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Abstract 

Rice (Oryza sativa L.) provides up to 50% of the total calories consumed in countries such as 

India, Madagascar and Nigeria. As a crop, rice can require significant fertiliser inputs to 

maintain the required yields. Additionally, climate change has increased the need for rice 

varieties with improved drought resistance, tolerance to pests and more efficient 

acquisition of nutrients from soil. One major fertiliser input for rice is phosphate; reducing 

phosphorus (P) fertiliser use would have environmental and economic implications. 

Root traits linked to P acquisition in crops include shallow root angle, lateral root 

proliferation and increases in root hair length and density. Two T-DNA knockout alleles with 

reduced gravitropic response, Osaux1-1 and Osaux1-2, were used to investigate the 

influence of shallow root angle on P uptake. OsAUX1 is a rice ortholog for the Arabidopsis 

thaliana gene AUX1, which controls lateral root growth and gravitropic response. 

The wildtype and mutant rice plants were grown in soil and non-destructively imaged using 

X-ray micro Computed Tomography (X-ray CT). In Chapter Three, visualisation of rice roots 

in soil using X-ray CT was optimised by determining the ideal soil moisture content that 

would produce the best images. Water in soils has a similar X-ray attenuation density to that 

of plant roots and can influence segmentation of roots from soil in X-ray CT images. It was 

found that soil at nominal field capacity (ca. 3 days of drainage) produced the best contrast 

between soil fractions (organic matter, minerals and pore space) and root material. In 

Chapter Four, the impact of X-ray dose on root growth was quantified because the 

experimental design included repeated scanning of the same sample (Chapter Five). It was 

found that even under repeated scanning, the X-ray doses involved in this work (ca. 15 Gy 
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per sample) did not significantly affect the root architecture and overall plant growth in rice 

cultivars used. 

In Chapter Five, Osaux1-1 and Osaux1-2 retained the agravitropic phenotype that was 

observed on agar-based systems when plants were grown in loamy sand soil. However, 

when subject to various soil P concentrations and distributions (Chapter Six), Osaux1-1 had 

similar gravitropic response and P uptake as wildtype. It was unclear what role gravitropism 

and topsoil foraging played in P uptake for these rice cultivars, if any. OsAUX1 could be 

linked to P uptake as well as responses to soil P concentration and distribution. Under 

uniformly low soil P wildtype had a shallower root system distribution than Osaux1-1. Of 

most interest were the results when sufficient soil P was sequestered to the top 4 cm of the 

soil column and low P was maintained in the bottom 6 cm. Under these conditions, wildtype 

took up more overall P, had almost twice the biomass, twice the total root length and twice 

the surface area when compared to Osaux1-1. This provides evidence that OsAUX1 can be 

linked to adaptation to P stress and distribution of P in soil through control of fine root 

characteristics and not necessarily its impact on gravitropic response. 

Chapter Seven describes the investigation into the impact of OsAUX1 on sub-architectural 

effects of the root system that could influence P uptake. It was determined that OsAUX1 

was involved in root hair density and elongation under varying P availability for agar grown 

plants. In comparison to wildtype, Osaux1-1 had significant variation in root hair phenotype 

that seemed unrelated to a P stress response. In flooded environments, root hairs influence 

the potential for root:soil contact that is integral to P uptake in rice paddies which have 

reduced soil conditions and mass water flow that can transport plant available soluble P. 

This reinforces the potential for an interaction between OsAUX1 and P uptake in paddy rice. 
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1.0 General Introduction 

1.1 Agricultural and research significance of rice (Oryza sativa L.)  

In order to feed the world population at current growth rates, it is estimated that global rice 

(Oryza sativa L.) production will need to increase 40% by 2030 (Khush 2005). Even in China 

where rice production is increasing, Cai and Chen (2000) found that to keep pace with 

Chinese population growth, domestic rice production must increase 20% by 2030. To meet 

this challenge, growers must increase production in a changing climate and under pressure 

to utilise sustainable methods requiring less fertiliser, less land and less water (Van Nguyen 

and Ferrero 2006). 

In the post green revolution era, there has been a call to develop new rice varieties that are 

drought and disease resistant as well as highly efficient at acquiring nutrients from soils 

without addition of fertiliser. Peng et al. (2009) highlight the need in China for more (i) 

diverse genetic resources, (ii) development of drought, heat, disease and pest resistant 

varieties, (iii) reducing the occurrence of over-fertilisation and excessive pesticide use and 

(iv) incorporating the use of integrated crop management. In Japan, the need for improved 

water and nutrient management has led researchers to investigate how root systems in 

particular can be optimised through seedling spacing and using wet-dry cycles to conserve 

water to improve yield (Chapagain and Yamaji 2010). Sub-Saharan Africa presents similar 

challenges with water consumption, however economic restraints (lack of capital) and soil 

qualities such as acidity and P-fixing contribute to reduced rice yields (Balasubramanian et 

al. 2007). 
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Although advances in agronomic practice will be required to ensure yields of rice reach 

those needed for global food security, improved plant lines will be critical for adaptation to 

climate change as well as the need to reduce resource use. Khush (2005) argued that the 

availability of the rice genome would revolutionise rice yield through improved selection for 

nutrient and water efficiency, improved root architecture and the likelihood of more 

successful genetic engineering. When the full japonica (Goff et al. 2002) and indica (Yu et al. 

2002) rice genomes were published in 2002, rice became a model plant for genetic research.  

Quantitative trait loci (QTLs) have been identified on the rice genome by linking common 

gene sequences with phenotypic traits of rice adapted to phosphorus stress (Shimizu et al. 

2004; Wissuwa et al. 2002), drought tolerance (Hazen et al. 2005) and salinity tolerance (Lin 

et al. 2004; Ren et al. 2005). By pinpointing areas of the genome that are potentially 

involved in stress responses, reverse genetic approaches, among others, can be used to 

manipulate the plant phenotype and likely increase yield under the chosen stress conditions 

(de Dorlodot et al. 2007; Ismail et al. 2007). Comprehensive mapping of QTLs can direct 

researchers to candidate genes to test for agronomically valuable traits (Nguyen et al. 2004) 

and are considered to be accurate enough to enhance the discovery of these genes (Price 

2006).  

1.2 Phosphorus in agriculture 

All plants require phosphorus (P) for biomass accumulation, plant signalling and 

reproduction (López-Bucio et al. 2002). P is an integral part of the nucleic acids, metabolic 

intermediates and phospholipids that are inherent to plant biochemistry and tissue 

development (Abel et al. 2002). However, if agricultural soils are not supplemented with P 
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inputs such as such as raw phosphate rock or chemical fertilisers derived from it, the 

bioavailable inorganic P (Pi) fraction declines as P is removed in harvested crops (Syers et al. 

2001). Additionally, Pi is quickly transformed in soil to forms of P unavailable to plants 

(Kirkby and Johnston 2008). 

1.2.1 Environmental aspects 

At current consumption rates, the supply of phosphorus-containing rock appropriate for use 

as fertiliser will be depleted within the next 100 years and by 2030 production will surpass 

demand (Fig. 1-1) (Cordell et al. 2009). More than half of P fertiliser applied to crops was 

used on cereals (Potter et al. 2010). Despite this likely shortage of rock phosphate, there are 

severe imbalances between the amount of applied P and the P requirements and uptake of 

crops. MacDonald et al. (2011) found this was linked to spatial distribution with the largest 

deficits being in Argentina and Paraguay, the northern United States and Eastern Europe. 

Alternatively, the largest surplus or overuse of P fertiliser was in eastern Asia, south-western 

Europe, southern Brazil and the coastal United States. The extra applied P does not increase 

yield after the plant has reached critical internal P concentrations (Hammond and White 

2008). 

Not only will P become scarcer and more expensive, but overuse of P can have detrimental 

environmental impacts on freshwater and marine environments (Smith et al. 1999). P is 

often the primary limiting nutrient in aquatic ecosystems (Carpenter 2005; Conley et al. 

2009). P-containing run-off from agricultural fields can enter waterways and is a major 

cause of eutrophication in waterways (Sims and Sharpley 2005; White and Hammond 2009). 

Eutrophication is the nutrient loading of a nutrient deficient environment and in waterways 
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plough depth (Shepherd and Withers 1999) and does not migrate much past this depth. 

Eghball et al. (1996) found that manure derived P reached depths of up to 1.8 m whereas 

fertiliser derived P reached a maximum depth of 1.1 m. Differences in soil mineral and 

organic matter content as well as microbial communities can significantly influence P cycling 

in agricultural soils (Blake et al. 2000; Richardson et al. 2009). 

1.2.3 Effects of flooding on P availability to plants 

In combination with soil properties, water management can affect soil chemistry and 

subsequent availability of soil phosphorus (Patrick et al. 1985; Ponnamperuma 1984). 

Flooding of very clayey soils with high aluminium content can lead to sequestration of 

phosphates that bind to the aluminium in preference to iron or calcium although over time 

(Patrick Jr and Mahapatra 1968). This balance shifts toward formation of iron phosphates 

which become unavailable to plants (Mengel 1985).  

Additionally, flooding creates reducing conditions which increase pH in soils and immobilise 

previously bioavailable P through adsorption, immobilisation and precipitation with 

elements like iron (Ponnamperuma 1972). Diffusion of gases through water is much slower 

than through air thus oxygen becomes limited in waterlogged soils because it is consumed 

faster than it can diffuse into the soil (Gotoh and Patrick 1974). Regions of oxygen 

containing soil and anoxic soil become stratified (Fig. 1-3). In an adaptation to waterlogging, 

some plants form aerenchyma which are air spaces that form within roots to enhance gas 

exchange with the rhizosphere (Justin and Armstrong 1987). In aerenchyma forming plants 

such as rice, gases can disperse into the area adjacent to the root system through root tips 
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formation has been linked with adaptation to low P in common bean (Phaseolus vulgaris L.) 

(Miller et al. 2003). 

However, root architecture alone may not be the determining factor for phosphorus use 

efficiency. Availability of phosphorus for plant uptake has also been linked to organic matter 

content of soil and microbial activity (Kirkby and Johnston 2008). There are significant 

variations between plant species and genotypes in both utilization and acquisition of P 

(White and Hammond 2008). Root plasticity is critical for adaptation to changes in nutrient 

availability and has been linked to heterogeneity of the soil environment (Hutchings and 

John 2004; Kembel and Cahill 2005). 

1.3.1 Root gravitropism and increasing soil exploration 

One documented response to P deprivation is shallower rooting and adventitious root 

formation which is commonly termed topsoil foraging (Lynch and Brown 2001). In general, 

shallower root systems are more successful at acquiring P because of the distribution of P in 

the agricultural soil profile and its generally immobile nature (Ge et al. 2000; Robinson 1994; 

1996). The shallow root system explores the soil volume by increasing its root system width. 

In order to achieve shallower rooting depth, the initiation angle of the root is obtuse. Root 

angle appears to have optimum values for anchorage; 90o between a lateral and primary 

root and < 20o between primary and secondary lateral roots (Robinson 1996). However, in 

the case of very mobile nutrients such as nitrogen, ideal root architecture and angle can 

vary with time (Campbell et al. 1991; Grime et al. 1991). 

Root angle and thus, gravitropic response, have been linked to an increase in biomass and 

plant P concentrations in rice and soybean (Glycine max L.) (Fang et al. 2009; Zhu et al. 
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2005). However, some plants do not favour shallow root distributions under P stress. Wheat 

(Triticum aestivum L.) was found to dedicate more root biomass to deeper portions of the 

root system under P stress which may be related to the allocation of biomass to deal with 

potential drought deficiency in preference to topsoil foraging (Manske et al. 2002).  

Another factor that has been linked to P stress is aerenchyma formation. Aerenchyma are 

air spaces that form within roots to enhance gas exchange with the rhizosphere (Justin and 

Armstrong 1987). There are two main types of aerenchyma, schizogenous and lysigenous. 

Schizogenous aerenchyma form through species specific regulation of cell separation and 

expansion that is generally considered constitutive, however their development can be 

induced by environmental stress as well (Jackson and Armstrong 1999). Lysigenous 

aerenchyma are created through programmed cell death within cortical cells and is often 

associated with crop plants under nutrient and oxygen stress such as maize (Drew et al. 

2000).  

1.3.2 Increasing root:soil contact through fine roots, root hairs and mychorrhizal 

associations 

Within the explored soil volume, plants can maximise the amount of soil exploited by 

increasing the root system surface area and root:soil contact. This is achieved by increasing 

the number and length of lateral roots and root hairs and varies depending on which 

nutrient is being supplied (Fig. 1-4). Fine roots and root hairs are critical for nutrient 

acquisition from soil by plants because they increase the surface area of the root system 

which increases the likelihood of nutrient uptake.  
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Hutchings et al. (2003) argued that fine roots are the primary route for acquisition of 

nutrients in soil and that this makes the distribution of fine roots more relevant to 

understanding of nutrient acquisition than the coarser root structure. This is debatable 

because the transitory nature of most fine roots means they either expire quickly or develop 

into coarser roots (Wells and Eissenstat 2002). However, root plasticity is often exhibited at 

the local level in reaction to distribution of nutrients and the heterogeneity of soils 

(Wijesinghe et al. 2001). These local reactions to soil heterogeneity are at scales smaller 

than that of the whole plant because they involve reactions such as proliferation of fine 

roots in a patch of nutrient rich soil. There is a feedback loop between root architecture, 

root growth and soil properties. Nutrient concentration and water content related to 

porosity can greatly affect plant survival (Hodge 2004; Hutchings and John 2003). 

Additionally, plant roots can alter soil structure and excrete compounds that alter the 

water-holding capacity of soils after several drying and wetting cycles (Carminati et al. 

2010). 

Lateral root growth is necessary for secondary and tertiary root initiation, which gives 

architectural agility to root systems under nitrogen and phosphorus stress (Linkohr et al. 

2002). Phosphorus stress can increase root diameter and root hair density in Arabidopsis; P 

deficiency increased root hair elongation by 500% (Ma et al. 2001). This architectural 

adaptability driven by fine root development has been linked to the plant’s ability to acquire 

nutrients necessary for biomass accumulation, competition and general plant functions 

(Nibau et al. 2008). Thus, nutrient conditions can alter root architecture. 



 

 

Fig. 1-4: 

nitrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific.

potassium (K) can have dramatic impacts on lateral ro

1.3.3 

Root hairs interact with soil microbes (bacterial/fungal)

biomass accumulation in wetland ecosystems 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

flooded soils 

ultimately total P uptake in aerobic sand media for the ri

2012a).

plant nursery stage (four weeks old; 

nutrient uptake including grain P content 

(1995) 

conditions and this 

provide an agronomic advantage

: Soil nutrient status 

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific.

potassium (K) can have dramatic impacts on lateral ro

 Mychorrhizal associations

Root hairs interact with soil microbes (bacterial/fungal)

biomass accumulation in wetland ecosystems 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

flooded soils (Raghu and MacRae 1966

ultimately total P uptake in aerobic sand media for the ri

. In sterilised paddy soil, inoculation with arbuscular mycorrhiza

plant nursery stage (four weeks old; 

nutrient uptake including grain P content 

 found significant infection by AMF and other endophytic fungi under aerobic soil 

conditions and this 

provide an agronomic advantage

oil nutrient status affects

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific.

potassium (K) can have dramatic impacts on lateral ro

Mychorrhizal associations

Root hairs interact with soil microbes (bacterial/fungal)

biomass accumulation in wetland ecosystems 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

Raghu and MacRae 1966

ultimately total P uptake in aerobic sand media for the ri

In sterilised paddy soil, inoculation with arbuscular mycorrhiza

plant nursery stage (four weeks old; 

nutrient uptake including grain P content 

significant infection by AMF and other endophytic fungi under aerobic soil 

conditions and this was independent of rice genotype

provide an agronomic advantage

affects root architecture

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific.

potassium (K) can have dramatic impacts on lateral ro

Mychorrhizal associations 

Root hairs interact with soil microbes (bacterial/fungal)

biomass accumulation in wetland ecosystems 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

Raghu and MacRae 1966). AMF can influence expression of P transporters and 

ultimately total P uptake in aerobic sand media for the ri

In sterilised paddy soil, inoculation with arbuscular mycorrhiza

plant nursery stage (four weeks old; O. sativa

nutrient uptake including grain P content 

significant infection by AMF and other endophytic fungi under aerobic soil 

s independent of rice genotype

provide an agronomic advantage for some

root architecture 

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific.

potassium (K) can have dramatic impacts on lateral root formation. Image from 

Root hairs interact with soil microbes (bacterial/fungal)

biomass accumulation in wetland ecosystems (Khan 2004a

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

. AMF can influence expression of P transporters and 

ultimately total P uptake in aerobic sand media for the ri

In sterilised paddy soil, inoculation with arbuscular mycorrhiza

O. sativa cv. Nipponbare) increased biomass and 

nutrient uptake including grain P content (Solaiman and Hirata 1995

significant infection by AMF and other endophytic fungi under aerobic soil 

s independent of rice genotype

for some Italian rice varieties 

 and varies with nutrient type

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

tend to explore the upper soil where P is most prolific. Limiting nutrients such as sulphur (S) and 

ot formation. Image from 

Root hairs interact with soil microbes (bacterial/fungal) that can influence P uptake and 

Khan 2004a). Particularly in young rice, P 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

. AMF can influence expression of P transporters and 

ultimately total P uptake in aerobic sand media for the rice cultivar Nipponbare 

In sterilised paddy soil, inoculation with arbuscular mycorrhiza

cv. Nipponbare) increased biomass and 

Solaiman and Hirata 1995

significant infection by AMF and other endophytic fungi under aerobic soil 

s independent of rice genotype. AMF infection 

Italian rice varieties 

and varies with nutrient type

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

Limiting nutrients such as sulphur (S) and 

ot formation. Image from Nibau et al. (2008

that can influence P uptake and 

. Particularly in young rice, P 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

. AMF can influence expression of P transporters and 

ce cultivar Nipponbare 

In sterilised paddy soil, inoculation with arbuscular mycorrhiza 

cv. Nipponbare) increased biomass and 

Solaiman and Hirata 1995). Solaiman and Hirata 

significant infection by AMF and other endophytic fungi under aerobic soil 

AMF infection 

Italian rice varieties as shown

and varies with nutrient type. In localised 

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

Limiting nutrients such as sulphur (S) and 

Nibau et al. (2008

that can influence P uptake and 

. Particularly in young rice, P 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

. AMF can influence expression of P transporters and 

ce cultivar Nipponbare (Chen et al. 

 fungi (AMF) at the 

cv. Nipponbare) increased biomass and 

Solaiman and Hirata 

significant infection by AMF and other endophytic fungi under aerobic soil 

AMF infection does not

as shown by Vallino et al. 

11 

 

. In localised 

itrogen (N) patches, lateral root formation increases. In low phosphorus (P) conditions, lateral roots 

Limiting nutrients such as sulphur (S) and 

Nibau et al. (2008). 

that can influence P uptake and 

. Particularly in young rice, P 

solubilising bacteria can significantly influence growth and the size of the rhizosphere in 

. AMF can influence expression of P transporters and 

Chen et al. 

fungi (AMF) at the 

cv. Nipponbare) increased biomass and 

Solaiman and Hirata 

significant infection by AMF and other endophytic fungi under aerobic soil 

does not always 

by Vallino et al. 



 

12 

 

(2009). P uptake and root growth have been linked to AMF inoculation in flooded conditions 

for the rice cultivar Shafagh (Hajiboland et al. 2009b). However, Hajiboland et al. (2009b) 

found that AMF colonisation of rice roots under flooded conditions was difficult to achieve. 

1.4 Molecular mechanisms controlling root angle 

A large number of genes have been identified that influence root angle in plants such as rice 

(Table 1-1) and Arabidopsis. Many are related to auxin metabolism, efflux and influx and 

form part of the Aux/IAA gene family described by Jain et al. (2006). Whilst the function of 

these genes is becoming clearer, the underlying mechanism for gravity perception, signalling 

and response are unestablished (Baluška and Volkmann 2011). Roots sense changes in their 

orientation relative to the direction of gravity through sedimentation of starch-filled 

amyloplasts that are present in root cap cells called statocytes (Harrison and Masson 2008). 

Mutants of Arabidopsis lacking starch can disrupt the formation of a lateral auxin gradient 

following gravity stimulus. Band et al. (2012) recently demonstrated that the starchless 

mutant pgm disrupted function of the gravity induced auxin gradient triggered by statolith 

sedimentation (Fig. 1-5 A to C) which is dependent on the angle of the root tip (Fig. 1-5 D to 

F). The mechanisms behind gravitropic response in rice roots are less clear. A starchless 

mutant of rice was identified by Jing et al. (2004) that did not respond under gravistimulus 

which is consistent with an impaired gravitropic response. 

Root responses to gravistimulus have been linked to distribution of the plant hormone 

auxin/IAA in various species (Bai et al. 2013; Brunoud et al. 2012; Ge et al. 2000; Marchant 

et al. 1999; Swarup et al. 2005). This gravity-induced auxin gradient is dependent on PIN3 

auxin efflux activation which causes auxin accumulation on the lower side of the root 
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(Kleine-Vehn et al. 2010). The mechanism for local activation of the PIN3 auxin efflux carrier 

on the lower sides of the root cells has yet to be resolved. However, the auxin influx and 

efflux carriers AUX1 and PIN2 in Arabidopsis thaliana cv. Columbia (Bennett et al. 1996; 

Swarup et al. 2005) have been shown to play a critical role in mobilising auxin to the 

elongation zone where the hormone induces differential cell expansion and subsequent 

root bending (Swarup et al. 2005). In Arabidopsis, the AUX1-dependent lateral auxin 

gradient alters pH and Ca2+ levels in the cytosol during this differential root growth 

(Monshausen et al. 2011). These changes to pH and Ca2+ likely impact differential cell 

elongation and promote root bending via secondary signal transduction (Monshausen and 

Haswell 2013). 

Table 1-1: Selection of rice genes that influence root angle. 

Gene name Root angle phenotype Citation 

OsAEM1 Agravitropic, auxin efflux Rani Debi et al. (2005) 

OsCRL1 
Impaired root gravitropism, lateral root 

formation and no crown root primordia 

Inukai et al. (2005) and 

Coudert et al. (2011) 

OsCRL4 Shallow rooting angle, agravitropic Kitomi et al. (2008) 

OsDRO1 Deep rooting QTL Uga et al. (2011) 

OsIAA1 
Auxin-brassinosteroid crosstalk, loose 

architecture 
Song et al. (2009) 

OsIAA3 Agravitropic, auxin insensitive Nakamura et al. (2006) 

OSIAA13 
Agravitropic, less lateral roots and root 

hairs 
Kitomi et al. (2012) 

OsLRT1 
No lateral roots and reduced gravitropic 

response 
Chhun et al. (2003) 

OsPIN1 

(previously OsREH1) 

Impacts adventitious root growth and 

lateral roots; Auxin efflux 
Xu et al. (2005) 
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insertion positions (Fig. 1-6 A). Most compellingly, when the Os1g63770 gene was disrupted 

using T-DNA insertion, several of the T-DNA insertion lines exhibited an agravitropic root 

phenotype (Fig. 1-6 B to D). 

1.5 Observing root development in soil with X-ray CT 

The ability to visualise roots, water and the soil matrix simultaneously and repeatedly over 

time opens new avenues for in situ investigation of plant water uptake, nutrient uptake and 

root development (Bakker et al. 2012). Further understanding of root architecture (Tracy et 

al. 2012b; Tracy et al. 2012e), root growth (Flavel et al. 2012a), root decomposition (Haling 

et al. 2013b) and soil properties (Helliwell et al. 2013) at the microscale have been possible 

with X-ray micro-Computed Tomography (X-ray CT). Researchers have increasingly utilised 

non-destructive analytical techniques such as X-ray CT and Nuclear Magnetic Resonance 

(NMR) to measure RSA in situ (Gregory et al. 2003a; Pálsdóttir et al. 2005). 

