We present an effective method for supervised feature construction. The main goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity – large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. We achieve this goal with a greedy procedure that constructs features by empirically fitting squared error residuals. The proposed constructive procedure is consistent and can output a rich set of features. The effectiveness of the approach is evaluated empirically by fitting a linear ridge regression model in the constructed feature space and our empirical results indicate a superior performance of our approach over competing methods.

1 Introduction

Every supervised learning algorithm with the ability to generalize from training examples to unseen data points has some type of inductive bias [5]. The bias can be defined as a set of assumptions that together with the training data explain the predictions at unseen points [25]. In order to simplify theoretical analysis of learning algorithms, the inductive bias is often represented by a choice of a hypothesis space (e.g., the inductive bias of linear regression models is the assumption that the relationship between inputs and outputs is linear). The fundamental limitation of learning procedures with an a priori specified hypothesis space (e.g., linear models or kernel methods with a preselected kernel) is that they can learn good concept descriptions only if the hypothesis space selected beforehand is large enough to contain a good solution to the considered problem and small enough to allow good generalization from a small number of training examples. As finding a good hypothesis space is equivalent to finding a good set of features [5], we propose an effective supervised feature construction method to tackle this problem. The main goal of the approach is to embed the data into a feature space for which a set of linear hypotheses is of sufficient capacity. The motivation for this choice of hypotheses is in the desire to exploit the scalability of existing algorithms for training linear models. It is for their scalability that these models are frequently a method of choice for learning on large scale data sets (e.g., the implementation of linear SVM [13] has won the large scale learning challenge at ICML 2008 and KDD CUP 2010). However, as the set of linear hypotheses defined on a small or moderate number of input features is usually of low capacity these methods often learn inaccurate descriptions of target concepts. The proposed approach surmounts this and exploits the scalability of existing algorithms for training linear models while overcoming their low capacity on input features. The latter is achieved by harnessing the information contained in the labeled training data and constructing features by empirically fitting squared error residuals.

We draw motivation for our approach by considering the minimization of the expected squared error using functional gradient descent (Section 2.1). In each step of the descent, the current estimator is updated by moving in the direction of the residual function. We want to mimic this behavior by constructing a feature representation incrementally so that for each step of the descent we add a feature which approximates well the residual function. In this constructive process, we select our features from a predetermined set of basis functions which can be chosen so that a high capacity set...
of linear hypotheses corresponds to the constructed feature space (Section 2.2). In our theoretical
analysis of the approach, we provide a convergence rate for this constructive procedure (Section 2.3)
and give a generalization bound for the empirical fitting of residuals (Section 2.4). The latter is needed
because the feature construction is performed based on an independent and identically distributed
sample of labeled examples. The approach, presented in Section 2.5, is highly flexible and allows for
an extension of a feature representation without complete re-training of the model. As it performs
similar to gradient descent, a stopping criteria based on an accuracy threshold can be devised and the
algorithm can then be simulated without specifying the number of features a priori. In this way, the
algorithm can terminate sooner than alternative approaches for simple hypotheses. The method is
easy to implement and can be scaled to millions of instances with a parallel implementation.

To evaluate the effectiveness of our approach empirically, we compare it to other related approaches
by training linear ridge regression models in the feature spaces constructed by these methods. Our
empirical results indicate a superior performance of the proposed approach over competing methods.
The results are presented in Section 3 and the approaches are discussed in Section 4.

2 Greedy feature construction

In this section, we present our feature construction approach. We start with an overview where we
introduce the problem setting and motivate our approach by considering the minimization of the
expected squared error using functional gradient descent. Following this, we define a set of features
and demonstrate that the approach can construct a rich set of hypotheses. We then show that our
greedy constructive procedure converges and give a generalization bound for the empirical fitting of
residuals. The section concludes with a pseudo-code description of our approach.

2.1 Overview

We consider a learning problem with the squared error loss function where the goal is to find a
mapping from a Euclidean space to the set of reals. In these problems, it is typically assumed that a
sample \(z = ((x_1, y_1), \ldots, (x_m, y_m)) \) of \(m \) examples is drawn independently from a Borel probability
measure \(\rho \) defined on \(Z = X \times Y \), where \(X \) is a compact subset of a finite dimensional Euclidean
space with the dot product \(\langle \cdot, \cdot \rangle \) and \(Y \subseteq \mathbb{R} \). For every \(x \in X \) let \(\rho(x \mid y) \) be the conditional
probability measure on \(Y \) and \(\rho_X \) be the marginal probability measure on \(X \). For the sake of brevity,
when it is clear from the context, we will write \(\rho \) instead of \(\rho_X \). Let \(f_\rho(x) = \int y \, d\rho(y \mid x) \) be the bounded target/regression function of the measure \(\rho \). Our goal is to construct a feature representation
such that there exists a linear hypothesis on this feature space that approximates well the target
function. For an estimator \(f \) of the function \(f_\rho \) we measure the goodness of fit with the expected
squared error in \(\rho \), \(\mathcal{E}_\rho(f) = \int \langle f(x) - y \rangle^2 \, d\rho \). The empirical counterpart of the error, defined over a
sample \(z \in Z^m \), is denoted with \(\mathcal{E}_z(f) = \frac{1}{m} \sum_{i=1}^m \langle f(x_i) - y_i \rangle^2 \).

