
epl draft

Fractal counter-current exchange networks

R. S. Farr1,2 and Y. Mao3

1 Unilever R&D, Colworth Science Park, Bedford, MK44 1LQ, UK.
2 The London Institute for Mathematical Sciences, 35a South Street, Mayfair, London, UK
3 School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK

PACS 44.15.+a – Channel and internal heat flow
PACS 05.60.Cd – Classical transport
PACS 47.53.+r – Fractals in fluid dynamics

Abstract – We construct a general analysis for counter-current exchange devices, linking their
efficiency to the (potentially fractal) geometry of the exchange surface and supply network. For
certain parameter ranges, we show that the optimal exchanger consists of densely packed pipes
which span a thin sheet of large area, which may be crumpled into a fractal surface and supplied
with a fractal network of pipes. We present the efficiencies of such fractal exchangers, showing
factor gains compared to regular exchangers, using parameters relevant for systems such as pigeon
lungs and salmon gills.

Introduction. – The design of efficient exchange de-1

vices is an important problem in engineering and biology.2

A wide variety of heat exchangers, such as plate, coil and3

counter-current, are employed in industrial settings [1],4

while in nature, leaf venation, blood circulation networks,5

gills and lungs have evolved to meet multiple physiological6

imperatives. A distinctive feature of the biological exam-7

ples is their complex, hierarchical (fractal) nature [2], with8

branching and usually anastomosing geometries [3, 4]. It9

is clear that one reason for this is the possibility to include10

a large surface for exchange within a compact volume (the11

human lungs for example comprise an alveolar area greater12

than 50m2 [5]). However, maximal surface area is unlikely13

to be the only criterion for optimization. For example,14

West et al analysed biological circulatory systems on the15

basis that power is minimised with the constraint that a16

minimum flux of respiratory fluid is brought to every cell17

in the volume of an organism; they were able to explain18

the well known allometric scaling laws in biology [2].19

With the advance of new fabrication technologies such20

as 3D printing [6], it will become possible to build struc-21

tures of comparable complexity to biological systems, so22

there is a need not only to understand in detail the prin-23

ciples and compromises upon which natural systems are24

based, but also for that understanding to be constructive25

and accessible, mapping system parameters to actual de-26

signs.27

The analytical literature in this area has focused on heat28

transfer from a fluid to a solid body, with a particular 29

emphasis on cooling of integrated circuits [7]. Branching 30

fractal networks are much studied due to their ability to 31

give good heat transfer with a low pressure drop [8,9] (al- 32

though sometimes simpler geometries can be more efficient 33

[10]), and multiscale structures are also found to have a 34

high heat transfer density [11]. 35

In this Letter, we consider exchange as a general pro- 36

cess, which includes gas and heat exchanges, and we look 37

for the optimal designs which can ensure complete ex- 38

change (to be defined below) while requiring a minimum 39

amount of mechanical power to generate the necessary 40

fluid flows. We use the language of heat exchange since the 41

relevant material properties have widely used its notation, 42

and gather problem parameters into dimensionless groups, 43

which span the space of possible exchange problems. 44

Suppose there are two counter-flowing (perhaps dissim- 45

ilar) fluids with given properties: thermal conductivities 46

κj (j ∈ {1, 2}), heat capacities per unit volume Cj and 47

viscosities ηj . Let there be an imposed difference ∆T in 48

the inlet temperatures, and an imposed volumetric flow 49

rate Q1 of fluid 1 (while we are free to choose Q2). The 50

streams are separated by walls of thickness w (taken to 51

be the minimum consistent with biological or engineering 52

constraints) and thermal conductivity κwall (again an im- 53

posed constraint). We assume that the exchanger needs 54

to be compact, in that it fits inside a roughly cubical vol- 55

ume of side length Lmax, and the pipes are each of length 56

p-1



R. S. Farr1,2 Y. Mao3

L ≤ Lmax. Last, we wish the exchange process to go to57

completion, in that the total exchanged power is of order58

Eend = C1Q1∆T . Our aim is to find an exchange network59

which satisfies all these constraints (which are a typical60

set for both engineering and biological systems), while re-61

quiring the minimum amount of power to drive the flow62

through the network.63

To proceed, we non-dimensionalise on Lmax and κwall:64

ŵ ≡ w/Lmax, r̂j ≡ rj/Lmax, L̂ ≡ L/Lmax,

Â ≡ A/L2
max and κ̂j ≡ κj/κwall.

