic Total Station (RTS).  

Although this technique usually attains required accuracy and supplies a sufficient redundancy of 

observations for the statistical evaluation of their quality and for a detection of errors, it is labour 

intensive and requires skilful surveyors (USACE, 2002). In addition, it requires reference points which 

should be located in a stable area and target points are positioned in a predicted deformed area. 

For instance, Margottini et al. (2016) have used a robotic total station (LEICA TM 30) for monitoring the 

Siq of Petra, Jordan. Another example, Castagnetti et al. (2016) have implemented a strategy to compute 

differential vertical displacements starting from results obtained by repeated high-precision levelling 

network adjustments. This approach is applied to the Ghirlandina Tower, Modena (Italy). 
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Regarding criteria for heritage and historic building, evidently, this method can satisfy required accuracy 

and static monitoring, yet it needs pre-knowledge for deformation location and may require contacting 

monitored objects.    

2.7.2 Geotechnical Sensors  

According to Gattulli et al. (2016), the most employed sensors in the field of structural monitoring are the 

accelerometers in dynamic monitoring and the displacement transducers (strain gauges) in static 

monitoring. Also, other geotechnical sensors, such as an inclinometer, a pendulum, dial gauges, 

extensometers, piezometers, pressure cells, and crack meters, have been used for relative deformation 

measurements within the deformable object and its surroundings. They are simple to operate, require 

only infrequent checks on their performance once installed, and easy to adapt for automatic and 

continuous monitoring than conventional surveying instruments (USACE, 2002). 

 These sensors give very localised and, frequently, locally disturbed information without any check unless 

compared with other sensors (USACE, 2002). Hence, they are usually integrated with another instrument 

(Gonzalez-Aguilera et al., 2008, Meng, 2002). The main drawback of these sensors is that it acquires just 

one-dimensional measurement (Park et al., 2007, Hill, 2002). Furthermore, the precision of their 

measurement is decreasing after time, and therefore they need periodical calibration (Meng, 2002). In 

addition, it requires embedding sensors in specific deformation locations, in the other words, invasive 

and predicated deformations. 

For instance, linear variable differential transformers (LVDT) and strain gauges have been used in 

monitoring Diocletian`s Palace in Split, Croatia (Duvnjak et al., 2016). In the Roman Arena in Verona, Italy 

the vibration properties of the monument have been acquired by means of acceleration transducers, and 

the control of the surveyed crack pattern through the implementation of displacement transducers 

installed on the main cracks (De Stefano et al., 2016, Lorenzoni et al., 2016). The monitoring system of the 

church of Saint Torcato North of Portugal, consisting of crack and tilt meters as well as temperature and 

humidity sensors (Masciotta et al., 2016). The monitoring of the bell-tower of the Benedictine Abbey of 

San Pietro in Perugia has been carried out using six high-sensitivity piezoelectric uni-axial accelerometers 

(Ubertini et al., 2016). The monitoring system of the Gabbia tower in Mantua, Italy is composed by three 

piezoelectric accelerometers (Gentile et al., 2016, Saisi et al., 2016b). Furthermore, there are many other 
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heritage building in Italy are employing theses type of sensors such as the Sanctuary of Vicoforte, the 

Ghirlandina Tower in Modena, the medieval Bell Tower of S. Giorgio in Trignano, the Cochlid Columns in 

Rome, etc. for more details refer to De Stefano et al. (2016). 

2.7.3 Wireless Smart Sensors 

Although several wired monitoring systems have been prospered, they suffer from high cost, and difficult 

installation and maintenance. Alternatively, the wireless smart sensors can be considered as a promising 

technique for structural health monitoring due to sensing capability, on-board computation, wireless 

communication, self-powered, plug-in functionalities, and low cost; with facilitating autonomous and 

remote monitoring. In addition, the cost effectiveness of these sensors can enable dense arrays of them to 

be implemented on a huge structure (Harms et al., 2010, Kim et al., 2016). 

A mote can be considered as the most famous commercialised prototype, developed firstly at the 

University of California-Berkeley and then produced by Crossbow Inc. such as the Tmote Sky by Moteiv, 

and Mica and MicaZ (Kim et al., 2016). For instance, Tmote Sky motes incorporate an accelerometer, 

strain transducer, temperature sensor and analog-to-digital converter, along with signal conditioning 

circuitry (Harms et al., 2010). Another example, Harms et al. (2009b) have been developed the 

SmartBrick (Figure 2-9) base station which offers monitoring capabilities, including on-board and 

external sensors for measurement of environmental and structural phenomena such as temperature, 

strain, tilt, and vibration. 

 
Figure 2-9 SmartBrick revision 2.0 (left), 2.1(center), and the IP68 SmartBrick enclosure (right) (Harms et 

al., 2009a). 

Another example, an Imote2  has been interfaced with a sensor board, either an SHM-A (structural health 

monitoring-acceleration) board to measure multi-metric data or an SHM-W (structural health 
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monitoring-wind) sensor board to measure wind speed and direction by interfacing with a 3-axis 

anemometer (Cho et al., 2010). 

Due to self-powered nodes relying on radio communication reduce the invasiveness of the system and 

allowing the deployment of more devices, these sensors have been used in monitoring heritage buildings 

(Ceriotti et al., 2009). For example, the main monitoring platform of the Basilica of S. Maria di 

Collemaggio, Italy is based on a wireless communication. Mainly, the wireless sensors type Imote2 SHM-A 

have been installed in the church. Another example, wireless sensors have been used in the Mosque-

Cathedral of Córdoba for monitoring parameters involved in the deterioration process (Mesas-Carrascosa 

et al., 2016). 

However, problems arise in the time synchronization and the communication reliability due to unique 

characteristics comes from design, construction, and materials used in heritage buildings. This has 

created interests for some researchers for assessing the quality of wireless communications and 

validating the network used (Aparicio et al., 2016, Martínez-Garrido and Fort, 2016). Also, similar to 

geotechnical sensors, these sensors require pre-knowledge for deformation locations.  

2.7.4 Video Gauge Sensing  

This system is based on a Digital Image Correlation (DIC) technique which can resolve two- or even three-

dimensional points movements depending on the number of cameras used and their geometry setup. The 

principal of DIC relies on digital image correlation to analysis the flow of camera images observing an 

illuminated scenario. For purpose of monitoring, feature-based (e.g. point features realized by edges, 

corners or structural discontinuities) or intensity variation are tracked from frame to frame in an image 

sequence. The drawback of this method is that their measured displacements need to be converted to the 

actual displacements on the structure which is not always a straightforward procedure. In addition, for 

longer ranges, the atmospheric effects (e. g. cloudy versus a clear sky background) would affect the 

measurement stability. Finally, high precision topographic measurements are required for establishing 

the setup geometry between the cameras and the monitored structure (Piniotis et al., 2016). 

In terms of heritage buildings, for instance, this technique has been used to detect the relative 

displacement of four small optical targets placed on the two sides of a crack in the Sala dei Battuti – 
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Conegliano Cathedral, Italy (Figure 2-10)(Lorenzoni et al., 2016). Obviously, it also requires known 

deformation locations. 

 
Figure 2-10 Cracks monitoring technique in the Sala dei Battuti – Conegliano Cathedral (Lorenzoni et al., 
2016). 

2.7.5 Interferometric Synthetic Aperture Radar 

Interferometric Synthetic Aperture Radar (InSAR) is a non-invasive imaging technique which used to 

detect and monitor surface displacement based on comparing sequential satellite radar images covering 

the same scenario (Tapete et al., 2013, Urrego et al., 2016). This technique is gaining importance due to 

unique characteristics such as its cost-effectiveness, high accuracy, covering of broad areas, and no need 

of equipment installation in-situ (Urrego et al., 2016). 

In general, InSAR is employed to monitor ground deformations of cultural heritage sites. For instance, 

Urrego et al. (2016) have investigated the damage that occurred at the Saint Vincent’s church during the 

coal mining activity in Zolder, Belgium by InSAR. Tang et al. (2016) have monitored the site deformation 

of the Summer Palace in Beijing, China by jointly analysing Persistent Scatterers (PSs) and Distributed 

Scatterers (DSs) using high-resolution SAR images. Finally, Le et al. (2016) have estimated subsidence 

patterns detected in the Historical Centre of Hanoi, Vietnam by InSAR. 
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On the other hand, ground-based synthetic aperture radar interferometry (GBInSAR) is a radar-based 

technique which was developed by the Italian company IDS (Ingegneria Dei Sistemi, Pisa, Italy) (Figure 

2-11) (Gentile, 2009). It utilises the phase information obtained by a microwave radar sensor from 

repeated electromagnetic pulse transmissions to compute scattering object displacements which are 

employed to estimate the kinematic characteristics of a deforming structure for use in dynamic and 

modal analysis studies (Piniotis et al., 2016). The advantage of this technique is that it is a higher 

accuracy, a longer range, a possibility of work in bad weather (e.g. fog or rain), and a high recording rate 

(Gentile, 2009, Piniotis et al., 2016, Pratesi et al., 2015). However, the main drawback of this technique is 

that it measures only one-dimensional displacement in the line of sight direction (Piniotis et al., 2016). 

Recently, this technique has been used to monitor heritage buildings. For example, Tapete et al. (2013) 

have integrated GBInSAR with TLS to monitor displacements of the Domus Tiberiana sited along the 

northern side of the Palatino Hill in the central archaeological area of Rome, Italy. Another example, Saisi 

et al. (2016a) have assessed the structural condition of the bell-tower of the Church Santa Maria del 

Carrobiolo in Monza, Italy by dynamic tests were carried out by GBInSAR.    

 
Figure 2-11 The microwave interferometer (IDS, model IBIS-S)(Gentile, 2009). 

2.7.6 Photogrammetry and TLS  

It has been expected that the developments in the TLS over last decade may lead to a loss of the interest 

in the photogrammetry. Nevertheless, developments in image analysis and computer vision have resulted 

in the appearance of a novel photogrammetric approach called Structure-from-Motion (SfM) (Javernick et 
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al., 2014, Nadal-Romero et al., 2015, Ouédraogo et al., 2014). Many researchers have carried out 

comparison between these methods, due to the fact that they have common characteristics; especially in 

the world of documentation and monitoring of cultural heritage and historic ruins, such as: 

 Can perform measurements contactless. 

 Can handle unpredicted deformations, no need to determine locations of deformation. 

 Non-invasive. 

 Can create dense point clouds. 

 Can provide 3D visualisation. 

 Can perform any 3D measurements. 

 Can extract different types of typical 2D drawings such as profile and cross-section. 

For instance, Lichti et al. (2002) have conducted comparative testing between digital photogrammetry 

and TLS measurements on wooden bridge undergoing a series of structure load test.  Interestingly, they 

have used digital photogrammetry as a base to quantify scanner sensitivity. They concluded that 

differences between the photogrammetric and the top surfaces scanner measurements were nearly 

constant.   

Böhler and Marbs (2004) have compared these techniques in five projects: a stone wall with 

archaeological findings, façade of a classical castle, renaissance relief plate, archaeological artefacts, and 

antique statue. They have advised using close range photogrammetry if objects can be described 

predominantly by point- or line-based structures, especially for distinct textures. In addition, the short 

time needed for photogrammetry in heritage recording is considered an advantage. On the other hand, 

they believe that TLS can capture very accurately and in full detail complex and irregular objects such as 

sculptures, reliefs or archaeological findings. 

Kolecka (2011) has compared modelling of steep mountain wall by using TLS and terrestrial digital 

photogrammetry. They proved that both methods have similar precision and level of detail. Furthermore, 

Fassi et al. (2013) have compared using TLS and image-based automated 3D modelling for the purpose of 

reconstructing complex and extensive cultural heritage areas. They believed that image-based modelling 

could be comparable with 3D scanner clouds in terms of point density and precision. 
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Ouédraogo et al. (2014) evaluated the ability of TLS and unmanned aerial system (UAS) for producing 

accurate, high-resolution digital elevation models (DEMs) in a small watershed area. Their assessment 

revealed that DEM derived from TLS data was more accurate than the DEM derived from UAS. Retamozo 

et al. (2015) have compared the accuracy of three 3D modelling techniques: Total Station (TS), TLS, and 

Unmanned Aerial Vehicles (UAV). Their comparison revealed that TLS is the most accurate method. 

Nadal-Romero et al. (2015) compared the performance of TLS and the SfM photogrammetry techniques 

in geomorphological erosion studies. They concluded that TLS provided the highest accuracy models, 

compared to SfM photogrammetry at short distances. Finally, Teza et al. (2016) compared the 

performance of TLS and SfM in a morphological analysis of the façades of a masonry building. Their 

results showed that the quality of both methods is the same under the condition of optimal viewpoint 

positions for SfM, and the relative differences are lower than 10%-20%. Table 2-5 summarises the 

comparison between these techniques according to the literature. 

Another group of researchers stated that limitations of both technologies are complementing one 

another; hence, they have suggested a combination of scanning and photogrammetric techniques. For 

instance, Guidi et al. (2008) have suggested combining images and active sensors (TLS) to model complex 

archaeological sites. For this purpose, aerial images, TLS, and terrestrial images were employed.  This 

approach allows exploiting the intrinsic advantages of each technique, hence, they can each be used 

where best suited. González-Aguilera et al. (2009) integrated a terrestrial laser scanner, a high-resolution 

digital camera and a total station to model cave geometry, to overcome drawbacks of each method. Lerma 

et al. (2010) have combined TLS and close-range photogrammetry to document archaeological cave. They 

demonstrated the effectiveness of the combination to ensure a solution to complex archaeological sites. 

Assali et al. (2014) combined terrestrial laser scanning and dense image matching data for 3D mapping 

and characterising rock faces. Their study revealed that both laser scanning and image matching could 

give similar quality results. 
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Table 2-5 Comparison between TLS and photogrammetric techniques. 

 Photogrammetry TLS 

working fields  For objects which can be delineated 

fundamentally by point- or line-based 

structures (Böhler and Marbs, 2004). 

 Objects have distinct textures (Böhler 

and Marbs, 2004). 

 For objects ranging from a few 

decimetres up to 200m (Lerma et al., 

2010). 

 Very complex and irregular objects 

like sculptures (Böhler and Marbs, 

2004). 

 Can apply to range up to 1500 m. 

Advantages  Short time needed for the recording on 

site (Böhler and Marbs, 2004). 

 Low-cost (González-Aguilera et al., 

2009, Kolecka, 2011, Lerma et al., 2010, 

Nadal-Romero et al., 2015). 

 Easy to set up (Lerma et al., 2010) 

 A higher geometric accuracy (Kolecka, 

2011) 

 SfM photogrammetry can be 

considered a precise and faster 

methodology at short distances (Nadal-

Romero et al., 2015). 

 The relative differences of qualities of 

SfM-based and TLS are lower than 

10%–20% under the condition that the 

viewpoint positions are optimal (Teza 

et al., 2016). 

 The overall geometries provided by 

TLS and SfM were very similar (Teza et 

al., 2016) 

 More precise (Fassi et al., 2013, 

Nadal-Romero et al., 2015, 

Ouédraogo et al., 2014, Retamozo et 

al., 2015) 

 It can provide full resolution scans 

in real time (Fassi et al., 2013). 

 TLS superbly fulfils the demand for 

a high level of detail (Kolecka, 

2011). 

 Unlike photogrammetry, only one 

location for TLS can collect 3D data 

(Kolecka, 2011). 

 For TLS, point clouds are created 

instantly in the field, while in the 
digital photogrammetry, they are 

generated in post-processing and 

can be time-consuming (Fassi et al., 

2013, Kolecka, 2011). 
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Disadvantages  It is infrequent to extract quantitative 

data from photographs (González-

Aguilera et al., 2009) 

 Deficiency of fully automatic 

techniques which can produce 

satisfactory results especially when 

dealing with textureless imagery 

(Kolecka, 2011, Lerma et al., 2010). 

 Stereoscopic plotting requires expert 

operators  (Kolecka, 2011, Lerma et al., 

2010). 

 The post-processing time (even if 

completely autonomous) can become 

extremely long (Fassi et al., 2013). 

 A scale-independent measurement 

technique (Assali et al., 2014). 

 Traditional photogrammetric DEMs 

were typically less accurate and precise 

than airborne LiDAR (Javernick et al., 

2014). 

 Costly (Assali et al., 2014, González-

Aguilera et al., 2009, Guidi et al., 

2008) 

 Usually massive size (Guidi et al., 

2008) 

 Limited flexibility (affected by 

surface properties) (Guidi et al., 

2008) 

 It is poor colour resolution 

(González-Aguilera et al., 2009) 

 The complexity of the related data 

management (Fassi et al., 2013, 

Lerma et al., 2010). 

 Can only give results of very similar 

quality of photogrammetry (Assali 

et al., 2014).  

 

In general, it is not logical to give an answer for which is the better method, yet it should be whichever is 

the suitable one because each method has got its advantages at different working fields (Böhler and 

Marbs, 2004). Therefore, the choice of technique should mainly be based on the project requirements, 

observational constraints, human and technical resources (Kolecka, 2011, Teza et al., 2016). 

In this research, according to the aforementioned constraints for heritage and historic buildings, possibly, 

the best technique is the TLS. This is clarified in Table 2-6 which is identical to De Stefano (2007) 

prediction “The general trend of structural monitoring technologies, anyway, is going towards a really 

distributed sensing, no more by means of many small low cost sensors but by means of smart sensing surface 

or volume extended devices”.  

Table 2-6 Suitability of monitoring techniques for heritage and historic buildings (good (+), average (o) or 
poor (−)). 

Techniques 
Unpredicted 

deformations 
Required 
accuracy 

Non-invasive 
Static 

monitoring 

Conventional Surveying ‒ + o + 

Geotechnical sensors ‒ + ‒ + 

Wireless sensors ‒ + o + 

Video gauge ‒ + o + 
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InSAR (GB InSAR) + + + o 

Photogrammetry + ‒ + + 

TLS + + + + 
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 USING TERRESTRIAL LASER SCANNER FOR CHAPTER Three:

MONITORING 

3.1 Introduction 

The objective of this chapter is to investigate TLS based deformation monitoring techniques. At end of 

this chapter, advantages and disadvantages of existing methods will be pointed out. Consequently, the 

proposed method will be designed to cope with cons and utilise all pros.  Furthermore, registration and 

georeferencing need to be reviewed because both or one is a mandatory step for any TLS based 

monitoring survey. Additionally, there is a strong correlation between them and monitoring techniques. 

Hence, the second part of this chapter will be assigned to discuss registration and georeferencing 

techniques. 

3.2 TLS Monitoring Techniques 

Interestingly, many researchers are focusing on this new approach due to the great advantages it can 

offer. According to Zogg (2008), the first research discussed using TLS in monitoring was done by Gordon 

et al. (2001), after that many researchers have dealt with the same topic. There are however three 

distinct challenges to using TLS in structure monitoring: first, the enormous amount of data and the 

difficulty in handling it; second, it is impossible to scan the same point in different epochs even if the 

scans are well registered, due to the deficient set-up of TLS on the same point and laser beam footprint; 

third, data is contaminated by noise. The first problem is solved by segmentation and point structure 

while the second and the third still need more investigation, although many interesting studies have been 

carried out in this area. In general, solutions can be classified into five categories: using targets, cloud to 

cloud comparison, interpolation models, surfaces matching, and some specific solutions that apply only to 

particular cases. 

3.2.1 Using Targets  

Some groups of researchers have suggested using targets where TLS can act as the same as a total station. 

The first research which discussed this technique was done by Gordon et al. (2001) then further by a few 

other researchers (Dal Piaz et al., 2007, Hejbudzka and Dumalski, 2011, Roberts and Baddley, 2007, 

Valanis and Tsakiri, 2004). 
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Fundamentally, it is based on the target acquisition which can be acquired automatically at a scanning 

session or possibly be determined later at post-processing and defined as the technique of estimating 

target centre by comparing the intensity of different parts of the target (Pejić, 2013). Consequently, 

several researchers are focusing on improving the accuracy of the target identification. For instance, 

Valanis and Tsakiri (2004) developed automatic targets identification based on fuzzy classification, 

gridding and averaging techniques. Through their algorithms, they reduced errors coming from automatic 

targeting. Another example, Hejbudzka and Dumalski (2011) analysed the precision of the position of 

High Definition Survey (HDS) target centre. They compared Cyclone software results with their program. 

 The advantage of this method is that it can determine three-dimensional deformations and detect 

deformations of less than 0.45mm (Tsakiri et al., 2006). However, the single point precision of targets is 

much higher when conventional surveying, such as Total Station, is implemented (Tsakiri et al., 2006). 

Therefore, it is illogical to use a high-cost technique to get less accurate results.  

3.2.2 Cloud to Cloud Comparison 

Another group of researchers applied direct cloud-to-cloud comparison. In this case, point clouds can be 

used directly to detect changes between two clouds collected at different times. Several researchers 

discussed this method and introduced some procedure to improve accuracy. For instance, Girardeau-

Montaut et al. (2005) used Octree point structure to detect changes on building sites. This method can 

offer quick detection where the speed of the data analysis plays a critical role (Monserrat and Crosetto, 

2008). Limited accuracy and the high noise level prevent detection of small deformations (Monserrat and 

Crosetto, 2008, Tsakiri et al., 2006). Lindenbergh and Pfeifer (2005), and  Lindenbergh et al. (2005) used 

the direct comparison of observed points to detect deformation between two scans. The assumption of 

this method is that the scanner positions are same. The drawbacks of this method are that only one-

dimensional deformation can be detected, which is in the direction of the range. In addition, a huge 

number of points are required to judge the deformations and the same point cannot be identifiable on 

multiple epochs for the same surface (Tsakiri et al., 2006). Finally, Abellán et al. (2009) could detect 2.3 

mm deformation at 50 m compared with 15 mm if using raw data by the Nearest Neighbour Averaging 

(NNA) method. The drawback of this method is that it is a two-dimensional deformation. 
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3.2.3 Interpolating Models 

Another technique developed for structural monitoring is based on model interpolation. According to 

Pesci et al. (2013), the difference between point cloud and an interpolated primitive models is much more 

sensitive to deformations compared to the difference between two point clouds in different epochs. There 

are many researchers interested in this technique, and different models have been developed. Despite 

some advantages, all of these models can only detect a one-dimensional deformation (Monserrat and 

Crosetto, 2008). 

In general, triangular mesh model is widely used in computer field among different 3D models.  Possibly 

because it may be considered that constructing and manipulating triangle mesh is a simple operation. 

Furthermore, the ability to change the resolution of the model through merging triangles, deleting nodes, 

and swapping edges. Nevertheless, this operation needs more post-processing procedure like mesh 

optimisation. Additionally, visual limitation of triangular mesh restricted it, and therefore other methods 

have received more attention (Park et al., 1999). 

For landslide monitoring, Digital Terrain Model (DTM), Digital Elevation Model (DEM), and Triangulated 

Irregular Network (TIN) have been used (Barbarella and Fiani, 2013, Bitelli et al., 2004, Corsini et al., 

2013, Mill and Ellmann, 2014, Pesci et al., 2007, Schäfer et al., 2004, Wang et al., 2011). These models are 

evolved very fast and now include explicit calculation of uncertainties (Lague et al., 2013). In addition, 

they can reduce possible data storage and provide a good digital representation for surface study, volume 

estimation and other interesting applications (Pesci et al., 2007). Finally, GIS software can be used to 

represent and analyse such models. On the other hand, they are a one-dimension deformation and limited 

sensitivity to small deformation (Monserrat and Crosetto, 2008). Furthermore, they cannot be applied 

properly in the 3D environments as they cannot describe vertical surfaces such us cliffs (Lague et al., 

2013). 

Lindenbergh and Pfeifer (2005) estimated the parameters of the common plane from the parameters of 

planes in different epochs; statistical tests were then used to check if there was any deformation between 

planes. The advantage of this method is its capability to detect deformations with magnitudes with less 

than single point precision. However, it cannot be applied in different applications (Monserrat and 

Crosetto, 2008). 



CHAPTER THREE: USING TERRESTRIAL LASER SCANNER FOR MONITORING 

36 
 

Pesci et al. (2011a) used planes to detect deformation. The first plane was vertical to examine building 

inclination, while the second was the best fitting for point clouds. According to Pesci et al. (2011a), and 

Pesci et al. (2013) this technique allows an accurate definition of the deformation patterns. However, it is 

a particular case and cannot apply for all structures and can detect a one-dimensional deformation.  

For dam monitoring, Alba et al. (2006) used a triangular mesh computed from resampled point clouds 

then they interpolated a regular polynomial 3D surface from this mesh. They could overcome the point’s 

unrepeatable problem and achieved accuracy better than using point clouds. However, it is also a one-

dimensional deformation (Monserrat and Crosetto, 2008).  

Gonzalez-Aguilera et al. (2008) have used a Radial Base Function (RBF), which is developed by Carr et al. 

(1997), Carr et al. (2001) to interpolate surface from the 3D coordinates, for dam monitoring. They 

proposed multiple orthogonal cross sections to overcome one-dimensional deformation; however, it is 

only valid for structures with predictable deformation. 

Zhou et al. (2011) used Non-Uniform Rational B-Spline (NURBS) surface modelling to monitor concrete 

continuous beam bridges. One benefit of NURBS method is that its interpolated surface will be more 

precise descriptions of the object than the un-modelled observations. Another advantage is that it is 

robust to the noise present in the data because the outliers affect just part of the area of the whole 

surface. Finally, it is known as a semi-automated or automated method (Park et al., 1999).  

The drawback of monitoring using surface modelling base on NURBS, in addition to one-dimensional 

deformation monitoring, is that its data should be organised and arranged on a grid, which is not always 

possible in a real situation, such as TLS data (Park et al., 1999). Another disadvantage is that a large 

computer memory is required, and instability may occur if both the number of measured points and the 

number of control points are increased (Ma and Kruth, 1998).  