Having defined the problem setting, we proceed to motivate our approach by considering the minimization of the expected squared error using functional gradient descent. For that, we first review
the definition of functional gradient. For a functional \(F \) defined on a normed linear space and an element
\(p \) from this space, the functional gradient \(\nabla F(p) \) is the principal linear part of a change in \(F \) after
it is perturbed in the direction of \(q \), \(F(p + q) = F(p) + \psi(q) + \epsilon \|q\|, \) where \(\psi(q) \) is the linear
functional with \(\nabla F(p) \) as its principal linear part, and \(\epsilon \rightarrow 0 \) as \(||q|| \rightarrow 0 \) [e.g., see Section 3.2 in
16]. In our case, the normed space is the Hilbert space of square integrable functions \(L^2(X) \) and for
the expected squared error functional on this space we have that it holds

\[\mathcal{E}_\rho(f + \epsilon q) - \mathcal{E}_\rho(f) = \langle 2 (f - f_\rho), \epsilon q \rangle_{L^2(X)} + \mathcal{O}(\epsilon^2).\]

Hence, an algorithm for the minimization of the expected squared error using functional gradient
descent on this space could be specified as

\[f_{t+1} = \nu f_t + 2 (1 - \nu) (f_\rho - f_t),\]

where \(0 \leq \nu \leq 1 \) denotes the learning rate and \(f_t \) is the estimate at step \(t \). The functional gradient
direction \(2 (f_\rho - f_t) \) is the residual function at step \(t \) and the main idea behind our approach is to
iteratively refine our feature representation by extending it with a new feature that matches the current
residual function. In this way, for a suitable choice of learning rate \(\nu \), the functional descent would be
performed through a convex hull of features and in each step we would have an estimate of the
target function \(f_\rho \) expressed as a convex combination of the constructed features.
2.2 Greedy features

We introduce now a set of features parameterized with a ridge basis function and hyperparameters controlling the smoothness of these features. As each subset of features corresponds to a set of hypotheses, in this way we specify a family of possible hypothesis spaces. For a particular choice of ridge basis function we argue below that the approach outlined in the previous section can construct a highly expressive feature representation (i.e., a hypothesis space of high capacity).

Let \(C(X) \) be the Banach space of continuous functions on \(X \) with the uniform norm. For a Lipschitz continuous function \(\phi : \mathbb{R} \rightarrow \mathbb{R}, \| \phi \|_{\infty} \leq 1 \), and constants \(r, s, t > 0 \) let \(F_\Theta \subset C(X) \), \(\Theta = (\phi, r, s, t) \), be a set of ridge-wave functions defined on the set \(X \),

\[
F_\Theta = \left\{ a \phi(w, x) + b \mid w \in \mathbb{R}^d, a, b \in \mathbb{R}, |a| \leq r, \|w\|_2 \leq s, |b| \leq t \right\}.
\]

From this definition, it follows that for all \(g \in F_\Theta \) it holds \(\|g\|_{\infty} \leq r \). As a ridge-wave function \(g \in F_\Theta \) is bounded and Lipschitz continuous, it is also square integrable in the measure \(\rho \) and \(g \in L^2_\rho(X) \). Therefore, \(F_\Theta \) is a subset of the Hilbert space of square integrable functions defined on \(X \) with respect to the probability measure \(\rho \), i.e., \(F_\Theta \subset L^2_\rho(X) \).

Let \(\phi(\cdot) = \cos(\cdot) \) in the definition of \(F_\Theta \) we obtain a set of cosine-wave features

\[
F_{\cos} = \left\{ a \cos(w, x) + b \mid w \in \mathbb{R}^d, a, b \in \mathbb{R}, |a| \leq r, \|w\|_2 \leq s, |b| \leq t \right\}.
\]

For this set of features the approach outlined in Section 2.1 can construct a rich set of hypotheses. To demonstrate this we make a connection to shift-invariant reproducing kernel Hilbert spaces and show that the approach can approximate any bounded function from any shift-invariant reproducing kernel Hilbert space. This means that a set of linear hypotheses defined by cosine features can be of high capacity and our approach can overcome the problems with the low capacity of linear hypotheses defined on few input features. A proof of the following theorem is provided in Appendix B.

Theorem 1. Let \(H_k \) be a reproducing kernel Hilbert space corresponding to a continuous shift-invariant and positive definite kernel \(k \) defined on a compact set \(X \). Let \(\mu \) be the positive and bounded spectral measure whose Fourier transform is the kernel \(k \). For any probability measure \(\mu \) defined on \(X \), it is possible to approximate any bounded function \(f \in H_k \) using a convex combination of \(n \) ridge-wave functions from \(F_{\cos} \) such that the approximation error in \(\| \cdot \|_\mu \) decays with rate \(O(1/\sqrt{n}) \).

2.3 Convergence

For the purpose of this paper, it suffices to show the convergence of \(\epsilon \)-greedy sequences of functions (see Definition 1) in Hilbert spaces. We, however, choose to provide a stronger result which holds for \(\epsilon \)-greedy sequences in uniformly smooth Banach spaces. In the remainder of the paper, \(\text{co}(S) \) and \(\overline{S} \) will be used to denote the convex hull of elements from a set \(S \) and the closure of \(S \), respectively.