The specification of the problem can be conveniently65

reduced to three non-dimensional parameters, the first two66

of which capture the asymmetry of the two fluids:67

β ≡ (C1/C2)2(η2/η1) and γ ≡ κ1/κ2. (1)

We note that if all the available volume were filled with68

pipes of the smallest possible radius, and the two fluids69

were set to uniform temperatures differing by ∆T , then70

there would be a maximum possible exchanged power of71

order Emax = ∆TκwallL
3
max/w

2. Thus our last parameter72

is the ratio of the required exchange rate to this maximum:73

ε ≡ Eend/Emax = Q1C1w
2/(L3

maxκwall), (2)

and we typically expect ε� 1.74

75

Regular exchangers. – To begin, we consider a reg-76

ular array of counter-flowing streams in Nj straight pipes77

of radii rj (j = 1, 2) and length L [the same for both types;78

see fig. 1(b)], where we ignore any feed network to supply79

the individual pipes. Assuming roughly circular pipes, we80

approximate the total cross section (perpendicular to flow)81

of the array as A ≈ πN1(r1 + w/2)2 + πN2(r2 + w/2)2.82

Let α be the area across which exchange occurs, then if no83

clustering of one type occurs α will be approximately the84

minimum of the two pipe perimeters, multiplied by L. We85

thus propose the simple approximation to the total area86

across which exchange occurs:87

α−1 ≈ (2πL)−1
[
(N1r1)−1 + (N2r2)−1

]
. (3)

When is exchange complete? We assume the pipes are88

slender, so that heat diffusion along the length of a pipe89

is negligible compared to advection, and that the temper-90

ature over a cross section perpendicular to its length is91

roughly uniform. Let z be the distance along a pipe, with92

z = 0 being the upstream end of fluid ‘1’. Then we have93

average temperatures Tj(z) over cross sections in each of94

the two types of pipe. We define ∆T ≡ T1(0) − T2(L).95

By considering the total heat flux per unit length J(z)96

between the two sets of pipes, we can write down the ma-97

terial derivative of temperature as each fluid moves along98

its respective pipe:99

πNjr
2
jCj

DTj
Dt

= (−)jJ(z), (4)

D

Dt
≡ ∂

∂t
+ (−)j+1 Qj

πNjr2j

∂

∂z

where j ∈ {1, 2}, and if s is the thermal conductance per 100

unit area between pipes we find: 101

J(z) ≈ αs[T1(z)− T2(z)]/L

s−1 ≈ (w/κwall) + (r1/κ1) + (r2/κ2). (5)

In the steady state regime, ∂/∂t ≡ 0 so eqs. (4) lead to 102

an exchanged power E where 103

E

sα∆T
=

ξ1ξ2(e1/ξ1 − e1/ξ2)

ξ2e1/ξ1 − ξ1e1/ξ2
≈ min(1, ξ1, ξ2) (6)

ξj ≡ QjCj/(sα). (7)

Complete exchange means E ≈ C1Q1∆T , which from 104

eqn. (6) means ξ1 ≤ ξ2 and ξ1 ≤ 1. We note from the 105

analysis accompanying eq. (6) that there is a special case 106

of a ‘balanced’ exchanger, in which Q1C1 = Q2C2 (so 107

ξ1 = ξ2) and the change of temperature with z for both 108

streams is linear, rather than being exponential. The op- 109

timal exchanger should have this property, since otherwise 110

some of the pipe length will contribute to dissipated power 111

but not exchange. 112

Now we seek to minimise the total power P required to 113

run the exchanger, P = Q1∆p1 + Q2∆p2, where ∆pj are 114

the pressures dropped across the two types of pipes. For 115

laminar (Poiseuille) flow, and using the ‘balanced’ condi- 116

tion Q1C1 = Q2C2 to eliminate Q2, we obtain: 117

P = P0L̂

(
1

N1r̂41
+

β

N2r̂42

)
, (8)

P0 ≡ 8Q2
1η1/(πL

3
max).

