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ABSTRACT 

Achieving a sustainable process system is one of the main focuses in research and development 

throughout the world.  Development in renewable resources is at the peak to replace and reduce the usage 

of fossil fuel in chemical and energy production.  Bio-resources have shown great potential to accomplish a 

sustainable system, especially bio-waste which also known as biomass, to avoid interruption of food 

supplement within the supply chain network.  However, worldwide implementation of biomass-based 

process technology is yet to be feasible due to high logistic cost, complexity of biomass properties, 

fluctuation of biomass availability, and relatively low conversion rate in biomass conversion technologies.  

Unique regional biomass system further creates research gaps as researches are conducted independently 

to only focus on specific biomass species available within the region.  This raises issue of underutilisation of 

biomass where biomasses value are not used in the full potential, or ignorance of certain species of 

biomass (such as food waste, fruit shells and energy crop) in research development.   

 

This thesis specifically evaluated the current issues in biomass supply chain network management 

to enhance the feasibility of biomass industry implementation.  The main objective of this thesis is to 

improve the biomass supply chain network management by integrating underutilised biomasses into 

existing biomass process plant (built) without major modification on the current process technologies such 

as equipment redesign or modifications.  Underutilised biomasses are referring to those species that yet to 

have well-developed application (pilot plant scale) or potential biomasses that were ignored in a regional 

area due to issues such as low availability.  This thesis discusses in detail on the relevant previous research 

works and supporting materials toward the introduction of novel philosophy, element targeting approach, 

which suggested selection of biomass feedstock via element characteristics instead of biomass species to 

consider underutilised biomasses into the system.  Upon verification of the approach based on literature 

data and experimental work, element targeting approach is integrated into biomass supply chain 

optimisation model.  The proposed mathematical models enable consideration of underutilised biomasses, 

and demonstration case studies results have shown promising improvement over the conventional 

approaches and its capability to handle fluctuation issues in biomass availability.   
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   and   : Empirical parameters estimated via minimum square techniques 

  Temperature function 

ν Kinematic viscosity 

  Thermal conductivity 

μ Dynamic viscosity 

Set/Indexes  

i Resources 

j, jp Technology (Process plant) inlet, outlet 

k Demand 

m Material (biomass and product) 

e Element properties 

r Mode of transportation 

Variables  

RtoT (i, m, j) Mass of each material transported from Resources i to Technology j 

TtoT (jp, m, j) Mass of each material (biomass only) transported from Technology jp to Technology j 

TtoD (jp, m, k) Mass of each material transported from Technology j to Demand k 
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Parameters  

Resource (i, m) Material m availability at each Resources i 

Element(m, e) Element properties e for each Material m 

E_upper(e, j) Upper bound of Element Properties e at each Technology j 

E_lower(e, j) Lower bound of Element Properties e at each Technology j 

E_ori(e, j) Original biomass Element Properties e at each Technology j 

Upper_Demand(m, k) Lower demand of Material m at each local Demand k 

Lower_Demand(m,k) Upper demand of Material m at each local Demand k 

                Total Material m received at a particular Technolgy j 

                      Process conversion factor of a particular technology j to generate product m at same 

technology output jp based on element conversion 

                       Process conversion factor of a particular technology j to generate product m at same 

technology output jp based on mass conversion 

Distance_RtoT(i, j,r) Distance from Resources i to Technology j 

Distance_TtoT(j, jp,r) Distance from Technology j to Technology jp 

Distance_TtoD(jp, k,r) Distance from Technology jp to Demand k 

Transcost(r) Transportation cost of material per t per km 

TTranscost Total transportation cost  

                Recycle material, m acceptance factor at each technology, j 

Value (m) Selling value of respective Material m 

Equations  

MatRecT(m, j) Material m received at each Technology j 

TMatRecT(j) Total Material m received at each Technology j 

MatGenT(m,jp) Material m generated at each Technology jp 

EleRecT(m, e, j) Element Properties of each Material (m, e) received at each Technology j 

Cost_TtoJ(i, j) Transportation cost from Resources i to Technology j 

Cost_JtoJP(j, jp) Transportation cost from Technology j to Technology jp 

Cost_JPtoK(jp, k) Transportation cost from Technology jp to Demand k 

MatProCost(m,jp) Production cost of each material m at each Technology jp 

TotProCost Total production cost for all product generated  

profit Profit without consideration of transportation cost  

totalprofit Total profit with consideration of transportation cost 
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Chapter 1: 

INTRODUCTION 
 

 
Environmental impacts from chemical processes have progressively become the main 

concern in the world due to over-dependant and over-used of fossil fuel.  Global warming and 

environmental pollution constantly remind public on the issue of overused of natural resources.  

Thus, the terminology of sustainability became more familiar in each area of development and 

became one of the main focuses in research.  However, at current state, many processes have yet to 

achieve sustainability, especially in fossil fuel or petroleum industry as they are the dominant 

resource for energy and downstream chemical products.  In order to achieve sustainable system, 

utilisation of renewable resources has to be improved.  Utilisation of bio-resources from plantation is 

initially the main focus of sustainable system development.  However, ethical issues were araised in 

the First Generation Bio-recourses with the argument and objection of utilising food crops as the 

feedstock for chemical processes.  Therefore, current research development are moving towards 

Second and Third Bio-resources which utilises lignocellulosic biomass and algae.  On the other hand, 

due to complex nature and characteristic of bio-resources, biomass and algae have yet to be fully 

implemented in industry scale.  Some of the main challenges are high transportation cost and 

complex supply chain management which leads to underutilisation of biomass.  This research 

contributes novel approaches in biomass supply chain optimisation by consideration of underutilised 

biomass.   

 

1.1  Background 

 With the awareness of global sustainability, biomass is one of the highly anticipated alternative 

resources for many processes.  Biomass is biodegradable waste or side product generated from bio-

industry.  High availability, enhance development of rural area, zero carbon dioxide balance and multiple 

adaptation in varies technologies gave biomass more advantages with respect to other renewable 

resources (Á.Murillo et al., 2015).  In addition, converting biomass into useful downstream products is 
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considered to be a more environmental friendly, cost effective and at the same time reduces waste 

management efforts.  Nevertheless, full implementation of biomass in large industrial scale is yet to be 

proven feasible as biomass is generally treated as negative value by-product and the main challenge in 

biomass implementation is the high logistic cost.  For example, 90% of biomass ethanol production cost of 

supplying biomass is logistic cost (Eksioğlu et al., 2009).  This proves the importance of supply chain 

network management and optimisation in biomass industry.   

 

 Numerous integration techniques were introduced in biomass supply chain optimisation to 

rectify the transportation network and biomass storage setbacks.  However, most of the supply chain 

integrations do not consider the quality of biomass utilisation.  Therefore, the true value of biomasses are 

not been fully utilised due to the lack of analysis on the bigger picture of biomass utilisation within the 

whole system and their best applications.  For example, Empty Fruit Bunch (EFB) is normally used for 

mulching in many palm oil mills for soil nutrient recovery due to its convenience of utilising the resources 

locally.  However, EFB has the potential value to convert into a higher value product such as fertiliser or 

bio-fuel prior to processes.  Lack of systematic determination of biomass utilisation restrains the chances 

of alternative applications of biomass.  Another factor of underutilisation of biomass is the over-focus on 

main stream biomass which leads to underdevelopment of many other potential biomasses.  For 

example, forestry residues, wet waste from daily activities, tree branches, energy crops and many non-

mainstream biomasses are widely available and have the potential to be used as biofuel or downstream 

products.  However, in current state, not many researches and biomass supply chain integration have 

considered these non-mainstream biomasses.  These yet to be commercialist biomasses are classified as 

underutilised biomass.  This terminology can be used as a general biomass classification to define any 

specific biomass species where their applications are yet to be explored.  Biomass industry and supply 

chain system is usually a regional problem, where depending on the biomass distribution and available 

species, each regional system has their own challenges and optimum solutions.  Hence, there are two 

approaches to define the underutilised biomass, i) in general, any biomass species that yet to have well 

established technology (pilot plants size research) based on literature; ii) in biomass regional system, any 

biomass species that does not integrated into the existing biomass supply chain management.  The later 

approach depends on the regional cases, and different region can have different classification of 
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underutilised biomass.  For example, palm based biomass are well developed in tropical country such as 

Malaysia.  Thus it is not classified as underutilised biomass in this region.  However, in other region such 

as United State, it is not the main consideration in the supply chain due to limited availability of palm.  

Nevertheless, the potential of the biomass should not be ignored.  Thus in this case, palm based biomass 

will be classified as underutilised biomass in that particular region, with the potential as a supportive 

alternative resources for the regional supply chain network.    

 

 In this thesis, a novel approach of element targeting is introduced to improve the specific issues 

stated above.  This systematic approach is introduced to analysis biomass potential and their application.  

With such approach, underutilised biomasses can be integrated into existing biomass supply chain 

network management within each regional system, and further improve the overall system. 

 

1.2 Problem statement 

 Research and development has proven that biomasses are one of the best alternative resources 

for process industry to achieve sustainability.  However, implementation of biomass in industrial scale is 

yet to be feasible in many regional systems.  Two main challenges to be undertake in this research are, (i) 

high logistic cost and the complexity of biomass supply chain; (ii) biomass underutilisation (not using the 

best value from the biomass application).  This thesis resolves both problems by evaluating the possibility 

and feasibility in improving and optimising regional biomass supply chain network via consideration of 

underutilised biomass into the system.  In order to integrate underutilised biomass into the existing 

system, a systematic biomass classification approach is required to incorporate underutilised biomass into 

current supply chain.   

   

1.3 Objective of research 

 The objective of this research is to improve the existing biomass industry by optimising biomass 

supply chain network via consideration of underutilised biomass within the system.  It can be categorised 

into several phases, which include: i) To identify research gaps and potential development on existing 

biomass supply chain optimisation approaches; ii) To develop an approach to evaluate potential 
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application of underutilised biomass; iii) To develop biomass supply chain optimisation model with 

integration of underutilised biomass.   

 

1.4 Scope of research 

 Scopes of research focuses on three areas; i) biomass supply chain; ii) existing biomass process 

technologies; and iii) underutilised biomass.  The proposed research areas are supported with literature, 

laboratory work and mathematical optimisation modelling software, General Algebraic Modelling System 

(GAMS).  Figure 1-1 illustrates the overall scope of work for this research.  Detailed explanation for each 

scope is further discussed below: 

 

 

Figure 1- 1: Overall scope of work with integration between biomass supply chain, underutilised 

and biomass process industry 

 
I. Literature review on existing biomass supply chain optimisation approaches  

Detailed literature review on various optimisation approaches is essential in order to understand 

previous approach proposed by researchers.  This is to ensure novelty of this work and provides 

an overall understanding of current research and development state in this field of research.  

Analysis on existing optimisation model which involved consideration of underutilised biomass is 

conducted to further identify potential development from the existing approaches.   

Biomass 
Supply Chain

Biomass 
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flexibility of current 
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Prove of 
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Prove of concept 
based on laboratory 
experiment

Existing biomass 
supply chain 
optimisation
approach
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Integrate 
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II. Develop systematic approach to integrate underutilised biomass into existing biomass system 

In this scope, a systematic approach is introduced to integrate underutilised biomass into 

existing biomass process technology.  The proposed approach is expected to be applicable into 

existing biomass process.  Underutilised biomasses are targeted to be integrated into the system 

without major process modification such as equipment redesign.  This minimises design 

modification cost and encourages acceptance of underutilised biomass within the system.  Thus, 

analysis on the current biomass process technology is essential to ensure the methodology or 

approach is feasible in enhancing feedstock flexibility of respective process by incorporating 

underutilised biomasses into the system.   

 

III. Concept verification of applicability of proposed approach based on literature 

Verification of the proposed approach is very important to analyse the feasibility of 

implementation in real life before initiating the development of optimisation model.  In this 

scope, the main objective is to apply proposed approach solely based on existing literature.  This 

is the first stage analysis on the applicability of the proposed approach based on developed 

biomass process technologies.  Upon the verification, the approach can be applied into existing 

researches as an extension work to enhance biomass feedstock flexibility.  This will gives credit 

to the current technology development and minimises the requirement of developing new 

technology from scratch.   

 

IV. Concept  verification of applicability of proposed approach based on laboratory experiment 

The next scope of work moves toward laboratory experiment to verify the concept.  Similarly, 

this scope is to analyse the integrity of proposed approach in laboratory performance.  

Experimental work in laboratory enables more control on variables and focuses on the study of 

feedstock flexibility of respective biomass technology.   This will further solidify the concept and 

feasibility of the proposed approach.   
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V. Construct biomass supply chain optimisation model with integration of underutilised biomass 

Ultimately, the final scope of the thesis focuses on the construction of biomass supply chain 

optimisation models to include underutilised biomass into the existing system.  Mathematical 

supply chain models are developed to consider underutilised biomasses based on the proposed 

approach in Scope 2.  The model is expected to improve regional biomass supply chain 

management with consideration of underutilised biomass as alternative resources.  The results 

are compared to the current biomass supply chain network that does not consider underutilised 

biomass as potential resources.  Functionality of the proposed model is tested to improve other 

issues, such as uncertainty in resources availability, fluctuation in biomass price and 

transportation cost.    

 

1.5 Research strategy 

In order to ensure all research scopes are achieved, a research strategy is properly planned and 

produced as the guideline throughout the research period.  Figure 1-2 shows the stage-by-stage research 

strategy and procedures that leads to the ultimate research outcomes.  The strategy plan consists of 

three main parts, i) detailed literature review to identify research gaps and to propose novel philosophy, 

ii) prove of concept for proposed methodology, and iii) integration of proposed approach into biomass 

supply chain optimisation model.   
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Figure 1- 2: Overall research strategy and procedures 

1.6 Original contribution of research 

 This research offers novel contributions in biomass supply chain optimisation and the discovery 

of potential application of underutilised biomass.  The research has contributed to several conferences 

and journal publications as listed in the List of Publications.  The main contributions yielded from this 

research are stated below: 

 

I. Inclusion of underutilised biomass in biomass process  

A novel and systematic approach to evaluate the feasibility of implementing underutilised 

biomass species into existing biomass technology via element targeting approach.  This 

approach is the core concept in all the papers generated from the work stated in the List of 

Publications. 
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II. Improve flexibility of feedstock selection on current biomass process technologies  

Introduce systematic approach that enables higher tolerance of feedstock selection in biomass 

process without major design modification.  This contribution is acknowledged by the 

acceptance of journal paper:  Lim, C.H., Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., 

Lam, H.L. 2016. Novel Input-Output Prediction Approach for Biomass Pyrolysis, Journal of Cleaner 

Production. (in press). 

III. Improve overall biomass supply chain system 

Improve overall biomass supply chain network performance via inclusion of underutilised 

biomass.  This contribution has been demonstrated in published journal paper: i) Lim, C.H., Lam, 

H.L. 2014. Biomass Demand-Resources Value Targeting.  Energy Conversion and Management, 

87, 1202-1209., and ii) Lim, C.H., Lam, H.L. 2015. Biomass supply chain optimisation via novel 

Biomass Element Life Cycle Analysis (BELCA). Applied Energy, 161, 733-745. 

IV. Management and decision making tool 

Provide a systematic evaluation platform to access feasibility of underutilised biomass 

implementation based on the supply chain optimisation model.  Similarly, this contribution has 

been demonstrated in the biomass supply chain models published in: i) Lim, C.H., Lam, H.L. 

2014a. Biomass Demand-Resources Value Targeting.  Energy Conversion and Management, 87, 

1202-1209., and ii) Lim, C.H., Lam, H.L. 2015. Biomass supply chain optimisation via novel 

Biomass Element Life Cycle Analysis (BELCA). Applied Energy, 161, 733-745. 

 

1.7 Thesis outline 

 The following describes the outline of this thesis and the expected outcomes.  The thesis is 

separated into five main chapters, beginning from Chapter 2 to Chapter 6, and followed by a concluding 

chapter.  The research is kick started with detail literature review of existing biomass supply chain 

optimisation approaches, which were discussed in the next chapter, Chapter 2.  A systematic Hazard and 

Operability study approach is integrated into the literature review to identify research gaps at each stage 

of biomass supply chain network.  Recommendations are suggested as the mitigation for each current 

research limitation, which were mainly due to underutilisation of biomass.   
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 Upon literature review, a novel integration approach, namely element targeting, is proposed in 

Chapter 3 to integrate underutilised biomass into the existing biomass process technologies.  The 

approach uses biomass element characteristics as the feedstock selection criteria instead of biomass 

species that was used in the conventional approaches.  Detail methodology is discussed within the same 

chapter.  Due to the novelty nature of the philosophy, the concept is verified in Chapters 4 and 5 to 

ensure its applicability in real life scenario.  Chapter 4 focuses on the verification of concept based on 

literature data.  This scope is to testify the implementation of the approach in existing biomass process 

technology, such that no major modification onto existing equipments and process are required when 

implementing element targeting approach.  Due to the difference in research interest, information solely 

based on literature is unable to provide a complete verification process.  Thus, a specific laboratory 

procedure is constructed in Chapter 5 to further verify the concept of element targeting approach.  

Biomass pyrolysis experiment is selected as the verification platform.    

 

 Upon verification of the element targeting concept, this approach is integrated into biomass 

supply chain optimisation model.  Construction of the mathematical models is discussed in Chapter 6 with 

supporting demonstration case studies to highlight the improvement as compared to the existing 

approaches.  The main objective is to allow the model to consider underutilised biomass as alternative 

biomass resources in order to minimise overall logistic and production cost.  This research is concluded in 

Chapter 7 and followed by recommendation of future works for sustainable improvement and research 

practice.  
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Chapter 2:  
CRITICAL REVIEW: THE 

DEVELOPMENT OF BIOMASS 
SUPPLY CHAIN AND ITS RESEARCH 

GAPS 
 

As discussed in previous chapter, biomass plays a big role in current research and 

development as an alternative green resource to achieve sustainability.  However, implementation of 

biomass industry is still a major challenge, mainly due to various supply chain management 

limitations.  Generally, the main challenges faced in biomass supply chain management are fluctuation of 

biomass availability, unique properties of each biomass species, harvesting, transportation and logistics 

issues, facility location, and development of biomass conversion technologies.  Seasonality of biomass 

and weather uncertainty also causes difficulty in biomass supply chain management.  Researchers have 

been working on these matters by introducing various biomass supply chain optimisation models to 

determine the optimum biomass system.  The approaches includes deterministic, stochastic, hybrid, and 

IT-driven models (Sharma et al., 2013).  Although many efforts have contributed into improvement of 

biomass supply chain, there are new challenges and issues to overcome.  In this chapter, an analysis is 

conducted to evaluate the current state of biomass supply chain modelling and investigate in detail 

the potential research gaps to improve the feasibility of biomass implementation.  A systematic 

approach is implemented in the study to ensure high quality review.  For the first time, Hazard and 

Operability Study (HAZOP) is implemented to review the existing biomass supply chain.  This approach 

is generally used in chemical process plant to ensure process safety and operation.  The traditional 

HAZOP methodology is modified into a more robust platform for general literature review approach.  

Based on the overview of biomass supply chain system via HAZOP approach, several critical issues in 

biomass supply chain are identified.  These limitations are recommended as research gaps for future 

work in order to enhance the biomass supply chain management.    
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2.1 Methodology 

  HAZOP approach is a brain-storming session among expertise to identify potential process 

hazard, forecasting potential consequence, analysis of adequacy of existing safeguard/solution, and finally 

provide recommendation if necessary.  According to Herrera et al. (2015), HAZOP methodology was 

originally created for chemical industries as a safety tool; nonetheless, its application has extended to 

other field such as risk assessment in medical procedures and risk analysis in supply chain management.  

The advantage of HAZOP methodology is the systematic evaluation process: where it divides the system 

into several sections and analyse each section based on guide words.  This process provides a complete 

review with consistency and standardisation, hence will result in better quality of review outcomes. 

 

 As the original application of HAZOP methodology is designed for process and operability hazard 

identification, the general procedures are modified to be applied into literature review.  The modified 

methodology consists of hazard identification, consequence, safeguard/current solutions, and 

recommendation; which are similar to the original HAZOP methodology.  Table 2-1 shows the proposed 

HAZOP methodology for literature review, which will be implemented in biomass supply chain 

optimisation.   

 

Table 2- 1: HAZOP methodology for literature review 

Procedures Descriptions 

Step 1:  

Identify scope of work 

In traditional process HAZOP, process flow diagram, and piping and 

instrumentation diagram are common documents used to determine the 

scope of work.  However in this case, the best way to present the scope of 

work is via block diagrams.  Block diagrams are constructed to evaluate the 

overall system and to show the relations between each section.  The more 

detailed block diagram provided the better quality of assessment.  See 

Figure 2-1 for biomass supply chain system for this study.   

Step 2:  

Define node 

Node definition is conducted by splitting the overall system into sections.  

This step reduces the discussion coverage and provides a clear boundary to 

enhance the focus in hazard identification in each section.  For example, see 

Figure 2-1 for the node definition of proposed biomass supply chain system 

for this study.   
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Table 2-1: HAZOP methodology for literature review (continue) 

Procedures Descriptions 

Step 3:  

Define deviations and 

guidewords  

All potential deviations of process (change of parameter) are pre-defined 

before the analysis.  This is to ensure systematic discussion with minimum 

astray.  Guidewords are a set of pre-defined key words to trigger 

imagination in hazards identification and help to focus in the assessment.  

Noted that deviations and guidewords can be different for each system.  

The pre-defined deviations for this study are quality, quantity, logistic, and 

market cost/value, while the guidewords are more/higher, less/no and 

less/lower.   

Step 4: 

Define assumption list 

Assumption list is required to clarify the limitation of the study.  This limits 

credibility of each potential hazard and ensures the discussion is within a 

credible scenario.   

Step 5: 

Identify possible 

causes of deviation 

based on guidewords 

within a selected node 

Select a pre-defined node in Step 2, brainstorm all credible cause of hazard 

within the node based on pre-defined guidewords.  Discussion should focus 

within the current node.  All causes of deviation outside the discussing node 

are to be ignored for time being and to be discussed later.     

Step 6: 

Identify consequences 

to the system due to 

deviation 

From the identified causes, determine the ultimate (worst case scenario) 

consequence to the system.  Global consequence should be considered to 

evaluate the impact of respective deviation to the upstream or downstream 

of the system.   

Step 7: 

Identify existing 

safeguard/current 

solution  

In this case, existing safeguard is based on the availability of the literature to 

prevent the cause and consequence.  In other words, if there is an 

approached proposed by researcher to rectify the cause and consequence, 

the approach is considered as one of the safeguard/mitigation.   

Step 8: 

Propose 

recommendation if 

insufficient 

safeguard/mitigation 

In case of no or less researchers have worked on the cause and 

consequence, or the existing safeguard is not adequate, recommendation(s) 

should be provided.  The recommendation can be listed as potential future 

work.  This will be highlighted as research gaps for improvement.    

Step 9: 

Next guideword 

Repeat step 5 to step 8 for next guideword within the same deviation until 

all guidewords are addressed.   

Step 10: 

Next deviation 

Repeat step 5 to step 9 for next deviation within the same node until all 

deviations are addressed.   

Step 11: 

Next node 

Repeat step 5 to step 10 for next node until all nodes are addressed.   
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2.2 Implementation of HAZOP approach in literature review of biomass supply chain 

optimisation model  

 Based on the proposed HAZOP methodology, overview of the current biomass supply chain 

optimisation model is constructed.   The main objective of the study is to identify credible process hazard 

in biomass supply chain, and determine the availability of adequate development in biomass supply chain 

optimisation which act as the safeguard for identified process hazards.  Recommendations are proposed 

on issues that are yet to be rectified.  This gives an overview of the current state of biomass supply chain 

optimisation and the discovery of potential research gaps as future works.   

 

2.2.1. Literature review procedure 

 In industry application, HAZOP brainstorming workshop is normally attended by several 

expertises to evaluate the proposed scope of work.  When translate this methodology into literature 

review, a consistent brainstorming sessions is applied to constantly update the review based on the latest 

literature.  The brainstorming session is conducted by individuals, with support from collaborators and 

colleagues to identify as many process hazards as possible.  This case study was conducted by the author 

and his supervisor DDr. Hon Loong Lam.  First, scope of work of the study is defined using block diagram 

as shown in Figure 2-1, which presented in 4 nodes: (i) biomass resources, (ii) conversion processes, (iii) 

transportation/logistic, and (iv) product demand.  Since this HAZOP study is focused on the biomass 

supply chain problems, the deviations to be considered are listed as: (i) quantity, (ii) quality, (iii) 

logistic/transportation, and (iv) market value/cost.  The guidewords used in this case study are: i) 

More/Higher and ii) Less/Lower/No, which are applicable for each deviation.  Several HAZOP assumptions 

are considered and listed as following: 

 

• No double jeopardy, only single failure or process hazard is considered at a time.  Multiple 

failures or hazards are considered to have low possibility of occurrence.   

• Causes of deviation to be focus on particular node that is being discussed, but consequences of 

the deviation can be globally discussed within the system. 
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• Any form of biomass supply chain optimisation model available in literature is considered as 

safeguard.  The safeguards are evaluated based on the general approach and objective of the 

model.  Each proposed approach is considered to be applicable to all similar biomass species and 

process system. 

 

 

Figure 2- 1: Node identification for generic biomass supply chain system 

  

Table 2-2 summaries the differences of conventional HAZOP methodology used in industry 

and the proposed HAZOP methodology applied into literature review of biomass supply chain 

optimisation models. 
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Table 2- 2: Comparison between industrial HAZOP methodology and the proposed literature review 

HAZOP methodology 

 Industrial HAZOP methodology Literature review HAZOP 

methodology: Biomass supply chain 

optimisation model  

Personnel 

involvement 

Technology/design expertise  Literature review authors and 

collaborators 

Scope of work Pre-defined based on project Determine based on research interest 

Documents Piping and Instrumentation Diagram, 

Process Flow Diagram, Process 

Layout, Control Logic 

Block diagram developed from scope 

of work 

Deviations Depending on process nature, 

typically consist of Flow, 

Temperature, Pressure, Level, 

Corrosion/Erosion, Instrumentation, 

Contamination, 

Maintenance/Operation, and 

Others.   

Only focus o Quantity, Quality, 

Logistic/Transportation, and Market 

Value/Cost, which is relevant to biomass 

supply chain 

Guidewords No, Less, Reverse, High, and Low More, Higher, Less, Lower, and No 

Safeguards Based on existing process control 

system 

Based on available literature to tackle 

the issue 

Recommendations Proposed to improve process safety, 

such as provide additional safety 

valve 

Proposed as potential research gaps 

  

2.2.2. Literature reviews outcomes 

 Tables 2-3 to 2-6 summarise the HAZOP discussion.  Each of the credible causes of deviation and 

respective consequences were discussed.  Sections 2.2.2.1 to 2.2.2.6 summarised the existing biomass 

supply chain optimisation modelling approaches available in literature, which acted as safeguards for this 

HAZOP study.  Following describes the process of biomass supply chain optimisation models review via 

HAZOP approach.  The demonstration is based on the first cause of deviation in Table 2-3, which focused 

on Note 1 in Figure 2-1.  Using the first guideword and deviation, More Quantity, the brainstorming 

session suggested a (the first) cause of deviation, which is due to peak season of plantation.  Then, all 

possible consequences to the whole system were brainstormed, which concluded to be i) More biomass 
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generation resulting in potential underutilisation of biomass, and ii) Potential environmental pollution 

due to improper biomass waste management.  Review on existing literature on biomass supply chain 

optimisation models was conducted to identify potential rectification to prevent the deviation and 

consequence.  Review outcome has identified that seasonal biomass problems are evaluated by 

researchers, but less has studied impact of over-supply.  For example, Section 2.2.2.1 discussed that this 

issue was tackled by Shabani et al.  (2014) and Eksioğlu et al. (2009), and Kim et al. (2011) evaluated 

uncertainties in biomass availability.  Due to less effort was put into the issue of over-supply, 

consideration of alternative application for excessive biomass was proposed as a potential research gaps.  

The procedure is continued to brainstorm other cause of deviation using the same guideword, followed 

by the next guideword and next Node until all guidewords in all Nodes are covered.    

 

2.2.2.1. Biomass fluctuation: 

  One of the main challenges in biomass supply chain is the fluctuation of the variables such as 

biomass availability, biomass quality, biomass cost, product demand, and product price.  In order to 

rectify these problems, “scenario based” optimisation models are constructed to rectify the fluctuations.  

Stochastic optimisation approach is later introduced to randomise variables within the model to provide 

an overall optimal solution for all scenarios.  Each biomass supply chain model is constructed for 

respective supply chain sectors.  Shabani et al.  (2014) constructed a multi-period tactical model to 

optimise fluctuation of monthly forest biomass availability for a power plant.  Seasonal biomass was 

tackled by Eksioğlu et al. (2009) to optimise biomass supply chain with fluctuation in biomass availability.  

Uncertainty in logistic is investigated by researchers, such as Kazemzadeh and Hu (2013) evaluated the 

fluctuation in transportation cost, including uncertainty in fuel cost, and biomass collection and loading 

cost.  Kim et al. (2011) considered uncertainty in biomass availability, conversion yield, maximum product 

demand, and product price in bio-fuel supply chain system.  Similarly, a mixed integer linear programming 

(MILP) model for bio-ethanol was developed to consider price uncertainty including biomass cost and bio-

ethanol selling price (Das-Mas et al., 2011).  Uncertainty in total market demand (in terms of quantity) 

was evaluated with four discrete scenarios in bio-ethanol supply chain (Chen and Fan, 2012).    
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Table 2- 3: HAZOP worksheet for Node 1 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

Quantity More 1. Peak season of plantation 1.1. More biomass generation resulting 

in potential underutilisation of 

biomass 

1.2. Potential environmental pollution 

due to improper biomass waste 

management 

1.1.1. Seasonal biomass 

problems are evaluated 

by researchers, but less 

has studied impact of 

over-supply.   

1.1.2. See Section 2.2.2.1 

1) Consideration of 

alternative application 

for excessive biomass.   

  2. New plantation field 2.1. More biomass within the system 

resulting in potential 

underutilisation of biomass 

2.2.  Potential environmental pollution 

due to improper biomass waste 

management 

2.3. Lower biomass market value due to 

more supply available  

2.1.1. Fluctuation/uncertainty 

of biomass resource is 

considered in existing 

model (see Section 

2.2.2.1) 

 

2) Consider to develop a 

model to 

evaluate/forecast 

biomass market value 

based on fluctuation 

of biomass availability  

  3. Establish/introduce/disco

very of new biomass 

species in the system 

3.1. Potential underutilisation of 

respective biomass due to lack of 

knowledge in respective biomass  

3.1.1. Less studies have been 

conducted to include 

new/underutilised  

3) Consider to develop 

new method to 

include new species or  
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

   application biomass into existing 

model 

underutilised biomass 

into existing system 

  4. Introduction of new 

harvesting method or 

improvement of existing 

harvesting method 

4.1. Increase efficiency of biomass 

harvesting leading to potential 

higher biomass supply and cost 

reduction 

4.2. No significant hazard to overall 

biomass supply chain  

4.1.1. Harvesting optimisation 

including harvesting 

process and equipment 

were conducted (see 

Section 2.2.2.2)  

No recommendation 

required 

 Less/No 1. Low season of plantation 1.1. Less biomass availability for raw 

material supply resulting in lower 

production rate of downstream 

product 

1.1.1. Many works have been 

conducted to consider 

biomass uncertainty 

including seasonal 

biomass (see Section 

2.2.2.1) 

1.1.2. Biomass storage allows 

some buffering period 

between seasons (see  

No recommendation 

required 
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

    Section 2.2.2.4)  

  2. Lower biomass 

generation rate (e.g. 