Definition 1. Let \(B \) be a Banach space with norm \(\| \cdot \| \) and let \(S \subset B \). An incremental sequence is any sequence \(\{f_n\}_{n \geq 1} \) of elements of \(B \) such that \(f_1 \in S \) and for each \(n \geq 1 \) there is some \(g \in S \) so that \(f_{n+1} \in \text{co}(\{f_n, g\}) \). An incremental sequence is greedy with respect to an element \(f \in \text{co}(S) \) if for all \(n \in \mathbb{N} \) it holds \(\|f_{n+1} - f\| = \inf \{\|h - f\| \mid h \in \text{co}(\{f_n, g\}), g \in S \} \). Given a positive sequence of allowed slack terms \(\{\epsilon_n\}_{n \geq 1} \), an incremental sequence \(\{f_n\}_{n \geq 1} \) is called \(\epsilon \)-greedy with respect to \(f \) if for all \(n \in \mathbb{N} \) it holds \(\|f_{n+1} - f\| < \inf \{\|h - f\| \mid h \in \text{co}(\{f_n, g\}), g \in S \} + \epsilon_n \).

Having introduced the notion of an \(\epsilon \)-greedy incremental sequence of functions, let us now relate it to our feature construction approach. In the outlined constructive procedure (Section 2.1), we proposed to select new features corresponding to the functional gradient at the current estimate of the target function. Now, if at each step of the functional gradient descent there exists a ridge-wave function from our set of features which approximates well the residual function (w.r.t. \(f_n \)) then this sequence of functions defines a descent through \(\text{co}(F_\Theta) \) which is an \(\epsilon \)-greedy incremental sequence of functions with respect to \(f_n \in \text{co}(F_\Theta) \). In Section 2.1, we have also demonstrated that \(F_\Theta \) is a subset of the Hilbert space \(L^2_\mu(X) \) and this is by definition a Banach space.

In accordance with Definition 1, we now consider under what conditions an \(\epsilon \)-greedy sequence of functions from this space converges to any target function \(f_\rho \in \text{co}(F_\Theta) \). Note that this relates to Theorem 1 which confirms the strength of the result by showing that the capacity of \(\text{co}(F_\Theta) \) is large. Before we show the convergence of our constructive procedure, we need to prove that an \(\epsilon \)-greedy
Theorem 3. Let \(B \) be a Banach space, \(B^* \) the dual space of \(B \), and \(f \in B, f \neq 0 \). A peak functional for \(f \) is a bounded linear operator \(F \in B^* \) such that \(\|F\|_{B^*} = 1 \) and \(F(f) = \|f\|_{B} \). The Banach space \(B \) is said to be smooth if for each \(f \in B, f \neq 0 \), there is a unique peak functional.

The existence of at least one peak functional for all \(f \in B, f \neq 0 \), is guaranteed by the Hahn-Banach theorem [27]. For a Hilbert space \(H \), for each element \(f \in H, f \neq 0 \), there exists a unique peak functional \(F = \langle f, \cdot \rangle/n\|f\|_H \). Thus, every Hilbert space is a smooth Banach space. Donahue et al. [12, Theorem 3.1] have shown that in smooth Banach spaces – and in particular in the Hilbert space \(L_p^2(X) \) – an \(\epsilon \)-greedy incremental sequence of functions can always be constructed. However, not every such sequence of functions converges to the function with respect to which it was constructed. For the convergence to hold, a stronger notion of smoothness is needed.

Definition 3. The modulus of smoothness of a Banach space \(B \) is a function \(\tau: \mathbb{R}_0^+ \to \mathbb{R}_0^+ \) defined as \(\tau(r) = \frac{1}{2} \sup_{\|f\| = 1} (\|f + rg\| + \|f - rg\|) - 1 \), where \(f, g \in B \). The Banach space \(B \) is said to be uniformly smooth if \(\tau(r) \in o(r) \) as \(r \to 0 \).

We need to observe now that every Hilbert space is a uniformly smooth Banach space [12]. For the sake of completeness, we provide a proof of this proposition in Appendix B.

Proposition 2. For any Hilbert space the modulus of smoothness is equal to \(\tau(r) = \sqrt{1 + r^2} - 1 \).

Having shown that Hilbert spaces are uniformly smooth Banach spaces, we proceed with two results giving a convergence rate of an \(\epsilon \)-greedy incremental sequence of functions. What is interesting about these results is the fact that a feature does not need to match exactly the residual function in a greedy descent step (Section 2.1); it is only required that condition (ii) from the next theorem is satisfied.

Theorem 3. [Donahue et al., 12] Let \(B \) be a uniformly smooth Banach space having modulus of smoothness \(\tau(u) \leq \gamma u^t \), with \(\gamma \) being a constant and \(t > 1 \). Let \(S \) be a bounded subset of \(B \) and let \(f \in \text{co}(S) \). Let \(K > 0 \) be a constant such that \(\|f - g\| \leq K \) for all \(g \in S \), and let \(\epsilon > 0 \) be a fixed slack value. If the sequences \(\{f_n\}_{n \geq 1} \subset \text{co}(S) \) and \(\{g_n\}_{n \geq 1} \subset S \) are chosen recursively so that: (i) \(f_1 \in S \), (ii) \(f_n(g_n - f) \leq 2\epsilon((K + \epsilon t^{-1})/n^{1-t})/n^{1-t} \|f_n - f\|^{-1} \), and (iii) \(f_{n+1} = \eta/n + 1 f_n + 1/n + 1 g_n \), where \(F_n \) is the peak functional of \(f_n - f \), then it holds \(\|f_n - f\| \leq \epsilon\sqrt{2 + \log_2 (n/\epsilon)} \).