Before the introduction of micro X-ray CT, plant samples were scanned in medical grade 

scanners that were developed for imaging of the human body, which produced low 

resolution images (mm scale) that made root material difficult to distinguish from the 

growth medium (Moran et al. 2000). The X-ray CT methodology provides the opportunity for 

non-destructive analysis of root growth and architecture. Under the right circumstances, X-

ray CT allows repeated measurement of root and soil properties over time to reveal root 

development under abiotic and biotic stress such as compaction and moisture stress (Tracy 

et al. 2012b; Tracy et al. 2012e; Zappala et al. 2013b).  

Theoretically, X-ray CT can be used with any object that allows X-rays to completely 

penetrate it on a plane perpendicular to the axis of rotation. Fig. 1-7 shows the X-ray tube 
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in situ, non-destructive imaging of plants in soil, features of interest could include soil solids, 

air-filled pores, water-filled pores and plant roots (Fig. 1-8). 

Root systems are usually composed of larger primary roots and finer lateral roots that 

branch off of the primary root. Fine roots (< 0.5mm diameter) often account for a large 

proportion of the total root volume (Eissenstat 1992; Fitter 1991). The high resolution, 

microscale images characteristic of X-ray CT can enable imaging of the majority of the root 

system because it enables imaging of these fine roots if sample size is small enough to 

ensure the resolution is sufficient to visualise fine roots (Tracy et al. 2012b). 

The resolution of images can restrict analysis to that of coarse roots as found by (Flavel et al. 

2012a) and Zappala et al. (2013b). Analysis of coarse roots provides a starting point for 

understanding of fine root architecture because fine roots originate from coarse roots. 

Coarse root architecture has been linked to further understanding of plant nutrient 

acquisition from soils such as adventitious rooting in common bean (Rubio et al. 2003) and 

maize (Zhu et al. 2005). 

X-ray CT as a method is most informative because of its non-destructive quality which allows 

observation of root and soil development, particularly in 3-D. The published literature 

contains few examples of experiments where X-ray CT is solely utilised as a tool to non-

destructively visualise the changes in root growth and architecture when the plant is subject 

to an altered environment. However, as X-ray CT has advanced as a tool in soil and plant 

science, the number of studies combining abiotic factors with root development is growing 

(Mooney et al. 2012b; Tracy et al. 2010). One of the few examples was an osmotic potential 

experiment performed on lupin (Lupinus angustifolius L.) and radish (Raphanus sativus L.) 
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rice. Knowledge gained through interdisciplinary research opportunities will contribute to 

improvement of crop species for adaptation to harsh environmental conditions or poor 

soils. 

1.7 Aims and hypothesis 

The overarching hypothesis for this work is that gravitropism improves P uptake in rice. As 

part of this hypothesis the following questions were considered: 

1. Does reduced OsAUX1 expression impact root gravitropism in soil (Chapter Five)? 

2. Does root gravitropism influence P uptake in rice (Chapter Six)? 

3. Do OsAUX1 regulated root traits influence P uptake (Chapters Six and Seven)? 

4. Does P availability and distribution influence gravitropic response or any other root 

traits in soil-grown rice (Chapters Six and Seven)? 

The aims and sub-aims of this work were to: 

i. investigate the RSA development of Osaux1 reduced function mutants in relation to 

wildtype when they are grown in soil and observed via X-ray CT by:  

a. understanding the influence of soil moisture on segmenting roots from soil in X-ray 

CT images (Chapter Three), and 

b. quantifying the effects of X-ray dose on RSA development and plant growth in 

samples repeatedly scanned with X-ray CT (Chapter Four), and 

c.  quantifying RSA development in loamy sand soil of wildtype and Osaux1 T-DNA 

knockouts (Chapter Five), 
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ii. assess the influence of root gravitropism and root distribution in the vertical soil profile 

on P uptake from soil with varying P concentration and distribution by: 

a. using X-ray CT to quantify global RSA development in wildtype and Osaux1 T-DNA 

knockouts grown in soil with low, sufficient and high P concentrations that have 

uniform vertical P distribution in the soil column (Section 6.3), 

b. assessing local changes in RSA of these plants under split vertical P distribution with 

P concentrations sequestered to the top 4 cm or bottom 6 cm of the soil column 

(Section 6.3), and 

iii. quantify the influence of P availability on root morphological traits in relation to auxin 

influx or the lack thereof by: 

a. quantifying root length, lateral root number, crown root number (Section 7.3.2) 

and root hair characteristics (Section 7.3.3) for plants grown on agar with low, 

sufficient and high P, 

b. quantifying root rhizosheath P and Fe concentrations with SEM/EDX (Section 7.3.4), 

c. understanding pH changes induced by wildtype and OsAUX1 knockout mutants on 

agar with low, sufficient and high P (Section 7.3.5), and 

d. quantifying intra-root air space (aerenchyma) in X-ray CT images of wildtype and 

Osaux1-1 grown under varying P concentration and distribution (Section 7.3.6). 

.  
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were then transferred to the growing media as described in the following sections; 

specifically Section 2.5.3 describes planting in soil and Section 2.7 describes plating on agar. 

2.2 Growth conditions 

All plants were grown in a controlled growth environment room (Fitotron® Standard Growth 

Room, Room C103, University of Nottingham Sutton Bonington Facility) set at 28oC daytime 

temperature and 20oC night-time temperature with a 12 hour day/night cycle. Plants were 

grown in pots held in trays on 80 cm high benches. Fluorescent lights were in fixed 

suspension 1.2m above the bench tops. At 1 m distance from the light source, average light 

intensity was measured with a photosynthetically active radiation meter (Skye Instruments, 

PAR Quantum, Powys, Wales) as 220 µmol m-2 s-1. 

2.3 Soil collection and properties 

Three soils were used in this work; two typical UK soils of contrasting soil texture from the 

University farm at Bunny, Nottinghamshire used in Chapters Three, Four and Five and a 

specially sourced low P UK soil from Rothamsted Research Station (RRes) used in Chapter 

Six. The soil was low P because for over 100 years, the plot has undergone repeated planting 

and harvest of wheat without addition of P fertiliser (RRes 2006). This was undertaken to 

ascertain the impact of P application and crop management on soil P concentrations. Soil 

characteristics are summarised in Table 2-1. The two typical UK soils were a loamy sand 

(Brown soil, Newport series) and a clay loam (Argillic pelosol, Worcester series) collected 

from the University of Nottingham Farm at Bunny, Nottinghamshire, UK (52.86 oN, 1.13 oW). 

The low P soil from Rothamsted was a silty clay loam (Chromic luvisol) hand cored from the 
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top 10 cm of plot 14 from the Hoosfield Exhaustion Land Winter Wheat (Little Hoos) 

experimental field at Rothamsted Research Station in Harpenden, UK (51.81oN, 0.37oW). 

Table 2-1: Soil properties summary. Compiled from original chemical analysis and information from 

Mooney and Morris (2008) designated with * and information provided by Chris Watts designated 

with **. 

Soil sample pH 
Olsen P 

(mg kg
-1

) 

Organic 

Matter (%) 
Sand (%) Silt (%) Clay (%) 

Newport 

Series 
6.7 50 4.7 78.7* 9.4* 11.9* 

Worcester 

Series 
7.2 69 5.7 31.1* 34.5* 34.4* 

Rothamsted 

low P 
6.1 4.1 5.4** 18.9** 50.4** 30.6** 

Bunny soil samples were collected using a spade; samples were taken from the top 20 cm of 

the soil profile at locations away from the edge of the field to avoid areas that had been 

frequented by farm machinery. The contrasting Bunny soils had too much Pi to induce P 

starvation in rice (> 5 mg kg-1 Pi) thus low P soil collected from the Hoosfield Exhaustion 

Land at RRes was used in the P experiments (Chapter Six). The Exhaustion Land experiment 

has been underway since the mid-nineteenth century and was initiated to assess the 

influence on soil nutrient content of fertiliser application (phosphorus as triple 

superphosphate (TSP) and potassium as muriate of potash) and annual alternation of winter 

wheat and fallow. Soil samples were collected by Chris Watts from RRes. 

2.4 Soil preparation 
2.4.1 Sieving and sterilisation 

Soil was air dried, manually sieved to < 2 mm then sterilised by autoclave (Phoenix 40E 

Bench Top, Rodwell Scientific Instruments, UK). Autoclaving was performed twice on each 

bag of sieved soil to minimise potential fungal and microbial activity in the soil columns 
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(Carter et al. 2007). This ensured any residual weed and wheat seeds were killed and did not 

interfere with assessment of RSA. A temperature probe (integrated into the autoclave) was 

placed in the centre of the soil mass to ensure that the autoclave temperature reading was 

representative of the entire bag of soil. The autoclave was held at 121 oC at 120 kPa for 30 

min. Autoclaving was performed over two days with the soil being autoclaved once each 

day. Autoclaved soils were then oven dried (50 oC for 24 h) and stored in sealed containers 

at room temperature in preparation for packing into columns. 

2.5 Column preparation 
2.5.1 Altering P content and distribution 

Phosphate amendment was achieved by segregating the desired amount of soil in plastic 

bags and adding crushed TSP (44% P2O5) in 50 mL of deionised water then thoroughly 

mixing. The amended soil was sieved to < 2 mm to ensure the mixture was homogenised. 

The soil was then air dried for four hours and subsequently used in packing. 

Three P levels were composed from the soil (i) low P with no added TSP, (ii) sufficient P 

(replete) with 50 mg kg-1 P and (iii) high P (toxic) with 150 mg kg-1. The sufficient P treatment 

was achieved by adding 0.378 g TSP kg-1 soil and the high treatment by adding TSP at 1.13 g 

kg-1 soil. These P levels were established as being consistent with literature soil P treatments 

to starve rice (< 5 mg P kg-1 soil) and also with low and high P treatments published in the 

literature and presented in Table 2-2. These three P levels (low, sufficient, high) were used 

in three different experiments exploring how RSA changed in relation to P distribution 

within the soil profile. The first experiment explored uniform P distribution where the P was 

evenly incorporated throughout the entire soil column (Fig. 2-2 A). The second experiment 

explored RSA changes under conditions where P was in the top 4 cm of soil (Fig. 2-2 B). The 
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final experiment investigated RSA when P was distributed in the bottom 6 cm of the column 

(Fig. 2-2 C). 

Table 2-2: Selection of ranges for published low and high P treatments in non-agar based studies of 

root architecture in relation to P concentration for crop plants. 

Low P (mg P kg
-1

 soil) High P (mg P kg
-1

 soil) 
Growth medium as 

described 
Citation 

0 40 sand Lambers et al. (2006) 

0 136.1 soil He et al. (2003) 

0.3 17.4 Paddy soil Kirk et al. (1998) 

0.9 56.2 < 2mm sieved soil Ohno et al. (2007) 

25 150 
Loam, clay loam and 

silt 

Kristoffersen and Riley 

(2005) 

40.7 152.1 Field soil Hammond et al. (2009) 

79 285 Paddy soil Irshad et al. (2008) 

100 400 Paddy soil 
Jianguo and Shuman 

(1991) 

206 580 Silty sand Blake et al. (2000) 

2.5.2 Column packing 

Polypropylene columns (5.5 cm internal diameter, 10 cm height and 0.23 cm thickness) 

were packed with prepared soil to 1.2 g cm-3 packing density. Each column had a mark in it 

at nine cm height to mark the target soil height. Each column received 217 g of dry sieved 

soil unless TSP was added. Then the target amount of soil was adjusted for the amount of 

water added with the TSP. All columns were packed in one cm sections, compressed with a 

ram and then scarified before addition of another layer. After all of the soil was in the 

column, the column was tapped to settle the soil below the nine cm line. There was no 

evidence that this technique created packing layers. 
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1 mL L-1 ZnSO4 * 7H2O, 1 mL L-1  CuSO4 * 5H2O, 1 mL L-1 Na2MoO4 * 2H2O) and 5 mL of 

mL L-1 Ca(NO3)2 * 4H2O). For the phosphorus experiments in Chapter Six, P-free nutrient 

solution with the same composition excluding KH2PO4 was applied weekly to each of the soil 

columns. 

2.6 Agar-based growth media 
2.6.1 Nutrient agar growth medium 

For 1 L of basic nutrient agar medium, 2.15 g Murishage and Skoog Basal Salt Mixture (MS; 

M 5524, Sigma Aldrich) and 10 g Bacto™ agar (CAS 9002-18-0, Dickinson and Company, 

Sparks, MD, USA) were added to a 1 L glass bottle with polypropylene screw top lid. The MS-

agar solution was adjusted to pH 5.8 with HCl or NaOH as needed. pH was determined with 

a calibrated combination pH electrode (Hannah Instruments HI110). The media was 

autoclaved in a benchtop unit (Prestige Classic 2100 benchtop autoclave) at 126 oC, 15 psi 

for 15 min and allowed to cool in an incubator oven to 50 oC. 

2.6.2 Agar with varying P content 

Agar with varying P content was comprised of three nutrient solutions instead of the MS 

nutrient mixture used in Section 2.6.1. The first nutrient solution was the P-free base 

mixture comprised of 0.41 g L-1 NH4NO3, 0.002 g L-1 H3BO3, 0.083 g L-1 CaCl2, 6.9*10-6 g L-1 

CoCl2, 6.2*10-6 g L-1 Cu2SO4, 0.09 g L-1 Na-EDTA, 0.007 g L-1 FeSO4, 0.045 g L-1 MgSO4, 0.004 g 

L-1 MnSO4, 6.2*10-5 g L-1 Na2MoO4 * 2 H2O, 2.7*10-4 g L-1 KI, 0.47 g L-1 KNO3, 0.002 g L-1 

ZnSO4. The second solution was used to adjust phosphate levels and was 0.042 g L-1 KH2PO4. 

The final solution was used to adjust potassium levels in the absence of KH2PO4 and was 

composed of 0.023 g L-1 KCl. Proportions used of each solution for mixing the various P level 
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agar media are presented in Table 2-3. The nutrient solution was then supplemented with 

10g bacto agar and adjusted to pH 5.8 as described in Section 2.6.1. 

Table 2-3: Quantities of nutrient solution used to create agar with varying P levels. 

P Concentration 

(µM PO4) 

Solution 1 

Nutrient 100x (mL) 

Solution 2 

Phosphate (mL) 

Solution 3 

Potassium (mL) 
Sterile water (mL) 

3.12 (low P) 10 0.1 9.9 980 

31.2 (replete P) 10 1 9 980 

62.4 (high P) 10 2 8 980 

312 (toxic P) 10 10 0 980 

2.6.3 pH indicator 

In order to assess the root induced pH changes in relation to P availability, pH indicator was 

added to agar with different P levels. Agar growth media (pH 5.8) with four P concentrations 

was prepared as described in Section 2.6.3. Before sterilisation, the agar was doped with 

bromocresol green powder at 0.006% (CAS 76-60-8; British Drug Houses Lab Chemicals 

Division, UK). The powder readily dissolved into the acidic media. Bromocresol green is a pH 

indicator that changes yellow at pH 3.6 and darkens to blue at pH 5.4. This is an adaptation 

of the method used by Mulkey and Evans (1981) with bromocresol purple and maize roots. 

2.7 Plating protocol 

Two polystyrene plate types were utilised for agar-based work (i) small disposable square 

plates (125 mm x 125 mm x 13mm; Thermo Scientific) and (ii) large reusable square plates 

(245 mm x 245 mm x 25 mm deep; Thermo Scientific). Small plates required 100 mL of 

medium and large plates required 300 mL of medium to ensure the seeds remained in the 

plate. 
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with the endosperm of each seed in the agar and the emerged radicle and coleoptile 

pointing out of the agar. Once the desired number of seeds has been plated (for small plates 

between three and five; for large plates approximately ten), plates were sealed with plastic 

film (Parafilm, Cole-Parmer). The planted plates were kept at a 45o angle to prevent the 

roots growing into the surface of the agar in the first 24-36 h. After this time, the plates 

were re-positioned to vertical. 

2.8 3-D Root measurement 
2.8.1 X-ray CT Scanning 

Radiographs of the soil and root volumes were obtained with a Phoenix Nanotom X-ray CT 

scanner (GE Sensing and Inspection Technologies, GmbH, Wunstorf, Germany) using a 

tungsten transmission target, mode zero with a spot size of approximately 3 µm. Scanner 

settings and scan frequency varied between scan setups and are described in the applicable 

Chapters. X-ray CT generated radiographs were reconstructed into 3-D volumes with 

Datos|x 2.0 (GE Sensing and Inspection Technologies, GmbH, Wunstorf, Germany). 

Individual adjustments in reconstruction were made for any sample movement that 

occurred during scanning. 

2.8.2 Segmentation of roots 

RooTrak is capable of automatically segmenting roots from soil in X-ray CT images 

(Mairhofer et al. 2012). In particular, root systems have been successfully segmented for 

tomato (Tracy et al. 2013) and wheat (Tracy et al. 2012a). In the case of rice, RooTrak was 

not optimised for the similarity of greyscale variation within the rice root and outside of the 

rice root. RooTrak depends on differences between the greyscale distribution of roots and 

soil to automatically distinguish between the two. Therefore, VG StudioMax 2.0 (VGSM) was 
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used to manipulate the X-ray CT volumes and to segment the root systems from the root-

soil images. Manual segmentation took around 20 min for simple root systems and up to 6 

hours for the very complicated root systems. The X-ray CT volumes were median filtered to 

3x3 pixel prior to root segmentation. The roots were segmented with the VGSM region 

growing tool because it includes user-defined pixels within the root region of interest (ROI). 

The segmented root systems were finished with the VGSM open-close function (five pixels) 

to include any un-segmented airspace within the root. This was critical to ensure that X-ray 

CT root systems could be compared to the root system measurements obtained via flatbed 

scanning (WinRHIZO), which would include air spaces within the root. 

2.8.3 3-D measurement with VG Studio Max and RooTrak 

The software packages VGSM and RooTrak (Mairhofer et al. 2012) were used to quantify 

aspects of the RSA extracted from X-ray CT images. VGSM was used to measure root volume 

by pixel counting. RooTrak provided values for root volume, surface area, centroid (Fig. 2-4 

A), maximum depth (Fig. 2-4 B), minimum enclosing circle (Fig. 2-4 C) and convex hull (Fig. 

2-4 D). RooTrak primarily utilises voxel counting or area calculations from a triangle mesh 

generated around the segmented root system to provide quantification of these traits. 

Measurement of the segmented volumes took between 10 and 20 min depending on the 

image sizes and computer processing capability. Solidness was calculated via the ratio of 

root volume to convex hull volume to express the amount of root that was exploring the soil 

volume where root was present. 
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Fig. 2-4: Schematic representation of measurements available in RooTrak 0.2 measured from 

segmented X-ray images of root systems (Mairhofer et al. 2012). Centroid (A), maximum depth (B), 

minimum enclosing circle (C) and convex hull volume (D) provide indicators of the root distribution 

in the soil profile. RooTrak quantifies root systems from segmented greyscale images, in this case 

obtained by X-ray CT, through voxel counting and calculations based on a triangle mesh of the 

extracted root system. 

2.9 Destructive analysis and 2-D measurements 

After scanning, shoot material was excised with scissors and set aside for oven drying (80 oC 

for 48 h). Rice plants were then removed from the polypropylene soil columns and then 

carefully washed of soil with DI water. The destructively sampled root systems were rinsed 

several times and visible soil was removed with aid of a small paintbrush. The cleaned roots 

were imaged using a flatbed scanner, which is part of the WinRHIZO (Regent Instruments 

Inc., Canada) system described in Section 2.9.1. After WinRHIZO analysis, shoot and root 
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material was oven dried at 80 oC for 48 h in preparation for P analysis. Dry mass was 

recorded. 

2.9.1 WinRHIZO measurements 

The destructively sampled root systems were then scanned on a flatbed scanner in water-

filled Perspex® trays designed to fit the WinRHIZO system. The resulting images were 

analysed in WinRHIZO Regular 2002© software. WinRHIZO provided total root system 

measurements of root length, projected root surface area, root volume and number of tips. 

These measurements were also provided in distribution by root diameter class (e.g. total 

root length within classes 0 to 0.5 mm diameter, 0.5 to 1.0 mm diameter, 1.0 to 1.5 mm 

diameter, etc.). Root diameter extrapolation (algorithm not provided by WinRHIZO) was 

used by WinRHIZO to calculate root surface area and root volume from root length. Root 

length was calculated from a skeletonisation of the scanned root system. Fig. 2-5 provides 

an example of WinRHIZO output in relation to the scan of the original system with colour 

denoting root diameter class assigned by WinRHIZO. 

2.9.2 Specific root length 

Specific root length (SRL) was calculated from the ratio between total root length obtained 

in WinRHIZO and the root dry mass. 

2.9.3 Image J 

Images for analysis in Image J (National Institute of Health, rsb.info.nih.gov/ij/) were 

captured with a digital camera (Cannon Powershot). For measurement of primary root 

length and lateral root number, the plates were photographed with fixed lighting and a ruler 

for scaling. The camera was mounted on an adjustable stand and the plates were placed on 
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a neutral black cloth background. For root hair images, the digital camera was mounted on a 

microscope (Zeiss Steri SV6). A ruler photographed at the microscope settings was used for 

 

Fig. 2-5: Example of a destructively sampled root system that was imaged on a flatbed scanner (A) 

and the resulting WinRHIZO output (B). Each root is skeletonised and assigned a colour according to 

root diameter. A subsection of the output image has been magnified (C). The histogram shown 

applies to root length (cm) where red is the total length for roots of diameter 0 to 0.5 mm, yellow is 

0.5 to 1.0 mm and green is 1.0 to 1.5 mm (C). Root tips are shown in blue (C). Scale bar is equivalent 

to 1 cm. 

scaling the root hair images. Lighting was provided by a Zeiss KL1500 adjustable cold light. 

Images were captured using Zoom Browser EX software. 

Images were loaded into Image J and then the scale was adjusted by drawing a line 

(straight) over the ruler to obtain a pixel to mm ratio. Using the Image J Analyze>>Set Scale 

function, the known distance pertaining to the pixel length of the line was entered to 

provide a pixel mm-1 scale for the image. Then length was measured by drawing a freehand 

line over the root feature of interest (primary root or root hair) and then using the measure 

tool (Analyze>>Measure) to produce a scaled measurement. Ten replicate length 



 

37 

 

measurements were performed for each sample. Lateral roots were counted manually in 

Image J. 

2.10 Chemical analysis 
2.10.1 Soil pH 

Approximately 5 g of prepared soil (autoclaved, sieved to < 2mm) was added to a 50 mL 

plastic centrifuge tube with screw on cap with 12.5 mL of DI water. The centrifuge tubes 

were placed in an end-over-end shaker for 30 min. The tip of a combined pH electrode 

(HI110; Hannah Instruments from Fisher Scientific, Loughborough, UK) was submerged into 

the soil-water slurry and allowed to equilibrate for up to 5 min. The electrode was calibrated 

using pH 4.01, pH 7.00 and pH 10.01 calibration solutions (SLS Select buffer series). 

2.10.2 Plant phosphate 

Oven dried (80oC for 48 h) root and shoot material was weighed before being ground by 

centrifugal plant mill (stainless steel housing and grind barrel). The ground samples were 

decanted into individual porcelain crucibles and ashed in a cold muffle furnace gradually 

brought to 550 oC and then kept at this temperature for 8 h. The ashed material was 

digested for 20 min with 5 mL of 0.2M HCl. This digestate was filtered through Whatman 

No. 1 filter paper suspended in plastic funnels over 25 mL glass volumetric flasks. The 

crucibles were rinsed with a further 10 mL of deionised water and this was also filtered into 

the flasks. The filtrate was brought to 25 mL with deionised water to create the sample 

solution. 

