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Abstract

Merging among players in a cooperative game can alter the structure of the core. This paper
shows that in bipartite matching games, if pairs of players from di�erent sides merge, the
structure of the core remains unchanged. This allows us to extend the well-known result
regarding the characterization of the core with dual solutions for simple games to their
associated pairwise merger games. We introduce the class of vehicle scheduling games as an
area of application for our result.

1. Introduction

Matching problems are among the most important problems in operations research and
cooperative matching games are well studied in the literature. The players in a matching
game are commonly considered to be the nodes of the underlying graph. A particularly
interesting observation in matching games over bipartite graphs is that all stable allocations
in the core�i.e. allocations that distribute the total value among the players such that no
subgroup of players have incentives to break apart from the grand coalition�can be obtained
from the solutions to some linear program [14]. This phenomenon is also observable in few
other classes of cooperative games, e.g. �ow games on simple networks [6], and lane covering
games with simple shippers [4].

A merger among a group of players refers to the consolidation of the group into a single,
usually more powerful, player. In general, when players merge the structure of the core
changes as well. Lehrer [9] is among the �rst papers to study mergers among pairs of players.
Knudsen and Østerdal [7] present some possibility and impossibility results on merging and
splitting of players in cooperative games. Although in certain situations it is possible to
devise allocations that make merging among players non-pro�table (e.g. Moulin [11] and
Gómez-Rúa and Vidal-Puga [3]), to the best of the author's knowledge there is no prior
study on games wherein merging among the players preserves the structure of their cores.

In this paper we show that the structure of the cores of matching games over bipartite
graphs are not a�ected by pairwise merging, i.e. collusion among pairs of players from di�er-
ent partitions of the graph. As the result, every allocation in the core of a merger game can
be obtained from an allocation in the core of the associated game with node players. This
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allows us to extend the characterization result of Shapley and Shubik [14] to the pairwise
merger bipartite matching games.

Our result has two areas of application. The �rst application is in situations where pair-
wise merging can occur naturally by collusions between individual players, e.g. when couples
participate as teams in the marriage model. The second application pertains to situations
where the underlying optimization problem can be modelled as a matching problem with
each player corresponding to two nodes on each partition of a bipartite graph. We introduce
the class of vehicle scheduling games as an example of the later scenario and conclude that
the cores of these games are non-empty and can be characterized by the solutions to some
linear programs. In this way, this paper contributes to the growing literature on game the-
oretical study of collaborative logistics (see for example Hezarkhani et al. [5], Özener and
Ergun [12], Frisk et al. [2], Lozano et al. [10], Krajewska et al. [8], etc.)

The remainder of this paper is organized as follows. Section 2 outlines the relevant game
theoretical concepts. Section 3 presents the matching games on bipartite graphs. Section
4 de�nes the pairwise merger bipartite matching games and gives our main result. Finally,
Section 5 introduces the class of vehicle scheduling games and discusses the application of
our result in these games.

2. Cooperative Games, Merger Games, and Their Cores

A cooperative game is a pair (V, z) with a set of players V and a characteristic function
z ∶ 2N → R that assigns to every coalition S ⊆ V the value z(S). We call (V, z) a simple
game since it does not have any merged players. An allocation for the game (V, z) is a vector
ϕ = (ϕi)i∈V . The core of (V, z) is the set of all allocations ϕ such that ∑i∈V ϕi = z(V ) and
∑i∈S ϕi ≥ z(S) for all coalitions S ⊂ V .

A player i ∈ V is called a null player if z(S∪{i}) = z(S) for every S ⊆ V . In every allocation
ϕ in the core of (V, z) it holds that ϕi = 0 whenever i is a null player [13]. Therefore, adding
or removing null players to a cooperative game does not alter the structure of the core.

A merger of players T ⊂ V , denoted by T̄ , represents a structural change in the number
of players participating in the game so that the new player set V̄ = V ∖ T ∪ {T̄} contains
all individual players in T as a single new player. In general, V̄ can contain several merged
players. In the merged game (V̄ , z̄) associated with the simple game (V, z), for every S ⊂ V̄
such that S contains a single merged player T̄ ∈ S we have z̄(S) = z(S ∖{T̄}∪T ). The latter
can be easily extended to coalitions with multiple merged players. Each allocation in the
core of the simple game can be used to construct an allocation in the core of the associated
merger game.