Replantation, weather 

impact) 

2.1. Less biomass availability for raw 

material supply resulting in lower 

production rate of downstream 

product 

2.1.1. Consideration of  

uncertainty in biomass 

supply (see Section 

2.2.2.1) 

 

4) Consider to integrate 

live-time weather 

condition into biomass 

supply chain 

management 

  3. Less efficiency in biomass 

harvesting (e.g. due to 

weather condition and 

labour) 

3.1. Unable to fulfil downstream 

requirement at process plant 

leading to insufficient production 

rate 

3.2. Lower quality of biomass (such as 

higher moisture content) leading to 

higher pretreatment cost 

3.3. Higher overall production cost 

leading to potential infeasibility in 

overall biomass system 

3.1.1. Various harvesting 

process, management 

and equipment are 

considered in 

optimisation model (see 

Section 2.2.2.2) 

Refer to recommendation 

(4):  Consider to integrate 

live time weather 

condition into biomass 

supply chain 
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  4. Equipment malfunction in 

harvesting process 

4.1. Unable to harvest biomass leading 

to less biomass supply impacting 

downstream process such as lower 

production rate  

4.1.1. Various harvesting 

process, management 

and equipment are 

considered in 

optimisation model (see 

Section 2.2.2.2) 

4.1.2. Sufficient storage of 

biomass in 

preproduction stage to 

minimise process 

fluctuation due to 

instability of biomass 

supplement (see Section 

2.2.2.4) 

No recommendation 

required 

Quality More/ 

Higher 

1. Higher quality of biomass 

(such as good weather 

resulting less moisture  

1.1. Higher quality of biomass resulting 

less pretreatment required and 

higher efficiency in downstream 

No safeguard required No recommendation 

required 
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  biomass, less 

contaminated biomass) 

processes 

1.2. No significant process hazard and 

consequence 

  

 Less/ Lower 2. Bad weather (raining 

season) 

2.1. Higher moisture content in biomass 

encourage organic contamination  

2.2. Higher transportation cost due to 

the additional weight of water 

content 

2.3. Biomass element and nutrient loss 

due to rain 

1.1.1. Consideration of 

pretreatment process in 

supply chain model (see 

Section 2.2.2.3) 

2.2.1. On-site pretreatment 

(drying) to optimise 

logistic cost 

2.2.2. Feasibility study of 

biomass transportation 

(see Section 2.2.2.6)  

5) Develop systematic 

biomass evaluation 

approach to ensure 

consistency of biomass 

quality upon received   

Logistic/ 

Transportation 

More 1. High biomass collection 

cost (due to scattered 

biomass location or 

relatively low density of  

1.1.  High biomass supply cost leading 

to infeasible biomass application 

1.2.  Unsystematic biomass collection 

resulting in high transportation cost  

1.1.1. Feasibility study of 

biomass transportation 

(see Section 2.2.2.6) 

1.2.1. Geographical  

6) Consider to develop a 

systematic approach 

to identify potential 

application of all  
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  biomass) 1.3. Potential ignorance of valuable 

biomass at varies different location 

to minimise logistic cost 

Information System 

guided model to 

optimise logistic 

management 

biomasses within the 

system 

 Less/No No cause identified No consequence No safeguard required No recommendation 

required 

Market 

Value/Cost 

More 1. Higher raw biomass cost 

(due to less supply or less 

competitive market)  

1.1. Higher overall production cost 

leading to potential infeasibility in 

overall biomass system 

1.1.1. Consideration of 

uncertainties of biomass 

availability and market 

demand (see Section 

2.2.2.1) 

No recommendation 

required 

  2. Higher labour cost  2.1. Higher production cost resulting in 

potential infeasible in biomass 

industry 

 

2.1.1. Consideration of 

uncertainties of biomass 

collection and 

harvesting handling cost 

(see Section 2.2.2.1 and 

2.2.2.2) 

No recommendation 

required 
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Table 2-3: HAZOP worksheet for Node 1 (continue) 

Node 1:  Biomass supply  

Node 

description: 

Supplement of biomass from plantation and process waste to respective pretreatment and process for production of downstream product 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

 Less 1. Lower raw biomass cost 

(due to more supply or 

high competitive market) 

1.1. Lower overall production cost 

potentially enhances  overall 

biomass system performance 

1.2. No significant impact to process 

hazard 

No safeguard required  No recommendation 

required 
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Table 2- 4: HAZOP worksheet for Node 2 

Node 2:  Biomass processing plant  

Node 

description: 

Process raw biomass via pretreatment and core process reaction to produce downstream product or energy 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

Quantity More 1. Over accumulation of 

biomass in storage due 

to improper supply 

management 

1.1. Degradation of biomass due to 

prolong storage affecting 

pretreatment or core processes 

resulting in higher production cost 

1.2. Contamination of biomass leading 

to potential environmental 

pollution  

1.1.1. On-site pretreatment or 

pretreatment before 

storage to prolong 

biomass storage time 

1.1.2. Biomass storage and 

scheduling optimisation 

(see Section 2.2.2.4) 

1.2.1. Consideration of 

environmental impact in 

biomass supply chain 

optimisation (see 

Sections 2.2.2.5 and 

2.2.2.6) 

No recommendation 

required 

  2. More biomass waste 

produced from process 

plant 

2.1. Increase of process waste/biomass 

resulting in underutilisation 

biomass 

2.2. Higher cost in waste management  

2.2.1. Consideration of 

environmental impact in 

biomass supply chain 

optimisation (see  

7) Develop approach to 

evaluate potential 

utilisation of biomass 

process waste 
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Table 2-4: HAZOP worksheet for Node 2 (continue) 

Node 2:  Biomass processing plant  

Node 

description: 

Process raw biomass via pretreatment and core process reaction to produce downstream product or energy 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

    Section 2.2.2.5 and 

2.2.2.6) 

 

 Less/No 1. Low biomass stock in 

storage due to less raw 

biomass supply 

upstream 

1.1. Low/No supply to processes 

leading to inefficient production 

and potential stop of production  

1.1.1. Consideration of 

biomass availability 

uncertainties (see 

Section 2.2.2.1) 

1.1.2. Scheduling of biomass 

logistic and storage (see 

Section 2.2.2.4) 

1.1.3.  Switch over to 

alternative biomass as 

feedstock (with different 

operating  parameters) 

8) Consider to develop 

systematic approach 

for alternative 

biomass feedstock 

selection without 

major impact to 

operating conditions 

Quality More/ 

Higher 

1. Unnecessary biomass 

pretreatment  

1.1. Unnecessary higher cost of 

pretreatment, but no major 

impact to biomass processes  

No safeguard required No recommendation 

required 

 Less/ Lower 1. Inefficiency or  1.1. Lower quality of biomass into core  1.1.1. Consideration of  No recommendation  
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Table 2-4: HAZOP worksheet for Node 2 (continue) 

Node 2:  Biomass processing plant  

Node 

description: 

Process raw biomass via pretreatment and core process reaction to produce downstream product or energy 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  malfunction of 

pretreatment unit 

processing plant resulting in 

potential lower efficiency in 

reaction leading to low product 

quality 

1.2. Unable to achieve standard 

product quality and demand 

multiple process plant as 

contingency plan to fulfil 

market demand 

1.1.2. Standard operating 

procedure and regular 

maintenance 

required 

  2. Inefficiency or 

malfunction of 

processing equipments 

2.1. Lower efficiency in process 

reaction leading to low product 

quality 

2.2. Unable to achieve standard 

product quality and demand 

2.1.1. Consideration of 

multiple process plant as 

contingency plan to fulfil 

market demand 

2.1.2. Standard operating 

procedure and regular 

maintenance 

No recommendation 

required 

Logistic/ 

Transportation 

More 1. Location of process plant 

(e.g. far from resource 

point or scattered 

distribution)  

1.1. High transportation cost resulting 

in high production cost and 

potentially leading to infeasible 

production 

1.1.1. Optimisation of process 

plant location (see 

Section 2.2.2.5) 

No recommendation 

required 
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Table 2-4: HAZOP worksheet for Node 2 (continue) 

Node 2:  Biomass processing plant  

Node 

description: 

Process raw biomass via pretreatment and core process reaction to produce downstream product or energy 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

 Less/No 1. No cause identified No consequence No safeguard required No recommendation 

required 

Market 

value/Cost 

More 1. Higher labour or process 

chemical or utility cost 

1.1. Higher production cost resulting in 

potential infeasible in biomass 

industry 

 

1.1.1. Consideration of 

operating cost 

uncertainty (see Section 

2.2.2.1) 

No recommendation 

required 

  2. Higher biomass supply 

cost due to low biomass 

availability 

2.1. Higher production cost resulting in 

potential infeasible in biomass 

industry 

 

2.1.1. Consideration of 

biomass availability 

uncertainty (see Section 

2.2.2.1) 

2.1.2. Biomass storage and 

scheduling optimisation 

(see Sections 2.2.2.4 and 

2.2.2.6) 

No recommendation 

required 

 Less 1. No cause identified No consequence No safeguard required No recommendation 

required 
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Table 2- 5: HAZOP worksheet for Node 3 

Node 3:  Transportation and logistics of biomass and product  

Node 

description: 

Delivery of raw biomasses to process plant and products to market demand location 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

Quantity More 1. Higher  transportation 

capacity 

1.1. Lower transportation cost, no 

significant process hazard to 

overall supply chain 

No safeguard required 

 

No recommendation 

required 

 Less/No 1. Transporting less 

biomass than the 

maximum capacity of 

transportation vehicle 

1.1. Potential not optimum biomass to 

fuel ratio resulting in higher 

transportation cost per unit of 

biomass 

1.1.1. Logistic management by 

optimisation of multiple 

type of transportation 

mode/vehicle (see 

Section 2.2.2.6) 

No recommendation 

required 

Quality More/ 

Higher 

1. Better efficiency of 

transportation 

1.1. Lower transportation cost, no 

significant process hazard to 

overall supply chain 

No safeguard required No recommendation 

required 

 Less/ Lower 1. Lower efficiency of 

transportation 

1.1. Higher cost of logistic leading to 

potential infeasible biomass  

2.1.1. See Section 2.2.2.6 No recommendation 

required 

Logistic/ 

Transportation 

More 1. No cause identified No consequence No safeguard required No recommendation 

required 

 Less/No 1. Limitation of 

transportation due to  

1.1.  Unable to deliver biomass or 

product to destination on time  

1.1.1. Consideration of 

alternative route as  

No recommendation 

required 
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Table 2-5: HAZOP worksheet for Node 3 (continue) 

Node 3:  Transportation and logistics of biomass and product  

Node 

description: 

Delivery of raw biomasses to process plant and products to market demand location 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  road condition resulting in insufficient biomass 

feedstock in process plant or delay 

of product delivery 

contingency plan for 

unexpected road 

condition 

1.1.2. Geographical 

Information System 

assisted model for 

optimum transportation 

route (see Section 

2.2.2.6) 

 

  2. Limitation of 

transportation due to 

weather (e.g. flood 

which impacting large 

area)  

2.1.  Unable to deliver biomass or 

product to destination on time 

resulting in insufficient biomass 

feedstock in process plant or delay 

of product delivery 

2.2.  Lower biomass quality upon 

delivery (such as due to rain) 

2.1.1. Consideration of 

alternative route as 

contingency plan for 

unexpected road 

condition 

2.1.2. Geographical 

Information System 

assisted model for  

Refer to recommendation 

(5): Develop systematic 

biomass evaluation 

approach consistency of 

quality upon received   
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Table 2-5: HAZOP worksheet for Node 3 (continue) 

Node 3:  Transportation and logistics of biomass and product  

Node 

description: 

Delivery of raw biomasses to process plant and products to market demand location 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

    optimum transportation 

route (see Section 

2.2.2.6) 

2.2.1. Biomass supply chain 

optimisation with 

consideration of 

pretreatment (see 

Section 2.2.2.3) 

 

Market 

value/Cost 

More 1. Higher transportation 

fuel or labour cost  

1.1. Higher production cost resulting in 

potential infeasible in biomass 

industry 

1.1.1. Consideration of 

uncertainty in fuel and 

labour cost (see Section 

2.2.2.1) 

No recommendation 

required 

 Less 1. Lower transportation 

fuel or labour cost 

1.1. Lower cost in biomass 

implementation and lower 

downstream production cost.  

1.2. No significant process hazard to 

overall biomass supply chain 

No safeguard required No recommendation 

required 
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Table 2- 6: HAZOP worksheet for Node 4 

Node 4:  Market demand  

Node 

description: 

Biomass downstream product demand 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

Quantity More 1. Higher market demand 

for downstream product 

1.1. Production at maximum rate due 

to high market value and demand, 

however, production rate is 

limited by the total amount of raw 

biomass available at upstream for 

respective process technology 

1.2. Higher product value due to 

inadequacy in the supply 

1.1.1. Consideration of 

dedicated alternative 

biomass feedstock to 

temporarily increase 

production (only for 

process tested with 

multiple type of biomass 

feedstock, operating 

condition might differ 

based on feedstock 

type)  

1.2.1. Consideration of 

product/market 

uncertainty (see Section 

2.2.2.1) 

9) Consider to develop 

approach to increase 

biomass feedstock 

selection for process 

technology in order to 

increase production 

capacity and flexibility. 

 Less/No 1. Lower product demand 

or competitive market 

1.1. Lower production rate potentially 

impacts upstream raw biomass  

1.2.1. Optimisation of biomass 

storage and scheduling 

Refer to recommendation  
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Table 2-6: HAZOP worksheet for Node 4 (continue) 

Node 4:  Market demand  

Node 

description: 

Biomass downstream product demand 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

   handling and supplement 

1.2. Potential accumulation of biomass 

upstream due to low biomass 

demand leading to potential 

environmental pollution and 

higher biomass waste 

management cost 

1.3. Lower selling value of upstream 

biomass 

 (see Sections 2.2.2.3 

and 2.2.2.4) 

1.3.1. Consideration of 

product/market 

uncertainty (see Section 

2.2.2.1) 

(1): Consideration of 

alternative application for 

excessive biomass. 

 

Refer to recommendation 

(7): 

Develop approach to 

evaluate potential 

utilisation of biomass 

process waste 

Quality More/ 

Higher 

1. Market demand for 

higher quality of product 

1. Existing process technologies 

unable to fulfilled the requirement 

without major process 

modifications 

No specific safeguard identified 10) Consider to develop a 

model to 

evaluate/forecast 

product market value 

and quality 

requirement 

 Less/ Lower 1. Market demand for  1. Existing process technologies  No specific safeguard identified Refer to recommendation  
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Table 2-6: HAZOP worksheet for Node 4 (continue) 

Node 4:  Market demand  

Node 

description: 

Biomass downstream product demand 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

  lower quality of product unable to fulfilled the requirement 

without major process 

modifications 

 (10): 

 Consider to develop a 

model to 

evaluate/forecast 

product market value 

and quality 

requirement 

Logistic/ 

Transportation 

More No cause identified No consequence No safeguard required No recommendation 

required 

 Less/No No cause identified No consequence No safeguard required No recommendation 

required 

Market 

value/Cost 

More 1. Higher market value of 

product 

1. Increase overall profit of the 

system, no significant process 

hazard to overall biomass supply 

chain 

No safeguard required No recommendation 

required 

 Less 1. Lower market value of 

product 

1. Lower overall profit resulting to 

potential negative net profit  

No specific safeguard identified Refer to recommendation 

(10):  
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Table 2-6: HAZOP worksheet for Node 4 (continue) 

Node 4:  Market demand  

Node 

description: 

Biomass downstream product demand 

Deviation Guideword Causes Consequences Safeguards/Current solution Recommendations 

   leading to infeasibility of the 

system 

 Consider to develop a 

model to 

evaluate/forecast 

product market value 

and quality requirement 
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2.2.2.2. Harvesting: 

 Out of numerous harvesting methods, one-pass harvest system is one of the economically 

promising approaches (Walsh and Strandgard, 2014).  This approach integrates underutilised biomass 

such as woody biomass or forest residue with higher value plantation resources within the harvest site, 

minimising overall operational and management cost.   However, harvesting is highly dependent on the 

system used, site condition and type of biomass.  For example, collection of woody biomass is rather 

complex in Australia due to the scatter over harvest site; while in contrast, woody biomass concentrated 

along side of road or central processing yards in New Zealand (Walsh and Strandgard, 2014).  Various 

harvesting, handling and processing equipment were considered as part of the supply chain model 

proposed by Hall et al. (2001) for optimum implementation.  Sokhansanj et al. (2006) developed a model 

to predict size and number of equipment according to the harvest rate.  The model also considered 

demand of bio-refinery and biomass delivery cost. 

 

2.2.2.3. Pretreatment processes: 

 Pretreatment is a process to convert raw biomass into higher value material, in terms of higher 

energy density, removal of contamination, preserve biomass for longer storage period, or increase ease 

of handling, storage, transportation and reduces associated cost (Mafakheri and Nasiri, 2014).  

Pretreatments include drying and torrefaction, pelletisation, shredding, grinding, chopping and 

carbonisation are used in biomass energy industry (Uslu et al., 2008).  However, not all biomass should go 

through pretreatment process.  For instance, in the case of palletising log biomass, preserving particular 

amount of moisture content in log is crucial to ensure good quality in pellet strength (Lehtikangas, 2001).  

Thus in this case, drying process can be avoided or need to be controlled to avoid over-dried the biomass.  

Consideration of several small pretreatment units in biomass supply chain model proposed by Carolan et 

al. (2007) achieved feasible economic scale while minimising transportation and storage cost by 

decentralising pretreatment activities.    
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2.2.2.4. Biomass storage: 

 Many researchers have conducted studies in biomass storage which focused on the analysis of 

storage location with respect to the transportation cost, storage capacity, and scheduling (Mafakheri and 

Nasiri, 2014).  For example, Nilsson and Hansson (2001) studied intermediate storage locations for 

biomass power plant supply chain network, while Huisman et al. (1997) studied biomass on-field storage 

for cost analysis.  Eksioğlu and Petrolia (n.d.) investigated the meeting point of different transportation 

mode and proposed optimum biomass storage and distribution strategy.  A batch process scheduling 

framework was developed by Dunnett et al. (2007) with the consideration of biomass harvesting and 

biomass consumption.   

 

2.2.2.5. Biomass conversion processes: 

 Numerous studies were conducted to analyses the variables of conversion process plant within 

biomass supply chain, such as optimal process plant location within respective biomass system.  Vera et 

al. (2010) developed a model to identify best location for biomass power plant to maximise profit.  

Velazquez-Marti and Fernandez-Gonzalez (2010) exploited Geographical Information System (GIS) 

approach into selection of bioenergy process plant location to minimise overall cost in the biomass 

system.  Others have been conducting research on analysing and optimising multiple process pathways.  

Cameron et al. (2007) evaluated and compared biomass gasification and combustion in a cost 

minimisation model.  Fromboo et al. (2009) conducted research in GIS-based Environmental Decision 

Support System to develop decision and environmental model for biomass-based energy production over 

a long term period.  The model includes conversion processes such as pyrolysis, gasification, and 

combustion, as well as considering the plant location and harvested biomass.  Bai et al. (2011) worked on 

model for planning of biofuel refinery locations to minimise total cost with respect to refinery investment 

and logistic cost.  Researchers also developed optimisation model with multi biomass type of feedstock.  

For example, Zhu and Yao (2011) developed a model to consider switchgrass, corn stalk and wheat straw 

as potential feedstock for biofuel production.  The model determines optimal solution for the system in 

line with seasonal availability of biomass to smoothen the biofuel production throughout the year.  

However, no mixing of multiple biomasses feedstock is considered.  The process is operated with one 
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biomass at a time.  Different biomass feedstock or mixture of biomass will give different impact to overall 

process efficiency, yield and operating parameters.  Meyer et al. (2015) constructed a biomass supply 

chain model to maximise net energy output of upstream biomass system including conversion facilities, 

transportation and handling, harvesting, and pretreatment.  However, as part of the operational 

constraint, the proposed biomass supply chain model has the restriction such that each type of 

conversion facility can only accept respective type of biomass.   

 

2.2.2.6. Biomass transportation and logistics: 

 Hall et al. (2001) considered multiple type of transport vehicle based on the load space, weight, 

maximum payload allowable in transportation regulation and transportation cost.  GIS model was used to 

estimate the transportation cost.  Graham et al. (2000) used GIS to estimate biomass transportation cost 

and environmental impact cost in United State.  GIS was applied to determine optimum biomass supply 

network subject to various scenarios including biomass availability and feasibility of delivery (Perpiná et 

al., 2009).  Besides, centralised and decentralised biomass logistic was studied to minimise biomass 

supply chain cost (Gronalt and Rauch, 2007).  Similarly, Ng and Lam (2014) introduced functional 

clustering technique to maximise economic potential of each biomass industry cluster.  The model 

proposes possible biomass processing hub to optimise the overall biomass logistic performance.  Truck 

scheduling was conducted by Ravula et al. (2008) with comparison of overall minimising transport time 

policy and sector based transportation policy.  Life cycle analysis concept was applied into biomass 

transportation to assess emissions such as NOx and carbon dioxide CO2 to environment Forsberg (2000). 

 

2.3 Discussion 

 Based on the HAZOP approach, the current state of biomass supply chain optimisation 

development is well evaluated.  Although researchers have conducted numerous studies and developed 

biomass supply chain models to optimise the system, yet the study identified potential improvement of 

the system.  Table 2-7 summaries all recommendations suggested in the HAZOP assessment.    
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Table 2- 7: HAZOP recommendations 

No. Recommendations 

1 Consideration of alternative application for excessive biomass 

2 Consider to develop a model to evaluate/forecast biomass market value based on fluctuation 

of biomass availability 

3 Consider to develop new method to include new species or underutilised biomass into existing 

system 

4 Consider to integrate live-time weather condition into biomass supply chain management 

5 Consider to develop systematic biomass evaluation approach to ensure consistency of biomass 

quality upon received   

6 Consider to develop a systematic approach to identify potential application of all biomasses 

within the system 

7 Consider to develop approach to evaluate potential utilisation of biomass process waste 

8 Consider to develop systematic approach for alternative biomass feedstock selection without 

major impact to operating conditions 

9 Consider to develop approach to increase biomass feedstock selection for process technology 

in order to increase production capacity and flexibility 

10 Consider to develop a model to evaluate/forecast product market value and quality 

requirement 

 

 From the list of recommendations, various research gaps were identified ranging from 

integration of biomass resources and conversion processes, forecasting uncertainties, and waste 

minimisation and reutilisation.  Each recommendation is suggested based on the cause and consequence 

analysis from HAZOP study.  Upon examination and breakdown, seven out of ten recommendations are 

related to integration between biomass resources and conversion processes which suggested that many 

improvements can be done in this area.  One of the potential main issues is due to isolated biomass 

development.  As each biomass has its unique properties and availability at dedicated location, 

development of biomasses are usually independent from each region.  Researchers normally work on 

biomasses that are available in respective region in order to improve the feasibility of implementation.  

For example, palm oil biomasses are the main research topic in Malaysia due to the high accessibility to 

palm oil plantation.  Consequently, this resulted isolation of development such as in laboratory 

experiment where researches on conversion technology only focused in particular species of biomass 

(palm biomass in the case of Malaysia), or biomass supply chain optimisation model developed to solve 
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specific scenario within the regional system only.  In addition, repetitive research and development are 

normally required to verify each case, and hence limits the global implementation of biomass integration 

knowledge.  Implementation of well developed technology is not possible by using different biomass 

feedstock or in different region without proper experimental studies.  This is due to current studies on 

biomass technology are normally constraint to specific biomass species originates from a specific location.  

Technically, biomass technology is not developed to tolerate different biomass species or from different 

origin.  Thus this limits the flexibility of feedstock selection and integration, resulting in non-mainstream 

biomass species are normally being ignored and unable to implement into the system due to lack of 

study.  For example, Lu et al. (2012) shows that every kg of corn cob is able to produce 30.46g of 

hydrogen via the proposed operating conditions.  However, in the case of corn cob is unavailable within a 

region or a period of time, this technology is no longer practical to be applied.  Utilising alternative 

biomass as feedstock is also not feasible as the technology performance is yet to be verified when using 

alternative feedstock.   

 

 Thus, these explained the gaps suggested in Recommendations (1), (3), (6), (8), and (9), where 

systematic platforms should be considered to integrate multiple biomasses to various conversion 

processes.  Ideally development of each biomass conversion technology should applicable to various 

types of biomass species.  For organic resource or biomass, their properties fluctuate depending on 

seasons, weather, location, and handling.  Thus, a systematic platform to evaluate biomass quality is 

essential to ensure consistency as per Recommendation (5).  Several approaches are currently available 

to classify biomass properties, such as element characteristic.  However, it is critical to identify the 

impacts of different feedstock properties to the process outcome.  For example, Mohammed et al. (2011) 

suggested that biomass with moisture content of more than 50 wt% is not feasible in combustion 

process.  Biomass properties have a very high potential to act as a platform to categorize biomass 

applications.   

  

 The HAZOP study also identified issue of potential biomass underutilisation.  Depending on the 

properties of respective biomass and process waste, the materials have potential for reutilisation.  For 

example, Miguel et al. (2012) suggested that particle from biomass gasification waste has high heating 
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value and has the potential as a co-fired fuel.  Thus, process waste from biomass conversion technology 

should be taken into consideration to optimise resource utilisation and minimise waste management 

effort.  This also applies to underutilisation of potential biomass within the system as per 

Recommendations (3) and (7).  In this context, underutilised biomass is refers to non-mainstream 

biomass species that are available within the system.  For example, the current developments highly 

focus on mainstream biomass such as palm biomass.  However, multiple small scale biomasses such as 

forestry biomass, food waste, fruit shell type biomass (such as coconut shell, and durian shell- a tropical 

fruit biomass) have less attention in research and utilisation.  Noted that combination of numerous small 

scale biomasses might have the potential to form a sustainable biomass supply chain system, or as 

alternative feedstock for mainstream biomass processes.   

 

 Another research gaps that could be considered in biomass supply chain model is forecasting 

uncertainty such as weather condition, road conditions, biomass availability and market demand.  Current 

approaches to handle uncertainty are toward scenario based problem solving and propose alternative 

solution.  Forecasting future problem enhances supply chain management by taking prevention action 

one step before the problem occurs.  For example, integrates weather forecast in handling of biomass 

transportation can minimises exposure of biomass to rain.  Live-time or forecasting road condition 

enables analysis of supply chain pathways to avoid high traffic route to minimise logistic cost and ensure 

on-time delivery.  Integration of relation between multiple uncertainties also helps to simplify the supply 

chain management.  For example, forecasting biomass availability and product market demand to 

determine fluctuation in biomass market value.  This provides a good platform to manage biomass 

applications.   

 

 From the discussion, HAZOP approach benefits the review of biomass supply chain optimisation 

model by analysing each stage of the process with guided direction.  This approach minimised the 

chances of problem ignorance thus provides a high level and detail analysis.  In addition, the proposed 

general HAZOP methodology for literature review can also be implemented in different research area to 

ensure consistency and good quality. 
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2.4 Solutions for research gaps  

 Based on the critical review on biomass supply chain optimisation models above, the analysis 

suggested a number of potential research gaps.  Most of the identified gaps are related to the lack of 

alternative biomass integration into existing supply chain network, thus leading to underutilisation of 

biomasses.  The findings are in parallel with the problem statements in Chapter 1.  In order to handle 

this issue, research methodology is proposed to introduce a novel approach to improve the existing 

biomass supply chain network management.   

 

2.4.1. Propose novel integration approach to consider alternative/underutilised biomass 

into existing supply chain network 

 In order to integrate alternative biomasses into the existing biomass supply chain 

optimisation models, the first step is to introduce a common platform to consider all potential 

biomass available within the system.  Conventionally, biomass technology feedstock selection is based 

on biomass species which limits the selection of other biomass species.  This research introduced a 

classification platform to evaluate biomass application based on their properties.  In order to define 

the selection factors, biomass technologies available in literature will be evaluated.  Then, a 

constructive platform to link multiple biomass resources to respective technologies is introduced.  

Figure 2-2 presented the general procedure and the detail description is available in Chapter 3.   

 

 

Figure 2- 2: Research methodology to introduce integration approach to consider alternative 

biomasses 

 

2.4.2. Concept verification  

 Due to the novelty of the proposed approach, this research will also focus on concept 

verification to ensure applicability of the approach.  Two methods of verification are suggested, a 

literature based approach and an experiment based approach.  In the literature based concept 
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verification, recent biomass technologies available from literature are compiled and analyse.  

Although the research objectives in literature are different, this scope verified the concept via the 

reported experiment data.  This will also act as a determining factor to evaluate if the proposed 

approach can be applied into existing technologies.  The second approach of concept verification is 

via experiment.  Collaborator will be engaged to test the concept of integrating multiple biomasses 

into the technology.  The main objective is to evaluate the process performance fluctuation based on 

different feedstock while the operating conditions remaining constant.    

 

 

Figure 2- 3: Research methodology to verify proposed integration approach 

 

2.4.3. Construction of biomass supply chain model   

In order to enable consideration of alternative/underutilised biomass into the supply chain 

optimisation model, the proposed concept is required to integrate into the mathematical formulation.  

The methodology of this work is to compare the proposed model with conventional supply chain 
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optimisation approach via demonstration case studies.  The case studies will focus on regional 

biomass system.  The mathematical models will be solved using General Algebraic Modelling System 

(GAMS) software.   

 

2.5 Conclusions 

 Current biomass supply chain optimisation models are evaluated via a systematic HAZOP 

assessment approach.  Upon investigation, various biomass supply chain process hazards are identified.  

Literature review shows that numerous studies have conducted to rectify the hazards, thus minimising 

the impact to the overall supply chain.  Nevertheless, several inadequacy of protection are identified and 

recommended as potential future work to fill in the current research gaps.  For example, the lack of 

flexibility in alternative biomass integration into existing conversion processes.  Over-isolation of biomass 

development limits the exploration of alternative biomass species thus restricts the overall performance 

of biomass system.  Integration of alternative biomass as feedstock, biomass process waste and 

underutilised biomass are considered in order to improve overall biomass utilisation and performance.  In 

addition, improvement in forecasting uncertainties can be considered in future biomass supply chain 

development.  In conclusion, HAZOP approach has successfully assists the review of biomass supply chain 

optimisation model.  The proposed methodology is capable to be applied in other field of research for a 

high level literature review.  Lastly, this HAZOP based research methodology is proposed as a guideline to 

achieve the targeted outcome; which is to introduce and to verify a novel integration approach that 

considered alternative/underutilised biomass in existing biomass supply chain optimisation model.   
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Chapter 3:  

ELEMENT TARGETING APPROACH 
 

 
Several potential improvements from existing biomass supply chain were suggested as per 

literature review in Chapter 2.  In this chapter, analysis is conducted on the recommendations and a 

novel approach to improve the biomass supply chain system is introduced.  A systematic biomass 

classification and targeting approach is proposed to integrate alternative biomass into the existing 

biomass supply chain network without major modification of the process technologies.  The approach 

is suggested to be user-friendly such that it is applicable for various biomass process technologies and 

suitable for different regional areas.   

 

3.1  Analysis on literature review recommendations: Fill in current research gaps 

Based on the proposed literature review (HAZOP recommendations) in Chapter 2, a number 

of biomass supply chain management issues were highlighted.  Upon preliminary analysis, some of 

the proposed recommendations are correlated with each other.  For instance, Recommendations 1, 3, 

6, and 7 highlighted the issue of biomass and process waste underutilisation within the system.  

Recommendations 8 and 9 addressed the criticality to maintain the normal operation conditions or to 

have minimum design modification.  Recommendation 5 suggested an evaluation approach to ensure 

biomass feedstock quality.  In order to deal with these issues, the proposed approach is required to 

act as a platform to evaluate the biomass quality upon receiving as feedstock and enable integration 

of underutilised or alternative biomass without compromising the normal process operations.  This is 

the ultimate objective of this research.  On the other hand, Recommendation 10 to develop market 

demand prediction model will not be covered in this research due to it is not the main focus of this 

work.  This scope can be proposed as future work to strengthen the supply chain model based on 

market fluctuations.   
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Figure 3.1 shows the generic biomass supply chain optimisation superstructure, starting from 

biomass resources to process technology to market demand.  In the biomass supply chain 

management, each available biomass species is assigned to a dedicated biomass process technology 

based on the technology feedstock requirement derived from experimental work.  For example, Ge et 

al. (2016) reported that the proposed biomass gasification reactor with chemical looping technology 

produces maximum syngas yield of 0.64Nm
3
/kg at 850°C.  The biomass feedstock used in the study 

consisted of rice husk from Jiangsu, China.  No research has been conducted on alternative biomass 

species (such as coconut shell) to investigate their performance in the proposed technology.  When 

reflect to biomass supply chain network, this creates limitations in biomass supply chain management 

where only rice husk fits the feedstock requirement of the technology.  Thus the technology is only 

feasible to implement in regions with rice husk resources.  Additional laboratory work to study the 

impact of integration of alternative biomass species into the system is required.  Besides, fluctuation 

of rice husk properties from different region may affect the overall process performance.      

 

 

Figure 3- 1: Generic biomass supply chain optimisation superstructure 

In order to achieve the objective of the research, a new classification platform to integrate 

alternative biomasses into existing process technology is proposed as shown in Figure 3-2.  The main 
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idea is to break through the limitation in biomass feedstock selection, where currently biomass 

technology feedstock is selected based on biomass species.  The fundamental of the classification 

platform is to categorize each biomass, including underutilised biomass into their respective 

properties and to evaluate potential application of each biomass into various process technologies.  

This provides a platform to integrate various biomass species into the supply chain network where 

each biomass is evaluated and assigned to respective process technology based on the feedstock 

acceptance criteria.  The proposed approach is targeted to rectify Recommendations 1, 3, 5, 6, and 7 

stated above which are related to exploitation of underutilised biomass.  Detail methodology is 

described in next section.   

 

 

Figure 3- 2: Introduction of classification platform to integrate biomass and process technology 

 
3.2  Review on biomass technologies 

 In order to construct a common platform for all biomass species, biomass technologies are 

reviewed.  Generally, biomass technologies can be categorized into three type, physical (pelletising, 

shredding), chemical/thermochemical (pyrolysis, gasificaion) and biological (fermentation).  Although 

biomass properties such as moisture content plays as one of the critical criteria in biomass physical 

conversion technologies (Lehtikangas, 2001), however, the main challenge in biomass industry lays in 

the chemical and biological conversion technologies.  Thus, the main objective in this work is to 

identify feedstock selection criteria and the similarity between biomass technologies (chemical and 
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biological).  The review provides a good analysis to propose a classification platform as shown in 

Figure 3-2.  Three general biomass technologies were evaluated, namely pyrolysis, gasification, and 

hydrolysis and fermentation.   

 

3.2.1  Biomass pyrolysis 

Pyrolysis is a thermal chemical decomposition of organic material into bio-oil, syngas and 

charcoal with the absence of oxygen.  Depending on the operating temperature, production yield of 

oil, gas and charcoal varies.  Operating temperature of pyrolysis ranged from 350°C to 550°C 

(Mohammed et al., 2011).  Slow pyrolysis with high temperature, low heating rate and long gas 

resistance time tends to produce more charcoal; while fast pyrolysis at very high temperature, short 

vapour resistance time, fine biomass feedstock, and rapid cooling of pyrolysis vapour produces more 

bio-oil.  Many research works have been conducted to improve pyrolysis process to enhance 

production yield and overall efficiency.  For example, Mushtaq et al. (2014) reviewed the pyrolysis of 

coal and biomass with assistance of microwave.  Microwave heating enhance heating efficiency of 

coal or biomass with microwave absorber and improve the fuel quality.   

 

Apart from improving efficiency, several researches have also evaluated the impact of 

pyrolysis outputs with respect to element characteristic of biomass feedstock.  Azargohar et al. (2014) 

studied the chemical and structural properties of biomass and their impact in fast pyrolysis to 

produce bio-char.  The study proposed that biomass with lower hydrogen over oxygen ratio (H/C) and 

oxygen over carbon ratio (O/C), and ash content is more suitable as feedstock for activated carbon 

production.  Giudicianni et al. (2014) conducted research on the relation of cellulose, hemicellulose 

and lignin to Arundo donax steam assisted pyrolysis.  The result shows that more lignin content 

increases yield of bio-oil and reduce yield of char.  Present of steam promotes gasification thus 

reducing char yield.  Phan et al. (2014) evaluated bio-oil production from Vietnamese biomasses via 

fast pyrolysis.  The study concluded that bigger biomass feedstock size decreases bio-oil yield.  

Bagasse yielded highest bio-oil production at 67.22% with lowest water content of 17% in bio-oil.  
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From element characteristic comparison, bagasse has highest combustible, cellulose, and lignin 

content, and lowest ash content.   

 

 Based on literature, element characteristics of biomass and production yield of pyrolysis are 

closely related.  Element such as H/C and O/C ratio, cellulose, hemicellulose, lignin, ash, and feedstock 

size are affecting the product output from pyrolysis.  With more detail research, this information can 

be used as a guideline to predict pyrolysis process outcomes based on the feedstock properties. 

 

3.2.2  Biomass gasification 

Gasification is a process that converts biomass into combustible gases mixtures such as 

syngas and light hydrocarbon gases at temperature range around 700°C to 1000°C with the present of 

controlled amount of oxidation agent (Mohammed et al., 2011).  It is a very complex process involving 

water evaporation, volatiles pyrolysis, combustion, volatiles gasification, and char gasification, with 

char gasification as controlling step due to the slower reaction rate (Dupont et al., 2011).  Oxidation 

agent can be air, hydrogen, steam, CO2 or mixture of respective fluid.  Using air as oxidation agent 

reduces syngas heat value (Wang et al., 2008).  Pure oxygen as oxidation agent enhances syngas heat 

value; however it raises issue in terms of high cost and operation safety (Ni et al., 2006).  Similarly, 

steam as oxidation agent increases heat value and hydrogen yield, but requires additional cost for 

heating facility for steam production (Rapagna et al., 2000).  Using carbon dioxide is one of the 

promising oxidation agents due to its presence in syngas (Gil et al., 1999).   

 

 Song et al. (2013) evaluated element utilisation of carbon, hydrogen and oxygen in a co-

gasification system of coal and biomass feedstock.  The study shows that temperature of gasification 

and steam flowrate are one of the affecting factors in gasification.  Several researchers have 

conducted study on inorganic element in biomass gasification, in particular aspects related to 

gasification of ash.  Dupont et al. (2011) presented study on correlation between inorganic elements 

of woody biomass and char steam gasification kinetics.  Liao et al. (2007) characterised inorganic 

element such as As, Al, Ca, Cd, Cr, Cu, K, Mg, Na, Ni, Pb, and Ti from circulating fluidized bed wood 
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gasification power plant.  Biäsing et al. (2013) traced inorganic elements in gasification with respect to 

biomass pellet sizes.  In biomass gasification, feedstock with lower hydrogen, nitrogen and sulphur 

content produces less gaseous pollutant such as NOx and SOx (Miguel et al., 2012).  Drier biomass 

feedstock yields lower hydrogen gas while higher H/C ratio of feedstock increases hydrogen gas 

production (Vitasari et al., 2011).  According to Madenoğlu et al. (2011), lignin content within biomass 

feedstock is difficult to gasify, thus less desired in the feedstock. 

 

 Most of the reported literature emphasised on the study of operating parameters in 

gasification process and inorganic element to improve gasification process.  Many have analysed the 

element characteristics of biomass feedstock, such as Son et al. (2011).  However, a clear relation 

between feedstock element characteristic and gasification performance is yet to be established.  Thus 

more work need to be conducted to finalise the key elements that governs gasification technology. 

 

3.2.3  Biomass hydrolysis and fermentation 

Biomass hydrolysis is a process to breakdown carbohydrate or cellulosic component within 

biomass into simple sugar structure.  Subsequently, sugar is extracted as product or further processed 

into downstream chemical product, such as bio-fuel.  These are normally catalytic processes with acid 

or enzyme in temperature and pH sensitive environment.   

 

 Several researches have conducted to identify impact of biomass element characteristic to 

the process yield and efficiency.  He et al. (2014) concluded that higher hydrolysis yield of corn stover 

and higher ethanol yield are due to lower ash content of biomass feedstock.  Goh et al., 2010 and Li et 

al., 2009 proposed that bio-ethanol yield can be estimated based on cellulose and hemicellulose 

content of the biomass feedstock.  Kotarska et al. (2015) suggested that decomposition of 

lignocellulosic raw material in biomass which consists of cellulose, hemicellulose and lignin increase 

production yield of ethanol from corn straw in Simultaneous Saccharification and Fermentation (SSF) 

process.  Similarly, Narra et al. (2015) also conducted study of ethanol production from pre-treated 

lignocellulosic biomass such as rice straw, wheat straw and sugarcane via SSF.  Kwietniewska and Tys 
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(2014) reviewed imperial studies for anaerobic digestion of microalgae biomass in methane 

fermentation process.  The main aspect of the process includes study on substrate composition, 

process temperature, water content, pH, C/N ratio, organic loading rate, retention time, and 

inoculums to substrate ratio.  Different quality of water is used to assess acid tolerance strain and 

ethanol production yield from kitchen garbage to decrease process cost (Ma et al., 2009).   

 

 No doubt that biomass hydrolysis and fermentation are processes which are sensitive to 

operating condition such as temperature, pH, and type of enzyme; many have suggested correlation 

between biomass lignocellulosic elements and the production yield.  However, less work is done to 

analyse the impact of inorganic element towards production yield as well as the interaction between 

lignocellulosic and inorganic elements.   

 

3.3  Integration platform via biomass element characteristics 

Based on the technology review in previous sections, it is clear that most of the technology 

performances are closely related to biomass feedstock properties.  The finding suggested that the 

main constraint of process input is not subject to biomass species, but it is highly dependent on the 

feedstock properties.  This concept provides a unify approach in biomass feedstock selection, where 

the selection platform is based on specific element characteristics properties instead of biomass 

species.  Thus, all type of biomass can be considered during the selection stage, including alternative 

or underutilised biomasses.  This integration platform is proposed to be “Element Targeting 

Approach”.  The platform is expected to have the capability to reflect biomass properties in order to 

highlight advantages and disadvantages of each biomass species.  However, it is also important that 

the proposed approach is widely used in current research and development to encourage 

collaboration and expansion work based on existing literatures.  This ensure optimum knowledge 

transfer value chain and minimise extensive research cost and time.    