The following corollary gives a convergence rate for an \(\epsilon \)-greedy incremental sequence of functions constructed according to Theorem 3 with respect to \(f \in \text{co}(F_0) \). As this result (a proof is given in Appendix B) holds for all such sequences of functions, it also holds for our constructive procedure.

Corollary 4. Let \(\{f_n\}_{n \geq 1} \subset \text{co}(F_0) \) be an \(\epsilon \)-greedy incremental sequence of functions constructed according to the procedure described in Theorem 3 with respect to a function \(f \in \text{co}(F_0) \). Then, it holds \(\|f_n - f\|_\rho \leq \epsilon\sqrt{2 + \log_2 (n/\epsilon)} \).

2.4 Generalization bound

In step \(t+1 \) of the empirical residual fitting, based on a sample \(\{(x_i, y_i - f_i(x_i))\}_{i=1}^m \), the approach selects a ridge-wave function from \(F_0 \) that approximates well the residual function \((f_\rho - f_i) \). In the last section, we have specified in which cases such ridge-wave functions can be constructed and provided a convergence rate for this constructive procedure. As the convergence result is not limited to target functions from \(F_0 \) and \(\text{co}(F_0) \), we give a bound on the generalization error for hypotheses from \(F = \text{co}(F_0) \), where the closure is taken with respect to \(C(X) \).

Before we give a generalization bound, we show that our hypothesis space \(F \) is a convex and compact set of functions. The choice of a compact hypothesis space is important because it guarantees that a minimizer of the expected squared error \(\mathcal{E}_\rho \) and its empirical counterpart \(\mathcal{E}_\rho \) exists. In particular, a continuous function attains its minimum and maximum value on a compact set and this guarantees the existence of minimizers of \(\mathcal{E}_\rho \) and \(\mathcal{E}_\rho \). Moreover, for a hypothesis space that is both convex and compact, the minimizer of the expected squared error is unique as an element of \(L_2^p(X) \). A simple proof of the uniqueness of such a minimizer in \(L_2^p(X) \) and the continuity of the functionals \(\mathcal{E}_\rho \) and \(\mathcal{E}_\rho \) can be found in [9]. For the sake of completeness, we provide a proof in Appendix A as Proposition A.2. The following proposition (a proof is given in Appendix B) shows that our hypothesis space is a convex and compact subset of the metric space \(C(X) \).
Algorithm 1 GreedyDescent

| Input: sample $z = \{(x_i, y_i)\}_{i=1}^n$, initial estimates at sample points $(f_{0,i})_{i=1}^n$, ridge basis function ϕ, maximum number of descent steps p, regularization parameter λ, and precision ϵ
| 1: $W \leftarrow \emptyset$
| 2: for $k = 1, 2, \ldots, p$
| 3: $w_k, c_k \leftarrow \arg\min_{w, c} \sum_{i=1}^n \frac{1}{2} (c'(f_{k-1,i} + c\phi(w^T x_i) - y_i)^2 + \lambda\Omega(c, w))$
| 4: $W \leftarrow W \cup \{w_k\}$ and $f_{k,i} \leftarrow c_k f_{k-1,i} + c_k\phi(w_k^T x_i), i = 1, \ldots, s$
| 5: if $|E_{w_k}(f_{k}) - E_{w_k}(f_{k-1})| / \max\{E_{w_k}(f_{k}), E_{w_k}(f_{k-1})\} < \epsilon$ then EXIT FOR LOOP end if
| 6: end for
| 7: return W

Proposition 5. The hypothesis space F is a convex and compact subset of the metric space $C(X)$. Moreover, the elements of this hypothesis space are Lipschitz continuous functions.

Having established that the hypothesis space is a compact set, we can now give a generalization bound for learning with this hypothesis space. The fact that the hypothesis space is compact implies that it is also a totally bounded set [27], i.e., for all $\epsilon > 0$ there exists a finite ϵ-net of F. This, on the other hand, allows us to derive a sample complexity bound by using the ϵ-covering number of a space as a measure of its capacity [21]. The following theorem and its corollary (proofs are provided in Appendix B) give a generalization bound for learning with the hypothesis space F.

Theorem 6. Let $M > 0$ such that, for all $f \in F$, $|f(x) - y| \leq M$ almost surely. Then, for all $\epsilon > 0$

$$
\mathbb{P}[E_\rho(f_x) - E_\rho(f^*) \leq \epsilon] \geq 1 - N(F, \epsilon, 2M, \|\cdot\|_\infty) \exp \left(-\frac{m\epsilon^2}{288M^2}\right),
$$

where f_x and f^* are the minimizers of E_ρ and E_ρ on the set F, $x \in Z^m$, and $N(F, \epsilon, \|\cdot\|_\infty)$ denotes the ϵ-covering number of F w.r.t. $C(X)$.