Lemma 1. Given (V, z), let ϕ be an allocation in its core. Let (V̄ , z̄) be a merger game

associated with (V, z). De�ne ϕ
′ = (ϕ′i)i∈V̄ such that for every i ∈ V̄ ∩ V we have ϕ

′

i = ϕi

and for every merged player T̄ ∈ V̄ we have ϕ
′

T̄
= ∑i∈T ϕi. The allocation ϕ

′

is in the core of

(V̄ , z̄).

Proof. By de�nition we have ∑i∈V̄ ϕ
′

i = ∑i∈V ϕi = z(V ) = z̄(V̄ ). For every coalition of individ-
ual players S ⊂ V̄ ∩ V we have ∑i∈S ϕ

′

i = ∑i∈S ϕi ≥ z(S) = z̄(S). For a subset of players S ⊂ V̄
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containing a single merged player T̄ we also have ∑i∈S ϕ
′

i = ∑i∈S∖{T̄}∪T ϕi ≥ z(S ∖ {T̄} ∪ T ) =
z̄(S). The latter argument can be extended over coalitions with more than one merged
player. Therefore, if ϕ is an allocation in the core of (V, z), then ϕ′ is an allocation in the
core of (V̄ , z̄).

However, the reverse of the latter observation does not hold necessarily. That is, a merger
game can contain allocations in its core which does not correspond to any allocation in the
core of its associated simple game. An example is given below.

Example 1. Consider the game (V, z) with V = {1,2,3,4} and the characteristics function z
such that z(S) = 0 if ∣S∣ = 1, z(S) = 4 if ∣S∣ = 2, z(S) = 10 if ∣S∣ = 3, and z(V ) = 12. Observe
that the core of (V, z) is empty. Now consider the merged player set V̄ = {2̄1, 3̄4} and the

merger game (V̄ , z̄). By de�nition we have z̄({2̄1}) = z̄({4̄3}) = 4 and z̄({2̄1, 4̄3}) = 12. The
core of (V̄ , z̄) includes any allocation of the form ϕ2̄1 = 4 + ε and ϕ4̄3 = 8 − ε with 0 ≤ ε ≤ 4.

3. Bipartite Matching Games

Let G = (V,E,w) be a weighted undirected graph with node set V , edge set E ⊆ V × V ,
and weight function w ∶ E → R+. In the simple matching game de�ned on G, the node set
V corresponds to a set of ∣V ∣ node players. We denote an edge with end points k, h ∈ V
as kh ∈ E. The graph G is bipartite if it can be partitioned into two disjoint sets V A and
V B such that no edge in E has its both ends in either V A or V B. The graph G is called a
balanced bipartite graph if ∣A∣ = ∣B∣. Moreover, G is a complete bipartite graph if there is
an edge from each node on one partition to every node in the other partition. We assume
hereafter that G is a bipartite, balanced, and complete graph. The last two assumptions are
without loss of generality for our purpose. An incomplete graph can be completed by adding
edges with weight zero. Also, an unbalanced graph can be turned into a balanced one by
adding a set of nodes to either V A and V B along with edges with zero weights from these
nodes to all the nodes in the other partition of the graph. These additional nodes correspond
to null players which, as stated in the previous section, do not alter the structure of the core.

For coalition S ⊆ V , let GS = (S,ES,w) be the subgraph of S where ES = {kh ∈ E∣k, h ∈
S}. Although GS is complete, it is not necessarily balanced. The cooperative matching game
de�ned on G is (V, z) where the characteristics function z assigns to each coalition S ⊆ V the
value of maximum weighted matching on GS that can be obtained via the following linear
program:

z(S) = max ∑
kh∈ES

wkhxkh (1)

s.t. ∑
h∈V B ∶kh∈ES

xkh ≤ 1 ∀k ∈ V A ∶ kh ∈ ES (2)

∑
k∈V A∶kh∈ES

xkh ≤ 1 ∀h ∈ V B ∶ kh ∈ ES (3)

xkh ∈ {0,1} ∀kh ∈ ES (4)
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The constraint matrix in the above program is unimodular thus the integrality constraints
can be relaxed without a�ecting the optimal solution. The dual to the relaxed program for
S ⊆ V is:

u(S) = min ∑
k∈V A,h∈V B ∶kh∈ES

λk + γh (5)

s.t. λk + γh ≥ wkh ∀k ∈ V A, h ∈ V B ∶ kh ∈ ES (6)

λk, γh ≥ 0 ∀k ∈ V A, h ∈ V B ∶ kh ∈ ES (7)

Let (λ∗, γ∗) with λ∗ = (λ∗k)k∈V A and γ∗ = (γ∗h)h∈V B be an optimal solution to u(V ) and let
Ω be the set of all such optimal solutions. The following result, which we provide without
proof, is well-known in operations research literature.