Some researchers have used nonparametric estimation based on local bivariate kernel smoothers to 

interpolate surface (Armesto et al., 2010, de Asís López et al., 2014, Roca-Pardiñas et al., 2008). In this 

technique, there is no need to specify parameters between data and the response variable (Roca-Pardiñas 

et al., 2008). In addition, nonparametric regression can be used to filter noise as well as to reduce data 

volume if it is huge, consequently reduce time cost (Roca-Pardiñas et al., 2008). Despite the usefulness of 

nonparametric technique, its fitness depends on the selecting bandwidths which are regarded an open 
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problem (Roca-Pardiñas et al., 2008). Furthermore, it can be considered a high-cost computation 

(Armesto et al., 2010). 

Some researchers interpolate not only surfaces, but three-dimensional shapes such as cylinders to 

determine deformation in a tunnel (Van Gosliga et al., 2006). This method allowed determining 

deformations of the completed tunnel with respect to the design. However, it only works with a specific 

type of structure, such as tunnels, and one-dimensional deformation.  

Finally, it is worth mentioning another model interpolation approach, which is based on Multiscale Model 

to Model Cloud Comparison (M3C2) proposed by Lague et al. (2013). According to Barnhart and Crosby 

(2013), it is the most robust analysis for point clouds because it includes confidence interval for each 

distance measurement which is estimated based on point cloud roughness and registration error. 

Furthermore, it can offer accurate surface monitoring that is independent of point density (Lague et al., 

2013). Nevertheless, it is a one-dimensional deformation, which is in surface normal direction. In 

addition, if there is a deflection between normals of two clouds (reference and compare), the average 

normal is considered. In this case, the deformation direction will be wrong. 

3.2.4 Surfaces Matching 

Some researchers employed a technique which is based on determining transformation parameters 

required to match two surfaces. When two or more georeferenced models obtained by multi-temporal 

scans are available, two methods are used for this purpose: Iterative Closest Point (ICP), and Least Square 

3D (LS3D).  

For instance, Teza et al. (2007) used ICP to monitor landslide due to its robustness against noise and 

small morphological modifications and its ability to determine three-dimensional deformation. However, 

this technique has drawbacks. To begin with, the clouds’ roughness or highly deformed objects may 

reduce surface matching and consequently yield incorrect results (Lague et al., 2013). In addition, the 

presence of holes or other defects may prevent correct surface matching, particularly with the presence 

of high noise and sometimes the convergence does not happen at all (Teza et al., 2007). Furthermore, it 

considers all unknowns with the same scale, and it cannot handle multi-scale data. Finally, due to 

linearization, it needs approximate values for the corresponding points (Guarnieri et al., 2005).  
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Another example is that Monserrat and Crosetto (2008) used LS3D for deformation monitoring. This 

method has the flexible procedure and is sensitive to small deformations with values below the noise of 

the single TLS points. In addition, it can determine three-dimensional deformations. Furthermore, it has 

suitable tools for accuracy and reliability checks through using the LS standard (Guarnieri et al., 2005, 

Monserrat and Crosetto, 2008). Finally, it is considered as an automatic or at least semi-automatic 

procedure for deformation analysis (Monserrat and Crosetto, 2008). Despite all of these advantages, it 

undoubtedly has drawbacks. Firstly, as long as it is a non-linear functional model, convergence may not 

happen unless good approximations of the unknowns existed (Guarnieri et al., 2005, Monserrat and 

Crosetto, 2008). In addition, in the case of significant deformations or structural changes of the objects, it 

is not possible to match the point clouds which represent partly or wholly different objects (Monserrat 

and Crosetto, 2008).  

3.2.5 Specific Solutions 

Some researchers have used specific techniques for particular structures or a certain type of deformation 

with an observed trend. For instance, Gordon et al. (2004a), Gordon et al. (2004b), and Gordon and Lichti 

(2007) developed a physical model that represents the deflection of a loaded beam. With this technique, 

they could reach to sub-millimetre accuracy, tenfold more accurate than the advertised single-point 

precision (Gordon et al., 2004b, Tsakiri et al., 2006). However, the generation of this model needs prior 

knowledge of the dimensions of the beam, spatial position of the load point(s) and support points. This 

means they are particular deformation analysis cases (Gordon et al., 2004a, Monserrat and Crosetto, 

2008). Furthermore, it is one-dimensional deformation. 

 Schneider (2006) tested bending the line of a television tower by cutting the tower into layers. He could 

obtain to more accurate than original TLS data, but it works in specific buildings only (Monserrat and 

Crosetto, 2008).  

Park et al. (2007) presented a displacement measurement model for the purpose of health monitoring of 

structures. They could estimate deflections less than 1 mm by this model. However, it is a manual 

technique that can work on structure member level only, not whole structure, and one-dimensional 

deformation again. Olsen et al. (2010) used intuitive slicing analysis technique for damage detection and 
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volumetric change analysis for a full-scale structural test specimen. This method can be automated for a 

rapid generation of results, but it is a particular case of deformation.  

For deriving a surface deformation, Aryal et al. (2012) implemented cross-correlation-based particle 

image velocimetry. Through this method, it can derive continuous displacement fields from active, slow-

moving landslides. However, it has limited accuracy at the decimetres level. In addition, it may produce 

spurious results if parts of ground features remain stationary. Furthermore, the correlation may degrade 

if the ground surface is highly deformed, this may occur during rapid movement or transition to a debris 

flow (Aryal et al., 2012). Finally, only two-dimensional deformations can be determined.  

Kim et al. (2014) employed TLS to localise and quantify spalling defects on concrete surfaces using angle 

deviation and distance deviation. The advantage of this method is that it can detect and localise the 

spalling defect autonomously and simultaneously. However, it only works for the particular case when 

the concrete is a flat surface, and for two types of defects, concave-shape and flat-top flaws. Hence, slight 

spalling defects less than 3 mm deep can hardly be detected (Kim et al., 2014). In addition, it is vulnerable 

to scan parameters; i.e. the incident angle recommended is less than 15˚. 

3.3 Registration 

Since the TLS is a line of sight sensor, multiple scans from different positions need to be conducted, if the 

object being surveyed is quite large. Consequently, all scans need to be aligned to a common coordinate 

system for any further analysis; this procedure is called registration (Gruen and Akca, 2005, Theiler et al., 

2014).    

Broadly, registration should resolve four ambiguities: (1) the registration primitives for corresponding 

features which can be points, lines, surfaces; (2) the transformation formula from reference systems of 

the involved datasets to a common reference system; (3) the similarity measure which can describes the 

coincidence of corresponding features after the registration; and (4) the matching strategy which is a 

guide for the automatic registration process (Habib and Alruzouq, 2004). 

There are three main registration methods, targets based, natural point features, and surfaces matching. 

According to Alba and Scaioni (2007), there are two factors affect selecting suitable registration method: 

required accuracy and configuration of scan view. 
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3.3.1 Targets Based Registration 

It is a common method where targets are located in positions can be seen from different scans. The target 

points in such a way are called tie points (Reshetyuk, 2009). To transform reference system from one 

scan to another, six parameters (three translations and three rotations of reference system) should be 

estimated. The scale factor is considered unity and irrelevant in the transformation since TLS provides 

real scale (Al-Durgham et al., 2014, Gordon and Lichti, 2004, Reshetyuk, 2009). These parameters are 

known as rigid-body or three-dimensional Helmert transformation parameters (Reshetyuk, 2009). 

Minimum of two target points, known in both reference systems, are required to determine six degrees of 

freedom. Usually, increasing of these points improves the registration quality. However, Gordon and 

Lichti (2004) showed no considerable improvement after the fourth target. Furthermore, the location of 

tie points with respect to the scanned area may affect directly on the quality of registration. Therefore, 

they need to be well-distributed geometrically (ibid). 

The acquiring of the centre of targets is a vital for this method, usually, is done automatically by scanners’ 

software e.g. Cyclone. In addition, type and shape of targets play a fundamental role in data quality. For 

instance, the sphere targets may produce more accurate data than flat targets because the sphere is 

better spatial distribution and it needs no orientation over different scans. 

Registration using targets marks affords high accuracy and robustness because the errors come from 

setting up, and levelling of TLS does not contribute to the total errors budget. However, levelling of TLS 

can reduce the degree of freedom to four since in this case rotation angle around X and Y will be zero.  

On the other hand, the drawback of this technique is that it is labour-intensive and time-consuming. In 

addition, targets might occlude some scene part and usually have to be removed from point clouds (Liang 

et al., 2014, Theiler et al., 2014, Yang et al., 2013, Yang and Zang, 2014). 

3.3.2 Geometrical Objects and Natural Features 

Alternatively, sharp features and geometrical objects, such as lines, planes, and spheres, can act as tie 

points instead of targets. Probably most scanners’ software can detect sharp features with different ways. 

For instance, it is possible to detect sharp features from point cloud by finding points with normal vector 

different entirely from neighbours (Walsh et al., 2013). 
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According to Al-Durgham et al. (2014), the most comprehensive work for features registration was 

introduced by Yao et al. (2010). They proposed a Random Sample Consensus (RANSAC) algorithm to 

register laser scans in pairs. Their technique is based on extracting groups of linear and planar features 

and then using these features as tie points. However, it is reported that their technique is sensitive to the 

presence of repetitive patterns, and failed in outdoor scans registration (Al-Durgham et al., 2014). 

In general, this registration method is not recommended because features may be not well-distributed 

geometrically, hence, less quality. Furthermore, the effect of the incident angle can reduce the quality of 

registration owing that features are scanned from different locations (Liang et al., 2014). For these 

reasons, English Heritage recommends avoiding using natural point features for the point clouds 

registration (Reshetyuk, 2009).  

3.3.3 Surface Matching  

This approach is based on matching the whole overlapped area instead of district tie points.  Evidently, 

one of the main disadvantages of the surfaces matching registration is that it requires of overlapping vast 

area between scans, at least 30% (Reshetyuk, 2009). In addition, to get better results, this overlapped 

area should have a good spatial distribution where different features exist (e.g. plant). While flat surfaces, 

such as walls and roadways, with a reduced spatial distribution, may give bad registration quality.  

Furthermore, due to the nonlinear algorithm (i.e. iteratively estimate parameters), applying this method 

directly to scans with arbitrary relative orientation will in most cases fail (Theiler et al., 2014). Therefore, 

it requires accurate initial approximations for the transformation parameters to estimate the 

correspondence and thus registration (Al-Durgham et al., 2014, dos Santos et al., 2013, Guarnieri et al., 

2005, Monserrat and Crosetto, 2008, Reshetyuk, 2009, Theiler et al., 2014, Yang et al., 2013). For all these 

reasons, it is not suggested to be used in monitoring survey.  

There are two known methods in surfaces matching, Iterative Closest Point (ICP), and Least Square 3D 

(LS3D).  

3.3.3.1 Iterative Closest Point 

Iterative Closest Point (ICP) is the most common registration technique, firstly developed by Besl and 

McKay (1992). To determine transformation parameters, the ICP starts with two meshes and the initial 
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approximations for their relative rigid-body transform, then minimises distances between corresponding 

points, in the overlapping area, in different scans. Furthermore, it iteratively revises these parameters 

until convergence. Variant derivatives of the ICP have been proposed to improve either the speed or the 

robustness of this method. Rusinkiewicz and Levoy (2001) classified many of these variants and evaluate 

their effects on the speed. In general, there are six stages of the ICP algorithm (ibid): 

1. Selecting a set of points in one or both meshes which are created for both clouds. 

2. Matching between these points and samples in the other mesh. 

3. Suitable weighting the corresponding pairs. 

4. Filtering out certain pairs based on individual or whole constraints. 

5. Based on the point pairs, estimating errors. 

6. Minimising the errors. 

According to Akca et al. (2005), the central computationally expensive part of the ICP is the search for the 

correspondence, and typically, it will converge after 30-50 iterations even more in some cases. 

3.3.3.2 Least Square 3D 

Gruen and Akca (2005) have developed a new approach for registration which is called Least Squares 3D 

(LS3D). It is a generalisation of the least squares image matching which was introduced by Chen and 

Medioni (1991). The transformation parameters are estimated in this method by minimising the sum of 

squares Euclidean distances between two or more surfaces, instead of distances between correspondence 

points in the ICP method. It starts with search surface estimation, then, Euclidean distances between the 

reference point cloud and the search surface are minimised to determine transformation parameters 

which are applied on the search surface, and the whole process is repeated until convergence. 

Alternatively, the numerical derivatives can also be calculated on the template surface, if there are 

insufficient initial approximations (Akca, 2007).  

3.3.4 Coarse Initial Alignment 

As has been mentioned early, the surfaces matching registration technique requires initial alignment, i.e. 

coarse registration, before it can be applied. This alignment can be done manually if there are a few 

numbers of scans. However, it could be complicated, if the number of scans increased, i.e. multiple 

registrations, with more than pairs overlapped. In such a case, automation is needed to fulfil the coarse 

registration; and thus, the fine registration can be applied.  
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There are different techniques existed for fully automated coarse registration without targets. Most of 

them have a common framework: first, extracting a set of features or key points; second, forming subsets 

and match overlapping area; finally, estimating transformation parameters from the best match (Theiler 

et al., 2014). Following are some examples of these techniques. 

To begin with, Aiger et al. (2008) have introduced 4-Points Congruent Sets (4PCS) as a fast registration 

technique without any need for assumptions about starting alignment. This technique is based on 

extracting all 4-points coplanar sets from a point clouds which are almost congruent, under rigid 

transformation, to a given set of coplanar 4-points (Aiger et al., 2008). The main drawbacks of this 

technique are: (i) it does not well cope with high different point densities, such as that usually happen in 

TLS; and (ii) the huge TLS point clouds need to down-sample in order to use this technique efficiently, 

thus probably point-to-point correspondence may no longer be guaranteed (Theiler et al., 2013).  

To cope with this limitation, Theiler et al. (2013) proposed a new technique termed Key-point based 4-

Points Congruent Sets (K-4PCS). They suggested using key-points to represent point cloud instead of 

applying original point cloud. Although this method is faster than original 4-PCS, it is too slow for regular 

use in practice. In addition, it failed in some circumstances when more key-points were found close to the 

scanner due to more detail was observed (Theiler et al., 2014). For these reasons, Theiler et al. (2014) 

applied some extensions to improve their technique. In general, they improved time-cost and reduced the 

failure rate, yet failures still occur in the presence of symmetries or repeated structures and new 

solutions are needed (Theiler et al., 2014).   

Al-Durgham et al. (2014) introduced a new automatic registration technique which is based on linear 

features that are extracted from the scans by a region-growing segmentation approach. The spatial 

separation and angular deviation between all the existing line pairs in each scan are used to identify 

linear pairs’ correspondence. After that, the transformation parameters are determined for each pair. The 

clusters of transformation parameters that are numerically close to each other represent the final 

transformation parameters (Al-Durgham et al., 2014). This technique is a time expensive and impractical 

particularly when a lot of linear features exist.  

Another interesting research for the coarse registration which is based on extracting spatial curves as 

matching primitives (Yang and Zang, 2014). The proposed technique involves three key parts: extracting 
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spatial curves which are representing crest line of prominent features, estimating deformation energy 

model from the crest lines which has been proposed here to determine the shape similarity between 

extracted crest lines, and matching conjugate curves to determine transformation parameters (ibid). 

It is worth to mention some automated techniques that have been developed to solve coarse and fine 

registration in one step. For instance, Toldo et al. (2010) proposed embedding Generalized Procrustes 

Analysis (GPA) (chapter five) in ICP and called it ICP-GPA. Another example, Yang et al. (2013) proposed a 

global optimal solution for ICP and called it GO-ICP. They combined ICP with a branch-and-bound scheme 

to avoid local minima which frequently happen if ICP starts with arbitrary initialisation. However, this 

method has been evaluated on limited point cloud, yet does not scale up to massive data sets (Theiler et 

al., 2014).  

3.4 Georeferencing 

If there is a requirement to integrate TLS data with other geospatial data, e.g. ground control points, the 

registered point cloud of the whole object should be transformed to selected external coordinate system, 

which is either local or national. This procedure is called georeferencing (Reshetyuk, 2009). Hence, the 

georeferencing is defined as the procedure of transforming the intrinsic coordinate system, TLS 

coordinate system, to a national or local coordinate system. There are two methods for georeferencing: 

direct, and indirect. Broadly, two factors can affect the selection of adopted method: the scene 

characteristics and the required accuracy (Alba and Scaioni, 2007).    

3.4.1 Direct Georeferencing 

In this method, TLS acts as same as Total Station (TS), and it sets up over a known point and orients to 

another known point. In other words, the six degrees of freedom are determined practically, when TLS 

optically centred over a known point, three translation parameters are set, and the other rotation angles 

around X and Y axes are set through levelling, finally, rotation angle around Z-axis is fixed from orienting 

instrument to a known point (Alba and Scaioni, 2007). 

Recently, TLS is integrated with other sensors, such as Global Navigation Satellite System (GNSS) and an 

Inertial Measurement Unit (IMU), to adopt direct georeferencing. Therefore, the integrated sensors can 

provide the platform position and altitude at each moment of data acquisition, and thus establishing 

coarse registration among multiple scans. However, the integrated sensor is preferable for mobile laser 
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scanner not for static because it imposes additional expenses to the scanning system (Al-Durgham et al., 

2014, dos Santos et al., 2013). 

Eventually, the quality of the data acquired by direct georeferencing technique depends on (Reshetyuk, 

2009):  

 The accuracy of the TLS setup procedure, such as centring, levelling, measuring the 

instrument height and orienting toward a known point.  

 The accuracy of the control points been used or integrated system. 

3.4.2 Indirect Georeferencing 

This technique is the same as targets based registration (Sec. 3.3.1), the only difference that targets in 

indirect georeferencing are placed on points with known coordinates in the external reference system 

which are called in this case, control points rather than tie points (Reshetyuk, 2009). Conventionally, with 

the absence of control points, surveying before scanning is required to distribute points relate to a local 

reference system, or to the national reference system if GNSS is used (dos Santos et al., 2013). 

It is worth to mention to interesting research which has proposed using control line instead of targets for 

indirect georeferencing (dos Santos et al., 2013). In this research, the corresponding lines are derived by 

segmenting and intersecting two adjacent planes which are not parallel, and then the transformation 

parameters are estimated by minimising the distance between the control lines and their corresponding 

(ibid). 

According to Reshetyuk (2009), the indirect georeferencing is the most accurate technique because the 

quality of results only depends on the accuracy of control points. However, it is time-consuming and 

labour intensive (dos Santos et al., 2013). 

3.5 Chapter Summary 

In this chapter, the potentials of using TLS for monitoring purpose have been discussed. Commonly, five 

techniques can be employed to detect deformations from TLS data: using targets, direct cloud to cloud 

comparison, interpolation models, surfaces matching, and some specific solutions. Each of these methods 

has pros and cons and Table 3-1 summarises the advantages and disadvantages of these techniques. 
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Table 3-1 Advantages and disadvantages of the TLS techniques for monitoring surveying. 

No. Technique Advantage Disadvantage 

1 Using targets  3D deformation. 
 High accurate. 

 The single point accuracy of targets is 
much greater when conventional 
surveying is implemented. 

 Expensive compared to conventional 
methods. 

 Needs pre-knowledge for the location of 
the deformed area. 

2 Cloud-to-cloud 
comparison 

 Quick where the speed of 
the data analysis plays a 
critical role. 

 Easy to implement. 

 Limited accuracy due to noise. 

3 Interpolation models  Can detect deformations 
with magnitudes less 
than the nominal single 
point precision 

 One dimension. 

4 Surfaces matching  3D deformation. 
 Sensitivity to small 

deformations with 
magnitudes below the 
noise of the single TLS 
points. 

 Non-linear functional model, care should 
be taken for approximate. 

 Convergence might not happen if there is 
significant deformation. 

 Cannot detect the shift. 
 Deformation for whole object (rigid 

transformation). 
5 Specific solutions  More accurate than 

original data. 
 Apply in particular cases. 
 

 

In terms of registration and georeferencing, because monitoring survey is a comparative procedure, it 

rarely needs georeferencing if there is no integration with other sensors. Therefore, it just requires that 

data for all epochs be related to the one coordinate system. In other words, only registration is required. 

However, in a massive structure monitoring, georeferencing can be used; hence, a control network needs 

to be established. 

Regarding buildings monitoring, targets-based registration can work perfectly after fixing tie points in 

stable areas, which can be part of the concerned building or on surrounding objects. Care should be taken 

to assess these points each period to be sure that they have not moved between epochs. This method is 

adopted in this research.    
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 ERROR SOURCES IN TLS CHAPTER Four:

4.1 Introduction  

One of the most difficult tasks in surveying monitoring is to distinguish between deformations and 

existing errors which result from the uncertainty of measurements. Conventionally, statistical 

significance tests are employed to cope with this, assuming that all gross and systematic errors are 

eliminated from measurements. Initially, we need to figure out magnitudes and types of expected errors 

in used technique, and then, remove all outliers and systematic errors.  

In terms of laser scanners, this is a complicated task due to different error sources with many variables in 

each of these. For instance, unlike conventional surveying methods, objects shape and reflection play a 

key role in errors of TLS measurements. In addition, there are some unobvious error sources such as that 

known as the mixed edge problem. 

Normally, laser scanner manufacturers state precisions of their instruments up to millimetre level. 

However, does this mean that all scanned points have this accuracy? Definitely, the answer is no. 

According to Lichti and Gordon (2004), the precision of all points was poorer than the announced 

precision. Therefore, creating observation conditions which can reach such accuracies is vital for TLS 

monitoring surveying. 

In this chapter, TLS error sources will be discussed, and types and magnitudes of these errors will be 

assessed. Furthermore, a procedure for eliminating laser scanner outliers and reducing noise will be 

introduced. 

4.2 TLS Error Sources 

Attention towards the problem of TLS calibration and validation has increased recently, due to the 

significant growth in TLS use, particularly by ‘non-experts’ from non-surveying and photogrammetric 

fields (Lichti, 2007). Commonly, physical models of a total station are used for this purpose due to mutual 

properties with TLS (ibid), although there are some different error sources for it.  

In general, there are different classifications for TLS error sources. For instance, Lichti and Gordon (2004) 

divided errors between internal and external sources, and outlined the contributed error sources in the 

directly georeferenced point clouds: (i) control points used for scanner orientation; (ii) instrument 
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setting-up; (iii) targeting; (iv) scanner noise; and (v) laser beam width. Another example, Staiger (2005) 

stated that there are five sources for TLS errors (Figure 4-1).   

 
Figure 4-1Parameters are influencing the quality of the scans (Staiger, 2005). 

Another group of researchers (Holst and Kuhlmann, 2016, Kaasalainen et al., 2011, Soudarissanane et al., 

2008, Soudarissanane et al., 2009, Soudarissanane et al., 2011) have indicated four main sources for TLS 

errors: 

 Hardware mechanism precision (instrumental errors), e.g. angular uncertainty, axes errors. 

 Object properties, e.g. roughness, reflectivity, colour. 

 Atmospheric conditions, e.g. ambient light, humidity, temperature. 

 Scanning geometry, e.g. incidence angle, range differences. 

Some researchers (Hodge et al., 2009, Hodge, 2010) have added data processing (e.g. registration), and 

data resolution to these sources. 

In this research, we are adopting Van Genechten et al. (2008) classification for TLS error sources due to 

the comprehensive listing. He spilled error sources to four parts: instrumental, object-related, 

environmental, and methodological. 
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4.2.1 Instrumental Errors 

Instrumental errors come from imperfect manufacturing of the TLS, which can be in two forms: 

geometrically and electronically. Due to the topic of this research, electronic errors will not be discussed 

here (refer to Kilpelä (2004) for more details). 

For a calibrated instrument, the geometrical errors commonly are classified as random errors. For 

instance, the range and angular measurements of TLS may include random errors and act as an 

uncertainty of measurements. 

4.2.1.1 Beam Divergence 

Beam divergence is the widening of the laser beam due to the distance travelled. It can be considered as 

the most significant random error (Laefer et al., 2009). Generally, it has a high influence on the point 

cloud resolution, mixed edge problem, range and angular precisions. Virtually, the recorded range and 

angular measurements are along the centre line of the emitted beam while the actual point location lies 

somewhere in the projected footprint. This case may yield a position uncertainty which is approximately 

equal to one-quarter of the laser beam diameter (Lichti and Gordon, 2004, Van Genechten et al., 2008). 

The beam divergence can be computed by the following equation (Lichti and Gordon, 2004, Van 

Genechten et al., 2008): 

𝑤(𝜌𝑤 ) = 𝑤𝑜√1 + (
𝜆 . 𝜌𝑤 

𝜋.𝑤𝑜
2
)2 

 

( 4.1 ) 
 

Where: 
ρw: the range relative to the beam waist location. 
w: radius of the beam. 
wo: beam waist (the minimum beam radius). 
λ: wavelength. 
 
However, for long range, it can be considered linear, so it is usually specified in terms of linear divergence, 

which may be stated in milliradian (mrad), plus an initial diameter (Lichti and Gordon, 2004, Lichti and 

Jamtsho, 2006).  

4.2.1.2 Mixed Edge  

Mixed edge (mixed pixel) happens when the emitting beam hits an edge of the object, and due to the 

footprint, reflects back from different surfaces (Figure 4-2), if they are separated by less than half the 
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pulse length (Lichti et al., 2005). Consequently, the recorded point position is calculated based on 

different returned signals, hence, a wrong position. As aforementioned, the influence of the mixed edge is 

increased due to the beam divergence and the latter increases over distance. In addition, increasing the 

scan resolution will increase the chances of the beam hitting an edge and therefore resulting in more 

mixed edges (Van Genechten et al., 2008). 

In general, the mixed edge can be classified as a gross error and might be removed through manual 

deletion, or by outlier removal based on a median filter (Lichti et al., 2005).  