Corollary 7. For all $\epsilon > 0$ and all $\delta > 0$, with probability $1 - \delta$, a minimizer of the empirical squared error on the hypothesis space F is (ϵ, δ)-consistent when the number of samples $m \in \Omega\left(r (\log s + t) L_\phi \frac{1}{\epsilon} + \frac{\ln \frac{1}{\delta}}{\epsilon^2}\right)$. Here, R is the radius of a ball containing the set of instances X in its interior, L_ϕ is the Lipschitz constant of a function ϕ, and r, s, t are hyperparameters of F_ϕ.

2.5 Algorithm

Algorithm 1 is a pseudo-code description of the outlined approach. To construct a feature space with a good set of linear hypotheses the algorithm takes as input a set of labeled examples and an initial empirical estimate of the target function. A dictionary of features is specified with a ridge basis function and the smoothness of individual features is controlled with a regularization parameter. Other parameters of the algorithm are the maximum allowed number of descent steps and a precision term that defines the convergence of the descent. As outlined in Sections 2.1 and 2.3, the algorithm works by selecting a feature that matches the residual function at the current estimate of the target function. For each selected feature the algorithm also chooses a suitable learning rate and performs a functional descent step (note that we are inferring the learning rate instead of setting it to $1/n + 1$ as in Theorem 3). To avoid solving these two problems separately, we have coupled both tasks into a single optimization problem (line 3) – we fit a linear model to a feature representation consisting of the current empirical estimate of the target function and a ridge function parameterized with a d-dimensional vector w. The regularization term Ω is chosen to control the smoothness of the new feature and avoid over-fitting. The optimization problem over the coefficients of the linear model and the spectrum of the ridge basis function is solved by casting it as a hyperparameter optimization problem [20]. For the sake of completeness, we have provided a detailed derivation in Appendix C.

While the hyperparameter optimization problem is in general non-convex, Theorem 3 indicates that a globally optimal solution is not (necessarily) required and instead specifies a weaker condition. To account for the non-convex nature of the problem and compensate for the sequential generation of features, we propose to parallelize the feature construction process by running several instances of the greedy descent simultaneously. A pseudo-code description of this parallelized approach is given in Algorithm 2. The algorithm takes as input parameters required for running the greedy descent and some parameters specific to the parallelization scheme – number of data passes and available machines/cores, regularization parameter for the fitting of linear models in the constructed feature space, and cut-off parameter for the elimination of redundant features. The whole process is started by adding a bias feature and setting the initial empirical estimates at sample points to the mean value of the outputs (line 1). Following this, the algorithm mimics stochastic gradient descent and makes
We run all algorithms on identical outer cross-validation folds and construct feature representations. We now briefly describe the data sets and the experimental setting. The experiments were conducted on three groups of data sets. The first group contains four UCI data sets on which we performed parameter tuning of all three algorithms (Table 1, data sets 1-4). The second group contains the data sets with more than 5000 instances available from Luís Torgo [28]. The idea is to use this group of data sets to test the generalization properties of the considered algorithms (Table 1, data sets 5-10). The third group contains two artificial and very noisy data sets that are frequently used in regression tree benchmark tests. For each considered data set, we split the data into 10 folds; we refer to these splits as the outer cross-validation folds. In each step of the outer cross-validation, we use nine folds as the training sample and one fold as the test sample. For the purpose of the hyperparameter tuning we split the training sample into five folds; we refer to these splits as the inner cross-validation folds. We run algorithms on identical outer cross-validation folds and construct feature representations with 100 and 500 features. The performance of the algorithms is assessed by comparing the root mean squared error of linear ridge regression models trained in the constructed feature spaces and the average time needed for the outer cross-validation of one fold.

Algorithm 2 Greedy Feature Construction (GFC)

Input: sample $z = \{(x_i, y_i)\}_{i=1}^m$, ridge basis function ϕ, number of data passes T, maximum number of greedy descent steps p, number of machines/cores M, regularization parameters λ and ν, precision ϵ, and feature cut-off threshold η

1. $W \leftarrow \{\emptyset\}$ and $f_{0, k} \leftarrow \frac{1}{n} \sum_{i=1}^n y_i$, $k = 1, \ldots, m$
2. for $i = 1, \ldots, T$ do
3. for $j = 1, 2, \ldots, M$ parallel do
4. $S_j \sim \mathcal{U} \{1, 2, \ldots, m\}$ and $W \leftarrow W \cup \text{GreedyDescent} \left(\{(x_k, y_k)\}_{k \in S_j}, \{f_{i-1, k}\}_{k \in S_j}, \phi, p, \nu, \epsilon\right)$
5. end for
6. $a^* \leftarrow \arg \min_a \sum_{k=1}^m \left(\sum_{l=1}^{|W|} a_l \phi(w_l^T x_k) - y_k\right)^2 + \nu \|a\|_2^2$
7. $W \leftarrow W \setminus \{w_l \in W \mid |a_l^*| < \eta, 1 \leq l \leq |W|\}$ and $f_{i, k} \leftarrow \sum_{l=1}^{|W|} a_l^* \phi(w_l^T x_k)$, $k = 1, \ldots, m$
8. end for
9. return (W, a^*)

a specified number of passes through the data (line 2). In the first step of each pass, the algorithm performs greedy functional descent in parallel using a pre-specified number of machines/cores M (lines 3-5). This step is similar to the splitting step in parallelized stochastic gradient descent [32]. Greedy descent is performed on each of the machines for a maximum number of iterations p and the estimated parameter vectors are added to the set of constructed features W (line 4). After the features have been learned the algorithm fits a linear model to obtain the amplitudes (line 6). To fit a linear model, we use least square regression penalized with the l_2-norm because it can be solved in a closed form and cross-validation of the capacity parameter involves optimizing a 1-dimensional objective function [20]. Fitting of the linear model can be understood as averaging of the greedy approximations constructed on different chunks of the data. At the end of each pass, the empirical estimates at sample points are updated and redundant features are removed (line 7).