Theorem 1 (Shapley and Shubik [14]). The allocation ϕ is in the core of (V, z) if and only

if ϕk = λ∗k for every k ∈ V A and ϕh = λ∗h for every h ∈ V B where (λ∗, γ∗) ∈ Ω. Hence, the set

of dual solutions Ω completely characterizes the core of (V, z).

Therefore, not only dual solutions provide allocations in the core of bipartite matching
games, they completely characterize the core of these games.

4. Pairwise Merger Bipartite Matching Games

In this section we analyze the games obtained from pairwise mergers of node players in
bipartite matching games. We call a merger between two players pairwise if they belong to
di�erent partitions of the bipartite graph. We investigate the cores of the pairwise merger
games on bipartite graphs and their relationship to the cores of corresponding simple games.
To facilitate the analysis, we focus on merger games with the maximum number of pairwise
merged players. In light of Lemma 1, our result would also hold for merger games with any
possible number of pairwise merged players.

Let G = (V,E,w) be the underlying graph. For node players k ∈ V A and h ∈ V B de�ne the
pairwise merged player h̄k. Assume all players in V A and V B have formed arbitrary pairwise
mergers and let V̄ be a set of such pairwise merged players. Thus, V̄ is a partitioning of V
into pairs. The pairwise merger bipartite matching game associated with G and the player
set V̄ is (V̄ , z̄) such that for every T ⊆ V̄ we have z̄(T ) = z(ST ) where ST = {k, h ∈ V ∣h̄k ∈ T}
is the set of node players corresponding to T .

In order to investigate the cores of pairwise merger games, we use an alternative graph
associated with G as well as the player set V̄ , and de�ne a characteristics function in terms
of a maximum circulation problem. We construct the directed graph G̃V̄ = (V, Ẽ, w̃) in the
following manner. For each kh ∈ E with k ∈ V A and h ∈ V B a directed edge kh from k to
h exists in Ẽ and w̃kh = wkh. For each merged player h̄k ∈ V̄ with k ∈ V A and h ∈ V B a
directed edge hk from h to k exists in Ẽ and w̃hk = 0 (an example is depicted in Figure 1).
For coalition T ⊆ V̄ , let G̃V̄

T = (ST , ẼT , w̃) be the subgraph of T with ẼT = {kh ∈ Ẽ∣k, h ∈ ST}.
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Figure 1: An example of a matching graph (left), and its associated circulation graph (right)

For T ⊆ V̄ de�ne the following program:

z̃(T ) =max ∑
kh∈ẼT

w̃khykh (8)

s.t. ∑
h∈V B ∶kh∈ẼT

ykh − ∑
h∈V B ∶hk∈ẼT

yhk = 0 ∀k ∈ V A ∶ kh ∈ ẼT (9)

∑
k∈V A∶hk∈ẼT

yhk − ∑
k∈V A∶kh∈ẼT

ykh = 0 ∀h ∈ V B ∶ kh ∈ ẼT (10)

yhk ≤ 1 ∀k ∈ V A, h ∈ V B ∶ h̄k ∈ T (11)

ykh ∈ {0,1} ∀kh ∈ ẼT (12)

The above program is a maximum circulation problem with every merged player in T corre-
sponding to an edge. To obtain our result, we study the core of the cooperative game (V̄ , z̃)
as formulated above. Later in this section (Lemma 4) we show that (V̄ , z̃) is identical to the
pairwise merger game (V̄ , z̄).

The constraint matrix in the program (8)�(12) is unimodular so the integrality constraints
can be relaxed. The dual of the relaxed program for T ⊆ V̄ is:

ũ(T ) =min ∑
h̄k∈T

Ih̄k (13)

s.t. µk − ηh ≥ w̃kh ∀k ∈ V A, h ∈ V B ∶ kh ∈ ẼT , h̄k ∉ T (14)

Ih̄k + µk − ηh ≥ 0 ∀k ∈ V A, h ∈ V B ∶ h̄k ∈ T (15)

Ih̄k ≥ 0 ∀k ∈ V A, h ∈ V B ∶ h̄k ∈ T (16)

Although the dual problem contains three groups of variables (I, µ, and η), only I
variables are represented in the objective function. Let I∗ = (I ∗̄

hk
)h̄k∈V̄ be an optimal partial

solution to the dual ũ(V̄ ). As we show in the next lemma, the set of optimal partial solutions
characterize the core of (V̄ , z̃).