In new 25 mL volumetric flasks, 10 mL of sample solution was mixed with 10 mL of colour 

forming reagent, brought to 25 mL with deionised water and allowed to stand for 30 min. 
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The colour forming ammonium vanadomolybdate reagent was made with 56.3 g L-1 

(NH4)6Mo7O24* 4 H2O, 4.17 g L-1 NH4VO3 and 25% concentrated HNO3. This method was 

adapted by adjusting solution amounts for small samples (approx 0.1 g dried material) from 

colorimetric protocols described by Cavell (1955) and Pearson (1976). 

1 mL of this reacted yellow-coloured solution was transferred to a disposable plastic 

cuvette. The absorbance was measured at 410 nm wavelength by spectrophotometer. A 

calibration curve was created from absorption values for samples with known P 

concentration generated from a 0.22 g L-1 (50 ppm) KH2PO4 stock solution. A deionised 

water blank and method blank (from empty crucible) were also included.  

The percent of plant P was calculated using the following equation: 

% Pplant = ppm P (from calibration curve) X 
�

��
 ×	

���

�����
 

where R = ratio between volume of the digest (25 mL) and amount used for measurement 

(10 mL) and Wt = the dry mass of plant tissue. 

2.11 Statistical analysis 

All statistics were calculated using Genstat 15th Edition (VSN International Ltd., Hemel 

Hempstead, UK). Randomisation for block design and selection of samples for X-ray CT 

scanning was achieved through assignment of random numbers in Microsoft Excel. General 

Analysis of Variance (ANOVA) was used to evaluate differences for all possible interactions 

as applicable including moisture content, P concentration and genotype. A summary of 

interactions is presented in Table 2-4. For all tests, the data was normally distributed which 

satisfied assumptions of general ANOVA. Normality was confirmed through analysis of 

residual plots. When comparing results from repeatedly scanned columns (week one, two, 
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three and four) a polynomial contrast was included to provide the most conservative 

statistical result for time related interactions. This was most appropriate for analysis of 

repeated measurements performed on the same sample. 

Table 2-4: Summary of interactions for experimental results analysed by Analysis of Variance 

(ANOVA). Polynomial contrast was used to delineate interactions for repeated measurement of the 

same sample and is designated by an asterisk in the table. 

Chapter Experiment ANOVA Interactions 

3 Soil Moisture effects on X-ray CT Day after removal from water*, Soil type 

4 X-ray effects on root growth X-ray CT treatment 

5 Phenotyping Osaux1 in soil Week*, Genotype 

6 P uptake and Osaux1 P concentration, Genotype 

7 Osaux1 expression Tissue, Genotype 

7 Osaux1 traits and available P P concentration, Genotype 

7 Fe rhizosheath SEM/EDX Location on root, Genotype 
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3.0 Quantifying the effect of soil moisture content on segmenting root 

system architecture in X-ray Computed Tomography images 

3.1 Description and author contributions 

This chapter is a reformatted version of a paper published in Plant and Soil (Zappala et al. 

2013b) that describes how soil moisture can influence the ability to visualise and ultimately, 

distinguish roots from soil in X-ray CT images. Having soil that is very wet can be as 

detrimental to segmentation of roots from soil in X-ray CT images as using soil which is dry. 

Author contributions are as follows: 

• Project supervision was provided by M. Bennett, T. Pridmore and S. J. Mooney. 

• General advice and draft editing was given by S.J. Mooney 

• Image analysis assistance was provided by S. Mairhofer 

• Water release curves were provided by S. Tracy 

• Literature review, experimental design, practical work and paper construction were 

completed by S. Zappala. 

3.2 Abstract 
3.2.1 Aims 

A commonly accepted challenge when visualising plant roots in X-ray CT images is the 

similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a 

recognised, yet currently uncharacterised source of segmentation error. This work sought to 

quantify the effect of soil moisture content on the ability to segment roots from soil in X-ray 

CT images. 
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3.2.2 Methods 

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were X-ray 

CT scanned daily for nine days whilst drying from saturation. Root volumes were segmented 

from X-ray CT images and compared with volumes derived by root washing. 

3.2.3 Results 

At saturation the overlapping attenuation values of root material, water-filled soil pores and 

soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of 

drying post-saturation) the air-filled pores increased image noise adjacent to roots and 

impeded accurate visualisation of root material. The root volume was most accurately 

segmented at nominal field capacity (soil water content 2 to 3 days after irrigation). 

3.2.4 Conclusions 

Root volumes can be accurately segmented from X-ray CT images of undisturbed soil 

without compromising the growth requirements of the plant providing soil moisture content 

is kept at field capacity. We propose all future studies in this area should consider the error 

associated with scanning at different soil moisture contents. 

3.3 Introduction 

X-ray micro Computed Tomography (X-ray CT) has been used in the non-destructive study of 

plant-soil interactions for a number of years (Gregory 2006; Heeraman et al. 1997; Mooney 

et al. 2012b; Moran et al. 2000; Perret et al. 2007). A recent review of applications in 

Brazilian soil research by Pires et al. (2010) highlighted that soil solids, pore space and water 

have often been the focus of rhizosphere research involving X-ray CT because they are 
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easier to identify and segment than plant roots, however plant roots play a critical role in 

the root-soil-microbe system and cannot be ignored. 

X-ray CT can be used for the non-destructive observation of plant root development in soil 

over short time periods (Tracy et al. 2012b). At present, the application of X-ray CT for high 

throughput root phenotyping is limited by several challenges including the trade-off 

between spatial resolution and sample size. Dhondt et al. (2010a) has recently illustrated 

that X-ray CT can be successfully employed to visualise the physiology of plant aerial tissues. 

However, several challenges exist when capturing plant root development in soil using X-ray 

CT (see Mooney et al. 2012b for detail). 

Improvements in X-ray detector technology have advanced the ability to distinguish soil 

microstructure and finer roots at ever decreasing scales (Mees et al. 2003). Despite this, 

contrast in X-ray attenuation between the soil matrix, air-filled pores, water-filled pores, 

plant material and organic matter is frequently poor. The X-ray attenuation of these 

materials varies with several factors including soil type (Pálsdóttir et al. 2005), proximity of 

roots to organic matter or air-filled pores (Perret et al. 2007) and root water status (Hamza 

et al. 2007). The main challenge is to increase the difference in density between the soil 

matrix and plant roots in natural plant-soil systems without altering the biochemical status 

of the system. Previous work has achieved this to an extent by using non-soil or pseudo-soil 

growing media, using extremely small sample columns, drying out the sample (Seignez et al. 

2010) or growing plants that have very coarse, easily distinguishable below-ground 

structures such as potato (Ferreira et al. 2010). However each of these techniques, to an 

extent, compromises our ability to examine root behaviour under field-like soil conditions. 
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Recently, Mairhofer et al. (2012) demonstrated great potential for segmenting roots using 

object tracking approaches but the success of this method is also influenced by soil moisture 

content. 

For plant-soil systems, soil moisture content plays an integral part in the plant growth rate, 

root development and soil strength (Whalley et al. 2008). Additionally, soil moisture content 

influences the difference between the linear attenuation coefficients of the plant roots and 

soil fractions during the X-ray scanning, thus influencing image quality as X-ray CT images 

are a reflection of the material density and X-ray attenuation of the sample. As such, the 

moisture content at the point of scanning has a profound influence on the ability to 

segment plant roots from soil by image analysis. This is to a large extent well known, 

however as Flavel et al. (2012a) recently observed water-filled pores can confound 

segmentation algorithms and cause misclassification of roots in X-ray CT images. To date the 

nature of the error caused by soil moisture content has not been quantified. This work 

aimed to quantify the influence of soil moisture on the segmentation of plant roots in CT 

images of rice (Oryza sativa) in natural soil at high resolutions with the intention of 

identifying a preferred working condition for future studies. 

3.4 Materials and Methods 
3.4.1 Sample preparation 

Polypropylene (due to low X-ray attenuation) columns (55 mm diameter and 15 mm high) 

were filled in triplicate with both sieved (< 2 mm) loamy sand soil (Newport Series, FAO 

Class Brown soil) and a clay loam soil (Worcester Series, FAO Stagnogleyic Lovisol). The 

columns were packed to a representative field bulk density of 1.1 g cm-3 and 1.3 g cm-3 

respectively. A water release curve for each soil type was prepared using a combination of 
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with emergence of the coleoptile and radicle). The plants were grown for 29 days in a 

controlled growth room with 12 hours of daylight at temperatures of 28 oC during the day 

and 20 oC at night. DI water was provided continuously by placing columns in a tray with 

approximately 2 cm DI water ponded in the bottom. In preparation for X-ray CT scanning, all 

columns were removed from the tray several hours before the start of the scanning regime 

and no further water was added. The soil moisture content was gravimetrically determined 

for each column before and after scanning to record any moisture losses during the 

scanning process. Each column was scanned daily for nine days to represent a large range of 

the water release curve as shown in Fig. 3-1. An equal number of columns were prepared 

that were treated in exactly the same way with the exception of X-ray CT scanning so that 

any effect on the plants from exposure to X-rays could be detected at the end of the 

experiment.  

3.4.2 Visualisation of Root System Architecture in Soil using X-ray CT 

A Phoenix Nanotom micro X-ray CT scanner (GE Sensing and Inspection Technologies, 

GmbH, Wunstorf, Germany) was used to obtain 2-D images of root and soil structure and 3-

D root volumes for each column. Each day for nine consecutive days, columns were scanned 

and soil moisture content determined. The columns were placed directly in the X-ray CT 

scanner without any alteration. The X-ray CT scan position and settings were kept constant 

for each column. Each column was scanned at a 57.3 µm voxel size over 73 min. Note that 

scan times significantly faster than this are possible (< 10 minutes) however longer scan 

times are usually associated with greater image quality (e.g. less random variation in pixel 

brightness known as image noise) which was the main consideration here. The range of 

settings for scanning was 110 – 130 kV, 320 µA, 500-750 ms timing. The centre of the 
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sample was positioned 22.5cm distance from the X-ray source and 1080 projection images 

were taken. The detector size was 2300 X 2300 pixels (1150 X 1150 pixels in binning mode) 

and spot size of the X-ray beam was ca. 3µm. A tungsten transmission target was used with 

a 0.2 mm copper filter. 

 

Fig. 3-2: Representative cross-section of the 3-D X-ray CT volume of a rice root-soil sample. Examples 

of mineral grains, air/water-filled pores and soil solids are highlighted in greyscale. The segmented 

root system is shown in false colour. Scale bar = 1 cm. 

On some occasions, slight variation in the scan parameters was required to optimise the 

image quality/greyscale histogram, associated with the difference in bulk density between 
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the two soil types. There were a total of 72 scans. The volumes were reconstructed in 

Datos|x 2.0 (GE Sensing and Inspection Technologies, GmbH, Wunstorf, Germany) with a 

beam hardening correction set at 8 and individual adjustments for minor sample 

displacement. All reconstructed volumes were firstly filtered with a median filter (radius of 

3.0 pixel) before the root systems were segmented using the region growing tool in 

VGStudioMax v 2.0 (Volume Graphics GmbH, Heidelberg, Germany). A 3-D volume to 

illustrate the range of X-ray attenuation values for different materials within the sample is 

shown in Fig. 3-2. The effect of soil water content is shown by the overlap in X-ray 

attenuation observed between root material and water-filled pores at the point of 

segmentation (Fig. 3-3). 

3.4.3 Calculation of X-ray Dose 

Dose was calculated using the free-online RadPro Dose Calculator (McGinnis, R; 

http://www.radprocalculator.com/XRay.aspx). The calculator uses formulae and X-ray 

empirical data from British Standard BS 4094-2:1971 (Recommendation for data shielding 

from ionizing radiation – Part 2: Shielding from X-radiation) to provide a dose approximation 

defined by user inputs. The calculated X-ray dose for each sample was 1.41 Gy with a total 

dose for each sample accumulated over 9 scans of 12.71 Gy per column. 

3.4.4 Root Segmentation Efficiency 

On the final scan day (day nine), each soil-root system was removed from the columns and 

the soil was gently washed away from the intact root systems with DI water. The 

destructively sampled root systems were scanned using WinRHIZO (Regent Instruments Inc., 

Canada) to determine the root volume of the intact root system. WinRHIZO calculates total 
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root volume from average root diameter and root length determined from the 2-D scanned 

root image through pixel counting. X-ray CT root volumes were calculated from the 

segmented root region of interest (ROI) determined in VGStudioMax v 2.0. The root system 

was segmented from the greyscale CT images of soil with VGStudioMax v 2.0 region-growing 

tool. A user defined root pixel (seed pixel) is selected and then the region-growing tool 

tolerance is adjusted to select visible root material within a defined radius of the seed pixel 

(This process is similar to the process of dilation, but based on greyscale values). The 

dynamic mode of the region-growing tool was utilised to actively adapt to minor 

fluctuations between each CT slice. Automated tracking algorithms such as those found in 

Mairhofer et al. (2012) were tested but not effective for rice roots because of noise within 

each rice root image caused by water/air-filled aerenchyma. After segmentation, the 

VGStudioMax v 2.0 filling function (open-close 1 pixel) was used to fill un-highlighted areas 

within the root ROI boundary. 

The root segmentation efficiency, which we define as the ratio of the 3-D segmented X-ray 

CT root volume derived by VGStudioMax v 2.0 to the destructively determined root volume 

derived by WinRHIZO, was measured for each sample and expressed as a percentage. This 

calculation assumes X-ray CT observable root growth was minimal between day one and day 

nine of the experiment which is why the scanning was undertaken on well established  
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Fig. 3-3: An illustration of the difficulties in segmenting roots from soils. A 2-D CT slice of rice roots 

grown in soil (A) has been thresholded and binarised to show in black (B) air-filled pores, (C) root 

material/water-filled pores and (D) soil matrix; the corresponding greyscale histogram (frequency 

distribution) for the thresholded areas is at the right of each image for B, C and D respectively. Lines 

on the greyscale histograms denote the greyscale values included in the dark grey portion of the 

sample. Numbers to the right of the lines detail the greyscale values on left and frequency of 

occurrence on right. Scale bars = 1 cm. 

plants (i.e. 34 DAG) and a cultivar (O. sativa cv. Azucena) with reduced branching in the 

observation zone (Clark et al. 2011). Soil macroporosity (pores >115 µm effective diameter) 
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was measured from the X-ray CT images with ImageJ (http://rsbweb.nih.gov/ij/). The image 

stack was median filtered with a 0.5 pixel radius. Pore space was segmented with the Otsu 

thresholding algorithm (multi-threshold plugin). The segmented area was binarised and 

pore space parameters were measured with the ImageJ “Analyse Particles” function. 

Macroporosity was characterised because this was the pore size visible within the resolution 

of the X-ray CT images.  

The results were subjected to an analysis of variance (ANOVA) containing soil type and time 

and all possible interactions as explanatory variables using Genstat 13.1. Regression analysis 

was used to explore the relationships between root volume and soil moisture content. 

Normality was tested by interpreting the plots of residuals; in all cases the data were 

normally distributed, satisfying the assumptions underlying general ANOVA. 

3.5 Results 

Accurately observing root system architecture (RSA) development in soil through X-ray CT 

requires a balance of the trade-off between soil water content and image quality. We aimed 

to quantify this trade-off. The experiment successfully yielded high quality images of the 

undisturbed RSA of rice plants grown in soils with two contrasting textures. The root 

volumes were significantly (p < 0.001) greater in the clay loam soil compared to the loamy 

sand (0.512 vs. 0.369 cm3 respectively). As expected a larger volume of roots were recorded 

in the WinRHIZO images (Fig. 3-4) as the X-ray CT derived volumes are restricted by the 

resolution of the scan (57 µm) and the aforementioned difficulties in segmenting the root 

material, however the X-ray CT and WinRHIZO measurements of root volume were still 

significantly correlated (R2=0.61; p < 0.01). 
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As hypothesised there was a significant effect of soil moisture content on the ability to 

segment the RSA in the X-ray CT images (Fig. 3-4). As soil water content decreased through 

the drying period, the ability to segment the RSA increased (R2=0.47) (Fig. 3-5). There was 

no significant difference in the ability to segment root material as the soil dried between the 

contrasting soil textures. 

In order to explore this further the root segmentation efficiency ratio (ratio of X-ray CT root 

volume: WinRHIZO root volume) was calculated for each sample. This was also significant 

illustrating the same trend albeit with a smaller R2 of 0.39 (Fig. 3-6). However in this 

instance there was also a significant difference between the soil types (loamy sand R2=0.23 

and clay loam R2=0.66) which may be attributed to the relative abundance of fine roots (< 

0.2mm diameter) in the loamy sand samples which would not be visible via X-ray CT at the 

57 µm voxel size. The average total length of fine roots was 556 cm in the sandy loam and 

465 cm in the clay loam. 

The experiment required continuous assessment of the same plant as the soil dries and 

could potentially include root growth which would skew results. However, mature plants 

were used to minimise the possibility of significant coarse root growth for the duration of 

the experiment (only roots > 57.3 µm effective diameter are included). As an additional 

precaution, the rice cultivar Azucena was used because it has been shown to have little 

branching in the upper root system due to its deep rooting nature (Clark et al. 2011).  

1 
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A Loamy Sand 2 

 3 

 B Clay Loam 4 

 5 

Fig. 3-4: Three-dimensional rice root system architecture (RSA) images as obtained by both X-ray CT and WinRHIZO for (A) Loamy sand and (B) Clay Loam 6 
soils. Scale bars = 1 cm. 7 
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Fig. 3-5: X-ray CT segmented root volume as a function of volumetric soil water content for both 

loamy sand (diamonds) and clay loam soil (squares). 

 

Fig. 3-6: Segmentation efficiency ratio as a function of soil water content for both a loamy sand 

(diamonds) and clay loam soil (squares). Segmentation efficiency is defined as the ratio between 

root volume segmented from X-ray CT images and the root volume determined through root 

washing. 

Assuming root growth between scan days one and nine is negligible, the soil moisture 

content at scanning had a clear significant impact on the ability to discriminate root material 
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in X-ray CT images, especially between days one and three where the effect was most 

pronounced (p<0.01) (Fig. 3-7). However after three days, there were no significant 

differences in the segmented root volumes although a slight increase (not significant) was 

recorded between day seven and eight. Interestingly this is consistent across two very 

different soil textures which was not as hypothesised. In order to ensure that repeated X-ray 

exposure did not have an effect on plant development, an equivalent number of columns 

were prepared that were not subject to scanning at any stage. All unscanned plants were 

removed from the growth chamber for the same duration as the scan time and treated the 

same as the scanned plants apart from the scanning itself. At the end of the experiment 

these columns were also root washed and the total root volume compared with the scanned 

columns. No significant difference (p=0.752) was found between the scanned and 

unscanned root volumes.  

3.6 Discussion 

These results show that segmentation of root material in X-ray CT images is indeed 

influenced by soil moisture content and that this should be a key consideration in future 

studies. This was expected and might explain why many previous researchers who have 

tried to employ X-ray CT as a tool to visualize roots in soil have preferred to work with 

coarse, dry porous media (e.g. Heeraman et al. 1997) where possible. However X-ray CT as a 

tool for the plant-soil scientist is becoming more popular due to recent improvements in 

image quality, scan and reconstruction speeds and root segmentation software (see 

Mooney et al. 2012b for more detail). With this will come new opportunities to work with 

porous media that more closely resembles field soil and as such the moisture content at the 

time of scanning is a crucial experimental consideration. 
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in order to optimize the image processing of segmenting root material in soil images it is 

preferable to scan soil columns approximately three days after saturation, which was -50 

kPa for the loamy sand and between -1100 and -1200 kPa for the clay loam. We hypothesize 

in our experiment that this was approximately just below the field capacity moisture status 

of the soil.  

Interestingly, further drying after three days did not appear to have any significant effect. 

Although we did record some minor increases in segmented root volume after seven days, 

visual examination suggested that the ‘extra’ root material that was segmented at this stage 

is most likely air at the root-soil interface as the effects of shrinkage take place (Carminati et 

al. 2009). Additionally, as the soils in this study were sieved < 2 mm but the resolution 

limited to 57 µm, the measurable porosities were actually greater in the loamy sand soil 

(11%) than in the clay loam (5%). The increased macroporosity in the loamy sand soil 

appears to have impacted on segmentation efficiency of roots from X-ray CT images, 

possibly because it provided less root-soil contact increasing root growth in the finer root 

fraction (<0.2mm) that was not visible at the X-ray CT scanning resolution (Fig. 3-8). Air-filled 

macroporosity significantly increased in both soil types between day one and day nine as 

expected (Fig. 3-9). The influence of air-filled macropores on segmentation means that 

sections of the macropore network can potentially be included as root material because of 

their similar X-ray attenuation. 
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Fig. 3-9: Three-dimensional visualisations of air-filled macroporosity increasing with drying in loamy 

sand (A and B) and clay loam (C and D). Air-filled macroporosity has been segmented and false 

coloured red in the X-ray CT images with soil solids remaining in greyscale. Scale bar = 1cm. 

As the hardware and software associated with X-ray CT develops in the future it can be 

expected that the correlation with root measurements obtained by other methods will 

improve. For example, the images recently obtained in Mairhofer et al. (2012) suggest that 

the very fine root volume that has to date been out of reach for X-ray CT studies will soon 

be able to be visualised. The regression values reported here for X-ray CT and WinRHIZO 

derived root measurements are similar to previously published work (Flavel et al. 2012a; 
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Tracy et al. 2012b; Tracy et al. 2012e). However when considering this one has to be mindful 

that while X-ray CT has its limitations, so do approaches like WinRHIZO. For example 

WinRHIZO has the potential to underestimate root volume as it calculates volume from 

average root diameter. This is because the average root diameter is biased toward the finer 

root fraction because the majority of most root systems are composed of fine roots (Ryser 

2006). There is also a discrepancy between the standard WinRHIZO method and Tennant’s 

method of measurement for root length (Wang and Zhang 2009; Zobel 2008), surface area 

and root diameter (Himmelbauer 2004).  

A further potential impediment to the development of X-ray CT as a tool for root-soil 

studies, especially root phenotyping, is the potential of the X-rays to affect root growth. This 

is an area that has not been considered until very recently, however the advent of 4-D 

imaging (e.g. Tracy et al. 2012e) mean that it is probably more relevant now than ever 

before. Recently Flavel et al. (2012a) has also found that the effect of exposure of X-ray 

radiation to the plants did not have a significant effect on the roots measured by WinRHIZO. 

However as X-ray CT develops as a root phenotyping tool with faster scanning, the potential 

effects of X-rays on plant growth will need to be carefully monitored. 

3.7 Conclusions 

Here we highlight the importance of soil moisture content at the point of X-ray CT scanning 

as a critical parameter which significantly affects the performance of subsequent image 

processing steps used to acquire images of 3-D RSA. The optimum soil moisture content 

shown here was at, or just below, an approximated field capacity (i.e. 3 days drainage) and 

although not shown in this study this may vary between different soil types. Scanning 
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samples at moisture contents greater than this will lead to the total RSA being 

underestimated. Scanning up to a week after drainage should also be avoided as the drying 

process can cause cracks to form which leads to overestimating the total RSA after 

segmentation, not to mention potential negative influences on the plant caused by water 

stress.  
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4.0 Effects of X-ray dose on rhizosphere studies using X-ray Computed 

Tomography  

4.1 Description and author contributions 

This chapter is a reformatted version of a paper published in PLOS One (Zappala et al. 

2013b) that describes the effect of X-ray dose on root growth and soil biota when visualising 

the rhizosphere using X-ray CT. X-rays have the potential to impact soil root development 

depending on the sensitivity of the plant and the total dose the sample receives. 

Author contributions are as follows: 

• Project supervision was provided by M. Bennett, T. Pridmore and S. J. Mooney. 

• General advice and draft editing was given by S.J. Mooney and C.J. Sturrock. 

• Image analysis assistance was provided by S. Mairhofer. 

• Literature review, experimental design, practical work and data anlaysis was completed 

by J. Helliwell for soil microbe studies and S. Zappala for plant studies. 

• Paper construction was completed by S. Zappala, J. Helliwell and S. Tracy. 