  

Based on literature review on various biomass process technologies, proximate analysis and 

ultimate analysis are generally used to determine chemical and elemental properties of biomass.  
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Proximate analysis examines moisture content (MC), volatile matter content (VM), fixed carbon 

content (FC), and ash content (Ash) of biomass: while ultimate analysis determines carbon content 

(C), hydrogen content (H), nitrogen content (N), oxygen content (O), and sulphur content (S) of 

biomass.  Biomass heating value, either higher heating value (HHV) or lower heating value (LHV) is 

also one of the commonly analysed properties.  These criteria, which are known as biomass element 

characteristic, are the commonly used approach in current biomass development to identify various 

biomass properties, either in comparison between different species of biomass or comparison 

between same species of biomass from different sources.  Table 3-1 summarises the fraction of 

biomass element characteristics data for various biomass species available in literature.  From the 

data compilation, it is demonstrated that identifying biomass element characteristics are common 

practice in biomass technology research and development.  Thus this is able to fulfil the obligations 

discussed in previous paragraph, where it is very crucial to ensure a common ground to access 

feedstock properties for all biomass technologies and as a foundation for classification platform to 

access biomass properties such that all biomass resources can be integrated into the supply chain 

superstructure.  This gives the opportunity to consider all biomass species in the literature within a 

single platform.  Moreover, Table 3-1 acts as a platform to compile biomass properties and element 

characteristics in order to create a data bank for further reference.    

 

3.4  Methodology of Element Targeting approach 

Based on analysis discussed in Chapter 2 and the evaluation of biomass element 

characteristics in Table 3-1, many researchers have reported the biomass properties based on 

element characteristic.  However, relation between biomass feedstock element characteristics and 

process technology performance is yet to be fully developed.  Nevertheless, a number of researches 

showed promising relationship in between biomass element characteristics and biomass process 

technology outputs as discussed in Section 3.2 above.  For instance, Mohammed et al. (2011) 

suggested that biomass with moisture content of more than 50 wt% is not feasible in combustion 

process.  Goh et al. (2010) proposed that the yield of bio-ethanol from biomass can be estimated using 
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Table 3- 1: Compilation of biomass properties and element characteristics from literature 

Biomass C H N S O Ash FC VM MC LHV Cell Hcel Lig Reference 

Palm 

Mesocarp 

Fibre 

51.52 5.45 1.89 0.23 40.91 10.83 16.13 73.03 - 19.00 - - - Idris et al., (2012) 

43.19 5.24 1.59 0.19 49.79 10.20 15.20 68.80 - 19.00 - - - Idris et al., (2010) 

50.27 7.07 0.42 0.63 36.28 - - - - 20.64 33.90 26.10 27.70 Kelly-Yong et al., 

(2007) 

- - - - - - - - - - 34.50 31.80 25.70 Mohammed et al., 

(2011) 

Palm 

Kernel 

Shell 

48.68 4.77 1.17 0.20 45.27 11.08 15.15 73.77 - 16.30 - - - Idris et al., (2012) 

41.33 4.57 0.99 0.09 53.02 10.5 16.00 69.20 - 16.30 - - - Idris et al., (2010) 

53.78 7.20 0.00 0.51 36.30 - - - - 22.14 20.80 22.70 50.70 Kelly-Yong et al., 

(2007) 

- - - - - - - - - - 20.80 22.70 50.70 Mohammed et al., 

(2011) 

Empty 

Fruit 

Bunch 

47.65 5.20 1.82 0.36 44.94 6.10 16.80 77.10 - 16.80 - - - Idris et al., (2012) 

40.93 5.42 1.56 0.31 51.78 15.40 4.50 70.50 - 16.80 - - - Idris et al., (2010) 

48.79 7.33 0.00 0.68 36.30 - - - - 18.96 38.30 35.30 22.10 Kelly-Yong et al., 

(2007) 

- - - - - - - - - - 38.30 35.30 22.10 Mohammed et al., 

(2011) 
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Table 3-1: Compilation of biomass properties and element characteristics from literature (continue) 

Biomass C H N S O Ash FC VM MC LHV Cell Hcel Lig Reference 

 - - - - - - - - - - 38.26 14.62 31.68 Sudiyani et al., 

(2013) 

Palm 

Kernel 

Trunk 

- - - - - - - - - - 34.50 31.80 25.7 Kelly-Yong et al., 

(2007) 

          37.14 31.80 22.30 Mohammed et al., 

(2011) 

Palm 

Fronds 

- - - - - - - - - - 30.40 40.40 21.70 Kelly-Yong et al., 

(2007) 

- - - - - - - - - - 49.80 83.50 20.50 Mohammed et al., 

(2011) 

Rubber 

Wood 

Chip 

46.40 5.70 0.20 0.00 47.70 1.10 10.00 88.90 8.5 17.06 - - - Kaewluan and 

Pipatmanomai, 

(2011a) 

Shredded 

Rubber 

Waste 

82.90 8.90 0.30 4.00 3.90 4.80 29.00 66.20 - - - - - Kaewluan and 

Pipatmanomai, 

(2011b) 

Pyrolysis 

Char of 

Pine, Tires 

and Plastic 

- - - - - 0.64  

to 

2.73 

40.00 

to 

62.50 

25.50 

to 

43.70 

- - - - - Kelly-Yong et al., 

(2007) 
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Table 3-1: Compilation of biomass properties and element characteristics from literature (continue) 

Biomass C H N S O Ash FC VM MC LHV Cell Hcel Lig Reference 

Wood 51.60 6.30 0.00 0.10 41.50 1.00 17.00 82.00 20.00 18.60 - - - McKendry, (2002) 

Treated 

Wood 

51.40 6.07 1.24 0.10 41.30 4.90 - 80.30 14.80 - - - - Vitasari et al., 

(2011) 

Wheat 

Straw 

48.50 5.50 0.30 0.10 3.90 4.00 21.00 59.00 16.00 17.30 33 to 40 20 to 25 15 to 

20 

McKendry, (2002) 

Barley 

Straw 

45.70 5.50 0.40 0.10 38.30 6.00 18.00 46.00 30.00 16.10    McKendry, (2002) 

Rice Straw 41.40 5.00 0.70 0.10 39.90 - - - - - - - - McKendry, (2002) 

Lignite 56.40 4.20 1.60 18.40 6.00 31.00 29.00 34.00 26.80 - - - McKendry, (2002) 

Bituminou

s Coal 

73.10 5.50 1.40 1.70 8.70 9.00 45.00 35.00 11.00 34.00 - - - McKendry, (2002) 

Miscanthu

s 

48.10 5.40 0.50 <0.10 42.20 2.80 15.90 66.80 11.50 18.50 - - - McKendry, (2002) 

Fir - - - - - 0.80 17.20 82.00 6.50 21.00 - - - McKendry, (2002) 

Danish 

Pine 

- - - - - 1.60 19.00 71.60 8.00 21.20 - - - McKendry, (2002) 

Cereal 

Straw 

- - - - - 4.30 10.70 79.00 6.00 17.30 - - - McKendry, (2002) 

Palm Seed 45.30 5.60 1.00 0.80 47.20 10.80 7.70 76.60 4.90 - - - - Sait et al., (2012) 
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Table 3-1: Compilation of biomass properties and element characteristics from literature (continue) 

Biomass C H N S O Ash FC VM MC LHV Cell Hcel Lig Reference 

Palm Leaf 49.30 5.80 1.20 1.30 42.30 11.70 5.20 78.10 5.00 - - - - Sait et al., (2012) 

Palm Leaf 

Stem 

36.10 5.20 0.70 0.70 57.20 19.20 7.80 55.30 17.70 - - - - Sait et al., (2012) 

Municipal 

Solid 

Waste 

55.20 1.72 1.95 1.40 38.53 44.20 - - 38.50 10.45    Vitasari et al., 

(2011) 

Sludge 50.20 7.15 5.26 1.76 35.30 35.10 - 88.20 32.10 -    Vitasari et al., 

(2011) 

Cauliflowe

r Residue 

40.20 5.40 3.10 0.50 45.85 15.00 - - 12.00 - 31.10 5.40 3.90 Madenoğlu et al., 

(2011) 

Acorn 48.50 5.30 0.40 0.80 43.46 2.50 - - 12.90 24.80 16.50 12.50 45.10 Madenoğlu et al., 

(2011) 

Tomato 

Residue 

54.70 7.60 2.90 0.60 31.68 3.70 - - 7.50 - 24.00 17.00 21.90 Madenoğlu et al., 

(2011) 

Extracted 

Acorn 

48.60 5.80 0.70 0.90 43.11 4.30 - - 10.80 - 38.70 15.10 23.50 Madenoğlu et al., 

(2011) 

Hazelnut 

Shell 

52.20 5.90 0.45 0.60 39.71 1.70 - - 6.80 - 38.20 12.10 40.00 Madenoğlu et al., 

(2011) 

Corn Cob 43.24 5.28 0.44 0.08 41.02 2.90 17.39 72.67 7.04 - - - - Lu et al., (2012) 
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Table 3-1: Compilation of biomass properties and element characteristics from literature (continue) 

Biomass C H N S O Ash FC VM MC LHV Cell Hcel Lig Reference 

Corn Cob 

Briquette 

- - - - - 4.35 79.37 15.63 0.64 - - - - Nuriana et al., 

(2014) 

Gasificatio

n Particle 

88.20 0.53 0.57 0.09 4.11 8.10 84.40 6.50 1.00 29.80 - - - Miguel et al., 

(2012) 

Durian 

Peel 

Briquette 

- - - - - 18.18 77.87 3.94 0.01 26.29 - - - Nuriana et al., 

(2014) 

Jarak 

Wood 

Briqutte 

- - - - - 11.80 66.01 20.90 5.87 21.99 - - - Nuriana et al., 

(2014) 

Cocoa 

Peel 

Briqutte 

- - - - - 18.98 49.93 24.99 10.67 18.32 - - - Nuriana et al., 

(2014) 

Durian 

Shell 

60.31 8.47 3.06 0.10 28.06 2.52 22.36 69.59 5.53 - - - - Chandra et al., 

(2009) 

39.30 5.90 1.00 0.06 53.74 4.84 - - 11.27 - 73.54 13.09 15.45 Jun et al., (2010) 

Durian 

Peel 

42.86 5.71 0.18 51.25 4.22 21.42 69.82 4.54 - - - - Foo and Hameed, 

(2011) and 

Nuithitikul et al., 

(2010) 
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the feedstock’s cellulose content.  These research outcomes further solidify the concept of biomass 

element characteristics as the integration platform for biomass feedstock selection as shown in previous 

Figure 3-2.  Thus, element targeting approach is introduced to integrate multiple biomass resources into 

existing biomass supply chain network for optimum biomass utilisation.  Element targeting utilises 

biomass element characteristic as a platform to evaluate the implementation feasibility of respective 

biomass species in a particular biomass process technology as shown in Figure 3-3.    

 

 

Figure 3- 3: Element targeting illustration 

 
 Nevertheless, there are challenges to integrate biomass feedstock via element characteristics 

due to limited knowledge and research on the impact of different biomass elemental properties to 

process performance (such as production yield and product quality).  It is very important that the 

proposed element targeting approach is based on key elements that contribute significantly to 

process performances.  Key elements are not only limited to elemental and chemical characteristics 

from proximate and ultimate analysis. Other critical feedstock properties for respective process 

technology are also required to be considered.  For example, biomass feedstock size, mineral content, 

and cellulosic content (such as cellulose, hemicellulose and lignin) as suggested by Goh et al. (2010) for 
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bio-ethanol production.  Therefore, the key elements of a respective biomass process technology are 

highly dependent on the element acceptance range for the selected technology. 

 

 Element acceptance range is a set of boundaries of key elements such that any biomass 

feedstock falls within this range will not have significant impact to the process performance.  This concept 

is based on the fundamental theory of mass balance in chemical engineering, where all input of process 

should be same as the output.  In other words, if all the key elements of the process feedstock are 

addressed according to the element acceptance range (disregard any biomass species or mixture of 

biomasses), the respective technologies are expected to give similar process performance without major 

process modification.  Two approaches are introduced in this research to construct element acceptance 

range for biomass process technology.  The principle of these approaches is discussed in detail below.   

 

3.4.1 Element acceptance range based on literature and technology expertise  

 Element targeting approach is proposed to integrate multiple biomass species into existing 

technology via element characteristics.  However, due to lack of research on the impact of each element 

characteristics to the process output and performance, construction of element acceptance range of each 

technology is required.  One of the straight forward approaches to determine technology element 

acceptance range is based on literature data or industrial input.  This method harvests the data and 

knowledge on the key elements of respective technology and their impact to the technology outputs.  In 

other words, the key element of the technology is already pre-defined by expertises.  For example, Goh et 

al. (2010) and Li et al. (2009) reported that bio-ethanol yield can be estimated based on feedstock 

cellulose and hemicellulose content.  Mohammed et al. (2011) stated that biomass combustion generally 

has energy efficiency in the range of 10% to 30% provided that the moisture content of biomass 

feedstock is less than 50 wt%.  Both literatures do not indicate any upper limit for the technology 

tolerances to feedstock element characteristics.  Thus, it is assumed that both technologies are able to 

accept any type of feedstock.  Figures 3-4 and Figure 3-5 show the element acceptance range for 

respective technologies.  By utilising this information, selection of alternative biomass as feedstock is 

possible to enhance integration of various biomass species into the system.  However, noted that this 
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approach may underestimate the key elements of the technology.  The element acceptance range 

constructed in Figures 3-4 and 3-5 has huge tolerance to accept any type of biomass properties due to the 

lack of constraint input from literature.  This may results in inconsistency of technology performance 

when translate to real life application.  Hence, more studies need to be conducted to ensure all key 

elements of the technology are addressed.  Nevertheless, this approach to construct element acceptance 

range is feasible provided that the technology has a clear definition of key elements and their impact to 

technology performance.   

 

  

Figure 3- 4: Element acceptance range for bio-ethanol fermentation technology 
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Figure 3- 5: Element acceptance range for combustion technology 

 
3.4.2 Element acceptance range based on element deviation factor (fe) 

 On the hand, due to the lack of study on the impact of biomass feedstock element 

characteristics to process technology performance, it is very difficult to construct element acceptance 

range for many biomass process technologies.  Study on the relation between feedstock element 

characteristics and process performance for each technology required much time and cost.  This will 

further constraint the implementation of the technology and restricts integration of underutilised 

biomass into the existing system.  In order to deal with this problem, a second approach to construct 

element acceptance range is introduced to promote element targeting approach.  This approach utilised 

the original biomass properties as the guideline for the construction of element acceptance range.  Since 

the key elements are yet to be identified, all element characteristics are assumed to be equally important, 

hence all elements are considered to be the key elements.  An element deviation factor is introduced to 

reflect the fluctuation of original biomass feedstock properties.  These fluctuations create an upper and 

lower boundary for the biomass feedstock element characteristics to capture the deviation of biomass 

properties.  Generally biomass properties deviate due to several factors such as origin of biomass 

collected, weather and storage period.  Fournel et al. (2015) discussed the biomass properties (MC, LHV, 
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bulk density, C, H, N, O, Ash, and minerals) fluctuation according to seasonal changes.  Generally the 

fluctuation is in the range of 0 % to about 20 % of the average values, while mineral content can fluctuate 

up to 90 % (in term of quantity is actually relatively small as the mineral content is measure in milligrams).  

Shabani and Sowlati (2016) also stated that the biomass obtained for a power plant has the fluctuation of 

MC and HV in the range of ±16.7 % and ±5.9 % respectively.  This creates degree of freedom for the 

technology to select alternative biomass species as feedstock, as long as the overall feedstock properties 

are within the boundary.   

 

 For example, Lu et al. (2012) reported that the hydrogen yield in supercritical water gasification 

is 30.46 g/kg feedstock by using corn cob as the feedstock.  Based on the original corn cob element 

characteristics, the element acceptance range for the technology is constructed with an element 

deviation factor of ±10 % as shown in Figure 3-6.  Note that ±10 % is a very conservative assumption 

based on the general biomass fluctuation as discussed above to ensure minimum changes in process 

performance.  Due to the relatively small range between the upper and lower boundary, a small section 

of the chart is enlarged for visual clarification.  The technology element acceptance range is calculated via 

Equation 3-2 and Equation 3-3, where E_Upper(e,j) and E_lower(e,j) is upper and lower boundary of 

element acceptance range at each process plant respectively, and E_ori(e,j) is the element characteristics 

of the original biomass feedstock used in respective process plant.  However, the proposed element 

acceptance range is only feasible provided that the operating conditions and equipment set up are 

remained unchanged.  The main advantage of this approach is to allow construction of element 

acceptance range for technology where the relation between key elements and their impact to its 

technology performance is yet to be developed.  By assuming that all element characteristic are equally 

important, element targeting approach can be implemented into various technologies as long as the 

element characteristics of the original biomass feedstock is provided.   
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Figure 3- 6: Element acceptance range for hydrogen production by supercritical water gasification 

technology 

 

                                        (3-2) 

                                        (3-3) 

  

3.5  Demonstration of element targeting approach  

 Based on the discussion in Section 3.3, biomass properties are proposed to be classified based 

on element characteristics; while discussion in Section 3.4 suggested that each technology has their 

tolerances to accept a certain property range of biomass element characteristics, which is known as 

element acceptance range.  In this section, a simple demonstration of element targeting approach is 

constructed to show the integration and selection of multiple biomass feedstock based on technology 

element acceptance range. 

 

 In order to simplify the example, only two types of biomasses (rubber wood chip and wheat 

straw), two element characteristics (moisture content and heat value), and an existing process technology 
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(combustion) are considered.  Table 3-2 summarised the element characteristics of the biomasses.  For 

demonstration purpose, assuming the existing combustion technology is designed only based on rubber 

wood chip as feedstock, and alternative biomass species has yet to be tested in this technology set up.  

Thus, wheat straw is not being considered in the system, hence is classified as underutilised biomass.  In 

the case of system fluctuation, such as increase of production or decrease of rubber wood chip 

availability, the process system has to import additional rubber wood chip from other regional area to 

fulfil the technology feed requirement.  Alternative, a new process technology can be introduced to utilise 

wheat straw to convert into valuable downstream product.   

 

Table 3- 2: Biomass properties 

Biomass Moisture content (MC), wt% Heat value (HV), MJ/kg Reference 

Rubber Wood Chip 8.5 17.06 

Kaewluan and 

Pipatmanomai, 

(2011a) 

Wheat Straw 16.00 17.30 McKendry, (2002) 

 

 Based on the proposed element targeting approach, the biomass feedstock selection criteria is 

suggested to be based on biomass element characteristics instead of biomass species.  Assuming in this 

case study, the maximum tolerance of MC is 10 wt% and the feedstock HV is required to be 1000 MJ.  In 

normal operation, total of 58.6 kg of rubber wood chip (with MC of 8.5 wt%) is required and wheat straw 

alone is not suitable for the process due to high MC.  However, in special case where availability of rubber 

wood chip within the local region is less than the requirement, the conventional feedstock integration 

approach will suggest importation of rubber wood chip from other region due to the selection criteria is 

based on biomass species (provided that the solution is economically viable).  Alternative solution is to 

introduce a pretreatment unit to remove MC of wheat straw, such that it can be used as supporting 

feedstock.  Conversely, implementation of element targeting approach enable the system to decide the 

optimum biomass feedstock based on element characteristics.  Thus, an alternative solution is to combine 

both rubber wood chip and wheat straw to achieve the required 1000 MJ feedstock, as long as the 

combined MC is less than 10 wt%, which the maximum tolerance for wheat straw is approximately 11.7 

kg, with approximately 46.8 kg of rubber wood chip.  This solution has the potential to reduce the 
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possibility of increasing logistic cost due to importation and capital cost due to investing in new 

technology.  In addition, underutilised biomass such as wheat straw (in this case) is considered in the 

process to convert into higher value product.  With consideration of underutilised biomass, this approach 

enable optimisation of process to maximise profit (underutilised biomasses are generally available at 

lower cost due to low demand) or maximise biomass utilisation (enhance possibility of application of 

underutilised biomasses). 

 

 However, the problem will be more complex in real life scenario which involved more variables, 

such as more biomass element characteristics.  For example, Figure 3-7 presented the element 

acceptance range for a pyrolysis technology based on palm shell as original feedstock.   

 

 

Figure 3- 7: Example of element acceptance range of palm shell pyrolysis technology 

 

 

 Figure 3-8 presented three biomass species available in the system, namely palm shell, empty 
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simplified example, these three biomasses are mixed as alternative feedstock to replace 100 wt% of 

original feedstock.  The proposed biomass mixture element characteristics must be within the element 

acceptance range of the technology.  Figure 3-9 demonstrated the predicted mixture element 

characteristics (63 wt% palm shell; 26 wt% empty fruit bunch; 11 wt% palm mesocarp fibre) and is 

superimposed into Figure 3-7.  The properties of biomass mixture is predicted based on linear relation 

and mass fraction of pure biomass as shown in Equation 3-4 below.   

 

 

Figure 3- 8: Radar chart for biomass element characteristics 

 

 

Figure 3- 9: Biomass mixture element characteristics superimposed into element acceptance range 
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(3-4) 

  

 The methodology of biomass mixture properties prediction in Equation 3-4 is similar to the 

properties integration approach in process integration to determine mixed stream properties.  Generally 

properties integration of process stream can be categorised into mass conserved and non-mass 

conserved properties.  Mass conserved properties refer to the properties that follow concept of mass 

balance, where the mixed properties estimation is based on mass/component fraction, such as 

composition and temperature.  On the other hand, some properties such as density, viscosity, thermal 

conductivity, pH value, and toxicity are not conversed, thus do not follow the linear relation with respect 

to mass ratio (Sandate-Trejo et al., 2014).  In order to have accurate properties prediction, many studies 

have conducted to determine the correlation and prediction models for mixture properties (González et 

al., 2007).  Tables 3-3(a) and 3-3(b) summarised some of the examples of properties operators and 

integration models reported in literatures. 

 

Table 3-3(a): Generic property operator summarised by Jiménez-Gutiérrez et al., (2014) 

Property Operator 

Composition                             

Toxicity                       

Chemical oxygen demand                                                   

pH             

Density, ρ 
      

 

 
 

Viscosity                               

Vapour pressure                                         

Electric resistivity 
                         

 

                    
 

Reflectivity                               
     

Colour                        

Odour                 
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Table 3-3(b): Property integration models 

Property Integration model Reference 

Sulphur content, S 
              

 

   

 
Shelley and El-

Halwagi (2000) 

Liquid density, ρ  

        

  
  
  

 

   

 

Reid vapour pressure, 

RVP 
          

            
    

 

   

 

Kinematic viscosity, ν 
                    μ  

 

   

 
  
  

 

   

 
    

  
 

Sandate-Trejo et al., 

(2014) 

Thermal conductivity, 

  
                               

 

   

 

Kinematic viscosity, ν 
                          

 

   

 
    

  
 

González et al., (2007) 

x: mole fraction;        : Gibbs free energy;   μ: dynamic viscosity;       and   : empirical parameters estimated via minimum 
square techniques;    : temperature function;   M: molar mass 

  

  Based on Table 3-3(b), estimation of sulphur content in a mixture is proposed to be in a linear 

relation with respect to the mass faction and the sulphur content of the individual material.  This is due to 

sulphur content is a mass-conversed property that based on the component or mass fraction of the 

material.  On the other hand, density of a liquid mixture is unable to be predicted based on linear mass or 

component fraction of individual material, but instead based on the correlation proposed in both Tables 

3-3(a) and 3-3(b).  Similar to sulphur content, RVP is suggested to be a mass-conversed property.  This is 

supported by Roult’s law which stated that liquid vapour pressure of a mixture is correlated to the mole 

fraction and vapour pressure of individual liquid.  Although both integration models for kinematic 

viscosity and thermal conductivity are correlated to mole fraction, however, the models do not obey the 

linear relation with respect to mole, mass or component fraction.  Nonetheless, both kinematic viscosity 

integration models proposed by Sandate-Trejo et al., (2014) and González et al., (2007) are theoretically 

the same, where the only difference is Sandate-Trejo et al., (2014) expressed the molar mass, M in 

terms of dynamic viscosity, μ, mass/mole fraction, x, and density, ρ.  Both of the proposed models for 

kinematic viscosity has considered the non-ideal case scenario as compared to the ideal case scenario 

(generic) operator proposed in Table 3-3(a) for mixture viscosity estimation.  
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 Discussions above have shown that researchers had proposed various properties integration 

models to predict different properties.  However, most of the studies are focused on the properties 

integration of process fluid and less literature reported on the solid property integration model.  

Nonetheless, the biomass (solid) properties to be considered in this thesis, namely C, H, N, O, S, MC, FC, 

Ash, VM, HV, Cell, Hcel, and Lig, are presumed to be correlated to the material mass fraction. Thus, the 

prediction model is proposed to be in a linear relation with respect to the mixing ratio as per Equation 3-

4.  This prediction model will be verified in Chapter 5 via laboratory analysis.  

  

 To summarise, there are two main assumptions to be verified in the proposed element targeting 

approach.  First, as discussed above, the element characteristics of the biomass mixture are assumed to 

be correlated to mass fraction and able to predict based on the pure biomass element characteristics in a 

linear relation.  Second assumption is, as discussed in Section 3.4.1 and Section 3.4.2, no major process 

performance fluctuation is expected if the feedstock element characteristics are within the element 

acceptance range of the technology.  Both of the assumptions will be verified in Chapter 5 to ensure 

applicability into biomass supply chain optimisation model.      

 

3.6  Conclusions  

 A systematic biomass classification approach is introduced in this chapter to act as a platform to 

consider underutilised/alternative biomasses as potential resources for existing biomass technologies.  

Element characteristics are suggested to use as the selection criteria to integrate underutilised biomass 

into existing system as it is a commonly used methodology to define biomass properties.  Nevertheless, in 

order to integrate alternative biomass into existing process technology, element acceptance range is 

introduced to set the upper and lower boundaries of the technology tolerances toward feedstock 

fluctuations, and ensure consistency of the technology performance.  Two approaches were suggested to 

construct element acceptance range. However, more studies are required to enhance the system by 

considering more biomass species and technologies into the system.   
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Chapter 4:  
ELEMENT TARGETING APPROACH 

FOR BIOMASS GASIFICATION 
TECHNOLOGY 

 
 

In previous chapter, a novel concept of element targeting approach was proposed to 

integrate alternative or underutilised biomass into the existing biomass process technologies.  The 

fundamental idea is to determine the feasibility of implementing alternative biomass into existing 

process based on the element acceptance range of respective process technology.  Each process 

technology is suggested to have a unique element acceptance range, such that any biomass feedstock 

with element characteristics within the range will not have major impact to the process performance.  

This integration approach introduced biomass feedstock selection based on element characteristics 

instead of biomass species which provides higher flexibility in supply chain management compared to 

the conventional biomass supply chain optimisation approaches.  However, before implementing the 

new approach into biomass supply chain optimisation model, it is important to ensure the 

applicability of the element targeting approach in real life scenario.  In this chapter, concept of 

element targeting approach is verified via existing literature.  Biomass gasification technologies are 

used in the case study due to the popularity in biomass development.  The main advantage to initiate 

prove of concept via literature is to have a preliminary verification before venturing into larger 

investment, the laboratory experiment.  In addition, it also enables verification of applicability of the 

new concept into existing technologies.   

 

4.1  Biomass Gasification and its Current Limitations  

As the efforts to explore alternative resource for more sustainable and renewable energy 

system, biomass has becomes one of the promising substitution for conventional fossil fuel.  High 

availability, enhance development of rural area, zero carbon dioxide balance and multiple adaptation 

in varies technologies gave biomass more advantages with respect to other renewable resources 
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(Á.Murillo et al., 2015).  Among the biomass technologies, gasification is one of the well established 

technologies in terms of conversion to energy and hydrogen production. 

 

 However, implementation of gasification plant is yet to be perfected due to several 

drawbacks.  For example, low energy efficiency and high operating cost are the few of the critical 

issues to be rectify.  Research and development of biomass gasification has also ventured into 

catalytic reaction to enhance overall gasification performance.  Many catalysts are studied to increase 

the production yield, for instance dolomite, olivine and alumina are well-known catalysts in biomass 

gasification for tar removal Andrés et al., (2011).  The study concluded that dolomite has the highest 

efficiency to remove tar and increases hydrogen gas yield.    

 

General biomass supply chain is also part of the problem to implement biomass gasification 

plant as discussed in Chapter 2.  Relatively low density of biomass resulted in high transportation cost 

(Pirraglia et al., 2013).  Moreover, availability of each biomass species is subjected to the regional 

biomass system, thus not all areas have sufficient mainstream biomass for mass production.  The 

current state of research and development on biomass gasification technology is lacking on 

investigation of integrating various alternative biomass species into the existing technology as 

discussed in Section 3.2.2.  Many biomass gasification researches were conducted based on specific 

biomass species, where the impact of integrating alternative biomass species to the technology 

performance is unknown.  This creates another huge gap in implementing biomass gasification 

technologies, where different biomass species as feedstock leads to different technology output and 

performance.  Thus, it is essential to implement element targeting approach in biomass gasification 

technologies to enhance multiple biomass integration into existing technologies.  In order to 

implement element targeting approach into biomass gasification technologies, the element 

acceptance range of the technology needs to be constructed first.   
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4.2  Objectives  

The main target of this chapter is to investigate the relation of biomass feedstock element 

characteristics with respect to the biomass gasification output performance and to construct the 

element acceptance range for biomass gasification technologies.  Several biomass gasification 

technologies are compiled and used as case study to verify the concept.  The differences in 

gasification process output such as the energy and yield due to different feedstock element 

characteristics are compared, in order to construct the element acceptance range for the technology.  

This case study will focus on the impact of feedstock element characteristics to the produced syngas 

heating value (HV) via biomass gasification technologies.  Analysing syngas HV as the main process 

output helps to determine the feasibility of implementing biomass gasification power plant for energy 

generation with multiple biomass species as feedstock.   

 

4.3  Review of Syngas Production via Biomass Gasification Technologies from 

Literatures 

Many researches have been conducted to improve biomass gasification in term of higher 

efficiency and lower operating cost.  In order to construct the element acceptance range for biomass 

gasification technologies, information on biomass feedstock element characteristics are required.  

Subsequent paragraphs evaluated several literatures on biomass gasification technologies with the 

information regarding biomass feedstock element characteristics.  Being one of the main conversion 

processes to convert biomass into biofuel such as syngas and hydrocarbons, heating value (HV) is one 

of the main product properties to determine the fuel quality.  Thus, this study will focus on the impact 

of syngas HV and only the literatures with information regarding syngas HV are selected for this case 

study.  This information is used as the input data to construct element acceptance range for biomass 

gasification technologies.    

 

Dudyński et al., (2015) investigated the influence of torrefaction on syngas production and 

tar formation in biomass gasification on an industrial-scale gasifier.  Four different biomass species 

were used in the study including, polish pellet (60 % pine and 40 % hardwood), torrefied pellet, South 
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Africa pellet (100% pine) and polish sawdust.  Á.Murillo et al., (2015) analysed the impact of carbon 

densification via hydrocarbonization of biomass with respect to steam gasification process.  The work 

covered multiple sets of experiment alternating gasification temperature, steam flowrate and 

biomass feedstock species.  González et al., (2011) studied cracking of tars by dolomite in two-stage 

olive cake gasification.  The results difference due to different operating temperature are analysed 

and compared with non-catalyst process.  Biomass gasification in a fluidized bed reactor was 

investigated by Barisano et al., (2015) to achieve optimum operating condition.  Kihedu et al., (2015) 

explored the performance of air-steam auto thermal updraft gasification of biomass with respect to 

the air gasification in packed bed reactor.  Air-steam gasification is reported to have higher syngas low 

heating value, tar generation, cold gas efficiency, and carbon conversion.  Similarly, Roche et al., 

(2014) investigated air and air-steam gasification of biomass, in this case, sewage sludge and the 

impact of dolomite as catalyst with respect to tar production and composition.  The result is 

comparable with Kihedu et al., (2015) as the present of steam as gasifying agent enhance overall 

syngas production.  Moghadam et al., (2014) looked into the effect of temperature, catalyst, 

equivalence ratio and steam/biomass ratio in a coconut shell biomass conversion process integrated 

with pyrolysis and air-steam gasification process.  The optimum operating condition is reported to be 

500 °C and 950 °C for pyrolysis and gasification respectively with equivalence ratio from 0.23 to 0.24 

and steam/biomass ratio ranged from 1.9 to 2.5.  Tursun et al., (2015) investigated steam co-

gasification of pine sawdust and bituminous coal in a lab-scale external circulating radial-flow moving 

bed gasification system.  Calcined olivine was used as catalyst for tar cracking and as circulating heat 

carrier.  Multiple biomass blending ratio between pine sawdust and bituminous coal are attempted to 

investigate the impact to the reactor output.   

 

Based on the gasification technologies above, the relationship between biomass feedstock 

element characteristics and the process output is investigated.  Table 4-1 summaries the syngas HV 

produced from each technology with respect to their biomass feedstock and operating condition.  

Each works from literature is considered as unique technology that differs from each other due to the 

different equipment setup, sizes, and operating conditions.   
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Table 4- 1: Summary of gasification technologies based on literatures 

Literature 

Source 

Biomass Gasification 

Temperature (°C) 

Gasification 

pressure 

Syngas Heating Value 

(HV) (MJ/Nm
3
) 

Oxidation agent Catalyst 

Dudyński 

et al., 

(2015) 

Polish pellet (60% pine and 40% hardwood) 550 atm 5.65 Air flow rate at 100 m
3
/h - 

Torrefied pellets 6.11 Air flow rate at 40 m
3
/h 

South Africa pellet (100% pine) 5.00 Air flow rate at 90 m
3
/h 

Polish sawdust 3.06 Air flow rate at 35 m
3
/h 

Á.Murillo 

et al., 

(2015) 

 

Pristine olive waste 700 

 

 

atm 6.56 (steam flowrate at 1 g/min)  

- Char 6.48 

Hydrochar 8.29 

Pristine olive waste 900 8.34 (steam flowrate at 1 g/min) - 

Char 7.55 

Hydrochar 10.22 

Pristine olive waste 900 7.10 (steam flowrate at 0.5 g/min) - 

Char 8.99 

Hydrochar 9.04 

González 

et al., 

(2011) 

Olive cake 800 atm 11.35  110 mg/min  dolomite 

11.88 

900 10.67 110 mg/min  dolomite 

9.73 

1000 11.21 190 mg/min - 
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Table 4-1: Summary of gasification technologies based on literatures (continue) 

Literature 

Source 

Biomass Gasification 

Temperature (°C) 

Gasification 

pressure 

Syngas Heating Value 

(HV) (MJ/Nm
3
) 

Oxidation agent Catalyst 

    9.57 110 mg/min - 

Kihedu et 

al., (2015) 

Black pine pellet 943 atm 4.45 Air-steam at 2.85 

equivalence ratio 

- 

Roche et 

al., (2014) 

Dry sewage sludge 800 atm 3.10 Steam-to-biomass ratio of 1 dolomite 

Barisano et 

al., (2015) 

Almond shell 825 atm 11.35 Steam-to-biomass ratio of 

0.4 

O2-to-biomass ratio at 0.3 

- 

Moghadam 

et al., 

(2015) 

Coconut shell 950 Atm 12.54 Air-to-biomass equivalence 

ratio at 0.23 

Steam-to-biomass ratio at 

2.45  

dolomite 

Tursun et 

al., (2014) 

Pine sawdust  800 atm 6.90 Steam/carbon ratio of 1.3 - 

25 wt% pine sawdust and 75 wt% bituminous coal 9.00 

50 wt% pine sawdust and 50 wt% bituminous coal 10.95 

75 wt% pine sawdust and 25 wt% bituminous coal 11.48 

Bituminous coal 11.79 
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Table 4-2 listed the element characteristic of each biomass as reported in their respective 

literature.  Two different units of HV are found to be used in these literatures, lower heating value 

and higher heating value.  This creates inconsistency in the analysis.  However, the differences are 

considered to be within an acceptable range as generally the difference between lower heating value 

and higher heating value are within 10 %.  On the other hand, element characteristic for dry sewage 

waste is incomplete as per the literature.  Roche et al., (2014) reported the overall organic matter 

within dry sewage waste as 58.3 wt%, instead of analysing the volatile matter and fixed carbon 

content.  In addition, some of the literatures did not report the heating value of the biomass 

feedstock as part of the element characteristic.  This issue is rectified by using correlation in Equation 

4-1, which was suggested by Nhuchhen and Salam (2012) to estimate the biomass HV.  This prediction 

model is based on 250 species of biomasses ranged from fruit waste (such as almond shell, hazelnut 

shell, and coconut shell), agriculture waste (such as rice husk, corn cob, and wheat straw), wood chips 

(such as bamboo, pine wood, and softwood), grasses (such as sugar cane leaves, switch grass and tea 

bush), and pellets (such as charcoal, pine pellet, and miscanthus pellet).  The results have shown that 

the proposed non-linear correlation has less estimation errors as compared to other researches.   