One important detail in the implementation of Algorithm 1 is the data splitting between the training and validation samples for the hyperparameter optimization. In particular, during the descent we are more interested in obtaining a good spectrum than the amplitude because a linear model will be fit in Algorithm 2 over the constructed features and the amplitude values will be updated. For this reason, during the hyperparameter optimization over a k-fold splitting in Algorithm 1, we choose a single fold as the training sample and a batch of folds as the validation sample.

3 Experiments

In this section, we assess the performance of our approach (see Algorithm 2) by comparing it to other feature construction approaches on synthetic and real-world data sets. We evaluate the effectiveness of the approach with the set of cosine-wave features introduced in Section 2.2. For this set of features, our approach is directly comparable to random Fourier features [26] and á la carte [31]. The implementation details of the three approaches are provided in Appendix C. We address here the choice of the regularization term in Algorithm 1: To control the smoothness of newly constructed features, our approach is directly comparable to random Fourier features [26] and á la carte [31]. The implementation details of the three approaches are provided in Appendix C. We address here the choice of the regularization term in Algorithm 1: To control the smoothness of newly constructed features, we penalize the objective in line 3. This step is similar to the splitting step in parallelized stochastic gradient descent [32]. After the features have been learned the algorithm fits a linear model to obtain the amplitudes (line 6). To fit a linear model, we use least square regression penalized with the l_2-norm because it can be solved in a closed form and cross-validation of the capacity parameter involves optimizing a 1-dimensional objective function [20]. Fitting of the linear model can be understood as averaging of the greedy approximations constructed on different chunks of the data. At the end of each pass, the empirical estimates at sample points are updated and redundant features are removed (line 7).

One important detail in the implementation of Algorithm 1 is the data splitting between the training and validation samples for the hyperparameter optimization. In particular, during the descent we are more interested in obtaining a good spectrum than the amplitude because a linear model will be fit in Algorithm 2 over the constructed features and the amplitude values will be updated. For this reason, during the hyperparameter optimization over a k-fold splitting in Algorithm 1, we choose a single fold as the training sample and a batch of folds as the validation sample.
Table 1: To facilitate the comparison between data sets we have normalized the outputs so that their range is one. The accuracy of the algorithms is measured using the root mean squared error, multiplied by 100 to mimic percentage error (w.r.t. the range of the outputs). The mean and standard deviation of the error are computed after performing 10-fold cross-validation. The reported walltime is the average time it takes a method to cross-validate one fold. To assess whether a method performs statistically significantly better than the other on a particular data set we perform the paired Welch t-test [29] with $p = 0.05$. The significantly better results for the considered settings are marked in bold.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>m</th>
<th>d</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPC</td>
<td>AUC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WALLTIME</td>
<td>WALLTIME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WALLTIME</td>
<td>WALLTIME</td>
</tr>
<tr>
<td></td>
<td>IPC</td>
<td>AUC</td>
<td>WALLTIME</td>
<td>WALLTIME</td>
</tr>
</tbody>
</table>

An extensive summary containing the results of experiments with the random Fourier features approach (corresponding to Gaussian, Laplace, and Cauchy kernels) and different configurations of à la carte is provided in Appendix D. As the best performing configuration of à la carte on the development data sets is the one with $Q = 5$ components, we report in Table 1 the error and walltime for this configuration. From the walltime numbers we see that our approach is in both considered settings – with 100 and 500 features – always faster than à la carte. Moreover, the proposed approach is able to generate a feature representation with 500 features in less time than required by à la carte for a representation of 100 features. In order to compare the performance of the two methods with respect to accuracy, we use the Wilcoxon signed rank test [30, 11]. As our approach with 500 features is on all data sets faster than à la carte with 100 features, we first compare the errors obtained in these experiments. For 95% confidence, the threshold value of the Wilcoxon signed rank test with 16 data sets is $T = 30$ and from our results we get the T-value of 28. As the T-value is below the threshold, our algorithm can with 95% confidence generate in less time a statistically significantly better feature representation than à la carte. For the errors obtained in the settings where both methods have the same number of features, we obtain the T-values of 60 and 42. While in the first case for the setting with 100 features the test is inconclusive, in the second case our approach is with 95% confidence statistically significantly more accurate than à la carte. To evaluate the performance of the approaches on individual data sets, we perform the paired Welch t-test [29] with $p = 0.05$. Again, the results indicate a good/competitive performance of our algorithm compared to à la carte.

4 Discussion

In this section, we discuss the advantages of the proposed method over the state-of-the-art baselines in learning fast shift-invariant kernels and other related approaches.