 
Figure 4-2 Example of a mixed edge problem (updated from Van Genechten et al. (2008)). 

4.2.1.3 Range Uncertainty 

The precision of the range is based on the scanner types and their working principle. Mainly, the 

precision of ranges of time of flight scanner depends on the timing clock and can be expressed as follows 

(Beraldin et al., 2005, Van Genechten et al., 2008):   

𝛿𝑟 ≈
𝑐. 𝑇𝑅𝑒𝑝

2. √𝑆𝑁𝑅
 

 

( 4.2 ) 

 

 Where: 
TRep: pulse rise time. 
SNR: signal to noise ratio. 
c: speed of light in vacuum. 
 
On the other hand, there is no need for a high-speed timing clock in continuous wave based scanners. 

Hence, for such type of scanners, the range uncertainty depends on the modulated wavelength (λm) and 

Scanned 
object 

Laser beam 
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the signal to noise ratio (SNR), in case of amplitude modulation (Beraldin et al., 2005, Van Genechten et 

al., 2008):  

𝛿𝑟 ≈
𝜆𝑚

4𝜋. √𝑆𝑁𝑅
 ( 4.3 ) 

 

Whereas for the continuous wave scanners which are based on frequency modulated, the range 

uncertainty is estimated as (Beraldin et al., 2005): 

𝛿𝑟 ≈
𝑐

4∆𝑓𝑡
 ( 4.4 ) 

 Where Δft = tuning range or frequency excursion. 

As can be seen, in both scanner types, the range precision depends on the SNR, defined as the ratio of the 

power of the signal to the power of the noise, which is, in turn, depends on different factors (refer to 

Reshetyuk (2009) for more details). To get reliable range measurements, the required SNR should be ten 

at a minimum, while no range can be measured when the SNR equals five (Reshetyuk, 2009). 

4.2.1.4 Angular Uncertainty 

In all TLS instruments, there is a mechanism (mirror or prism) to deflect the beam in certain directions 

(Boehler et al., 2003). The imperfection of this mechanism along with the angle measuring system 

(angular encoding) introduces another source of instrumental errors (Reshetyuk, 2009). For calibrated 

instruments, these are random errors.  

4.2.1.5 Axes Errors  

Similar to most surveying instruments, TLS has three axes as following (Reshetyuk, 2009, Van Genechten 

et al., 2008): 

- Vertical axis: this axis allows the rangefinder to move emitting beam horizontally. Normally, it is 

the rotation axis of the TLS head. 

- Horizontal axis: it is the rotation axis of TLS mirror. 

- Collimation axis: it is the direction of the laser beam. 

These axes are assumed to be orthogonal to each other similar to a total station (Holst and Kuhlmann, 

2016). Due to imperfect manufacturing, or misuse, these axes may not be perfectly aligned and therefore 
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introduce errors. Fortunately, the systematic part of these errors can be removed in a calibration 

procedure leaving only the random errors.  

4.2.2 Object-related Errors 

Unlike most of the surveying techniques, the object shape, materials, and colour have a strong influence 

on the quality of the TLS outcomes. Mainly, the reflectance of the object surface plays the key role for the 

object-related error source. It is defined as the ratio between the reflected and incident laser beams, and 

is a function of the following factors (Reshetyuk, 2009):  

- Object materials properties: such as conductivity, electric permittivity, and magnetic 

permeability. 

- Object colour. 

- The wavelength of the laser beam.  

- Incidence angle. 

- Surface roughness which is related to the wavelength and incidence angle of the laser beam. 

- Object temperature. 

- Object moisture.  

Normally, the incident laser beam is reflected from the object surface in many directions (Figure 4-3). 

This type of diffused reflection is commonly described by Lambert’s cosine law (Van Genechten et al., 

2008):  

𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝜆) = 𝐼𝑖(𝜆). 𝐾𝑑(𝜆). cos 𝛼 

 

( 4.5 ) 

 
Where: 
Ii (λ): the intensity of the incident light which is a function of wavelength. 
 kd(λ):  the coefficient of reflection diffusion which is also a function of wavelength. 
 α:  incidence angle which is defined as the angle between the incident light and the surface normal vector. 
 
Normally, dark objects (black) absorb most of the incident laser beam and reflect a weak signal (low 

SNR), and therefore point precision will be corrupted by noise; bright objects with high reflectance can 

give more precise range measurements and hence more reliable outcomes. However, too high reflectance 

might cause noise called speckle noise, which is same as the multipath errors in GNSS technique, where 

the laser beam is fully reflected in the mirroring direction and then reflects toward TLS (Van Genechten et 

al., 2008). In this case, the measured range will not be for the desired point, but the point in the second 
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reflection. This type of error can be of any magnitude up to the maximum unambiguous range and can be 

removed by manual editing (Lichti et al., 2005).  

Another error occurs in a highly reflective surface which is called “Detector Saturation”, where objects 

look nearer due to a range bias which is caused by the received energy exceeding the dynamic range of 

the detector. It is hard to quantify the magnitude of this error, but for extreme cases, it might easily be 

identified manually through point cloud editing (ibid).  

Similarly, “Blooming” phenomenon is closely related to the saturation problem and takes place when 

returns are received from an object, such as a retroreflector target, making it appear bigger in size. 

Different factors can affect the amount of blooming such as laser power, material reflectivity, detection 

electronics (i.e. detection threshold), beam diameter, and the sampling interval (ibid). 

     
Figure 4-3 Diffuse reflection of the laser beam (Van Genechten et al., 2008). 

In addition to reflectance effects, the objects could have a semi-transparent coating which allows the laser 

beam to refract and reflect inside the material itself (Figure 4-4). Consequently, it can add a systematic 

error to the measured range (Van Genechten et al., 2008). In terms of monitoring, this error has no effect 

because it will subtract during epoch differencing assuming that the same instrument is used, with the 

same laser wavelength. 

 
Figure 4-4 Refraction and reflection of the laser beam inside object materials (Van Genechten et al., 2008). 
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Finally, it is worth mentioning research, conducted by Voegtle et al. (2008), which assessed the influence 

of different materials and object colours on recorded TLS measurements. The results of this research 

showed the increase of measurement precision at night-time and on luminescent materials. In addition, 

the effect of different wood species and wetness seem to be insignificant, while transparency and metal 

plates induce MSE values much higher than the general range precision of the laser scanner (Voegtle et 

al., 2008). 

4.2.3 Environmental Effects  

4.2.3.1 Temperature  

It can be noted that the temperature inside the TLS may be far hotter than the surrounding atmosphere 

due to internal heating or an external source (e.g. the sun) (Boehler et al., 2003). In addition, in an 

industrial environment, scanning hot objects may reduce SNR and in turn the precision of range 

measurements (Van Genechten et al., 2008).  

4.2.3.2 Atmosphere 

As in all instruments based on electromagnetic energy, the laser beam suffers from refraction when 

travelling through air. Consequently, it introduces a systematic error in the range measurements due to a 

change in laser light velocity. The refraction index is affected mainly by temperature, pressure and 

humidity. Hence, the most scanning acquisition software provides a correction for this refraction based 

on certain parameters. Therefore, the difference between actual atmospheric conditions and these 

parameters need to be adapted. For short and medium ranges, such as in monitoring surveys, this error 

can be easily corrected by inputting temperature, pressure and humidity before data collection, and any 

changes meanwhile surveying will introduce negligible errors. For instance, a difference in temperature 

of 10° C or air pressure of 35 hPa leads to range error of about 1mm/100m (Van Genechten et al., 2008).    

4.2.3.3 Interfering Radiation  

The precision of the range measurements may be affected by external radiation, such as illumination 

sources. Particular optical interference filters can be applied to the instrument to prevent incorrect 

frequencies from reaching the receiver (Boehler et al., 2003, Van Genechten et al., 2008).    
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4.2.3.4 Motion 

Although the TLS can collect data at rates of up to 1000,000 points per second (Leica Geosystems, 2013, 

Leica Geosystems, 2016a), scanning still takes 10-30 minutes depends on resolution and scanner type. 

During this time, any motion obstacles could prevent laser light reaching the scanned object, and 

therefore recording incorrect ranges (positions) for these points. In addition, any movement or vibration 

of the scanner meanwhile scanning will cause an error in all points. Therefore, the scanner needs to be 

mounted on a stable platform preventing any motion obstacles during monitoring survey. 

4.2.4 Methodological Impacts 

Methodological errors are errors that come from a wrong choice of survey methods, instruments or 

position, and configurations to handle scanning. Evidently, the position of the TLS has an influence on the 

incidence angle, the range and the point density, and therefore the quality of the point cloud 

(Soudarissanane et al., 2009). For instance, the quality of the point clouds can be improved by 25 % 

through moving a TLS by two metres (Soudarissanane et al., 2008). 

Mainly, methodological errors can be divided into three sources: resolution, registration, and incidence 

angle. 

4.2.4.1 Resolution 

Resolution is defined as the smallest object or object feature that can be detected in the point cloud 

(Boehler et al., 2003), or the ability to detect two objects on adjacent lines-of-sight (Lichti and Jamtsho, 

2006, Pesci et al., 2011b). It is important when recording fine details such as cultural heritage features 

(Lichti and Jamtsho, 2006). Technically, two different specifications contribute to it: laser footprint (the 

size of the laser spot), and the point density (or sampling interval which is the average distance between 

points in a point cloud). Commonly, the point density demonstrated in two styles (Andrews et al., 2015, 

Heritage, 2011): 

- Spatial: the average distance at a specific range (e.g. 5 mm at 10 m). 

- Angular: angular increments for vertical and horizontal angle (e.g. 0.3˚x0.3˚). 

In general, scanning with higher resolution (smaller average distance between points) can offer more 

detailed point clouds and better precision. Emphasis is often placed on the finest possible sampling 
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interval, which might be smaller than the laser footprint. In this case, the data resolution is determined by 

the laser footprint rather than the sampling interval (Hodge et al., 2009, Lichti and Jamtsho, 2006). 

Furthermore, an extra noise will create and the processing time will increase dramatically (Van 

Genechten et al., 2008). Hence, setting the sampling interval equal to the laser footprint might appear the 

optimal solution, although Lichti and Jamtsho (2006) approved that the best sampling interval equal to 

86% of the footprint. 

4.2.4.2 Registration 

Errors can also be introduced in the post-processing of raw data. One obvious significant source is the 

registration and georeferencing technique (Hodge et al., 2009). As has been mentioned in chapter three, 

there are different techniques for registration and georeferencing, and each has its pros and cons. In 

terms of monitoring, the most accurate method, target based, is advised which in turn introduces other 

possible errors from target design and spatial distribution. 

4.2.4.3 Incidence Angle 

The Incidence angle (α) , is defined as the angle between incoming laser beam (P) and surface normal (N), 

on the position of a scan point (Soudarissanane et al., 2009): 

𝛼 = cos−1(
𝑃.⃑⃑  ⃑ �⃑⃑� 

‖𝑃‖ ‖𝑁‖
) 

 

( 4.6 ) 

 

 
According to Soudarissanane et al. (2011), 20% of the measurement noise comes from signal 

deterioration, caused by the incidence angle. The radar range equation can be used to estimate such 

deterioration with the assumption that reflection is according to Lambert’s cosine law ( 4.5 ) 

(Soudarissanane et al., 2009):  

𝑃𝑟 = 𝐾𝑃𝑡  cos 𝛼 ( 4.7 ) 

Where: 
Pr: Power of received signal. 
Pt: Power of transmitted signal. 
K: Constant (depended on different factors such as the target reflectance, the range, the receiver aperture 
diameter, and some systematic and atmospheric transmission). 
α: Incidence angle. 
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Hence, the received signal power decreases with increasing incidence angle and therefore decreases the 

point cloud quality. Furthermore, the object surface reflectivity should be included to estimate the 

correction for incidence angle effects (Kaasalainen et al., 2011). 

Additionally, an elongated footprint occurs due to increasing the incidence angle (Figure 4-5) and both of 

them (footprint and incidence angle) give rise to a range bias which can be parameterised (Lichti et al., 

2005):  

𝛥𝜌 =
𝜌 𝛿

2 tan𝛼
 

( 4.8 ) 
 

 
Where: 
Δρ: the range error, ρ: the range, δ: the beam divergence (footprint), α: the incidence angle. 
 
For instance, a 3 mrad beam divergence could produce a range error of 0.15 m at a range of 100 m and 

45° incidence angle (Lichti et al., 2005). To avoid such error, Lichti (2007) has suggested a threshold of a 

maximum incidence angle of 65° for removing non-reliable measurements. Similarly, Laefer et al. (2009) 

have recommended the maximum incidence angle of 45° for ranges of about 12-15 m to minimise this 

error. 

 
Figure 4-5 Reflection geometry is demonstrating incidence angle (Soudarissanane et al., 2011). 

4.3 Quantification of Errors  

Although many manufacturers supply technical information about the operating efficiency of their laser 

scanners, it is recommended to conduct experiments to inspect data quality (Pesci et al., 2007), for 

different reasons: 
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 It may help to identify the error sources and may, therefore, suggest strategies for the removal of 

erroneous points and the technique for improving data quality (Hodge et al., 2009). 

 According to Laefer et al. (2009), the error figures published by equipment manufacturers are 

often misleading. 

 Normally, equipment manufacturers supply error figures in terms of standard deviation or MSE, 

while for some projects, such as monitoring, the maximum of errors is vital for final 

consequences. For instance, Hodge et al. (2009) conducted a test to estimate the errors of a Leica 

HDS300 laser scanner through considering residuals, by fitting a least-squares plane to the total 

station measurements and scanner point cloud, as range errors. Although they estimated 

standard deviation (2mm) better than the manufacturer guidance (4mm), the maximum error 

was up to 15 mm. 

 To set and fulfil realistic project specifications (Lichti and Gordon, 2004). 

For all above reasons, a test to quantify errors of a laser scanner has been conducted. For this purpose, 

two models of laser scanner were examined: Leica Scanstation P20 and P40, which are employed in 

validation. The potential is to quantify random errors only, hence, it has been designed in such a way that 

systematic and gross errors are minimum, as follows: 

1) Controlled atmospheric conditions were suggested. Hence, it was taken place at the indoors 

location. The photogrammetry lab in the Nottingham Geospatial Building (NGB) was used for this 

purpose (Figure 4-6).  

2) To reduce object related errors, a plane white surface was advised. Accordingly, a projector 

screen (Figure 4-7) was used as a scanning object. 

3) The distance between scanner and object was about 10m (exactly 10.028 m in P20 test and 9.991 

m in P40 test). The beam footprint is minimal at this close range. Additionally, the maximum 

incidence angle is less than six degrees (two metres length object), hence, negligible effects. 

4) The seven preset (default) point spaces were tested (50 mm, 25 mm, 12.5 mm, 6.3 mm, 3.1 mm, 

1.6 mm, and 0.8 mm).  

5) To estimate errors, the projector screen was scanned twice, and the distances between the 

corresponding points in point clouds were considered as noise.  For this purpose, CloudCompare 

software was used to compute cloud to cloud distances. 
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6) To remove mixed edge errors, the scanned area was trimmed out before computing cloud-to-

cloud distances.  

 
Figure 4-6 The location of error quantification test at photogrammetry lab in NGB. 

 
Figure 4-7 The scanned object in error quantification test. 

4.3.1 Scanstation P20 

As mentioned before, seven different point spaces were tested. In addition, for each point space, there are 

different quality levels (Table 4-1). The higher the selected quality, the more range measurements for the 

same collected point (Geosystems, 2015), hence, the recorded range is the average of multiple 

measurements (see  

Table 4-2 for the number of measurements in each case). Consequently, errors were quantified for 24 

different settings. For each, the mean errors (the mean distances between corresponding points in two 
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scans) and the maximum errors (the maximum distances between corresponding points in two scans) 

were estimated (Table 4-3 and Figure 4-8). 

Table 4-1 Technical specifications for Scanstation P20 (Leica Geosystems, 2013)  
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Table 4-2 Number of measurements of different resolutions and quality levels (Geosystems, 2015). 
 Resolution at 10 m (mm) 

Quality 50 25 12.5 6.3 3.1 1.6 0.8 

1 8 4 4 2 1 1 1 

2 16 8 8 4 2 2 2 

3 32 16 16 8 4 4 ------ 

4 ------ 32 32 16 8 ------ ------ 

 
 
 

Table 4-3 Error estimations for different settings for Scanstation P20. 

No Name Resolution 
(mm) 

Quality Time 
(seconds) 

No. of points Mean errors 
(m) 

Max. errors 
(m) 

1 
50mm_Q1 50 1 4 983 0.0016 0.0057 

2 
50mm_Q2 50 2 4 984 0.0012 0.0495 

3 
50mm_Q3 50 3 4 990 0.0011 0.0035 

4 
25mm_Q1 25 1 6 3905 0.0020 0.0110 

5 
25mm_Q2 25 2 6 3899 0.0013 0.0258 

6 
25mm_Q3 25 3 6 3947 0.0011 0.0049 

7 
25mm_Q4 25 4 8 3934 0.0007 0.0037 

8 
12.5mm_Q1 12.5 1 8 15888 0.0020 0.0128 

9 
12.5mm_Q2 12.5 2 9 15851 0.0013 0.0128 

10 
12.5mm_Q3 12.5 3 14 15855 0.0010 0.0126 

11 
12.5mm_Q4 12.5 4 23 15852 0.0009 0.0125 

12 
6.3mm_Q1 6.3 1 12 63635 0.0028 0.0109 

13 
6.3mm_Q2 6.3 2 15 63675 0.0019 0.0094 

14 
6.3mm_Q3 6.3 3 26 63662 0.0014 0.0077 

15 
6.3mm_Q4 6.3 4 49 63660 0.0010 0.0069 

16 
3.1mm_Q1 3.1 1 19 254256 0.0015 0.0067 

17 
3.1mm_Q2 3.1 2 26 254385 0.0022 0.0107 

18 
3.1mm_Q3 3.1 3 49 254395 0.0018 0.0079 

19 
3.1mm_Q4 3.1 4 96 254397 0.0015 0.0066 

20 
1.6mm_Q1 1.6 1 49 1021567 0.0012 0.0081 

21 
1.6mm_Q2 1.6 2 96 1022042 0.0015 0.0092 

22 
1.6mm_Q3 1.6 3 191 1022041 0.0014 0.0093 

23 
0.8mm_Q1 0.8 1 190 4064717 0.0009 0.0079 

24 
0.8mm_Q2 0.8 2 380 4084268 0.0010 0.0090 
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Evidently, the mean error is better than that published point position precision (3mm at 50m (Table 

4-1)), taking into account it is based on the difference between two points, it needs to be divided by 

square root of 2. On the other hand, the maximum error is much more than that expected, as high as 5 cm. 

This is possible because outliers occur which result from differencing between incorrect corresponding 

points. Figure 4-9 supports this assumption, especially in resolutions 50 mm, 25 mm, and 12.5 mm (a, b, 

and c) where few points show a clear difference compared to others. However, it is less clear for higher 

resolutions (Figure 4-10). This might be because, due to tiny distances in case of high resolutions, there 

are many points have all or most of the corresponding point properties and converging to any of them 

gives nearly the same results. Incorrect corresponding is the obvious disadvantage of using cloud 

differencing based on point-to-point distances to determine deformations because there is a chance to 

interpret outliers as deformations. In this case, it is advised to use higher resolutions or use another 

method to determine distances between two clouds; this will be discussed later in this chapter. 

 
Figure 4-8 The maximum errors of Scanstation P20. 
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Figure 4-9 Point errors of Scanstation P20 for different resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm). 
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Figure 4-10 Point errors of Scanstation P20 for various resolutions (3.1 mm, 1.6 mm, and 0.8 mm). 
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Assuming errors are normally distributed; all errors that exceed three times standard deviation were 

excluded as outliers (Table 4-4 ). Obviously, there is an improvement in the maximum of errors, which 

decreased to less than 9 mm (Figure 4-11). In addition, Figure 4-13 and Figure 4-14 show no outliers for 

all cases. 

However, the mean errors remained the same values (Figure 4-12) which mean the noise level remains 

without any mitigation after applying this technique. Furthermore, it reduced the point density by about 

one percent; in other words, losing some details. 

In terms of monitoring, it is risky to cut out any points after cloud differencing because it could exclude 

deformed points from the data. In this case, removing outliers can be applied before differencing or by 

applying a different technique for estimating distances between two point clouds.     

Table 4-4 Error estimations for various settings for Scanstation P20 after removing outliers. 

No. Name Resolution (mm) Quality No. of Point 
Remained 

(%) 
Mean  errors  

(m) 
Max.  errors 

(m) 

1 50mm_Q1 50 1 971 98.8% 0.0016 0.0044 

2 50mm_Q2 50 2 983 99.9% 0.0012 0.0044 

3 50mm_Q3 50 3 977 98.7% 0.0011 0.0025 

4 25mm_Q1 25 1 3876 99.3% 0.0019 0.0064 

5 25mm_Q2 25 2 3886 99.7% 0.0013 0.0047 

6 25mm_Q3 25 3 3905 98.9% 0.0011 0.0030 

7 25mm_Q4 25 4 3897 99.1% 0.0007 0.0022 

8 12.5mm_Q1 12.5 1 15730 99.0% 0.0019 0.0064 

9 12.5mm_Q2 12.5 2 15710 99.1% 0.0013 0.0044 

10 12.5mm_Q3 12.5 3 15680 98.9% 0.0010 0.0034 

11 12.5mm_Q4 12.5 4 15630 98.6% 0.0008 0.0027 

12 6.3mm_Q1 6.3 1 63550 99.9% 0.0028 0.0087 

13 6.3mm_Q2 6.3 2 63080 99.1% 0.0019 0.0062 

14 6.3mm_Q3 6.3 3 63070 99.1% 0.0014 0.0047 

15 6.3mm_Q4 6.3 4 63020 99.0% 0.0010 0.0032 

16 3.1mm_Q1 3.1 1 253800 99.8% 0.0015 0.0045 

17 3.1mm_Q2 3.1 2 253700 99.7% 0.0022 0.0059 

18 3.1mm_Q3 3.1 3 254000 99.8% 0.0018 0.0052 

19 3.1mm_Q4 3.1 4 254000 99.8% 0.0015 0.0045 

20 1.6mm_Q1 1.6 1 1016000 99.5% 0.0012 0.0033 

21 1.6mm_Q2 1.6 2 1013000 99.1% 0.0015 0.0033 

22 1.6mm_Q3 1.6 3 1015000 99.3% 0.0013 0.0034 

23 0.8mm_Q1 0.8 1 4010000 98.7% 0.0009 0.0023 

24 0.8mm_Q2 0.8 2 4027000 98.6% 0.0010 0.0024 
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Figure 4-11 The maximum errors of Scanstation P20 after outlier removal. 

 
 

 
Figure 4-12 The mean errors of Scanstation P20 before and after removing outliers. 
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Figure 4-13 Point errors of Scanstation P20 for different resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm) 
after outlier removal. 
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Figure 4-14 Points errors of Scanstation P20 for different resolutions (3.1 mm, 1.6 mm, and 0.8 mm) after 
outlier removal. 
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4.3.2 Scanstation P40 

Due to using Wave Form Digitizer (WFD) technology, Scanstation P40 (Table 4-6) has the flexible 

reconfigurability of both the duty cycle (the ratio between pulse width and repetition (Figure 4-15)) and 

the number of accumulations which affect the measurement time and range (Maar and Zogg, 2014). For 

instance, a lower repetition rate can lead to a better sensitivity, while a more precise determination of the 

pulse’s barycenter can be achieved by a smaller pulse width and therefore a higher measuring precision. 

Furthermore, the more signal shot accumulations, the better the SNR and therefore the more accurate 

distances can be determined (ibid).  

Accordingly, there are four setting options in P40: two for different EDM modes (SPEED and RANGE) and 

two for different sensitivities (HIGH and NORMAL). Each of them has been tested with various resolutions 

(50 mm, 25 mm, 12.5 mm, 6.3 mm, 3.1 mm, 1.6 mm, and 0.8 mm) and resulted in 28 cases (Table 4-5). 

The mean errors (Figure 4-16) decreased to the quarter of that of P20, 0.7 mm compared with 2.8 mm for 

P40 and P20 respectively. Similarly, maximum errors are improved as well (Figure 4-17). However, there 

are some cases revealed as high as 12 mm. This possibly due to outliers and this assumption can be 

accepted based on Figure 4-18 (c and d) and Figure 4-19 (a).  

Table 4-5 Error estimations for different settings for Scanstation P40. 