4.2 Abstract 

X-ray CT is a non-destructive imaging technique originally designed for diagnostic medicine, 

which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT 

enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix 

of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray 

CT allows visualisation of plant roots in situ without the need for traditional invasive 

methods such as root washing. However, one routinely unreported aspect of X-ray CT is the 
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potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere 

investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray 

CT parameters for dose to sample, ii) to provide an overview of previously reported impacts 

of X-rays on soil microorganisms and plant roots and iii) present new data investigating the 

response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 

126 publications included in the literature review contained sufficient information to 

calculate dose and only 2.4% of the publications explicitly state an estimate of dose received 

by each sample. We conducted a study involving rice roots growing in soil, observing no 

significant difference between the numbers of root tips, root volume and total root length 

in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning 

samples over a total of 24 weeks observed no significant difference between the scanned 

and unscanned microbial biomass values. We conclude from the literature review and our 

own experiments that X-ray CT does not impact plant growth or soil microbial populations 

when employing a low level of dose (< 30 Gy). However, the call for higher throughput X-ray 

CT means that doses that biological samples receive are likely to increase and thus should 

be closely monitored. 

4.3 Introduction 
4.3.1 Dose to sample in X-ray CT Investigations 

X-ray CT is a non-destructive imaging technique commonly used to observe and quantify 

aspects of the soil environment including plant root development (Flavel et al. 2012b; 

Karahara et al. 2012; Tracy et al. 2012a; Tracy et al. 2012d), fungal influences (Kravchenko et 

al. 2011; Martin et al. 2012), changes to pore structure (Munkholm et al. 2012) and the 

influence of microbial activity (Nunan et al. 2006). One often overlooked aspect of X-ray CT 
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studies involving soil is the influence of X-ray dose on the biological subject of interest (e.g. 

plants and animals) in these studies. For those studies that have included unscanned 

controls and reported X-ray dose or parameters enabling calculation of dose, there has been 

no discernible influence on plant root growth (Flavel et al. 2012b; Gregory et al. 2003b), 

fungal (Kravchenko et al. 2011) or microbial activity (Bouckaert et al. 2012). However, it 

should be noted that these samples have received relatively small X-ray dose to sample (i.e. 

< 1.5 Gy). With the advent of higher throughput X-ray CT techniques (Yang et al. 2011), 

which often involve multiple scans of the same sample over longer periods of time, total 

dose and therefore potential influence of the received dose will increase for individual 

samples. Stuppy et al. (2003) argued that X-ray CT was not feasible for living systems due to 

repeated exposure to X-rays. However, Dutilleul et al. (2005) stated that given the right 

precautions to limit and assess dose effects, X-ray CT is suitable for repeated observation of 

living organisms and particularly plants. 

Dose is the quantity of energy absorbed by an object after exposure to radiation, making it a 

critical factor for consideration in X-ray CT studies and thus something that should be closely 

monitored (Gregory et al. 2003b; Johnson 1936b). However, many of the previously 

published X-ray CT studies do not report X-ray dose or provide insufficient information to 

calculate dose and its subsequent impact on plant growth or microbial activity. X-ray dose is 

estimated from tube current, voltage, exposure time and distance (r) from source, and has 

an exponential relationship to the distance between the X-ray source and the sample, as 

described by Gauss’ Law. Dose decreases in air by 1/r2, making source to sample distance a 

critical determinant of intensity. This ratio was found to be true for energies between 50 kV 

and 150 kV and with currents between 1 µA and 400 µA (Stupian 2007), which is consistent 
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with most recent X-ray CT investigations involving soil and plants. Filters can influence the 

dose received by the sample, by progressively attenuating the highest and lowest X-rays, 

producing a narrower spectrum X-ray beam. Some filters composed of metals with low 

attenuation have little effect on dose. For example, Stupian (2007) observed no effect on 

radiation dose using a 1.6 mm aluminium filter. Furthermore sample composition and size 

play a key role in resultant doses. Common artefacts such as streaks and ‘shadowing’ behind 

the constituent of interest occur during photon starvation, when X-rays have insufficient 

velocities to penetrate certain sample constituents (Mori et al. 2012; Wildenschild et al. 

2002). Likewise container composition and thickness can play a critical role in shielding 

samples from X-ray exposure (Yardin et al. 2000), and so need to be carefully evaluated 

before dose calculations can be applied.  

The accurate calculation of dose is notoriously difficult due to the complex nature of 

radiation interaction with matter. For example, X-rays can interact with matter in several 

ways that are themselves difficult to predict. Primarily, X-ray attenuation by a material is 

determined by processes such as absorption, scattering, refraction and reflection, as well as 

magnetic interactions, although these are quite rare (Als-Nielsen and McMorrow 2011). In 

an effort to quantify the minimum dose required to acquire a tomographic image, Jenneson 

et al. (2003) describe a method for estimating these X-ray interactions, and thus dose to the 

centre of a sample as: 
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where Ex is the beam energy; SNR the signal-to-noise ratio; fc the Compton factor 

(normalisation parameter reflecting photon energy after inelastic scattering (Als-Nielsen and 

McMorrow 2011)); ρ the density of the sample; µ the attenuation coefficient; η  the 

detector efficiency; ε  the planar pixel size; h the slice thickness; d the diameter of the 

reconstruction. 

However, it is unusual for many of these measures to be reported in publications. In an 

effort to establish actual dose rather than an estimation, Stupian (2007) measured dose 

directly with a Radcal® 2026oC ionisation chamber meter. Whilst this is preferable as it gives 

a near-instantaneous reading of dose at the sample boundary, it relies on laboratories using 

X-ray CT scanners to have the required equipment. A simpler indication of dose can be 

made using freely available online calculators such as the Rad Pro Dose Calculator 

developed by McGinnis (2002-2009). Using X-ray empirical data from British Standard BS 

4094-2:1971 (Recommendation for data shielding from ionizing radiation – Part 2: Shielding 

from X-radiation), all that is required for the estimation of sample dose is a basic 

understanding of the scanning parameters and filters utilised. When we sought to estimate 

dose from previously published work it was often necessary to infer sample to X-ray source 

distance from the scanners used because the actual distance was not provided. 

Furthermore filter thickness and material were commonly unreported, but have a large 

influence on the resultant X-ray exposure of samples. 

 

 



 

66 

 

4.3.2 X-ray Dose and Plants 

4.3.2.1 Growth of plants exposed to X-rays before germination 

X-ray studies involving seeds (imbibed and dry) from 70 plant species showed that exposure 

to moderate X-ray sources (0.01 Gy to 5 Gy) had a positive influence on shoot and root 

elongation (Johnson 1936b), as well as increased branching in Colorado wild potato 

(Solanum jamesii) (Johnson 1937). At higher doses (> 15 Gy), significant reduction of seed 

germination, shoot and root growth, budding, flowering and fruiting were identified in many 

plant species including field bean (Phaseolus vulgaris) (Genter and Brown 1941) and 

Nicotiana tabacum (Goodspeed 1929). Additionally, the influence of X-ray exposure on plant 

growth is highly dependent on plant type as well as variety. Sunflowers (Helianthus annus L.) 

displayed negative growth effects when the imbibed seeds were exposed to doses greater 

than 33 Gy (Johnson 1936b). In field bean, doses as low as 26 Gy produced inhibition of 

germination and chlorophyll abnormalities (Genter and Brown 1941). However, much lower 

doses (0.05 Gy) impaired germination of date palm (Phoenix dactylifera L.), reduced DNA 

production, altered biosynthesis of plant pigment (chlorophyll a, chlorophyll b and 

xanthophylls) and negatively impacted root and shoot growth of the germinated seeds (Al-

Enezi and Al-Khayri 2012). 

4.3.2.2 Growth of plants exposed to X-rays after germination 

In comparison to plants exposed as seeds, plants are less susceptible if exposed to X-rays 

post-germination. However, as noted previously the impact of X-ray exposure is highly 

variable and dependent on the plant type, variety and developmental stage. Dhondt et al. 

(2010b) reported growth inhibition in repeatedly scanned Arabidopsis thaliana L. seedlings, 
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which is consistent with the observations of Johnson (1936b) that X-ray exposure at seedling 

stage often had a negative influence on growth. However, no indication of X-ray energy was 

provided by Dhondt et al. (2010b), so dose could not be calculated from the manuscript. 

Many of the early experiments investigating plant-dose response involved doses that were 

several orders of magnitude greater than that considered lethal to humans, an acute dose 

of > 4 Gy (Kauffman 2003). However, these doses do not necessarily impact plant growth 

and microbial activity, as doses below 33 Gy showed little impact on plant growth (Johnson 

1936b). Since 2003, most experiments have involved X-ray exposure equivalent to less than 

1.5 Gy (Fig. 4-2), largely as a result of optimised detector response and improvements to 

acquisition methodologies (Mooney et al. 2012a). 

4.3.3 The influence of X-ray radiation on soil microbial populations 

The irradiation of soil could influence microbial communities through the direct ionisation of 

cells causing DNA mutation, and the indirect radiolysis of cell water creating damaging free 

radicals within extra- and intra-cellular fluids (Jackson et al. 1967). Free radicals can cause 

single or double stranded DNA breaks (McNamara et al. 2003), damaging future cell and 

plant development. Yet, to date there has been little work to assess the impact of X-ray 

radiation on soil constituents, with much of the focus being based on γ-rays due to its 

application in soil sterilisation procedures. Jackson et al. (1967) demonstrated that fungi are 

more sensitive to radiation than bacteria, with γ-irradiation doses as low as 10 Gy able to 

alter fungal populations. Responses to radiation continually change as enzymatic activity in 

soils aid recovery from acute doses, although sensitivity is dependent on a large range of 

physiological factors such as metabolic activity, organism size and complexity, and life-cycle 

stage (McNamara et al. 2003). A dose of 10 Gy of X-ray radiation is equivalent to 10 Gy of γ-
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ray radiation since X-rays and γ-rays have the same radiation weighting factor, formerly 

known as quality factor, which is a measure of the expected biological impact of ionising 

radiation often used in radiation protection (Als-Nielsen and McMorrow 2011). For example, 

α-particles have a quality factor of 20, meaning on average α-particles are expected to 

produce 20 times the biological damage of X-rays or γ-rays. Furthermore soil moisture 

status plays a key role in indirect radiation damage. In wetter soils the ability to form free 

radicals through the radiolysis of water is increased, requiring a lower dose to harm 

microbial populations than dry soils (Jackson et al. 1967). These findings are consistent with 

those of McNamara et al. (2003), who in a meta-analysis of published results suggested that 

higher irradiation doses may be required to eliminate bacteria in dry soils. Due to the 

heterogeneity of soil systems, it still remains a challenge to accurately define the impact of 

radiation on soil-borne populations, although γ-ray doses reported as having impacts on soil 

constituents are an order of magnitude greater than any found in modern X-ray CT studies. 

To date, there is controversy surrounding the expected range of X-ray doses thought to 

impact plant and soil samples analysed via X-ray CT. We aimed to summarise key sources 

that report the influence of X-ray dose on plant or soil samples, particularly those involving 

X-ray CT. In addition, two experiments were completed that aimed to assess the potential 

effect of dose received during X-ray CT on (i) plant growth and (ii) soil microbial activity. 

4.4 Materials and Methods 
4.4.1 Data Collection 

Web of Knowledge (Institute of Scientific Information) was utilised as a search database to 

find related publications with the search term “plant AND X-ray Computed Tomography” or 

“soil AND X-ray Computed Tomography”. This identified relevant literature dating back 30 



 

 

years, 93 plant related publications and 346 soil related works. Papers from earlier than 

1982 were found through hard copies at the University of Nottingham library (66 items). 

Fig. 4-1: 
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online tools. In total 126 publications were included in the dose assessment (Fig. 4-1). The 

range of calculated X-ray doses from each publication was included in Fig. 4-2. 

 

Fig. 4-2: X-ray dose in plant and soil studies. Dose was calculated in Rad Pro with X-ray parameters 

derived from literature. Most studies involve doses below the 33Gy threshold noted by Johnson 

(Johnson 1936b), below which she did not observe visible alteration of post-germination plant 

growth after X-ray exposure. Note the reduction in published studies between 1940 and 1980 and 

the clear rise in the 1990s. 

4.4.2 Dose Calculations derived from the literature  

Doses were estimated using the Rad Pro Dose Calculator. Due to restrictions of the dose 

calculator, X-ray doses were calculated assuming a 30 cm source-detector distance for 

industrial scanners and 100 cm distance for medical scanners. A 1 mm Be filter was used for 

the calculation if no data was given in the reviewed literature, as this was the minimum 

available shielding in the Rad Pro software and hence represents a worst case scenario. 

Ultimately, all dose calculations are predictions, rather than actual measurements, due to 

the inherent randomness of X-ray energy and its interaction with materials. X-ray doses in 
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this manuscript are expressed as absorbed dose, which reflects the energy absorbed per 

unit mass for any radiation source and any material. The concept of absorbed dose was 

adopted by the International Commission on Radiological Protection (ICRP) to enable 

comparison of potential radiobiological impact from all types of radiation and a variety of 

sample types. Absorbed dose best meets the goals of the manuscript to provide a means for 

dose comparison in plant-soil studies involving X-ray CT. Effective dose cannot be used here 

as it includes a weighting for the sample composition, which is extremely heterogeneous 

amongst soil-plant-microbe samples, even in replicates using the same soil type and 

treatment. 

4.4.3 Soil and Plant Sample Preparation and Treatment 

Polypropylene columns (55 mm diameter, 150 mm height and 2.32 mm thick) were packed 

with sieved (< 2 mm) loamy sand field soil (Newport Series, FAO Class brown soil) at 

equivalent bulk density of 1.3 g cm-3. The soil was saturated with deionised (DI) water and 

planted with seeds of O. sativa cv. Azucena after germination, when the coleoptile and 

radicle were approximately 1 cm long. Columns were kept at continuous saturation by 

providing DI water in a tray ponded with 2 cm of DI water. Rice plants were grown for 29 

days on a 12 hour daylight cycle at 28oC daytime temperature and 20oC at night. Four hours 

before X-ray CT scanning, all columns were taken out of the water tray and not provided 

with any more water. For each column, gravimetric soil moisture content was measured 

before and after X-ray CT scanning to catalogue moisture loss. Four treatment columns were 

X-ray CT scanned daily for nine days to represent the full range of water contents expected 

during experimentation. Four control columns were treated in exactly the same way with 

the exception of X-ray CT scanning, to record any potential effects on plant growth incurred 
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during repeated X-ray exposure. These unscanned control plants were removed from the 

controlled growth chamber and placed in the dark for the duration of X-ray CT scan time to 

account for the influence of removal from the growth room. 

Plant root systems of the treatment and control columns were destructively sampled on day 

ten by carefully removing the intact soil cores from the polypropylene columns. The soil-

root columns were placed in water and the soil was carefully removed from the root 

systems. Immediately after cleaning the root systems, root volume was measured with 

WinRHIZO® 2002c (Regent Instruments, Canada) scanning equipment and software. The 

root volume measurements were further verified by water displacement (Pang et al. 2011). 

4.4.4 Soil and Microbe Sample Preparation and Treatment 

Four replicate columns (23 mm diameter, 70 mm height and 1.52 mm thick) were uniformly 

packed with a loamy sand (Newport Series, FAO Class brown soil), silty loam (Batcome 

Series, FAO Class chromic luvisol) and clay loam (Worcester Series, FAO Class argillic pelosol) 

to a dry weight bulk density of 1.2 g cm-3, saturated with sterilised DI water and 

gravimetrically drained to field capacity. The water status of the columns was maintained at 

field capacity (determined by weight) throughout the investigation by sterile deionised 

water addition every 1-2 days. The columns were incubated for 24 weeks at 16 ºC and a 

sub-section repeatedly scanned at weeks 0, 2, 4, 8, 16 and 24 of incubation. Scanned and 

unscanned soils were destructively harvested and microbial biomass carbon assessed at the 

end of the incubation period by chloroform fumigation extraction (Vance et al. 1987). A 

value of 0.45 was selected as the conversion coefficient of ‘chloroform-labile’ carbon to 

microbial biomass carbon (Jenkinson et al. 2004). 
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4.4.5 X-ray CT Imaging 

A Phoenix Nanotom X-ray CT scanner (GE Sensing and Inspection Technologies, GmbH, 

Wunstorf, Germany) with a tungsten transmission target obtained 3-D images of each 

sample column including soil and root structure where applicable. Scan settings for the 

plant and microbial samples are detailed in Table 4-1. The spot size was approximately 3 µm 

(Mode Zero). Datos|x 2.0 (GE Sensing and Inspection Technologies, GmbH, Wunstorf, 

Germany) was used to reconstruct the X-ray CT images into a 3-D volume. Individual 

adjustments were made for minor sample displacement during scanning. 

Table 4-1: X-ray CT scan parameters 

Sample kV µA Filter 

Source to 

sample 

distance (cm) 

Time 

each 

scan 

(min) 

Total 

number 

of 

scans 

per 

sample 

Voxel 

size (µm) 

Rice in soil 110 320 0.2 mm Cu 21.5 73 9 57.3 

Soil 

microbes 
120 100 0.1 mm Cu 5.5 33 6 12.38 

4.4.6 Statistical Analysis 

Genstat 15.1 (VSN International Ltd., UK) was used to perform an analysis of variance, 

containing time and all possible interactions as explanatory variables. Normality was tested 

by interpreting the plots of residuals; in all cases the data were normally distributed, 

satisfying the assumptions underlying general analysis of variance. 

4.5 Results 
4.5.1 Literature analysis 

In total, 126 publications were identified that related to plant and/or soil studies involving X-

ray CT or X-ray exposure. Three papers (2.4% of total number analysed) using X-ray CT to 
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visualise soil and plant samples explicitly reported the estimated dose received by the 

sample. The required information for estimating dose using Rad Pro is i) X-ray energy, ii) X-

ray current, iii) distance from source to centre of sample, iv) thickness and type of filter used 

and v) total exposure time. Fewer than 5% of the publications analysed in this research area 

contained all the required information to calculate the X-ray dose of each sample. This is 

primarily due to exclusion from the reports of source to sample distance or filters used. 

These studies and those with minimum information (X-ray voltage, current and total scan 

time) to estimate dose using the Rad Pro calculator are presented in Fig. 4-2. 

The radiation dose in X-ray CT studies involving plants and microbes in soil generally are an 

order of magnitude lower than those considered to influence plant growth (33 Gy, Fig. 4-2). 

From our extensive literature search a value for the influence of X-ray dose on soil microbial 

populations could not be found, although we envisage that the value that soil microbial 

populations could sustain would be significantly higher than the 33 Gy suggested for plants. 

The majority of reported studies involved doses that were lower than the 33 Gy threshold 

considered to significantly influence plant growth. It should be noted that for plant species 

considered more sensitive to the influence of X-ray radiation exposure such as field bean 

(Genter and Brown 1941) and date palm (Al-Khayri et al. 2012), the thresholds for negative 

influence on growth were 26 Gy and 0.05 Gy respectively. 

Prior to 1950, studies investigating the effect of X-ray exposure on plants involved direct 

exposure of the seed or plant to X-ray radiation (Fig. 4-2). After 1945 there was a sharp 

decline in studies relating to X-ray dose on plants that included the required information to 

calculate dose. With the advent of X-ray CT developed by Hounsfield (1972), studies 
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involving soil microorganisms were undertaken as the possibility for non-destructive 

imaging of the physical structure of soil became possible. Additionally, X-ray CT was adopted 

for visualisation of plant root development in soil. Since 2008, technological advancements 

in X-ray detectors and data storage have contributed to the increase in the number of plant 

and soil investigations that include the use of X-ray CT.  

4.5.2 Impact of Repeated Scanning on Plant Roots in Soil 

For the study involving rice roots growing in soil, no significant difference was found 

between scanned and unscanned number of root tips, root volume and total root length 

measured in WinRhizo (Fig. 4-3). Scanned root systems had an average of 4512 root tips and 

unscanned root systems had an average of 4571 root tips (P = 0.928). Average root volume 

was 0.765 cm3 for scanned plants and 0.718 cm3 for unscanned plants (P = 0.752). Total root 

length averaged 596 cm and 589 cm for scanned and unscanned plants respectively (P = 

0.960). The dose received by each column for a single scan was 1.4 Gy, equating to a total 

dose per column of 13 Gy over the ten day investigation (nine scans). Results are consistent 

with previous studies (Flavel et al. 2012b; Gregory et al. 2003b), who found no significant 

alteration to root development in cereals at doses of 0.7 Gy and 1 Gy respectively. 

4.5.3 Impact of Repeated Scanning on Microbes in Soil 

The soil microbe experiment involved scanning over a total of 24 weeks with six scanning 

sessions. No significant difference was found between the scanned and unscanned microbial 

biomass values after 24 weeks (Fig. 4-4; P = 0.975). Interestingly mean biomass values were 

consistently higher in unscanned compared to scanned treatments across all soil textures 

(mean values of 451.30 and 416.66 µg C g-1 soil in the clay loam, 167.57 and 154.32 µg C g-1 
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soil in the silty loam and 108.71 and 104.19 µg C g-1 soil in the loamy sand for unscanned 

and scanned respectively), although none were statistically significant. Total dose received 

by each sample was 23 Gy over six scans. 

4.6 Discussion 

Hypotheses about the hormetic effects of X-ray radiation on plant productivity drove initial 

investigations into the impact of X-ray dose on crops such as wheat (Cattell 1931) and 

potato (Johnson 1937). There was agreement that large X-ray doses impaired plant growth 

and development; the disagreement arose surrounding the beneficial effects of moderate X-

ray doses (Johnson 1936a). Eventually, researchers found that any improvement in growth 

rate or yield observed in very young plants dissipated at later growth stages (Johnson 

1936b). This lack of financial benefit for crops could explain the decline in interest regarding 

the effects of X-rays on plants that occurred in the late 1930s (Fig. 4-2). In the late 

1980s/early 1990s, there was a resurgence of use of X-rays in plant and soil research. This 

likely occurred due to development of X-ray CT as a 3-D visualisation tool. X-ray CT provided 

another option for researchers to visualise plant root architecture in soil as well as soil 

structure and pore geometry. 

As X-ray CT becomes more widely adopted in the plant and soil sciences, the demand for 

greater throughput, larger samples (to analyse field soil cores) and higher resolution will 

intensify. Advancements in detector technology, computer processing and data storage 

could both increase and decrease dose received by samples scanned using X-ray CT. For 

example, reduced scan times will mean that single samples are subject to less X-ray dose per 

scan. However, less total X-ray scan time means that researchers can complete a set of  



 

77 

 

 
Fig. 4-3: Impact of X-ray CT on rice root growth. Twenty-eight day old rice plants grown in soil were 

X-ray CT scanned daily for nine days. After day nine of scanning, root systems were destructively 

sampled via root washing and root volume was measured in WinRHIZO. Repeated exposure to X-rays 

had no significant effect on the number of root tips, root volume or total root length of rice grown in 

soil when compared to unscanned plants. Error bars depict standard error of the mean (n=4). Total 

dose received by each sample was 13 Gy over nine scans. Scale bar represents 1 cm. 
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Fig. 4-4: Influence of X-ray CT on soil microbial biomass after 24 weeks of incubation. Microbial 

biomass was measured with chloroform fumigation and compared between X-ray CT scanned 

columns and unscanned controls. Total dose received by each sample was 23 Gy over six scans. Error 

bars depict the standard error of the mean of four replicates. 

samples in the time it would have taken for one sample. We envisage that future 

experiments are more likely to include repeated scanning of the same sample and thus have 

a total dose much higher than that of a single scan. This is especially true for experiments 

analysing root phenotypes or soil structural development that investigate changes in these 

systems over time. Therefore we suggest that experimental studies utilising X-ray CT report 

the dose received by the sample, or at least the constituent parameters in order to allow 

others to make informed decisions as to the dose that experimental samples have received. 