Flexibility. The presented approach is a highly flexible supervised feature construction method. In contrast to an approach based on random Fourier features [26], the proposed method does not require a spectral measure to be specified a priori. In the experiments (details can be found in Appendix D), we have demonstrated that the choice of spectral measure is important as, for the considered measures (corresponding to Gaussian, Laplace, and Cauchy kernels), the random Fourier features approach is outperformed on all data sets. The second competing method, à la carte, is more flexible when it comes to the choice of spectral measure and works by approximating it with a mixture of Gaussians. However, the number of components and features per component needs to be specified beforehand or cross-validated. In contrast, our approach mimics functional gradient descent and can be simulated without specifying the size of the feature representation beforehand. Instead, a stopping criteria (see, e.g., Algorithm 1) based on the successive decay of the error can be devised. As a result, the proposed approach terminates sooner than the alternative approaches for simple concepts/hypotheses.

The proposed method is also easy to implement (for the sake of completeness, the hyperparameter gradients are provided in Appendix C.1) and allows us to extend the existing feature representation without complete re-training of the model. We note that the approaches based on random Fourier

<table>
<thead>
<tr>
<th>Dataset</th>
<th>m</th>
<th>d</th>
<th>n = 100</th>
<th>n = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPC</td>
<td>AUC</td>
<td>WALLTIME</td>
<td>WALLTIME</td>
</tr>
</tbody>
</table>
features are also simple to implement and can be re-trained efficiently with the increase in the number of features [10]. À la carte, on the other hand, is less flexible in this regard – due to the number of hyperparameters and the complexity of gradients it is not straightforward to implement this method.

Scalability. The fact that our greedy descent can construct a feature in time linear in the number of instances \(m \) and dimension of the problem \(d \) makes the proposed approach highly scalable. In particular, the complexity of the proposed parallelization scheme is dominated by the cost of fitting a linear model and the whole algorithm runs in time \(\mathcal{O} \left(T \left(n^3 + n^2 m + nm^d \right) \right) \), where \(T \) denotes the number of data passes (i.e., linear model fits) and \(n \) number of constructed features. To scale this scheme to problems with millions of instances, it is possible to fit linear models using the parallelized stochastic gradient descent [32]. As for the choice of \(T \), the standard setting in simulations of stochastic gradient descent is 5-10 data passes. Thus, the presented approach is quite robust and can be applied to large scale data sets. In contrast to this, the cost of performing a gradient step in the hyperparameter optimization of à la carte is \(\mathcal{O} \left(n^3 + n^2 m + nm^d \right) \). In our empirical evaluation using an implementation with 10 random restarts, the approach needed at least 20 steps per restart to learn an accurate model. The required number of gradient steps and the cost of computing them hinder the application of à la carte to large scale data sets. In learning with random Fourier features which also run in time \(\mathcal{O} \left(n^3 + n^2 m + nm^d \right) \), the main cost is the fitting of linear models – one for each pair of considered spectral and regularization parameters.

Other approaches. Beside fast kernel learning approaches, the presented method is also related to neural networks parameterized with a single hidden layer. These approaches can be seen as feature construction methods jointly optimizing over the whole feature representation. A detailed study of the approximation properties of a hypothesis space of a single layer network with the sigmoid ridge function has been provided by Barron [4]. In contrast to these approaches, we construct features incrementally by fitting residuals and we do this with a set of non-monotone ridge functions as a dictionary of features. Regarding our generalization bound, we note that the past work on single layer neural networks contains similar results but in the context of monotone ridge functions [1].

As the goal of our approach is to construct a feature space for which linear hypotheses will be of sufficient capacity, the presented method is also related to linear models working with low-rank kernel representations. For instance, Fine and Scheinberg [14] investigate a training algorithm for SVMs using low-rank kernel representations. The difference between our approach and this method is in the fact that the low-rank decomposition is performed without considering the labels. Side knowledge and labels are considered by Kulis et al. [22] and Bach and Jordan [3] in their approaches to construct a low-rank kernel matrix. However, these approaches are not selecting features from a set of ridge functions, but find a subspace of a preselected kernel feature space with a good set of hypothesis.

From the perspective of the optimization problem considered in the greedy descent (Algorithm 1) our approach can be related to single index models (SIM) where the goal is to learn a regression function that can be represented as a single monotone ridge function [19, 18]. In contrast to these models, our approach learns target/regression functions from the closure of the convex hull of ridge functions. Typically, these target functions cannot be written as single ridge functions. Moreover, our ridge functions do not need to be monotone and are more general than the ones considered in SIM models.

In addition to these approaches and considered baseline methods, the presented feature construction approach is also related to methods optimizing expected loss functions using functional gradient descent [23]. However, while Mason et al. [23] focus on classification problems and hypothesis spaces with finite VC dimension, we focus on the estimation of regression functions in spaces with infinite VC dimension (e.g., see Section 2.2). In contrast to that work, we provide a convergence rate for our approach. Similarly, Friedman [15] has proposed a gradient boosting machine for greedy function estimation. In their approach, the empirical functional gradient is approximated by a weak learner which is then combined with previously constructed learners following a stagewise strategy. This is different from the stepwise strategy that is followed in our approach where previously constructed estimators are readjusted when new features are added. The approach in [15] is investigated mainly in the context of regression trees, but it can be adopted to feature construction. To the best of our knowledge, theoretical and empirical properties of this approach in the context of feature construction and shift-invariant reproducing kernel Hilbert spaces have not been considered so far.