No Resolution 
(mm) 

Name Sensitivity EDM mode Time 
(seconds) 

No. of 
Points 

Mean 
Errors 

(m) 

Max.  
Errors 

(m) 

1 50 50mm_N_R Normal Range 4 990 0.0007 0.0012 
2 50 50mm_N_S Normal Speed 4 990 0.0004 0.0010 
3 50 50mm_H_R High Range 4 990 0.0004 0.0012 
4 50 50mm_H_S High Speed 4 990 0.0003 0.0010 
5 25 25mm_N_R Normal Range 6 3960 0.0004 0.0020 
6 25 25mm_N_S Normal Speed 6 4020 0.0003 0.0012 
7 25 25mm_H_R High Range 6 4047 0.0002 0.0010 
8 25 25mm_H_S High Speed 6 4020 0.0004 0.0010 
9 12.5 12.5mm_N_R Normal Range 8 16066 0.0004 0.0126 

10 12.5 12.5mm_N_S Normal Speed 8 16158 0.0004 0.0124 
11 12.5 12.5mm_H_R High Range 9 16089 0.0003 0.0124 
12 12.5 12.5mm_H_S High Speed 9 16054 0.0003 0.0013 
13 6.3 6.3mm_N_R Normal Range 14 64582 0.0006 0.0062 
14 6.3 6.3mm_N_S Normal Speed 14 64554 0.0003 0.0063 
15 6.3 6.3mm_H_R High Range 26 64576 0.0002 0.0062 
16 6.3 6.3mm_H_S High Speed 15 64542 0.0002 0.0062 
17 3.1 3.1mm_N_R Normal Range 26 257836 0.0003 0.0032 
18 3.1 3.1mm_N_S Normal Speed 20 257734 0.0004 0.0032 
19 3.1 3.1mm_H_R High Range 96 257777 0.0003 0.0032 
20 3.1 3.1mm_H_S High Speed 49 257811 0.0003 0.0032 
21 1.6 1.6mm_N_R Normal Range 97 1034831 0.0005 0.0017 
22 1.6 1.6mm_N_S Normal Speed 50 1034782 0.0005 0.0017 
23 1.6 1.6mm_H_R High Range 383 1034762 0.0002 0.0016 
24 1.6 1.6mm_H_S High Speed 192 1034708 0.0002 0.0016 
25 0.8 0.8mm_N_R Normal Range 382 4039386 0.0004 0.0015 
26 0.8 0.8mm_N_S Normal Speed 192 4039459 0.0003 0.0014 
27 0.8 0.8mm_H_R High Range 764 4039708 0.0004 0.0011 
28 0.8 0.8mm_H_S High Speed 764 3949006 0.0004 0.0013 
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Table 4-6 Technical specifications for Scanstation P40 (Leica Geosystems, 2016a). 
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Figure 4-15 Characteristics of the WFD emitted signal, including the pulse width (Ton) and repetition rate 
(TRep) (Maar and Zogg, 2014). 

 
Figure 4-16 The mean errors of Scanstation P40. 

 
Figure 4-17 The maximum errors of Scanstation P40. 
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Figure 4-18 Point errors of Scanstation P40 for different resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm). 



CHAPTER FOUR: ERROR SOURCES IN TLS 

73 
 

 

 
Figure 4-19 Point errors of Scanstation P40 for various resolutions (3.1 mm, 1.6 mm, and 0.8 mm). 
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Similarly, removing outliers, based on excluding errors that have a value equal or more than three times 

the standard deviation, was applied (Table 4-7). Evidently, all outliers were cut out, and the resulting 

maximum error is around 1 mm (Figure 4-20, Figure 4-21, and Figure 4-22).  

Table 4-7 Error estimations for different settings for Scanstation P40 after removing outliers. 

No Resolution 
(mm) 

Name Sensitivity EDM 
mode 

No. of 
Points 

Remained 
(%) 

Mean Errors 
(m) 

Max. Errors 
(m) 

1 50 50mm_N_R Normal Range 978 98.8% 0.0007 0.0010 

2 50 50mm_N_S Normal Speed 975 98.5% 0.0004 0.0007 

3 50 50mm_H_R High Range 988 99.8% 0.0004 0.0008 

4 50 50mm_H_S High Speed 979 98.9% 0.0003 0.0006 

5 25 25mm_N_R Normal Range 3884 98.1% 0.0004 0.0008 

6 25 25mm_N_S Normal Speed 3963 98.6% 0.0003 0.0008 

7 25 25mm_H_R High Range 3999 98.8% 0.0002 0.0006 

8 25 25mm_H_S High Speed 3991 99.3% 0.0004 0.0007 

9 12.5 12.5mm_N_R Normal Range 16030 99.8% 0.0004 0.0011 

10 12.5 12.5mm_N_S Normal Speed 16120 99.8% 0.0004 0.0010 

11 12.5 12.5mm_H_R High Range 16080 99.9% 0.0003 0.0010 

12 12.5 12.5mm_H_S High Speed 15840 98.7% 0.0003 0.0008 

13 6.3 6.3mm_N_R Normal Range 64240 99.5% 0.0006 0.0011 

14 6.3 6.3mm_N_S Normal Speed 63580 98.5% 0.0003 0.0010 

15 6.3 6.3mm_H_R High Range 63450 98.3% 0.0002 0.0007 

16 6.3 6.3mm_H_S High Speed 63650 98.6% 0.0002 0.0006 

17 3.1 3.1mm_N_R Normal Range 253800 98.4% 0.0003 0.0008 

18 3.1 3.1mm_N_S Normal Speed 253800 98.5% 0.0004 0.0009 

19 3.1 3.1mm_H_R High Range 255800 99.2% 0.0003 0.0007 

20 3.1 3.1mm_H_S High Speed 255700 99.2% 0.0003 0.0006 

21 1.6 1.6mm_N_R Normal Range 1022000 98.8% 0.0005 0.0009 

22 1.6 1.6mm_N_S Normal Speed 1018000 98.4% 0.0005 0.0009 

23 1.6 1.6mm_H_R High Range 1032000 99.7% 0.0002 0.0006 

24 1.6 1.6mm_H_S High Speed 1032000 99.7% 0.0002 0.0006 

25 0.8 0.8mm_N_R Normal Range 3984000 98.6% 0.0004 0.0008 

26 0.8 0.8mm_N_S Normal Speed 4030000 99.8% 0.0003 0.0009 

27 0.8 0.8mm_H_R High Range 3975000 98.4% 0.0004 0.0006 

28 0.8 0.8mm_H_S High Speed 3938000 99.7% 0.0004 0.0008 
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Figure 4-20 Point errors of Scanstation P40 for various resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm) 
after outlier removal. 
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Figure 4-21 Point errors of Scanstation P40 for various resolutions (3.1mm, 1.6mm, and 0.8mm) after outlier 

removal. 

 
Figure 4-22 The maximum errors of Scanstation P40 after outlier removal. 
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4.3.3 Comparison between P20 and P40 

Although this research is not concerned with a comparison between instruments, it is beneficial to have 

an idea about how to compare instruments regarding precision. For this purpose, the average of each 

resolution is estimated. Obviously, P40 reveals better results in both cases of mean error (Figure 4-23) 

and maximum error (Figure 4-24).  

 
Figure 4-23 The mean Errors for Scanstation P20 and P40. 

 
Figure 4-24 The maximum errors for Scanstation P20 and P40.    
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4.4 Noise Mitigation 

As aforementioned, error estimating based on distances between nearest points might introduce outliers 

due to incorrect convergence. Therefore, it has been advised to compute distances between points in one 

cloud and the surface model, which is created by a group of nearest points, in the second cloud. For this 

purpose, distances between points and least-square planes were fitted from a group of nearest points (10 

points was suggested), have been computed for all cases for P20 and P20 instruments (Table 4-8 and 

Table 4-9). As can be seen in Figure 4-25and Figure 4-26, the maximum errors decreased from 50 mm to 

10 mm and from 12 mm to about 1 mm for P20 and P40 respectively. Additionally, there are no obvious 

outliers (values far from mean) can be observed in Figure 4-27, Figure 4-28, Figure 4-29, and Figure 4-30. 

Interestingly, even the mean errors decreased (Figure 4-31and Figure 4-32), from which we might 

conclude that this technique can mitigate noise without any reduction in point density. It is possibly the 

reason why many researchers are interested in the model interpolation method (Sec 3.2.3) for 

monitoring by TLS.     

Table 4-8 Error estimations (based on point to plane distances) for different settings for Scanstation P20. 

No. Name No. of Points Mean Errors (m) Max. Errors (m) 

1 50mm_Q1 983 0.0010 0.0042 

2 50mm_Q2 984 0.0007 0.0037 

3 50mm_Q3 990 0.0006 0.0026 

4 25mm_Q1 3905 0.0012 0.0063 

5 25mm_Q2 3899 0.0008 0.0059 

6 25mm_Q3 3947 0.0007 0.0032 

7 25mm_Q4 3934 0.0005 0.0027 

8 12.5mm_Q1 15888 0.0012 0.0076 

9 12.5mm_Q2 15851 0.0008 0.0054 

10 12.5mm_Q3 15855 0.0006 0.0054 

11 12.5mm_Q4 15852 0.0006 0.0037 

12 6.3mm_Q1 63635 0.0017 0.0106 

13 6.3mm_Q2 63675 0.0012 0.0090 

14 6.3mm_Q3 63662 0.0009 0.0059 

15 6.3mm_Q4 63660 0.0007 0.0054 

16 3.1mm_Q1 254256 0.0010 0.0067 

17 3.1mm_Q2 254385 0.0014 0.0107 

18 3.1mm_Q3 254395 0.0012 0.0079 

19 3.1mm_Q4 254397 0.0009 0.0066 

20 1.6mm_Q1 1021567 0.0009 0.0081 

21 1.6mm_Q2 1022042 0.0010 0.0092 

22 1.6mm_Q3 1022041 0.0009 0.0080 

23 0.8mm_Q1 4064717 0.0006 0.0073 

24 0.8mm_Q2 4084268 0.0007 0.0090 
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Table 4-9 Error estimations (based on point to plane distances) for different settings for Scanstation P40. 

No Name No.pf Points Mean Errors (m) Max. Errors (m) 

1 R50mm_N_R 990 0.0002 0.0009 

2 R50mm_N_S 990 0.0002 0.0009 

3 R50mm_H_R 990 0.0002 0.0007 

4 R50mm_H_S 990 0.0002 0.0008 

5 R25mm_N_R 3960 0.0002 0.0011 

6 R25mm_N_S 4020 0.0002 0.0010 

7 R25mm_H_R 4047 0.0001 0.0008 

8 R25mm_H_S 4020 0.0002 0.0008 

9 R12_5mm_N_R 16066 0.0002 0.0010 

10 R12_5mm_N_S 16158 0.0002 0.0015 

11 R12_5mm_H_R 16089 0.0001 0.0010 

12 R12_5mm_H_S 16054 0.0002 0.0010 

13 R6_3mm_N_R 64582 0.0002 0.0013 

14 R6_3mm_N_S 64554 0.0002 0.0011 

15 R6_3mm_H_R 64576 0.0001 0.0010 

16 R6_3mm_H_S 64542 0.0001 0.0010 

17 R3_1mm_N_R 257836 0.0002 0.0012 

18 R3_1mm_N_S 257734 0.0002 0.0012 

19 R3_1mm_H_R 257777 0.0001 0.0009 

20 R3_1mm_H_S 257811 0.0001 0.0010 

21 R1_6mm_N_R 1034831 0.0002 0.0013 

22 R1_6mm_N_S 1034782 0.0002 0.0013 

23 R1_6mm_H_R 1034762 0.0001 0.0008 

24 R1_6mm_H_S 1034708 0.0001 0.0008 

25 R0_8mm_N_R 4039386 0.0002 0.0014 

26 R0_8mm_N_S 4039459 0.0002 0.0013 

27 R0_8mm_H_R 4039708 0.0002 0.0010 

28 R0_8mm_H_S 3949006 0.0002 0.0011 
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Figure 4-25 The maximum errors estimation (based on points to planes distances) for different settings for 
Scanstation P20. 

 

 
Figure 4-26 The maximum errors estimation (based on points to planes distances) for various settings for 
Scanstation P40. 
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Figure 4-27 Point errors of Scanstation P20 for various resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm) 
based on point to plane distances. 
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Figure 4-28 Point errors of Scanstation P20 for different resolutions (3.1 mm, 1.6 mm, and 0.8 mm) based on 
point to plane distances. 
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Figure 4-29 Point errors of Scanstation P40 for various resolutions (50 mm, 25 mm, 12.5 mm, and 6.3 mm) 
based on point to plane distances. 
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Figure 4-30 Point errors of Scanstation P40 for different resolutions (3.1 mm, 1.6 mm, and 0.8 mm) based on 
point to plane distances. 
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Figure 4-31 The mean errors estimation (based on points to planes distances) for different settings for 
Scanstation P20. 

 
Figure 4-32 The mean errors estimation (based on points to planes distances) for various settings for 
Scanstation P40. 
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4.5 Chapter Conclusion 

The objective of this chapter is to review the TLS error sources and to assess types and magnitudes of 

these errors. Furthermore, another objective is to introduce some procedures for eliminating laser 

scanner outliers and reducing noise. The conclusions of this chapter can be summarised as follows: 

 There are several suggestions to deal with TLS errors that can be summarised in Table 4-10 with 

the assumption that the instruments are calibrated. 

 The error quantification tests reveal the average noise level (mean errors) between two scans 

can be improved by using surface model rather than direct point to point differencing, hence, it 

decreased from 2.8 mm to 1.7 mm and from 0.7 mm to 0.2 mm for P20 and P40 respectively. 

 The surface model technique can remove outliers without reducing point density. Hence, the 

maximum errors decreased from 50 mm (due to outliers) to 11 mm and from 13mm (due to 

outliers) to 1 mm for P20 and P40 respectively. 
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Table 4-10 Summary for TLS errors with suggested dealings for monitoring surveying. 

No. Source Error Type Suggested dealing 

1 Instrumental 

beam divergence random 
Using instrument with small beam 

divergence - set up instrument as near to 
objects as possible 

mixed edge gross 

Using instrument with a small footprint  - 
Using instrument with a shorter pulse length 

- Removing by manual editing - outliers’ 
removal based on median filter 

range uncertainty random 
Set up instrument as near to objects as 

possible – Repeat scanning 
angular 

uncertainty 
random 

Using instrument with higher angular 
precision – Repeat scanning 

axes errors random 
Using instrument axis compensator – 

Multiple scans with different faces (for some 
brand of scanner) 

2 Object-related 

speckle noise gross 

Avoid mirror objects – Avoid scanning with 
high incidence angle – Using instrument 
with shorter wavelength – Removing by 

manual editing 

detector 
saturation 

gross 
Avoid high reflective objects - Using 

instrument with shorter wavelength - 
Removing by manual editing 

penetrative beam systematic 
Theoretically, this will not affect the result 

for monitoring purpose if the same 
instrument is used for all epochs. 

3 Environmental 

temperature systematic 
Avoid to scan hot objects – Avoid increasing 
scanner temperature (from external sources 

such as the sun or long working hours) 

atmosphere systematic 
Configure instrument for correct ambient 
temperature, atmospheric pressure, and 

humidity 
interfering 
radiation 

gross 
Using instruments with optical interference 

filters – Removing by manual editing 

dynamic objects gross 

Mount instrument on a stable platform - 
Preventing any motion obstacles during 

monitoring survey (e.g. scanning overnight) 
-  Removing by manual editing 

4 Methodological 

resolution random 
Using sampling interval equal to 86% of 

footprint 

registration random 
Using the target based registration – Direct 

georeferencing if accurate control points 
exist 

incidence angle Systematic 
Threshold of a maximum incidence angle of 
65° - Set up instrument in suitable location 
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 USING PROCRUSTES TECHNIQUE FOR STRUCTURAL CHAPTER Five:

HEALTH MONITORING  

5.1 Introduction 

According to Greek mythology, the origin of the name “Procrustes” refers to a bandit from Attica in 

Greece, who made his victims fit his magic bed (as he claimed) either by stretching their limbs or cutting 

them off (Awange and Grafarend, 2005). In statistics, the Procrustes analysis is a mathematical tool which 

is used to estimate matching between data sets up to their maximal agreement by least-squares fitting. 

One of the most significant advantages is that it is a linear least-squares solution for estimating the 

similarity transformation parameters. Therefore, it does not require initial approximations for the 

unknown parameters (Gruen and Akca, 2003). 

In general, there are different revisions of the Procrustes analysis and each can solve a specific case, such 

as Orthogonal Procrustes Analysis (OPA), Extended Orthogonal Procrustes Analysis (EOPA), Weighted 

Extended Orthogonal Procrustes Analysis (WEOPA), and Generalized Procrustes analysis (GPA) (Anwary, 

2012). 

The Procrustes technique has not been used in monitoring surveying; hence, this research is investigating 

the ability to employ it to detect and localise deformations using TLS measurements. The proposed 

method is based on GPA to determine the deformation model, assuming that TLS datasets for various 

epochs act as matrix configurations. The resulting deformations are interpolated from multiple epochs so 

they can be more reliable.  

The objective of this chapter is to review the Procrustes analysis in the first part, while the second part 

will be assigned to introduce the proposed method. 

5.2 Procrustes Analysis Developments 

Firstly, this technique was proposed by Schönemann (1966), a scientist in Quantitative Psychology, who 

named it as Orthogonal Procrustes Analysis (OPA). In this technique, he used direct least-squares solution 

for fitting a given matrix (A) to another given matrix (B) under choice of an unknown orthogonal rotation 

matrix (T), through minimizing the sum of squares of the residual matrix (E = AT – B) (Crosilla and 

Beinat, 2002, Crosilla, 2003, Gruen and Akca, 2003, Toldo et al., 2010). 
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The first revision for the OPA technique was introduced by Schönemann and Carroll (1970) when an 

unknown translation and an unknown central dilation were added to the solution of fitting (A) and (B). 

The revised technique is known in statistics and psychometry as Extended Orthogonal Procrustes 

Analysis (EOPA) (Crosilla, 2003, Gruen and Akca, 2003, Guarnieri et al., 2005, Toldo et al., 2010). 

A further extension for the EOPA, which allows different weighting of matrix elements, across rows or 

across columns, which is called Weighted Extended Orthogonal Procrustes Analysis (WEOP) (Crosilla, 

2003, Gruen and Akca, 2003, Guarnieri et al., 2005, Toldo et al., 2010). 

Furthermore, the classical Procrustes analysis was generalised by Gower (1975) and Ten Berge (1977) to 

deal with the problem of matching more than two matrices; it is well-known Generalised Procrustes 

Analysis (GPA). Instead of considering the best fitting of all possible pair’s matrices, the GPA works in 

such way that multiple matrices are subjected simultaneously to similarity transformation until a proper 

match is reached (Bennani Dosse et al., 2011, Crosilla, 2003).  

Recently, Awange et al. (2008) have proposed an extension of the conventional 7-parameter Procrustean 

algorithm named ABC (Awange, Bae and Claessens)-Procrustes algorithm. The ABC-Procrustes gives 

solution for the 3D affine transformation with anisotropic scale. It is proved to be successful only in cases 

of very mild anisotropy in scaling (Paláncz et al., 2010). Consequently, Paláncz et al. (2010) extended the 

ABC-Procrustes algorithm for strong anisotropy in scaling, to give a more generally valid solution of the 

problem, and named it PZ- Procrustes algorithm.  

5.3 Procrustes Applications 

This technique has been used in different fields. For instance, it has been used in medicine for gene 

recognition analysis. Additionally, it is used to identify of Malaria parasites by comparing the 

electrophoretic gel images (Awange and Grafarend, 2005). Furthermore, Anwary (2012) applied the 

Procrustes analysis to distinguish deformed backs from normal backs. Recently, there are some 

researchers have investigated the applicability of the Procrustes analysis in the same field (Ikeda et al., 

2016, Meaike et al., 2016).   

Another example, the Procrustes analysis was popularised for the analysis of sensory profiling data, when 

different assessors judge properties of different products. It is impossible to average the assessor data 
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directly because it makes no sense to combine different properties. Hence, the Procrustes analysis was 

used (Bennani Dosse et al., 2011, Lorenzo et al., 2016, Mauricio et al., 2016, Tomic et al., 2015). 

In Chemistry (i.e. Chemometrics), Wentzell et al. (2015) have used Procrustes analysis as a diagnostic tool 

to assess the results of projection pursuit in case of variable compression or regularisation. Hence, it has 

been used to evaluate the similarity of projections generated under different conditions. 

In Human Genetics,  Wang et al. (2015) have applied Procrustes analysis to estimate individual ancestry 

in a principal component ancestry map created by a reference set of individuals. 

In Geology, Vermeesch and Garzanti (2015) have used GPA to draw out geological insights from ‘Big Data’ 

in a provenance context. Hence, it has been applied to extract a ‘consensus view’ from five different 

‘configuration’ for all the data which is considered together. 

In Zoology, Druml et al. (2015) have applied GPA to analyse variation of horse shapes for the purpose of 

validation of equine conformation scoring. 

Finally, it has been employed in the virtual trial assembly to verify the correspondence between two data 

sets (design and as-built), both extracted from the Building Information Modelling (BIM) structure, which 

allowed finding out the optimal analytical least squares assembling of the various built elements. In this 

case, the GPA techniques was applied to verify the correspondences between the data sets due to more 

than two point configurations relative to the various structure elements are available, (Case et al., 2014). 

5.4 Procrustes Application in Geomatics 

In Geomatics, in many cases, it requires coordinate system transformation which involves scaling, 

rotation and translation operations of different matrix configurations. For instance, in photogrammetry, it 

is necessary to determine the orientation of the camera during the aerial photogrammetry and transform 

photo coordinates into the ground coordinates. This process can be done by the reference system 

transformation. Similarly, this technique is applicable to the remote sensing and the Geographical 

Information System (GIS) where maps have to be transformed to different reference systems (Awange 

and Grafarend, 2005).   
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Seemingly, the Procrustes technique can be a promising method in Geomatics applications when 

coordinates systems often need to be solved. Compared to classical least squares, the Procrustes analysis 

takes advantage of the fitting properties of two matrices without any approximate value of the unknown 

parameters and with less computational time (Awange and Grafarend, 2005, Crosilla, 2003). 

The traditional system transformation approach requires linearising the nonlinear equations and then 

applying the least squares method iteratively. On the other hand, the Procrustes method can give a direct 

solution, without linearization, if inserting coordinates of one system in one matrix and the second 

system in another matrix (Awange and Grafarend, 2005). 

The first effort of using the Procrustes technique in Geomatics can be attributed to the research of F. 

Crosilla (1983a), Crosilla (1983b)  (Awange, 2003, Awange and Grafarend, 2005). After that, Beinat and 

Crosilla (2001) implemented the simultaneous global registration of 3D range images by the Procrustes 

technique. Then, they proposed a generalisation for the analytical model to solve the problem of the 

global registration of low-resolution aerial laser scan images. In addition, they formulate an anisotropic 

method to estimate the global registration in a more accurate and flexible way through assigning different 

weighting factors to the tie points coordinates (Beinat and Crosilla, 2002). 

 According to Crosilla and Beinat (2002), the GPA is proved to be an invaluable technique to co-register 

datasets, i.e. block adjustment, of different coordinate systems. Particularly, it is proper for laser scanning 

and photogrammetric applications, when additional attributes associated with the tie points, such as 

intensity, can be employed in conjunction with the corresponding coordinate values. 

Awange (2003) examined the applicability of the partial Procrustes procedure in providing a direct 

solution to the three-dimensional orientation problems. The author proved that it is adequate to solve 

such problem and to determine the three-dimensional orientation parameters leading to the 

determination of the deflection of the vertical component.  

Gonzalez-Aguilera et al. (2008) developed a modification to the WEOP technique to overcome its 

limitation to detect and localise gross errors and then they used it in the georeferencing terrestrial laser 

scanner for the purpose of dam deformations. 
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Toldo et al. (2010) have proposed a new technique, ICP-GPA, for registering multi-scenes point clouds 

through integrating of ICP (Sec.3.3.3.1) and the GPA. Through experiments, authors proved the 

effectiveness of this technique compared with the classical sequential ICP method regarding the accuracy 

and the convergence. 

Garro et al. (2012) formulated the problem of estimating the position and orientation of a perspective 

camera in terms of an instance of the anisotropic orthogonal Procrustes problem and derive its solution. 

Through experiments with synthetic and real data they reached the best trade-off between speed and 

accuracy. Recently, they have used the same approach to solve the classical photogrammetric bundle 

block adjustment (Fusiello and Crosilla, 2015). 

Finally, Zou et al. (2016) have proposed a robust indoor positioning system through standardising Wi-Fi 

fingerprints based on Procrustes Analysis. 

Despite the fact of the ability of the GPA to solve many problems and widely applicable in Geomatics, care 

should be taken when using it. The most important drawback of the Procrustes technique is a lack of 

reliability criterion to detect and localise the outliers, which might be included in measurements. 

Consequently, the results that produced by the Procrustes technique may be wrong in the case of the 

existence of outliers in the data set. Therefore, filtering of outliers is vital for using this technique 

properly (Crosilla, 2003, Gruen and Akca, 2003, Guarnieri et al., 2005). 

5.5 GPA Mathematical Model 

For the purpose of monitoring, a matrix is formed for each epoch, and each row of this matrix contains 

three-dimensional coordinates of one point of the point cloud. To determine deformation, GPA is used to 

find the best fit for these matrices (epochs). The result of the GPA solution leads to six parameters (three 

rotations and three translations, the scale factor is considered unified) of deformation. 

Let us consider m data epochs of the same object, produced by TLS. Let us consider that each epoch has P 

landmarks, representing the shape of that object. Therefore, we can form m matrices A1, A2… Am of size 

Px3 as follows:  

𝐴1 = [

𝑋11 𝑌11 𝑍11

𝑋21 𝑌21 𝑍21…
𝑋𝑝1

…
𝑌𝑝1

…
𝑍𝑝1

] , 𝐴2 = [

𝑋12 𝑌12 𝑍12

𝑋22 𝑌22 𝑍22
…
𝑋𝑝2

…
𝑌𝑝2

…
𝑍𝑝2

] … ..     𝐴𝑚 = [

𝑋1𝑚 𝑌1𝑚 𝑍1𝑚

𝑋2𝑚 𝑌2𝑚 𝑍2𝑚…
𝑋𝑝𝑚

…
𝑌𝑝𝑚

…
𝑍𝑝𝑚

] ( 5.1 ) 
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According to the GPA concept, each matrix Ai can be estimated by a similarity transformation applied to a 

matrix that contains the true coordinates of the P points called here Z (consensus), to which a random 

error matrix (Ei) is added (Crosilla and Beinat, 2002, Goodall, 1991). 

 

𝑍 + 𝐸𝑖 = Â𝑖 = 𝑆𝐴𝑖  𝑅𝑖 + 𝐽3𝑡𝑖
𝑇 ( 5.2 ) 

Where: 

Ri=3x3 rotation matrix. 

ti=3x1 translation vector. 