At present, those studies that have included unscanned controls have reported no 

significant influence of X-ray CT scanning at moderate energy levels and relatively small (< 

30 cm) source to sample distances. However, the vast majority of publications do not 



 

79 

 

mention dose or include unscanned controls in their experiments. This is not to say that 

unscanned controls were not included in the experiments, but they were unreported in the 

published articles. Therefore, unscanned controls are important as a verification method to 

ensure that the X-ray parameters and resulting dose are not significantly impacting the 

experimental treatment. Our recent studies have shown that a typical X-ray CT experiment 

with repeated scanning of the same sample does not have a significant negative impact on 

plant root development (Fig. 4-3) or microbial activity (Fig. 4-4) in soil. 

The main potential contributor to differences between scanned and unscanned plants may 

be removal from growth chamber if unscanned plants are kept under controlled conditions 

whilst the scanned plants are not in the growth chamber. For example, total scan time can 

amount to several hours that a planted sample is removed from the growth room, so in turn 

less hours photosynthesising. Furthermore, fluctuations in temperature within the scanning 

chamber itself may induce changes in the moisture content of samples. To minimise this 

time outside of controlled growth conditions shorter scan times are encouraged, which are 

becoming increasingly feasible through technological development. However, this is often at 

the expense of decreased image quality, which may impact on feature identification in the 

subject of interest. Hence there is a trade-off between scan time and image quality 

optimisation, which varies dependent upon experimental aims. Alternatively where 

practical, another largely unexplored option is to set the day/night cycle opposite to real-

world conditions, so that during working hours scanning can be carried out during the night 

cycle for the plant. To be confident that other differences between the X-ray CT laboratory 

conditions and the field/glasshouse/growth room (e.g. light intensity, humidity, 

temperature, O2 / CO2 levels) are not affecting plant growth, workers could consider leaving 
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some unscanned controls in the usual place of growth and removing other unscanned 

control samples. By taking both sets of samples to the X-ray CT laboratory for the duration 

of the scan time, before returning again to the field/ glasshouse/ growth room, the potential 

influence of X-ray exposure on plant growth and microbial populations is reduced.  

To minimise received dose, samples could possibly be moved further from the source, total 

scan time can be reduced, or lower energies can be used. However these options all have 

implications for the quality of the X-ray CT image produced. Due to the relationship 

between the distance of the sample and the X-ray source, there is a recognised trade-off 

between the achievable image resolution and received dose. Moving a sample further from 

the source reduces the magnification of the image received at the detector, and thus limits 

the achievable image resolution. Additionally, contrast within the image can deteriorate 

when trying to minimise dose because contrast is dependent on the energy, wavelength and 

type and thickness of filters used.  

A more complicated aspect of assessing the impact of X-ray dose on living samples is that 

organisms have highly variable responses to exposure. In the case of plants, Al Khayri et al. 

(2012) found relatively small X-ray exposures of 0.25 Gy had an influence on biochemical 

aspects of date palm (Phoenix dactylifera L.) development (i.e. DNA and pigment synthesis), 

as well as a negative influence on root and shoot development found by Al-Enezi et al. 

(2012). Alternatively, Johnson (1936b) found that high X-ray doses (33 Gy) had little or no 

observable effect on Sunflowers (Helianthus annus L.). This variability further validates the 

need for incorporation of unscanned controls in all X-ray CT experiments. However it is 

worth noting that the dose currently utilised to γ-sterilise soils (a method often used as a 
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highly successful biocide and preferable to other sterilisation procedures such as 

autoclaving due to having a lessened effect on soil chemical and physical properties) is 20 

000 - 70 000 Gy (McNamara et al. 2003). This is three orders of magnitude higher than the 

largest doses reported in X-ray CT investigations to date. Likewise, doses required for 

routine sterilisation of foodstuffs and medical appliances are ca. 25 000 Gy (Yardin et al. 

2000). 

4.7 Conclusion 

This study supports the use of X-ray CT as a means of quantifying root and soil traits, as the 

results show no significant impacts on observable growth parameters due to X-ray exposure 

at the levels used in the study. The advantage of using X-ray CT to non-invasively 

characterise the 3-D geometry of soil and roots is reinforced by the insignificant impact of X-

rays on soil biota and root systems in our two repeated scanning investigations. The doses 

received by individual samples and the total dose accumulated over the period of repeated 

scanning were within a range of accepted values that should not significantly influence 

growth (< 33 Gy). Of particular importance is the fact that at the settings used, multiple 

scans on the same sample appear to have no effect on root phenotypic traits, confirming 

the appropriateness of X-ray CT for high-throughput investigations given the right scan 

settings. As this field of research evolves, it is anticipated that further information can be 

gained from a greater number of researchers reporting dose received by samples and 

highlighting any significant alterations to expected growth patterns.  
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5.0 Phenotyping of OsAUX1 related root system architecture (RSA)  

5.1 Introduction 

As part of what has been termed the “Second Green Revolution” (Lynch 2007), there has 

been a relatively recent move toward understanding and manipulating plant root 

architectures to increase yield and ensure plant adaptation to climate severity and nutrient 

poor soils (Wollenweber et al. 2005). For this, new techniques are required that link 

laboratory and field-derived information to incorporate data gleaned from molecular 

biology about RSA development with field studies that will inform the genetic influences on 

yield and plant adaptation to abiotic stresses (Zhu et al. 2011). These efforts to link lab and 

field investigations begins with lab-based study of RSA development performed with plants 

grown in soil to obtain effects from soil chemistry, soil morphology and physical properties 

such as compaction (Tracy et al. 2012e). Soil presents a specific challenge for observation of 

root development because of its opacity. 

X-ray CT has been one technique used to analyse root development in soil and provides the 

ability to visualise roots, water and the soil matrix simultaneously and repeatedly over time. 

This opens new avenues for in situ investigation of plant water uptake, nutrient uptake and 

root development (Hinsinger et al. 2009). Further understanding of root architecture, root 

growth and soil properties at the microscale have become possible with X-ray CT and 

standardised image analysis methods (Mooney et al. 2012a). Some researchers have 

increasingly utilised non-destructive techniques such as Nuclear Magnetic Resonance (Iyer-

Pascuzzi et al. 2010), Magnetic Resonance Imaging (Stingaciu et al. 2013), Positron Emission 

Tomography (Nagel et al. 2009) or techniques involving non-soil media in 3-D (Clark et al. 

2011) to capture 3-D root development over time. X-ray CT provides the best opportunity to 
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observe root growth in soil because it is non-destructive and utilises the differences in X-ray 

absorption to simultaneously visualise roots, soil organic matter, minerals and air/water-

filled pores (Perret et al. 2007). 

Technological developments in X-ray CT now allow soil and plant scientists to visualise the 

spatial and temporal development of plant roots in soil at scales of approximately 500 nm 

(Tracy et al. 2010). Before the introduction of microscale X-ray CT, some workers scanned 

plant and soil samples in medical grade scanners that were developed for imaging of the 

human body, which produced low resolution (mm scale) images that made root material 

difficult to distinguish from the growth medium (Gregory et al. 2003b). Under the right 

circumstances, X-ray CT allows repeated measurement of root and soil properties over time 

(Tracy et al. 2012c) and is a good candidate for observing specific root traits related to 

nutrient acquisition. 

This work focuses on the RSA that can influence phosphorus (P) uptake. Root angle and root 

responses to gravity have been of particular interest for studies involving P uptake and its 

relationship to root architecture is (Ge et al. 2000; Lynch and Brown 2001). Phenotyping 

gravitropism in soil has been tackled in the field and in the lab (Zhu et al. 2011). Field 

techniques that capture 3-D root angle traits primarily include shovelomics (Trachsel et al. 

2011) and colander/basket-based measurement (Oyanagi 1994). Lab and glasshouse-based 

work uses rhizotrons or soil boxes (MacMillan et al. 2006), however the opacity of soil has 

led researchers toward the use of transparent non-soil media found in hydroponic or gel-

based systems (Downie et al. 2012; Hargreaves et al. 2009). This work aimed to evaluate X-
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ray CT as a technique to quantify gravitropism in the OsAUX1 knockout mutants generated 

by Parker (2010) when they are grown in soil. 

5.2 Materials and Methods 

Four replicates were planted for each line (wildtype, Osaux1-1 and Osaux1-2). Seeds were 

prepared as described in Section 2.1 and grown under conditions described in Section 2.2 

for four weeks. The germinated seeds were planted in columns containing sandy loam 

(Newport) soil as described in Section 2.3. One plant each of wildtype and Osaux1-2 died 

during the experiment, leaving three replicates for these treatments. Each column was 

scanned by X-ray CT weekly for four weeks; Section 2.8. The scanner settings were 130 kV, 

240 µA, 1080 projections, 73 min total scan time, sample-source distance of 22.7 cm, 27.3 

µm voxel size with a 0.1 mm copper filter. The relatively long scan time (73 min) was used to 

obtain the best quality X-ray CT images for the sample size. Columns were allowed to drain 

for two days before scanning (Zappala et al. 2013b). Each sample received an approximate 

X-ray dose of 5.9 Gy over the four scans (1.5 Gy each scan) as estimated by the RadPro X-ray 

Device Dose-Rate Calculator (McGinnis 2002-2009). Root systems were segmented from the 

X-ray CT generated images using VGStudioMax and measured with VGStudioMax and 

RooTrak (Mairhofer et al. 2013) software (Section 2.8.3). Destructive measurement of the 

root washed RSA is described in Section 2.9. 

5.3 Results 
5.3.1 3-D root volume and comparison of VGSM and RooTrak 

The root volume of each root system segmented from X-ray CT images was measured by 

VGStudioMax (VGSM) and RooTrak (Mairhofer et al. 2012) software. There were no 

significant differences in root volume between the genotypes. The root systems significantly 
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(P < 0.001) grew each week (Fig. 5-1). In week two and three, Osaux1-2 had a larger root 

volume than the other lines. 

 

 

Fig. 5-1: Root volume measurement of root systems segmented from X-ray CT images as measured 

by VGStudioMax (VGSM) in A and RooTrak (Mairhofer et al. 2012) software in B. Error bars represent 

standard error of the mean. Least significant difference is represented by bars in the top left. 

The root volumes segmented from X-ray CT images were measured using both VGSM and 

RooTrak software. The resulting root volume measurements were compared to ensure that 
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the lowest centroid Z. At all subsequent scanning points, Osaux1-1 had the smallest centroid 

Z value. 

Excluding week one, wildtype and Osaux1-2 had similar vertical root volume distribution. At 

week two, there was no significant difference in the centroid of any of the lines (P = 0.386). 

Between week one and four, wildtype centroid Z ranged between 0.38 cm and 1.87 cm, 

Osaux1-1 between 0.58 cm and 1.14 cm and Osaux1-2 between 0.957 cm and 1.59 cm. 

Wildtype displayed a more linear increase in centroid Z than either of the knockout mutants, 

which had more of an exponential increase in centroid Z (Fig. 5-4). 

Not only does OsAUX1 influence the vertical distribution of the entire root mass, a 

relationship between OsAUX1 and the maximum extent of the root system was also 

identified. Maximum root system depth was significantly (P = 0.010) different between the 

genotypes (Fig. 5-5 A). At week two and three, Osaux1-1 had significantly shallower 

maximum depth than wildtype and Osaux1-2 (P = 0.010). Over time, maximum depth in 

wildtype ranged between 1.6 cm and 4.6 cm. Osaux1-1 had maximum depth between 0.9 

cm and 4.5 cm. The depth of the Osaux1-2 root system was between 1.7 cm and 4.9 cm.  

The horizontal extent of the root systems (minimum enclosing circle radius) was significantly 

wider in week two and week three (P = 0.021) for the two knockout mutants, which is 

indicative of the agravitropic nature of their RSA (Fig. 5-5 B). 
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Fig. 5-4: Centroid Z-value for wildtype, Osaux1-1 and Osaux1-2 where larger centroid Z indicates a 

deeper distribution of root volume. Error bars represent standard error of the mean. Least 

significant difference is represented by bars in the top left. 

Wildtype had a much larger range of width values, which is consistent with introduction of 

new crown roots and was between 0.548 cm and 2.412 cm. The mutants had a more 

consistent enclosing circle radius from week two to week four, which indicates an 

agravitropic habit very early in root system development. Osaux1-1 extended between 0.87 

cm and 2.6 cm from week one to week four. Over the experimental period, the Osaux1-2 

root system grew from 1.3 cm to 2.6 cm in width. 

5.3.3 Non-root angle related RSA measured by X-ray CT 

Three dimensional root distributions were quantified using the convex hull volume, which 

represents the most conservative soil volume explored by the extent of the root system. 

Convex hull volume can be coupled with root volume to understand the solidness of a root 

system by quantifying the amount of root occupied soil volume (convex hull) that actually 
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contains roots (root volume). Surface area provides an estimate for potential root-soil 

contact. 

 

Fig. 5-5: Weekly measurement of maximum root system depth (A) and the minimum enclosing circle 

(root system width) (B) for wildtype, Osaux1-1 and Osaux1-2 obtained from X-ray CT images of soil 

grown plants. Error bars represent standard error of the mean. LSD represented by bars top left. 

Convex hull volume was not significantly different between the genotypes (Fig. 5-6 A). From 

week one to week four, convex hull volume increased from 9.46 cm3 to 99.4 cm3 for 
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wildtype. Osaux1-1 convex hull volume ranged between 5.4 cm3 and 89.4 cm3 and Osaux1-2 

began with the largest convex hull volume at 21.9 cm3 and in week four was 88.3 cm3. 

 

Fig. 5-6: Convex hull (A) and root system solidness (B) derived from X-ray CT. Error bars represent 

standard error of the mean. Least significant difference is represented by bars in the top left. 

There was no significant difference in root system solidness between the three lines (P = 

0.698) for all weeks (Fig. 5-6 B). In week one, root volume represented between 3.6% 
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(wildtype) and 5.8% (Osaux1-2) of the convex hull volume. By week four, the root systems 

occupied approximately 35% of the potentially explored soil volume (convex hull). This 

similarity in solidness at week four provides a justification for assessing the influence of 

OsAUX1 on P uptake on four week old plants. 

Root system surface area was not significantly different between the three lines (Fig. 5-7). In 

week four, all root systems had similar surface areas ranging between 30.6 cm2 for wildtype 

and 33.5 cm2 for Osaux1-2. 

 

 

Fig. 5-7: Root system surface area measured by RooTrak from X-ray CT derived images. Error bars 

represent standard error of the mean. Least significant difference is represented by bars in the top 

left. 
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: WinRHIZO derived total root length (A) and mean root diameter

: Number of root tips for wildtype, Osaux1-1 

of the mean. 

and mean root diameter

 and Osaux1

and mean root diameter (B). Error bars represent 

Osaux1-2 as determined by WinRHIZO. 
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as determined by WinRHIZO. 
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5.4 Discussion 

The shallow root angle influenced by OsAUX1 activity that was identified on agar by Parker 

(2010) was evident in soil grown rice plants (Fig. 5-3). Additionally, the work characterised 

other aspects of RSA for soil-grown wildtype plants and the mutants Osaux1-1 and Osaux1-2 

that have reduced OsAUX1 function (Section 1.4). 

Root gravitropic response to low P soil environments has been linked to topsoil foraging in 

common bean (Phaseolus vulgaris) (Lynch and Brown 2001; Rubio et al. 2003), maize (Zea 

mays) (Zhu et al. 2005), oilseed rape (Brassica oleracea) (Hammond et al. 2009)  This is 

particularly true in the case of bioavailable inorganic P which resides in the upper five to ten 

cm of the soil profile depending on soil characteristics and land management techniques 

(Blake et al. 2000). In a clay loam soil, inorganic phosphate remained in the top two to three 

cm (Rolston et al. 1975). 

There were indications that Osaux1-1 may have a different RSA than wildtype and Osaux1-2. 

As is indicative of their agravitropic nature, Osaux1-1 and Osaux1-2 both had significantly 

larger enclosing circles than wildtype (Fig. 5-5). The increased minimum enclosing circle 

radius and reduced centroid Z provided clear indication that knocking out OsAUX1 had 

influenced the gravitropic response of Osaux1-1 roots in soil when compared to wildtype 

(Fig. 5-4 and Fig. 5-6). Variation in response to gravitropic stimulus was consistent with 

previous observation on agar between Osaux1-1 and wildtype (Parker 2010).  

In addition to gravitropic response, the overall root surface in contact with soil can 

significantly influence the ability of plants to obtain soil nutrients and water (Dunbabin et al. 

2002). RSA factors which increase the amount of root:soil contact that can enhance nutrient 
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uptake include lateral roots (Bai et al. 2013) and root hairs (Keyes et al. 2013) although the 

amount of available nutrients such as P can have a significant effect on the development of 

these fine fractions of the root system (Ma et al. 2001; Pérez-Torres et al. 2008). OsAUX1 

did not significantly influence overall root volume (Fig. 5-1), surface area (Fig. 5-7), total root 

length (Fig. 5-11 A) or root diameter (Fig. 5-11 B). This is primarily because Osaux1-1 had the 

smallest total root length and thickest average root diameter, which would translate into 

similar root volume and surface area measurements when compared to root systems with a 

longer total root length and thinner roots. In most cases, Osaux1-2 performed similarly or 

even better than wildtype and thus did not provide the appropriate contrast with wildtype 

to analyse the effects of AUX1 on P uptake. 

This work also demonstrated that for assessing global agravitropism of a soil grown root 

system, X-ray CT was a useful technique. X-ray CT provided an appropriate tool to quantify 

root characteristics in soil in 3-D and can be used to study the influence of P in conjunction 

with OsAUX1. For 3-D RSA quantification, RooTrak and VGSM provided sufficient agreement 

in measurement of roots segmented from X-ray CT images. The most meaningful 

measurements occurred around week four where the most significant differences in 

centroid Z were observed thus, further studies will focus on four week old plants. 

Additionally, finer root characteristics such as lateral roots and root hairs were not readily 

visible at the minimum X-ray CT resolution appropriate for the sample size. Thus, in the P 

study, faster imaging could be obtained by decreasing the resolution to 57.3 µm voxel size 

whilst retaining the gross root architecture characteristics required for assessing 

gravitropism and overall soil exploration potential. 
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5.5 Conclusion 

Through X-ray CT imaging, global RSA characteristics such as gravitropism were non-

destructively measured in 3-D for the first time for the knockout mutants Osaux1-1 and 

Osaux1-2 when grown in soil. The agravitropic tendencies of the soil grown knockout 

mutants were consistent with agravitropism observed for plants grown on agar. Destructive 

sampling (root washing) was required to obtain further measurements of fine root 

structures with WinRHIZO. There were no significant differences observed in root volume, 

total root length, root diameter or number of root tips. Whilst growing in sufficient nutrient 

conditions in soil, wildtype displayed variations in centroid and 2-D characteristics when 

compared to Osaux1-1. However, Osaux1-2 had very similar performance to wildtype and in 

some cases exceeded wildtype performance. It was decided to focus on wildtype and the 

known OsAUX1 knockout, Osaux1-1, to isolate the influence of OsAUX1 on P uptake from 

soil.  
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6.0 Influence of root gravitropism and OsAUX1 on RSA and subsequent P 

uptake 

6.1 Introduction 

Root plasticity is critical for nutrient acquisition and has been linked to heterogeneity of the 

soil environment by enabling plants to adapt to changes in nutrient availability (Hutchings 

and John 2004; Kembel and Cahill 2005). When encountering nutrient patches in soil, 

changes in RSA are representative of this plasticity. Common RSA variations involve 

increased initiation of adventitious roots, changes in lateral root density, and alterations to 

primary root elongation (Hodge 2004; Lynch 1995). RSA can be measured by topological and 

morphological parameters (Fitter 1987). A root’s morphology can be characterised by 

variation in root length, root hair density and elongation, root radius, vascular 

differentiation and colour. Whereas root topology is described by branching and placement 

of roots in soil, thus the centroid, root angle, number of adventitious roots and total root 

depth are linked to topological quantification. 

Of particular interest here are RSA adaptations with respect to soil P availability whether at 

deficient, replete or toxic levels. Root P acquisition results in many plant reactions which 

ultimately influence primary root length, lateral root growth, root hair development and 

root exudation (Lynch 2011; Lynch and Brown 2008). In order to manipulate these changes 

in RSA and potentially create higher yielding or stress tolerant crops, genetic controls must 

be identified (Smith and De Smet 2012). One candidate gene that warrants investigation of 

root system plasticity under P stress is AUX1, which was first characterised in Arabidopsis by 

Bennett et al. (1996). In order to perceive nutrients in the heterogeneous soil environment 
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and then react once they are encountered, a gene with high affinity to RSA regulation is 

required. AUX1 controls both phloem and polar indole-3-acetic acid (IAA) transport in the 

root (Swarup et al. 2001), which in turn has been associated with several changes in RSA 

such as gravitropism and lateral root initiation (Bennett et al. 1996; Marchant et al. 2002). 

IAA, the major form of plant auxin, has been linked to lateral root growth and root 

gravitropism, two critical aspects of RSA adaptation to P stress. As an instigator of ethylene 

production, auxin has been correlated with an arrest in primary root elongation of 

Arabidopsis (López-Bucio et al. 2002). IAA accumulation in the root apex can impact on 

lateral root initiation (Casimiro et al. 2001) and influences lateral root emergence (Péret et 

al. 2012). Root gravitropism in Arabidopsis is controlled by AUX1 because of its influence on 

localised auxin distribution in the root (Swarup et al. 2005). Upon gravistimulation (plant 

turned 90o from root growth vector), auxin is released from the gravity sensing columella 

cells resulting in a transient lateral auxin gradient which induces bending in the root 

elongation zone (Band et al. 2012; Brunoud et al. 2012). This bending is caused by auxin 

induced differential growth and thus modifies root angle (Ottenschläger et al. 2003). The 

typical response under normal auxin transport is for the bending root to tend toward the 

gravity vector, however in plants with disturbed AUX1 expression an agravitropic phenotype 

is evident (Swarup et al. 2005). Gravisensing and the relation to auxin is thoroughly 

reviewed in Baldwin et al. (2013). 

In Arabidopsis, responses to P stress have been linked to auxin redistribution. Under P 

starvation, lateral root length increased in plants with unaltered auxin transport (Nacry et al. 

2005). It should be noted that by week two lateral root growth slowed. Nacry et al. (2005) 
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hypothesised the altered lateral root phenotype was due to localised changes in auxin 

distribution induced in the wildtype plant under low P. Al-Ghazi et al. (2003) linked auxin to 

root plasticity and in particular temporal variation in lateral root elongation when the auxin-

resistant mutant axr4 was subject to P deprivation. A key question is whether auxin induced 

responses to P stress could be a conserved trait in crop plants. 

Recently AUX1 was characterised in the crop species rice (Oryza sativa ssp. Japonica cv. 

Dongjin) (Parker 2010), which is commonly grown on P deficient soils. When grown on 

nutrient agar, OsAUX1 was linked to lateral root initiation, primary root length and root 

gravitropic response. These are aspects of RSA which change under varying soil P conditions 

in crop species. Genotypes related to P uptake and tolerance to limiting concentrations of 

soil P have been investigated in maize (Liu et al. 2004), barley (Hordeum vulgare L.) 

(Gahoonia and Nielsen 1996), oilseed rape (Brassica napus L.) (Zhang et al. 2009), durum 

wheat (Triticum durum L.) (Ozturk et al. 2005), common bean (Beebe et al. 2006) and rice 

(Chin et al. 2010; Li et al. 2007; Wissuwa and Ae 2001). However, the influence of OsAUX1 

on rice root system plasticity and plant P uptake has not been characterised. By utilising a T-

DNA insertion knockout mutant, this work quantified RSA in soil under varying P conditions 

for plants with full and reduced OsAUX1 expression. 

6.2 Materials and Methods 

A combination of X-ray CT and destructive sampling were used to quantify root traits under 

seven soil P distributions with three P levels. Soil was collected from the Hoosfield 

Exhaustion Land experimental plot 014 at RRes, United Kingdom because of its unusually 
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low P content of 4 mg kg-1 (RRes 2006). Soil collection, preparation and descriptions are 

covered in Section 2.3 and 2.4. 