                  
  

  
         

  

  
 
 

         
   

  
        

   

  
 
 

         
   

  
 
 

         
   

  
 
 

        
  

   
 

(4-1) 

 

4.4  Analysis of general relation between feedstock element characteristics and syngas 

heat value in biomass gasification 

The first attempt in this work is to evaluate the relation of feedstock element characteristics 

with the produced syngas HV.  In this case, information on various different gasification technologies 

are complied and analysed.  Based on the information tabulated in Table 4-1, different feedstock and 

operating conditions will generate different process output (syngas HV).  Based on data of biomass 

element characteristics in Table 4-2, 10 graphs of each element characteristics of feedstock versus 

syngas HV are plotted as shown in Figure 4-1.  Relation of biomass feedstock with respect to 

gasification output is then analysed by comparing the impact of feedstock element characteristic to  
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Table 4- 2: Biomass element characteristics based on literatures 

Literature Source Biomass C 

(wt%) 

H 

(wt%) 

O 

(wt%) 

N 

(wt%) 

S 

(wt%) 

MC 

(wt%) 

VM 

(wt%) 

FC 

(wt%) 

Ash 

(wt%) 

HV 

(MJ/kg) 

Dudyński et al., (2015) Polish pellet (60% pine and 40% hardwood) 52.6 5.9 41.3 0.3 0.0 10.0 70.0 19.5 0.5 19.9* 

Torrefied pellets 56.0 5.0 38.6 0.4 0.0 4.5 60.0 34.5 1.0 20.3* 

South Africa pellet (100% pine) 53.4 5.5 40.7 0.4 0.0 10.0 78.4 16.4 5.0 18.7* 

Polish sawdust 51.8 5.7 42.2 0.1 0.2 50.0 41.9 7.4 0.7 19.0* 

Á.Murillo et al., (2015) Pristine olive waste 45.6 6.2 47.9 0.3 0.0 10.4 71.8 16.4 1.4 16.9 

Char 86.8 2.1 10.8 0.3 0.0 2.1 24.3 71.5 2.1 32.6 

Hydrochar 66.2 5.1 28.5 0.2 0.0 3.7 53.9 40.4 3.7 26.6 

González et al., (2011) Olive cake 48.7 6.3 44.3 0.6 0.1 0.0 72.3 23.1 4.6 19.2* 

Barisano et al., (2015) Almond shell 47.9 6.3 44.3 0.3 0.0 0.0 80.6 18.2 1.2 19.5* 

Kihedu et al., (2015) Black pine pellet 49.3 6.7 43.2 0.9 0.0 4.6 83.6 15.8 0.6 19.4* 

Roche et al., (2014) Dry sewage sludge 29.5 4.9 15.0 4.1 1.6 8.7 - - 41.7 - 

Moghadam et al., (2015) Coconut shell 50.2 5.4 43.4 0.9 0.1 8.6 52.6 26.5 12.4 21.5 

Tursun et al., (2014) Pine sawdust 47.8 6.9 44.8 0.1 0.4 8.3 78.4 12.7 0.6 19.1 

bituminous coal 77.0 4.1 17.6 0.7 0.6 10.5 28.9 57.0 3.7 28.0 

*calculated using correlation suggested by Nhuchhen and Salam (2012) 
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produced syngas HV.  In order to evaluate the general relation in gasification technology, this analysis 

is conduced disregard of the differences in operating conditions and equipment set up. However, no 

obvious trend is observed as shown in Figure 4-1.  All the data are scattered around and is very 

difficult to conclude a relation.  Thus, the analysis concluded that it is very complex to construct a 

systematic relation between the biomass feed and process output with different technologies.  This is 

due to inconsistency of variables in terms of gasification temperature, oxidation agent, catalytic and 

non-catalytic process, steam flowrate, steam/biomass ratio, and operating conditions.   

 

Nevertheless, it is observed that some particular set of the data are scattered in a 

constructive manner.  This suggested that a smaller scale of analysis should be conducted to isolate 

and segregate the variables.  In order to further examine the problem, each technology is evaluated 

separately.  Literatures with multiple case studies on different type of biomass feedstock with 

consistent process condition are selected.  This is to ensure higher consistency in terms of process 

conditions and equipments set up, in order for the analysis to focus more on the study of feedstock 

biomass element characteristic impact to respective process output.   

 

4.5  Analysis of relation between feedstock element characteristics and syngas heat 

value in hydrocarbonization and gasification process 

The first micro analysis is conducted based on Á.Murillo et al., (2015), which evaluated 

biomass gasification using three different types of biomass feedstock which consist of char, hydrochar 

and pristine olive waste.  The main objective of their research was to evaluate the impact of 

hydrocarbonization (produces hydrochar) as pretreatment for biomass steam gasification processes 

as compared to traditional pyrolysis (produces char).  Advantages of hydrocarbonization over 

conventional carbonization methods are no inert gas required, uses moderate temperature with 

water only, overall exothermal process, and can be applied on high moisture content biomass.  

Á.Murillo et al., (2015) proved that solid yield from hydrocarbonization approach (65.4 %) is higher 

than pyrolysis approach (24.7 %) which operated at optimum pyrolysis temperature of 600 °C.  The 

gasification processes were conducted at atmospheric pressure with 2 g of feedstock.  Inert gas,  
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Figure 4- 1: Overall relation of biomass feedstock element characteristic with produced syngas HV 
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Á.Murillo et al., (2015), 900 °C, 0.5 g/min steam González et al., (2011), 800 to 1000 °C Barisano et al., (2015), 825 to 943 °C

Catalystic rection: dolomite, 800 to 950 °C Tursun et al. (2014), 800 °C
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nitrogen flow at 10 cm
3
/min was maintained for 1 hour to remove air in the system.  The process was 

tested on different gasification temperature ranging from 700 °C to 900 °C and steam flow rate 

ranging from 0.5 to 1 g/min to investigate the impacts to the syngas composition and heating value.  

However, the relation between biomass feedstock element characteristic and produced syngas is yet 

to be studied.  Since the reported literature involved three different feedstocks with distinguish 

element characteristics, the information is extracted for investigation.  Three cases of experiment are 

extracted from the literature, Case A: gasification temperature at 700 °C with steam flowrate at 1 

g/min, Case B: gasification temperature at 900 °C with steam flowrate at 1 g/min, and Case C: 

gasification temperature at 900 °C with steam flowrate at 0.5 g/min.  The relation between feedstock 

element characteristics and syngas HV are plotted in Figure 4-2.   

 

Based on the figure, there are some interesting findings that are worth to be analysed.  First 

of all, the shapes of trend seemed to be consistent in all element characteristics analysis disregard of 

the different operation conditions.  Difference in biomass feedstock element characteristics resulted 

difference in heating values of produced syngas.  Under the influence of operating condition, the 

shape of the trend in Case A and Case B is almost identical, conversely, the produced syngas HV in 

Case B is a step higher than Case A.  This is due to higher gasification temperature which favours 

production of hydrogen, and hence contributes to higher syngas HV.  In Case C, the shape of the 

trends is slightly different in all the graphs.  This may due to the difference in steam concentration in 

the reaction, thus affecting the equilibrium of the reactions and, hence producing different syngas 

concentration and altered the syngas HV.  Nevertheless, due to limited diversity of biomass feedstock, 

the study on the overall trend of biomass element characteristic with respect to produced syngas 

heating value is yet to be concluded.  The overall trends are unable to justify whether they are of 

linear relation or nonlinear quadratic relation as only three points of data are available.  In addition, 

impact of sulphur content to heating value of produced syngas is unable to determine as all the 

biomass species used in the study are reported to have insignificant sulphur content.  Thus, the 

available data is not sufficient to construct a strong element acceptance range for this particular 

process technology.    

 



Chapter 4 

 

 80 
 

 

Figure 4- 2: Relation of biomass feedstock element characteristic with produced syngas HV based 

on Á.Murillo et al., (2015) 
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4.6  Analysis of relation between feedstock element characteristics and syngas heat 

value in biomass torrefaction and gasification process 

The next analysis is conducted based on Dudyński et al., (2015) that studied the influence of 

torrefaction on syngas production and tar formation.  Torrefaction is a pretreatment process to 

decompose the hemicellulose content within a woody biomass.  Generally torrefaction is performed 

in moderate temperature of 200 °C to 300 °C with the absences of oxygen.  Four biomass species 

were used in the study, namely Polish pellets, torrefied pellets from Portugal, South African pellets 

and Polish pine sawdust.  A robust industrial fixed-bed gasifier designed to handle sawdust with 

variable moisture content and other pellet biomass, which was tested over 30,000 hours, is used in 

the study.  The cuboid-shaped gasifier is capable to gasify up to 300 kg/h biomass.  Air was used as 

oxidation agent.  Gas cooler and gas probe were installed to condense tars and oil for composition 

analysis.  Figure 4-3 shows the relation of biomass element characteristics with the produced syngas 

heating value.    

 

From Figure 4-3, although the analysis consists of more variety of biomass feedstock, no 

significant trend of relation is observed.  This may due to the inconsistency in operating condition in 

each case study.  One of the objectives in Dudyński et al., (2015) research is to investigate operating 

parameters for each biomass feedstock, and optimise the operating condition for maximum liquid 

hydrocarbon production.  Thus, the optimum operating conditions such as biomass feed rate, air 

stream flowrate, gasifying temperature and residence time are different in each biomass.  Moreover, 

each biomass has its unique size and shape with is different from each other.  This again fails to 

provide a fair comparison and analysis on the impact of feedstock element characteristics variation to 

process output.    
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Figure 4- 3: Relation of biomass feedstock element characteristic with produced syngas heating 

value based on Dudyński et al., (2015) 
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4.7 Analysis of relation between feedstock element characteristics and syngas heat 

value and yield in catalytic steam co-gasification process 

The next gasification technology to be evaluated is based on a catalytic biomass steam co-

gasification as per Tursun et al., (2015).  Two type of feedstock were used in the study, pine sawdust 

and bituminous coal.  Calcined olivine was used as in-situ tar destruction catalyst as well as a heat 

carrier in the lab-scale external circulating radial-flow moving bed gasification system.  Tursun et al., 

(2015) conducted several interesting studies on the system, including impact of biomass blending 

ratio, impact of pyrolyzer temperature, impact of gasifier temperature, and impact of steam to carbon 

mass ratio.  Out of all the investigations, the study on the influence of biomass blending ratio to the 

process outcome is most related to the construction of element acceptance range for this technology.  

Variation of biomass blending ratio ranging from biomass 0 % to 100 % replicates various biomass 

feedstock element characteristics, thus allows the analysis and construction of relation between 

biomass feedstock element characteristics and process output.  This is different from the previous 

analysis on Á.Murillo et al., (2015) and Dudyński et al., (2015), Tursun et al., (2015) fixed the operating 

parameters at 600 °C, 800 °C and 1.3 for pyrolyzer temperature, gasifier temperature and steam to 

carbon mass ratio respectively.  This enhances the accuracy of the analysis.  In addition, Tursun et al., 

(2015) not only investigated the heating value of produced syngas, but also the syngas yield.  This 

gives an opportunity to evaluate the impact of feedstock element characteristics to syngas production 

yield.  Figures 4-4 and 4-5 show the relation of the biomass feedstock element characteristics with 

respect to produced syngas heating value and syngas yield respectively. 

 

Based on Figures 4-4 and 4-5, the relation of biomass feedstock element characteristic with 

respect to the gasification output is clearly shown.  It is observed that feedstock element 

characteristics have polynomial relation to produced syngas heat value, while the feedstock element 

characteristics have linear relation to produced syngas yield.  Increases of H, O, and VM; and 

decreases of C, N, S, MC, FC, Ash and HV improved produced syngas higher heating value and yield.  

The R-squared values of the graphs are also significantly higher as compared to the values in previous 

two studies.  The uniform result indicates that consistency of process conditions has a high impact to  



Chapter 4 

 

 84 
 

 

Figure 4- 4: Relation of biomass feedstock element characteristic with produced syngas heating 

value based on Tursun et al., (2015) 
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Figure 4- 5: Relation of biomass feedstock element characteristic with produced syngas yield based 

on Tursun et al., (2015) 
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the analysis.  Thus, a controlled set of process condition is required to analyse the impact of feedstock 

element characteristic to process output.  However, noted that in the graphs of biomass feedstock HV 

value versus syngas heating value (Figure 4-4) and biomass feedstock HV versus yield (Figure 4-5), no 

significant trends were observed.  The scattered plots of graph may due to the fact that biomass HV 

value was estimated from the correlation as stated in Equation 4-1.  The trend of the graphs will be 

more accurate provided that the HV value of the biomass is analysed via laboratory approach, such as 

using bomb calorimeter.   

 

On the other hand, based on profound relations generated in Figures 4-4 and 4-5, further 

analysis can be conducted to compare and prioritise the level of impactness of each feedstock 

element characteristics towards the process performance.  In other word, the analysis is conducted to 

determine fluctuation in which feedstock element characteristics will have the highest impact to the 

process performances, and hence to prioritise as the key elements.  Figure 4-5 shows linear relations 

between feedstock element characteristic and syngas yield.  In general, the impact of the x-axis value 

to the y-axis value is highly dependence on the slope coefficient in linear relations.  Thus, in order to 

justify which element characteristics has the most to least impact to the process performance, the 

“m” value or the slope coefficient of each graphs are compared.  However, this method is not 

applicable in non-linear relations such as in Figure 4-4.  Nevertheless, depending on the case, feasible 

assumption can be constructed to simplify the problem.  For instance, although a non-linear relation 

is fit well in Figure 4-4, however, linear equations can be used to conduct the analysis of the level of 

impactness of the feedstock element characteristics to the syngas HV as long as the R
2
 value is within 

an acceptable range (above 0.85).  Figure 4-6 plotted the linear relation of the same data presented in 

Figure 4-4.  The R
2
 value is found to be 0.88 in all the graphs which is in the acceptable range, except 

for HV vs Syngas HV due to the same reason as discussed previously. 
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Figure 4- 6: Linear relation of biomass feedstock element characteristic with produced syngas 

heating value based on Tursun et al., (2015) 
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Based on Figures 4-5 and 4-6, the slope coefficient is extracted from each graph and 

tabulated in Table 4-3 and prioritised from 1 to 9, 1 being the highest impact to the process 

performances due to higher slope coefficient.  The result shows that in both cases of impact to syngas 

yield and HV, sulphur content has the highest impact to the process outputs, followed by nitrogen 

content, moisture content, hydrogen content, ash content, oxygen content, carbon content, fixed 

carbon, and volatile matter.  This provides a good understanding on the impact of each properties 

fluctuation and a guideline prioritise the biomass selection criteria.  Nonetheless, this is only proved 

to be application in the technology proposed by Tursun et al., (2015).  Further analysis is required to 

determine the impactness of each element characteristics in biomass gasification process.   

 

Table 4- 3: Prioritising key element based on slope coefficient 

Priority 1 2 3 4 5 6 7 8 9 

Impact to 

syngas yield 

S 

(2.17) 

N 

(0.83) 

MC 

(0.24) 

H 

(0.18) 

Ash 

(0.17) 

O 

(0.02) 

C 

(0.02) 

FC 

(0.01) 

VM 

(0.01) 

Impact to 

syngas HV 

S 

(20.1) 

N 

(7.67) 

MC 

(2.19) 

H 

(1.67) 

Ash 

(1.58) 

O 

(0.18) 

C  

(0.17) 

FC 

(0.11) 

VM 

(0.10) 

 

4.8 Discussion and construction of element acceptance range 

Based on the analysis above, there is still gap to construct a general relation between 

feedstock element characteristics and syngas heat value for all biomass gasification technologies.  

Most of the literatures have yet to analyse the impact of biomass feedstock in term of element 

characteristic variation.  In addition, differences in operating conditions are significantly affecting the 

process outcome, which further complicates the process to conclude the impact of feedstock element 

characteristics to process outputs.  Obtaining experiment data from literatures for the analysis often 

contains inconsistency or uncertainties in the comparison due to discrepancy in process parameters.  

Nonetheless, the analysis is proven to be possible, provided that the literature used has sufficient 

data and consistency in operating condition.  Once the impact of feedstock element characteristics to 

process performance is verified, element acceptance range for that particular technology can be 

constructed.     

 



Chapter 4 

 

 89 
 

For example, by assuming the gasification technology proposed by Tursun et al. (2015) is 

implemented in biomass industry and the supply chain network.  Assuming the targeted syngas HV is 

in the range of 9.00 MJ/Nm
3
 to 10.95 MJ/Nm

3
.  Conventionally based on the research conducted by 

Tursun et al. (2015), the feedstock option should only consist of biomasses mixture (sawdust and 

bituminous coal) ranging from 25 wt% to 50 wt% of sawdust.  All other alternative biomass species 

are not considered in the system unless a major process equipment modification or study is involved.  

However, according to the analysis conducted on the relation between biomass feedstock element 

characteristics and syngas HV as per Figure 4-4, and the concept of element targeting, the feedstock 

properties requirements can be back calculated based on the targeted output as shown in Figure 4-7.  

Upper and lower boundaries for respective element characteristics are identified and element 

acceptance range is constructed based on the combination of this information, as shown in Figure 4-

8.  HV is excluded in this study due to the inconclusive relation as shown in Figure 4-4.  Note that the 

proposed element acceptance range is only dedicated to the targeted output of 9.00 MJ/Nm
3
 to 10.95 

MJ/Nm
3
 via the proposed equipment setup and operating conditioned by Tursun et al. (2015).  Any 

changes of equipment or operating conditions will affect the element acceptance of the technology.   
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Figure 4- 7: Construction of element acceptance range based on targeted syngas output of 9.00 

MJ/Nm
3
 to 10.95 MJ/Nm

3
 

y = -0.0069x2 + 0.6986x - 5.885
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 20.0 40.0 60.0 80.0 100.0

Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock carbon content (wt%)

C vs Syngas HV

y = -0.7081x2 + 9.5102x - 20.2
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 2.0 4.0 6.0 8.0

Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock hydrogen content (wt%)

H vs Syngas HV

y = -0.008x2 + 0.677x - 2.6048
R² = 0.9949

0.00

5.00

10.00

15.00

0.0 10.0 20.0 30.0 40.0 50.0

Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock oxygen content (wt%)

O vs Syngas HV

y = -14.901x2 + 3.8073x + 11.487
R² = 0.9949

0.00

5.00

10.00

15.00

0.0 0.2 0.4 0.6 0.8

Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock nitrogen content (wt%)

N vs Syngas HV

y = -102.68x2 + 78.446x - 3.2529
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock sulphur content (wt%)

S vs Syngas HV

y = -1.2109x2 + 20.495x - 74.99
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

8.0 8.5 9.0 9.5 10.0 10.5 11.0Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock moisture content (wt%)

MC vs Syngas HV

y = -0.0024x2 + 0.3563x - 1.4269
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 20.0 40.0 60.0 80.0 100.0Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock volatile matter (wt%)

VM vs Syngas HV

y = -0.003x2 + 0.1014x + 10.88
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock fixed carbon content (wt%)

FC vs Syngas HV

y = -0.6358x2 + 1.1311x + 11.227
R² = 0.9949

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 1.0 2.0 3.0 4.0

Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock ash content (wt%)

Ash vs Syngas HV

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

19.0 19.2 19.4 19.6 19.8 20.0 20.2Sy
n

ga
s 

H
V

 (
M

J/
N

m
3 )

Biomass feedstock heating value (MJ/kg)

HV vs Syngas HV



Chapter 4 

 

 91 
 

 

Figure 4- 8: Element acceptance range for Tursun et al., (2015) catalytic co-gasification technology 

 

The concept of element targeting suggested that the feedstock selection criteria are based 

on the proposed element acceptance range in Figure 4-8, instead of biomass species, which are 

sawdust and bituminous coal in this case.  Alternative biomass species can be integrated into this 

technology with similar targeted output of syngas range in between 9.00 MJ/Nm
3
 and 10.95 

MJ/Nm
3
as long as the feedstock element characteristics are within the element acceptance range.  

The integration of biomass mixture is enabled with the assumption that the element characteristics of 

alternative biomass mixtures can be predicted based on individual biomass properties via linear 

relation with respect to the mass ratio as discussed in Chapter 3.  This allows the feedstock selection 

of the process to be more flexible as long as the element characteristics of alternative biomass are 

known and the feedstock mixture fulfilled the element acceptance range of the technology.  

Nevertheless, this assumption on the biomass properties prediction based on mass ratio is a fairly 

new concept.  Thus, this will be verified in the next chapter via laboratory analytical test to ensure the 

feasibility of implementation.   
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Figure 4- 9: Estimation of syngas production yield based on proposed element acceptance range 
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Based on element acceptance range in Figure 4.8, the syngas production yield can also be 

predicted.  The estimation is based on the proposed relation in Figure 4-5, where the technology yield 

range is back calculated as shown in Figure 4-9.  The result shows that in average, the syngas 

production yield is estimated to be in the range of 0.44 Nm
3
/kg to 0.65 Nm

3
/kg.  Thus, for this 

example, the syngas production yield is estimated to be in the range of 0.44 Nm
3
/kg to 0.65 Nm

3
/kg 

with the HV of 9.00 MJ/Nm
3
 and 10.95 MJ/Nm

3
 provided that biomass feedstock properties are 

within the element acceptance range in Figure 4-8.    

 

Based on the example above, it is shown that element acceptance range for biomass 

technology can be constructed based on literatures to improve the flexibility in biomass selection.  

The approach enables consideration of other alternative biomass species to be used as potential 

feedstock with minimum modification effort, provided that the element characteristics of the biomass 

are known.  As long as the biomass or biomass mixture is within the element acceptance range, then 

the process outcome can be estimated within a desired range.  Similar to the biomass properties 

prediction method discussed earlier, the assumption of process outputs prediction based on element 

acceptance range will be verified in the next chapter via laboratory experiment to study the relation 

between process performances and feedstock properties tolerances.  The element acceptance range 

for the technology is based on the targeted output value of the process.  Smaller targeted syngas 

heating value range or yield range will result in smaller element acceptance range and hence lower 

the technology flexibility in terms of biomass feedstock selection.   

 

There are still challenges in constructing element acceptance range for biomass technology.  

For example in this case study, analysis of relation between biomass feedstock element 

characteristics and gasification process output based on literature review often requires more data to 

fill in the information gaps.  Influence of variables in operating conditions further increases the 

complexity and difficulty.  However, it is still possible to construct the element acceptance range for 

biomass technology based on literature data.  In order to construct a systematic and accurate 

element acceptance range, the selection of literature need to be specific to minimise uncertainties 

and laboratory experiment as a potential alternative approach should be considered.  The experiment 
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is recommended to be conducted on high potential biomass technology, not limited to gasification 

process only and different variety of biomass species can be used as alternative feedstock to analyse 

the relation between feedstock element characteristic and process output.  For a more practical 

research and development, the proposed analysis should be conducted after the optimum operating 

conditions is obtained for a particular biomass technology.  With the introduction of element 

acceptance range in biomass technology, larger scale of implementation is deemed possible and the 

utilisation of alternative biomass will be enhanced.  In addition, the approach enables integration of 

underutilised biomasses or alternative biomasses which are located nearer to the process plant, and 

hence reduce the raw material cost and transportation cost. 

 

4.9 Conclusions 

In this chapter, the relation between biomass feedstock element characteristics and biomass 

gasification outputs are investigated based on literature data.  Based on the analysis, there is still 

existence of research gaps in order to generate a correlation to relate the biomass feedstock element 

characteristic to produced syngas heating value and yield.  This is mainly due to different research 

focuses in gasification technologies, which each of them has unique optimum operating conditions 

and biomass feedstock species.  Thus, analysis solely based on literature has its limitation especially in 

compiling gasification researches with similar technology set up and operating conditions in order to 

allow the analysis focus on the impact of biomass feedstock to process outputs.  Besides feedstock 

element characteristics, operating conditions such as gasification temperature, feedstock to oxidation 

agent ratio, feedstock size, and process residence time also significantly affect the process outputs.   

 

Later stage of the work proposed alternative method to conduct smaller scale analysis based 

on individual literature or technology for a better control over uncertainties in operating condition.  

This enables investigation to focus on relation between biomass feedstock element characteristics 

and the process outputs.  Based on the small scale analysis conducted on several literatures, a 

pronouns relation between feedstock element characteristic and produced syngas heating value and 

yield are observed.  This information was used to construct element acceptance range for biomass 
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gasification technology to allow integration of alternative biomass into existing technology.  

Nonetheless, the accuracy of the relation also depends on the consistency of operating conditions in 

the literature.  Thus, a controlled laboratory experiments to investigate the impact of feedstock 

element characteristics is recommended in order to construct high accuracy element acceptance 

range for biomass technologies.  This will provides further verification on element targeting approach 

to allow integration of multiple biomass species into existing biomass system as long as the overall 

biomass feedstock element characteristics are within the element acceptance range. 

 

This chapter has demonstrated the potential of integrating underutilised/alternative 

biomasses into existing process technologies based on literature via element targeting approach.  

However, feasibility of element targeting implementation is strongly based on two assumptions: i) 

prediction of biomass mixture properties based on mass ratio, and ii) prediction of biomass process 

outputs based on feedstock element characteristics tolerances.  Both assumptions will be verified in 

following chapter via laboratory experiment work to solidify the concept of element targeting 

approach.    
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Chapter 5:  
VERIFICATION OF ELEMENT 
TARGETING APPROACH VIA 
LABOROTORY EXPERIMENT: 

BIOMASS PYROLYSIS TECHNOLOGY 
 

 
Continuing with the conclusion from previous chapter, the concept of element targeting 

approach has been proven feasible to be implemented into existing technology based on the available 

information from literatures.  Nevertheless, previous chapters assumed that the properties of 

biomass mixture can be estimated based on pure biomass properties in a linear relation.  In addition, 

verification of the element targeting concept based on current literatures in biomass technologies left 

some uncertainties in the analysis as the literatures do not focus on the impact of biomass feedstock 

element characteristics to technology performance.  Thus, it is concluded that the experimental work 

catered specifically to examine the relations between biomass feedstock properties and process 

outputs are required to verify the concept of element targeting approach before further 

implementing the concept into biomass supply chain optimisation model.  These verification steps are 

very important for the thesis to ensure the proposed concept is feasible to be implemented in real life 

as mathematical modelling and simulation can generate various results that sometimes only 

applicable in theoretical scenario.  In this chapter, two verifications were conducted.  First, the 

biomass mixture properties are analysed in laboratory and compared with the prediction value based 

on linear relation of pure biomass species.  Second, a specific laboratory experimental procedure is 

created to investigate the relations between feedstock properties and process performances.  

Biomass pyrolysis technology is selected as case study due to its popularity and in parallel with 

biomass gasification.  Besides, the production of bio-char and bio-oil as alternative fuels for energy 

generation via pyrolysis is one of the popular research fields for sustainable development.   
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5.1  Estimation of Biomass Mixture Properties  

As suggested by element targeting approach in Chapter 3, the performance of biomass 

process technologies are assumed to be consistent as long as the feedstock properties are within the 

element acceptance range.  This idea will provide the flexibility of feedstock selection by determining 

the best biomass ratio that is suitable for each process.  Previous examples had assumed that mixture 

properties are linear to mass ratio of respective biomass species and their respective properties as 

shown in Equation 3-4.  In order to ensure applicability of this concept in real life scenario, following 

section will verified the properties integration of biomass solid by analysing the element 

characteristics of biomass mixture and compared to the estimated properties based on the proposed 

correlation.   

                           

                                             

                                                

                                                    

Reproduced 

from (3-4) 

 

5.1.1  Methodology  

In order to verify the assumption of linear relation in biomass properties prediction, several 

pure biomass species are collected and a series of their mixture at different mixing ratio are created.  

Element characteristics of each pure biomass and mixtures are determined via analytical test.  The 

result obtained from the biomass mixtures are compared with the result predicted via proposed co-

relation, such as Equation 3-4.   

 

5.1.2  Materials and Procedures  

Three biomass species (see Figure 5-1) were used in this research, i) Napier grass stem (NGS) 

collected from Crop For the Future Research Field, Semenyih, Selangor, Malaysia; ii) sago biomass 

(sago) from sago process plant effluent in Pusa, Sarawak, Malaysia; and iii) rice husk (RH) from rice 

processing mill in Sungai Besar, Selangor, Malaysia.  Four biomass mixtures were created with the 

mass ratio as stated in Table 5-1.   
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Figure 5- 1: Napier grass steam, sago biomass, and rice husk 

Table 5- 1: Biomass mixture ratio in sample preparation 

Biomass 
NGS Sago RH 

Mass (g) % Mass (g) % Mass (g) % 

A 301.3 75.2 99.1 24.8 0 0 

B 200.9 49.8 202.6 50.2 0 0 

C 301.4 75.1 0 0 99.7 24.9 

D 200.2 49.7 0 0 202.5 50.3 

 

Three analyses were conducted to evaluate the element characteristics of biomass which are 

ultimate analysis, proximate analysis, and calorific analysis.  Ultimate analysis identifies carbon 

content (C), hydrogen content (H), nitrogen content (N), sulphur content (S) and oxygen content (O) 

of biomass samples; while proximate analysis identifies moisture content (MC), volatile matter 

content (VM), fixed carbon content (FC), and ash content (ash).  Calorific analysis determines the heat 

value of biomass.   

 

Element characteristics of sago and rice husk are contributed by colleagues, Dr. Yuki and Mr. 

Isah respectively from University of Nottingham Malaysia Campus as shown in Table 5-2.  The 

properties of pure NGS and biomass mixtures are determined via analytical equipments.  Ultimate 

analyses were conducted by third party, University Putra Malaysia via CHN analyser and S analyser, 

where the remaining percentage is assumed to be oxygen content.  Proximate analysis is conducted 

via Perkin Elmer Simultaneous Thermal Analyzer STA 6000 with the procedures suggested by Cassel 

and Menard (n.d.).  Calorific analysis is conducted via bomb calorimeter- series 6100 by Parr 

Instrument Company.  Analyses for each sample were repeated three times for consistency.   
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Table 5- 2: Element characteristic of sago and rice husk biomasses  

Biomass C 

(wt%) 

H 

(wt%) 

N 

(wt%) 

S 

(wt%) 

O 

(wt%) 

MC 

(wt%) 

VM 

(wt%) 

FC 

(wt%) 

Ash 

(wt%) 

HHV 

(MJ/kg) 

Sago 9.2 11.6 74.0 5.2 19.1 39.7 6.6 0.2 0.0 53.5 

RH 9.3 1.8 81.5 16.8 18.1 51.6 6.0 1.0 0.3 41.1 

 

5.1.3  Results and discussions 

Table 5-3 summaries the element characteristic of pure NGS and biomass mixtures obtained 

from the analytical results.  The table tabulated all three different tests on each sample and their 

average values.  Figure 5-2 presented the element characteristics of the three pure biomasses 

presented in the form of radar charts. 

 

Figure 5- 2: Element characteristics for NGS, Sago and RH 
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Table 5- 3: Element characteristic of NGS and biomass mixtures 

Biomass 
C 

(wt%) 

H 

(wt%) 

N 

(wt%) 

S 

(wt%) 

O 

(wt%) 

MC 

(wt%) 

VM 

(wt%) 

FC 

(wt%) 

Ash 

(wt%) 

HHV 

(MJ/kg) 

NGS 

1 44.5 5.2 1.0 0.1 49.2 4.2 77.7 14.5 3.6 17.4 

2 44.4 5.6 0.9 0.0 49.2 3.9 79.1 14.2 2.9 17.7 

3 44.7 5.7 0.8 0.1 48.7 4.6 88.0 3.9 3.5 17.8 

avg 44.5 5.5 0.9 0.1 49.0 4.3 81.6 10.8 3.3 17.6 

A 

1 43.6 5.5 0.7 0.0 50.3 5.6 87.8 3.5 3.1 17.0 

2 43.6 5.7 0.6 0.0 50.0 6.2 87.1 3.6 3.0 17.0 

3 43.7 5.7 0.7 0.1 49.8 6.2 87.1 2.9 3.9 17.0 

avg 43.6 5.7 0.6 0.0 50.0 6.0 87.3 3.3 3.3 17.0 

B 

1 41.3 6.1 0.3 0.1 52.2 8.9 86.9 2.2 2.1 16.5 

2 41.3 6.1 0.4 0.1 52.1 10.1 86.5 3.6 0.0 16.5 

3 41.2 6.2 0.3 0.1 52.2 8.5 87.3 2.9 1.3 16.5 

avg 41.3 6.1 0.4 0.1 52.2 9.2 86.9 2.9 1.1 16.5 

C 

1 43.8 5.4 0.7 0.1 50.0 5.0 86.2 3.3 5.5 17.4 

2 43.7 5.6 0.7 0.0 50.0 5.6 86.3 3.1 5.1 17.5 

3 43.7 5.6 0.7 0.1 50.0 5.1 86.0 3.2 5.8 17.0 

avg 43.7 5.5 0.7 0.1 50.0 5.2 86.2 3.2 5.4 17.3 

D 

1 41.8 5.6 0.6 0.0 52.0 6.3 83.5 1.8 8.4 16.5 

2 41.9 5.6 0.6 0.1 51.8 5.7 84.4 1.5 8.4 16.6 

3 41.9 5.6 0.6 0.1 51.9 6.3 83.5 1.8 8.4 16.6 

avg 41.9 5.6 0.6 0.1 51.9 6.1 83.8 1.7 8.4 16.6 

 

Based on the assumption discussed in Chapter 3, element targeting suggested that the 

biomass mixture properties can be estimated based on the pure biomass element characteristics and 

the mixing ratio.  In order to verify the assumption, Table 5-4 tabulates the estimated biomass 

mixture properties for samples A, B, C, and D calculated based on Equation 3-4, where the mixing 

ratio is based on Table 5-1; and the average value of  the actual biomass element characteristics 

obtained from analytical studies.  Standard deviations of both set of data are also tabulated in Table 

5-4.  Figure 5-3 shows the difference of the estimated value and the actual value in radar chart.   
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Table 5- 4: Comparison of estimated and actual biomass element characteristics 

Biomass 
C 

(wt%) 

H 

(wt%) 

N 

(wt%) 

S 

(wt%) 

O 

(wt%) 

MC 

(wt%) 

VM 

(wt%) 

FC 

(wt%) 

Ash 

(wt%) 

HHV 

(MJ/kg) 

A 

Estimated 43.3 5.8 0.7 0.0 50.1 5.5 79.7 9.5 5.4 18.0 

Actual 43.6 5.7 0.6 0.0 50.0 6.0 87.3 3.3 3.3 17.0 

Standard deviation 0.20 0.08 0.05 0.00 0.07 0.37 5.39 4.33 1.44 0.70 

B 

Estimated 42.1 6.1 0.5 0.0 51.3 6.7 77.8 8.0 7.5 18.4 

Actual 41.3 6.1 0.4 0.1 52.2 9.2 86.9 2.9 1.1 16.5 

Standard deviation 0.58 0.07 0.14 0.02 0.62 1.72 6.46 3.64 4.54 1.31 

C 

Estimated 43.6 5.8 0.8 0.3 49.6 6.1 79.3 11.8 5.8 17.4 

Actual 43.7 5.5 0.7 0.1 50.0 5.2 86.2 3.2 5.4 17.3 

Standard deviation 0.11 0.22 0.07 0.15 0.31 0.63 4.87 6.07 0.22 0.06 

D 

Estimated 42.6 6.1 0.7 0.5 50.1 8.0 76.9 12.7 8.3 17.1 

Actual 41.9 5.6 0.6 0.1 51.9 6.1 83.8 1.7 8.4 16.6 

Standard deviation 0.52 0.40 0.03 0.29 1.23 1.35 4.87 7.80 0.11 0.37 
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Figure 5- 3: Estimated and actual element characteristics of biomass mixtures 

 

As shown in the comparison, both the estimated values and the actual values obtain from 

laboratory is comparable with relatively small difference.  The standard deviations are generally less 

than 2.0, with some exceptions in volatile matter and fixed carbon content.  The huge difference is 

suspected due to the long storage period of sago and rice husk biomass.  Nevertheless, the biggest 

standard deviation of 7.80 is calculated based on the comparison between the actual and the 

estimated fixed carbon of sample D, 50 wt% NGS and 50 wt% rice husk.  Involvement of more biomass 

species and mixing ratio will further strengthen the concept verification.   
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Nevertheless, based on the analysis conducted in this section, the results have shown that 

the deviation between estimated element characteristics value and the actual value is within the 

acceptable range (less than 10% in standard deviation).  Thus, it can be concluded that the properties 

of biomass mixture can be predicted in a linear relation based on the mass ratio of pure biomasses 

and the element characteristics of pure biomasses.  For example, assuming that a biomass mixture of 

50 wt% NGS, 25 wt% sago, and 25 wt% RH, the overall mixture properties can be estimated via 

Equation 3-4 (illustrated in Figure 5-4).   