S= the scale factor. 

J3=Px1 unit vector.   

The least squares estimation of the unknown transformation parameters (Ri, ti, and S)  can be computed 

as follows (Crosilla and Beinat, 2002): 

 

∑ ∑ ‖Â𝑖   −

𝑚

𝑗=𝑖+1

𝑚

𝑖=1
Â𝑗‖

2
= 𝑚𝑖𝑛 ( 5.3 ) 

 
Let us consider C as the geometrical centroid of the transformation matrices. 

 

𝐶 =  
1

𝑚
∑Â𝑖   

𝑚

𝑖=1

 ( 5.4 ) 

 

Therefore  equation ( 5.3 ) may be written as (Crosilla and Beinat, 2002): 

 

𝑚 ∑‖Â𝑖 − 𝐶‖2 = 𝑚𝑖𝑛

𝑚

𝑖=1

 ( 5.5 ) 

 

GPA can be conducted by any method explained by Crosilla and Beinat (2002). In this research, it is 

solved based on iterative estimation of centroid (C), as follows (ibid): 

1- Initial approximation of C0 is computed from matrices data: 

 

𝐶0 = 
1

𝑚
∑𝐴𝑖   

𝑚

𝑖=1

 ( 5.6 ) 



 
CHAPTER FIVE: USING PROCRUSTES TECHNIQUE FOR STRUCTURAL HEALTH MONITORING 

94 
 

 

2- Similarity transformation between each matrix of Ai and C0, using WEOP technique (Sec. 5.5.2), 

result the first estimation of Âi. 

3- Update value of C based on Âi. 

4- Repeat steps (2) and (3) until global convergence, which can be examined by:    

 

𝑚 ∑𝑡𝑟( (Â𝑖   − 𝐶)𝑇(

𝑚

𝑖=1

Â𝑖   − 𝐶)) = 𝑚𝑖𝑛 ( 5.7 ) 

 

5.5.1 GPA Assumptions and Implications  

Statistically, with the assumption of data free from systematic and gross errors, each adjusted epoch (Âi) 

should differ from other epochs by only random errors, so the sum of the square differences between any 

two epochs must equal to minimum (stated in equation ( 5.3 )). In addition, the centroid is the most 

probable value for repeatable measurements (epochs) (stated in equation ( 5.4 )). It is worth to mention 

that the centroid here is not a point, but as a matrix of points which is representing a centroid fit to all 

epochs after similarity transformation, called Z (consensus). According to Crosilla and Beinat (2002), “the 

sum of the square distances between the m points is always equal to m times the sum of the square distances 

between the m points and their centroid”. Consequently, the equation ( 5.5 ) is equivalent to equation ( 5.3 

). 

In our proposal, in the case of no changes exist, insignificant differences exist between Z and any epoch 

(Âi). On the other hand, in the case of deformation, Z will represent the final fitting for the deformation 

(after last epoch) and Âi is the deformation at each epoch. 

Due to the above assumptions, it is worth to mention limitations of this technique to detect fluctuated 

deformations. In this case, the final results will converge to a false value. 

Figure 5-1 demonstrates the concept of GPA and the principle of the proposed method. 
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Figure 5-1 GPA concept and the principle of the proposed method (updated from Crosilla and Beinat (2002)). 

 

5.5.2 WEOP Mathematical Model 

As aforementioned, the GPA solution is based on the mathematical model of WEOP, which is a similarity 

transformation of two matrices, and it is optionally weighted by rows and columns. 

Let A and B be two matrices containing P points in the domain R3, source and target respectively, with 

dimension (Px3). Let WP(PxP) and W3(3x3) be optional weights for rows and columns respectively. WEOP 

is a technique of obtaining transformation parameters (orthogonal rotation matrix (R), and translation 

vector (t), i.e. scale factor is considered unity according to section 3.3.1 thus all equations are adapted 

accordingly), by which A is transformed to best fit B. This can be done through minimising the following 

equation (Goodall, 1991): 

 

𝑡𝑟((𝐴𝑅 + 𝑗𝑡𝑇 − 𝐵)𝑇𝑊𝑃 (𝐴𝑅 + 𝑗𝑡𝑇 − 𝐵)𝑊3) = 𝑚𝑖𝑛 ( 5.8 ) 

 

Where: J= (Px1) unit vector, and RTR=I (orthogonal condition). If all columns have the same weight then 

W3=I3. 

 Using Cholesky decomposition: 

𝑊𝑃 = 𝑄𝑇𝑄 ( 5.9 ) 
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By applying weight: 

𝐴𝑊 =  𝑄 𝐴 ( 5.10 ) 

 

𝐵𝑊 =  𝑄 𝐵 ( 5.11 ) 

 

𝑗𝑊 =  𝑄 𝑗 ( 5.12 ) 

Adapting the Singular Value Decomposition of the matrix product: 

𝑠𝑣𝑑 {𝐴𝑊
𝑇 (𝐼 −  

𝑗𝑊  𝑗𝑊
𝑇

𝑗𝑊
𝑇𝑗𝑊

)𝐵𝑊} = 𝑉𝐷𝑆 𝑊
𝑇 ( 5.13 ) 

 

Where V and W are orthonormal eigenvector matrices and DS is the diagonal eigenvalue matrix, then 

transformation parameters are obtained (Schönemann and Carroll, 1970): 

𝑅 = 𝑉 𝑊𝑇  ( 5.14 ) 

 

𝑡 = (𝐵𝑊 − 𝐴𝑊𝑅)𝑇
𝑗𝑊

𝑗𝑊
𝑇𝑗𝑊

 ( 5.15 ) 

 

It is worth to mention that this method exists in MATLAB software as a built-in function named 

“Procrustes”, but without weights. 

5.6 Proposed Methodology 

By applying the GPA technique, transformation parameters can be determined, yet it does not achieve the 

research aim to localise deformation. In addition, it needs to suggest solutions for the lack of GPA to 

detect outliers. Therefore, a methodology has been devised for the proposed technique, which contains 

the following main steps:  

1) Registration of point clouds. 

2) Outlier removal. 

3) Voxel approach. 

4) Noise mitigation. 

5) Determination of the deformation vectors. 

6) Localisation of the deformations. 

Following is a detailed discussion of each step: 
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5.6.1 Registration of Point Clouds 

To make the comparison, all epochs should be related to one reference system which can be local or 

national. In addition, the quality of data is the most important issue in the monitoring procedure. 

Therefore, targets-based registration (Sec.3.3.1) is suggested in the proposed technique. Hence, four 

stable locations are nominated for TLS targets in such a way that they are geometrically well distributed. 

These can be within monitored building or in surrounding areas. Furthermore, they need to be observed 

periodically to verify their stability. The best way to monitor these points is by establishing a control 

network with farther and more stable points which have been used as a reference for targets points. In 

this case, indirect georeferencing is applied, instead of registration, to relate epochs to the same reference 

system. 

On the other hand, different targets type and shape can be used for this purpose (Figure 5-2). Spherical 

targets can offer best spatial representation because it is 3D shape, and it can be scanned from different 

positions. However, black & white can act as total station targets as well; hence data fusion can be done 

directly.   

In this research, spherical targets are suggested for registration (i.e. tie points), while black/white targets 

are suggested for georeferencing (i.e. control points act as targets for TLS and TS). 

 
Figure 5-2 TLS targets (Leica Geosystems, 2016b) 

5.6.2 Outlier Removal 

As has been mentioned, GPA does not have a reliability criterion to detect and localise the outliers, which 

might be included in measurements. Consequently, it might tend to give wrong outputs, if outliers exist in 

the data set. Therefore, the proposed technique should have the ability to filter out outliers before 

applying GPA. For this purpose, using statistical approach has been proposed. The proposed method in 

this research is based on removing points which are sparse relative to their mean. Hence, for each point, 
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mean of distances is computed to k Nearest Neighbours (KNN). All points whose mean distances are 

bigger than n times of global standard deviation will then be considered as outliers and filtered out from 

point clouds, according to the assumption of Gaussian distribution (Rusu, 2011). 

Two variables need to be chosen in this technique, the number of neighbour points used to compute mean 

distances (k), and the standard deviation multiplier (n). These variables are fixed in the practical test. 

This technique of outlier removal can be computed by the open source software CloudCompare 

(Giradeau-Montaut et al., 2006) which is stated as a plugin from the original source Point Cloud Library 

(PCL) (Rusu, 2011).    

5.6.3 Voxel Approach 

If GPA technique is applied for whole point clouds, it may lead to false results even if there are 

deformations in just a few points. Furthermore, it cannot localise deformations. Instead, it gives 

deformation vectors for whole objects. Therefore, the proposed technique divides the data into subsets, 

and then the GPA is applied for each of them. 

Inspired by Akca et al. (2005), the point cloud  is reformed to boxes structure. In this method, the point 

cloud is divided spatially where each set of points is separated if they are located in the same box (Figure 

5-3).   

 
Figure 5-3 Box structure (Akca et al., 2005). 

Hence, in the proposed technique, the boxes are monitored over different epochs, instead of a single point 

of the point clouds. The assumption behind this suggestion is that it is frequently each a group of points 

has the same deformation behaviour due to tiny distances between these points (only a few millimetres 

based on sampling interval).   
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Consequently, concerned buildings are divided into boxes and each of them contains a group of points 

which are examined each epoch (Figure 5-4). These groups are formed as matrices (as in equation ( 5.1 )) 

which represent inputs for equation ( 5.5 ).  

 
Figure 5-4 The proposed boxing structure. 

 

5.6.3.1 Voxel Advantages and Disadvantages 

Ultimately, applying voxel approach can offer the following advantages: 

1- Cope with unrepeatable measurement of TLS as the boxes are monitored instead of points. 

2- Data can be easily handling and processing due to dealing with it separately for each box. 

3- The deformations can be localised by voxel approach. 

4- Can offer better accuracy as the deformation vectors are estimated based on all points within the 

box (a large number of redundant). 

However, using this approach might introduce some disadvantages: 
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1- Boxes contain few points might appear based on resolution and box size as in Figure 5-5 (a) 

which are drawn in red line. Consequently, these boxes may show wrong indication for 

deformations. The proposed algorithm is prepared with different procedures to solve this 

problem. For instance, change box size, change origin, or rotating the concerned building as 

shown in Figure 5-5 (b) where rotation solves such problem. Eventually, if such boxes remain 

after all procedures, they proposed algorithm is designed to filter them out as will be seen in 

validation. Fortunately, this issue needs to be solved only one time and all followed epochs can 

use the same configurations. 

2- As aforementioned, due to dealing with data as groups, it is difficult to detect displacement of a 

single point in boxes. 

3- Missing parts cannot be detected because a null matrix is created in this case and the proposed 

algorithm is designed to remove such boxes. 

It is worth to mention that dimensions of the boxes can play a key role in the proposed method because 

bigger boxes can estimation deformations better due to a lot number of redundant. However, smaller size 

boxes can localise deformation more accurately.  In this research, three different dimensions (10, 20, and 

30 cm) have been tested.       

 
Figure 5-5 Top views for building (shown in Figure 5-4) structured in boxes before and after rotation. 
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5.6.4 Noise Mitigation 

As has been seen in chapter four, point clouds are contaminated with noise. Fortunately, part of this is 

white noise which is distributed according to the normal distribution. Therefore, it can be mitigated by 

statistical analysis. In the proposed technique, two methods have been used to reduce noise, namely 

Voxel filter, and surface interpolation. 

Voxel filter is a downsampling technique; i.e. it reduces the number of points, which creates tiny 3D boxes 

in space over the point cloud data. And then, in each box, all points are represented with their centroid 

(Rusu, 2011). Voxel size is the only variable that needs to be determined. It is worth mentioning that this 

filter existed as a class in PCL named “VoxelGrid” (ibid). 

  On the other hand, three methods of surface interpolation are suggested in the proposed technique: 

Plane best fitting by Ordinary Least Squares (Plane-OLS), Plane best fitting by Total Least Squares (Plane-

TLS), and Locally Weighted Scatter Plot Smooth (LOWSS). Two of these are based on plane interpolation 

because it is frequently the key part of many buildings.  

5.6.4.1 Plane Best Fitting by Ordinary Least Square  

It is a well-known method of fitting a plane through least squares approach with the polynomial 

observation equation. It is named in this research Plane-Ordinary Least Square (Plane-OLS). Let x, y, and z 

be coordinates of a set of points in R3, in such a way: 

 

𝑍 =  𝑓(𝑥, 𝑦) ( 5.16 ) 

 

By using polynomial: 

 

𝑍 =  𝐴𝑥 + 𝐵𝑦 + 𝐶 ( 5.17 ) 

 

Where A, B, and C are plane coefficients to be computed. We can create following system equations from n 

data points: 
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𝑍1 =  𝐴𝑥1 + 𝐵𝑦1 + 𝐶 

𝑍2 =  𝐴𝑥2 + 𝐵𝑦2 + 𝐶 

…………………… 

𝑍𝑛 =  𝐴𝑥𝑛 + 𝐵𝑦𝑛 + 𝐶 

( 5.18 ) 

 

In matrix form: 

 

[

𝑥1

𝑥2…
𝑥𝑛

𝑦1

𝑦2…
𝑦𝑛

1
1…
1

] [
𝐴
𝐵
𝐶
] = [

𝑍1

𝑍2…
𝑍𝑛

] ( 5.19 ) 

 

In the least square form: 

𝐴𝑥 = 𝑙 ( 5.20 ) 

 

Where: 

A=[

𝑥1

𝑥2…
𝑥𝑛

𝑦1

𝑦2…
𝑦𝑛

1
1…
1

] , 𝑥 = [
𝐴
𝐵
𝐶
] , 𝑎𝑛𝑑 𝑙 = [

𝑍1

𝑍2…
𝑍𝑛

] 

 

 

Then, it can be solved by the least square method to compute A, B, and C. 

Fortunately, MATLAB software can directly compute these coefficients from data points using a function 

named “fit” with selection method “poly11”. 

There is still an issue in the proposed method that needs to be addressed if the polynomial is applied for 

plane fitting: that is determining which axis (X, Y, or Z) is going to be minimised. In other words, it needs 

to determine the direction of interpolated plane, e.g. horizontal or vertical. To solve this issue, the spatial 

distribution of the data set is examined; hence, minimising is applied on axis direction with minimum 

range.  

5.6.4.2  Plane Best Fitting by Total Least Squares  

 One of the most obvious drawbacks of ordinary least squares for the plane fitting is that it is minimised 

along a particular axis direction. On the other hand, the total least square which is based on linear 
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regression fits the plane by minimising distances to three axes of data set (Soudarissanane et al., 2011). In 

this case, the observation equation is (ibid): 

 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 ( 5.21 ) 

 

System equation: 

 
 𝐴𝑥1 + 𝐵𝑦1 + 𝐶𝑍1 + 𝐷 = 0 
 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑍2 + 𝐷 = 0 

…………………… 
 𝐴𝑥𝑛 + 𝐵𝑦𝑛 + 𝐶𝑍𝑛 + 𝐷 = 0 

( 5.22 ) 

 

In matrix form: 

 

𝐴𝑥 = 0𝑛𝑥1 ( 5.23 ) 

 

Where: 

A=[

𝑥1

𝑥2…
𝑥𝑛

𝑦1

𝑦2…
𝑦𝑛

𝑍1 1
𝑍2 1
… …

𝑍𝑛 1

] , 𝑎𝑛𝑑 𝑥 = [

𝐴
𝐵
𝐶
𝐷

], 

 

 

Equation ( 5.23) can be solved by Singular Value Decomposition (SVD) (Islam, 2015). This surface fitting 

method is named in this research Plane-Total Least Square (Plane-TLS). 

5.6.4.3  Locally Weighted Scatter Plot Smooth 

 Another approach for surface fitting is suggested in the proposed technique, owing to the fact that 

monitored building may contain convex surfaces e.g. domes. For such case, Locally Weighted Scatter Plot 

Smooth (LOWESS) is used (MathWorks, 2015). LOWESS is based on neighbouring data points, which are 

defined by span, to fit the surface. Firstly, for each data point weights are computed for all neighbour 

points with span, according to the following equation (MathWorks, 2015): 

 

𝑤𝑖 = (1 − |
𝑥−𝑥𝑖

𝑑(𝑥)
|
3

)
3

 ( 5.24 ) 
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Where x is the data point, xi are the neighbour points within the span, and d(x) is the longest distance 

within the span from data points to neighbours. Hence, points with nearest distances are given bigger 

weight and therefore make a greater contribution in the interpolation. Also, points outside the span have 

zero weight, consequently, they will not influence on the fit (ibid). After that, a first-degree polynomial is 

fitted by performing a weighted linear least-squares regression. Thus, a new value for each data point is 

obtained. This process is repeated for all data points and the fitted surface will pass through the new set 

of points. Fortunately, MATLAB software can implement this technique through a built-in function named 

“fit” by applying “lowess” for fitting method (ibid).    

Obviously, the span is the only variable that needs to be addressed in this method, which is determined in 

the practical test. 

5.6.5 Determination Deformation Vectors 

Clearly, the outcomes of the GPA (Sec.5.5) do not satisfy the aims of this research. Instead, deformation 

vectors are required, which are computed from transformation parameters. According to Monserrat and 

Crosetto (2008), for monitoring purpose, it is sufficient to compute three translation parameters, which 

represent components of the deformation vector. 

Hence, the deformation vectors can be computed based on the transformation parameters, which are 

estimated through GPA as follows: 

From equation ( 5.2) (considering S=1): 

 

Â𝑖 = 𝐴𝑖𝑅𝑖 + 𝑗𝑡𝑇 ( 5.25 ) 

 

Where: 

 Ai (Px3): data matrix at epoch i (known). 

 Âi (Px3): matrix Ai after solving GPA (known). 

 Ri (3x3): rotation matrix for epoch i (to be estimated). 

 ti (3x1):translation vector for epoch i (to be estimated). 

 j (Px1): unit vector. 

Consider Ri=I, then: 
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Â𝑖 = 𝐴𝑖 + 𝑗𝑡𝑇 ( 5.26 ) 

 

Â𝑖 − 𝐴𝑖 = 𝑗𝑡𝑇 ( 5.27 ) 

 

By multiplying both sides by jT: 

𝑗𝑇 × (Â𝑖 − 𝐴𝑖) = 𝑗𝑇 × 𝑗𝑡𝑇 ( 5.28 ) 

 

Hence: 

𝑡𝑇 =
𝑗𝑇 × (Â𝑖 − 𝐴𝑖)

𝑗𝑇 × 𝑗
 ( 5.29 ) 

 

Ultimately, the deformation vector (t) is computed for all boxes.  

5.6.6 Localisation of Deformation 

Until this stage of the proposed technique, translation vectors have been obtained for all boxes at all 

epochs. However, these vectors may be resulting from observation errors. Therefore, deformation 

detection is a delicate problem because the deformations to be detected are of the same order of 

magnitude as the precision of observations (Gründig et al., 1985).  

To solve such an issue, statistical tests are employed to examine if there is significant displacement in the 

observations. The assumption of all tests is that the data has only white noise. Therefore, if colour noise 

or outliers exist, an incorrect result could occur (Betti et al., 2011). 

Inspired by Gründig et al. (1985), the proposed technique uses an F-test to detect significant 

displacements in all translation vectors. The null hypothesis (Ho) which states that there are no 

deformations between the epochs will either be accepted or rejected. The corresponding condition is the 

translation vectors resulting from equation ( 5.29): 

 

𝑡 = 0 (5.30 ) 

 

Hence, the quantity Ω2 can be computed: 
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Ω2 =
𝑡𝑇 × 𝑡

3
 ( 5.31 ) 

 

If the null hypothesis that there is no deformation between the epochs is accepted, 𝜴𝟐 will exceed the 

variance of the observations (𝝈𝟐) by the effect of random errors. Otherwise, the null hypothesis has to be 

rejected. This can be tested as follows: 

 

𝐹∗ =
Ω2

𝜎2
 ( 5.32 ) 

 

The null hypothesis is to be accepted if F* fits the Fisher distribution, i.e. if the probability equation: 

 

𝑝(𝐹∗ < 𝐹1−𝛼 , 𝑓1, 𝑓2|𝐻𝑜) = 1 − 𝛼 ( 5.33 ) 

Where: 

1-α: level of significance. 

𝒇𝟏: degree of freedom for numerator (equal 3). 

𝒇𝟐: degree of freedom for denominator (redundancy). 

 

𝑓2 = (3 ∗ 𝑁𝑜. 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 − 6) ∗ 𝑁𝑜. 𝑜𝑓 𝐸𝑝𝑜𝑐ℎ𝑠 ( 5.34 ) 

 

The variance (𝝈𝟐) is computed according to GPA concept, where the covariance matrix can be computed 

as follows (Crosilla and Beinat, 2002): 

 

(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)𝑗 =
1

𝑚
∑(Â𝑖

𝑇
− 𝑍𝑇) 𝑗   (Â𝑖 − 𝑍)𝑗

𝑚

𝑖=1

 

 

( 5.35 ) 

 

𝑉2 = ∑𝑡𝑟(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)𝑗

𝑝

𝑗=1

 

 

( 5.36 ) 

 

𝜎2 =
∑ 𝑉𝑖

2𝑚
𝑖=1

(3 ∗ 𝑝 − 6) ∗ 𝑚
 ( 5.37 ) 

 

Where: 

Â𝒊: Best fit for data matrix at epoch i (Sec.5.5). 
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𝒁: consensus matrix (Sec.5.5). 

m: No. of epochs. 

P: No. of points. 

Finally, to localise deformation, deformation probabilities for each box at all epochs are estimating: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = 𝑝(𝐹∗, 𝑓1, 𝑓2) × 100 ( 5.38 ) 

 

Eventually, the probability of deformations is computed for each box at each epoch. 

5.7 Algorithm Implementation 

 Apart from the software used for data retrieving from TLS, the proposed method is performed by written 

or open source software. In general, it is implemented with three sources: MATLAB script has been 

written by the researcher; PCL open source C++ library; and CloudCompare open source software.  

The PCL is employed to apply Voxel filter, and removing outliers (Sec. 5.6.4). For this purpose, inspired by 

Rusu (2011), a function is created to call PCL classes. The function has been written in C++ programming 

language. Both input and output are arranged in text files which can be read by different programmes. 

On the other hand, CloudCompare is utilised for representation and visualisation. Thus, the proposed 

technique begins, if point clouds need any edit, and finishes with it, where deformation probabilities are 

represented. Similarly, input and output of this software are text files. 

Almost all computations are executed by MATLAB script which has been written by the researcher. Figure 

5-6 shows the flow chart for the proposed algorithm. 
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Figure 5-6 Flow chart of the proposed algorithm. 
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5.8 Chapter Conclusions 

From the first part of this chapter, reviewing the Procrustes technique, it can be concluded: 

 There are different revisions of it, such as Orthogonal Procrustes Analysis (OPA), Extended 

Orthogonal Procrustes Analysis (EOPA), Weighted Extended Orthogonal Procrustes Analysis 

(WEOPA), and Generalized Procrustes analysis (GPA). 

 The Procrustes method has been applied in different fields such as Medicine, Psychometry, 

Statistics, Chemistry, Human Genetics, Geology, and Zoology. Interestingly, it has been shown 

widely applicable in Geomatics, especially for reference system transformation. However, it has 

not been used to detect deformations. 

 The most important drawback of the Procrustes technique is the lack of reliability criterion to 

detect and localise the outliers, which might be included in measurements. Consequently, the 

results produced by the Procrustes technique may be wrong in the case of the existence of 

outliers in the data set. 

From the second part of this chapter, introducing the proposed technique, it can be concluded:  

 Dimensions of the boxes can play a key role in the proposed method because bigger boxes can 

estimation deformations better due to a lot number of redundant. However, smaller size boxes 

can localise deformation more accurately. 

 Boxing structure can cope with unrepeatable measurement of TLS and the deformations can be 

localised. Also, it can offer better accuracy as the deformation vectors are estimated based on all 

points within the box (a large number of redundant). 

  Boxes contain few points might appear based on resolution and box size. Consequently, these 

boxes may show wrong indication for deformations.  

 It is difficult to detect displacement of a single point in boxes due to dealing with data as groups. 
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 VALIDATION EXPERIMENTS WITH SIMULATED DATA CHAPTER Six:

AND SIMULATED DEFORMATIONS 

6.1 Introduction  

Ultimately, the proposed method needs to be conducted in different conditions. For this purpose, a plan 

has been proposed for validation. The principle of this plan is that tests are undertaken with minimum 

error contribution, and if they succeed, they are followed by more real conditions, involving more 

realistic error sources. Accordingly, three validation tests have been conducted, as follows: 

1- Simulated data with simulated deformation:  

To assess the performance of the developed software and to fix some variables, simulated data is 

used. Thus, only controlled white noise, distributed according to the normal distribution, is 

included in this data. 

2- Real scan data with simulated deformation: 

The purpose of this test is checking the validity of the proposed technique in real circumstances. 

Consequently, a real scan has been carried out, but with minimum errors contribution, e.g. all 

measurements have been taken from fixed TLS on the same day. This procedure can mitigate 

effects of the atmospheric and geometric (registration and georeferencing) errors. Also, 

simulated deformations have been conducted, through moving an object with known 

displacements in different scans.    

3- Real scan data with actual deformation: 

Finally, the proposed method needs to be tested in real data with real deformations. Hence, it was 

applied on data of Bellmanpark Limekiln, Clitheroe, Lancashire (Historic, 2015a) monitoring 

project.  

The objective of this chapter is to examine validation of the proposed method with simulated data and 

simulated deformations, and to fix the algorithm variables. 

6.2 Create Simulated Data 

To prepare simulated data, CloudCompare software was used to create a 3D model (Figure 6-1).  This 

model was chosen as a kind of a complicated structure with curved walls, such as dome and minaret. 
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Furthermore, to reduce run-time, the dimension of this model was limited to few metres (height=2.5 m, 

width and depth=1.5 m). 