There were three uniform column treatments (No P, Sufficient P and High P), two 

treatments with P amendments in the top 4 cm (Split top sufficient and Split top high) and 

two treatments with P in the bottom 6 cm (Split bottom sufficient and Split bottom high); 

these are detailed in Section 2.5.1. There were ten replicates for each column setup and this 

was implemented with two rice lines; one line was the unaltered wildtype and the other 

was an OsAUX1 T-DNA insertion knockout line Osaux1-1 (Parker 2010) which is detailed in 

Section 1.4. This produced a total of 140 columns that were measured. High P was repeated 

twice because of poor plant growth.  

Five randomly selected soil and root columns from each treatment (P Treatment X Line) 

were X-ray CT scanned with a Phoenix Nanotom (GE Sensing and Inspection Technologies, 

GmbH, Wunstorf, Germany) fitted with a diamond transmission target. The X-ray CT 

scanning was performed with the following settings: mode zero, fast scans, 180 kV, 110 µA, 

1200 projections, 40 min total scan time, sample-source distance of 19.9 cm, 57.3 µm voxel 

size with a 0.2 mm copper filter. Each column was drained for two days before scanning 

(Zappala et al. 2013b) and scanned at week four. Each sample received an approximate X-

ray dose of 1.1 Gy each scan, which was estimated using the RadPro X-ray Device Dose-Rate 

Calculator (McGinnis 2002-2009). VGSM and RooTrak software was used to quantify RSA 

extracted from X-ray CT images. VGSM was used to measure root volume by pixel counting. 

RooTrak provided values for root volume, surface area, centroid, maximum depth, minimum 

enclosing circle and convex hull (Section 2.8.3). RooTrak implements voxel counting or area 



 

104 

 

calculations from a triangle mesh generated around the segmented root system for these 

measurements. Root system “solidness” was calculated from the ratio of root volume to 

convex hull volume. Specific root length was calculated from the ratio between total root 

length obtained in WinRHIZO and the root dry mass. After scanning destructive 

measurements of the root system were performed using WinRHIZO (Section 2.9.1) and P 

analysis of plant tissues was completed (Section 2.10.2). 

6.3 Results 
6.3.1 Biomass accumulation and P uptake 

Under all uniform P soil distributions there was not a significant difference between the 

genotypes for shoot dry mass or root dry mass. Under low P and sufficient P, the root:shoot 

ratio and amount of plant P as a proportion of dry mass was similar between the two 

genotypes. However, under high P conditions, wildtype had a lower root:shoot ratio and 

proportion of P than Osaux1-1 (Table 6-1). 

Table 6-1: Biomass and colorimetric P measurements for wildtype and Osaux1-1 under uniform P 

distribution for low, sufficient and high P. All values are shown with ± standard error of the mean. * 

designates significance where ANOVA P< 0.05 for interaction between genotype and soil P level. 

  4 mg kg
-1

 50 mg kg
-1

 150 mg kg
-1

 

  Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

Shoot dry 

mass (g) 
0.021 ± 0.011 0.033 ± 0.010 0.133 ± 0.047 0.112 ± 0.025 0.036 ± 0.025 0.029 ± 0.025 

Root dry 

mass (g) 
0.011 ± 0.003 0.016 ± 0.002 0.042 ± 0.010 0.036 ± 0.006 0.002 ± 0.007 0.005 ± 0.007 

Root:shoot 0.48 ± 0.07 0.46 ± 0.04 0.34 ± 0.02 0.33 ± 0.02 0.08 ± 0.03* 0.40 ± 0.03 

Plant P 

(mg g
-1

 dry 

mass) 

0.87 ± 0.10 0.91 ± 0.08 0.92 ± 0.19 0.80 ± 0.11 0.64 ± 0.23* 1.09 ± 0.23* 

Under stratified P conditions (see split top P and split bottom P in Fig. 2-2), there was more 

variation in biomass accumulation between the genotypes than for the plants grown in the 
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soil with uniform P distribution (Table 6-2). Wildtype had the greatest root and shoot dry 

mass when grown in columns with 50 mg kg-1 P in the top 4 cm of soil (split top sufficient; 

PShoot = 0.003; PRoot = 0.002). When 50 mg kg-1 P was in the bottom 6cm of the soil column 

(split bottom sufficient), Osaux1-1 had less root and shoot biomass than wildtype (PRoot = 

0.014; PShoot = 0.040). However, at the higher P level, wildtype and Osaux1-1 had similar 

biomass accumulation. Genotype and P level in soil did not affect root:shoot ratio. Genotype 

did not influence P accumulation for any of the stratified P treatments (Table 6-2). 

Table 6-2: Biomass and colorimetric P measurements for wildtype and Osaux1-1 under uniform P 

distribution for low, sufficient and high P. All values are shown with ± standard error of the mean. 

For interaction between genotype and soil P level, ** represents P<0.001 and * designates P< 0.05. 

  Top 50 mg kg
-1

 Top 150 mg kg
-1

 Bottom 50 mg kg
-1

 Bottom 150 mg kg
-1

 

  Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

Shoot dry 

mass (g) 

0.289 ± 

0.001* 

0.138 ± 

0.003* 

0.064 ± 

0.027 

0.049 ± 

0.015 

0.155 ± 

0.006 

0.074 ± 

0.015* 

0.158 ± 

0.006 

0.163 ± 

0.012 

Root dry 

mass (g) 

0.076 ± 

0.013* 

0.044 ± 

0.006* 

0.012 ± 

0.002 

0.010 ± 

0.002 

0.035 ± 

0.008 

0.016 ± 

0.008* 

0.036 ± 

0.005 

0.040 ± 

0.005 

Root:shoot 
0.26 ± 

0.03 

0.33 ± 

0.02 

0.18 ± 

0.01 

0.23 ± 

0.07 

0.22 ± 

0.01 

0.26 ± 

0.04 

0.24 ± 

0.02 

0.26 ± 

0.03 

Plant P 

(mg g
-1

 dry 

mass) 

0.39 ± 

0.01 

0.48 ± 

0.04 

4.53 ± 

0.34 

3.82 ± 

0.21 

0.77 ± 

0.05 

1.08 ± 

0.17 

0.81 ± 

0.05 

1.01 ± 

0.07 

6.3.2 3-D root exploration in relation to soil P concentration and distribution 

As seen in Fig. 6-1 and Table 6-3, under uniform soil P at 50 mg kg-1, wildtype had larger root 

X-ray CT measured volume than Osaux1-1 (P = 0.027). This was also true for root surface 

area measured from X-ray CT images (P = 0.038). There was no difference between the 

genotypes for all other 3-D parameters including convex hull, centroid Z, maximum depth 

and maximum width within a given P level (Table 6-3). 
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Fig. 6-1: Representative images of root systems obtained by X-ray CT for plants grown under uniform 

P distribution. Scale bar is equivalent to 3 cm. 

 

Fig. 6-2: Representative images obtained by X-ray CT of root systems grown in stratified soil P 

distributions. Extra P was provided in the top 4 cm at sufficient and high P soil concentrations. Scale 

bar is equivalent to 3 cm. 
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Fig. 6-3: Representative images obtained by X-ray CT of root systems grown in stratified soil P 

distributions. At sufficient and high P soil concentrations, extra P was provided in the bottom 6 cm 

(split bottom) of the 10 cm columns. Scale bar is 3 cm. 

 

Table 6-3: X-ray CT derived measurements for wildtype and Osaux1-1 under uniform P distribution 

for low, sufficient and high P. All values are shown with ± standard error of the mean. * designates 

significance where ANOVA P < 0.05 for interaction between genotype and soil P level. 

  4 mg kg
-1

 50 mg kg
-1

 150 mg kg
-1

 

  Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

Mesh Root 

Volume (cm
3
) 

0.29 ± 0.01 0.29 ± 0.07 0.67 ± 0.07* 0.36 ± 0.05 0.14 ± 0.06 0.18 ± 0.06 

Convex Hull 

Volume (cm
3
) 

58.5 ± 5.7 50.7 ± 6.0 66.0 ± 3.7 74.8 ± 3.0 8.6 ± 5.4 21.0 ± 7.9 

Solidness 

(cm
3 

* cm
 -3

) 

0.005 ± 

0.0005 

0.006 ± 

0.0007 

0.010 ± 

0.0015 

0.005 ± 

0.0007 

0.023 ± 

0.0068* 

0.009 ± 

0.0006 

Mesh Surface 

area (cm
2
) 

18.6 ± 1.5 17.7 ± 2.6 34.1 ± 4.3* 19.3 ± 3.3 7.0 ± 3.3 10.1 ± 2.9 

Centroid Z 

(cm) 
3.01 ± 0.56 3.83 ± 0.11 1.68 ± 0.07 2.27 ± 0.58 1.44 ± 0.26 1.49 ± 0.49 

Max Depth 

(cm) 
5.38 ± 0.19 5.28 ± 0.01 5.33 ± 0.12 5.63 ± 0.10 3.38 ± 1.08 4.81 ± 0.20 

Max Width 

(cm) 
5.37 ± 0.28 5.28 ± 0.11 4.74 ± 0.13 5.63 ± 0.28 3.91 ± 0.23 3.77 ± 0.60 
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Under stratified conditions where added P was segregated to the top 4 cm (Fig. 6-2) or 

bottom 6 cm (Fig. 6-3) of the soil column, there was little variation between the genotypes 

for a given P level. Interestingly, centroid Z, maximum root depth and maximum root system 

width showed no difference between the genotypes. Osaux1-1 did have a larger root 

volume than wildtype when grown in soil with 50 mg kg -1 P in the bottom 6 cm of the soil 

column (Table 6-4). 

 

Table 6-4: X-ray CT derived root measurements for wildtype and Osaux1-1 under stratified P 

distribution for sufficient and high P. All values are shown with ± standard error of the mean. For 

interaction between genotype and soil P level, * designates P < 0.05. 

 

6.3.3 Destructively sampled RSA and P soil concentration 

Representative images of the washed root systems grown in uniform P (Fig. 6-4), split top P 

(Fig. 6-5) and split bottom P (Fig. 6-6) treatments show the variation of RSA with P 

distribution. With uniform P distribution there was no discernible variation between 

  Top 50 mg kg
-1

 Top 150 mg kg
-1

 Bottom 50 mg kg
-1

 Bottom 150 mg kg
-1

 

  Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

Mesh Root 

Volume (cm
3
) 

0.84 ± 

0.20 

0.61 ± 

0.02 

0.04 ± 

0.01 

0.16 ± 

0.01 

0.53 ± 

0.01 

0.79 ± 

0.03* 

0.61 ± 

0.01 

0.61 ± 

0.03 

Convex Hull 

Volume (cm
3
) 

74.9 ± 

10.7 

66.3 ± 

11.0 
41.4 ± 5.2 31.1 ± 5.6 57.0 ± 8.2 96.8 ± 6.5 43.8 ± 8.2 77.0 ± 6.5 

Solidness 

(cm
3 

* cm
 -3

) 

0.011 ± 

0.0020 

0.010 ± 

0.0016 

0.001 ± 

0.0002 

0.005 ± 

0.0007 

0.005 ± 

0.0012 

0.008 ± 

0.0002 

0.014 ± 

0.0012 

0.008 ± 

0.0002 

Mesh Surface 

area (cm
2
) 

39.6 ± 7.4 35.9 ± 2.8 5.9 ± 0.3 12.4 ± 0.6 32.7 ± 5.1 40.1 ± 0.1 27.5 ± 5.1 30.6 ± 0.1 

Centroid Z 

(cm) 

1.33 ± 

0.08 

1.52 ± 

0.10 

1.77 ± 

0.14 

1.59 ± 

0.20 

1.84 ± 

0.09 

1.88 ± 

0.02 

1.72 ± 

0.09 

1.91 ± 

0.02 

Max Depth 

(cm) 

5.44 ± 

0.18 

5.36 ± 

0.09 

5.05 ± 

0.06 

4.60 ± 

0.12 

5.08 ± 

0.04 

5.73 ± 

0.26 

5.64 ± 

0.04 

5.54 ± 

0.26 

Max Width 

(cm) 

4.75 ± 

0.12 

4.75 ± 

0.34 

4.76 ± 

0.57 

5.05 ± 

0.33 

5.32 ± 

0.24 

5.64 ± 

0.05 

5.11 ± 

0.24 

5.54 ± 

0.05 
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Table 6-5: WinRHIZO measurements for wildtype and Osaux1-1 under uniform P distribution for low, 

sufficient and high P. The root systems were destructively sampled. Values are shown with ± 

standard error of the mean. No significant interactions between genotype and P level were 

recorded. 

  4 mg kg
-1

 50 mg kg
-1

 150 mg kg
-1

 

 Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

WinRhizo Root 

Volume (cm
3
) 

0.10 ± 0.03 0.13 ± 0.02 0.66 ± 0.18 0.44 ± 0.11 0.09 ± 0.07 0.16 ± 0.05 

Surface area (cm
2
) 17.0 ± 4.7 20.3 ± 3.3 87.9 ± 22.8 65.2 ± 16.2 9.1 ± 5.6 19.2 ± 4.9 

Root Diameter 

(mm) 
0.29 ± 0.009 0.27 ± 0.026 0.26 ± 0.015 0.27 ± 0.014 0.33 ± 0.016 0.33 ± 0.008 

Total Root Length 

(cm) 
222 ± 90 249 ± 57 948 ± 335 773 ± 249 75 ± 31 185 ± 44 

Specific root length 

(cm root g
 -1

 root dry 

mass ) 

198 ± 82 161 ± 43 225 ± 112 217 ± 91 357 ± 17 385 ± 211 

Number Root Tips 1760 ± 540 2147 ± 397 3334 ± 404 3309 ± 383 447 ± 129 759 ± 113 

However, in stratified P conditions, there was more variation between the genotypes when 

compared within a given P level. This was particularly true for the soil columns with 50 mg 

kg-1 P in the top 4 cm of the soil column (Split top sufficient; Fig. 6-5) and when 150 mg kg-1 

P was added to the bottom 6 cm of the soil column (Split bottom high; Fig. 6-6) as seen in 

the flatbed scanned images of the destructively sampled root systems. The destructive root 

system measurements for stratified P conditions are presented in Table 6-6. Under split top 

sufficient conditions, wildtype had more root volume, surface area, total root length and 

number of root tips than Osaux1-1 (all P < 0.001). There appears to be linkage between 

these values and an increased proportion of fine roots (< 0.5 mm diameter). The split top 

high P treatment produced smaller root systems in both genotypes. 

Under split bottom sufficient P (50 mg kg-1 in bottom 6 cm of soil column), Osaux1-1 had 

greater root volume (P = 0.036) than wildtype but less surface area (P = 0.004). When high P 
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Fig. 6-5: Washed root systems of plants grown in sufficient and high P sequestered to the top 4 cm of 

the soil column. Scale bars are equivalent to 5 cm.
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Fig. 6-6: Representative images of RSA for plants grown with P in the bottom 6 cm of the soil 

column. Scale bars are equivalent to 5 cm.
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Table 6-6: WinRHIZO derived measurements for wildtype and Osaux1-1 under stratified P 

distribution for sufficient and high P. Root systems were destructively sampled. All values are shown 

with ± standard error of the mean. For interaction between genotype and soil P level, ** represents 

P<0.001 and * designates P<0.05. 

  Top 50 mg kg
-1

 Top 150 mg kg
-1

 Bottom 50 mg kg
-1

 Bottom 150 mg kg
-1

 

Destructive 

Sampling 
Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 Wildtype Osaux1-1 

WinRhizo 

Root Volume 

(cm
3
) 

1.27 ± 

0.21** 

0.69 ± 

0.10** 

0.14 ± 

0.03 

0.12 ± 

0.02 

0.68 ± 

0.14 

0.34 ± 

0.12* 

0.70 ± 

0.08 

0.71 ± 

0.08 

Surface area 

(cm
2
) 

181.9 ± 

22.0** 

98.8 ± 

13.8** 
17.8 ± 3.4 15.1 ± 2.3 

63.3 ± 

11.7 

35.9 ± 

14.9* 
69.4 ± 8.6 

86.6 ± 

6.3* 

Root 

Diameter 

(mm) 

0.27 ± 

0.015 

0.28 ± 

0.014 

0.32 ± 

0.014 

0.32 ± 

0.017 

0.42 ± 

0.014 

0.39 ± 

0.032 

0.40 ± 

0.014 

0.32 ± 

0.026* 

Total Root 

Length (cm) 

2090 ± 

159** 

1130 ± 

169** 
181 ± 34 155 ± 27 470 ± 74 311 ± 146 554 ± 62 

869 ± 

107** 

Specific root 

length 

(cm root g
 -1

 root 

dry mass ) 

274 ± 49 255 ± 8 157 ± 48 158 ± 44 135 ± 19 192 ± 17 156 ± 10 215 ± 32 

Number Root 

Tips 

6196 ± 

165** 

3214 ± 

523** 
770 ± 154 578 ± 115 

1503 ± 

304 

1180 ± 

418 

1816 ± 

199 

2838 ± 

375* 

6.4 Discussion 

Here we began to unravel some of the complexities of nutrient acquisition from soil by 

exploring the relationship between gravitropism and P uptake for rice plants with and 

without full OsAUX1 expression. Soil P presents a particular challenge because it is rarely 

mobile (Larsen 1967) and has a tendency to become unavailable to the plant through 

sorption to soil particles (Borggaard et al. 1990), complexation with aluminium or iron 

oxides in paddy soils (Kögel-Knabner et al. 2010) and transformation to forms unsuitable for 

plant uptake (Blake et al. 2000). Often, bioavailable P resides in the upper 5 cm of topsoil 

(Section 1.2.2). Encouraging root traits such as shallow rooting angle to increase yield under 

P stress has been gathering interest with plant breeders and plant scientists alike (Lynch 

2011). 
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Each of the soil P treatments provided its own challenges for rice root system development. 

The uniform treatments where P level was distributed throughout the vertical soil profile 

provided an indication of the influence of OsAUX1 under limiting (no P), sufficient and toxic 

(high P) soil P levels. The columns with P treatment in the upper 4 cm of the soil column 

allowed assessment of root interaction under variable soil P conditions. The split bottom 

treatments provided clues as to what happens with root development when the initial 

stages of growth are in limiting conditions and then followed by an increase in available P. 

Generally, as found in the split top P distribution, P is considered to reside in the top 5 to 10 

cm of the soil profile (Owens et al. 2008). 

Of particular interest was the vertical root distribution of each genotypes under the various 

P treatments. The strong influence of OsAUX1 on a gravitropic response observed by Parker 

(2010) for agar grown plants was overridden in this work. In most cases, wildtype displayed 

similar vertical root distribution as Osaux1-1 when characterised by centroid z-value. It 

appears OsAUX1 does influence root development under varying P conditions and 

subsequent P uptake, but this is likely linked to factors other than root gravitropism. The 

complex feedback between nutrient acquisition and nutrient concentration in tissues may 

be part of the explanation. It would be prudent to investigate non-geometric root 

characteristics which have been linked to phosphorus starvation such as root hair length 

(Mackay and Barber 1985) and density (Ma et al. 2001), aerenchyma formation (Drew et al. 

1989; Postma and Lynch 2011), iron rhizosheath formation (Zhang et al. 1999) and seed P 

content (Hedley et al. 1994). 



 

115 

 

For rice, levels of available soil Pi between 2 and 8 mg P kg-1 are considered to be limiting 

(De Datta et al. 1990) and as expected the uniform low P treatment produced the smallest 

root systems (Fig. 6-1). In limiting conditions, the wildtype was able to capture a similar 

amount of P as Osaux1-1. This is consistent with low P conditions where primary root 

growth was impeded under low P for Arabidopsis (López-Bucio et al. 2002). This is not 

necessarily true for all crop plants. Maize plants subjected to P deficient nutrient solution 

for four weeks had twice as much total root length as those with sufficient P (Sachay et al. 

1991). Hammond et al. (2009) observed longer primary roots under low P (0.006 mM) for 

soil grown Brassica oleracea. 

Uniform high P produced very stunted root systems for both genotypes which affected the 

amount of soil explored and the potential for P uptake from soil by root tissues. Rice plants 

in general found it difficult to grow in the uniform high P treatment and thus had high 

variability between replicates. Despite the highly variable response, Osaux1-1 had a 

propensity to accumulate more P and to continue root growth even under these toxic 

conditions.  

In particular the split top sufficient P treatment was meant to reflect field-like conditions 

where most P resides in the upper portion of the soil profile (Owens et al. 2008). As 

hypothesised, root volume and surface area were significantly higher for both genotypes 

under split top P sufficient than split top high P. Osaux1-1 displayed a limited response to 

toxic soil P concentrations in comparison to wildtype when P was allocated to the top 

portion of the soil column as indicated by solidness of the root system. 
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Although tissue concentrations of P were similar between the lines, root and shoot biomass 

accumulation of P for wildtype was almost twice that of Osaux1-1. In comparison to X-ray CT 

derived data, WinRHIZO measurements highlighted the increased proliferation of fine roots 

in wildtype which had ca. twice the surface area, total root length and number of root tips 

when compared with Osaux1-1 under split top sufficient conditions. This is consistent with 

other studies where proliferation of lateral roots is affected by available P (Bai et al. 2013) 

and AUX1 activity (Lavenus et al. 2013). There was a similar trend for wildtype in the split 

top high treatment as in split top sufficient, however the total accumulated P and tissue P 

concentrations were higher than those measured in Osaux1-1. 

The split bottom treatments seemed to inhibit root growth by exposing the developing root 

system to limiting P conditions. With sufficient P in the bottom portion of the column, 

wildtype had larger biomass accumulation but similar total root length to the knockout 

mutant. The wildtype had a reduced area of soil exploration and combined with the smaller 

overall root volume is indicative of a reaction to low P. Wildtype had significantly lower root 

volume under split bottom sufficient conditions than Osaux1-1. Although wildtype explored 

less of the soil volume than Osaux1-1 under split bottom conditions, when soil P 

concentrations were high, wildtype had more root volume solidness within the explored 

area showing a localised response to available P.  

With high P in the bottom of the soil column, wildtype performed similarly in biomass, but 

took up less overall P and had lower tissue P concentrations than Osaux1-1. This may be 

attributed to the increased root diameter which was larger in wildtype and combined with 

similar mass may be indicative of aerenchyma formation. Aerenchyma formation has been 
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linked to phosphorus starvation in maize (Drew et al. 1989) and is indicative of the ‘steep, 

cheap and deep’ phenotype proposed by Lynch (2013) which enables plants under stress to 

increase root length and diameter with minimum carbon input. 

The allocation of root and shoot biomass by both wildtype and the OsAUX1 knockout were 

unexpected. Commonly root:shoot ratio increases when P is low (Lynch and Brown 2008). 

However in this work, the lowest observed root:shoot ratios occurred under high P and the 

largest under the no P treatment. The high P treatment result could be explained by the 

reduced overall plant growth and high standard error between replicates, although it is was 

notably four-fold lower than the low P result. 

Further investigation is required to determine whether there was an influence of OsAUX1 

on the allocation of resources for root and shoot biomass accumulation. Root:shoot ratio 

was reduced in wildtype in comparison to Osaux1-1 for split top sufficient P and high P 

which highlights the role of OsAUX1 for adaptation to variation in P levels. For example, 

wildtype was able to alter root:shoot ratios under uniform toxic conditions, whereas 

Osaux1-1 showed no variation in response. In conditions where the soil the roots initially 

developed in was toxic, but that underlying layers contained insufficient P, wildtype was 

again able to alter root:shoot to ensure better allocation of carbon for P uptake that would 

ensure biomass accumulation for the whole plant. 

6.5 Conclusion 

This work explored the candidate gene OsAUX1 for its influence on RSA under differing soil P 

concentrations and distributions. In these experiments, OsAUX1 could be linked to P uptake, 

but it was not clear what role gravitropism and topsoil foraging played in P uptake of rice, if 
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any. OsAUX1 appears integral to some aspects of root growth and development in relation 

to the fine root fraction when P is uniformly distributed throughout the vertical soil profile. 