Lemma 2. Allocation (ϕh̄k)h̄k∈V̄ is in the core of (V̄ , z̃) if and only if ϕh̄k = I ∗̄
hk

for every

h̄k ∈ V̄ .

Proof. [If part]. Let (I∗ = (I ∗̄
hk
)h̄k∈V̄ , µ∗ = (µ∗k)k∈V A , η∗ = (η∗h)h∈V B) be an optimal solution
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to ũ(V̄ ). Note that by strong duality theorem we have ∑h̄k∈V̄ I ∗̄hk = z̃(V̄ ). Let T ⊂ V̄ and
consider ũ(T ). Observe that (I∗T = (I ∗̄

hk
)h̄k∈T , µ∗ = (µ∗k)k∈V A , η∗ = (η∗h)h∈V B) is a feasible

solution to ũ(T ). Subsequently, by weak duality theorem we have z̃(T ) ≤ ∑h̄k∈T I ∗̄hk. We
conclude that (ϕh̄k = I ∗̄hk)h̄k∈V̄ is an allocation in the core of (V̄ , z̃).

[Only-if part]. We draw upon the following technical observation. A feasible solution
for the program (8)�(12) corresponds to a set of cycles on G̃V̄

T . The total cost of a cycle o,
denoted by ro, is the sum of weights w̃kh for the edges circulated in o. Let So ⊆ V̄ be the set
of merged players that are circulated in cycle o. Note that ro ≤ z̃(So) since players in So can
collectively use the cycle o for circulating their edges.

Let ϕ = (ϕh̄k)h̄k∈V̄ be an allocation in the core of (V̄ , z̃). Consider the following circulation
program:

max ∑
kh∈Ẽ

w̃khykh − ∑
hk∈Ẽ∶h̄k∈V̄

ϕh̄kyhk

s.t. ∑
h∈V B ∶kh∈Ẽ

ykh − ∑
h∈V B ∶hk∈Ẽ

yhk = 0 ∀k ∈ V A ∶ kh ∈ Ẽ

∑
k∈V A∶hk∈Ẽ

yhk − ∑
k∈V A∶kh∈Ẽ

ykh = 0 ∀h ∈ V B ∶ kh ∈ Ẽ

ykh ≥ 0 ∀kh ∈ Ẽ

A feasible solution to this program also corresponds to a set of cycles on the graph ĜV̄ =
(V, Ẽ, ŵ) where ŵkh = w̃kh for every k ∈ V A and h ∈ V B, and ŵhk = w̃hk −ϕh̄k for every k ∈ V A

and h ∈ V B such that h̄k ∈ V̄ . The total cost of an arbitrary cycle o on this graph would be
ro − ∑h̄k∈So

ϕh̄k. We already know that ro ≤ z̃(So). Furthermore, since ϕ is an allocation in
the core, we have ∑h̄k∈V̄ ϕh̄k ≥ z̃(So), hence ro ≤ ∑h̄k∈V̄ ϕh̄k which means that the total cost of
an arbitrary cycle on this graph is non-positive and consequently the program is bounded so
the dual program is feasible. The dual to the above program is (with some rearrangements):

µk − ηh ≥ w̃kh ∀k ∈ V A, h ∈ V B ∶ kh ∈ Ẽ, h̄k ∉ V̄
ϕh̄k + µk − ηh ≥ 0 ∀k ∈ V A, h ∈ V B ∶ h̄k ∈ V̄

By assumption we have ϕh̄k ≥ 0 for every kh ∶ h̄k ∈ V̄ and ∑h̄k∈V̄ ϕh̄k = ũ(V̄ ) which, in
conjunction with the above constraints, imply that (ϕh̄k)h̄k∈V̄ is a solution to ũ(V̄ ).

Özener and Ergun [12] and Hezarkhani et al. [4] prove statements closely related to the
one above. In the next step, we make the connection between the circulation games with
pairwise merged players and their associated simple games.