The point cloud was created from this model by using mesh technique existed in CloudCompare software 

(Figure 6-2). In addition, the point cloud was subsampled to different resolutions (2, 3, 5 mm). 

After that, “Hidden Point Removal” command was employed to remove points fallen on the other side of 

the scene, which cannot be seen from specific viewpoint represents TLS position (Figure 6-3). 

 
Figure 6-1 3D model created by CloudCompare software. 
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Figure 6-2 The point cloud created from the 3D model. 

 
Figure 6-3 Hidden point removal applied on point cloud. 
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6.3 Adding Noise 

To create multiple epochs, normal noise were added to the point clouds. Hence, all epochs are different 

from each other by noise only. MATLAB software was employed for this purpose. The value of the 

suggested noise is based on the supposed type of TLS which is employed in the practical test. Therefore, 

the expected noise for Leica Scanstation P20 (Sec.4.3.1), which is used in the practical test, can be 

estimated as follows: 

 The maximum error in point position =± 6 mm (Leica Geosystems, 2013). 

 The error of target acquisition=± 2 mm (Leica Geosystems, 2013) assumed to be the only 

contribution to registration error. 

According to Gaussian theory for error propagation: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =  √62 + 22 ≃ ±6.5 𝑚𝑚 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑎𝑥𝑖𝑠) =  
6.5

√3
≃ ±3.75 𝑚𝑚 

Consequently, (± 3.75mm) normal noise was added to each axis of all points in the point clouds (Figure 

6-4). 

 
Figure 6-4 The noise in the point clouds. 
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6.4 Validation for Non-deformed Data 

To test validation of the proposed method in case of non-deformations, six epochs were prepared from 

simulated data. In such a way, each epoch is different from others by noise only. In addition, three 

different box sizes (Sec.5.6.3) were used, in this case, 27 alternative approaches require to test, i.e. three 

sample sizes (2, 3, and 5 mm), three surface fitting methods (Sec.5.6.4), and three box sizes (10, 20, and 

30 cm).      

After applying the proposed technique, all alternatives showed no deformation and the maximum 

deformation probability is less than 10% (Table 6-1, Table 6-2, and Table 6-3). Hence, it can be 

considered that it succeeded where no deformations exist. 

On the other hand, it can be noticed that some parts are missing in the simulated building after applying 

the proposed method because the proposed algorithm was designed to filter out boxes have a limited 

number of points according to following proposed formula: 

 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 = ( 
𝐷

𝑆𝑍
 )2  × 10% 

 
( 6.1 ) 

Where, D is the box dimension, and SZ is the sample size (resolution) of point clouds. The idea of this 

formula is that it is filtering out box which contains points equal or less than 10% of supposed points in 

one face. There are three possible solutions to cope with the issue of missing parts, decreasing box 

dimension, increase sample size, and changing start point of boxing structure. 
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Table 6-1 The probability of deformation of non-deformed epochs for resolution 2 mm, for different box sizes 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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Table 6-2 The probability of deformation of non-deformed epochs for resolution 3 mm, for different box sizes 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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Table 6-3 The probability of deformation of non-deformed epochs for resolution 5 mm, for various box sizes 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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6.5 Validation for Deformed Data 

To validate the ability of the proposed technique to detect and localise deformations, simulated 

deformation is added to the data. Thus, seven epochs were prepared, six non-deformed (same as in 

section 6.4) and the seventh with simulated deformations. In addition, the same value of noise was added 

to epoch seven. Also, different amounts and locations of simulated deformations were placed (Figure 6-5 

and Table 6-4). Evidently, one of these deformations (A3) was less than the noise, which means, 

theoretically, it cannot be detected.  

 
Figure 6-5 Locations of the simulated deformations. 

 

Table 6-4 The simulated deformations for different parts. 

Area 

Deformation (m) 

DX DY DZ Displacement 

A1 +0.005 -0.006 -0.006 0.0098 

A2 -0.009 +0.010 +0.008 0.0156 

A3 +0.003 -0.004 +0.003 0.0058 
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Similarly, according to variables suggested, there are 27 alternative solutions (Table 6-5, Table 6-6, and 

Table 6-7). In general, box size 10 cm showed more ability to detect deformations than bigger sizes. This 

might because bigger size boxes contain more points. Hence, more noise involves in computation. 

In addition, although the deformed areas are convex, plane surface interpolation methods detected 

deformations better than LOWESS method. This is considered optimistic results because the time cost of a 

plane fitting is much lower than LOWESS method, which will be discussed later. 

According to the results, the proposed technique succeeded to detect deformation in some solutions. For 

instance, the area A1 showed deformation probability more than 95% in two cases when the resolution is 

2 mm (Table 6-5), while deformation probability of the area A2 reached more than 95% in four solutions 

(three in 2 mm resolution, and one in 3 mm resolution). 

Interestingly, although the deformation of area A3 is less than noise, it is still recognised in some 

solutions because its deformation probability is more than surrounding areas, which reached in some 

solutions to 40%. This results can give an indication for deformations and impose future measurements 

to examine if there is developing deformations.  

Expectedly, 5 mm resolution showed limited ability to detect deformation and in many solutions the 

maximum deformation probability less than 20%. This outcome might because with existing noise the 

number of points in boxes is not enough to perform the proposed technique.  
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Table 6-5 The probability of deformations of the deformed epochs for 2 mm resolution, different box sizes, 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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Table 6-6 The probability of deformations of the deformed epochs for 3 mm resolution,  various box sizes, 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 

P
la

n
e

- 
O

rd
in

a
ry

 L
e

a
st

 S
q

u
a

re
 

   

 

P
la

n
e

- 
T

o
ta

l 
L

e
a

st
 S

q
u

a
re

 

   

L
o

ca
ll

y
 W

e
ig

h
te

d
 S

ca
tt

e
r 

P
lo

t 
S

m
o

o
th

 

   

 



CHAPTER SIX: VALIDATION EXPERIMENTS WITH SIMULATED DATA AND SIMULATED DEFORMATIONS 

122 
 

Table 6-7 The probability of deformation of the deformed epochs for 5 mm resolution, different box sizes, 
and different surface fitting techniques. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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6.6 Time Cost  

The total execution time for the proposed algorithm can be as short as a minute (box size 10 cm, 

Plane_TLS, and 5 mm resolution) or as long as eleven hours (box size 30 cm, LOWESS, and 2 mm 

resolution) which is based on resolution, box size, and surface interpolation model (Table 6-8). Mainly, 

there are three parts cost most of the execution time in the proposed algorithm, boxing structure, finding 

corresponding, and surface fitting. It can be seen in Table 6-9, Table 6-10, and Table 6-11 that the 

percentage of these parts can reach up to 99% from the total execution time. 

On the other hand, the time cost of the fitting surface is based on resolution and box size (Figure 6-6, 

Figure 6-7, and Figure 6-8). Obviously, LOWESS is considered as the most time expensive method 

compared with Plane-OLS and Plane-TLS.      

Table 6-8 Total execution time (second) for the proposed algorithm for different cases.  

Resolution (mm) Interpolation model 
Box size (cm) 

10 20 30 

2 

Plane_OLS 275.05 490.76 1022.84 

LOWESS 6528.6 18802.1 38891.82 

Plane_TLS 299.91 646.86 1409.07 

3 

Plane_OLS 195.59 251.1 486.69 

LOWESS 3386.4 8519.69 19072.14 

Plane_TLS 161.36 307.73 678.11 

5 

Plane_OLS 116.9 99.6 147.58 

LOWESS 1223.2 2444.21 5719.03 

Plane_TLS 69.11 103.56 191.24 

     

Table 6-9 Execution time cost (seconds) for different parts of the proposed algorithm for 2 mm resolution.   
Box size 

(cm) 
Surface 
model 

Boxing 
structure 

Finding 
Corresponding 

Surface 
Interpolation 

∑ % 

10 

Plane_OLS 68.93 146.01 38.85 253.79 92.3% 

LOWESS 69.08 141.35 6298.64 6509.07 99.7% 

Plane_TLS 73.04 160.71 45.13 278.88 93.0% 

20 

Plane_OLS 96.37 362.91 12.37 471.65 96.1% 

LOWESS 93.23 354.06 18336.83 18784.12 99.9% 

Plane_TLS 105.65 369.5 153.34 628.49 97.2% 

30 

Plane_OLS 158.79 839.7 5.15 1003.64 98.1% 

LOWESS 144.76 719.77 38008.83 38873.36 99.9% 

Plane_TLS 152.28 805.23 433.34 1390.85 98.7% 
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Table 6-10 Execution time cost (seconds) for different parts of the proposed algorithm for 3 mm resolution.   
Box size 

(cm) 
Surface 
model 

Boxing 
structure 

Finding 
Corresponding 

Surface 
Interpolation 

∑ % 

10 

Plane_OLS 46.17 88.35 44.51 179.03 91.5% 

LOWESS 43.48 83.54 3244.19 3371.21 99.6% 

Plane_TLS 43.79 83.26 19.1 146.15 90.6% 

20 

Plane_OLS 55.64 170.67 12.44 238.75 95.1% 

LOWESS 53.51 163.08 8290.69 8507.28 99.9% 

Plane_TLS 53.3 175.26 66.17 294.73 95.8% 

30 

Plane_OLS 78.45 390.96 5.21 474.62 97.5% 

LOWESS 75.89 360.86 18622.09 19058.84 99.9% 

Plane_TLS 87.79 392.11 186.36 666.26 98.3% 

 
 

Table 6-11 Execution time cost (seconds) for different parts of the proposed algorithm for 5 mm resolution.   
Box size 

(cm) 
Surface 
model 

Boxing 
structure 

Finding 
Corresponding 

Surface 
Interpolation 

∑ % 

10 

Plane_OLS 22.14 34.25 46.4 102.79 87.9% 

LOWESS 19.79 30.51 1156.73 1207.03 98.7% 

Plane_TLS 20.53 31.74 3.91 56.18 81.3% 

20 

Plane_OLS 23.4 54.1 12.75 90.25 90.6% 

LOWESS 22.32 51.99 2361.42 2435.73 99.7% 

Plane_TLS 22.29 55.35 17.2 94.84 91.6% 

30 

Plane_OLS 30.44 104.87 5.26 140.57 95.3% 

LOWESS 28.4 111.28 5572.03 5711.71 99.9% 

Plane_TLS 28.74 109.45 45.81 184 96.2% 

 
 

 
Figure 6-6 Total execution time for different fitting methods, different box sizes, and 2 mm resolution. 
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Figure 6-7 Total execution time for various fitting methods, different box sizes, and 3 mm resolution. 

  

 
Figure 6-8 Total execution time for various fitting methods, different box sizes, and 5 mm resolution. 
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6.7 Wisely Downsampling 

As has been mentioned and expected, in the high-resolution point cloud, surfaces can be fitted better, 

consequently, higher ability to detect deformation than low resolution. However, an enormous amount of 

data, which can be obtained from a higher resolution, is hard to handle and it consumes time to process. 

In addition, there is a bigger chance to omit some boxes from higher resolution point cloud due to the 

proposed algorithm. 

Accordingly, it has been suggested to reduce resolution wisely. In other words, downsampling the point 

clouds and at the same time reducing the noise. In this case, the obtained point cloud can inherit 

advantages of both low and high resolution. Therefore, a few high-quality points are employed to perform 

the proposed technique.  

For this purpose, Voxel filter (Sec.5.6.4) has been suggested to downsample the resolution of the point 

clouds from 2 mm to 5 mm. The results (Table 6-12) showed the ability of the point clouds to detect 

deformations as same as 2 mm resolution, although it consumes time as like as 5 mm resolution. 

Furthermore, it did not omit any box, i.e. no missing parts appear. 

However, care should be taken when applying this filter to avoid over-smoothing. In such case, fake 

deformations might result. For instance, when using Voxel filter to downsample the resolution of the 

point clouds from 2mm to 10mm (Table 6-13), there are two incorrect solutions obtained, the first 

showed the probability of deformation more than 95% where box size 10 cm and Plane-Total Least 

Square (Plane-TLS) surface fitting method, while the second showed about 30% deformation probability 

where box size 20 cm and Plane_TLS surface fitting method. 
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Table 6-12 The probability of deformations of the deformed epochs for 5 mm resolution downsampled from 
2 mm using voxel filter. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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Table 6-13 The probability of deformations of the deformed epochs for the 10 mm resolution downsampled 
from 2 mm using voxel filter. 

 
Box size 10 cm Box size 20 cm Box size 30 cm Probability 
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6.8 Chapter Conclusions 

The objective of this chapter is to examine validation of the proposed method with simulated data and 

simulated deformations. From these tests, it can be concluded: 

 The proposed algorithm succeeded to detect and to localise deformations. 

 It showed success when no deformations exist. 

  It could observe deformations with a magnitude less than noise which can be considered as 

promising results. 

 Box size 10 cm showed more ability to detect deformations than bigger sizes (30 cm). This might 

because bigger size boxes contain more points, and therefore more noise involves in 

computation. 

 In the case of 5 mm resolution, it showed limited ability to detect deformation. This might 

because with existing noise the number of points in boxes is not enough to perform the 

proposed technique. 

 The total execution time is based on resolution, box size, and surface interpolation model. 

 LOWESS is considered as the most time expensive method compared with Plane-OLS and Plane-

TLS. 

 Through applying Voxel filter, it showed the ability to detect deformations as same as 2 mm 

resolution, although it consumes time as like as 5 mm resolution. 

 Plane surface interpolation methods detected deformations better than LOWESS method. 

 For LOWESS surface fitting, the best results were obtained with the span equal to (0.25). 

 For LOWESS surface fitting, the robust method is the least squares (LAR). 

 Voxel size and outlier removal parameter (K and n) are fixed in the real test. 
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 VALIDATION EXPERIMENTS WITH REAL DATA AND   CHAPTER Seven:

SIMULATED DEFORMATIONS      

7.1 Introduction 

The objective of this chapter is to test validation of the proposed method with real scan data and 

simulated deformations. For this purpose, two experiments have been conducted. The first test was 

designed in such a way that the expected errors are at a minimum, hence, scanning different epochs from 

one station (no registration errors). In addition, the atmospheric errors are at a minimum because all 

data were collected in a short period (within an hour). Furthermore, to reduce the object-related errors, 

the scanned area has the same colour of the moving object, which was used for simulated deformations. 

Finally, the range was about ten metres, which mean the range noise and beam divergence at a minimum. 

On the other hand, the second test has the same design, yet the range was about 25 metres, which mean 

more noise is coming from the range uncertainty and beam divergence. Additionally, different materials 

have been scanned, which may add object-related errors.       

7.2 Real Scan with Close Range 

The first real scan was conducted on 10th of March 2015. This test was prepared in such a way that ranges 

within ten metres long, to reduce errors contribution. The test location was front of the Nottingham 

Geospatial Building (NGB) (Figure 7-1). 

 
Figure 7-1 The location of the first test which was conducted on 10th of March 2015. 
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Laser scanner model Leica ScanStation P20 (Sec.4.3.1) was used to collect data. In addition, total station 

model Leica TS30 was employed to measure simulated deformations.  

To create data, some 3D object (Figure 7-2) was pasted on the wall, and it scanned with wall six times, 

each represented one epoch. After that, the object moved a little and scanned with the wall, which 

represented epoch seven. Epochs eight and nine were created with the same way after moving the object. 

The scan resolution was selected as 6.3mm at quality level one (Sec.4.3.1).  

On the other hand, the total station was used to determine displacements of the 3D object through 

measuring coordinates of small targets fixed on it before and after displacements. 

 
Figure 7-2 The scanned area of the first test with a 3D object which was used simulated deformation. 

Ultimately, the whole data consisted from nine epochs, six non-deformed epochs and three with different 

deformations. Table 7-1 shows the simulated deformations for the pasted object according to the total 

station measurements. 

Table 7-1 The simulated deformations for different epochs. 

Epoch No. DX (mm) DY (mm) DZ (mm) Displacement (mm) 

1-6 0.0 0.0 0.0 0.0 

7 -1.0 4.5 0.5 4.6 

8 -3.0 9.5 0.5 10.0 

9 -5.5 16.0 0.5 16.9 
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7.2.1  Non-deformed Epochs 

To test the proposed technique in non-deformed point clouds, the first six epochs was inputted. At first, 

the voxel filter did not apply; the results are shown in Figure 7-3. Obviously, there is a failure of the 

proposed method where a lot of non-deformed boxes showed high deformation probabilities (Figure 

7-4). The possible reason is that data is contaminated with a lot of noise because the quality level one was 

used which means less repeating measurements, and therefore more noise (Sec. 4.3.1).  

 
Figure 7-3 The results of the first six epochs without using the voxel filter. 

 
Figure 7-4 The deformation probabilities for epoch six before applying the voxel filter. 
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To mitigate noise, the voxel filter (Sec. 5.6.4) was applied (Figure 7-5). Evidently, there is an improvement 

in the results and the maximum deformation probabilities less than 6% (Figure 7-6). Therefore, it can be 

considered the success of the proposed technique to show no deformations for non-deformed epochs. 

 
Figure 7-5 The results of the first six epochs after applying the voxel filter. 

 

 
Figure 7-6 The deformation probabilities for epoch six after applying the voxel filter. 
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7.2.2 Deformed Epochs 

As has been mentioned, simulated deformations have been added to some parts of the scanned area 

through epoch seven to epoch nine. The amount of the deformations was increased gradually (Table 7-1). 

For all these epochs, the voxel filter was applied before performing the proposed technique.  

For the epoch seven, results showed a clear difference compared with the epoch six (Figure 7-7). As can 

be seen in Figure 7-8, the deformations probabilities increased for the deformed area compared with 

others, which reached to about 67%. Despite the fact that this probability cannot be considered 

deformation, it might give an indication.     

 
Figure 7-7 The results of epoch seven. 

 
Figure 7-8 The deformation probabilities for epoch seven. 
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For the epoch eight, the difference became more clarity (Figure 7-9). Hence, the deformation probabilities 

reached to more than 93% (Figure 7-10). In other words, regarding monitoring, this can set off alarm 

bells. 

 
Figure 7-9 The results of epoch eight. 

 
Figure 7-10 The deformation probabilities for epoch eight. 
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Finally, results of the epoch nine showed a significant difference (Figure 7-11), and the probabilities 

reached to more than 97% (Figure 7-12). In this case, it can be concluded that there is deformation. 

 
Figure 7-11 The results of epoch nine. 

 
Figure 7-12 The deformation probabilities for epoch nine. 
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7.2.3 Comparison with Other Methods 

To compare the proposed technique with other known methods, the displacement of each point was 

computed. As an alternative method, CloudCompare software was used to calculate displacements 

directly from point clouds. For consistency, the voxel filter applied on point clouds inputted for both 

methods, the proposed and CloudCompare. This process was performed for all deformed and non-

deformed epochs, six, seven, eight, and nine. 

For non-deformed epochs, the displacements computed by the proposed method are uniform for all parts 

contrary to that of the CloudCompare (Figure 7-13). In addition, the maximum displacements computed 

by the proposed method is less than 2mm compared with about 14mm for that calculated by the 

CloudCompare (Figure 7-14). Consequently, the results of the proposed method can be considered more 

reliable for non-deformed epochs.    

 
Figure 7-13 The comparison of epoch six displacements computed by CloudCompare and the proposed 
method. 
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a- The CloudCompare method 

 

b- The proposed method 

Figure 7-14 The point displacements of epoch six with different methods, CloudCompare and the proposed. 

 

Also, displacements of the deformed epochs computed by the proposed technique are better than that 

computed by the CloudCompare. For epoch seven, the deformed area can be recognised easily in the 

proposed technique because its displacements differ significantly from that of other areas (Figure 7-15). 

In addition, in the proposed method, the displacement value of the deformed area is equal 4mm 

compared to the actual value (4.6mm), while it reached to 16 mm in the CloudCompare method (Figure 

7-16).  

Similarly, in epoch eight, the differences of displacements between deformed area and its surrounding are 

adequate to be recognised in the proposed technique (Figure 7-17). However, the displacement of the 

deformed area which computed by the proposed method is nearly 8 mm compared to actual deformation 
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10 mm, while there is a significant difference with that computed by the CloudCompare, which reached to 

25 mm (Figure 7-18). 

Finally, the results of epoch nine showed the same trends (Figure 7-19, and Figure 7-20), yet the 

displacements of the deformed area were about 9 mm and 26 mm computed by the proposed and the 

CloudCompare methods respectively, compare to 16.9 mm actual displacement.     

 
Figure 7-15 The comparison of epoch seven displacements computed by the CloudCompare and the proposed 
method. 
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a- CloudCompare method 

 

b- Proposed method 

Figure 7-16 The point displacements of epoch seven with different methods, CloudCompare and the 
proposed. 
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Figure 7-17 The comparison of epoch eight displacements which computed by CloudCompare and the 
proposed method. 

 

a- CloudCompare method 

 

b- Proposed method 

Figure 7-18 The point displacements of epoch eight with different methods, CloudCompare and the proposed. 
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Figure 7-19 The comparison of the epoch nine displacements which computed by CloudCompare and the 
proposed method. 

 

a- CloudCompare method 

 

b- Proposed method 

Figure 7-20 The point displacements of the epoch nine with different methods, CloudCompare and the 
proposed. 
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7.3 Scanning Complicated Building  

In spite the fact that the proposed method is suggested for monitoring historic and heritage buildings 

where there are unexpected deformations, it has also been tested in modern complicated buildings. The 

Nottingham Geospatial Building (NGB) was selected for this purpose as it was built from different 

materials with different textures (Figure 7-21). 

 
Figure 7-21 Different textures and materials of NGB. 

  
The field work was conducted on 19th of March 2015 using scanner Leica Scanstation P20 and total 

station Leica TS15 (Figure 7-22). According to the scanner position, ranges to the scanned area were 

between (20 to 25m). In addition, the scanning resolution was set as 3.1 mm with quality level four (Sec. 

4.3.1). 

 
Figure 7-22 The location of the second test. 
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Same as the previous test, a 3D object was pasted on the glass of the NGB (Figure 7-23), and it scanned 

with building six times, each time representing one epoch. After that, the object moved a little and 

scanned with the building, which represented epoch seven.  Epochs eight, nine, and ten were created with 

the same way after moving the object. Total station (Leica TS15) was used to determine the 

displacements of the object through measuring coordinates of small targets fixed on it before and after 

displacement. 

As a result, the whole data contains ten epochs, six non-deformed epochs and four with different 

deformations. Table 7-2 shows the simulated deformations for the pasted object according to the total 

station measurements. 

 
Figure 7-23 The 3D object which was used as a simulated deformation. 

 
 

Table 7-2 The simulated deformations for different epochs. 

 
 

Epoch No. DX (mm) DY (mm) DZ (mm) 

1-6 0.0 0.0 0.0 

7 -1.9 -5.0 1.5 

8 
-5.3 -9.7 7.2 

9 -7.6 -16.9 17.2 

10 -12.6 -31.5 27.1 
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7.3.1 Post Processing 

Before applying the proposed method, another set of data with less resolution (6 mm) was created from 

the original data by using the CloudCompare software, employing “Subsample” command which is, unlike 

the voxel filter, reducing resolution without any smoothing. After that, both the original with 3.1 mm and 

the new with 6 mm resolution point clouds were processed by the proposed algorithm.  

Non-deformed epochs, the first six epochs, showed no significant deformation probabilities in most of the 

building. However, there were some places with high deformed probabilities (more than 95%) which 

were located in unstable areas such as cloth fins, in the middle of the building with both 3.1 mm and 6 

mm resolutions (Figure 7-24). Consequently, it is not considered failure to the proposed method. 

Expectedly, the simulated deformation cannot be recognised in epoch seven where deformation 

probability is less than 6% (Figure 7-25), due to the fact that the simulated deformation is less than 

expected noise (Sec.4.3.1). Correspondingly, at the epoch eight, although the deformed area can be 

distinguished for 3.1 mm resolution, it cannot be seen with 6 mm resolution, where deformation 

probabilities are 44% and 12% respectively (Figure 7-26). 

On the other hand, at epoch nine, the deformation probability for the deformed area reached to 89% for 

3.1 mm resolution, while it is still as low as 26% for 6 mm resolution (Figure 7-27). Finally, at epoch ten, 

the deformed area can be recognised easily for 3.1 mm resolution owing to high deformation probability 

(99.6%), while 6 mm resolution showed less clarity for the deformed area due to less deformation 

probability (54%) (Figure 7-28).  

To some extent, it might be considered a success for the proposed technique in case of 3.1mm resolution, 

yet the results of 6 mm resolution cannot be inferred as deformations. 
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a- 3.1 mm resolution 

Deformation 
Probability 

 
 
 

  
b- 6 mm resolution 

 
Figure 7-24 The results of epoch six with different resolutions, a- 3.1 mm, and b- 6 mm. 
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a- 3.1 mm resolution 

 

Deformation 
Probability 

 

 

  
b- 6 mm resolution 

 
Figure 7-25 The results of epoch seven with different resolutions, a- 3.1 mm, and b- 6 mm. 
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a- 3.1 mm resolution 

 

Deformation 
Probability 

 
 
 

  
b- 6 mm resolution 

 
Figure 7-26 The results of epoch eight with different resolutions, a- 3.1 mm, and b- 6 mm. 
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a- 3.1 mm resolution 

 

Deformation 
Probability 

 
 
 

  
b- 6 mm resolution 

 
Figure 7-27 The results of epoch nine with different resolutions, a- 3.1 mm, and b- 6 mm. 
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a- 3.1 mm resolution 

Deformation 
Probability 

 
 

  
b- 6 mm resolution 

 
Figure 7-28 The results of epoch ten with different resolutions, a- 3.1 mm, and b- 6 mm. 
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7.3.2 Improving Results 

According to previous tests outputs, it is expected to improve the results through applying downsampling 

by the voxel filter. Therefore, it was applied on point clouds for all epochs (deformed and non-deformed). 