Our task is to minimise P in eq. (8) by choosing the five 118

quantities Nj , r̂j and L̂, while also ensuring the exchanger 119

is compact (fits in the required volume): 120

max(r̂j) ≤ L̂ ≤ 1, (9)

Â = πN1(r̂1 + ŵ/2)2 + πN2(r̂2 + ŵ/2)2 ≤ 1, (10)

and also that exchange is complete, which from ξ1 ≤ 1 121

and eqs. (3), (5), (7) leads to 122

ε

(
ŵ +

r̂1
κ̂1

+
r̂2
κ̂2

)(
1

N1r̂1
+

1

N2r̂2

)
≤ 2πL̂ŵ2. (11)

The optimization can then be performed numerically by 123

a simple downhill search. Table 1 shows the geometry 124

of some optimised regular exchangers for real cases, and 125

the optimised results are included in fig. 3 with the label 126

‘regular’. 127

128

Branched supply network. – Now, consider the 129

branched (and fractal) supply network shown in fig. 1(c), 130

which brings the streams to the exchanger (‘active layer’). 131

In contrast to Ref. [2], we do not need the supply network 132

to pass close to every point in space; we only require that 133

it does not dominate the power dissipated in driving the 134
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Title

System: T.E.G. Pigeon Salmon
Exchanged: Heat Oxygen Oxygen
Lmax/m 2.0 10−1 5.0 10−2 2.0 10−2

w/m 5.0 10−4 5.0 10−7 5.0 10−7

Q1/m
3s−1 5.0 10−2 2.0 10−5 1.0 10−6

C1/S.I. 1.0 103 2.0 10−6 2.0 10−6

C2/S.I. 1.0 103 1.3 10−5 1.0 10−7

κ1/S.I. 4.0 10−2 1.8 10−16 1.6 10−16

κ2/S.I. 4.0 10−2 2.3 10−10 1.6 10−16

κwall/S.I. 1.0 101 1.8 10−16 1.6 10−16

η1/Pa s 4.0 10−5 4.0 10−3 4.0 10−3

η2/Pa s 4.0 10−5 4.0 10−5 1.0 10−3

β 1.0 100 2.4 10−4 1.0 102

γ 1.0 100 7.8 10−7 1.0 100

ε 1.6 10−4 4.4 10−4 3.9 10−4

r1,reg/m 1.0 10−3 2.5 10−5 5.2 10−6

r2,reg/m 1.0 10−3 2.2 10−6 2.1 10−5

Areg/m2 4.0 10−2 2.5 10−3 4.0 10−4

Lreg/m 2.0 10−1 5.0 10−2 2.0 10−2

Preg/W 2.4 101 6.2 10−1 7.7 10−1

r1,frac/m 5.1 10−4 5.0 10−6 5.0 10−6

r2,frac/m 5.1 10−4 5.4 10−7 7.1 10−6

Afrac/m2 6.6 10−2 1.0 10−2 7.7 10−4

Lfrac/m 4.4 10−2 7.1 10−4 2.8 10−3

Pfrac/W 1.8 101 6.0 10−2 4.0 10−1

Table 1: Estimated parameters for various real systems. ‘S.I.’
refers to the international system of units; so for thermal
systems C will have units Jm−3K−1 and κ will have units
Wm−1K−1. For gas exchange, C will have units kilogram of
relevant gas per m3 of fluid, per Pascal of partial pressure, and
κ will have units kg s−1m−1Pa−1 (so that κ/C is a diffusivity).
‘T.E.G.’ is thermo-electric generation from internal combus-
tion engine exhaust (we have chosen values corresponding to
a car/personal automobile). For the animal respiratory sys-
tems we assume that transport across the exchange membrane
is similar to that of water. For blood, we assume that oxygen
can exist in a mobile form (dissolved in the water-like serum)
and an immobile form (bound to haemoglobin). Thus the oxy-
gen conductivity κ1 for blood is the same as for water, while
C1 is increased over that of water by the carrying capacity of
haem. Data are from Refs. [14–18]. Results for a regular ex-
change network are indicated by the subscript ‘reg’; while the
results for the fractal exchange surfaces (denoted by a subcript
‘frac’) use a Hausdorff dimension d = 2.33. For the cases of
pigeon and salmon respiration, we impose the additional con-
straint that r1 > 5µm, in order to allow erythrocytes to pass
through. This only affects the fractal case, and without this re-
quirement, the optimised value of r1 for the fractal case would
be 1.5µm and 0.4µm respectively.

exchanger. Suppose that the pipes comprising the supply135

network branch into b smaller pipes at each hierarchical136

level k of the tree, (where pipes with higher values of k137

are smaller, and closer to the active layer – the regular138

array of pipes – where exchange occurs). Let the ratio of139

pipe radii between neighbouring levels be ρ < 1, and the140

ratio of pipe lengths be λ. The ratio of power dissipated141

between hierarchical levels is therefore 142

Pk+1/Pk = λ/(bρ4). (12)