However, in terms of vertical and horizontal distribution of the root system, wildtype and 

Osaux1-1 had similar phenotypes when P was uniformly distributed throughout the soil. In 

split top conditions, wildtype had a significantly larger root volume, surface area and overall 

plant biomass. The split top sufficient treatment wildtype plants also had the greatest 

biomass accumulation with a relatively moderate uptake of total P whereas plants grown 

with high/toxic P treatments had the greatest P uptake. This could be indicative of a further 

relationship between OsAUX1 with P translocation and regulation in addition to 

proliferation of lateral roots independent of P availability. The work has provided a 

justification for further investigation into the aspects of root development such as lateral 

root growth and root hair elongation, their relationship to OsAUX1 and potential influence 

on P uptake in rice.  
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7.0 Unravelling the role of OsAUX1 in P uptake 

7.1 Introduction 

Although fertiliser application can augment the available nutrients in soil, the ability to 

acquire these nutrients is primarily determined by the plant root system architecture (RSA) 

and capability to actually take up the available nutrients (Richardson et al. 2009). Most P 

taken up by plants is acquired through diffusion; mass flow accounts for between 1 and 5% 

of plant P demand (Lambers et al. 2006). Plants are considered to respond to nutrient status 

in soil through changes in RSA or through exudation of organic acids that alter rhizosphere 

chemistry. These changes include root foraging responses such as increased root branching 

(Desnos 2008) and root hair density (Bates and Lynch 2000), root proliferation in P rich 

patches (Robinson 1994), variation in gravitropism (Ge et al. 2000), the ability to alter 

rhizosphere pH (Jianguo and Shuman 1991), and through association with microorganisms 

(Rodrıǵuez and Fraga 1999) and increasing P solubility via root exudates (Bais et al. 2006). 

7.1.1 Increasing the likelihood of encountering soil P 

Generally, plants increase root:shoot ratios in response to P deficits through root foraging 

and slowing shoot growth (Kirk et al. 1998). In split chamber experiments, it has been shown 

that 75% of rice root biomass was located in the high P medium side when compared with 

the growth limiting side, although P was distributed throughout root tissues (He et al. 2003). 

In common bean, plants with a higher P uptake efficiency (PUE) had more adventitious 

rooting under low P conditions than under replete P (Lynch and Brown 2008). P uptake 

efficiencies have been related to increased root length, overall root biomass and number of 

roots, but this varies with plant species and even cultivar (Ni et al. 1998). Increased lateral 

root production is also related to PUE (Lynch and Brown 2001). In Arabidopsis, plants with a 
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limited ability to initiate lateral roots had a reduced PUE when compared to wildtype plants 

(Fitter et al. 2002; Waisel et al. 2002). 

Root hairs increase the available surface area per unit root length which can influence 

potential for P accumulation in P deficient conditions. Development of longer root hairs or a 

higher density of root hairs has been identified as a mechanism for adaptation to variations 

in nutrient availability, specifically P (Bates and Lynch 2000). Root hair initiation has also 

been correlated with reduced P availability, which provides further evidence for the role of 

root hairs in P acquisition (Schmidt and Schikora 2001). A computer model simulating root 

hair uptake of P in P starved plants showed that uptake occurs within minutes and an order 

of magnitude greater in soils than in solution for plants with more root hair surface area 

(Leitner et al. 2010). However, through mathematical modelling of the influence of root 

hairs versus the root itself in uptake of P, Keyes et al. (2013) determined that in wheat, the 

root surface took up more P than the root hairs because of the larger root surface area.  

7.1.2 Root induced changes to the rhizosphere to make P more available 

In rice, P uptake is correlated with pH changes in the rhizosphere as pH can alter the 

availability of organic and inorganic forms of P through transformation of the P compounds 

(Jianguo and Shuman 1991; Kirk et al. 1998). Often these pH changes are related to plant 

alteration of the rhizosphere depending on soil conditions such as waterlogging induced by 

flooding. In rice growing in waterlogged soils, pH changes are attributed to oxygen transport 

to the rhizosphere through aerenchyma, which are specialised root structures formed 

through programmed cell death to create channels for gas transport (Fig. 7-1). Oxygenation 

of the rhizosphere in flooded soils has also been linked to changes in soil P concentration 
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The aim of the following experiments was to elucidate the aspects of OsAUX1 related 

changes in root development and growth related to the trends in P uptake observed in the 

soil-based experiments. In particular, to investigate how the root system influences P 

uptake as available soil P increases as well as the root variations which would influence total 

P uptake in the split column top treatments. Additionally, to examine the potential role of 

AUX1 in these adaptations to the availability of soil P. 

7.2 Materials and Methods 
7.2.1 OsAUX1: pro β-glucuronidase marker 

The E. Coli enzyme β-glucuronidase (GUS) was used as a reporter for the OsAUX1 promoter 

as described in Jefferson et al. (1987) and the OsAUX1:proGUS ligation is detailed in Parker 

(2010). The blue colour developed when the enzyme reacted with the (5-bromo-4-chloro-3-

indolyl glucuronide) substrate indicated promotion of the OsAUX1 at a cellular level. 

OsAUX1:proGUS plants were grown on 25% MS agar media (pH 5.8). All plants were placed 

in deep well trays and covered in X-Gluc solution. The plants in X-Gluc were vacuum 

infiltrated for 15 min at room temperature and then incubated at 37oC for three hours. The 

tissue was then incubated at 37oC for 72 h in chloral hydrate solution (8 g chloral hydrate: 2 

ml water: 1ml glycerol) to clear the roots. The cleared roots were mounted on glass slides 

and observed under a stereo microscope (10x magnification for primary root and crown 

root, 20x magnification for large lateral and 25x magnification for small lateral root).  

7.2.2 Real time quantitative polymerase chain reaction (RT-qPCR) 

Plants were grown on 25% MS agar (pH 5.8) after seeds were sterilised. There were ten 

replicates for each tissue type. Coleoptile and radicle were harvested at three days after 
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sterilisation (DAS). Primary root, crown root and lateral roots at ten DAS. Leaves were 

excised during crown root emergence (Leaf CR) at five DAS and when lateral roots began to 

develop on crown roots (Leaf Lat) at ten DAS. Tissues were immediately frozen in liquid 

nitrogen and stored at -80oC in preparation for RNA extraction. RNA was extracted using the 

RNeasy® Mini Kit (Qiagen) protocol which was slightly modified by using TRIzol Reagent 

(Invitrogen Cat. No. 15596-026) for cell lysis. A NanoDrop 1000 Spectrophotometer, Thermo 

Fisher Scientific) was used to verify RNA concentration and purity. cDNA was synthesised by 

reverse transcribing the RNA (500 ng RNA per 40 µL reaction; 100 µM Oligo dT, 500 µM 

dNTPs, 5X Buffer, 0.01M DTT and reverse transcriptase (Invitrogen SuperScript® II) at 42oC 

for 50 min and neutralised by holding at 70oC for 5 min.  

Expression profiles were based on cDNA generated from RNA extracted from excised 

tissues. RT-qPCR was performed using SYBR® Green I dye (Invitrogen) in 384-well optical 

reaction plates. The plate was heated to 95oC over 5 min followed by 50 extension cycles of 

10 sec denaturation at 95oC and annealing for 30 sec at 60oC. All reactions had four 

replicates. There was significant variability in actin (ACT11) expression between the Osaux1 

mutants and wildtype. Actin is commonly used as the housekeeping gene in RT-qPCR rice 

studies, but can vary under various hormone and stress treatments (Jain et al. 2006). β-

Tubulin (Accession No. AK072502) was used as a housekeeping gene because it was found 

to be stable between the three lines (forward primer (GCTGACCACACCTAGCTTTGG) and 

reverse (AGGGAACCTTAGGCAGCATGT)). Primers used to quantify OsAUX1 expression were 

OsAUX1 forward (AGGTTTTGGTCGCCTTGTAA) and OsAUX1 reverse 

(AGATCGTAGGGACCCATGC). 
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7.2.3  Root hair and RSA characterisation on agar with varying P 

Plants were grown for seven days on P-free nutrient agar (pH 5.8) with differing amounts of 

phosphate added as potassium phosphate at low (3.12 µM P), replete (31.2 µM P), high 

(62.4 µM P) and toxic (312 µM P) levels. Two of each line (wildtype, Osaux1-1 and Osaux1-2) 

were grown on each plate and arranged as assigned by random number. There were five 

replicate plates for each P level. The plates were imaged with a digital camera (Section 

2.9.3) for assessment of coarse root architecture (primary root, number of crown roots and 

lateral roots). The picture was taken from the back of the plate to minimise any influence 

from condensation. The cover was removed and the plate was placed under a stereo 

microscope with 20x magnification and pictures of root hairs were obtained with a digital 

camera mounted onto the microscope. 

7.2.4 Iron rhizosheath SEM/EDX 

 Six week old plants grown in P-free compost were fed weekly with a phosphate and iron 

supplemental solution. Compost was used instead of soil to enable full control of P and Fe 

content of the original mix. There were ten replicates for each plant line (wildtype, Osaux1-1 

and Osaux1-2). The plants were destructively harvested and root washed. Ten roots were 

chosen from each plant then frozen at -80oC overnight. The frozen root sections were then 

freeze dried (Edwards Freeze Dryer Modulgo M143, 10-3 mbar) for 48 h. Freeze dried 

samples of root tip and a 1 cm section taken from an area 5 cm above the root tip were 

mounted on 25 mm diameter carbon sticky discs. There were four replicates for each 

treatment (line X root section) making a total of 24 samples. The mounted samples were 

spray coated with ca. 30 nm carbon and imaged by Scanning Electron Microscopy (SEM; FEI 

XL30 with INCA X-sight 6650, Oxford Instruments). Elemental analysis was performed with 
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energy dispersive X-ray microanalysis (EDX) in relation to carbon fraction. The EDX was 

performed at two locations on each sample at 400x zoom. 

7.2.5 pH under varying phosphate 

Agar growth media (pH 5.8) with four P concentrations (as described in Section 6.2.5) was 

doped with bromocresol green at 0.006% (CAS 76-60-8). Bromocresol green is a pH indicator 

that changes yellow at pH 3.8 and darkens to blue at pH 5.4. Sterilised and germinated rice 

seed was planted onto the plates and grown for seven days. One seedling of each line was 

planted in each of the plates in randomly assigned positions. The plants were imaged with a 

digital camera from the back of the plate. The images were then cropped to the same size 

(2.5 cm wide  7 cm high) in Image J. 

Colours were segmented into areas similar to the main root, root tips, rhizosphere (most 

yellow) and bulk (darkest, uninfluenced area) using the Image J Colour Segmentation Plugin 

(Daniel Sage, Ecole Polytechnique Fédérale de Lausanne (EPFL)). Colours were chosen by 

selecting several points of representative colour within each region (root tip, root, 

rhizosphere and bulk) and averaging the red-green-blue (RGB) colour values (Fig. 7-2).  
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Table 7-1: Comparison of colour segmentation algorithms. An image of rice roots grown on pH 

indicator containing agar was analysed using the Image J Colour Segmentation Plugin (Daniel Sage). 

The K-Mean algorithm was faster and also produced a more conservative result for the influence of 

the root system on pH of surrounding media as determined by the percentage of total picture area. 

 
Original K-Mean Algorithm Hidden Markov Model 

 

   

% Colour A-  

Root 
N/A 4.47 5.00 

% Colour B-  

Root Tips 
N/A 9.74 18.75 

% Colour B- 

Rhizosphere 
N/A 26.36 27.04 

% Colour D- 

Bulk 
N/A 59.43 49.22 
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These were then segmented using the Joint Colour Channel and K-Mean algorithm to 

provide the most conservative colour segmentation. The Joint Colour Channel algorithm 

presumes there is a potential overlap of the colours and this was appropriate because the 

pH colour changes are gradated in the agar medium. The K-Mean clusters the image into 

groups based on the pixels chosen to represent each region. The K-Mean algorithm also 

ensures that similar colours are near each other in distance and that dissimilar colours are 

as far away as possible from the section of similar colour. 

Although considered a disadvantage in some colour segmentation applications, K-mean also 

requires the number of segmentation areas to be defined (Dong and Xie 2005), which 

ensured that the pH colour change area could be classified as desired into root, root tip, 

rhizosphere and bulk areas. This produces regions as dissimilar to each other as possible 

both spatially and colour-wise. As shown in Table 7-1 the Joint Colour Channel-K-Mean 

segmentation method provided the most consistent and discrete segmentation as well as a 

faster calculation time when compared to the only other grouping option in the Image J 

Colour Segmentation Plugin, the Hidden Markov Model (Celeux et al. 2003; Jain and Dubes 

1988; Ramos and Muge 2000). Segmented areas of colour were expressed as a percentage 

of total image size to provide an indication of the amount of colour/pH change contributed 

by the root, root tip, rhizosphere and bulk.  

7.2.6 Aerenchyma measurement 

Images of the root systems obtained via X-ray CT (from Section 6.2.4) were used to measure 

intro-root air-filled pore space within the root systems. Air-filled pore space volume was 

measured in the VGSM Volume Analyser tool by manually thresholding near-black air-filled 
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radicle. Most notably, lateral roots had a significantly (P = 0.011) lower OsAUX1 expression 

at day ten. 

The shoot had large variation in OsAUX1 expression over time. Initially, coleoptile 

expression was on par with root tissues. At day five, there was a dramatic decrease in 

OsAUX1 expression for shoot tissues at crown root emergence. By day ten, leaf tissues 

showed a marked increase in expression which coincided with early stages of lateral root 

development on the primary root and crown roots. 

7.3.2 Primary root elongation and lateral root development on agar 

There was no significant difference between the length of primary roots of agar grown 

plants under varying P concentration. Additionally, OsAUX1 did not significantly influence 

the ultimate length of the primary root after seven days of growth (Fig. 7-6 A). Primary root 

length ranged between 46.3 mm (Osaux1-1, 3.12 µM) and 72.6 mm (Osaux1-2, 31.2 µM). 

Lateral root number was significantly (P = 0.017) affected by the amount of phosphate 

present in the growing media as well as the expression of OsAUX1 (P < 0.001) (Fig. 7-6 B). 

The number of lateral roots on the primary root was consistently high in Osaux1-2; this was 

significant for the two highest P treatments. At 3.12 µM P, all lines showed a relatively low 

number of lateral roots ranging between 6.9 (Osaux1-1) and 11.6 (Osaux1-2). Osaux1-1 had 

a consistently low number of lateral roots over all P treatments. In the highest P treatments, 

wildtype and Osaux1-1 had a similar number of lateral roots. Wildtype had the most lateral 

roots in the replete P treatment at 31.2 µM. Higher P concentrations had a negative effect 

on wildtype lateral root number. 
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number remained consistent along the replete and excessive P treatments for the reduced 

OsAUX1 function mutants. Wildtype crown root number dipped at 62.4 µM P, but was not 

significantly different to other P treatments. Mean number of crown roots ranged between 

2.14 (Osaux1-1, 3.12 µM P) and 4.86 (wildtype, 312 µM P). 

7.3.3 Root hair phenotype in agar 

Wildtype had significantly (P = 0.014) longer root hairs under all P treatments except the 

highest at 312 µM. Wildtype root hair length increased between low P (3.12 µM) and 

replete P (31.2 µM) and then steadily decreased as P concentration increased (Fig. 7-7 A). 

Osaux1-2 showed a similar variation in root hair length with P concentration where the 

length increased between low and replete P and then steadily declined as P concentrations 

increased above 31.2 µM. The knockout mutant Osaux1-1 had highly variable reaction to P 

concentration. As with the other lines, Osaux1-1 root hair length increased between low 

and replete P treatments, but then decreased at 62.4 µM P and then decreased again at the 

highest P level. 

Wildtype had significantly (P = 0.009) higher root hair density in all P treatments except the 

highest level (Fig. 7-7 B). The wildtype root hair density decreased as P concentration 

increased. Root hair density for wildtype ranged between 110 and 150 root hairs mm-1. At 

the lowest P concentration, the mutants had root hair density between 73 and 78 root hairs 

mm-1. Under replete P Osaux1-1 had the lowest root hair density of the three lines which  
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difference between Fe concentrations at mid root and the tip in the mutants. Iron at the tip 

ranged between 3.6% (Osaux1-2) and 5.5% (wildtype). In contrast, wildtype had lower Fe at 

mid root than Osaux1-1 or Osaux1-2. Wildtype Fe was significantly lower (P = 0.021) at 4% 

whereas Osaux1-1 and Osaux1-2 had 20.5% and 15.2% respectively. In SEM images, the mid 

root sections of Osaux1-2 had the greatest number of visible root hairs (Fig. 7-9 C). Wildtype 

had less visible root hairs than Osaux1-2. Osaux1-1 had the fewest amount of root hairs. It 

should be noted that the roots were grown in soil, root washed and then freeze-dried in 

preparation for SEM/EDX. Exploded cells and damaged root hairs were observed and are a 

common difficulty when freeze drying roots (Campbell and Rovira 1973), which could skew 

the results. Exploded cells can mean that the EDX results are for the inside surface of the cell 

rather than the outside of the epidermis and would reduce the amount of observed Fe if not 

the P that would be expected in a rhizosheath. 

7.3.5 pH under varying P concentration in agar 

Wildtype, Osaux1-1 and Osaux1-2 had no significantly different changes in pH when grown 

on agar doped with bromocresol green, a pH indicator (Fig. 7-10). Under 312 µM P, Osaux1-

2 had a smaller proportion of the image occupied by pH similar to the main root (Fig. 7-10 

A). Under the lowest P concentration, areas with similar pH to the root tips represented a 

lower proportion in Osaux1-1 than in wildtype or Osaux1-2 (Fig. 7-10 B). However, under 

these same low P conditions, areas with similar pH adjacent to the root (rhizosphere) were 

higher in Osaux1-1 than in wildtype (Fig. 7-10 C). In replete (31.2 µM P) conditions, wildtype 

had slightly more area classed as rhizosphere than Osaux1-2. Under low P, the uninfluenced, 

bulk area was higher in wildtype than Osaux1-2 and lower under replete P (Fig. 7-10 D). 
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7.3.6 Aerenchyma in soil grown plants 

Under the uniform P treatments, wildtype and Osaux1-1 had no significant difference in 

total intra-root air space volume (Fig. 7-11 A). The lowest total intra-root air space was 

found in Osaux1-1 under high P with 41.1 cm3. There was a significant (P = 0.024) difference 

in air space between uniform P treatments with sufficient P yielding the highest volume of 

root air space. 

As found under the uniform P treatments, there was no significant difference in intra-root 

air space between wildtype and Osaux1-1. The level of P significantly (P = 0.010) reduced 

the amount of intra-root air space in both plant (Fig. 7-11 B). The split top treatments 

produced roots with more intra-root air space than the uniform treatments; for example, 

wildtype had an average air space under split top sufficient of 204.6 cm3. Also, there was a 

significantly (P = 0.010) higher total air space under split top sufficient conditions in 

comparison to split top high P. 

For both split bottom treatments, Osaux1-1 had significantly (P = 0.011) higher total air 

volume within the roots (Fig. 7-11 C). The highest total intra-root air space was measured in 

Osaux1-1 under split bottom high P at 258.1 cm3. Wildtype had its highest air space volumes 

under the split bottom P treatments which were ca. 170 cm3. There was no significant 

difference in accumulated air space between split bottom P levels. 
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conditions, Osaux1-1 designated significantly (P < 0.001) more root system volume to 

aerenchyma than wildtype (Fig. 7-12 A). When subject to toxic P levels at initial stages of 

root system development, wildtype had a significantly (P < 0.001) higher proportion of total 

root volume occupied by air space than Osaux1-1 (Fig. 7-12 A). The proportion of air under 

split top conditions was higher in wildtype (Fig. 7-12 B). Under split bottom P, there was no 

significant difference between the proportion of air between the lines or under the 

sufficient and high P (Fig. 7-12 C). However, the highest proportion of air in roots was found 

under the split bottom P treatments. 

7.4 Discussion 

From this work, it is clear that OsAUX1 significantly enhances root hair length and root hair 

density on agar as well as Fe accumulation on the root surface for plants grown in soil. Root 

hairs were often 30 to 50% longer (ca. 100 µm) in wildtype than Osaux1-1 except under the 

toxic P conditions, where wildtype would be expected to reduce carbon allocation to roots 

(Fig. 7-8). Root hair density was also almost twice as large in wildtype when compared to 

Osaux1-1. This variation in root hair characteristics impacts root surface area and thus 

potential root:soil contact, which would be expected improve phosphorus uptake. Fe 

accumulation on the root surface as measured by EDX was much lower in wildtype than in 

the Osaux1 reduced function mutants. The link of OsAUX1 with root hair formation was 

reinforced by the OsAUX1:proGUS expression observed (Fig. 7-4), which indicates that 

OsAUX1 could be expected to have many traits observed in AtAUX1 such as influences on 

lateral root growth (Marchant et al. 2002) and root hair elongation (Rahman et al. 2002). 

Additionally, OsAUX1 could be linked to variation in aerenchyma formation under P stress. 
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OsAUX1 expression indicated a link to root morphology that definitely involves gravitropism 

and could be adaptation to P stress through root hair developmental changes (Fig. 7-5). 

OsAUX1:proGUS expression patterning was similar to AtAUX1:proGUS observed in 

Arabidopsis columella cells, stele and lateral root cap (Swarup et al. 2001). OsAUX1:proGUS 

tissue expression revealed the importance of OsAUX1 even in early stages of rice 

development (Fig. 7-4). Perhaps this is linked to subsequent gravitropic response of shoots 

at early stages of plant development. It is feasible that OsAUX1 could be linked to a 

gravitropic response in the shoot soon after germination. This gravitropic response of the 

coleoptile as well as circumnutation is required to ensure shoot growth above the water-line 

or soil surface to acquire sunlight for photosynthetic activity and carbon accumulation 

(Yoshihara and Iino 2005). Kutschera et al. (1991) showed that in comparison to air-grown 

plants, rice germinated under water (anaerobically) has greater shoot elongation in 

comparison to root elongation and a severe gravitropic response in the shoot. This could 

also be indicative of shoot derived auxin/IAA synthesis required for distribution through 

root and shoot tissues. As more auxin is required to regulate gravitropic response in primary 

roots, crown roots and initiation and elongation of both lateral roots and root hairs, 

auxin/IAA production should increase. In this study, roots had less OsAUX1 promotion, 

particularly in lateral roots which are generally considered agravitropic (Fig. 7-4). At these 

initial stages of growth that require auxin for gravitropic response and initiation of lateral 

roots and root hairs, shoot derived auxin distribution to the roots may be significantly 

influenced by OsAUX1. 

Rice has a secondary challenge of dealing with variable soil chemistry induced by flooding. 

Perhaps this is part of the reason for variation in root hair elongation and density observed 
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in the wildtype that was not evident in the Osaux1-1 plants. Chemical changes induced by 

roots within the rhizosphere are critical for nutrient uptake by rice (Jianguo and Shuman 

1991; Wang and Shuman 1994), particularly in flooded conditions. Alterations in pH and the 

influence of root hair length and density could not be discerned by the agar doped with pH 

indicator because the range was too coarse to detect small differences in pH. This method 

has been shown to measure pH to 0.2 pH units (Liu et al. 2004). Finer methods such as 

micro-electrodes (Rudolph et al. 2013) or planar optodes (Blossfeld 2013) may prove more 

useful for detecting subtle differences in rhizosphere pH between wildtype and the mutants 

grown on agar or soil. 