Lemma 3. For every optimal solution to the dual of simple game (λ∗, γ∗) ∈ Ω, let I∗ =
(I ∗̄

hk
= λ∗k +λ∗h)h̄k∈V̄ and let I∗ be the set of all such I∗. I∗ coincides with the set of all optimal

partial solutions to ũ(V̄ ).

Proof. Consider the dual for T , ũ(T ), and an optimal partial solution I∗. Note that at
optimality, for every h̄k ∈ T such that I ∗̄

hk
≠ 0 we have I ∗̄

hk
= ηh − µk. Thus the program
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(13)�(16) can be written as:

ũ(T ) =min ∑
k∈V A,h∈V B ∶k̄h∈T

ηh − µk

s.t. µk − ηh ≥ w̃kh ∀k ∈ V A, h ∈ V B ∶ kh ∈ ẼT , h̄k ∉ T
ηh − µk ≥ 0 ∀k ∈ V A, h ∈ V B ∶ h̄k ∈ T

We change the variables µk = λk for all k ∈ V A and ηh = −γh for all h ∈ V B. For every kh ∈ ẼT

such that h̄k ∉ T it holds that w̃kh = wkh. Since all weights are non-negative, the above
program can be rewritten as:

ũ(T ) =min ∑
k∈V A,h∈V B ∶kh∈EST

λk + γh (17)

s.t. λk + γh ≥ wkh ∀k ∈ V A, h ∈ V B ∶ kh ∈ EST
(18)

In comparison with the dual of simple game u(V ), it can be observed that the above program
is less constrained since u(V ) enforces non-negative variables. We continue in three steps.

[Step (i)]. In the program (17)�(18), at optimality there exists at least one binding
constraint involving each variable. To see this, consider λk (resp. γh) and assume that
there is no binding constraint involving λk (resp. γh). Reduce λk (resp. γh) as far as a
constraint becomes binding. In this manner we devised an alternative feasible solution with
lower objective function value which contradicts the optimality condition. Therefore, at
optimality every variable is part of a binding constraint.

[Step (ii)]. In the program (17)�(18), at optimality only variables in either V A or V B

can hold negative values. In order to verify this, note that if there exists λk < 0 for some
k ∈ V A and γh < 0 for some h ∈ V B, then for edge kh we have λk + γh < 0 which violates the
feasibility condition. Therefore, variables from both partitions cannot take negative values
simultaneously in an optimal solution.

[Step (iii)]. Let (λ, γ) be an optimal solution to (17)�(18) that includes negative variables,
without loss of generality, in V A. Let λj be the smallest among all λk. By the observation in
(ii) we know that for every h ∈ V B it holds that λj + γh ≥ 0. De�ne the alternative solution
(λ′ , γ ′) by setting λ

′

k = λk − λj for every k ∈ V A and γ
′

h = λh + λj for every h ∈ V B. Clearly
in the new solution all variables are non-negative so (λ′ , γ ′) is a solution to both ũ(T ) and
u(ST ). But with this alternative solution for every h̄k ∈ T it holds that Ih̄k = λk +γh = λ

′

k +γ
′

h

so the values of I variables are the same with (λ, γ) and (λ′ , γ ′). We conclude that for
every optimal solution to ũ(T ), even if it contains negative variables, there exists an optimal
solution for u(ST ) which results in the same values of Ih̄k for every h̄k ∈ T . Therefore the
set of all optimal partial solutions I∗ is characterized by the set of dual solutions to u(V ),
i.e. Ω.

The equivalence of two games (V̄ , z̃) and (V̄ , z̄) is formally shown in the next lemma.

Lemma 4. For every T ⊆ V̄ we have z̃(T ) = z̄(T ).
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Proof. By proof of Lemma 2, for every T ⊆ V̄ we have ũ(T ) = u(ST ). By strong duality
theorem we conclude that z̃(T ) = z(ST ) = z̄(T ) for every T ⊆ V̄ which completes the proof.

An immediate outcome of the last proof is that the objective functions of the matching
and circulation problems are equal for corresponding players. We are ready to present the
main result of this paper.

Theorem 2. The set of solutions to u(V ) characterizes the core of merger game (V̄ , z̄).