Figure 7-29 to Figure 7-33 are the results of the proposed method after applying the voxel filter with 10 

mm voxel size. Obviously, there are improvements in the detection ability. For instance, deformation 

probability of the deformed area of epoch seven increased in this result from 6% to 27% compared to the 

results of the 3.1 mm resolution. In addition, the results of epoch eight have been improved through 

increasing deformation probability up to 79%, while it was only 44% in the result of the 3.1 mm 

resolution. On the other hand, at epoch nine and epoch ten, the probabilities of deformation have not 

significantly changed, as 83% and 99.8% respectively. Figure 7-34 shows the deformation probabilities of 

the deformed area in different cases; clearly, after applying the voxel filter the ability of the proposed 

method to detect deformations increased with lower resolution.  

 
Figure 7-29 The results of epoch six after applying the voxel filter. 
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Figure 7-30 The results of epoch seven after applying the voxel filter. 

 

 
Figure 7-31 The results of epoch eight after applying the voxel filter. 
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Figure 7-32 The results of epoch nine after applying the voxel filter. 

 

 
Figure 7-33 The results of epoch ten after applying the voxel filter. 
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Figure 7-34 The deformation probabilities of the deformed area. 

7.4 Chapter Conclusions 

In this chapter, the second stage of the validation experiments has been discussed, which is testing the 

proposed technique in the real scan data with simulated deformations. The indicators of the performance 

can be summarized as follows: 

First test 

 In the case of non-deformation, there is a failure of the proposed method where a lot of non-

deformed boxes showed high deformation probabilities. The possible reason is that data is 

contaminated with a lot of noise because the quality level one was used which means less 

repeating measurements, and therefore more noise. 

 After applying voxel filter, the proposed technique succeeded to show no deformations for non-

deformed epochs. Also, it succeeded to detect and localise the deformations. 

 Potentially, it can give an indication of areas with deformations less than the noise. 

 The results of the proposed method can be considered better than that those obtained with 

CloudCompare software. 

Second test 

 To some extent, the proposed technique succeeded to detect and localise deformations. 

 It is not recommended for monitoring modern and complicated buildings. Yet it has been 

developed for monitoring historic ruins. Probably, if the proposed method is extended to include 

intensity, it may work properly with different materials; this is out of the scope of this research. 
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 MONITORING OF BELLMANPARK LIMEKILN CHAPTER Eight:

8.1 Introduction 

Until this stage of research, the validation of the proposed method has been carried out in both simulated 

point clouds with simulated deformations and real scan data with simulated deformations. As a final 

validation test, the proposed method needs to be applied to real data with real deformations. For this 

purpose, the researcher has contacted English Heritage (Heritage, 2015) for support. Thanks to Historic 

England (Historic, 2015b), especially Geospatial Imaging(GI)-Remote Sensing Team (RST), we have 

received data for the Bellmanpark Limekilns, Clitheroe, Lancashire (Historic, 2015a) monitoring project. 

This is a live project for Historic England and addresses a historic building that currently has some 

structural issues. 

In this chapter, the results and analysis of applying the proposed method to Bellmanpark Limekilns 

project will be discussed.   

8.2 Location and Background 

Bellmanpark Limekilns is a part of an archaeological site which is located north-west of Bellman Farm, 

Clitheroe, Ribble Valley, Lancashire (Figure 8-1). This site was scheduled under the Ancient Monuments 

and Archaeological Areas on the 3rd of September 2004 (Historic, 2015a). In addition to Bellmanpark 

Limekilns, it includes 90 m of an associated tramway, embankment and the remains of a bridge 

(abutment, and buried remains of a trestle) along which lime was transported from Bellmanpark Quarry 

to the lime kilns (ibid). 

The Limekilns was constructed in 1877 adjacent to the railway between Chatburn and Blackburn. It 

consists of a huge rectangular bank with four kilns built into the slope near the railway. Beneath this 

bank, there are two partly infilled tunnels through which a railway branch line runs from the adjacent 

main line. It was built with about 15 m deep, 30 m long and 15 m high and constructed with limestone 

blocks (ibid) (Figure 8-2). 

The structural engineer of Historic England/Heritage At Risk (HAR) for the North West, has advised that 

cracks in the structure need to be carefully monitored over the foreseeable future (e.g. in six and twelve 

months) to determine whether the cracks are historical or active, using the full laser scan as baseline data. 
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Consequently, in June 2015, HAR projects officer for the North West requested support from GI-RST to 

handle this project.   

 
Figure 8-1 Bellmanpark Limekilns location (Historic, 2015a). 

 
Figure 8-2 Bellmanpark Limekilns (source: GI-RST) 
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8.3 Received Data 

The NW HAR team has commissioned a detailed structure report by a contracted structure company, and 

the latter sub-contracted a full laser scan of the kilns to another company. This scan was acquired on 25-

26 of June 2015 and considered as a baseline for monitoring. Unfortunately, there is no metadata 

available for this scan (e.g. scanner model, resolution, methodology, registration accuracy, etc.). We only 

know that the data was georeferenced using control stations based on the Ordnance Survey (OS) grid, 

employing RTK GNSS equipment with a network correction provided by a Virtual Reference Station 

(VRS). 

The second set of data was collected by GI-RST on 8-9 December 2015. A Leica P40 Scanstation was used 

for scanning while RTK-GNSS based on Smartnet was employed to get two points related to the OS grid 

system and then traversed off them, using a total station, to survey 25 control points, 17 of them being 

scanner targets (T1-T17) (Table 8-1). Also, this data consists of 15 scans, and each includes three or more 

of targets points (Table 8-2). 

Table 8-1 Bellmanpark OS control points (source: GI-RST). 

Point No. Easting  Northing Elevation Remark 
1 375839.494 443404.039 95.746 

N
o

t 
T

a
rg

e
t 

p
o

in
ts

 

2 375862.657 443402.990 97.033 

3 375883.199 443415.185 91.332 

4 375876.614 443440.510 93.375 

5 375837.097 443427.683 93.235 

6 375837.294 443428.230 91.629 

7 375858.993 443406.129 97.362 

8 375873.907 443439.687 93.589 

T1 375848.902 443409.889 97.096 

S
ca

n
n

e
r 

T
a

rg
e

ts
 

T2 375863.228 443410.750 96.986 

T3 375858.110 443402.053 95.994 

T4 375874.027 443415.205 94.643 

T5 375880.416 443414.109 92.201 

T6 375878.773 443437.635 92.293 

T7 375871.811 443437.859 91.909 

T8 375874.339 443440.383 93.647 

T9 375869.182 443438.999 92.864 

T10 375868.418 443434.947 94.253 

T11 375855.316 443430.178 94.648 

T12 375854.514 443434.475 93.390 

T13 375839.162 443429.264 92.977 

T14 375836.901 443423.402 94.047 

T15 375831.298 443421.522 91.652 

T16 375833.587 443410.200 95.366 

T17 375841.146 443407.342 96.997 
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Table 8-2 Targets of different scans (source: GI-RST data). 

Scan Target points 

1 T1-T2-T3 

2 T1-T2-T3-T4 

3 T2-T3-T4-T5 

4 T2-T4-T5-T6 

5 T4-T5-T6-T7 

6 T5-T7-T8 

7 T5-T6-T7-T8 

8 T5-T6-T7-T8 

9 T9-T10-T11-T12 

10 T9-T10-T11-T12 

11 T10-T11-T12-T13 

12 T11-T12-T13-T14 

13 T12-T13-T14-T15 

14 T13-T14-T15-T16 

15 T14-T15-T16-T17 
 

8.4 Data Issues 

As has been mentioned, we have received two sets of data with about a six-month separation period. 

Though studying this data, the following problems need to be solved: 

1-  There are only two epochs available, whereas the proposed method based on GPA needs more 

than two epochs (chapter five). To address this problem, the researcher has duplicated the first 

epoch and to keep consistency doubled the weight of the second epoch. Hence, the processed 

data consist of three epochs: the first and the second represent the data collected in June 2015 

with unity weight, and the third is data collected in December 2015 with double weight. 

2- There is no information about the resolution and the scanner model for the first epoch. 

Theoretically, this does not affect results of the proposed method because it unifies resolutions 

for all epochs in one step and mitigates data noise in another step (chapter five). 

3- No report is available for the registration and georeferencing accuracy for the first epoch. 

Fortunately, it is georeferenced to the OS grid; hence, it has an absolute coordinate system. A 

logical analysis has been suggested to solve this issue. Accordingly, the proposed method is 

applied twice; firstly on the original data assuming that both sets are accurately georeferenced to 

the same coordinate system, and secondly after registering both sets using ICP (Sec 3.3.3.1). 

Then, we can compare the results and continue with a more logical solution. 
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4- Typically, all scans should be registered to a single coordinates system using tie points; and then 

georeferenced to a ground coordinates system using control points. This procedure cannot be 

carried out for the December 2015 epoch because there are only two constraints between scan 5 

and 6, and no constraints between scan 8 and 9 (Table 8-2). Fortunately, a total station was used 

to distribute control points to ensure good accuracy. In addition, all scans have three or more 

control points. Therefore, it has been suggested to georeferencing all scans directly to OS system 

using points (T1-T17). The registration report reveals optimistic results with only 0.001m Mean 

Absolute Error (MAE) (Appendix B).      

8.5 Results 

For the purpose of the analysis, the structure’s sides have been named according to faced directions e.g. 

SE for side faces South East, SW for side faces South West, etc. (Figure 8-3). In addition, to reduce 

required memory and accelerate processing, the coordinates system has been shifted (ΔX=-375800.00, 

ΔY=-443400.00, ΔZ=0.0). Furthermore, CloudCompare software is considered as an alternative solution 

to determine deformations because it is suggested to be used by GI-RST to implement the project.  

   
Figure 8-3 Bellmanpark Limekilns side names. 
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8.5.1 Unregistered Epochs 

As has been mentioned, the proposed method has been applied firstly to the original data before 

performing any registration between data sets (Appendix C). Figure 8-4 illustrates the deformations 

probabilities for the Limekilns faces. It can be seen that all faces show high probabilities of deformation. 

Consequently, with only a six-month period between two epochs, this may give an indication that there is 

a shift between two coordinates system due to insufficient accuracy for georeferencing.  

Similarly, the absolute distances between the two clouds, which were computed by CloudCompare 

software (Figure 8-5), show significant figures for all Limekilns faces. For instance, the distances for the 

face NW are more than 0.015m and in some parts reach to 0.035m, although there are no clear structural 

problems. Furthermore, the opposite face (SE) shows significant distances value (more than 0.035m) in 

some parts. 

Furthermore, benefiting from the outcome of the proposed method, the deformation direction has been 

computed for each face. As aforementioned, the proposed method computes a deformation vector for 

each box which was used to compute the deformations result for each face by summation vectors in each 

face (Appendix C and Table 8-3). Figure 8-6 reveals the representation of the unit vectors for 

deformations result for each face before ICP-registration. Evidently, three of these vectors are pointing in 

the same direction. In addition, vectors of opposite faces (SE and NW) are almost identical. This means, 

the shift between two data sets comes from georeferencing or the whole structure deformation (rigid 

body movement). The latter reason is less possibility due to the huge size of the structure and the short 

observation period (six months). Therefore, the likely reason is the georeferencing shift between epochs. 

Consequently, ICP registration has been used to register epochs. For this purpose, CloudCompare 

software has been employed to perform such registration. The registration results (Figure 8-7) reveal a 

shift of about 2-4 centimetres which is nearly as same as the precision of the RTK-GNSS. However, the 

RMS can be considered high (0.043 m), and this is probably due to the occurrence of deformations. 
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Figure 8-4 Deformation probabilities (%) for Limekilns faces before ICP-registration. 

 

 
Figure 8-5 Absolute distances (m) by CloudCompare software for Limekilns before ICP-registration. 

Table 8-3 Deformation unit vectors before ICP-registration. 

Face 
Unit Vector 

VX (m) VY (m) VZ (m) 

SE -0.193 0.981 -0.014 

SW 0.952 0.289 -0.101 

NW -0.199 0.979 0.035 

NE -0.619 0.776 0.121 
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Figure 8-6 Deformation unit vectors for structure faces before ICP-registration. 

 

 
Figure 8-7 Snapshot for results of ICP registration. 

 



CHAPTER EIGHT: MONITORING OF BELLMANPARK LIMEKILN 

163 
 

8.5.2 After ICP Registration 

As has been suggested, the ICP-registered epochs have been used in the second implementation of the 

proposed method. Generally, there is an improvement in the number of deformed areas, i.e. the number of 

the deformed boxes was 2386 before ICP-registration decreased to only 1047 after performing it (Figure 

8-8, Appendices C and D). Furthermore, the faces deformations vectors (Figure 8-9 and Table 8-4) are 

pointing to different directions which can be results of deformations rather than a shift.  

Consequently, further analysis has been advised for deformed areas based on locations in the structure. 

For this purpose, all the deformed areas, or supposed to be, were studied according to the actual location 

on each face.   

 
Figure 8-8 Deformation probabilities (%) for all faces after ICP-registration. 

 

Table 8-4 Deformation unit vectors after ICP-registration. 

Face 
Unit Vector 

VX (m) VY (m) VZ (m) 

SE 0.484 0.873 0.056 

SW 0.931 0.366 0.003 

NW 0.126 -0.990 0.060 

NE -0.989 -0.149 -0.020 
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Figure 8-9 Deformation unit vectors after ICP-registration. 

 

Evidently, there is a large area on the SE face with high deformations probabilities of more than 95% 

(Figure 8-8 and Figure 8-10). Mainly, it can be seen in the two parts: the first one locates at the right edge 

of the structure (yellow dashed border in Figure 8-10), and the second one locates nearly in the middle of 

that face (red dashed border in Figure 8-10). From the close view to the pictures, it can be seen an 

obvious crack in the first part, which is across from the upper-left to the down-right of that part (Figure 

8-10). Probably, it is active one which occurred in that place. In addition, there are missing bricks and 

parts in the second area. Possibly, the materials appear in the Figure 8-11 are the fallen from the 

structure. Consequently, it is might the reason for detecting deformations in this area.  

Similarly, the displacements, which were computed by the proposed and CloudCompare methods, give 

the same indications (Figure 8-12). However, the proposed method is localising deformations much 

better than CloudCompare where deformations diffused over a wide area. Furthermore, the maximum of 

the displacements was detected in the proposed method (0.020m) are more logical than that in 

CloudCompare (0.035m) (Figure 8-12), owing to only a six-month period. 
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Figure 8-10 Deformation probabilities (%) for the SE face after ICP-registration. 

 
Figure 8-11 Some fallen parts in the SE face. 
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It can be concluded, according to the proposed method and using CloudCompare, there are deformations 

in the SE face and needs keeping an eye on it. Consequently, more analysis is undertaken for it though our 

research. 

 
Figure 8-12 Displacements (m) for the SE face after ICP-registration. 
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On the other hand, the proposed method shows no deformations in the SW face according to the 

deformation probabilities and the small areas, which have high probabilities for deformations, locate 

where grass grew (Figure 8-13). Similarly, the displacements occurred in the same place for both 

methods, the proposed one and CloudCompare (Figure 8-14). Nevertheless, the proposed method reveals 

less effect by grown grass because it computes displacements based on all points in a specific box, while 

CloudCompare computes displacements for each point.  

  
Figure 8-13 Deformation probabilities (%) for the SW face after ICP-registration. 
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Figure 8-14 Displacements (m) for the SW face after ICP-registration. 

 

The same situation occurred in the NW face where no deformations have been detected by the proposed 

method according to the deformations probabilities (Figure 8-15). In addition, the displacement 

computations manifest how the proposed method is less affected by grass than CloudCompare, but this 

time clearer due to the extended grass areas (Figure 8-16).  
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Figure 8-15 Deformation probabilities (%) for the NW face after ICP-registration. 

 
Figure 8-16 Displacements (m) for NW face after ICP-registration. 
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 Regarding the NE face, although no obstructions are existing, the proposed method detects deformations 

according to the deformations probabilities (Figure 8-17). From the close view to the pictures, it can be 

seen cracks in the middle of this face (Figure 8-17). Furthermore, the proposed method shows optimistic 

results regarding the displacements where the deformed areas are tracing the cracks (Figure 8-18). 

Otherwise, although the CloudCompare results show deformations, they spread over a wide area and 

there are no clear locations for the deformations (Figure 8-18). Consequently, it can be concluded that the 

cracks on this face are active which might cause such deformations. Hence, further analysis is undertaken 

through our research for this face.       

 
Figure 8-17 Deformation probabilities (%) for the NE face after ICP-registration. 
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Figure 8-18 Displacements (m) for the NE face after ICP-registration. 
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8.5.3 Deformation Results  

As has been concluded, two faces (SE and NE) could suffer from deformations. Therefore, further analysis 

for deformations directions is needed. To study deformations directions with relevance to the structure, 

the point clouds has been rotated (8.1) in such that X-axis is in parallel to faces SE and NW (Figure 8-19), 

and then the proposed method has been applied again (Appendix E). 

𝑅(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥) = [
0.955130637 −0.296184868 0
0.296184868 0.955130637 0

0 0 1
] , ∆(𝑠ℎ𝑖𝑓𝑡) [

−375800.00
−443376.00

0
] 

 

(8.1) 

 

 
Figure 8-19 Rotated point clouds for Bellmanpark Limekilns. 

Furthermore, by examining pictures and point clouds of these faces, three obvious cracks were found, one 

in the face SE and two in the face NE (Figure 8-20). Therefore, it is important to discover whether these 

cracks are historical or active. 

Using the outcomes of the proposed method, the deformations results have been computed for each joint 

deformed area. Accordingly, three deformation vectors were computed (Table 8-5), DV1 and DV2 in the 

face SE; and DV3 in the face NE. These vectors can be represented in point clouds at actual locations 

because they relate to the same coordinates system. As can been seen in Figure 8-21 and Figure 8-22, the 

DV1 vector points outward, this probably the reason of the fallen parts (Figure 8-11). The border of the 
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affected area by this vector is not obvious in the structure, although results of the proposed method 

revealed it (Figure 8-10 and Figure 8-12). 

On the other hand, the DV2 and DV3 point inward this possibly because the structure walls slant inward. 

In addition, they are pointing to the downhill, in other words, a more logical direction. Regarding affected 

areas, according to the locations of these vectors, DV2 could be affected in the area extended between 

cracks on the SE face and the first crack in the face NE (yellow area in Figure 8-23), while DV3 might be 

affected in that one extended between the two cracks in the face NE (red area in Figure 8-23). It can, 

therefore, be concluded; the cracks in both faces SE and NE are active and need more attentions. 

 
Figure 8-20 Cracks locations in faces SE and NE. 
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Table 8-5 Deformation results unit vectors (re-rotated to the original coordinates system). 

Vector 

Location (OS grid) Unit Vector Angle Computation 

E (m) N (m) Elv. (m) VX (m) VY (m) VZ (m) 
Zenith 

angle (˚) 
Plane 

angle (˚) 

DV1 375860.213 443380.365 100.193 0.032 -0.999 0.020 88.8 88.1 

DV2 375878.562 443375.538 98.854 0.002 1.000 -0.019 91.1 89.9 

DV3 375883.166 443382.060 96.236 -0.999 0.018 -0.034 92.0 89.0 

 

 
Figure 8-21 Actual locations and directions for deformation vectors. 
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Figure 8-22 Structure point clouds with deformations vectors representation. 

 
Figure 8-23 Effect areas of DV2 and DV3 deformations vectors. 

DV2 effect area 

DV3 effect area 
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8.6 Chapter Conclusions 

In this chapter the Bellmanpark Limekiln, Clitheroe, Lancashire monitoring project data has been 

analysed. The following conclusions can be extracted from this analysis: 

 The results of ICP-registered data are better than the original data before registration. This is 

probably due to a georeferencing shift between two epochs. Therefore, the registered epochs are 

adopted to detect and locate deformations. 

 The proposed method revealed deformations in the faces SE and NE while the other faces (SW 

and NW) have no deformations. 

 Three deformed areas were found, two in the face SE and one in the face NE. From the outcomes, 

the deformation results and actual locations have been computed for these areas. 

 The vectors of results showed outward deformation for DV1 and inward for DV2 and DV3. 

 There is no clear border for affected area for DV1, but there are cracks determined the deformed 

areas in case of DV2 and DV3. Therefore, these cracks can be considered as active and need more 

attention. 

 Although CloudCompare software results coincide with the proposed method in detected 

deformations, it cannot well locate these deformations because it is diffused over a wide area. In 

addition, it cannot determine actual directions of the deformations as like as the proposed 

method. 
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 CONCLUSIONS AND FUTURE PROSPECTS  CHAPTER Nine:

9.1 Conclusions 

The aim of this research is to develop a new monitoring approach for unpredicted deformations. The 

heritage and historic buildings are targeted in this research, where each part of the structure could be 

subject to deformations. The proposed approach utilises TLS measurements and Generalised Procrustes 

Analysis (GPA) technique. To achieve the aim of this research, the following objectives have been fulfilled 

with related conclusions:    

1) Investigate TLS based deformations monitoring techniques: 

 Commonly, five techniques can be employed to detect deformations from TLS data: using targets; 

direct cloud to cloud comparison; interpolation models; surfaces matching; and some project 

specific solutions. 

 The advantage of target-based methods is the ability to computing 3D deformation and its 

considerable high accuracy. However, the single point precision of targets is much higher when 

conventional surveying is implemented. In addition, it is expensive (in time and cost) compared 

to conventional methods. Finally, it needs pre-knowledge of the location of the deformed area. 

 The advantage of cloud-to-cloud comparison is that it is an easy and quick method, yet it has 

limited accuracy due to noise. 

 Although the interpolation models method can detect deformations with magnitudes less than 

the nominal single point precision, it detects one dimension deformation. 

 The advantage of the surfaces matching method is that it can detect 3D deformations, and it is 

sensitive to small deformations with magnitudes below the noise of the single TLS points. 

However, it uses a non-linear functional model, hence it needs approximate values, and therefore 

convergence might not happen in the case of large deformations. Furthermore, it is rigid 

transformation, and shift cannot be detected.    

 The specific solutions can be considered as accurate methods, yet they apply only to particular 

cases. 

2) Explore registration and georeferencing techniques: 

  Because TLS monitoring is a comparative procedure, it rarely needs georeferencing if there is no 

integration with other sensors. Therefore, it just requires that data for all epochs to be related to 
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one coordinate system; in other words, only registration is required. However, for large structure 

monitoring, georeferencing can be used; hence, a control network needs to be established. 

 Regarding buildings monitoring, targets-based registration can work perfectly after fixing tie 

points in stable areas that are part of the concerned building or on surrounding objects. Care 

should be taken to assess these points each period to be sure that they have not moved over all 

epochs. This method is adopted in this research.    

3) Investigate TLS error sources: 

 There are four sources for TLS: instrumental; object-related; environmental; and methodological. 

Instrumental errors may come from beam divergence, mixed edge, range uncertainty, angular 

uncertainty, and axes errors. Also, the reflectance and transparency of the object surface play a 

key role for the source of the object-related error which can introduce speckle noise, detector 

saturation, and penetrative beam (for semi-transparent coating objects). Regarding 

environmental errors, there are four sources: temperature (for the instrument and objects), 

atmosphere, interfering radiation, and dynamic objects. Finally, there are three sources for 

methodological errors: resolution, registration, and incidence angle.  

 Several suggestions to deal with these errors have been introduced in Table 4-10, page 87. 

4) Investigate Procrustes Analysis techniques: 

 There are different revisions for Procrustes Analysis, such as Orthogonal Procrustes Analysis 

(OPA), Extended Orthogonal Procrustes Analysis (EOPA), Weighted Extended Orthogonal 

Procrustes Analysis (WEOPA), and Generalized Procrustes analysis (GPA). 

 The Procrustes analysis can be applied in different fields such as medicine, psychometry, 

statistics, etc. Interestingly, it has been shown to be widely applicable in Geomatics, especially for 

the reference system transformation. However, it has not been used yet to detect deformation. 

 The most important drawback of the Procrustes technique is the lack of a reliability criterion to 

detect and localise the outliers, which might be present in the measurements. Consequently, the 

results produced by the Procrustes technique may be wrong in the case of the existence of 

outliers in the data set.  

5) Propose new monitoring approach: 

 The proposed method has six main steps: 

 Registration: transforming all epochs to a common reference system. 
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 Outlier removal: remove outliers by statistical approaches. 

 Voxel approach: separating data into boxes. 

 Noise mitigation: reduce noise by voxel filter and surface fitting. 

 Determination of deformation vectors: computing translation vector for each box 

based on GPA. 

 Localisation of deformation: Using F-test to compute the probability of the 

deformations for each box. 

 A MATLAB script has been written to execute the proposed technique. In addition, 

CloudCompare software and PCL library are employed to perform some steps. 

6) Undertake validation experiments: 

 Four validation tests have been conducted: simulated data with simulated deformation; real scan 

data with simulated deformations at close range (10 m); real scan data with simulated 

deformations at mid-range (25 m); and real scan data with actual deformations. 

 For simulated data with a simulated deformation test, the proposed algorithm succeeded in 

detecting and localising deformations. In addition, it was successful when no deformations exist. 

Furthermore, promising results were obtained when it could observe deformations with a 

magnitude less than noise, however, the probability was only 40%. Regarding variables, for 

LOWESS fitting, the best results were obtained with a span equal to (0.25) and the robust method 

is least squares (LAR). 

 For real scan data with simulated deformation at close range (10 m), the results showed the 

success of the proposed method to reveal no deformations for the non-deformed epochs. 

Furthermore, it succeeded in detecting and localising the deformations. Potentially, it can give 

indications for areas with deformations less than the noise level. Moreover, the results of the 

proposed method can be considered better than that of the CloudCompare software. 