Although direct measurement of pH was not successful in distinguishing between the 

OsAUX1 genotypes, iron rhizosheath formation indicated changes in the chemistry of soil 

adjacent to the roots. The rice rhizosphere has been linked to iron oxide accumulation 

under flooded conditions (Begg et al. 1994). P solubilisation and iron oxide accumulation 

have been correlated with rice root induced acidification with a radial influence of 4 to 6 

mm (Saleque and Kirk 1995). In this work, there was a clear difference in iron and 

phosphorus accumulation on root surfaces as measured by EDX. Wildtype had less iron 

accumulation but was able to take up the same amount of P as Osaux1-1. There were a 

significantly higher number of root hairs in wildtype as observed on agar as well as in the 

SEM images. More root hairs in wildtype could mean higher local acidity through root 

exudation and thus less Fe accumulation on the root. However at these low pH levels (< pH 

5), P has a tendency to complex with Fe and become insoluble and thus, unavailable to 

plants (Shen et al. 2011).  
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Curiously, Osaux1-2 had the most visible number of root hairs (Fig. 7-8), but had similar Fe 

accumulation on the root surface to Osaux1-1 (Fig. 7-9). This could indicate that it is not the 

presence of the root hairs, but possibly the activity of the root hairs that is impacting 

surface Fe accumulation. This in turn would affect how much P is trapped in the Fe 

rhizosheath since inactive root hairs would exude less organic acids and thus not acidify the 

rhizosphere as severely. Iron rhizosheath formation also depends on soil type, flooding 

(Ponnamperuma 1972) and the microbiological activity in the soil which all affect adsorption 

of Fe (Benckiser et al. 1984; Gotoh and Patrick 1974; Liu et al. 1990) and thus adsorption of 

P (Borggaard et al. 1990). 

Another factor that has been linked to both P stress and auxin in this work is aerenchyma 

formation. Traditionally, aerenchyma are associated with anoxia stress induced by flooding 

such as that seen in maize (Mano et al. 2006), soybean (Thomas et al. 2005) and Rumex 

species (Laan et al. 1989). Aerenchyma formation has also been linked to N and P stress in 

maize (Drew et al. 1989). In this work, patterns of aerenchyma formation could be linked to 

soil P status and even P stress. Under sufficient P, wildtype allocated less of the root volume 

to air space than Osaux1-1 and under toxic P, allocated significantly more than Osaux1-1 

(Fig. 7-12 A). The wildtype also had a larger proportion of aerenchyma than Osaux1-1 when 

high P was allocated to the top portion of the soil column (Fig. 7-12 B). It should be noted 

that in rice, lysigenous aerenchyma form as a normal part of root development and is not 

solely part of a stress response to anoxia or nutrient stress. Rice aerenchyma formation 

does not vary in four week old seedlings whether they are grown in flooded or aerobic soil 

environments (John 1977).  
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Although there were differences in aerenchyma formation under some P conditions, 

particularly the high P, several of the treatments showed no difference between genotypes 

including no P (Fig. 7-12 A), split top sufficient (Fig. 7-12 B) and the split bottom treatments 

(Fig. 7-12 C). Aerenchyma formation is considered part of the ‘steep, cheap and deep’ root 

ideotype proposed for maize water and N acquisition by Lynch (2013); this ideotype could 

equally be applicable for efficient uptake of other mobile nutrients. Under the low initial P 

levels seen in uniform no P and the split bottom experiments, plants would be expected to 

allocate as little carbon to root growth as possible to reach the largest amount of soil and 

potentially reach soil with higher P. Aerenchyma provide a way to increase root surface area 

with a minimum of carbon used to build the root structure (Lynch 2013). 

Can aerenchyma formation be linked to AUX1 expression? OsAUX1 expression has been 

displayed in cortical cells where lysigenous aerenchyma formation occurs (Fig. 7-4). In 

maize, Rajhi et al. (2011) identified down-regulation of OsIAA10 in cortical cells as a 

response to flooding; OsIAA10 is an auxin responsive Aux/IAA gene family member. 

Additionally, the GUS results in this work and Parker (2010) support expression of OsAUX1 

in cortical cells. Aerenchyma formation is also associated with auxin induced ethylene 

production causes for a range of species (Visser and Voesenek 2005) but not necessarily in 

rice (Jackson et al. 1985).  
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7.5 Conclusions 

The nature of the interaction between OsAUX1 and P stress is complex because (i) OsAUX1 

influences the overall amount of soil occupied by roots through control of root angle (Parker 

2010) which impacts the likelihood of encountering P in soil and (ii) OsAUX1 is involved in 

development of fine root structures such as lateral roots (Chhun et al. 2003; Sreevidya et al. 

2010) and root hairs which alter the ability of the plant to extract P from soil that roots 

occupy (Bates and Lynch 2000; Keyes et al. 2013; Liu et al. 2013). From this work it was 

found that rice root hair elongation and density were reduced with a loss of OsAUX1 

expression, which reinforces the importance of OsAUX1 for potential P uptake. For wildtype 

plants with fully functioning OsAUX1, the amount of available P present also influenced root 

hair elongation with the longest root hairs present in replete P conditions and a steady 

decline in root hair length as P increased. This provides further evidence for the feedback 

between available P and plasticity required in RSA development for adaptation to changes in 

P availability (Lynch and Brown 2012). 

Additionally, OsAUX1 has potential to play a role in the influence of roots on nutrient 

availability in soil. Changes in rhizosphere chemistry were evident between wildtype and 

Osaux1-1 as indicated by Fe rhizosheath formation for soil grown plants. In particular, 

wildtype had less Fe accumulation 5 cm from the root tip than the Osaux1-1 reduced 

function mutant. Despite this, for agar grown plants grown in pH indicating media, a link 

between OsAUX1, P level and rhizosphere acidification was not identified. The differences in 

aerenchyma formation between the genotypes also provided evidence that OsAUX1 was 

linked to RSA adaptation to P stress.   



 

 

8.0 

8.1 OsAUX1 as a target gene for improve

paddy rice

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

contact with soil (

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains 

Fig. 8-1: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

 

General discussion and conclusion

OsAUX1 as a target gene for improve

paddy rice

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

contact with soil (

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

General discussion and conclusion

OsAUX1 as a target gene for improve

paddy rice 

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

contact with soil (Fig. 8-1). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

General discussion and conclusion

OsAUX1 as a target gene for improve

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

General discussion and conclusion 

OsAUX1 as a target gene for improve

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

OsAUX1 as a target gene for improvement of phosphorus uptake in 

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

root traits positively influenced P uptake from soil remains unclear

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded. 

ment of phosphorus uptake in 

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

unclear. 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

Parts of the P signalling pathway linked to OsAUX1 in this work are shaded.  

ment of phosphorus uptake in 

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 

149 

ment of phosphorus uptake in 

This work explored how soil P status influences RSA development with and without OsAUX1 

expression, which can impact the amount of soil explored and the root surface area in 

). OsAUX1 clearly influences root angle, lateral root elongation, 

root hair density and root hair elongation in soil grown rice. Whether these OsAUX1 related 

 

: Representation of P signalling pathway and in planta and ex planta responses to P stress. 



 

150 

 

Linking plant P status, soil P availability and the influence of a pleiotropic gene such as 

OsAUX1 is challenging. Additionally, there is the influence of available P, plant P status, soil 

microbes and the feedback with root system development to consider.  

Assessing the effects of a gene influencing many phenotypic traits becomes particularly 

complicated when comparing soil to non-soil systems because of their differences in water 

status (agar being ca. 98% water) and buffering capacity for nutrient availability. For 

example, Clark et al. (2000) identified QTLs that were related to drought resistance and 

could involve several genes that impact adaptation to water stress. The group compared the 

ability of rice cultivars with varying degrees of drought resistance (identified by the QTLs) to 

penetrate a hardpan in both lab conditions (sand with a wax layer simulating the hardpan) 

and field conditions (fields with hardpan). Downie et al. (2012) found that cultivars which 

were able to penetrate the wax layer in controlled conditions had more variable penetration 

of the field hardpan. 

8.1.1 Root angle effects on encountering soil P in rice paddies 

Shallow root angle has been proven to be a positive trait for improving P uptake efficiency 

(Ge et al. 2000) in several plants including common bean (Rubio et al. 2003), pasture grasses 

(Abel et al. 2002) and maize (Liu et al. 2004). Since plant available P resides in the topsoil 

(Borggaard et al. 1990; Owens et al. 2008), these shallow root systems likely encounter 

more available P and thus are more efficient at P acquisition.  

For rice, particularly paddy rice grown in waterlogged conditions, the role of root angle in P 

acquisition is less clear. The chemistry of paddy soils because of flooding could mean that 

shallow root angle is not an adaptation to P stress. P is quickly transformed into soluble 
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forms immediately upon flooding (Ponnamperuma 1984; Shahandeh et al. 1995) and then 

becomes much less available during adsorption to Fe and Mn in the subsequent anoxic soil 

conditions (Bodegom et al. 2001; Shahandeh et al. 2003). Since plant available P is soluble 

and initially increases in the flooded soil (Kristoffersen and Riley 2005), P transport is 

increased in paddy systems in comparison to non-waterlogged soils (Justin and Armstrong 

1987). Rice paddies which have water flow mean that available P moves through the soil 

and is quickly depleted by root uptake (Chapagain and Yamaji 2010). Thus, rice root systems 

must proactively pursue avenues such as fine root development (He et al. 2003), association 

with fungi (Hajiboland et al. 2009a) and alteration of rhizosphere pH (Begg et al. 1994) 

through release of O2 and organic acids (Bodegom et al. 2001) to facilitate P uptake under 

anoxic soil conditions. 

As seen in Chapter Five, with complete supplementation of nutrients in a loamy sand soil 

(Newport Series), the Osaux1 knockout mutants retained the agravitropic phenotype. 

However from the work performed in low P silty clay loam soil (Chapter Six) it was not 

evident that shallow root angle induced by knockout of OsAUX1 could be retained for rice in 

soil with varying P concentration and distribution. 

In comparison to root volume distribution with soil depth as defined by centroid z values 

found during the phenotyping study (Chapter Five) where Osaux1-1 had a mean of 1.14 cm 

and wildtype was 1.87 cm, the root system volume distributions under varying P conditions 

(Chapter Six) were in a comparable range. In the P experiments, wildtype centroid ranged 

between 1.33 cm (split top sufficient) and 3.0 cm (no added P); Osaux1-1 centroid z was 

between 1.49 cm (high P) and 3.8 cm (no added P). However, wildtype had much shallower 
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root volume distribution than Osaux1-1, which was unexpected given the reduced 

gravitropic response of the knockout mutant displayed in Chapter Five. One explanation for 

why wildtype appeared less gravitropic than Osaux1-1 under varying soil P could be that P 

stress reduces primary root elongation as well as adventitious root formation. In 

Arabidopsis, low soil phosphate can impact lateral root angle (Bai et al. 2013), root hair 

density (Ma et al. 2001), root branching (Desnos 2008) and primary root elongation (López-

Bucio et al. 2002). Common bean has reduced root angle when soil is P deficient (Bonser et 

al. 1996). In maize, low soil phosphorus can increase root hair density although Mackay and 

Barber (1985) found no correlation between root hair length and soil P concentration. In 

Chapter Six, wildtype had reduced primary root length and root elongation under low P 

which would have contributed to a shallower root system and smaller root angle. 

8.1.2 Fine roots: Increasing the ability to take-up phosphate from soil 

In addition to shallow root angle, fine root proliferation (lateral roots and root hairs) has 

also been linked to more efficient P uptake from soil (Bates and Lynch 2000; Beebe et al. 

2006; Desnos 2008; Gahoonia and Nielsen 1996). These traits are often linked to auxin 

distribution and AUX1. Auxin redistribution (and potentially the gene AUX1) has been 

considered a conserved trait between both monocots and dicots for lateral root initiation 

(Sreevidya et al. 2010). Although the shallow root angle induced by knockout of OsAUX1 did 

not appear to confer an advantage for uptake of soil P under waterlogged conditions 

(Chapter Six), OsAUX1 related fine root traits showed more promising results for 

adaptability to variations in P availability (Chapter Seven). 
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In this work, root angle as defined by centroid Z-value was less important for P acquisition 

than other traits which increase P uptake when available P is in proximity of the root system 

such as root hair length and root activity that alters rhizosphere chemistry. This result could 

be expected for rice plants acquiring P from waterlogged soils. OsAUX1 was linked to 

variations in the root hair phenotype for agar grown rice plants (Chapter Six) which could be 

useful for P acquisition from soil by increasing root surface area. Keyes et al. (2013) found 

that wheat root hairs take up 15% less P than the root surface itself, but that root hairs 

increase overall uptake of the root system by 85%. Zygalakis et al. (2011) established that 

root hair length, rather than root hair density, was the primary driver for P uptake under P 

limiting conditions and that root length has a critical length where after this point longer 

root hairs do not induce a linear increase in P uptake. 

When comparing results from agar-based and soil-based experiments by available P 

concentrations (No added P: 3.12 µM P, sufficient P: 31.2 µM P and high/toxic P: 312 µM P), 

root hairs could not be linked to actual P uptake observed in soil grown plants. With longer 

root hairs and a higher density of root hairs, wildtype would be expected to take up more 

phosphate. In Chapter Six, both genotypes had no significant difference in tissue P 

concentration when grown in soil with similar P concentration and distribution. However, in 

the split top P distribution, wildtype had significantly (P< 0.001) more total P accumulated 

(mg) likely because there was significantly (P < 0.001) more biomass accumulation than 

Osaux1-1. The unexpected result in P tissue concentration could be due to the plants not 

reaching their ideal P concentration at such an early growth stage (four weeks old) and thus 

would mask the effects of root hairs which might be evident in older plants. 
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Root hairs are also integral to bacterial and fungal interaction with crop plants such as 

barley (Baon et al. 1993; Haling et al. 2013a; Zhu et al. 2003), maize (Anderson et al. 1987) 

and Arabidopsis (Kapulnik et al. 2011) as well as rice in wetland ecosystems (Khan 2004b). P 

solubilising bacteria proliferate near roots because they use root exudates as readily 

available energy sources (Gyaneshwar et al. 2002). The presence of the bacteria increases 

the size of the rhizosphere in flooded soils by releasing previously unavailable P from 

surrounding soils (Osorio and Nelson 2007; Raghu and MacRae 1966; Richardson et al. 

2009). In addition to transporting P directly to plant tissues from soil unoccupied by a plant’s 

roots, AMF influence expression of P transporters in rice which increases P uptake and plant 

tissue P concentrations (Chen et al. 2012b). 

8.1.3 OsAUX1 and RSA plasticity in relation to P uptake 

Roots are critical to crops because they drive the plant’s plastic response to environmental 

change and variation in nutrient and water availability in the soil environment (Fitter 1994; 

Hodge 2004). This work indicates that for rice, OsAUX1 could be involved in root plasticity 

related to increasing root surface area and uptake of P from paddy soils. This was 

demonstrated by the greater variation of phenotypes produced by wildtype when P 

concentration varied or had a different distribution as seen in Chapter Six. Osaux1-1 

appeared to have a more determinate phenotype under the various P conditions. However 

some root traits which could be adaptations to stresses may become determinate over 

time. Kato et al. (2006) found that a steep root angle in rice, which could increase drought 

tolerance, was a determinate trait that occurred independent of soil water status. 



 

155 

 

Additionally, the reduced gravitropic response observed in wildtype centroid Z values under 

P stress further implicate OsAUX1 as a driver of plasticity under varying soil P. Under P 

stress, OsAUX1 function in wildtype increased elongation of lateral roots as well as initiation 

and elongation of root hairs in P deficient conditions (Chapter Seven). Additionally, under P 

toxic conditions, lateral root growth, root hair density and root hair length were decreased. 

With impaired OsAUX1 function, Osaux1-1 may have had a delayed reaction to the P stress 

and continued typical root growth for a much longer period than wildtype which would 

explain the phenotype observed where root hairs were short under low P and longer under 

high P. Complete OsAUX1 function would manifest as a quicker response to P stress in 

wildtype than Osaux1-1, making the wildtype root system appear less extensive and have 

smaller values for centroid, root depth and root system width as observed in Chapter Six. 

In agar, wildtype had a larger root area (more roots and more lateral roots) than Osaux1-1 

under extreme low and high P. Wildtype had more crown roots under low P and more 

lateral roots under replete P. Wildtype had more crown roots under High P; perhaps 

indicative of plasticity and trying to explore more soil to avoid the unsatisfactory soil 

conditions. Osaux1-1 had a low number of lateral roots and a low number of crown roots 

under all except replete conditions. This could explain the unexpected tissue P 

concentration results since loss of OsAUX1 regulatory control for P uptake in Osaux1-1 could 

result in hyper-accumulation of P despite the plant having less biomass and reduced 

potential root:soil contact. 
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8.1.4 Optimisation of X-ray CT for imaging soil-grown rice roots 

As seen in Chapter Three, soil moisture can play a critical part in segmentation of roots from 

soil in X-ray CT images. Rice roots in particular are challenging to visualise in soil using X-ray 

CT because of their similar X-ray attenuation properties to soil; the rice roots were 

composed of carbon, water and air in similar proportions to the surrounding soil. RooTrak 

(Mairhofer et al. 2012) had not yet been optimised for rice root images because of X-ray 

attenuation density similarities between rice and soil. Thus the work was restricted to semi-

automated segmentation with the VGSM region-growing tool. RooTrak relies on creating an 

updateable model of the greyscale histogram within the root that must contrast with the 

greyscale histogram of the voxels directly outside of the root. The similarity of greyscale 

distributions both within the root and outside of the root restricted the usefulness of 

RooTrak software for segmenting these roots from soil in the X-ray CT images although it is 

hoped further revisions will address this. 

There was excellent agreement between root volume values derived from root washing and 

X-ray CT images however, there were also some discrepancies. In the X-ray CT images, mis-

estimation of root volume likely occurred where pores were misclassified as root material or 

where root material was designated as part of the soil fractions. This is a commonly 

encountered challenge when visualising roots in field soils using X-ray CT and can confuse 

automated segmentation software (Flavel et al. 2012a; Mairhofer et al. 2013). Root volume 

was underestimated where the X-ray CT images did not capture the finer root fraction, 

particularly for wildtype and Osaux1-1. In addition, the measurement of root-washed 

samples involved extrapolation of root volume from the actual projected surface area of the 

root system. This can introduce error to WinRHIZO calculation and result in overestimation 
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of average root diameter and subsequently, exaggerate the root volume calculated from 

root diameter and surface area (Wang and Zhang 2009). 

Improvements in X-ray CT technology could reduce the negative influence that rice root 

anatomy (internal air and water-filled spaces) has on the contrast between X-ray 

attenuation density of the rice roots and soil matrix. These advancements could improve 

automated segmentation tools such as RooTrak would be useful for segmentation of rice 

roots. For example, enhanced X-ray detector technology has already increased the ability of 

researchers to move from mm scale of medical grade X-ray CT scanners to microscale (µm) 

investigations performed today (Mooney et al. 2012b). 

8.2 Conclusions 

The following major conclusions can be made from the research presented in this thesis: 

• The gene AUX1 and its ortholog in rice, OsAUX1, have been linked to root angle, 

lateral root initiation and elongation and root hair elongation through control of 

auxin efflux. It is clear that without fully functioning OsAUX1, rice plants have a more 

deterministic root development which does not vary with P distribution or 

concentration except under toxic P conditions. In rice, there is potential for 

enhancement of OsAUX1 expression to enable paddy rice to increase the 

adaptability of its RSA development to changing soil P availability. This increased 

root plasticity has the potential to improve P uptake under flooded conditions by 

increasing lateral root and root hair development. 

• As an ortholog of the Arabidopsis gene AUX1, OsAUX1 influences root gravitropism 

in soil grown rice plants. 3-D root gravitropism and vertical distribution of root 
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volume was characterised through centroid Z-value for rice plants grown on loamy 

sand (Newport) with a replete nutrient supply. In reduced OsAUX1 function mutants 

(Osaux1-1 and Osaux1-2) grown for four weeks, the plants had relatively shallow 

vertical distribution of the root volume with centroid Z values of 1.1 cm and 1.6 cm 

respectively. In contrast, wildtype had a deeper root volume distribution with a 

significantly (P = 0.006) larger centroid Z of 1.9 cm. 

• When grown under varying P conditions and distributions, OsAUX1 induced 

agravitropism was reduced in the knockout mutants. Centroid Z-value, an indicator 

of overall root volume distribution with depth, was not significantly smaller in 

Osaux1-1 than wildtype. However, OsAUX1 function was required for fine root 

proliferation. Particularly when sufficient P conditions were partitioned to the top 4 

cm of the soil profile, wildtype had a significantly greater root volume, surface area, 

total root length and number of root tips than Osaux1-1. This reinforces the role that 

OsAUX1 plays in rice for fine root development in relation to P distribution and 

availability. 

• In waterlogged soils, P availability for rice was more dependent on the influence that 

the root system had on the immediate soil environment than root angle. In 

particular, P availability had a significant effect on root hair density and elongation in 

both wildtype and the Osaux1 knockout mutants. Wildtype had significantly longer 

root hairs (P = 0.014) and a significantly higher density of root hairs (P = 0.009) than 

the mutants under replete P when grown on agar. This could influence rhizosphere 

pH and the development of iron rhizosheaths which have been known to influence P 

uptake in paddy rice (Kögel-Knabner et al. 2010). However in this work, OsAUX1 
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expression could not be linked to a difference in iron rhizosheath formation or 

rhizosphere pH acidification. 

• X-ray CT is becoming more widely utilised for studies involving root development in 

soil (Mooney et al. 2012b). Segmentation of root material from soil in X-ray CT 

images is influenced by soil moisture content. The optimal X-ray density contrast 

between root material and the soil matrix (minerals, organic matter and water/air-

filled pores) is achieved by allowing soils to reach an approximated field capacity (ca. 

3 days drainage) (Zappala et al. 2013b). 

• As X-ray CT technology improves and higher throughput analysis become possible, 

there is a greater likelihood that X-ray studies may impact the living rhizosphere 

through exposure to X-radiation. Low level X-ray doses (< 30 Gy) did not impact rice 

root growth or soil microbial populations in relatively long term studies (4 weeks for 

rice, 24 weeks for soil microbes) (Zappala et al. 2013a). X-ray dose is often under-

reported in current X-ray CT studies and the parameters to estimate dose or the 

dose itself should be reported. 

8.3 Further investigation 

• Building on this work that used sieved and sterilised soil, the influence of OsAUX1 on 

P uptake and root gravitropism should be investigated under field conditions. 

OsAUX1 clearly has the potential to influence P uptake through root hair 

proliferation which should be investigated in a field situation. Additionally, OsAUX1 

induced shallow root angle could be more advantageous for P acquisition in the field 

because of interaction between plants which could not be replicated in the column 

setup utilised for this work. The use of a field setting would also allow introduction 
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of feedback from soil microbes and fungi such as AMF to be included in experimental 

designs. 

• The investigation of localised P uptake through use of microelectrodes would 

enhance understanding of the microscale influence of OsAUX1 related root traits on 

P uptake in the rhizosphere. This work was restricted to quantification of root 

architectural properties in relation to OsAUX1, but the chemical influence of OsAUX1 

induced root traits on the rhizosphere of rice in flooded soils are poorly understood 

and should be investigated. 

• Use of X-ray CT to observe rice root development required a balance between 

column size and image resolution to ensure that the rice root architecture could be 

reasonably quantified. In order to achieve voxel sizes of 27 to 54 µm, sample 

diameters were restricted to 5.5 cm, which in turn meant that the maximum plant 

age that could be analysed was four weeks. Future study should investigate older 

plants which would be in later stages of plant development such as flowering and 

grain-filling. 

• In agar-based systems, several rice genes have been linked to root angle such as 

OsCLR4 (Kitomi et al. 2008) and OsDRO1 (Uga et al. 2011). Additionally, there are 

rice genes that control lateral root initiation(Zhu et al. 2012) and elongation (Zhang 

et al. 2008). Understanding how OSAUX1 and these other genes are expressed under 

varying P concentrations in agar and eventually soil could help further the likelihood 

of identifying key genes for improvement of paddy rice as a crop in relation to P 

uptake.  
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