 

 

Figure 5- 4: Illustration of biomass mixture element characteristics prediction  
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As discussed in Chapter 3, two main assumptions in element targeting approach are: i) 

biomass mixture element characteristics are in linear relation with the mass ratio of biomass and their 

respective properties; ii) no major process fluctuation in biomass technologies as long as the 

feedstock is within element acceptance range.  The findings in this section have verified the first 

assumption where biomass mixture properties are found to be in the linear relation with mass ratio 

and the pure biomass element characteristics.  This suggested that the proposed Equation 3-4 is 

applicable in biomass supply chain optimisation model as a platform to determine the optimum 

feedstock ratio to ensure that the feedstock element characteristics are within the respective 

technology element acceptance range.  Upon verification of the biomass selection platform, next 

section will verify the relation between biomass feedstock element characteristics and process 

outputs to determine technology feedstock tolerances.  Both verification works on biomass selection 

platform and technology tolerances will provide a strong foundation for element targeting approach 

in mathematical optimisation model, such that biomass supply chain network can be optimised by 

integrating alternative or underutilised biomasses into the system without compromising the process 

performances. 

 

Before moving to the next section to investigate the element acceptance range for biomass 

technology, a small verification of HHV prediction model, Equation 4-1 proposed by Nhuchhen and 

Salam (2012) is cross-checked with the analysis result obtained from this studies.  Table 5-5 shows the 

actual value of HV of the samples obtained from analytical test and the predicted value based on the 

correlation. Both percentage error and standard deviation for most of the comparison are found to be 

within the acceptable range (less than 10%).  This suggests that the correlation proposed by 

Nhuchhen and Salam (2012) is applicable in this study, thus can be used in case of unavailability of 

biomass HV data.  
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Reproduced from (4-1) 

 

Table 5- 5: Biomass HV value comparison 

Biomass 

Actual HV 

(MJ/kg) 

(from analysis) 

Predicted Value (MJ/kg)  

(Nhuchhen and Salam, 2012) 

Percentage 

error (%) 

Standard 

deviation 

NGS 17.6 18.2 3.4 0.4 

A 17.0 15.5 9.1 1.1 

B 16.5 15.6 5.3 0.6 

C 17.3 15.1 12.4 1.5 

D 16.6 16.3 1.7 0.2 

 

5.2  Biomass technology element acceptance range  

Section above has presented the work to verify the concept of element characteristics 

estimation for biomass mixture, this section focuses on the concept verification of the element 

acceptance range for biomass technology.  As discussed earlier, it is one of the core assumptions in 

element targeting approach which stated that the performance of biomass process technology will 

remained consistent provided that the feedstock is within the element acceptance range.  Here, a 

laboratory experiment was conducted to verify this concept.  The main objective is to evaluate the 

technology tolerances in handling different biomass feedstock while remained consistent in 

performance.  Biomass gasification and pyrolysis are two popular conversion technologies in bio-

resources to produce bio-fuel and bio-chemical.  Chapter 4 has discussed the validation of element 

acceptance range of gasification process via literature review.  Different type of process technology, 

namely biomass pyrolysis is selected as the case study for this chapter.  This creates an opportunity to 
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validate the concept in multiple technologies via both literature based and experimental based 

approach.    

 

5.2.1  Biomass Pyrolysis and its Current Limitations  

Pyrolysis process is an established technology to convert biomass into bio-char or bio-oil for 

energy production.  Detailed explanations of biomass pyrolysis were discussed in Section 3.2.1.  

Similar to the situation of biomass gasification technologies, the current research and development of 

biomass pyrolysis has little effort in exploring the flexibility to integrating multiple alternative 

biomasses into the existing technologies.  Overly focus on development of pyrolysis process based on 

specific biomass species (main stream biomass) restricts the feedstock selection and utilisation.  

Hence, this creates challenges for biomass supply chain management to ensure consistency in 

biomass resource supply and limits the potential to industrialise the biomass pyrolysis technology and 

enhance its implementation into current supply chain system where technology feedstock is 

restricted to dedicated biomass species.   

 

5.2.2  Objectives  

The main objective of this chapter is to verify the concept of element targeting in biomass 

pyrolysis technology, especially the evaluation of the element acceptance range concept.  As 

concluded in previous chapter, verification based on literatures raised uncertainty issue as each of the 

literature researches were not designed and produced specifically to investigate the relation between 

biomass feedstock element characteristics and technology performance.  Thus, this chapter is 

essential to validate the concept by using laboratory scale pyrolysis reactor.  Multiple type of biomass 

feedstocks were feed into fixed bed pyrolysis reactor and the process outcomes were compared with 

the fluctuation of feedstock element characteristics.  This provides a good platform to determine the 

tolerance of the technology on feedstock fluctuation, and to construct the element acceptance range 

for the technology. 
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5.2.3  Methodology of element targeting approach verification and construction of 

element acceptance range 

In order to construct the relations between each biomass feedstock element characteristics 

and process output, each technology is required to be assessed with various types of biomass 

feedstock in order to replicate various feedstock properties.  Equipment setup and operating 

conditions were remained constant throughout the experiment.  Fluctuations in feedstock element 

characteristic are used to compare with the process outputs in order to study their respective impact.  

Based on the comparison and analysis, element acceptance range is constructed to reflect the 

flexibility of respective technology to feedstock properties fluctuation.  There are several options to 

formulate a variety of biomass feedstock properties with unique element characteristics, such as 

using different biomass species and mixture of biomasses at different mixing ratio.   

 

5.2.4  Laboratory experiment: Semi batch fixed bed pyrolysis 

For this scope, collaboration with Mr. Isah, PhD student from Crop For The Future and 

University of Nottingham Malaysia Campus was engaged.  A semi batch fixed bed pyrolysis reactor 

was used for the concept verification purpose.  Similar equipment set up and operating conditions 

used in Napier grass stem development for bio-oil production were also applied in this case study.  

Figures 5-5 shows the experiment set up and equipments in block diagram and the pictures of 

equipments.   
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Figure 5- 5: Experiment set up and equipments 
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5.2.5  Materials and procedures  

Three species of biomasses were used in this set of work, Napier grass stem (NGS), sago 

biomass (Sago), and rice husk (RH).  These are the same biomasses used in Section 5.1 on the element 

characteristics analysis.  All materials were oven dried upon received according to BS EN 14774-1 

standard to prolong the storage life spend.  In order to replicate the various feedstock element 

characteristics, a total of five different biomass feedstocks were used in the experiment, which consist 

of pure NGS and mixture of NGS, sago and RH.  Table 5-6 tabulated the samples and their mixing 

ratio.  Noted that the biomass mixture used in this study (sample 2 to 5) are identical to the sample 

used in the biomass mixture properties estimation in previous section (sample A to D in Table 5-1).   

 

Table 5- 6: Biomass mixture ratio in sample preparation 

Biomass 
NGS Sago RH 

Mass (g) % Mass (g) % Mass (g) % 

1 400.0 100.0 0 0 0 0 

2 301.3 75.2 99.1 24.8 0 0 

3 200.9 49.8 202.6 50.2 0 0 

4 301.4 75.1 0 0 99.7 24.9 

5 200.2 49.7 0 0 202.5 50.3 

 

Fixed bed tubular reactor as shown in Figure 5-5 was used in this study.  The pyrolysis 

process was conducted under inert atmosphere with nitrogen gas flow at 5 l/min.  Approximately 100 

g of biomass was fed into the reactor in each run.  The reactor and biomass were heated up to 600 °C 

at the ramping rate of 30 °C/min, and the temperature was held for 1 hour.  Volatiles generated were 

cooled rapidly in condenser with chill water at 3 °C, which was controlled by the chiller. Crude bio-oil 

produced was collected in the oil collector.  Crude bio-oil yield and char yield were calculated based 

on Equation 5-1 and Equation 5-2.  Due to the relatively low heating value of crude bio-oil produced 

(present of moisture, acids and other substances), the produced oil was mixed with industrial-grade-

diesel to produce bio-diesel.  The mixing ratio was set at approximately 70 wt% and 30 wt% of diesel 

and crude bio-oil respectively.  Then, the higher heating value (HHV) of bio-diesel was determined via 
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bomb calorimeter - series 6100 by Parr Instrument Company.  Experiment for each samples were 

replied 3 times to ensure consistency. 

 

                          
                           

                           
      (5-1) 

                 
                  

                           
      (5-2) 

  

5.2.6  Results and discussions 

Considering the biomass feedstock used in this study and the biomass sample used in the 

previous study in Section 5.1 are the same, the same element characteristics of the sample are 

applicable for this case.  Table 5-7 tabulated the actual element characteristics of the biomass 

feedstocks obtained from laboratory analysis.  Maximum and minimum values of each element 

characteristics are also tabulated to illustrate the upper and lower range of feedstock properties to be 

evaluated in this study.  The fluctuation in feedstock properties are compared to the fluctuation of 

process outputs performance, including bio-oil yield, bio-char yield and bio-diesel HHV.   

 

Table 5- 7: Element characteristic of NGS and biomass mixtures 

Biomass 
C 

(wt%) 

H 

(wt%) 

N 

(wt%) 

S 

(wt%) 

O 

(wt%) 

MC 

(wt%) 

VM 

(wt%) 

FC 

(wt%) 

Ash 

(wt%) 

HHV 

(MJ/kg) 

1 44.5 5.5 0.9 0.1 49.0 4.3 81.6 10.8 3.3 17.6 

2 43.6 5.7 0.6 0.0 50.0 6.0 87.3 3.3 3.3 17.0 

3 41.3 6.1 0.4 0.1 52.2 9.2 86.9 2.9 1.1 16.5 

4 43.7 5.5 0.7 0.1 50.0 5.2 86.2 3.2 5.4 17.3 

5 41.9 5.6 0.6 0.1 51.9 6.1 83.8 1.7 8.4 16.6 
           

Max 44.5 6.1 0.9 0.1 52.2 9.2 87.3 10.8 8.4 17.6 

Min 41.3 5.5 0.4 0.0 49.0 4.3 81.6 1.7 1.1 16.5 
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Crude bio-oil yield analysis: 

Table 5-8 tabulated the results of crude bio-oil yield from the pyrolysis process.  In order to 

evaluate the relation between feedstock element characteristics and the process performances, the 

relation between each element characteristic and process outputs are plotted in graphs.  Figures 5-

6(a) shows the overall plot between feedstock element characteristics and crude bio-oil yield from 

the pyrolysis process; while Figure 5-6(b) highlight in detail individual relation between each element 

characteristics and bio-oil yield.  Based on the graphs, the crude bio-oil yield obtained from the 

experiments are generally consistent in all different feedstocks, except for sample 3 which consist of 

50 wt% NGS and 50 wt% sago.  The crude bio-oil yield generated from sample 3 was significantly 

deviated from the rest of the feedstock types.  It was found that more organic phase of crude bio-oil 

was produced when the sago biomass feedstock ratio increased to 50 wt%.  This shows that 

introduction of 50 wt% sago as alternative biomass feedstock exceeded the process acceptance range 

and resulted major process output fluctuation in terms of crude bio-oil yield.   

 

Table 5- 8: Bio-oil yield for pyrolysis experiment 

Experiment 

Replication 

Bio-oil yield (wt%) 

1 2 3 4 5 

1st 20.4 18.6 46.6 22.7 20.8 

2nd 23.5 19.9 42.2 17.5 19.1 

3rd 21.9 19.7 35.6 18.3 22.0 

Avg 21.9 19.4 41.5 19.5 20.6 
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*refer to Figure 5-6(b) for detail relation between each element characteristics and bio-oil yield 

Figure 5- 6(a): Overall feedstock element characteristics vs crude bio-oil yield 
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Figure 5- 6(b): Individual feedstock element characteristics vs crude bio-oil yield 
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Since the concept of element targeting is to ensure process consistency when integrating 

alternative biomasses, the technology element acceptance range has to reflect such that the process 

fluctuation is within an acceptable range.  As discussed above, sample 3 (integrates up to 

approximately 50 wt% of sago biomass) in the experiment creates major deviation in bio-oil yield as 

compared to other feedstock, thus the analysis on the process acceptance range will be conducted 

with the exclusion of this data set.  Figures 5-7(a) and 5-7(b) shows the same plot in Figures 5-6(a) and 

5-6(b) without data obtained from sample 3.  Based on the graphs, no significant trend of relation is 

observed between feedstock element characteristics and crude bio-oil yield.  However, the result of 

crude bio-oil yield based on different feedstock is scattered in between 17.5 wt% to 23.5 wt%, with 

the overall average value of 20.35 wt%.  This is considered as an acceptable fluctuation in process 

performance, which is in between approximately ±15%.  Thus, based on the experiment results, the 

element acceptance range for this pyrolysis process experiment to achieve a bio-oil yield between 

17.5 wt% to 23.5 wt% is constructed based on the maximum and minimum value of element 

characteristics of samples 1, 2, 4, and 5 as per Figure 5-8.     
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*refer to Figure 5-7(b) for detail relation between each element characteristics and bio-oil yield 

Figure 5- 7(a): Overall relation between feedstock element characteristics and crude bio-oil yield  

10

12

14

16

18

20

22

24

26

0 10 20 30 40 50 60 70 80 90 100

C
ru

d
e

 b
io

-o
il 

yi
e

ld
 (

w
t%

)

Element characteristics (wt% / MJ/kg)

Element characteristics vs crude bio-oil yield

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

C
ru

d
e 

b
io

-o
il 

yi
el

d
 (

w
t%

)

Element characteristics (wt% / MJ/kg)

Chart Title

C H N S O MC VM FC AC HHV

Upper limit of process output 

Lower limit of process output



Chapter 5 

 

 116 
 

 

Figure 5- 7(b): Individual relation between feedstock element characteristics and crude bio-oil yield 
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Figure 5- 8: Element acceptance range for targeted bio-oil yield 

  

As discussed above, introduction of sago biomass up to 50 wt% (Sample 3) leads to 

considerable fluctuation in bio-oil yield while the remaining samples has less impact to the process 

output.  In other words, out of the overall range of feedstock element characteristics that was 

evaluated in this study (as per Table 5-7), the proposed acceptable range in Figure 5-8 has lower 

maximum range/upper boundary in hydrogen content, sulphur content, oxygen content, moisture 

content; higher minimum range/lower boundary in carbon content, nitrogen content and higher 

heating value; and constant maximum/minimum range in volatile matters, fixed carbon content, and 

ash content.  Nevertheless, the current experiment results are unable to determine the key element 

characteristic(s) that directly impact to the process fluctuation.  Further analysis is required in future 

work to determine the key element with respect to the impact to process performance.   
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Bio-char yield analysis:  

On the other hand, similar analysis was conducted to evaluate the relation between 

feedstock element characteristics and bio-char yield.  Table 5-9 shows the bio-char yield from the 

experiment and Figures 5-9(a) and 5-9(b) presents the relation between feedstock properties and bio-

char yield.  No significant trend was observed in the majority of the plots, with an exception in graph 

ash content vs bio-char yield.  When one of the data point (Sample 2) is excluded in the analysis, the 

result shows that increases of ash content in feedstock promotes higher bio-char yield as shown in 

Figure 5-10.  This finding is comparable with Choi et al. (2014) in pyrolysis of seaweed.  Nonetheless, 

the overall bio-char yield falls in between 27.3 wt% and 35.9 wt%, with an average of 32.0 wt%, which 

is considered to be an acceptable range for process fluctuation (within ±15%).  Thus, the element 

acceptance range for the process to produce an average of 32.0 wt% of bio-char is proposed as per 

Figure 5-11.   

 

Table 5- 9: Bio-char yield for pyrolysis experiment 

Experiment 

Replication 

Char yield (wt%) 

1 2 3 4 5 

1st 31.6 27.3 27.9 33.4 33.9 

2nd 31.6 30.4 27.3 35.8 35.9 

3rd 33.2 30.6 31.2 35.2 34.4 

Avg 32.2 29.5 28.8 34.8 34.7 
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*refer to Figure 5-9(b) for detail relation between each element characteristics and bio-oil yield 

Figure 5- 9(a): Overall relation between feedstock element characteristics and bio-char yield 
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Figure 5- 9(b): Individual relation between feedstock element characteristics and bio-char yield 
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Figure 5- 10: Relation between feedstock ash content and bio-char yield 

 

 

Figure 5- 11: Element acceptance range for targeted bio-char yield 
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Bio-diesel HHV analysis: 

In terms of the impact of feedstock properties fluctuation to the bio-diesel HHV, Table 5-10 

shows the result for each experiment run.  Figures 5-12(a) and 5-12(b) plotted the relation between 

feedstock element characteristics and bio-diesel HHV for analysis.  Based on the figure, the 

fluctuation of bio-diesel HHV is relatively smaller as compared to the previous analysis on crude bio-

oil yield and bio-char yield.  With the introduction of alternative feedstock of sago biomass and rice 

husk up to 50 wt% respectively, the produced bio-diesel from the pyrolysis process fluctuates from 

31.1 MJ/kg to 33.7 MJ/kg, with an average value of 32.7 MJ/kg.  The fluctuation in process 

performance is less than 5%, which is considered to be in acceptable range.  As all the fluctuation of 

the feedstock element characteristics in the experiment are within the tolerance range, hence, the 

element acceptance range for the process to produce bio-diesel with HHV of approximately 32.7 

MJ/kg is suggested as per Figure 5-13.    

 

Table 5- 10: Bio-diesel HHV for pyrolysis experiment 

Experiment 

Replication 

Bio-diesel HHV (MJ/kg) 

1 2 3 4 5 

1st 24.1 27.3 25.6 29.3 29.5 

2nd 27.1 30.6 22.9 30.1 24.8 

3rd 29.6 24.5 28.3 29.4 29.9 

Avg 26.9 27.5 25.6 29.6 28.1 
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*refer to Figure 5-12(b) for detail relation between each element characteristics and bio-oil yield 

Figure 5- 12(a): Overall relation between feedstock element characteristics and bio-diesel HHV 
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Figure 5- 13(b): Individual relation between feedstock element characteristics and bio-diesel HHV 

30

30.5

31

31.5

32

32.5

33

33.5

34

41 41.5 42 42.5 43 43.5 44 44.5 45

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Carbon content (wt%)

C vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

5 5.2 5.4 5.6 5.8 6 6.2 6.4

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Hydrogen content (wt%)

H vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

0 0.2 0.4 0.6 0.8 1 1.2

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Nitrogen content (wt%)

N vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

0 0.02 0.04 0.06 0.08 0.1

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)
Sulphur content (wt%)

S vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

41 41.5 42 42.5 43 43.5 44 44.5 45

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Oxygen content (wt%)

O vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

0 2 4 6 8 10 12

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Moisture content (wt%)

MC vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

76 78 80 82 84 86 88 90

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Volatile matter content (wt%)

VM vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

0 2 4 6 8 10 12 14 16

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Fixed carbon content (wt%)

FC vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

0 2 4 6 8 10

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

Ash content (wt%)

Ash vs bio-diesel HHV

30

30.5

31

31.5

32

32.5

33

33.5

34

16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18

B
io

-d
ie

se
l H

H
V

 (
M

J/
kg

)

High heating value (MJ/kg)

HHV vs bio-diesel HHV

Legend:
Upper limit of process output  
Lower limit of process output 



Chapter 5 

 

 125 
 

 

Figure 5- 14: Element acceptance range for targeted bio-diesel HHV 

 

Based on the analysis, both element acceptance ranges for the target bio-char yield and bio-

diesel HHV in Figures 5-11 and 5-13 respectively are found to be identical to each other.  This is due to 

the fluctuation of feedstock element characteristics in this experiment (up to 50 wt% of sago biomass 

and rice husk respectively) has less impact to the process outputs.  Inclusion of more biomass species 

or increasing mixing ratio of alternative biomasses will creates wider range in feedstock element 

characteristics to allow further analysis on the impact to respective process output and to evaluate 

greater feedstock fluctuation.  Nevertheless, since the element acceptance range proposed in both 

Figures 5-11 and 5-13 are identical, this suggested that any biomass feedstock with element 

characteristics fall within this range will produce approximately 32.0 wt% of bio-char and bio-diesel of 

32.7 MJ/kg.   

 

On the other hand, the proposed element acceptance range for the pyrolysis process to 

produce an average of 20.35 wt% has smaller tolerance range as shown in Figure 5-8.  As discussed 

earlier, introduction of 50 wt% of sago biomass into the system resulted in unacceptable/major bio-oil 
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yield fluctuation.  Thus in the case where all three process outputs (approximately 20.35 wt%, 32.0 

wt% and 32.7 MJ/kg for bio-oil yield, bio-char yield, and bio-diesel HHV respectively) are taken into 

consideration, smaller feedstock tolerance range is the governing factor to ensure process 

consistency.  In this case, Figure 5-8 will be the governing element acceptance range for the process 

as compared to Figures 5-11 and 5-13 to ensure all three process outputs are within the targeted 

value.    

 

5.2.7  Limitation of element acceptance range via laboratory experiment 

Previous section has demonstrated the relation between feedstock element characteristics 

and their impact to process outputs fluctuation.  The information can be utilised in feedstock 

selection to allow integration of alternative biomasses into the process.  Optimum biomass mixing 

ratio can also be determine by using mathematical model, which will be discussed in next chapter.  No 

doubt that experimental approach is a more promising approach to evaluate the feedstock tolerances 

as compared to literature review as suggested in Chapter 4, the evaluation of element acceptance 

range for biomass process technology via laboratory experiment still has its limitation.   Experimental 

work often required more time and funding for evaluation and limitation in sample size such as 

availability of biomass species will limit the coverage of the study.  For instance, the range of 

feedstock properties studied in this research is subjected to the range in Table 5-7 only.  Diversify 

biomass species as feedstock for experiment enables the analysis to cover wider feedstock element 

acceptance range. 

 

 Study wider range of feedstock element characteristics can further enhance the analysis of 

the impact of each biomass properties to the process output which are essential to determine the key 

element and construction of general co-relation for pyrolysis process.   For example, researches show 

that different mineral interacts differently during thermochemical conversion (Ellis et al., 2015).  

Mineral within different biomass has the potential to react with each other and interferes the overall 

process reaction.  Specific mineral can also be used as catalyst for pyrolysis to control and achieve 

particular bio-oil quality.  However in this research, mineral content is not considered as part of the 
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feedstock properties.  Thus, analysis and comparison of the potential key element is unable to be 

conducted.  This suggested that the element targeting approach can be further improved by 

considering feedstock mineral content as part of the key elements that can impact to process.  

Nevertheless, catalytic reaction may be able to minimise the impact of mineral content, due to the 

controlled reaction mechanism.  This will enables proximate estimation of bio-oil compound in the 

process output without biomass mineral constraints.  Other feedstock properties to be considered in 

future works are cellulose, hemicellulose and lignin content.   

 

 On the other hand, the proposed element acceptance range in this study is only limited to 

the proposed experiment set up and operating conditions which is also parallel with the result 

obtained in Chapter 4.  Impact of the relation between feedstock and process performance due to 

process modification is not considered in this study.  Further verification on the impact of respective 

process modification (such as feedstock size, reactor size, cooling time and temperature, and pyrolysis 

temperature) to the process performance will enable process optimisation based on feedstock 

properties.  Nonetheless, the current study has provided a good platform for alternative feedstock 

integration without process modification via element characteristic, which is one of the main 

advantages for existing process plant to avoid investment into process modification or new 

technologies.   
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5.3 Conclusions 

In this chapter, two set of experiments were conducted to investigate the prediction of 

biomass mixture element characteristic and to investigate the relationship between biomass 

feedstock and pyrolysis technology performance.  Total of three biomass species, including Napier 

grass stem, rice husk and sago biomass, and variation of their mixtures were used as biomass 

feedstock for process to create a variety of feedstock properties for investigation.  The first section of 

the chapter has shown that biomass mixture properties can be estimated based on the mass ratio, 

which supported the assumption in Chapter 3.  This enables the calculation of biomass feedstock ratio 

based on the element acceptance range of respective process technologies to ensure that the mixture 

properties are within the process acceptance range.   

 

The next section of the chapter has evaluated the concept of element acceptance range for 

biomass process technologies proposed in Chapter 3.  The result has shown that the element 

acceptance range can be constructed according to the process performance fluctuation from the 

experiment, where the process performance can be predicted as long as the biomass feedstock 

element characteristics are within the element acceptance range.  Both the result obtained from this 

chapter based on pyrolysis experiment and literature review on gasification technology from Chapter 

4 have supported the concept of element targeting where selection of feedstock can based on 

element characteristics instead of biomass species to promote utilisation of alternative biomasses.   

 

This chapter has provides a systematic verification for the novel concept of element targeting 

approach.  Nevertheless, the selection of feedstock based on element characteristics is a complicated 

process due to various variables to be considered.  Mathematical optimisation model integrated with 

the element targeting approach will be proposed in next chapter to improve the biomass selection in 

regional biomass supply chain network management via consideration of alternative biomasses and 

transform concept of element targeting approach into useful industrial application as decision making 

tool in biomass supply chain. 
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Chapter 6:  

BIOMASS SUPPLY CHAIN 
OPTIMISATION VIA ELEMENT 

TARGETING APPROACH 
 

 
A state-of-the-art element targeting approach is introduced in this thesis to enhance the 

feedstock flexibility for biomass technologies by integrating all biomass species, including 

underutilised biomass into the system for optimum supply chain management.   Applicability of this 

novel approach was verified in previous two chapters.  However, due to the limitation of funding and 

research time, the verifications were confined to two biomass technologies, i.e. gasification and 

pyrolysis.  Nevertheless, both investigations show good relation between biomass feedstock element 

characteristic with technology performance.  Thus, it is suggested that element targeting approach is 

generally applicable to majority of the biomass technologies provided with some logical assumptions 

or extended study on element acceptance range of the technology.   

 

Current chapter discussed the application of element targeting approach in biomass supply 

chain management and optimisation.  It is the ultimate goal of the research to enhance the 

distribution network and logistic of biomass industry, in order to improve the implementation of the 

sustainable resources.  Several demonstration case studies are conducted to illustrate the advantages 

of element targeting as compared to the existing supply chain optimisation model.   

 

6.1  Problem statement and objectives 

As discussed in Chapter 1, one of the main problems in current biomass industry is the 

ignorance of potential value in biomass, especially on those non-main stream biomasses as 

alternative feedstock for process technologies due to the lack of technology development which leads 

to underutilisation of biomass.  This thesis has introduced and verified a novel integration approach to 
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consider alternative biomasses in existing technologies in previous chapters.  In this chapter, the main 

objective is to integrate the proposed element targeting approach into mathematical biomass supply 

chain optimisation model.  Two models are introduced, namely Demand-Resources Value Targeting 

(DRVT) and Biomass Element Cycle Analysis (BECA).   

 

6.2  Demand-Resources Value Targeting Approach  

As discussed above, this chapter emphasises on the application of element targeting 

approach in biomass supply chain optimisation model.  The first demonstration case study looked into 

the comparison between conventional biomass supply chain model and a newly proposed element 

targeting approach.  Demand-Resources Value Targeting (DRVT) approach is introduced as a biomass 

supply chain optimisation model integrated with element targeting approach.  DRVT is a novel 

biomass supply chain mathematical model to optimise the network by consideration of alternative 

biomass species available within the system.  The model utilises element targeting approach as the 

feedstock selection platform which determine the feasibility of respective alternative biomass to be 

utilised in the pre-existed process plant.  Depending on the technology feedstock element 

characteristics tolerances, the model will also determines the optimum feedstock ratio to ensure 

consistency of process performance.  Integration of element targeting into biomass supply chain 

optimisation model enables the consideration of alternative feedstock including underutilised 

biomass which potentially at lower material cost and logistic cost thus improves the overall system 

performance and sustainability.     

 

6.2.1  Methodology for Demand-Resources Value Targeting approach 

The following subsections are the proposed methodology to implement the DRVT approach 

into existing biomass industry and supply chain network management.   

 

6.2.1.1  Exploitation of regional biomass system 

Data collection based on regional biomass system, including available resources, existing 

process plants and technologies, market demands and logistic and location data (distance and cost of 



Chapter 6 

 

 131 
 

transportation).  Each regional biomass system has a distinguish pattern, thus data collection is 

essential to optimise the biomass supply chain network. 

 

6.2.1.2  Identify biomass element characteristics  

The main advantage of DRVT approach is to enable the supply chain model to select 

biomasses based on their properties.  Thus, the next step is to determine the element characteristics 

of each biomass based on literature or laboratory analysis.  The element to be considered are 

generally consist of (but not limited to) moisture content (MC), fixed carbon (FC), ash content (Ash), 

volatile matter (VM), heat value (HV), carbon content (C), hydrogen content (H), nitrogen content (N), 

oxygen content (O), sulphur content (S), cellulose content (Cell), hemicellulose content (Hcel), and 

lignin content (Lig).  Element to be considered in the study is based on available data, as well as the 

element acceptance range of respective technology.  If key elements are not predefined, the model 

should consider as many element characteristics as possible to minimise feedstock fluctuation.   

 

6.2.1.3  Identify technology element acceptance range 

Element acceptance range of each technology can be constructed based on the suggested 

approach in Chapter 3, which is based on a well established relation, or original biomass feedstock 

properties and natural fluctuation of biomass properties.  This information is the key factors as the 

feedstock selection platform in the model. 

 

6.2.1.4  Integration into the Demand-Resources Value Targeting model 

Upon data collection, the complex supply chain network can be solved using a mathematical 

model.  The following shows the mathematical model for DRVT approach.   

 

Element constraint: 

 This section of the model formulation addresses the element targeting approach.  A series of 

equation ensure the overall biomass feedstock element characteristics are within the element acceptance 

range for respective technologies.  Equation 6-1 indicates the calculation of total biomass element, e 
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received in each process plant, j for each biomass, m,                based on biomass, m received at 

process plant, j              and biomass element characteristics,             .   

                                                      (6-1) 

 

Equation 6-2 indicates total biomass received at process plant, j,            by combining each biomass 

m, at each process plant j,               
   .   

             

 

   

                   (6-2) 

 

Equation 6-3 indicates total biomass element characteristic, e received in process plant, j, 

                
    should be less than the upper limit of element acceptance range, e at respective 

process plant, j,              multiply with total biomass received at process plant, j,           .   

               

 

   

                                    (6-3) 

 

Similarly, Equation 6-4 indicates total biomass element characteristic, e received in process plant, j, 

                
    should be more than the lower limit of element acceptance range, e at respective 

process plant, j,              multiply with total biomass received at process plant, j,           . 

               

 

   

                                    (6-4) 

 

Mass constraint: 

 This section governs the overall material balance of system, in other word the mass balance of 

each point of integration.  Equation 6-5 restricts total amount of each biomass, m sent from resource 

location, i,              
    cannot more than total biomass available at each resource location, i, 

             .   

                          

 

   

           (6-5) 
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Equation 6-6 stated that total of each biomass, m received at each process plant, j,              is the 

same amount of biomass, m delivered from resource location, i to process plant, j,              
   .   

            

 

   

                        (6-6) 

 

Equation 6-7 indicates               is the total product, m, generated at each process plant, j.  In 

Chapter 3, two approaches are introduced to construct element acceptance range: i) based on well-

developed relation between feedstock properties and process output, and ii) based on original biomass 

feedstock.  The first term in Equation 6-7 is to calculate product generated, m at process plant, jp where 

the yield is determined based on specific biomass element, e.                            
    

indicates the total specific element, e received at a specific process plant, j multiply with the conversion 

factor based on specific element, e for respective process plant, j,                      .  The second 

term is the calculation of product generated, m, at process plant, j where the yield is determind based on 

the total amount of biomass, m received at the respective process plant,                 multiply 

with the process conversion of that particular process plant,                       .  Equation 6-8 

constraints that total product generated, m in each process plant output, jp,               should be 

more or equals to total product, m sent to market demand, k,               
   .   

                           

 

   

                       

 

   

                                          

 

   

                                                                           

(6-7) 

             

 

   

                          (6-8) 

 

Equation 6-9 stated total production of each process plant,               
    has to fulfil minimum 

local market demand,                  .  Excess production will be exported to other region with 

the limitation of                  .  In case of no constraint for exportation, an immense value of 

material, m is assigned in the export location, k in                  . 
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                             (6-9) 

 

Cost calculation: 

The overall transportation cost is calculated based on the weight of the material and the distance of 

transportation depending on the transportation mode.  Equation 6-10 indicates the transportation cost of 

sending biomass, m from resources location, i to process plant, j,                based on total biomass, 

m from resources, i to process plant, j,              
   , distance between resource, i and process 

plant, j based on transportation mode, r                      and the flat rate transportation cost of 

the particular transportation mode,             , in $ /t/km.    

            

 

   

                                     

 

   

                          (6-10) 

 

Similarly, Equation 6-11 indicates transportation cost of sending product, m from process plant output, jp 

to market demand, k,                 based on total biomass, m from process plant output, jp to 

demand, k,               
   , distance between process plant, jp and demand, d, 

                      based on the transportation mode, r and flat rate transportation cost of the 

particular transportation mode,             , in $ /t/km.  In reality, transportation cost is subject to 

mode of transportation (size), transportation route, road condition, and material properties (bulk 

density).   However, these are not the main objective of this work and many research has conducted (as 

discussed in Chapter 2), thus a flat rate for transportation cost calculation based on specific mode of 

transportation (such as truck or train) ($ /t/km) is considered to simplify the model. 

             

 

   

                                      

 

   

                                                                                        

(6-11) 

 

Total transportation cost of the system,            is represented in Equation 6-12, which is the 

summation of all               , and                .   
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            (6-12) 

 

Equation 6-13 indicates the profit by  calculating the difference between profit earned per unit of 

product, m sold to demand, k, and cost per unit biomass, m obtained from resources, i.  Noted that 

         is refer to the price of raw biomass (excluding transporation cost) and gross profit of product 

(excluding transporation cost and raw material cost). 

                       

    

      

           

 

   

                

   

     

           

 

   

 

(6-13) 

 

Objective function: 

Finally, Equation 6-14 shows the overall total profit of the system,             after consideration of total 

transportation cost,           . 

 

Maximising Totalprofit: 

                              

 

(6-14) 

 

6.2.2  Demonstration case study for Demand-Resources Value Targeting approach 

The following demonstrates a case study of DRVT approach based on a demonstration of 

regional biomass system. The first step is to collect important information as discussed above in DRVT 

methodology.  Figure 6-1 shows a Cartesian coordinate mapping for the proposed case study.  Each 

unit of coordinate represent 100 km in distance.  Assuming 4 resources points and 4 demand points 

are identified, Tables 6-1(a) and 6-1(b) summarise the overall resources availability and market 

demand in this region, as well as the market prices respectively.  Noted that the prices stated is 

referring to the material cost for resources; or gross profit of selling a unit of demand to the market 

for demands (excluding raw biomass and transportation cost).  The conversion from RM to $ is based 
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on a constant rate of 4 to 1. These information will be utilised as the input data for the regional 

biomass system to optimise the overall supply chain network.   

 

Figure 6- 1: Cartesian coordinate mapping for case study 

 

Table 6- 1(a): Information on resources at each location 

Location Biomass Availability (t/day) Price (RM/unit) Price ($/unit) 

R1 Palm shell 2500 120 30.00 

Oil palm fronds 1500 110 27.50 

Palm oil EFB 2000 105 26.25 

Palm kernel trunk 800 65 16.25 

R2 Palm shell 1750 120 30.00 

Oil palm fronds 2300 110 27.50 

Palm oil EFB 2100 105 26.25 

Palm Mesocarp Fibre 750 75 18.75 

R3 Soft wood 1500 50 12.50 

R4 Hard wood 1750 85 21.25 

 



Chapter 6 

 

 137 
 

Table 6-1(b): Information on demands at each location 

Location Product Market Demand (t/day) Price (RM/unit) Price ($/unit) 

D1 Bio-oil 1600 300 75.00 

Bio-ethanol 1550 450 112.50 

D2 Syngas 860 (N/m
3
) 325 81.25 

D3 Syngas 350 (N/m
3
) 325 81.25 

Power 1200 (MJ) 260 65.00 

Export Bio-oil Unlimited 300 75.00 

Syngas Unlimited 325 81.25 

Bio-ethanol Unlimited 450 112.50 

 

On the other hand, Table 6-2 tabulates general information on existing technologies within 

the system.  Information of the technologies was obtained from respective literatures with the 

assumption that the process performances are the same in industrial scale as compared to the 

reported laboratory scale.  Since the focus of the research is on technology feedstock selection, only 

one mode of transportation (truck) (RM 0.5 /t/km)($ 0.125 /t/km) is considered in this case study.   