 For real scan data with simulated deformation at mid-range (25 m), to some extent, the proposed 

technique succeeded in detecting and localising deformations. However, it is not suggested for 

monitoring modern and complicated buildings, but it has been developed for monitoring historic 

ruins. 

  For real scan data with real deformations, the proposed method was applied on the Bellmanpark 

Limekiln, Clitheroe, Lancashire monitoring project. The outcome of the proposed method revealed 
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deformations in the faces South East (SE) and North East (NE) of the building. From examining these 

faces, three deformed areas were found, two in the face SE and one in the face NE, which might cause 

some cracks appear in these faces. Alternatively, the CloudCompare software has been employed to 

detect deformation. Although results coincide with the proposed method for detected deformations, 

it cannot locate these deformations very well because it is diffused over a wide area. In addition, it 

cannot determine the actual directions of the deformations unlike the proposed method as a result of 

this research.  

9.2 Novelty 

A new approach for structure monitoring has been developed in this research based on TLS data and GPA. 

The proposed approach may surpass the existing methods with different perspectives, as follows:  

1) Through creating dense point cloud, the proposed method has the ability to detect and localise 

changes with unpredicted locations which may happen in heritage and historic buildings.  

2) It is considered as a non-invasive method which can conduct monitoring remotely (without any 

contact). This is vital for monitoring of historic and heritage buildings. 

3) It can provide 3D visualisation of changes. This can help non-engineering clients to understand 

the conditions of their building. Also, it helps to present and discuss monitoring results with 

non-experts. 

4) Through using a voxel approach with estimating the probability of deformations, the proposed 

method has a good ability to localise changes. 

5) It can provide more reliable outcomes because they result from multiple epochs. 

6) Through noise mitigation, the proposed method can detect deformation below the noise level. 

7) Through a voxel approach, the proposed method has a better solution for obtaining 

displacements. 

8) Because it deals with data as matrices, the proposed method has the flexibility to add 

radiometric data (intensity) to detect deformations. Also, it can be used with point clouds 

created by digital photogrammetry after modifying the part of errors mitigation. 

 



CHPATER NINE: CONCLUSIONS AND FUTURE PROSPECTS  

181 
 

9.3 Shortcomings and Limitations  

Despite the advantages of using TLS in monitoring undoubtedly it has some shortcomings, as follows: 

1- Although significant improvements have been witnessed using this technique, it is still under 

development and research. Therefore, clients rarely trust this approach as the sole method and 

often requiring another known “trusted” technique for checking.  

2- It is a high cost approach compared with other techniques. For instance, the price of Leica 

Scanstation P40 (Sec.4.3.2) is more than £100,000, or about tenfold of that of the total station. 

3- The huge amount of data and the difficulty in handling and processing it. For example, the file 

size of raw data of one epoch of Bellmanpark Limekilns monitoring project is about 14 Gigabytes. 

4- Objects shape and reflection play a key role in the distance measurements, which can be 

regarded an open problem. 

5- There are different error sources with many variables (e.g. mixed edge, resolution, incidence 

angle, beam divergence, detector saturation, etc.).  

On the other hand, validation tests revealed some limitations in the proposed method which can be 

identified as follows: 

1- Due to employing only geometric characteristics of point clouds, the proposed method revealed a 

failure in complicated buildings which are constructed from different materials (the second test 

of validation experiments with real scan data and simulated deformations). 

2- The accuracy of the proposed method is unlikely to surpass that of the total station. 

3- The proposed method cannot detect displacements of a magnitude equal to or more than the box 

size. 

4- Due to filtering boxes with few points, in the case of low resolution, some parts may be removed 

from the final results (in a similar way to what happened in validation experiments with 

simulated data and simulated deformations). 

9.4  Future Prospects 

There are three main suggestions for future work based on the findings of this research and these are 

detailed below: 
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1- Adding intensity for the proposed method: 

Due to dealing with information as a matrix, the proposed method has the flexibility to add 

radiometric data (intensity) to detect deformations. In this case, it just needs to add a new 

column for any further information, i.e. the equation ( 5.1 ) will become: 

𝐴1 = [

𝑋11 𝑌11 𝑍11

𝑋21 𝑌21 𝑍21…
𝑋𝑝1

…
𝑌𝑝1

…
𝑍𝑝1

𝐼11

𝐼21…
𝐼𝑝1

] , 𝐴2 = [

𝑋12 𝑌12 𝑍12

𝑋22 𝑌22 𝑍22…
𝑋𝑝2

…
𝑌𝑝2

…
𝑍𝑝2

𝐼12

𝐼22…
𝐼𝑝2

] …     𝐴𝑚 = [

𝑋1𝑚 𝑌1𝑚 𝑍1𝑚

𝑋2𝑚 𝑌2𝑚 𝑍2𝑚…
𝑋𝑝𝑚

…
𝑌𝑝𝑚

…
𝑍𝑝𝑚

𝐼1𝑚

𝐼2𝑚…
𝐼𝑝𝑚

] 
( 9.1 ) 

Where Ii: intensity. 

However, due to its vulnerability, using intensity to detect deformations needs more research. 

For example research could focus on measuring intensities for different materials with various 

instruments (different signals). This could then be used to develop a formula to give constant 

intensity, regardless of the instrument used or incidence angle.    

2- Using point clouds created by digital photogrammetry: 

The proposed method can be revised in such a way to work with point clouds created by image-

based technique. Accordingly, the errors mitigation and removing outliers’ parts need to be 

reviewed, hence, a new procedure to deal with these needs to be developed. Potentially this could 

be produced by investigating DP error sources.  

3- Integration of TLS and digital photogrammetry point clouds: 

As mentioned before, TLS and Digital Photogrammetry technologies are two complementary 

techniques, hence, the proposed technique can be considered to be a combination of them. 

Consequently, the research prospects, in this case, will be to investigate which preferred data is 

to be used in which part of the proposed method. In addition, it may require studying suitable 

relative weights for different measurements.      
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B. Cyclone Registration Report of Bellmanpark Limekilns Scans  

Status: VALID Registration Mean Absolute Error: for Enabled Constraints = 0.001 m   for 

Disabled Constraints = 0.000 m  

Date: 2016.01.25 12:12:40 

Database name : BellmanparkProject_2 

ScanWorlds 

Bellman_OS_targets.txt (Leveled) 

001: SW-001 (Leveled) 

002: SW-002 (Leveled) 

003: SW-003 (Leveled) 

004: SW-004 (Leveled) 

005: SW-005 (Leveled) 

006: SW-006 (Leveled) 

007: SW-007 (Leveled) 

008: SW-008 (Leveled) 

009: SW-009 (Leveled) 

010: SW-010 (Leveled) 

011: SW-011 (Leveled) 

012: SW-012 (Leveled) 

013: SW-013 (Leveled) 

014: SW-014 (Leveled) 

015: SW-015 (Leveled) 

 

Constraints 

Constraint ID  ScanWorld                         ScanWorld              Type                         

Status  Weight  Error    Error Vector                Horz     Vert       

T5             Bellman_OS_targets.txt (Leveled)  003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.002,  0.001, -0.001) m  0.002 m  -0.001 m   

T5             Bellman_OS_targets.txt (Leveled)  004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T5             Bellman_OS_targets.txt (Leveled)  005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001,  0.000) m  0.001 m   0.000 m   

T5             Bellman_OS_targets.txt (Leveled)  006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T5             Bellman_OS_targets.txt (Leveled)  007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T5             Bellman_OS_targets.txt (Leveled)  008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T16            Bellman_OS_targets.txt (Leveled)  014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.001) m  0.000 m   0.001 m   

T16            Bellman_OS_targets.txt (Leveled)  015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T14            Bellman_OS_targets.txt (Leveled)  012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.000,  0.002,  0.002) m  0.002 m   0.002 m   

T14            Bellman_OS_targets.txt (Leveled)  013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.001,  0.001) m  0.002 m   0.001 m   

T14            Bellman_OS_targets.txt (Leveled)  014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.000,  0.001,  0.001) m  0.001 m   0.001 m   

T14            Bellman_OS_targets.txt (Leveled)  015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001,  0.001) m  0.001 m   0.001 m   

T8             Bellman_OS_targets.txt (Leveled)  006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T8             Bellman_OS_targets.txt (Leveled)  007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T8             Bellman_OS_targets.txt (Leveled)  008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001, -0.001) m  0.001 m  -0.001 m   

T3             Bellman_OS_targets.txt (Leveled)  001: SW-001 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T3             Bellman_OS_targets.txt (Leveled)  002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T3             Bellman_OS_targets.txt (Leveled)  003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T10            Bellman_OS_targets.txt (Leveled)  009: SW-009 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001, -0.001) m  0.001 m  -0.001 m   

T10            Bellman_OS_targets.txt (Leveled)  010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.000,  0.001, -0.001) m  0.001 m  -0.001 m   

T10            Bellman_OS_targets.txt (Leveled)  011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.001, -0.002) m  0.001 m  -0.002 m   

T1             Bellman_OS_targets.txt (Leveled)  001: SW-001 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  ( 0.003,  0.000,  0.000) m  0.003 m   0.000 m   

T1             Bellman_OS_targets.txt (Leveled)  002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.001,  0.000) m  0.002 m   0.000 m   

T2             Bellman_OS_targets.txt (Leveled)  001: SW-001 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   
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T2             Bellman_OS_targets.txt (Leveled)  002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001, -0.001,  0.000) m  0.001 m   0.000 m   

T2             Bellman_OS_targets.txt (Leveled)  003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T2             Bellman_OS_targets.txt (Leveled)  004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T7             Bellman_OS_targets.txt (Leveled)  005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T7             Bellman_OS_targets.txt (Leveled)  006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T7             Bellman_OS_targets.txt (Leveled)  007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T7             Bellman_OS_targets.txt (Leveled)  008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T15            Bellman_OS_targets.txt (Leveled)  013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.000,  0.002) m  0.001 m   0.002 m   

T15            Bellman_OS_targets.txt (Leveled)  014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.001,  0.001) m  0.001 m   0.001 m   

T15            Bellman_OS_targets.txt (Leveled)  015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T9             Bellman_OS_targets.txt (Leveled)  009: SW-009 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T9             Bellman_OS_targets.txt (Leveled)  010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T13            Bellman_OS_targets.txt (Leveled)  011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  (-0.002, -0.001,  0.003) m  0.002 m   0.003 m   

T13            Bellman_OS_targets.txt (Leveled)  012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  (-0.002, -0.001,  0.003) m  0.002 m   0.003 m   

T13            Bellman_OS_targets.txt (Leveled)  013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001,  0.000,  0.002) m  0.001 m   0.002 m   

T13            Bellman_OS_targets.txt (Leveled)  014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  (-0.001, -0.002,  0.001) m  0.002 m   0.001 m   

T6             Bellman_OS_targets.txt (Leveled)  004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T6             Bellman_OS_targets.txt (Leveled)  005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T6             Bellman_OS_targets.txt (Leveled)  007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T6             Bellman_OS_targets.txt (Leveled)  008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T12            Bellman_OS_targets.txt (Leveled)  009: SW-009 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001, -0.001, -0.001) m  0.002 m  -0.001 m   

T12            Bellman_OS_targets.txt (Leveled)  010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001, -0.001, -0.001) m  0.001 m  -0.001 m   

T12            Bellman_OS_targets.txt (Leveled)  011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001, -0.001, -0.001) m  0.001 m  -0.001 m   

T12            Bellman_OS_targets.txt (Leveled)  012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  (-0.001, -0.001, -0.002) m  0.002 m  -0.002 m   

T12            Bellman_OS_targets.txt (Leveled)  013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.003 m  (-0.002, -0.002, -0.002) m  0.002 m  -0.002 m   

T4             Bellman_OS_targets.txt (Leveled)  002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T4             Bellman_OS_targets.txt (Leveled)  003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T4             Bellman_OS_targets.txt (Leveled)  004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T4             Bellman_OS_targets.txt (Leveled)  005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T11            Bellman_OS_targets.txt (Leveled)  009: SW-009 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T11            Bellman_OS_targets.txt (Leveled)  010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.000,  0.000, -0.002) m  0.000 m  -0.002 m   

T11            Bellman_OS_targets.txt (Leveled)  011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.000, -0.002) m  0.001 m  -0.002 m   

T11            Bellman_OS_targets.txt (Leveled)  012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.001,  0.000, -0.002) m  0.001 m  -0.002 m   

T17            Bellman_OS_targets.txt (Leveled)  015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T3             001: SW-001 (Leveled)             002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T3             001: SW-001 (Leveled)             003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T2             001: SW-001 (Leveled)             002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T2             001: SW-001 (Leveled)             003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   
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T2             001: SW-001 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.001 m   0.000 m   

T1             001: SW-001 (Leveled)             002: SW-002 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T4             002: SW-002 (Leveled)             003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001, -0.001,  0.000) m  0.001 m   0.000 m   

T4             002: SW-002 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T4             002: SW-002 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T3             002: SW-002 (Leveled)             003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.001) m  0.001 m   0.001 m   

T2             002: SW-002 (Leveled)             003: SW-003 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T2             002: SW-002 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001,  0.000) m  0.001 m   0.000 m   

T2             003: SW-003 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001,  0.000) m  0.001 m   0.000 m   

T5             003: SW-003 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T5             003: SW-003 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T5             003: SW-003 (Leveled)             006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001, -0.001,  0.001) m  0.001 m   0.001 m   

T5             003: SW-003 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T5             003: SW-003 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T4             003: SW-003 (Leveled)             004: SW-004 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T4             003: SW-003 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T4             004: SW-004 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             004: SW-004 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             004: SW-004 (Leveled)             006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             004: SW-004 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             004: SW-004 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T6             004: SW-004 (Leveled)             005: SW-005 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001,  0.000) m  0.001 m   0.000 m   

T6             004: SW-004 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T6             004: SW-004 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T5             005: SW-005 (Leveled)             006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             005: SW-005 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             005: SW-005 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T6             005: SW-005 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T6             005: SW-005 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T7             005: SW-005 (Leveled)             006: SW-006 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T7             005: SW-005 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T7             005: SW-005 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T8             006: SW-006 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T8             006: SW-006 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T5             006: SW-006 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T5             006: SW-006 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T7             006: SW-006 (Leveled)             007: SW-007 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.001) m  0.001 m   0.001 m   

T7             006: SW-006 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.001) m  0.001 m   0.001 m   
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T5             007: SW-007 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T7             007: SW-007 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T6             007: SW-007 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T8             007: SW-007 (Leveled)             008: SW-008 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T10            009: SW-009 (Leveled)             010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T10            009: SW-009 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T11            009: SW-009 (Leveled)             010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T11            009: SW-009 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001, -0.001,  0.000) m  0.001 m   0.000 m   

T11            009: SW-009 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T12            009: SW-009 (Leveled)             010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.001) m  0.000 m   0.001 m   

T12            009: SW-009 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T12            009: SW-009 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T12            009: SW-009 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T9             009: SW-009 (Leveled)             010: SW-010 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T10            010: SW-010 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T11            010: SW-010 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000,  0.000) m  0.001 m   0.000 m   

T11            010: SW-010 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T12            010: SW-010 (Leveled)             011: SW-011 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T12            010: SW-010 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T12            010: SW-010 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  (-0.001,  0.000, -0.002) m  0.001 m  -0.002 m   

T11            011: SW-011 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001, -0.001) m  0.001 m  -0.001 m   

T12            011: SW-011 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T12            011: SW-011 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T13            011: SW-011 (Leveled)             012: SW-012 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000, -0.001,  0.000) m  0.001 m   0.000 m   

T13            011: SW-011 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.000, -0.001) m  0.001 m  -0.001 m   

T13            011: SW-011 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.002 m  ( 0.000, -0.001, -0.001) m  0.001 m  -0.001 m   

T12            012: SW-012 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.001 m   0.000 m   

T13            012: SW-012 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.001,  0.001,  0.000) m  0.001 m   0.000 m   

T13            012: SW-012 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T14            012: SW-012 (Leveled)             013: SW-013 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T14            012: SW-012 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T14            012: SW-012 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T13            013: SW-013 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001, -0.001, -0.001) m  0.001 m  -0.001 m   

T14            013: SW-013 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T14            013: SW-013 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   

T15            013: SW-013 (Leveled)             014: SW-014 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.001, -0.001) m  0.001 m  -0.001 m   

T15            013: SW-013 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000, -0.001) m  0.000 m  -0.001 m   

T14            014: SW-014 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.000 m  ( 0.000,  0.000,  0.000) m  0.000 m   0.000 m   
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T15            014: SW-014 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  ( 0.000,  0.000,  0.000) m  0.001 m   0.000 m   

T16            014: SW-014 (Leveled)             015: SW-015 (Leveled)  Coincident: Vertex - 

Vertex  On      1.0000  0.001 m  (-0.001,  0.000,  0.000) m  0.001 m   0.000 m   

 

ScanWorld Transformations 

Bellman_OS_targets.txt (Leveled) 

translation: (0.000, 0.000, 0.000) m 

rotation: (0.0000, 1.0000, 0.0000):0.000 deg 

 

001: SW-001 (Leveled) 

translation: (375848.033, 443400.517, 97.656) m 

rotation: (0.0000, 0.0000, 1.0000):168.477 deg 

 

002: SW-002 (Leveled) 

translation: (375864.142, 443405.397, 96.927) m 

rotation: (0.0000, 0.0000, 1.0000):143.821 deg 

 

003: SW-003 (Leveled) 

translation: (375871.540, 443410.792, 95.564) m 

rotation: (0.0000, 0.0000, 1.0000):171.255 deg 

 

004: SW-004 (Leveled) 

translation: (375882.208, 443417.043, 93.069) m 

rotation: (0.0000, 0.0000, 1.0000):125.366 deg 

 

005: SW-005 (Leveled) 

translation: (375882.455, 443426.262, 92.624) m 

rotation: (0.0000, 0.0000, 1.0000):129.199 deg 

 

006: SW-006 (Leveled) 

translation: (375881.330, 443433.345, 92.557) m 

rotation: (0.0000, 0.0000, 1.0000):150.598 deg 

 

007: SW-007 (Leveled) 

translation: (375876.612, 443440.510, 93.429) m 

rotation: (-0.0000, -0.0000, -1.0000):18.931 deg 

 

008: SW-008 (Leveled) 

translation: (375876.612, 443440.510, 93.429) m 

rotation: (-0.0000, -0.0000, -1.0000):18.942 deg 

 

009: SW-009 (Leveled) 

translation: (375863.527, 443437.317, 93.213) m 

rotation: (-0.0000, -0.0000, -1.0000):122.699 deg 

 

010: SW-010 (Leveled) 

translation: (375857.844, 443435.195, 93.261) m 

rotation: (0.0000, 0.0000, 1.0000):65.306 deg 

 

011: SW-011 (Leveled) 

translation: (375851.560, 443433.438, 93.230) m 

rotation: (0.0000, 0.0000, 1.0000):8.297 deg 

 

012: SW-012 (Leveled) 

translation: (375843.353, 443430.909, 93.274) m 

rotation: (-0.0000, -0.0000, -1.0000):108.694 deg 

 

013: SW-013 (Leveled) 

translation: (375836.379, 443426.725, 93.041) m 

rotation: (0.0000, 0.0000, 1.0000):17.362 deg 

 

014: SW-014 (Leveled) 

translation: (375832.191, 443417.290, 93.483) m 

rotation: (0.0000, 0.0000, 1.0000):172.393 deg 

 

015: SW-015 (Leveled) 

translation: (375835.122, 443405.713, 96.872) m 

rotation: (-0.0000, -0.0000, -1.0000):138.771 deg 

 

 

Unused ControlSpace Objects 

001: SW-001 (Leveled):  

    Vertex : unlabeled 

 

002: SW-002 (Leveled):  

    Vertex : unlabeled 
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003: SW-003 (Leveled):  

    Vertex : unlabeled 

 

004: SW-004 (Leveled):  

    Vertex : unlabeled 

 

005: SW-005 (Leveled):  

    Vertex : unlabeled 

 

006: SW-006 (Leveled):  

    Vertex : unlabeled 

 

007: SW-007 (Leveled):  

    Vertex : unlabeled 

 

008: SW-008 (Leveled):  

    Vertex : unlabeled 

 

009: SW-009 (Leveled):  

    Vertex : unlabeled 

 

010: SW-010 (Leveled):  

    Vertex : unlabeled 

 

011: SW-011 (Leveled):  

    Vertex : unlabeled 

 

012: SW-012 (Leveled):  

    Vertex : unlabeled 

 

013: SW-013 (Leveled):  

    Vertex : unlabeled 

 

014: SW-014 (Leveled):  

    Vertex : unlabeled 

 

015: SW-015 (Leveled):  

    Vertex : unlabelled 

  



APPENDICES 

201 
 

C. The Output of the Proposed Method Applied on Bellmanprak Project 

Before ICP-Registration 

Output of GPA software, which created by Hasan Jaafar. 

31-Jan-2016 18:15:51 

 

Input file: 

Outlier removal, number of points use for mean distance estimation (k)=30 (Put zero if you 

don't want to apply it) 

Outlier removal, standard deviation multiplier threshold=3 (Put zero if you don't want to 

apply it) 

Number of Epochs=3 

Voxel Size(m)=0.03 

Box Dimension(m)=.30 

Sample Size(mm)=30 

Surface Interpolation Method (1-Poly 2-LOWESS 3-TLS)=2 

Number of None deformed Epochs=3 

Epochs' Weights= 1-1-2 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971323 

PointCloud before filtering: 82971323 data points (x y z). 

PointCloud after filtering: 3555277 data points (x y z). 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971323 

PointCloud before filtering: 82971323 data points (x y z). 

PointCloud after filtering: 3555277 data points (x y z). 

 

Cloud before Outlier removal: 36423996 

Cloud after Outlier removal: 36044042 

PointCloud before filtering: 36044042 data points (x y z). 

PointCloud after filtering: 2041218 data points (x y z). 

 

Time cost (seconds): 

Voxel Filter: 4494.88 

Boxing Structure: 289.73 

 

Time cost for Epoch_3 (seconds):  

Finding Correspondences: 195.74 

Surface Interpolation: 5773.55  
GPA and F-test: 180.22 

Visualisation (CloudCompare files): 48.04 

 

Total Run Time (seconds): 12003.78 

 

Finished time: 31-Jan-2016 21:35:54 

 

Total number of deformed boxes (more than 95% deformation probability)=2386 
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D. The Output of the Proposed Method Applied on Bellmanprak Project 

After ICP-Registration 

Output of GPA software, which created by Hasan Jaafar. 

10-Feb-2016 15:19:55 

 

Input file: 

Outliers Removal, number of points use for mean distance estimation (k)=30 (Put zero if you 

don't want to apply it) 

Outlier removal, standard deviation multiplier threshold=3 (Put zero if you don't want to 

apply it) 

Number of Epochs=3 

Voxel Size(m)=0.03 

Box Dimension(m)=.30 

Sample Size(mm)=30 

Surface Interpolation Method (1-Poly 2-LOWESS 3-TLS)=2 

Number of None deformed Epochs=2 

Epochs' Weights= 1-1-2 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971323 

PointCloud before filtering: 82971323 data points (x y z). 

PointCloud after filtering: 3555277 data points (x y z). 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971323 

PointCloud before filtering: 82971323 data points (x y z). 

PointCloud after filtering: 3555277 data points (x y z). 

 

Cloud before Outlier removal: 36423996 

Cloud after Outlier removal: 36044042 

PointCloud before filtering: 36044042 data points (x y z). 

PointCloud after filtering: 2040882 data points (x y z). 

 

Time cost (seconds): 

Voxel Filter: 4331.77 

Boxing Structure: 286.12 

 

Time cost for Epoch_3 (seconds):  

Finding Correspondences: 191.17 

Surface Interpolation: 5806.91  
GPA and F-test: 162.52 

Visualisation (CloudCompare files): 42.99 

 

 

Total Run Time (seconds): 11411.08 

 

Finished time: 10-Feb-2016 18:30:07 
 
Total number of deformed boxes (more than 95% deformation probability)=1047 
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E. The Output of the Proposed Method Applied on Bellmanprak Project 

After ICP-Registration and Rotation 

Output of GPA software, which created by Hasan Jaafar. 

22-Feb-2016 15:00:59 

 

Input file: 

Outlier removal, number of points use for mean distance estimation (k)=30 (Put zero if you 

don't want to apply it) 

Outlier removal, standard deviation multiplier threshold=3 (Put zero if you don't want to 

apply it) 

Number of Epochs=3 

Voxel Size(m)=0.03 

Box Dimension(m)=.30 

Sample Size(mm)=30 

Surface Interpolation Method (1-Poly 2-LOWESS 3-TLS)=2 

Number of None deformed Epochs=2 

Epochs' Weights= 1-1-2 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971343 

PointCloud before filtering: 82971343 data points (x y z). 

PointCloud after filtering: 3495699 data points (x y z). 

 

Cloud before Outlier removal: 84329932 

Cloud after Outlier removal: 82971343 

PointCloud before filtering: 82971343 data points (x y z). 

PointCloud after filtering: 3495699 data points (x y z). 

 

Cloud before Outlier removal: 36423996 

Cloud after Outlier removal: 36044035 

PointCloud before filtering: 36044035 data points (x y z). 

PointCloud after filtering: 1991706 data points (x y z). 

 

Time cost (seconds): 

Voxel Filter: 4429.56 

Boxing Structure: 268.70 

 

Time cost for Epoch_3 (seconds):  

Finding Correspondences: 177.99 

Surface Interpolation: 5807.06  
GPA and F-test: 151.17 

Visualisation (CloudCompare files): 35.81 

 

Total Run Time (seconds): 11286.52 

 

Finished time: 22-Feb-2016 18:09:05 

 


