An investigation into the mechanism and function of cysteine oxidation in the plant N-end rule pathwayTools Rooney, D.J. (2017) An investigation into the mechanism and function of cysteine oxidation in the plant N-end rule pathway. PhD thesis, University of Nottingham.
AbstractFlooding events are becoming more common throughout the world as a result of climate change, resulting in reduced crop yields. It was recently discovered that plants sense low oxygen (O2) (associated with flooding) through regulated proteolysis of the group VII Ethylene Response Factor transcription factors (ERFVIIs), via the Cys-Arg/N-end rule pathway of ubiquitin mediated proteolysis, which also senses another gas, nitric oxide (NO). The N-terminal (Nt) Cys of physiological (e.g. ERFVIIs) and artificial substrates was shown to be key for N-end rule function, and work in mammalian systems suggested that oxidation of Nt-Cys by O2 and NO was a required prerequisite for subsequent Nt arginylation by arginyl tRNA transferases (ATEs). However the exact mechanism of Nt-Cys oxidation has not been discovered.
Actions (Archive Staff Only)
|