Since the active layer is densely covered with pipes, the 143

condition to fit the supply network into space is ρ ≥ b−1/2. 144

Therefore, provided λ > bρ4, the power will increase ex- 145

ponentially with k and the overall power dissipation in the 146

supply network will be of order that in the last layer; and 147

therefore of the same order as in the active layer. The 148

supply network will therefore not dominate the power dis- 149

sipation. 150

151

Double fractal exchange networks. – From the 152

solutions to the optimum regular exchange networks, the 153

lateral cross section A always expands to its maximum 154

value L2
max. If this restriction were lifted, a more efficient 155

exchanger would likely be possible. This can be achieved 156

by allowing the active layer (provided it is thin enough, 157

and can still be provided with a branching supply net- 158

work) to become corrugated, while still fitting within the 159

prescribed roughly cubical volume L3
max available. One 160

way to do this is to turn the active layer into an approx- 161

imation to a fractal surface. Suppose the active layer is 162

corrugated into a fractal surface over a range of lateral 163

length scales down to a scale x ≥ L, such that in the limit 164

x→ 0 the Hausdorff dimension [19] of the surface would be 165

d. Fig. 2 shows schematically an example in which the sur- 166

face is the type I quadratic Koch surface with (in the limit) 167

Hausdorff dimension dkoch = ln 13/ ln 3 ≈ 2.33. Let the 168

area of the active layer be A(x), where A(Lmax) = L2
max, 169

then from Hausdorff’s definition of dimension, we see that 170

A(x) = L2
max(x/Lmax)2−d. We can therefore replace the 171

inequality Â ≤ 1 in eq. (10) by 172

Â = πN1(r̂1 + ŵ/2)2 + πN2(r̂2 + ŵ/2)2 ≤ L̂2−d. (13)

Fig. 3 shows the effect of ε (varied through altering Q1) on 173

the power dissipation for fractal exchangers corresponding 174

to the scenarios in table 1, compared to that of the regular 175

exchanger. Corrugating the exchange layer into a type I 176

quadratic Koch surface leads to a significant reduction in 177

the dissipated power for the two biological cases (factor 178

gain of 10 for pigeon lungs and 2 for salmon gills). How- 179

ever, the small size of the optimum pipe radii r1 may mean 180

that this degree of optimization is precluded by other con- 181

siderations. For instance, erythrocytes need to be able to 182

pass through these type 1 (blood carrying) vessels. 183

184

Conclusions. – Exchange networks of the class we 185

show here exhibit broadly power-law dependence of the 186

dissipated power with the quantity ε (which measures the 187

required throughput: the rate of exchange of heat or gas 188

needed). This is true both for a fractally corrugated or a 189

simple regular array of exchange pipes. However, the frac- 190

tal exchangers demonstrate factor gain in efficiency when 191

compared to regular exchangers for parameters relevant 192
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for pigeon lungs and salmon gills. The exchangers exhibit193

a crossover between regimes as a function of the required194

throughput, where different constraints (geometrical or195

completeness of exchange) are limiting; and if other pa-196

rameters were changed, such as conductivities, one could197

expect regimes in which either wall or fluid conductivity198

would be limiting.199

We note that the analysis we have performed here aims200

specifically to minimise required power while ensuring201

complete exchange has taken place. In practice, other de-202

sign constraints may need to be included, for example a203

requirement that the network be robust [3] or repairable204

[20,21] under external attack [22,23], or the cost of build-205

ing the network may be significant compared to its oper-206

ating costs [24,25].207
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Fig. 1: (a) Schematic of the geometry of a counter-current
heat exchanger (‘active layer’) fitting inside a prescribed cubic
volume of side length Lmax. (b) Detail of the active layer,
showing a regular array of pipes carrying alternately counter-
flowing streams. (c) The active layer connected to a branching
and (on the other side) anastomosing fractal supply network.

Fig. 2: Top row: schematic of the active layer of fig. 1(a), cor-
rugated into a hierarchical (fractal) surface, comprising (left
to right) greater area and more iterations of the fractal. Bot-
tom row: Schematic section through these surfaces showing
the fractal supply network in the interior (the corresponding
network outside is not shown, and will require a more complex
design to ensure equal flow to all parts of the active layer).
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Fig. 3: Plots of power dissipated in exchange for the three
cases of table 1. Here we change Q1 to achieve different values
of ε. The actual cases in table 1 are shown as symbols, and
for some cases, a change of regime is observed, witnessed by
a change in the slope of the line; although the curve visible
in the top right part of the curve for ‘Salmon (fractal)’ are
due to the constraint that blood vessels (type 1 pipes) should
be large enough to carry erythrocytes (taken as the condition
r1 > 5µm).

p-5


