A formal approach to modelling and verification of context-aware systemsTools Ul-Haque, Hafiz Mahfooz (2017) A formal approach to modelling and verification of context-aware systems. PhD thesis, University of Nottingham.
AbstractThe evolution of smart devices and software technologies has expanded the domain of computing from workplaces to other areas of our everyday life. This trend has been rapidly advancing towards ubiquitous computing environments, where smart devices play an important role in acting intelligently on behalf of the users. One of the sub fields of the ubiquitous computing is context-aware systems. In context-aware systems research, ontology and agent-based technology have emerged as a new paradigm for conceptualizing, designing, and implementing sophisticated software systems. These systems exhibit complex adaptive behaviors, run in highly decentralized environment and can naturally be implemented as agent-based systems. Usually context-aware systems run on tiny resource-bounded devices including smart phones and sensor nodes and hence face various challenges. The lack of formal frameworks in existing research presents a clear challenge to model and verify such systems. This thesis addresses some of these issues by developing formal logical frameworks for modelling and verifying rule-based context-aware multi-agent systems. Two logical frameworks LOCRS and LDROCS have been developed by extending CTL* with belief and communication modalities, which allow us to describe a set of rule-based context-aware reasoning agents with bound on time, memory and communication. The key idea underlying the logical approach of context-aware systems is to define a formal logic that axiomatizes the set of transition systems, and it is then used to state various qualitative and quantitative properties of the systems. The set of rules which are used to model a desired system is derived from OWL 2 RL ontologies. While LOCRS is based on monotonic reasoning where beliefs of an agent cannot be revised based on some contradictory evidence, the LDROCS logic handles inconsistent context information using non-monotonic reasoning. The modelling and verification of a healthcare case study is illustrated using Protégé IDE and Maude LTL model checker.
Actions (Archive Staff Only)
|