 

Table 6- 2: Information on technologies present in the region 

No. Technology Feedstock Conversion Yield Reference 

T1 Bio-oil production via 

pyrolysis 

Palm shell  46.1 wt% of feedstock Abnisa et al., 

(2011) 

T2 Syngas production via 

gasification 

Oil palm fronds 1.94 Nm
3
 per kg of 

feedstock 

Guangul et al., 

(2012) 

T3 Power generation plant Oil palm fronds 10.30 MJ per kg of 

feedstock 

Guangul et al., 

(2012) 

T4 Production of bio-

ethanol via fermentation 

Palm oil EFB 24.16 wt% of feedstock 

 

Sudiyani et al., 

(2013) 

 

The next step is to compile element characteristic of the respective biomasses available 

within the system.  Table 6-3 summaries the biomass properties based on literature.  As discussed in 

Chapter 4 and Chapter 5, element acceptance range of biomass processes can be different from each 

process technology, depending on the equipment setup and operating conditions.  In this case study, 

properties of the feedstock biomass evaluated in the literature for all four technologies were 
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subjected to cellulose content (Cel), hemicellulose content (Hcel), lignin content (Lig), extractives 

(Ext), ash content (Ash), and moisture content (MC).  Although the case study can include more 

element characteristics in the feedstock selection platform based on the reported property value 

from other literature, however the information might not be accurate as same biomass species can 

have high properties fluctuation depending on the region, harvesting method, logistic, and weather.  

Thus, exploration of element acceptance range for respective technologies is conducted based on the 

reported biomass feedstock species and element characteristics only, where all 6 element 

characteristics are assumed to be the key elements in the feedstock selection.   

 

According to the respective literature, all four biomass technologies were developed based 

on single original biomass feedstock species.  In other word, impact of alternative biomass feedstock 

into the same technology is not evaluated.  In addition, no clear relation between each element 

characteristics and the process performance was reported.  Thus the construction of element 

acceptance based on original feedstock properties (as discussed in Section 3.4.2.) is the better option.  

When translate to the modelling equation to determine the product generation (Equation 6-7), 

                      is set to be zero as production can not be determined by element received at 

respective process plant; while                        for T1 to T4 is set to be at 0.461 kg of bio-oil per 

kg feedstock, 1.94 Nm
3
 of syngas per kg feedstock, 10.30 MJ per kg feedstock, and 0.2416 kg of bio-

ethanol per kg feedstock respectively.  Figure 6-2 shows the element acceptance range for respective 

technology in this case study, with the assumption that each technology can tolerance ±5% 

fluctuation in each feedstock element characteristics considered in this case study.  This is considered 

as an acceptable assumption based on the general biomass properties fluctuation in the resources 

due to harvesting, logistics, weather, and season.  Consideration of more element characteristics will 

further constraint the feedstock properties fluctuation and ensure better consistency to control the 

process outputs.   
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Table 6- 3: Information on technologies present in the region 

Biomass Biomass Element Characteristics (wt%) 

Cel Hcel Lig Ext Ash MC  Ref. 

Palm shell 27.7 21.6 44.0 2.0* 2.1 11.0 Abnisa et al., (2011) 

Oil palm fronds 30.4 40.4 21.7 2.7 1.30 16.0 Kelly-Yong et al., (2007), 

Guangul et al., (2012) 

Palm oil EFB 37.3 14.6 31.7 1.3 6.7 10.0 Sudiyani et al., (2013) 

Palm kernel trunk 34.5 31.8 25.7 2.7 4.3 13.0* Kelly-Yong et al., (2007) 

Palm mesocarp fibre 33.9 26.1 27.7 6.9 3.5 13.1 Kelly-Yong et al., (2007) 

Soft wood 37.5 27.5 28.5 2.5* 3.5* 14.0* McKendry, (2002) 

 Hard wood 47.5 27.5 22.5 2.5* 3.5* 14.0* McKendry, (2002) 

* assumption based on element properties  of similar biomass species for case study illustration 

 

 

Figure 6- 2: Element acceptance range for each process technology in case study 
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Once the data compilation completed, information is transformed into supply chain 

optimisation model to determine the optimum supply chain network for the regional system.  In other 

to demonstrate the difference between the proposed DRVT approach and the conventional approach 

(discussed in Chapter 2), 4 sub-case studies are suggested as shown in Tables 6-4(a) and Table 6-4(b) 

which summarise the comparison between both approaches.  Sub-case studies 1A and 1B evaluate 

the differences between both models in the scenario where exportation of biomass is not considered; 

while sub-case studies 2A and 2B evaluate both models in the scenario where exportation of biomass 

is considered.  Since the main objective of the research is focus on the improvement of feedstock  

 

Table 6- 4(a): Sub-case study scenarios 

Scenarios 
(A) Conventional Supply 

Chain Model 

(B) DRVT Approach Supply 

Chain Model 

(1) Only and must fulfil local 

demand (does not consider 

exportation) 

1A 1B 

(2) Must fulfil local demand and 

allow exportation 
2A 2B 

 

Table 6- 4(b): Comparisons between conventional and DRVT approach supply chain models 

 
(A) Conventional Supply 

Chain Model 

(B) DRVT Approach Supply 

Chain Model 

Feedstock selection platform Based on biomass species 
Based on biomass elemental 

properties 

Potential feedstock option 
Specific biomass species 

within the regional system 

Any biomass species within 

the regional system 

Supply chain network flexibility 
Each plant has dedicated 

resource point 

Each plant can freely 

determine the optimum 

biomass from the best 

resource point 

Feedstock price 
Restricted option, based on 

market price 

More option, able to choose 

cheaper alternative feedstock 

based on market price 
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selection over existing regional biomass system, consideration of biomass feedstock will based on the 

respective technologies, which in this case is based on literature.  Following illustrates the concept 

differences and the translation into both models. 

 

6.2.2.1  Conventional model formulation 

In order to derive the conventional model formulation for biomass feedstock selection, it is 

important to analysis the feedstock selection criteria for the existing technologies.  Based on Table 6-

2, conversions yield of all four process technologies are developed based on feedstock weight.  Each 

technology has dedicated original feedstock.  This demonstrates the problem in some of the biomass 

technologies, where the development is only based on a specific biomass species.  Impact of 

integrating alternative biomass into the system is unknown.  Thus, when translate into supply chain 

optimisation model, only the original biomass feedstock species, palm shell, oil palm frond, and palm 

oil empty fruit bunch (EFB), are considered in respective technology as shown in the superstructure in 

Figure 6-3.  Palm kernel trunk, palm mesocarp fibre, soft wood, and hard wood are unable to 

integrate into the system due to unknown impact to the existing process technology.  Thus in this 

case, these biomasses are considered as underutilised biomass.   

 

Figure 6- 3: Generic superstructure for convention biomass supply chain optimisation model 
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When translate this concept into the mathematical model, the upper and lower boundaries 

for the element acceptance range of respective technology (Equations 6-3 and 6-4) are set to be the 

same value as the original feedstock element characteristics in Table 6-3.  Alternatively, since the 

technologies are incapable to accept underutilised biomasses, the model is unable “see” them as a 

potential feedstock.  Thus, availability of underutilised biomasses within the system is presumed to be 

zero.  In terms of the model translation in different exportation scenarios, the market demand at 

“Export” point in sub-case studies 1A and 1B are set to zero to show exportation is not considered; 

while a huge (infinite) value is implied in cases 2A and 2B to show the consideration of exportation 

without limitation.  On the other hand, since only one mode of transportation (by truck) is considered 

in this case studies, the transportation cost Equations 6-10 and 6-11 can be simplified as below, 

where Transcost is equals to RM 0.5 per ton of material per kilometre transported.  Please refer to 

Appendix I for complete model coding.    

               

 

   

                                  Reproduced from (6-3) 

               

 

   

                                  Reproduced from (6-4) 

            

 

   

                             

                                                                   

Simplified (6-10) 

             

 

   

                              

                                                                  

Simplified (6-11) 

 

6.2.2.2  Demand-Resources Value Targeting model formulation 

In contrast with the conventional approach, DRVT model inherits the concept of element 

targeting, where the selection of biomass is based on feedstock element characteristics.  As discussed 

previously, the element acceptance range of respective technologies in this case study are assumed to 

be ±5% (Figure 6-2), which is based on the natural biomass properties fluctuation.  This platform 

enables the model to consider underutilised biomass and determine the optimum feedstock ratio 



Chapter 6 

 

 143 
 

without affecting the process performance.  Figure 6-4 shows the superstructure of DRVT model for 

this case study.   

 

 

Figure 6- 4: Superstructure for Demand-Resources Value Targeting model 

 

When translate to the model, the upper and lower boundaries of element acceptance range 

for each technology is tabulated as per Table 6-5.  Similar approach as discussed above is applied in 

order to demonstrate the different scenarios of sub-cases 1B and 2B.  Simplified transportation cost 

calculation (Simplified Equations 6-10 and 6-11) also implied in this model for consistency of 

comparison with the conventional model.  Since the product generation for all process technologies 

are estimated based on feedstock weight, the first term in Equation 6-7 is not applicable for this case 

study.   
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Table 6- 5: Element acceptance range of each technology 

Technology Boundary Biomass Element Characteristics (wt%) 

Cel Hcel Lig Ext Ash MC  

T1 Upper 32.7 26.6 49.0 7.0* 7.1 16.0 

Lower 22.7 16.6 39.0 0.0 0.0 6.0 

T2 Upper 35.4 45.4 26.7 7.7 6.3 21.0 

Lower 25.4 35.4 16.7 0.0 0.0 11 

T3 Upper 35.4 45.4 26.7 7.7 6.3 21.0 

Lower 25.4 35.4 16.7 0.0 0.0 11 

T4 Upper 42.3 19.6 36.7 6.3 11.7 15.0 

Lower 32.3 9.6 26.7 0.0 1.7 5.0 

 

6.2.3  Model problem statement  

The case studies were solved to maximised             using General Algebraic Modeling 

System (GAMS) software, version 23.4.  The problem is solve via linear programming with CPLEX 

solver using Intel(r) Core(TM) i5-4200U CPU at 1.6 GHZ up to 2.30 GHz, 4 GB RAM memory and 64-bit 

Windows 8 system.  A total of 21 blocks of equations and 18 blocks of variables are found within the 

model.  The model will proposed the optimum solution for biomass distribution network from 

resources location to technology plants, and to demand locations.  Utilisation of each available 

biomass species, including underutilised biomasses will be reflected via the proposed optimum supply 

chain network.  Appendix I presented GAMS coding and result for all the sub-cases.    

 

6.2.4  Results and discussions     

Four sub-case studies were performed to demonstrate the advantages of DRVT approach in 

difference scenarios and compared to conventional optimisation approach.  The main objective is to 

observe the improvement of DRVT approach over the conventional approach in terms of feedstock 

selection and consideration of underutilised biomass.  Figures 6-5 to 6-8 show the optimum supply 

chain network of each sub-case study.  Each figures also indicated the optimum amount of biomass or 

product transported from one location to another.  Table 6-6 tabulates the overall utilisation of each 

biomass species at respective resources location and Table 6-7 summaries the total profit of each 

cases. 
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Figure 6- 5: Optimum supply chain distribution network for sub-case study 1A 

 

 

Figure 6- 6: Optimum supply chain distribution network for sub-case study 1B 
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Figure 6- 7: Optimum supply chain distribution network for sub-case study 2A 

 

 

Figure 6- 8: Optimum supply chain distribution network for sub-case study 2B 
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Table 6- 6: Overall biomass utilisation at each resource location 

Location Biomass species 
1A 1B 2A 2B 

t/day Utilisation t/day Utilisation t/day Utilisation t/day Utilisation 

R1 

Palm shell 1995.5 79.8% 2403.3 96.1% 2187.5 87.5% 2239.9 89.6% 

Oil palm fronds 758.8 50.6% 506.5 33.8% 1500 100% 1500.0 100% 

Palm oil EFB 1549.2 77.5% - - 1409.3 70.5% 372.9 18.6% 

Palm kernel trunk - - 799.7 99.9% - - 800.0 100% 

R2 

Palm shell - - - - 840.2 48.0% - - 

Oil palm fronds 94.7 4.1% 71.9 3.1% 2300 100% 2300.0 100% 

Palm oil EFB 22.8 1.1% - - 186.1 8.8% 750.0 35.7% 

Palm Mesocarp Fibre - - 368.9 49.2% - - - - 

R3 Soft wood - - 45.5 3.0% - - 1500.0 100% 

R4 Hard wood - - 224.9 12.9% - - 540.0 30.9% 

 

Table 6- 7: Total profit for each sub-case study 

 
Sub-case 

1A 1B 2A 2B 

Total profit 
RM -816k /day 

($ -204k /day) 

RM -756k /day 

($ -189k /day) 

RM 2576k /day 

($ 644k /day) 

RM 4053k /day 

($ 1013k /day) 
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In both cases 1A and 2A of conventional biomass supply chain model, underutilised 

biomasses are not considered in the system.  Therefore, many biomasses are not used to convert into 

higher value downstream products, leading to waste of resources.  However, as compared to cases 1B 

and 2B, DRVT approach allows the consideration of underutilised biomass, resulting in higher quality 

of biomass supply chain integration.  This leads to an improvement of the system as reflected in the 

total profit of the system increases as shown in Table 6-7.  The profit increased by approximately 7.4 

% in case 1 and 57.3 % in case 2.   

 

By comparing case 1As with 1B and 2A with 2B respectively in Table 6-6, utilisation of each 

biomass species is generally increased.  A point worth mentioning is that utilisation of some biomass 

species is reduced, such as oil palm fronds in case 1B compared to 1A, and palm oil EFB and palm shell 

from Resource 2.  The reduction of oil palm fronds utilisation in the case is due to the relative higher 

price of oil palm fronds.  With DRVT approach, the model choices alternative biomass species with 

lower cost as technology feedstock without compromising the technology yield to maximise total 

profit.  In cases 2A and 2B, similarly, the reduction of biomass utilisation in palm oil EFB and palm 

shell is due to the relative higher cost.  However, as oppose to previous case, palm oil fronds is fully 

utilised in both cases 2A and 2B.  This due to the geographical aspect that Plant 3 which utilises palm 

oil fronds is nearer to the export location as compared to other plant.  This allows more production at 

Plant 3 with less transportation cost to maximise total profit of the system.    

 

By comparing case 1A with 2A and 1B with 2B, the result shows that by only fulfilling the 

local requirement, the system is unable to self sustain to achieve positive total profit.  However, by 

considering the possibility of exportation, positive profit is achievable.  Aside from that, this increases 

the utilisation of the resources available within the regional area.  Table 6-6 shows a higher 

percentage of overall utilisation of biomass available.  Aside from that, significant higher profit is 

obtained as shown in Table 6-7.  This demonstrate that increasing production might able to improve 

the feasibility of implementation of biomass industry.     
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With the comparison of all four sub-case studies proposed, DRVT approach has proven to be 

able to improve existing biomass supply chain.  Most of the improvements are due to the 

enhancement of feedstock selection to wider range of biomass species.  This can be observed by 

comparing the distribution network of all sub-cases where the main differences are in between the 

integration of resources and process plant.  Logistic network between process plant and market 

demand are remained consistent due to the lack of fluctuation in marker demand in this study.  Also, 

based on Table 6-6, potential biomass species are able to be identified by looking at the level of 

utilisation.  This provides a good platform as screening tool to determine potential alternative 

biomass species for future development.  Nevertheless, more development can be considered in the 

optimisation model to further improve the system.   

 

6.3  Biomass Element Cycle Analysis (BECA) optimisation approach  

Previous discussion has shown the advantage of element targeting approach in enhancing 

the current biomass supply chain optimisation model.  The main goal of DRVT approach is incorporate 

alternative upstream biomasses into the consideration of supply chain model.  Nevertheless, further 

improvement of DRVT approach is possible to enhance application of element targeting approach in 

biomass supply chain optimisation.   

 

Biomass Element Cycle Analysis (BECA) is proposed from inspiration of the combination of 

DRVT approach and Life Cycle Assessment (LCA) – applied in capturing carbon, water, nitrogen, 

sulphur, and other footprint (Shan et al., 2014).  Concept of LCA also applied to conducted multi-

objective model on relations between footprints within biomass energy supply chain (Čuček et al., 

2012).  Cradle-to-grave concept in LCA suggests that consideration of alternative biomass should not 

be limited to upstream biomasses from plantation only.  Thus, similar to DRVT approach, BECA 

approach acts as a platform to investigate potential application of each biomass within a system.  

Nonetheless, the main improvement of BECA approach is further expanding feedstock consideration 

to also include process waste as potential underutilised biomass.   It enables recycling loop of process 

waste as alternative potential feedstock within the system.   
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In BECA approach, each process stages within biomass industry are studied to evaluate 

potential re-utilisation of process waste.  Many have conducted work converting process by product 

to downstream product such as energy (Klemeš and Varbanov, 2013).  Element characteristics 

classification will be conducted on by-product (which is also a type of biomass) to allow wider 

coverage in the search for alternative resources and minimises waste management.  Utilising 

resources from existing process waste is much economically efficient and environmental friendly.  

With the proposed BECA approach, utilisation of each potential biomass in the system can be well 

analysed, provide better understanding of the system resources and allows effective planning and 

development. 

 

6.3.1  Methodology for Biomass Element Cycle Analysis approach 

The general methodology of BECA approach is very similar to DRVT approach.  Several 

modifications are conducted to include the consideration of process waste as potential technology 

feedstock.   

 

6.3.1.1  Exploitation of regional biomass system 

Similar to DRVT approach, BECA approach initiates with data collection based on regional 

biomass system, including available resources, existing process plants and technologies, market 

demands and logistic and location data (distance and cost of transportation).  The main difference is 

in the review of existing process plants, waste production at each process stage will be evaluated 

based on availability amount and ease of collection.  Potential process waste will be considered as 

alternative biomass feedstock for potential recycle use.  Furthermore, BECA approach also considered 

production cost of each technology, hence, the data of production cost per unit product is required.   

 

6.3.1.2  Identify biomass element characteristics  

In this step, all available biomass properties are determined based on element characteristics 

as discussed in Section 6.2.1.2.  Again, the main difference between DRVT approach and BECA 

approach is the determination of process waste element characteristics.  This will allow the model to 
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consider process waste as part of the alternative biomasses within the system for potential recycle 

use.   

 

6.3.1.3  Identify technology element acceptance range 

Methodology to construct element acceptance range for each technology in BECA approach 

is identical to DRVT approach, where concept has been discussed in Chapter 3.   

 

6.3.1.4  Integration into the Biomass Element Cycle Analysis model 

Several modifications are introduced based on the mathematical formulation of DRVT model 

to construct BECA model.  Following describe in detail on all equations in BECA model.    

 

Element constraint: 

 All the equations for element constraint to provide a systematic platform for biomass selection 

in DRVT model are applicable in BECA model.  Thus, Equations 6-1 to 6-4 are used in BECA model as well.  

Equation 6-1 indicates the calculation of total biomass element, e received in each process plant, j for 

each biomass, m,                based on biomass, m received at process plant, j              and 

biomass element characteristics,             .   

                                                      Reproduced from (6-1) 

 

Equation 6-2 indicates total biomass received at process plant, j,            by combining each biomass 

m, at each process plant j,               
   .   

             

 

   

                   Reproduced from (6-2) 

 

Equation 6-3 indicates total biomass element characteristic, e received in process plant, j, 

                
    should be less than the upper limit of element acceptance range, e at respective 

process plant, j,              multiply with total biomass received at process plant, j,           .   
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                                    Reproduced from (6-3) 

 

Similarly, Equation 6-4 indicates total biomass element characteristic, e received in process plant, j, 

                
    should be more than the lower limit of element acceptance range, e at respective 

process plant, j,              multiply with total biomass received at process plant, j,           . 

               

 

   

                                    Reproduced from (6-4) 

 

Mass constraint: 

 In this section, several modifications are conducted based on DRVT model formulation to 

enhance the model integration by introducing recycle loop to recycle process waste as potential 

technology feedstock.  Equation 6-5 is remain unchanged, which restricts total amount of each biomass, 

m sent from resource location, i,              
    cannot more than total biomass available at each 

resource location, i,              .   

                          

 

   

           Reproduced from (6-5) 

 

Equation 6-6 in DRVT model is modified into Equation 6-15 below.                 
     represents the 

material, m transported from process plant output, jp, to process plant input, j.                  is a 

parameter introduced as decision factor on which material, m, should be considered in the recycle loop 

since m is representing both feedstock and product in the model.  For all biomass and potential process 

waste, m are assigned value of “1”, while the product, m will assigned as “0” such that the model do not 

recycle product as feedstock.  Thus, the overall material received at process plant input,              

is the summation of upstream biomass received,              
   , and biomass recycled, 

               
    .   

            

 

   

                                

  

    

                        (6-15) 
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Equation 6-7 in DRVT approach is applicable in BECA approach, where the first term is to determine the 

product generation of process plant based on developed relation between feedstock element 

characteristics, and the second term is to determine the generation rate based on feedstock weight.    

                           

 

   

                       

 

   

                                          

 

   

                                                                           

Reproduced from 

(6-7) 

 

However, Equation 6-8 in DRVT approach is modified into Equation 6-16, which constraints the total 

material generated (product and by-product),               has to be equal or more than the 

summation of material transported to demand,               
    and material recycled to process 

plant,                
    

             

 

   

              

 

   

                          (6-16) 

 

Equation 6-9 in DRVT model is applicable in BECA model, stated that total production of each process 

plant,               
    has to fulfil minimum local market demand,                  .  Excess 

production will be exported to other region with the limitation of                  .  In case of no 

constraint for exportation, an immense value of material, m is assigned in the export location, k in 

                 . 

                               

 

   

                          

Reproduced from 

(6-9) 

 

Cost calculation: 

Due to the introduction of the recycle loop, cost calculation in BECA model is modified.  Equation 6-10 

and Equation 6-11 are still applicable in this model.  Equation 6-10 indicates the transportation cost of 

sending biomass, m from resources location, i to process plant, j,                based on total biomass, 
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m from resources, i to process plant, j,              
   , distance between resource, i and process 

plant, j based on transportation mode, r                      and the flat rate transportation cost of 

the particular transportation mode,             , in $ /t/km.   Equation 6-11 indicates transportation 

cost of sending product, m from process plant output, jp to market demand, k,                 based 

on total biomass, m from process plant output, jp to demand, k,               
   , distance between 

process plant, jp and demand, d,                       based on the transportation mode, r and flat 

rate transportation cost of the particular transportation mode,             , in $ /t/km. 

            

 

   

                                     

 

   

                                                                

Reproduced from (6-10) 

             

 

   

                                      

 

   

                                                              

Reproduced from (6-11) 

 

Equation 6-17 is introduced to consider the transportation cost for the recycled material.  This equation 

indicates transportation cost of sending product, m from process plant output, jp to process plant input, j, 

                is based on total biomass, m from process plant output, jp to process plant, j, 

              
   , distance between process plant output, jp and process plant input, j, 

                      based on the transportation mode, r and flat rate transportation cost of the 

particular transportation mode,             , in $ /t/km.   

             

 

   

                                      

 

   

                                                                                        

(6-17) 

 

With respect to the introduction of Equation 17, Total transportation cost of the system,            is 

modified into Equation 6-18, which is the summation of               ,                 and 

               .   

                 

   

     

                   

    

      

                   

    

      

            (6-18) 
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BECA model introduced Equation 6-19 to consider total production cost,            based on total 

material generated,               multiply with the respective cost,                 .   

                                 

    

      

            (6-19) 

 

 Thus the              calculation is modified from Equation 6-13 to Equation 6-20 below.  Note that 

the selling price for product, m, in          is not BECA model introduced Equation 6-19 to consider 

total production cost,            based on total material generated,               multiply with 

the respective cost,                 .  Noted that          is refer to the price of raw biomass 

(excluding transportation cost) and gross profit of product (excluding transportation cost, raw material 

cost and production cost). 

                       

    

    

           

 

   

                

   

   

           

 

   

           

(6-20) 

 

Objective function: 

The objective function for BECA model is identical to DRVT mode.  Equation 6-14 shows the overall total 

profit of the system,             after consideration of total transportation cost,           . 

Maximising Totalprofit: 

                              Reproduced from (6-14) 

  

6.3.2  Demonstration case study for Biomass Element Cycle Analysis approach 

Similar to the discussion of DRVT approach, implementation of BECA approach is illustrated 

in this section with a demonstration of regional biomass supply chain network.  As discussed in the 

methodology, the regional biomass system is evaluated for information compilation.  Figure 6-9 

shows the Cartesian coordinate mapping of a biomass system.   
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Figure 6- 9: Mapping for regional biomass system 

 

Each dot (R1, R2, R3, R4, R5 and R6) in Figure 6-9 represents the collection points of 

upstream biomass available in the region.  Table 6-8 shows the availability of each biomass species at 

each location and their respective price.  The biomass available consists of corn cob, pine wood, 

treated wood, hazelnut shell, tomato residue and cauliflower residue.  Price of corn cob is obtained 

from Erickson and Tyner, (n.d.) as $ 100 /t, which is based on the harvesting cost.  Comparable value 

of $ 82.19 - 100.56 /t is reported by Thompson and Tyner (2014) for harvesting cost of corn stover as 

both biomasses are corn based biomass.  Price of pine wood in from $ 160 - 220 /t is obtained based 

on pellet pine wood from industrial supplier (Alibaba.com, 2015) as a reference for the case study.  

The average cost of $ 190 /t is used in the case study.  The price of treated wood, hazelnut shell, 

tomato residue and cauliflower residue are assumed to be about 25 % of the price of corn cob and 

pine wood.  This is due to the relatively low demand and application in general.   In addition, 

minimum harvesting effort is required as the existing disposal location can be utilised as collection 

point.  For example, hazelnut shell, tomato residue and cauliflower residue can be collected from 

farm or food process plant.  Treated wood can be collected from furniture plant.  The price is mainly 
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to cover the additional labour cost such as biomass collection.  Transportation cost from resource 

point to process plant will be calculated based on the travelled distance, which will be determined by 

the model.   

 

Table 6- 8: Availability of biomass and price 

Location Biomass species Availability (t/d) Selling price ($/t) 

R1 Corn cob 3,000 100 

R2 
Pinewood 2,400 190 

Treated wood 500 47.5 

R3 Hazelnut shell 300 40 

R4 Tomato residue 950 30 

R5 Cauliflower residue 500 25 

R6 Treated wood 1,500 47.5 

 

The triangular points (T1, T2, T3, and T4) in Figure 6-9 represents the location of processing 

plant for each technology stated in Table 6-9 respectively.  In this demonstration, the capacity of the 

plant is not limited.  In this biomass regional system, Technology 1 and Technology 2 are developed 

based on a specific biomass species, which are corn cob and pinewood respectively.  Since BECA 

approach also considered potential process waste recycled from each process stage, gasification 

particle from Technology 2 is reported to have potential application due to high heat value (Miguel et 

al., 2012).  Thus, it will be considered as an alternative biomass feedstock in this case study.  On the 

other hand, Technology 3 and Technology 4 have constructed a relation between feedstock 

properties to the process outputs.  Bio-ethanol production yield can be estimated based on the 

feedstock cellulose and hemicellulose content, while the produced heat value in Technology 4 is 

predicted based on feedstock heat value and moisture content.    

 

Since BECA approach also considered the production cost for each technology, the 

information is estimated and summarised in Table 6-10.  The cost is estimated based on the 

investment cost and operating cost.  Biomass and transportation costs are excluded in the production  
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Table 6- 9: Biomass technologies and conversion data. 

No. Technology Feedstock Conversion Yield Reference 

1 Hydrogen Production 

Plant – Supercritical 

Water Gasification  

Corn cob 30.46 g of H2/kg of feedstock Lu et al. (2012) 

2 Gasification Power 

Plant  

Pinewood 68% of feedstock heat value 

and 

0.056 kg of particle/ kg of feedstock 

Miguel et al. 

(2012) 

3 Bio-ethanol 

Fermentation Plant 

Bermudagrass, 

reed and 

rapeseed 

0.29 kg of bio-ethanol/kg of cellulose 

and 

0.23 kg of bio-ethanol /kg of 

hemicellulose 

Goh et al. 

(2010) and Li et 

al. (2009) 

4 Combustion Power 

Plant 

Cellulosic 

biomass 

30% of feedstock heat value 

(feedstock moisture content less 

than 50 wt%) 

Mohammed et 

al. (2011) 

 

cost calculation as both the costs will be added based on the biomass supply chain network calculated 

by the model.  According to Lu et al. (2011), total hydrogen production cost including biomass and 

transportation cost is estimated to be $ 6.15 /kg.  Excluding the biomass and transportation cost, the 

production cost of hydrogen is assumed to be about 80 % of the proposed cost.  Thus, the production 

cost of Technology 1 is estimated to be $ 4.92 /kg.  For technology 2, the production cost is estimated 

based on the economic analysis conducted by Wu et al., (2002).  The capital cost of 1MW gasification 

and generation plant is estimated to be about $ 367.2k.  Operation cost is estimated to be around $ 

114k per year.  With assumption of 15 operating years with average annual electricity output of 6500 

MWh/y, and inflation of 30 % from 2002 to 2015, the production cost is estimated to be $ 0.07 / kWh 

or $ 0.019 /MJ.  Production cost of Technology 3, bio-ethanol fermentation plant, is estimated based 

on Quintero et al. (2013).  The total production cost is reported to be $ 0.58 /L, which is approximate 

$ 0.74 /kg.  Out of the total production cost, 33 % is contributed by the raw material cost (biomass).   

Thus, the production cost excluding biomass and transportation cost is estimated to be $ 0.57 /kg of 

ethanol produced.  As for the production of Technology 4 combustion power plant, it is assumed to 

be 80% of the production cost of gasification power plant in Technology 2.  Thus, the production cost 

is estimated to be $ 0.0152 /MJ. 
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Table 6- 10: Production cost of each process plant 

No. Technology Production cost (excluding biomass and transportation cost) 

1 Hydrogen Plant $ 4.92 /kg 

2 Gasification Power Plant  $ 0.07 /kWh or $ 0.019 /MJ 

3 Bio-ethanol Fermentation Plant $ 0.57 /kg 

4 Combustion Power Plant $0.049 /kWh or $ 0.0152 /MJ 

 

Lastly, the information of market demand in the regional biomass system is evaluated.  

Downstream product market demand locations are represented by "star" in Figure 6-9.  Four local 

market demands (D1, D2, D3 and D4) available in the system and an export point (Export) to export 

excess products to other region.  Table 6-11 shows the market demand of each product on the 

respective demand location.  All local demands must be fulfilled.  Profit of selling each unit product at 

respective location excluding transportation cost is also tabulated in Table 6-11.  Each selling price is 

based on market value.  According to ITM Power, hydrogen price is reported as $ 9.57 /kg in 2012 

(Green Car Congress, 2015).  Price of power supply is based on the latest 2014 tariff by Tenaga 

National, the main power supplier in Malaysia.  Based on Department of Agriculture from Republic of 

Philippines, the latest bio-ethanol price by May 2015 is reported to be $ 1.24 /L, equivalent to $ 1.57 

/kg (SRA , 2012).  Similar to the case study in DRVT approach, this research does not focus on the 

different mode of transportation in the system.  Thus, the case study is simplified into one type of 

transportation mode, which is truck with the logistic cost of $ 0.0001 /t/km. 

 

Table 6- 11: Market demands and gross profit per unit product 

Location Product Demand Profit 

Demand 1 

Hydrogen 5 t/d $ 10 /kg 

Bio-ethanol 15 t/d $ 1.57 /kg 

Demand 2 

Hydrogen 20 t/d $ 10 /kg 

Bio-ethanol 13 t/d $ 1.57 /kg 

Demand 3 Power 50 GJ /d or 13,888.9 kWh /d $ 0.11 /kWh or $ 0.396 /MJ 

Demand 4 Power 70 GJ /d or 19,444 kWh /d $ 0.11 /kWh or $ 0.396 /MJ 

Export 

Hydrogen unlimited $ 10 /kg 

Bio-ethanol unlimited $ 1.57 /kg 
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Previous description has summarised the information compilation for the regional biomass 

system as per the methodology in Section 6.2.1.1.  The next step is to compile the information of 

biomass element characteristics for the integration of element targeting approach into the system 

supply chain management.  Table 6-12 summaries element characteristics of each resource based on 

literature, including the gasification particle from Technology 2 waste.  However, some of the element 

properties are not reported in the respective literature.  For the purpose of case study demonstration, 

the value is assumed and taken from similar species.  Similarly, the heat value of biomass is estimated 

via Equation 4-1 proposed by Nhuchhen and Salam (2012) which derived from various biomass 

species such as hazelnut shell, corn cob, wood chips, pine wood, pine pellet.  Figure 6-10 shows the 

radar chart of all biomass in the system to illustrate the unique properties of each biomass in a 

graphical approach. 

 

Table 6- 12: Element characteristic of each biomass in the system 

Biomass Biomass element properties (wt%/wt%) 

Ash FC VM MC HV*** Cellulose  Hemicellulose Ref. 

Corn cob 2.9 17.4 72.7 7.0 19.2** 30.0* 15.0* Lu et al. 

(2012) 

Pinewood 1.6 19.0 71.6 8.0 21.2 40.0* 20.0* McKendry 

(2002) 

Hazelnut 

shell 

1.7 18.0* 73.5* 6.8 19.4** 38.2 12.1 Madenoğlu 

et al. (2011) 

Tomato 

residue 

3.7 16.5* 72.3* 7.5 19.0** 24.0 17.0 Madenoğlu 

et al. (2011) 

Cauliflower 

residue 

15.0 6.7* 66.3* 12.0 15.8** 31.1 5.4 Madenoğlu 

et al. (2011) 

Treated 

wood 

4.9 0.0 80.3 14.8 19.6 38.0* 25.0* Vitasari et 

al. (2011) 

Gasification 

particles 

8.1 84.4 6.5 1.0 29.9 0 0 Miguel et al. 

(2012) 

* assumption on element properties for case study illustration 
** obtained from co-relation by Nhuchhen and Salam (2012) 

*** unit of MJ/kg 
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Figure 6- 10: Biomass element characteristic 
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Reproduced from (4-1) 

 

Next, the element acceptance range of each technology is constructed based on the 

literature.  As shown in Table 6-9 above, Technology 1 and Technology 2 were developed based on 

corn cob and pinewood respectively.  No study has conducted to evaluate the relation between 

feedstock element characteristics and process output.  Nevertheless, both literatures have reported 

the properties of the original feedstock, as per Table 6-12.  No analysis on which element is the key 

element of the process.  Thus, all element characteristic reported in the literature are assumed to be 

equally important.  Therefore, technology element acceptance is assumed based on a conservative 

assumption of element deviation factor, fe of ±5 % for all element characteristic based on the original 

feedstock, which in this case Corn Cob and Pinewood respectively to ensure consistency of the 

process performance.  This approach has been discussed in detail in Chapter 3, Section 3.4.2. 

 

On the other hand, the original biomass feedstock for Technology 3 is not available in the 

system.  However, both Technology 3 and Technology 4 had developed a process output prediction 

method based on specific feedstock properties.  This approach of element acceptance range 

construction has been discussed in Chapter 3, Section 3.4.1.  Goh et al. (2010) summarised that bio-

ethanol conversion yield in fermentation (Technology 3) with respect to cellulose and hemicellulose 

content as described in Table 6-9, which based on several literatures including Li et al. (2009).  Li et al. 

(2009) conducted laboratory test on simultaneous saccharification and fermentation on 

lignocellulosic biomass.  The work included a pretreatment of biomass to remove undesirable 

element from the feedstock.  This process step minimises and eliminates some uncertainty of 

feedstock, which allows only the key elements for Technology 3, subjected to cellulose and 

hemicellulose only.  Although other element such as pH value is very critical in fermentation as it is 

affecting enzyme’s activities, however it is noted that pH is part of the controlled parameter based on 
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the work conducted by Li et al. (2009).  Therefore, Technology 3 is assumed to have a pH control 

system.  The remaining element characteristics are assumed will not significantly affecting the overall 

process, thus giving the element acceptance range of each element characteristic for Technology 3 in 

the range from 0 % to 100 %.  Further experiment work should be conducted to analyse in detail the 

impact of other element characteristic to the overall process.  Element acceptance range for any 

element characteristic that found to be significantly impacting the process should be considered in 

future work.   

 

In Technology 4, combustion of biomass is highly dependent on heat value of biomass.  

Besides, combustion is only feasible when moisture content of feedstock is less than 50 wt% 

(Mohammed et al., 2011).  Therefore, power output of Technology 4 will be based on feedstock 

biomass heat value and moisture content not more than 50 wt% in the feedstock.  All technologies 

element acceptance range is presented in the form of radar chart in Figure 6-11.  The “zoom in” 

portion of the figure is to emphasize on the small element acceptance range of the technology in this 

case study.   