Proof. By Lemma 2, the set of optimal partial solutions I∗ to ũ(V̄ ) characterizes the core of
(V̄ , z̃). Lemma 4 shows that the games (V̄ , z̃) and (V̄ , z̄) are identical. On the other hand,
Lemma 3 states that the set of all optimal solutions to u(V ), i.e. Ω, provides a complete
characterization of optimal partial solutions I∗. The claim follows immediately.

As a �nal note, it is worth mentioning that although merging could happen among players
within one partition of G, the cores of such cooperative games do not necessarily correspond
to the cores of their associated simple games. Below we provide an example regarding non-
pairwise mergers.

Example 2. Consider a graph with V = {1,2,3}, V A = {1,3}, V B = {2}, w12 = 1, and
w32 = 2. In the simple game, every allocation in the core must satisfy ϕ1 + ϕ2 + ϕ3 = 2,
ϕ1 + ϕ2 ≥ 1, ϕ2 + ϕ3 ≥ 2, and ϕ1 + ϕ3 ≥ 0. Therefore, ϕ is in the core if ϕ1 + ϕ3 ≤ 1. In the

non-pairwise merger game obtained by merging among players 1 and 3, an allocation in the

core must satisfy ϕ
′

3̄1
+ ϕ′2 = 2, ϕ

′

3̄1
≥ 0 and ϕ

′

2 ≥ 0. Thus the allocation (ϕ′
3̄1
= 2, ϕ

′

2 = 0) is in
the core of the merger game. However, there is no allocation in the core of the simple game

corresponding to the latter allocation.

5. Application in Vehicle Scheduling Games

In this section we introduce the class of vehicle scheduling games as an area of application
for the theory developed in the �rst part of the paper. Consider a set of players each requiring
a delivery at a certain time. The players must organize their deliveries by using the services
of a logistics provider. The delivery costs include �xed and variable components such as truck
utilization fee and direct travel cost. By collaboration players can reduce their associated
logistics costs. Figure 2 illustrates an example of these scenarios. The players need to devise
fair allocations to distribute the cost among themselves. Carraresi and Gallo [1] introduces
the centralized version of this problem. We provide a brief description of the underlying
optimization model before presenting the game.

Let D be a set of nodes corresponding to the players' delivery locations and let o be
the location of the depot. Each player/delivery k ∈ D must be ful�lled at time tk > 0.
The function θ ∶ D ∪ {o} × D ∪ {o} → R++ gives the travelling times between all pair of
locations. Without loss of generality, we assume that the travelling cost is proportional to
the travelling time. An ordered pair of delivery requirements kh, k, h ∈ D, are compatible
if tk + θkh ≤ th where θkh is the time to travel from k to h. In particular k, h ∈ D are not
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Figure 2: Non-cooperative vehicle scheduling (left), and cooperative vehicle scheduling (right)

compatible if h = k. The cost of a trip includes a vehicle utilization cost K, and direct cost
of trip obtained from function θ. For obtaining the minimum total travel costs Carraresi
and Gallo [1] construct a bipartite graph with each delivery (player) corresponding to two
nodes�one node on each partition of the graph. De�ne Gc = (V,E, c) with V = D ∪D′ and
let E = E1∪E2 where E1 = {kh∣k ∈D,h ∈D′

, and kh is compatible}, and E2 = {kh∣k ∈D,h ∈
D
′

, and kh is not compatible}. The weight function c is de�ned as ckh = θkh if kh ∈ E1, and
ckh = K + θok + θho if kh ∈ E2. Thus, the cost of an edge between two compatible deliveries
is the dead-heading cost of travelling between them, and the cost of an edge between two
incompatible deliveries is the cost of travelling from the depot to the �rst one and the return
trip to the depot from the other. The minimum cost of delivery trips for coalition T ⊆ D
corresponds to the value of minimum perfect matching on Gc

T . Let M > maxkh∈E ckh. By
setting wkh =M−ckh for every kh ∈ E, the minimum perfect matching problem can be turned
into a matching problem on the graph G = (V,E,w) as stated in (1)�(4).

The cooperative vehicle scheduling game can be stated as (D, ż) where for every T ⊆ D
we have ż(T ) = z(T ∪ T ′) − ∣T ∣M . Using our result, we conclude that the core of (D, ż) is
non-empty and is characterized by allocations of the form ϕ = (ϕ ¯k′k

= λ∗k + γ∗k′ −M)k∈D,k′∈D′
with (λ∗, γ∗) being a solution to the dual of matching game on G.
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