 

In the next step, all information collected is transformed into supply chain optimisation 

model.  Three sub-case studies are conducted in this case study to compare between: i) Case A- 

conventional biomass supply chain optimisation approach, ii) Case B- DRVT approach, and iii) Case C-  

BECA approach.  Table 6-13 summaries the differences of each approach and model formulation for 

each sub-case study is discussed below.   
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Figure 6- 11: Element acceptance range for each technology 

 

Table 6- 13: Comparison of conventional, DRVT, and BECA approaches 

Sub-Case A B C 

Approach Conventional DRVT BECA 

Optimisation of mainstream biomass 

distribution network 
√ √ √ 

Integration of element targeting approach X √ √ 

Recirculation of downstream process waste X X √ 

√: considered  X: not considered 

 

6.3.2.1  Conventional model formulation  

As discussed in Chapter 2 literature review, the existing biomass supply chain optimisation 

model generally decide the technology feedstock based on the original biomass feedstock during the 
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technology development.  When we translate this conventional approach into superstructure model 

for this case study (Figure 12), treated wood, hazelnut shell, tomato residue and cauliflower residue 

will not be considered within the regional area due to unavailability of existing process plant that 

utilised respective biomass species.    

 

 

Figure 6- 12: Superstructure of biomass supply chain for conventional approach 

 

However, outside of biomass supply chain optimisation development, Tang et al. (2013) 

proposed a conceptual integration approach based on bioprecursors (starch, hemicellulose, cellulose, 

lignin, triglycerides and protein) to determine the optimum biorefinery platform (sugar, 

thermochemical, biogas, and carbon-rich chains) for each biomass feedstock.  The fundamental 

concept of the proposed work is very similar to the element targeting approach stated in Section 

3.4.1, where the bioprecursors are similar to element characteristics and the biorefinery platforms 

are similar to technology element acceptance range.  Nevertheless, the main objective of Tang et al. 

(2013) is to optimise biomass technology pathway, such that the optimum biomass technology is 

proposed with consideration biomass feedstock availability and uncertainties.  Logistic issue such as 

resources-to-plant-to-demand location and transportation mode is not considered.  Yet, this 
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approach has the advantage to identify optimum process technologies during the design phase over 

the course of operating years.  In contrast, the proposed concept of element targeting approach in 

this work focuses on the supply chain optimisation in existing regional system where all the process 

plants are pre-exist.  Since the process technology is pre-fixed in the existing system, the proposed 

DRVT and BECA approach optimise the biomass feedstock selection based on logistic issue and 

biomass properties.   

 

Nevertheless, with the consideration of the development in technology selection as 

proposed by Tang et al. (2013), the superstructure for the conventional biomass system integration 

for this case study is modified to Figure 13.  All available biomass species (including process waste- 

gasification particle) are integrated into Technology 3 and Technology 4 since the feedstock selection 

criteria are based on biomass properties as stated in Table 6-9.  Nonetheless, only the original 

feedstock is integrated into Technology 1 and Technology 2 as these technologies were developed 

based on biomass species (corn cob and pine wood respectively) without knowledge of the process 

impact due to feeding alternative feedstocks.   

 

 

Figure 6- 13: Superstructure of biomass supply chain for conventional approach 
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Since Technology 1 and Technology 2 only will consider corn cob and pinewood as feedstock, 

the upper and lower boundaries of element acceptance range are set to be the same value as the 

original feedstock properties stated in Table 6-12.  The total generation rate is based on total amount 

of biomass received at respective plant which represented by the second terms of 

                                     
    in Equation 6-7.  On the other hand, the feedstock 

selection criteria Technology 3 and Technology 4 are based on biomass properties (element 

characteristics, e), thus the production generation is determined based on the total element received 

at respective plant,                             
                       

   .  This case study 

has shown an example where both terms in Equation 6-7 are used to cater for different type of 

process technologies.   

                           

 

   

                   

 

   

                                     

 

   

                                                                           

Reproduced from 

(6-7) 

 

In addition, one mode of transportation is considered in this case study; hence the 

transportation cost Equations 6-10, 6-11 and 6-17 are simplified as below (one parameter in set r). 

            

 

   

                             

                                                                        

Simplified (6-10) 

             

 

   

                              

                                                                    

Simplified (6-11) 

             

 

   

                              

                                                                    

Simplified (6-17) 
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6.3.2.2  Demand-Resources Value Targeting model formulation  

Figure 14 shows the superstructure model of DRVT approach for this case study.  With the 

introduction of element targeting approach, DRVT uses biomass element characteristics as the 

feedstock selection platform.  This enables Technology 1 and Technology 2 to consider alternative 

biomass species.  However, as discussed in Section 6.2, DRVT model is formulated to consider 

upstream biomass only.  Process waste from plant is not integrated as potential alternative feedstock.  

In other words, the model does not see the process waste- gasification particle as a credible feedstock 

option for any of the technologies.  Nevertheless, this concept can be interpreted via BECA model by 

assigning value of “0” in                 for all process waste such that all technology will not 

consider process waste as a potential feedstock option.   

 

Figure 6- 14: Superstructure of biomass supply chain for DRVT approach 

 

As discussed previously, the element acceptance range of both Technology 1 and Technology 

2 are assumed to be within the element deviation factor, fe of ±5 %; while the feedstock selection 

criteria for Technology 3 and Technology 4 are based on specific biomass properties.  The upper and 

lower boundaries for both technologies are tabulated in Table 6-14.  Similarly, simplified Equations 6-

10, 6-11, and 6-17 are used as only one transportation mode is considered in this case study.   
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Table 6- 14: Biomass utilisation at respective resources point 

Technology Boundary Biomass Element Characteristics (wt%) 

Ash FC VM MC HV Cell  Hcel 

T1 Upper 3.1 18.3 76.3 7.4 20.2 31.5 15.8 

Lower 2.8 16.5 69.1 6.7 18.2 28.5 14.3 

T2 Upper 1.7 20.0 75.2 8.4 22.3 42.0 21.0 

Lower 1.5 18.1 68.0 7.6 20.1 38.0 19.0 

T3 Upper 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Lower 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

T4 Upper 100.0 100.0 100.0 50.0 100.0 100.0 100.0 

Lower 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

6.3.2.3  Biomass Element Cycle Analysis model formulation  

As discussed in the methodology, BECA model is an improved version of DRVT model by 

considering process waste as potential alternative feedstock.  Figure 6-15 shows the superstructure of 

BECA approach.   

 

 

Figure 6- 15: Superstructure of biomass supply chain for BECA approach 
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Similar to DRVT model, BECA model suggests that feedstock selection is based on element 

acceptance range as stated in previous Table 6-14.  Since this approach considered the recycle of 

process waste, all upstream biomass (corn cob, pine wood, hazelnut shell, treated wood, tomato 

residue, cauliflower residue) and process waste (gasification particle) are assigned with value of “1” in  

               to allow the model to consider these material as potential recycle material.  

Transportation cost calculation also used the simplified Equations 6-10, 6-11 and 6-17 as only one mode 

of transportation is considered in this case study.   

 

6.3.3  Model problem statement  

The case studies were solved to maximise             by using General Algebraic Modeling 

System (GAMS) software, version 23.4.  The problem is solved via linear programming with CPLEX 

solver using Intel(r) Core(TM) i5-4200U CPU at 1.6 GHZ up to 2.30 GHz, 4 GB RAM memory and 64-bit 

Windows 8 system.  The model consists of total of 26 blocks of equations and 22 blocks of variables.  

The model will propose the optimum solution for biomass distribution network from resources 

location to technology plants, technology plants to demand locations and recycle process waste (for 

BECA model).  Appendix II presented GAMS coding and result for all the sub-cases.    

 
6.3.4  Results and discussions 

Figure 6-16 shows the optimum biomass supply chain network proposed by the conventional 

approach.  Based on the result, feedstock for Technology 1 and Technology 2 consist of corn cob and 

pine wood respectively.  Due to the limitation in alternative feedstock exploration in both 

technologies, the conventional biomass supply chain optimisation model only able to recognise the 

original biomass species as feedstock.  However, Technology 3 and Technology 4 have co-related the 

process output with feedstock properties, thus, the model proposed combination of biomass 

feedstock for both process plant.  Based on the result, the optimum feedstock ratio for Technology 3 

consists of 72 wt% of treated wood, 11 wt% of tomato residue, and 18 wt% of cauliflower residue; 

while the feedstock ratio for Technology 4 consists of 99 wt% of treated wood and 1 wt% of 

gasification particle.   
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Nevertheless, this approach has shown the lack of flexibility in biomass feedstock selection in 

Technology 1 and Technology 2 resulting in biomass underutilisation within the system.  The situation 

can be reflected in the current trend of biomass technology implementation where it is lack of 

researches in determining the acceptance capability of technology feedstock.  Majority of biomass 

technology development focuses more in improving the technology by using alternative biomass 

species and altering the operating condition for optimum outcome.  In addition, different location and 

system will have different species of biomass.  This creates a huge gap to industrialised and 

generalised respective technology.  Each technology needs to be tested with specific biomass species 

for implementation and not as much of work has been conducted such that the technology can be 

implemented in all systems.  Nevertheless, feedstock selection via biomass element characteristics 

provides the platform to evaluate the resources based on properties instead of species.  Sub-case 

studies B and C below show the advantages of element targeting approach in biomass supply chain 

management.     

 

 

Figure 6- 16: Optimum supply chain network for Case A- conventional approach 
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Figure 6-17 shows the optimum biomass supply chain network via DRVT approach.  Using 

element targeting approach as feedstock selection platform, the model suggested combination of 

corn cob (69 wt%), treated wood (3 wt%), hazelnut shell (7 wt%), and tomato residue (22 wt%) as 

feedstock for Technology 1, and combination of pine wood (98 wt%) and treated wood (2 wt%) for 

Technology 2 to improve the overall system performance.  Integration of multiple biomasses as 

feedstock also increases the total amount of feedstock availability for both Technology 1 and 

Technology 2 (as compared to sub-case study A).  Hence, this enable higher production rate as long as 

it is within the process plant capability.  Besides, the alternative biomasses have lower price thus 

increases the overall profit of the system.  The model also suggested that the optimum feedstocks for 

Technology 3 are treated wood (79 wt%) and cauliflower residue (21 wt%); while Technology 4 is not 

feasible to operate.  This may due to the relatively low conversion rate of the power plant as 

compared to Technology 2.  As DRVT approach does not consider recycle loop for process waste, all 

the gasification particle generated are treated as waste.   

 

 

Figure 6- 17: Optimum supply chain network for Case B- DRVT approach 
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On the other hand, Case C proposed a different result as compared to Case B due to the 

improvement of recycle loop in BECA approach to reconsider utilisation of process waste.  However, 

due to lack of information regarding the element characteristics of by-product and their generation 

rate, only one by-product (gasification particle from Technology 2) has the potential to be recycled in 

this case study.  Thus only a small improvement in Case B is observed.  The optimum supply chain 

network in Case C suggested that the feedstock ratio of Technology 1 remain the same as Case B.  

Nonetheless, optimum feedstock ratio for Technology 2 is 98.7 wt% of pine wood, 1.2 wt% of 

gasification particle (which is recycled from Technology 2 itself) and small amount of treated wood of 

0.1 wt%.  Feedstock ratio for Technology 3 is proposed to be 16 wt% of treated wood, 21 wt% of 

cauliflower residue, and 63 wt% of treated wood.  Technology 4 is also not feasible to operate Case C 

due to low efficiency of combustion power plant which is not cost effective for the system.  With the 

consideration of process waste, the model evaluated its potential as alternative resources, and 

suggested different optimum supply chain network.   

 

 

Figure 6- 18: Optimum supply chain network for Case C- BECA approach 
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In addition, the biomass resources utilisations in all three sub-cases are evaluated.  Table 6-

15 shows the utilisation amount and percentage for respective cases.  The level of resources 

utilisation is very similar in all cases, with exception in pine wood from R2 and Technology 2 process 

waste, gasification particle.  Case A shows the least utilisation of pine wood from R2 (18.9 wt%), this is 

mainly due to the specific feedstock selection criteria that based on biomass species for Technology 1 

and Technology 2.  In Cases B and C, more biomass utilisation is promoted in Technology 1, especially 

treated wood from R4, to increase the production rate and overall profit.  This pushes the utilisation 

of pine wood in Technology 2 to fulfil the power demand.  In Case A, treated wood is used as 

Technology 4 feedstock for power generation.  The differences suggested that to achieve full 

potential of the system, utilisation of treated wood in Technology 1 is the better option as compared 

to use it in Technology 4.   

 

Table 6- 15: Biomass utilisation at respective resources point 

Location Biomass species 

A B C 

t/d 
Utilisation 

(wt%) 
t/d 

Utilisation 

(wt%) 
t/d 

Utilisation 

(wt%) 

R1 Corn cob 3000.0 100.0 3000.0 100.0 3000.0 100.0 

R2 
Pinewood 453.4 18.9 813.7 33.9 817.9 34.1 

Treated wood 500 100.0 500.0 100.0 500.0 100.0 

R3 Hazelnut shell 300 100.0 300.0 100.0 300.0 100.0 

R4 Tomato residue 950 100.0 950.0 100.0 950.0 100.0 

R5 
Cauliflower 

residue 
500 100.0 500.0 100.0 500.0 100.0 

R6 Treated wood 1500 100.0 1,500.0 100.0 1,500.0 100.0 

T2 
Gasification 

particle 
5.4 100.0 - - 9.9 100.0 

 

Table 6-16 shows the level of market demand achieved in each sub-cases.  Generally all 

market demands are fulfilled in each case, with the differences in exportation.  Element targeting 

approach provides a systematic feedstock selection platform for Technology 1 to produce more 

hydrogen to increase its exportation value from 66.4 t/d (Case A) to 108.0 t/d (Case B and Case C).  In 

addition, recycle use of process waste in Case C increases the availability of biomass resources, thus 
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enable higher production rate of bio-ethanol.  In addition, Table 6-17 presents the total profit of the 

overall system.  BECA approach has shown an improvement over DRVT approach and the 

conventional approach in this case study.  Both DRVT and BECA models significantly improved the 

system by consideration of alternative feedstock for Technologies 1 and 2 via element targeting 

approach.   

 

Table 6- 16: Market demand fulfilled 

Location Product 

A B C 

t/d 
Fulfil 

(wt%) 
t/d 

Fulfil 

(wt%) 
t/d 

Fulfil 

(wt%) 

Demand 1 
Hydrogen 5 100 5 100 5 100 

Bio-ethanol 15 100 15 100 15 100 

Demand 2 
Hydrogen 20 100 20 100 20 100 

Bio-ethanol 13 1000 13 100 13 100 

Demand 3 Power 50 GJ 100 50 GJ 100 50 GJ 100 

Demand 4 Power 70 GJ 100 70 GJ 100 70 GJ 100 

Export 
Hydrogen 66.4 - 108.0 - 108.0 - 

Bio-ethanol 270.7 - 222.4 - 224.6 - 

 

Table 6- 17: Total profit in respective cases 

 
Case 

A B C 

Total profit $ 243.7k /d $ 331.9k /d $ 333.2k /d 

 

With consideration of more underutilised biomass and process waste, the system will have 

more flexibility in supply chain network.  Integration between multiple regional systems could also 

further optimise the overall biomass supply chain system. 

 

However, noted that the proposed element acceptance range for Technology 3 and 

Technology 4 are based on limited literature input and has limited element constraint.  This indicates 

that the technologies may be too flexible in accepting alternative biomasses which may not be 

feasible in real life.  This further highlight the importance of experimental work that focus on 
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construction of element acceptance range and identifying key elements to allow higher chances of 

biomass technology implementation.  The study should also be expended to include elements that 

affecting enzyme or organic activity for complex organic reaction such as fermentation or mineral 

content that may result in catalytic reactions.  For example, impact of mineral content and toxicity of 

biomass feedstock to fermentation, pyrolysis and gasification processes.  In addition, the relation 

between biomass key elements and process outcome in similar technologies can also used as a 

guideline to improve current element acceptance range. 

 

Nevertheless, the integration of biomass supply chain via element targeting as shown in 

BECA approach enhances the flexibility in biomass selection and biomass supply chain network and 

shown a better optimum result as compared to DRVT approach.  This approach rectified current 

biomass industry problem such as biomass shortage or unavailability.  With a proper element 

acceptance range, any biomass or biomass mixture can be used as alternative feedstock for 

respective technology provided the feedstock is within the element acceptance range.  Thus, 

technology implementation is no longer subject to the availability of specific biomass species. 

 

6.4  Sensitivity analysis: Application of element targeting approach in biomass supply 

chain fluctuation  

Both Sections 6.2 and 6.3 have demonstrated the application of element targeting to 

incorporate underutilised biomasses and alternative biomasses into the existing supply chain 

distribution network.  The main philosophy of element targeting approach is to enhance the flexibility 

of technology acceptance towards multiple biomass species, where the determining factors are the 

element characteristic instead of biomass species.  By using this philosophy as the basis, the 

application of element targeting is not limited only to integration of underutilised biomass only.   

 

Due to the enhanced flexibility in biomass feedstock selection, element targeting approach 

can also be implemented to deal with biomass fluctuation scenarios, such as the dynamic nature of 

biomass resources supply.  Two major fluctuations in biomass supply are, i) fluctuation in biomass 
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properties and ii) fluctuation in biomass quantity.  The fluctuation in biomass properties is a very 

common problem.  Factors such as the weather, harvesting efficiency, storage period, delay of 

shipment, seasons, handling, and growth of bacterial have the potential to impact the feedstock 

properties.  Nevertheless, discussions of DRVT and BECA approach in previous sections have shown a 

solid example on dealing with various biomasses with unique properties.  The approaches suggested 

that mixing of biomasses is an alternative solution to ensure consistency of feedstock properties.  

Both models will determine the best biomass ratio to ensure the feedstock is within acceptance 

range.  Thus, using the same concept, sufficient discussion on the application of element targeting 

approach to tackle the fluctuation of resources properties in biomass supply chain network is 

provided in the previous sections.   

 

This section will focus on the discussion of implementation of element targeting approach to 

target the issue of biomass quantity variation.  Fluctuation of biomass quantity can be due to several 

reasons, such as seasonal biomass, harvesting issues, market competition, and logistic delay.  Higher 

biomass generation rate will cause more biomass waste, but many biomasses can be disposed on site 

(especially at plantation site) for nutrient regeneration.  On the other hand, shortage of biomass will 

have more significant impact to the supply chain management.  Conventionally, the counter measure 

is to import the resources from other region.  This will greatly impact the cost of raw material and 

total profit due to the additional expenses on transportation and import duties.  Resource backup at 

storage as a buffer point is another alternative solution.  However, it raised another issue in storage 

management (such as bacteria growth) to ensure biomass quality.  Thus, an alternative counter 

measure is required to handle the issue of raw material availability issue.  Utilising element targeting 

philosophy, fluctuation of biomass quantity can be rectified by replacing the original biomass 

feedstock with alternative biomass without compromising the process performance.  A 

demonstration case study is conducted.  This case study implements DRVT approach in a regional area 

to optimise biomass supply chain network through inconsistency of biomass supply.   
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6.4.1  Case study of element targeting approach application in biomass supply 

fluctuation 

The same biomass regional system from Section 6.2 is used to demonstrate the applicability 

of element targeting in solving biomass supply availability fluctuation.  Thus, the mapping of the 

system can refer to Figure 6-1 in previous section.  The information of average biomass availability 

and market demand, process technologies in respective plants, biomass element characteristics 

properties and element acceptance range for each technology remained unchanged, which 

summarised in Table 6-1, Table 6-2, Table 6-3 and Figure 6-2.  Similarly, only one mode of 

transportation is considered in this case study.  However, four different scenarios of biomass shortage 

are evaluated in this section and are described in Table 6-18.  This is to demonstrate the model 

capability to tackle resources fluctuation and to suggest optimum supply chain network in different 

scenario.    

 

Table 6- 18: Biomass resources fluctuation scenarios 

Case Study Description of biomass resources fluctuation  

(i) All biomass availability fulfilled standard average requirement  

(ii) R1 generate 50% less than standard average amount for each biomass  

(iii) R2 generate 50% less than standard average amount for each biomass 

(iv) Both R1 and R2 generate 50% less than standard average amount for each biomass 

 

DRVT model is used in this case study as the integration approach to optimise the fluctuation 

problem.  General methodology and mathematical model description can refer to Section 6.2.1, and 

model formulation and results are presented in Appendix III.  Table 6-19 tabulated the resources 

availability in each sub-cases.  This is the only difference between the sub-cases to allow the 

comparison of the optimum supply chain network during resources fluctuation.  All cases were solved 

to maximise             by using General Algebraic Modeling System (GAMS) software, version 23.4.  

The problem is solve via linear programming with CPLEX solver using Intel(r) Core(TM) i5-4200U CPU 

at 1.6 GHZ up to 2.30 GHz, 4 GB RAM memory and 64-bit Windows 8 system.   
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Table 6- 19: Information on resources fluctuation 

Location Biomass Availability (t/day) 

Case (i) Case (ii) Case (Iiii) Case (iv) 

R1 Palm shell (PS) 2500 1250 2500 1250 

Oil palm fronds (OPF) 1500 750 1500 750 

Palm oil EFB 2000 1000 2000 1000 

Palm kernel trunk (PKT) 800 400 800 400 

R2 Palm shell (PS) 1750 1750 875 875 

Oil palm fronds (OPF) 2300 2300 1150 1150 

Palm oil EFB 2100 2100 1050 1050 

Palm Mesocarp Fibre (PMF) 750 750 375 375 

R3 Soft wood (SW) 1500 1500 1500 1500 

R4 Hard wood (HW) 1750 1750 1750 1750 

 

6.4.2  Results and discussions 

All cases of fluctuation in biomass availability to reflect the dynamic condition in biomass 

supply chain management is optimised via DRVT approach.  The model provides optimum biomass 

selection and distribution network to maximise the overall profit of the regional system.  As the main 

focus of the study is to evaluate the functionality of element targeting approach to handle biomass 

resources fluctuation, other parameters such as location data, plant capacity, market demand, and 

transportation cost are set to be constant.  Thus, the amount of product send to local market demand 

is remained constant in all four cases.  This also leads to the constant distribution network between 

process plant and market demand due to the constant location between process plant and local 

market location.  Table 6-20 tabulated the distribution network of product from each process 

technology to local market demand, which is the same for all sub-cases.  Nevertheless, the amount of 

product (syngas from Plant 3) exported to other region is impacted due to fluctuation in total raw 

material availability, where Case (i) exported 11800 Nm
3
; Case (ii) exported 9002 Nm

3
; Case (iii) 

exported 7724 Nm
3
; and Case (iv) exported 5279 Nm

3
.   
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Table 6- 20: Biomass resources fluctuation scenarios 

Product delivered to local demand D1 D2 D3 

Plant 1 T1: Bio-oil (t) 1000 - - 

Plant 2 
T2: Syngas (Nm

3
) - 600 350 

T3: Power (MJ) - - 700 

Plant 3 T2: Syngas (Nm
3
) - - - 

Plant 4 T4: Bio-ethanol (t) 850 - - 

 

In addition, due to the fluctuation of biomass availability, the optimum distribution network 

between resource points and process plants are affected.  Thus, the overall raw biomass cost and 

transportation cost are also subject to changes.  Element targeting approach enables the model to 

determine optimum biomass selection based on the element acceptance range of each technology 

and element characteristics of each biomass species.  Biomass with lower raw material cost and 

transportation cost (nearer to process plant) are more favourable to maximise the overall profit.  Thus 

the differences between the four case studies are mainly in the distribution network between 

biomass resources location and process plants, and the maximum feasible amount of product 

generated for exportation.  Table 6-20 shows the distribution of biomass from resources points to 

each process plants for all Case (i), Case (ii), Case (iii), and Case (iv).  The overall profits of each case 

are reported to be RM 808k, RM 602k, RM 339k, and RM 110k respectively.  Overall profit of Case D is 

the lowest among all cases due to the least biomass availability in the system, thus limits the 

production for exportation. 

 

The model optimised the system by suggesting alternative biomass supply chain network and 

feedstock ratio to handle each scenario.  For example, R1 provides 89 % of biomass feedstock (palm 

shell and EFB) for Technology 1 at Plant 1 in Case (i).  Due to unforeseen circumstances where R1 

generates 50 % less biomass as described in Case (ii), an alternative solution is proposed to utilise the 

same biomass species of palm shell from R2 as substitution.  It is interesting to note that the overall 

biomass species ratio is remained constant as shown in Figure 6-19.  This is due to availability of palm 

shell in R2 which is sufficient to operate as backup resource.  However, in the case where R2 generate 

less biomass, Case (iii) and Case (iv), palm kernel trunk from R1 is used as an alternative feedstock for 
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Table 6- 21: Biomass resources fluctuation scenarios 

Biomass 

delivered to 

process plant 

(t) 

Case (i) Case (ii) 

Plant 1, 

T1 

Plant 2, 

T2 

Plant 2, 

T3 

Plant 3, 

T2 

Plant 4, 

T4 

Plant 1, 

T1 

Plant 2, 

T2 

Plant 2, 

T3 

Plant 3, 

T2 

Plant 4, 

T4 

R1 

PS 1367.81 - - - - 1250.00 - - - - 

OPF - 204.99 28.45 1266.56 - - 204.99 28.45 516.56 - 

EFB 554.15 - - - - 554.15 - - - - 

PKT - 284.70 39.51 475.78 - - 284.70 39.51 75.78 - 

R2 

PS - - - - - 117.81 - - - - 

OPF - - - 2300.00 - - - - 2300.00 - 

EFB - - - - 2100.00 - - - - 2100.00 

PMF 247.23 - - - 502.77 247.23 - - - 502.77 

R3 SW - - - 1500.00 - - - - 1500.00 - 

R4 HW - - - 540.51 915.45 - - - 248.10 915.45 

 

Biomass 

delivered to 

process plant 

(t) 

Case (iii)  Case (iv)  

Plant 1, 

T1 

Plant 2, 

T2 

Plant 2, 

T3 

Plant 3, 

T2 

Plant 4, 

T4 

Plant 1, 

T1 

Plant 2, 

T2 

Plant 2, 

T3 

Plant 3, 

T2 

Plant 4, 

T4 

R1 

PS 1487.95 - - - - 1250.00 - - - - 

OPF - 204.99 28.45 1266.56 - - 204.99 28.45 516.56 - 

EFB 270.13 - - - 308.45 189.72 - - - 810.28 

PKT 411.11 284.70 39.51 64.67 - 75.78 284.70 39.51 - - 

R2 

PS - - - - 1651.67 231.58 - - - 643.43 

OPF - - - 1150.00 - - - - 1150.00 - 

EFB - - - - 1050.00 - - - - 1050.00 

PMF - - - - 375.00 375.00 - - - - 

R3 SW - - - 1500.00 - - - - 1054.79 - 

R4 HW - - - - 133.09 47.12 - - - 1014.50 

 

Plant 1 due to limited palm mesocarp fibre in R2.  As both resources from R1 and R2 are affected in 

Case (iv), Plant 1 utilised multiple biomass species from multiple resource locations to provide 

sufficient raw material that fulfilled the element acceptance range of the technology.  The result 

shows that the integration of biomass via element characteristic enabled flexibility in biomass 
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selection to ensure consistence production rate to fulfilled market demand.  The model guarantees 

biomass feedstock is within element acceptance range of respective technology to ensure consistency 

in process operation.  Similar result is obtained when comparing the biomass feedstock ratio of 

Technology 4 in Plant 4 in Case (iv) with respect to other cases.  Due to the limitation of biomass from 

R1 and R2, hard wood is utilised as alternative biomass feedstock to replace palm mesocarp fibre. 

 

Based on the result presented, it shows that the element targeting act as a platform to 

evaluate the status of biomass availability and to propose an optimum supply chain network in order 

to achieve the objective function.  This provides opportunity for management to determine the best 

solution in critical event of fluctuation in biomass availability.  The method can be implemented for 

fluctuation of market demand, fluctuation of element acceptance range of process technology due to 

process modification, changes of biomass collection point, introduction of new biomass species or 

resources, and fluctuation of biomass quality in terms of different value of element characteristics.  

Nevertheless, the applicability of element targeting approach is still subject to the regional biomass 

system condition.  On the other hand, more element characteristics of biomass can be considered in 

future work to ensure consistency in process operation. 
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Figure 6- 19: Optimum biomass feedstock ratio for each process technology in each case
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6.5  Conclusions  

This chapter has well demonstrated the implementation of element targeting approach into 

biomass supply chain optimisation model.  The advantages and differences between the state-of-the-

art integration approach and conventional approach are discussed via supply chain superstructures 

and case studies.  The first case study showed that DRVT approach enables the model to consider 

underutilised biomasses as alternative process feedstock to reduce the raw material and 

transportation cost.  Second case study proposed another modelling approach, BECA which further 

improves the DRVT approach by incorporate process waste/by-product into consideration as 

alternative resource.  This approach includes the study of potential of utilisation of resources from 

each process stage.  A recycle loop is created within the model to reutilise the process waste and the 

result has shown an improvement over DRVT approach in the case study.  The final case study 

demonstrated the application of element targeting approach in biomass supply chain management to 

solve the fluctuation problems in biomass supply.  This sensitive analysis proposed that the element 

targeting is able to provide the optimum supply chain network based on the fluctuation of biomass 

availability.   

 

From the discussion, the introduction of element targeting into conventional biomass supply 

chain optimisation model is undoubtedly improved the existing system.  Conventional integration 

approaches restrict the process technology to select specific biomass species, thus many potential 

biomass species were not integrated into the system for consideration, leading to infeasible of 

biomass industry implementation in many region.  With the introduction of element targeting, all 

biomass including underutilised biomass are used at their full potential.  Flexibility of technology 

feedstock is improved without process modification to break through the conventional feedstock 

selection method based on biomass species.  The case studies have shown that by integrating 

underutilised biomass via element characteristics is able to improve the current system and the 

overall total profit without process modification or introduction of new technology.  Nevertheless, it 

is important to highlight that the success of integrating underutilised biomass is depending on the 

individual biomass regional system.  There is a possibility that a regional biomass system where 
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utilising alternative biomasses are infeasible, which could potentially due to low availability, far 

location, difficulty in collection and significant differences in properties.  Nonetheless, element 

targeting approach provides a system evaluation platform to consider potential application of those 

resources.  In conclusion, implementation of element targeting approach into existing conventional 

supply chain optimisation model enable a potential great improvement to the current biomass 

system.  
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Chapter 7:  

CONCLUSIONS AND FUTURE 
WORKS 

 
7.1  Conclusions 

This thesis has illustrated a state-of-the-art philosophy for biomass integration in supply 

chain optimisation model.  Upon the detailed literature review, several recommendations to fill in the 

gaps of current biomass supply chain network optimisation are proposed and discussed in Chapter 2.  

Based on the review, underutilisation of biomass is one of the main factors that restrict the full 

potential of biomass industry and its implementation.  On the other hand, research has conducted to 

shows that the biomass technology performance has strong relation with feedstock element 

characteristics instead of biomass species.  Thus, an innovative concept of element targeting 

approach is proposed in Chapter 3 to integrate the underutilised biomass into the existing biomass 

supply chain network via element characteristics.  As the core philosophy of this research, element 

targeting approach transforms the limitation of the current system (which is underutilisation of 

biomass) into advantage of the improved supply chain network.  Widely available and lower cost of 

underutilised biomass integrates into the system as alternative resources increases the flexibility of 

supply chain distribution network and further optimises the overall system.   

 

Due to the novelty of the concept, concept verification is conducted to ensure applicability of 

the philosophy in real life scenario.  Chapter 4 discussed the implementation of element targeting 

based on literature data.  The results showed that it is possible to implement the approach into the 

technologies available in literature.  In order words, the approach has proven to be feasible to 

implement into existing technologies.  This is the most important advantage as the proposed element 

targeting approach can be implemented without major modification to the existing process and 

technology, which greatly minimises the modification and construction cost of equipment and 

process.  Nevertheless, limitation and uncertainties of information within literature may result in 
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inaccuracy of the verification.  In order to ensure the feasibility of the approach, element targeting is 

again verified in Chapter 5, in this case via experimental work.  Biomass mixture properties prediction 

based on linear relation of mass ratio is proven to be within the acceptable range.  The concept of 

element acceptance range, which is the determining factor of technology flexibility in element 

targeting integration is analysed via biomass pyrolysis.  The research has again showed promising 

result that the biomass technology performances are highly based on feedstock element 

characteristics and construction of element acceptance range is possible to allow process output 

prediction.   

 

Upon verification of the concept, element targeting is integrated into biomass supply chain 

optimisation model.  Chapter 6 discussed two models, Demand-Resources Value Targeting (DRVT) and 

Biomass Element Cycle Analysis (BECA), which both have shown a great improvement over the 

conventional biomass integration approach.  The main improvement over the conventional approach 

is found to be the enhanced flexibility of integrating alternative and multiple biomasses into process 

technology.  Based on the results, underutilised biomasses are considered within the supply chain 

network and are utilised as valuable feedstock.  This further improves the overall system by 

minimising the biomass waste and waste management cost.  Another case study has been conducted 

and the results showed that the element targeting approach is also able to deal with the fluctuation 

problem of biomass supply.  The approach optimises the biomass distribution network by replacing 

the biomass shortage with alternative biomass as the solution for fluctuation of biomass availability.      

 

In conclusion, intensive research has been conducted on current biomass supply chain and a 

novel integration approach, element targeting approach is introduced.  This thesis covers the overall 

process from analysing the research gaps, introduction of novel concept, verification of concept, and 

demonstration of applications.  Element targeting approach has proven to be a systematic and well 

developed integration platform to improve the existing conventional biomass supply chain 

distribution network management and optimisation model.  This approach provides a systematic 

platform via biomass element characteristics and technology element acceptance range to diversify 
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the technology feedstock selection and biomass applications.  The proposed models show higher level 

of supply chain integration with improved flexibility without major process modification.   

 

7.2  Future works 

As discussed above, intensive research has been conducted to improve the existing biomass 

supply chain integration and optimisation model via the novel element targeting approach.  All three 

objectives stated in the beginning of research (Section 1.3) have fulfilled.  The scope of work has 

covers the relevant topics to ensure the applicability of the new concept.  Nevertheless, much 

improvement of element targeting can be expected.  This also creates a sustainable research chain for 

continuity of research that aim for a better solution to achieve sustainability.  Few potential future 

works were identified and can be separated into two research fields.   

 

7.2.1  Future works in biomass process technology development 

The first part of future work focus on the implementation of element targeting approach into 

development of biomass process technology.  The scope will focus more on laboratory experiment to 

construct element acceptance range for respective technology.  According to this research, study on 

the element acceptance range is a very critical step to enable integration of multiple biomasses.  The 

conventional development of biomass technology has rarely explored the flexibility of feedstock 

tolerances.  This research gaps normally leads to difficulty to implement well developed technology in 

other region that do not have the specific biomass species.  This research work has only conducted 

the verification of element acceptance range on biomass pyrolysis due to resource and time 

constraints.  Nevertheless, the following are some of the potential work as the research continuity:  

 

I. Expansion of biomass properties integration research to consider non-mass fraction 

conversed properties, such as biomass pH value, thermal conductivity, density, and etc.  

These properties have the potential to be the key elements for certain biomass technologies.  

Thus further analysis and verification into this scope of work will provide a good biomass 
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properties estimation platform to allow more biomass properties to be considered in the 

biomass selection platform and element targeting approach.   

II. Conduct element acceptance range analysis on other biomass process such as fermentation, 

gasification, and combustion.  This research can applied on process technology that has 

substantial development, where the optimum operating conditions are determined.  

Construction of element acceptance range will help to increase the value of respective 

technology due to increase potential of implementation in various regions instead of limiting 

to area with specific biomass feedstock.  Besides, construction of element acceptance range 

is strategized at later stage of experiment to minimise the research cost where only the 

optimum operating conditions is used. 

III. Increase biomass species variety to study wider range of feedstock element characteristics.  

This will allow the technology to be tested on bigger feedstock fluctuation and hence to 

strengthen the proposed element acceptance range.   

IV. Consideration of pretreatment process to study their impact to element acceptance range.  

For example, high feedstock moisture content can be rectified via drying process provided 

that it is economically feasible.   

V. Integration of process condition with element acceptance range.  The idea of this potential 

research scope is to analyse the impact of each process conditions to the element 

acceptance range of respective technology.  The process conditions to be considered are 

feedstock size, flowrate, temperature, pressure, equipment setup, and catalytic reaction. 

These will create multi-dimensions radar chart or a co-relation with respective to element 

characteristics and operating conditions.   

 

7.2.2  Future works in biomass supply chain optimisation development 

Another potential future work for this research is the expansion of the proposed 

mathematical models.  At the moment, DRVT and BECA approach only consider the main factors in 

biomass supply chain, namely the location factor, raw material cost, operating cost, transportation 
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cost and market demand.  More variables in supply chain network management can be integrated in 

parallel with element targeting approach. 

  

I. Enhance the model by consideration of centralised and de-centralised approach, storage 

point consideration, and scheduling.  This will create a more robust model to be 

implemented in real life industry scenarios.    

II. Inclusion of Geographical Information System to reflect the road and traffic conditions.  

These inputs are also a critical factor to determine the optimum distribution network.  Live 

time information and prediction capability will further strengthen the future model 

application.    

III. Consideration of uncertainty cases in resources availability and quality, logistic issue, process 

upset, and market fluctuation.  No doubt that biomass industry is always in a dynamic state 

with many unforeseen scenarios.  Thus the optimisation model can be improved to handle 

those unexpected variation and offers a better decision making tool.   

 

The proposed future works in two different research fields based on the concept of element 

targeting is expected to improve the current research and development to have wider applications in 

real life.  This research has produced high value information for the beneficial of current biomass 

process technology and supply chain management, as well as the research continuity for future 

development.
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APPENDIX I 

Case study 1A 

*Model formulation for sub-case study 1A 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    0       0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       0       0       0       0       

0       0       0 

R3       0       0       0       0       0       0       0       0       

0       0       0 

R4       0       0       0       0       0       0       0       0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0.461   0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 
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PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       1.94    0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       10.3    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 
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BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0       0       0       0       0       0 

PMF      0       0       0       0       0       0 

SW       0       0       0       0       0       0 

HW       0       0       0       0       0       0 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 
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SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 

Hcel     0.266   0.454   0.454   0.454   0.196 

Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 
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* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.5 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 
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Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l; 
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Case study 1B 

*Model formulation for sub-case study 1B 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    800     0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       750     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0.461   0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       1.94    0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 
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PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       10.3    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      Export 
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PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 

Hcel     0.266   0.454   0.454   0.454   0.196 
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Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

    

 

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.5 /; 

 

Positive Variables 
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Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 



Appendix I 

 

 212 
 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l; 
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Case study 2A 

*Model formulation for sub-case study 2A 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    0       0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       0       0       0       0       

0       0       0 

R3       0       0       0       0       0       0       0       0       

0       0       0 

R4       0       0       0       0       0       0       0       0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0.461   0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       1.94    0       0       0 

BE       0       0       0       0       0 
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SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       10.3    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       999999999990 

BE       1550    0       0       99999999999990 

SG       0       860     350     999999999990 

PW       0       0       1200    0        ; 

 

Table demand_lower(m,k) 
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         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 
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Hcel     0.266   0.454   0.454   0.454   0.196 

Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

   

 

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.5 /; 

 

Positive Variables 
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Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 
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E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l; 
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Case study 2B 

*Model formulation for sub-case study 2B 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    800     0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       750     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0.461   0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       1.94    0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 
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PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       10.3    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       99999999990 

BE       1550    0       0       99999999990 

SG       0       860     350     999999999990 

PW       0       0       1200    0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      Export 



Appendix I 

 

 221 
 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1600    0       0       0 

BE       1550    0       0       0 

SG       0       860     350     0 

PW       0       0       1200    0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 

Hcel     0.266   0.454   0.454   0.454   0.196 
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Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

 

  

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.5 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 
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Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 
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* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l; 
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APPENDIX II 

Case study A 

* Case study A: Conventional approach 

 

set 

i resources /R1, R2, R3, R4, R5, R6/ 

j technology /T1, T2, T3, T3b, T4/ 

k demand /D1, D2, D3, D4, Export/ 

m material /Cc, Pw, Hn, Tr, Cr, Tw, Po, H2, Bio-E, Gp/ 

e element /Ash, FC, VM, MC, HV, Cell, H-cell/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

Z1(m,j), Z1b(j), Z2(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         Cc      Pw      Hn      Tr      Cr      Tw      Po      H2      

Bio-E   Gp 

R1       3000000 0       0       0       0       0       0       0       

0       0 

R2       0       2400000 0       0       0       0       0       0       

0       0 

R3       0       0       0       0       0       0       0       0       

0       0 

R4       0       0       0       0       0       0       0       0       

0       0 

R5       0       0       0       0       0       0       0       0       

0       0 

R6       0       0       0       0       0       0       0       0       

0       0; 

 

 

* technology conversion 

Table yieldT1(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0.03046 0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table yieldT2(m,jp) 

         T1      T2      T3      T3b     T4 
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Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0.68    0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0.056   0       0       0; 

 

Table yieldT3(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0.29    0       0 

Gp       0       0       0       0       0; 

 

Table yieldT3b(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0.23    0 

Gp       0       0       0       0       0; 

 

Table yieldT4(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0.3 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table production_cost(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0.019   0       0       0.0152 

H2       4.92    0       0       0       0 

Bio-E    0       0       0.57    0.57    0 
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Gp       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   9999999999999999 

H2       5000    20000   0       0       9999999999999999 

Bio-E    15000   13000   0       0       9999999999999999 

Gp       0       0       0       0       0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   0 

H2       5000    20000   0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         T1      T2      T3      T3b     T4 

Cc       1       1       1       1       1 

Pw       1       1       1       1       1 

Hn       1       1       1       1       1 

Tr       1       1       1       1       1 

Cr       1       1       1       1       1 

Tw       1       1       1       1       1 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       1       1       1       1       1   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k),E5b(m,k), E2b(j), 

E4b(jp,m); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=Z1(m,

j); 

 

E2b(j)..         sum((m),(Z1(m,j)))=e=Z1b(j); 

 

 

* ELEMENT 

Table element(m,e) 
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         Ash     FC      VM      MC      HV      Cell    H-cell 

Cc       0.029   0.174   0.727   0.07    0.192   0.30    0.15 

Pw       0.016   0.19    0.713   0.08    0.212   0.40    0.200 

Hn       0.017   0.18    0.735   0.068   0.194   0.382   0.121 

Tr       0.037   0.165   0.723   0.075   0.19    0.24    0.17 

Cr       0.15    0.067   0.663   0.12    0.158   0.311   0.054 

Tw       0.049   0.0     0.803   0.148   0.196   0.38    0.25 

Po       0       0       0       0       0       0       0 

H2       0       0       0       0       0       0       0 

Bio-E    0       0       0       0       0       0       0 

Gp       0.081   0.844   0.065   0.01    0.299   0       0  ; 

 

Table e_upper(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.029   0.016   0       0       0 

FC       0.174   0.19    0       0       0 

VM       0.727   0.713   0       0       0 

MC       0.07    0.08    0       0       0 

HV       0.192   0.212   0       0       0 

Cell     0.30    0.40    0       0       0 

H-cell   0.15    0.20    0       0       0     ; 

 

Table e_lower(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.029   0.016   0       0       0 

FC       0.174   0.19    0       0       0 

VM       0.727   0.713   0       0       0 

MC       0.07    0.08    0       0       0 

HV       0.192   0.212   0       0       0 

Cell     0.30    0.40    0       0       0 

H-cell   0.15    0.20    0       0       0     ; 

 

 

Positive Variable 

Z3(m,e,j),Z3b(e,j),Z3c(e,j),Z3d(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j),E6c(e,j),E6d(e,j); 

 

* Element received at T 

E6(m,e,j).. Z1(m,j)*element(m,e)=e=Z3(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),Z3(m,e,j))=e=Z3b(e,j); 

 

E6c(e,j)..  e_upper(e,j)*Z1b(j)=e=Z3c(e,j); 

E6d(e,j)..  e_lower(e,j)*Z1b(j)=e=Z3d(e,j); 

 

 

E7(e,j).. sum((m),Z3(m,e,j))=l=e_upper(e,j)*Z1b(j); 

E8(e,j).. sum((m),Z3(m,e,j))=g=e_lower(e,j)*Z1b(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 
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E3(m,jp).. Z1b('T1')*yieldT1(m,jp) + Z3b('Hv','T2')*yieldT2(m,jp) + 

Z3b('Cell','T3')*yieldT3(m,jp) + Z3b('H-cell','T3b')*yieldT3b(m,jp) + 

Z3b('Hv','T4')*yieldT4(m,jp)=e=Z2(m,jp); 

 

 

 

* Product constraint 

E4(m,jp).. (sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=Z2(m,jp); 

 

*Recycle constraint 

E4b(jp,m)..    sum((j),TtoT(jp,m,j))=l=Z2(m,jp)-

sum((k),TtoD(jp,m,k)); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

 

 

* Transportation 

Parameter 

transcost transportation cost $ per tonne per km / 0.0001 /; 

 

Positive Variables 

Z4(i,j), Z5(j,jp), Z6(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         T1      T2      T3      T3b     T4 

R1       40.00   36.06   89.44   89.44   44.72 

R2       31.62   53.85   76.16   76.16   58.31 

R3       94.34   58.31   50.00   50.00   50.00 

R4       64.03   31.62   64.03   64.03   30.00 

R5       50.00   28.28   30.00   30.00   22.36 

R6       76.16   64.03   31.62   31.62   58.31     ; 

 

Table distance_TtoT(j,jp) 

         T1      T2      T3      T3b     T4 

T1       0.00    36.05   80.00   80.00   44.72 

T2       36.06   0.00    53.85   53.85   10.00 

T3       80.00   53.85   0.00    0.00    44.72 

T3b      80.00   53.85   0.00    0.00    44.72 

T4       44.72   10.00   44.72   44.72   0.00     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      D4      Export 

T1       53.85   36.06   36.06   44.72   94.87 

T2       20.00   40.00   0.00    10.00   78.10 

T3       36.06   53.85   53.85   44.72   31.62 

T3b      36.06   53.85   53.85   44.72   31.62 

T4       0.00    41.23   10.00   0.00    70.71 ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Z4(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Z5(j,jp); 
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E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Z6(jp,k); 

E12.. 

(sum((i,j),Z4(i,j)))+(sum((j,jp),Z5(j,jp)))+(sum((jp,k),Z6(jp,k)))=e=

Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /Cc 0.1, Pw 0.190, Hn 0.040, Tr 0.030, Cr 

0.025, Tw 0.0475, Po 0.396, H2 10, Bio-E 1.57, Gp 0/; 

 

Positive Variable 

Z7(m),Total_biomass_cost, Z8(m,jp), Total_Production_Cost, 

Z9(m),Total_sell, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E14(m,jp), E14b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Total_biomass_cost; 

 

* Total production cost 

E14(m,jp).. Z2(m,jp)*production_cost(m,jp)=e=z8(m,jp); 

E14b.. sum((m,jp),z8(m,jp))=e=Total_Production_Cost; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Total_sell; 

 

E16.. Total_sell-Total_Production_Cost-Total_biomass_cost=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, totalprofit.l; 
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Case study B 

* Case study B: DRVT approach 

 

set 

i resources /R1, R2, R3, R4, R5, R6/ 

j technology /T1, T2, T3, T3b, T4/ 

k demand /D1, D2, D3, D4, Export/ 

m material /Cc, Pw, Hn, Tr, Cr, Tw, Po, H2, Bio-E, Gp/ 

e element /Ash, FC, VM, MC, HV, Cell, H-cell/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

Z1(m,j), Z1b(j), Z2(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         Cc      Pw      Hn      Tr      Cr      Tw      Po      H2      

Bio-E   Gp 

R1       3000000 0       0       0       0       0       0       0       

0       0 

R2       0       2400000 0       0       0       500000  0       0       

0       0 

R3       0       0       300000  0       0       0       0       0       

0       0 

R4       0       0       0       950000  0       0       0       0       

0       0 

R5       0       0       0       0       500000  0       0       0       

0       0 

R6       0       0       0       0       0       1500000 0       0       

0       0; 

 

 

* technology conversion 

Table yieldT1(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0.03046 0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table yieldT2(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 
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Po       0       0.68    0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0.056   0       0       0; 

 

Table yieldT3(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0.29    0       0 

Gp       0       0       0       0       0; 

 

Table yieldT3b(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0.23    0 

Gp       0       0       0       0       0; 

 

Table yieldT4(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0.3 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table production_cost(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0.019   0       0       0.0152 

H2       4.92    0       0       0       0 

Bio-E    0       0       0.57    0.57    0 

Gp       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 
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Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   9999999999999999 

H2       5000    20000   0       0       9999999999999999 

Bio-E    15000   13000   0       0       9999999999999999 

Gp       0       0       0       0       0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   0 

H2       5000    20000   0       0       0 

Bio-E    15000   13000   0       0       0 

Gp       0       0       0       0       0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         T1      T2      T3      T3b     T4 

Cc       1       1       1       1       1 

Pw       1       1       1       1       1 

Hn       1       1       1       1       1 

Tr       1       1       1       1       1 

Cr       1       1       1       1       1 

Tw       1       1       1       1       1 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k),E5b(m,k), E2b(j), 

E4b(jp,m); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=Z1(m,

j); 

 

E2b(j)..         sum((m),(Z1(m,j)))=e=Z1b(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Ash     FC      VM      MC      HV      Cell    H-cell 

Cc       0.029   0.174   0.727   0.07    0.192   0.30    0.15 

Pw       0.016   0.19    0.713   0.08    0.212   0.40    0.200 

Hn       0.017   0.18    0.735   0.068   0.194   0.382   0.121 

Tr       0.037   0.165   0.723   0.075   0.19    0.24    0.17 

Cr       0.15    0.067   0.663   0.12    0.158   0.311   0.054 



Appendix II 

 

 234 
 

Tw       0.049   0.0     0.803   0.148   0.196   0.38    0.25 

Po       0       0       0       0       0       0       0 

H2       0       0       0       0       0       0       0 

Bio-E    0       0       0       0       0       0       0 

Gp       0.081   0.844   0.065   0.01    0.299   0       0  ; 

 

Table e_upper(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.03045 0.0168  1       1       1 

FC       0.1827  0.1995  1       1       1 

VM       0.76335 0.7518  1       1       1 

MC       0.0735  0.084   1       1       0.5 

HV       0.2016  0.2226  1       1       1 

Cell     0.315   0.42    1       1       1 

H-cell   0.1575  0.21    1       1       1; 

 

Table e_lower(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.02755 0.0152  0       0       0 

FC       0.1653  0.1805  0       0       0 

VM       0.69065 0.6802  0       0       0 

MC       0.0665  0.076   0       0       0 

HV       0.1824  0.2014  0       0       0 

Cell     0.285   0.38    0       0       0 

H-cell   0.1425  0.19    0       0       0     ; 

 

 

Positive Variable 

Z3(m,e,j),Z3b(e,j),Z3c(e,j),Z3d(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j),E6c(e,j),E6d(e,j); 

 

* Element received at T 

E6(m,e,j).. Z1(m,j)*element(m,e)=e=Z3(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),Z3(m,e,j))=e=Z3b(e,j); 

 

E6c(e,j)..  e_upper(e,j)*Z1b(j)=e=Z3c(e,j); 

E6d(e,j)..  e_lower(e,j)*Z1b(j)=e=Z3d(e,j); 

 

 

E7(e,j).. sum((m),Z3(m,e,j))=l=e_upper(e,j)*Z1b(j); 

E8(e,j).. sum((m),Z3(m,e,j))=g=e_lower(e,j)*Z1b(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. Z1b('T1')*yieldT1(m,jp) + Z3b('Hv','T2')*yieldT2(m,jp) + 

Z3b('Cell','T3')*yieldT3(m,jp) + Z3b('H-cell','T3b')*yieldT3b(m,jp) + 

Z3b('Hv','T4')*yieldT4(m,jp)=e=Z2(m,jp); 

 

 

 

* Product constraint 

E4(m,jp).. (sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=Z2(m,jp); 
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*Recycle constraint 

E4b(jp,m)..    sum((j),TtoT(jp,m,j))=l=Z2(m,jp)-

sum((k),TtoD(jp,m,k)); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

       

 

* Transportation 

Parameter 

transcost transportation cost $ per tonne per km / 0.0001 /; 

 

Positive Variables 

Z4(i,j), Z5(j,jp), Z6(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         T1      T2      T3      T3b     T4 

R1       40.00   36.06   89.44   89.44   44.72 

R2       31.62   53.85   76.16   76.16   58.31 

R3       94.34   58.31   50.00   50.00   50.00 

R4       64.03   31.62   64.03   64.03   30.00 

R5       50.00   28.28   30.00   30.00   22.36 

R6       76.16   64.03   31.62   31.62   58.31     ; 

 

Table distance_TtoT(j,jp) 

         T1      T2      T3      T3b     T4 

T1       0.00    36.05   80.00   80.00   44.72 

T2       36.06   0.00    53.85   53.85   10.00 

T3       80.00   53.85   0.00    0.00    44.72 

T3b      80.00   53.85   0.00    0.00    44.72 

T4       44.72   10.00   44.72   44.72   0.00     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      D4      Export 

T1       53.85   36.06   36.06   44.72   94.87 

T2       20.00   40.00   0.00    10.00   78.10 

T3       36.06   53.85   53.85   44.72   31.62 

T3b      36.06   53.85   53.85   44.72   31.62 

T4       0.00    41.23   10.00   0.00    70.71 ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Z4(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Z5(j,jp); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Z6(jp,k); 

E12.. 

(sum((i,j),Z4(i,j)))+(sum((j,jp),Z5(j,jp)))+(sum((jp,k),Z6(jp,k)))=e=

Ttranscost; 

 

* TRANSPORTATION end 
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* Profit 

Parameter 

value(m) selling value /Cc 0.1, Pw 0.190, Hn 0.040, Tr 0.030, Cr 

0.025, Tw 0.0475, Po 0.396, H2 10, Bio-E 1.57, Gp 0/; 

 

Positive Variable 

Z7(m),Total_biomass_cost, Z8(m,jp), Total_Production_Cost, 

Z9(m),Total_sell, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E14(m,jp), E14b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Total_biomass_cost; 

 

* Total production cost 

E14(m,jp).. Z2(m,jp)*production_cost(m,jp)=e=z8(m,jp); 

E14b.. sum((m,jp),z8(m,jp))=e=Total_Production_Cost; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Total_sell; 

 

E16.. Total_sell-Total_Production_Cost-Total_biomass_cost=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, totalprofit.l; 
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Case study C 

* Case study C: BECA approach 

 

set 

i resources /R1, R2, R3, R4, R5, R6/ 

j technology /T1, T2, T3, T3b, T4/ 

k demand /D1, D2, D3, D4, Export/ 

m material /Cc, Pw, Hn, Tr, Cr, Tw, Po, H2, Bio-E, Gp/ 

e element /Ash, FC, VM, MC, HV, Cell, H-cell/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

Z1(m,j), Z1b(j), Z2(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         Cc      Pw      Hn      Tr      Cr      Tw      Po      H2      

Bio-E   Gp 

R1       3000000 0       0       0       0       0       0       0       

0       0 

R2       0       2400000 0       0       0       500000  0       0       

0       0 

R3       0       0       300000  0       0       0       0       0       

0       0 

R4       0       0       0       950000  0       0       0       0       

0       0 

R5       0       0       0       0       500000  0       0       0       

0       0 

R6       0       0       0       0       0       1500000 0       0       

0       0; 

 

* technology conversion 

Table yieldT1(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0.03046 0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table yieldT2(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0.68    0       0       0 
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H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0.056   0       0       0; 

 

Table yieldT3(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0.29    0       0 

Gp       0       0       0       0       0; 

 

Table yieldT3b(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0.23    0 

Gp       0       0       0       0       0; 

 

Table yieldT4(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       0       0       0.3 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       0       0       0       0       0; 

 

Table production_cost(m,jp) 

         T1      T2      T3      T3b     T4 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0.019   0       0       0.0152 

H2       4.92    0       0       0       0 

Bio-E    0       0       0.57    0.57    0 

Gp       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 
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Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   9999999999999999 

H2       5000    20000   0       0       9999999999999999 

Bio-E    15000   13000   0       0       9999999999999999 

Gp       0       0       0       0       0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      D4      Export 

Cc       0       0       0       0       0 

Pw       0       0       0       0       0 

Hn       0       0       0       0       0 

Tr       0       0       0       0       0 

Cr       0       0       0       0       0 

Tw       0       0       0       0       0 

Po       0       0       50000   70000   0 

H2       5000    20000   0       0       0 

Bio-E    15000   13000   0       0       0 

Gp       0       0       0       0       0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         T1      T2      T3      T3b     T4 

Cc       1       1       1       1       1 

Pw       1       1       1       1       1 

Hn       1       1       1       1       1 

Tr       1       1       1       1       1 

Cr       1       1       1       1       1 

Tw       1       1       1       1       1 

Po       0       0       0       0       0 

H2       0       0       0       0       0 

Bio-E    0       0       0       0       0 

Gp       1       1       1       1       1   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k),E5b(m,k), E2b(j), 

E4b(jp,m); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=Z1(m,

j); 

 

E2b(j)..         sum((m),(Z1(m,j)))=e=Z1b(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Ash     FC      VM      MC      HV      Cell    H-cell 

Cc       0.029   0.174   0.727   0.07    0.192   0.30    0.15 

Pw       0.016   0.19    0.713   0.08    0.212   0.40    0.200 

Hn       0.017   0.18    0.735   0.068   0.194   0.382   0.121 

Tr       0.037   0.165   0.723   0.075   0.19    0.24    0.17 

Cr       0.15    0.067   0.663   0.12    0.158   0.311   0.054 

Tw       0.049   0.0     0.803   0.148   0.196   0.38    0.25 
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Po       0       0       0       0       0       0       0 

H2       0       0       0       0       0       0       0 

Bio-E    0       0       0       0       0       0       0 

Gp       0.081   0.844   0.065   0.01    0.299   0       0  ; 

 

Table e_upper(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.03045 0.0168  1       1       1 

FC       0.1827  0.1995  1       1       1 

VM       0.76335 0.7518  1       1       1 

MC       0.0735  0.084   1       1       0.5 

HV       0.2016  0.2226  1       1       1 

Cell     0.315   0.42    1       1       1 

H-cell   0.1575  0.21    1       1       1; 

 

Table e_lower(e,j) 

         T1      T2      T3      T3b     T4 

Ash      0.02755 0.0152  0       0       0 

FC       0.1653  0.1805  0       0       0 

VM       0.69065 0.6802  0       0       0 

MC       0.0665  0.076   0       0       0 

HV       0.1824  0.2014  0       0       0 

Cell     0.285   0.38    0       0       0 

H-cell   0.1425  0.19    0       0       0     ; 

 

 

Positive Variable 

Z3(m,e,j),Z3b(e,j),Z3c(e,j),Z3d(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j),E6c(e,j),E6d(e,j); 

 

* Element received at T 

E6(m,e,j).. Z1(m,j)*element(m,e)=e=Z3(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),Z3(m,e,j))=e=Z3b(e,j); 

 

E6c(e,j)..  e_upper(e,j)*Z1b(j)=e=Z3c(e,j); 

E6d(e,j)..  e_lower(e,j)*Z1b(j)=e=Z3d(e,j); 

 

 

E7(e,j).. sum((m),Z3(m,e,j))=l=e_upper(e,j)*Z1b(j); 

E8(e,j).. sum((m),Z3(m,e,j))=g=e_lower(e,j)*Z1b(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. Z1b('T1')*yieldT1(m,jp) + Z3b('Hv','T2')*yieldT2(m,jp) + 

Z3b('Cell','T3')*yieldT3(m,jp) + Z3b('H-cell','T3b')*yieldT3b(m,jp) + 

Z3b('Hv','T4')*yieldT4(m,jp)=e=Z2(m,jp); 

 

* Product constraint 

E4(m,jp).. (sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=Z2(m,jp); 

 

*Recycle constraint 
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E4b(jp,m)..    sum((j),TtoT(jp,m,j))=l=Z2(m,jp)-

sum((k),TtoD(jp,m,k)); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

 

         

* Transportation 

Parameter 

transcost transportation cost $ per tonne per km / 0.0001 /; 

 

Positive Variables 

Z4(i,j), Z5(j,jp), Z6(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         T1      T2      T3      T3b     T4 

R1       40.00   36.06   89.44   89.44   44.72 

R2       31.62   53.85   76.16   76.16   58.31 

R3       94.34   58.31   50.00   50.00   50.00 

R4       64.03   31.62   64.03   64.03   30.00 

R5       50.00   28.28   30.00   30.00   22.36 

R6       76.16   64.03   31.62   31.62   58.31     ; 

 

Table distance_TtoT(j,jp) 

         T1      T2      T3      T3b     T4 

T1       0.00    36.05   80.00   80.00   44.72 

T2       36.06   0.00    53.85   53.85   10.00 

T3       80.00   53.85   0.00    0.00    44.72 

T3b      80.00   53.85   0.00    0.00    44.72 

T4       44.72   10.00   44.72   44.72   0.00     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      D4      Export 

T1       53.85   36.06   36.06   44.72   94.87 

T2       20.00   40.00   0.00    10.00   78.10 

T3       36.06   53.85   53.85   44.72   31.62 

T3b      36.06   53.85   53.85   44.72   31.62 

T4       0.00    41.23   10.00   0.00    70.71 ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Z4(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Z5(j,jp); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Z6(jp,k); 

E12.. 

(sum((i,j),Z4(i,j)))+(sum((j,jp),Z5(j,jp)))+(sum((jp,k),Z6(jp,k)))=e=

Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 
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value(m) selling value /Cc 0.1, Pw 0.190, Hn 0.040, Tr 0.030, Cr 

0.025, Tw 0.0475, Po 0.396, H2 10, Bio-E 1.57, Gp 0/; 

 

Positive Variable 

Z7(m),Total_biomass_cost, Z8(m,jp), Total_Production_Cost, 

Z9(m),Total_sell, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E14(m,jp), E14b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Total_biomass_cost; 

 

* Total production cost 

E14(m,jp).. Z2(m,jp)*production_cost(m,jp)=e=z8(m,jp); 

E14b.. sum((m,jp),z8(m,jp))=e=Total_Production_Cost; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Total_sell; 

 

E16.. Total_sell-Total_Production_Cost-Total_biomass_cost=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, totalprofit.l; 
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APPENDIX III 

Case study (i) 

* Case study (i) 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    800     0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       750     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0.461   0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 
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PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       1.94    0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       1.94    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 
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BO       1000    0       0       99999999990 

BE       850     0       0       99999999990 

SG       0       600     350     999999999990 

PW       0       0       700     0        ; 

 

Table demand_lower(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       0 

BE       850     0       0       0 

SG       0       600     350     0 

PW       0       0       700     0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 
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BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 

Hcel     0.266   0.454   0.454   0.454   0.196 

Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 
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* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.25 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 

 

Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 



Appendix III 

 

 248 
 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 

 

* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, Totalprofit.l; 
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Case study (ii) 

* Case study (ii) 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       1250    750     1000    400     0       0       0       0       

0       0       0 

R2       1750    2300    2100    0       750     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0.461   0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 
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SG       0       1.94    0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       1.94    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       99999999990 

BE       850     0       0       99999999990 

SG       0       600     350     999999999990 

PW       0       0       700     0        ; 

 

Table demand_lower(m,k) 
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         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       0 

BE       850     0       0       0 

SG       0       600     350     0 

PW       0       0       700     0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 

Hcel     0.266   0.454   0.454   0.454   0.196 
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Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

 

 

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.25 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 
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Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

       

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 

 

* Total product send to D 
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E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, Totalprofit.l; 
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Case study (iii) 

* Case study (iii) 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       2500    1500    2000    800     0       0       0       0       

0       0       0 

R2       8750    1150    1050    0       375     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0.461   0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 
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SG       0       1.94    0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       1.94    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       99999999990 

BE       850     0       0       99999999990 

SG       0       600     350     999999999990 

PW       0       0       700     0        ; 

 

Table demand_lower(m,k) 
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         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       0 

BE       850     0       0       0 

SG       0       600     350     0 

PW       0       0       700     0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 
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Hcel     0.266   0.454   0.454   0.454   0.196 

Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

 

 

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.25 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 
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Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

       

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 
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* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, Totalprofit.l; 
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Case study (iv) 

* Case study (iv) 

 

set 

i resources /R1, R2, R3, R4/ 

j technology /1_T1, 2_T2, 2_T3, 3_T2, 4_T4/ 

k demand /D1, D2, D3, Export/ 

m material /PS, OPF, EFB, PKT, PMF, SW, HW, BO, BE, SG, PW/ 

e element /Cel, Hcel, Lig, Ext, Ash, MC/ 

 

alias (j,jp) ; 

 

Positive variables 

RtoT(i,m,j), TtoT(jp,m,j), TtoD(jp,m,k); 

 

Positive Variables 

MatRecT(m,j), TMatRecT(j), MatGenT(m,jp), Zz(j) ; 

 

* MASS 

 

* resources availability 

Table resource(i,m) 

         PS      OPF     EFB     PKT     PMF     SW      HW      BO      

BE      SG      PW 

R1       1250    750     1000    400     0       0       0       0       

0       0       0 

R2       875     1150    1050    0       375     0       0       0       

0       0       0 

R3       0       0       0       0       0       1500    0       0       

0       0       0 

R4       0       0       0       0       0       0       1750    0       

0       0       0; 

 

 

* technology conversion 

Table yield1_T1(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0.461   0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 
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SG       0       1.94    0       0       0 

PW       0       0       0       0       0; 

 

Table yield2_T3(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       10.30   0       0; 

 

Table yield3_T2(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       1.94    0 

PW       0       0       0       0       0; 

 

Table yield4_T4(m,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       0       0       0       0       0 

OPF      0       0       0       0       0 

EFB      0       0       0       0       0 

PKT      0       0       0       0       0 

PMF      0       0       0       0       0 

SW       0       0       0       0       0 

HW       0       0       0       0       0 

BO       0       0       0       0       0 

BE       0       0       0       0       0.2416 

SG       0       0       0       0       0 

PW       0       0       0       0       0; 

 

* demand constraint 

Table demand_upper(m,k) 

         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       99999999990 

BE       850     0       0       99999999990 

SG       0       600     350     999999999990 

PW       0       0       700     0        ; 

 

Table demand_lower(m,k) 
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         D1      D2      D3      Export 

PS       0       0       0       0 

OPF      0       0       0       0 

EFB      0       0       0       0 

PKT      0       0       0       0 

PMF      0       0       0       0 

SW       0       0       0       0 

HW       0       0       0       0 

BO       1000    0       0       0 

BE       850     0       0       0 

SG       0       600     350     0 

PW       0       0       700     0        ; 

 

* Biomass recycle contraint factor (no product is being recycle) 

Table TtoTfactor(m,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

PS       1       1       1       1       1 

OPF      1       1       1       1       1 

EFB      1       1       1       1       1 

PKT      1       1       1       1       1 

PMF      1       1       1       1       1 

SW       1       1       1       1       1 

HW       1       1       1       1       1 

BO       0       0       0       0       0 

BE       0       0       0       0       0 

SG       0       0       0       0       0 

PW       0       0       0       0       0   ; 

 

 

Equation 

E1(i,m), E2(m,j), E3(m,jp), E4(m,jp), E5(m,k), E5b(m,k), E2b(j); 

 

* Resources constraint 

E1(i,m).. sum((j), RtoT(i,m,j))=l=resource(i,m); 

 

* Total material received at T 

E2(m,j)..        

sum((i),RtoT(i,m,j))+(sum((jp),TtoT(jp,m,j))*TtoTfactor(m,j))=e=MatRe

cT(m,j); 

 

E2b(j)..         sum((m),(MatRecT(m,j)))=e=TMatRecT(j); 

 

 

* ELEMENT 

Table element(m,e) 

         Cel     Hcel    Lig     Ext     Ash     MC 

PS       0.277   0.216   0.440   0.02    0.021   0.11 

OPF      0.304   0.404   0.217   0.027   0.013   0.16 

EFB      0.373   0.146   0.317   0.013   0.067   0.10 

PKT      0.345   0.318   0.257   0.027   0.043   0.130 

PMF      0.339   0.261   0.277   0.069   0.035   0.131 

SW       0.375   0.275   0.285   0.025   0.035   0.14 

HW       0.475   0.275   0.225   0.025   0.035   0.14 

BO       0       0       0       0       0       0 

BE       0       0       0       0       0       0 

SG       0       0       0       0       0       0 

PW       0       0       0       0       0       0        ; 

 

Table e_upper(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.327   0.354   0.354   0.354   0.423 
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Hcel     0.266   0.454   0.454   0.454   0.196 

Lig      0.49    0.267   0.267   0.267   0.367 

Ext      0.07    0.077   0.077   0.077   0.063 

Ash      0.071   0.063   0.063   0.063   0.117 

MC       0.16    0.21    0.21    0.21    0.15   ; 

 

Table e_lower(e,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

Cel      0.227   0.254   0.254   0.254   0.323 

Hcel     0.166   0.354   0.354   0.354   0.096 

Lig      0.39    0.167   0.167   0.167   0.267 

Ext      0       0       0       0       0 

Ash      0       0       0       0       0.017 

MC       0.06    0.11    0.11    0.11    0.05        ; 

 

 

Positive Variable 

EleRecT(m,e,j),Z3b(e,j); 

 

Equation 

E6(m,e,j), E6b(e,j), E7(e,j), E8(e,j); 

 

* Element received at T 

E6(m,e,j).. MatRecT(m,j)*element(m,e)=e=EleRecT(m,e,j) ; 

 

* Sum of element (tonne) at T 

E6b(e,j)..  sum((m),EleRecT(m,e,j))=e=Z3b(e,j); 

 

E7(e,j).. sum((m),EleRecT(m,e,j))=l=e_upper(e,j)*TMatRecT(j); 

E8(e,j).. sum((m),EleRecT(m,e,j))=g=e_lower(e,j)*TMatRecT(j); 

 

*ELEMENT end 

 

 

*MASS cont.. 

 

 

*Total material product at T 

E3(m,jp).. TMatRecT('1_T1')*yield1_T1(m,jp) + 

TMatRecT('2_T2')*yield2_T2(m,jp) + TMatRecT('2_T3')*yield2_T3(m,jp) + 

TMatRecT('3_T2')*yield3_T2(m,jp) + 

TMatRecT('4_T4')*yield4_T4(m,jp)=e=MatGenT(m,jp); 

 

* Product constraint 

E4(m,jp).. 

(sum((k),TtoD(jp,m,k))+sum((j),TtoT(jp,m,j)))=l=MatGenT(m,jp); 

 

* Demand constraint 

E5(m,k).. sum((jp),TtoD(jp,m,k))=l=demand_upper(m,k); 

E5b(m,k).. sum((jp),TtoD(jp,m,k))=g=demand_lower(m,k); 

 

 

* MASS end 

      

 

* Transportation 

Parameter 

transcost transportation cost RM per tonne per km / 0.25 /; 

 

Positive Variables 

Cost_RtoT(i,j), Cost_TtoT(j,jp), Cost_TtoD(jp,k), Ttranscost; 
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Table distance_RtoT(i,j) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

R1       600.0   360.6   360.6   854.4   565.7 

R2       608.3   583.1   583.1   447.2   360.6 

R3       1063.0  583.1   583.1   400.0   640.3 

R4       721.1   223.6   223.6   500.0   400.0     ; 

 

Table distance_TtoT(j,jp) 

         1_T1    2_T2    2_T3    3_T2    4_T4 

1_T1     0       500.0   500.0   584.4   447.2 

2_T2     500.0   0       0       509.9   223.6 

2_T3     500.0   0       0       509.9   223.6 

3_T2     854.4   509.9   509.0   0       412.3 

4_T4     447.2   223.6   223.6   412.3   0     ; 

 

Table distance_TtoD(jp,k) 

         D1      D2      D3      Export 

1_T1     640.3   300.0   500.0   905.5 

2_T2     200.0   400.0   0       781.0 

2_T3     200.0   400.0   0       781.0 

3_T2     316.2   583.1   509.9   412.3 

4_T4     223.6   223.6   223.6   583.1  ; 

 

Equations 

E9(i,j), E10(j,jp), E11(jp,k), E12; 

 

E9(i,j).. 

(sum((m),RtoT(i,m,j))*distance_RtoT(i,j)*transcost)=e=Cost_RtoT(i,j); 

E10(j,jp).. 

(sum((m),TtoT(j,m,jp))*distance_TtoT(j,jp)*transcost)=e=Cost_TtoT(j,j

p); 

E11(jp,k).. 

(sum((m),TtoD(jp,m,k))*distance_TtoD(jp,k)*transcost)=e=Cost_TtoD(jp,

k); 

E12.. 

(sum((i,j),Cost_RtoT(i,j)))+(sum((j,jp),Cost_TtoT(j,jp)))+(sum((jp,k)

,Cost_TtoD(jp,k)))=e=Ttranscost; 

 

* TRANSPORTATION end 

 

 

* Profit 

Parameter 

value(m) selling value /PS 120, OPF 110, EFB 105, PKT 65, PMF 75, SW 

50, HW 85, BO 300, BE 450, SG 325, PW 260/; 

 

Positive Variable 

Z7(m),Z7b, Z8(m), Z9(m),Z9b, profit; 

 

Variable 

totalprofit; 

 

Equation 

E13(m),E13b, E15(m),E15b, E16, obj  ; 

 

* Total resources used in R 

E13(m).. sum((i,j),RtoT(i,m,j))=e=Z7(m); 

 

* Total amount used in purchasing raw material 

E13b.. sum((m),((Z7(m))*value(m)))=e=Z7b; 
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* Total product send to D 

E15(m).. sum((jp,k),TtoD(jp,m,k))=e=Z9(m); 

 

* Total sell in D 

E15b.. sum((m),((Z9(m))*value(m)))=e=Z9b; 

 

E16.. Z9b-Z7b=e=profit; 

obj.. Totalprofit=e=profit-Ttranscost ; 

 

 

Model MarkII /all/; 

 

Solve MarkII using LP maximising Totalprofit; 

 

display RtoT.l, TtoT.l, TtoD.l, Totalprofit.l; 

 

 