Acknowledgment: We are grateful for access to the University of Nottingham High Performance Computing Facility. A part of this work was also supported by the German Science Foundation (grant number GA 1615/1-1).
References

A Preliminaries

Definition A.1. A symmetric function \(k : X \times X \to \mathbb{R} \) is a positive definite kernel on \(X \) if, for all \(n \in \mathbb{N}, x_1, \ldots, x_n \in X \), and \(c_1, \ldots, c_n \in \mathbb{R} \), it follows that \(\sum_{i,j=1}^n c_i c_j k(x_i, x_j) \geq 0 \).

Definition A.2. Let \(D \subset \mathbb{R}^d \) be an open set. A positive definite kernel \(k : D \times D \to \mathbb{R} \) is called shift-invariant if there exists a function \(s : D \to \mathbb{R} \) such that \(k(x, y) = s(x - y) \), for all \(x, y \in D \). The function \(s \) is said to be of positive type.

Definition A.3. A reproducing kernel Hilbert space \(\mathcal{H} \) on a non-empty set \(X \) is the Hilbert space of functions \(f : X \to \mathbb{R} \) such that there exists a unique element \(e_x \in \mathcal{H} \) satisfying the reproducing property \(f(x) = \langle f, e_x \rangle_{\mathcal{H}} \) for all \(f \in \mathcal{H} \). For a reproducing kernel Hilbert space \(\mathcal{H} \) the function \(k(x, y) = e_x(y) \) is a positive definite kernel. A unique reproducing kernel Hilbert space \(\mathcal{H} \) corresponds to every positive definite kernel \(k \).

Theorem A.1. [Bochner, 7] The Fourier transform of a bounded positive measure on \(\mathbb{R}^d \) is a continuous function of positive type. Conversely, any function of positive type is the Fourier transform of a bounded positive measure.

In other words, for a shift-invariant kernel \(k \) it holds
\[
k(x, y) = s(x - y) = \int_{\mathbb{R}^d} \exp(-i \langle w, x - y \rangle) \, d\mu(w),
\]
where \(\mu \) is a positive and bounded measure. As \(k(x, y) \) is a real function in both arguments, the complex part in the integral on the right hand-side is equal to zero, and we have
\[
k(x, y) = 2 \int \cos(w^\top x + b) \cos(w^\top y + b) \, d\hat{\mu}(w, b),
\]
where \(b \sim U[-\pi, \pi] \) and \(\hat{\mu}(w, b) = \mu(w)/2\pi \). Hence, the kernel value at \((x, y)\) can be approximated by the Monte-Carlo estimate of the dot product [26].

Proposition A.2. [Cucker and Smale, 9] Let \(K \) be a convex and compact subset of \(\mathcal{C}(X) \). Then there exists a function in \(\mathcal{C}(X) \) with a minimal distance to \(f_0 \) in \(L^2_\rho(X) \). Moreover, this function is unique as an element of \(L^2_\rho(X) \).

Proof. From the compactness of the subspace it follows that a minimizer exists. However, it does not have to be unique. Let \(f_1 \) and \(f_2 \) be two minimizers and let \(s = \{\alpha f_1 + (1 - \alpha) f_2 \mid 0 \leq \alpha \leq 1\} \) be the line segment connecting these two points. As the subspace \(K \) is convex, then the segment \(s \) is contained within \(K \). Furthermore, for all \(f \in s \), it holds \(\|f_1 - f_0\|_\rho = \|f_2 - f_0\|_\rho \leq \|f - f_0\|_\rho \).

From the first inequality we have
\[
\langle f_\rho - f_1, f - f_1 \rangle_\rho + \langle f_\rho - f_2, f - f_2 \rangle_\rho \leq \|f_\rho - f_1\|_\rho^2 \Rightarrow \langle f_\rho - f_1, f - f_1 \rangle_\rho \leq \langle f_\rho - f_2, f - f_2 \rangle_\rho.
\]

Similarly, from the second inequality we get
\[
\langle f_\rho - f_2, f - f_2 \rangle_\rho \leq \langle f_\rho - f_1, f - f_1 \rangle_\rho.
\]

As the cosine is decreasing function over \([0, \pi]\), it follows that \(\angle f_\rho f_1 f \geq \angle f_\rho f f_1 \) and \(\angle f_\rho f_2 f \geq \angle f_\rho f f_2 \) for all \(f \in s \). Hence, if \(f_1 \neq f_2 \) then the angles \(\angle f_\rho f_1 f \) and \(\angle f_\rho f_2 f \) are obtuse. As there does not exist a triangle with two obtuse angles, this is impossible and \(f_1 = f_2 \).

Proposition A.3. [Cucker and Smale, 9] Let \(f_1, f_2 \in \mathcal{C}(X), M \in \mathbb{R}_+, \) and \(|f_i(x) - y| \leq M \) on a set \(U \subset Z \) of full measure for \(i = 1, 2 \). Then for all \(z \in U^m \) functions \(E_\rho, E_\tau \) are Lipschitz continuous on the metric space \(\mathcal{C}(X) \).

Proof. We have that
\[
\left| (f_1(x) - y)^2 - (f_2(x) - y)^2 \right| = |f_1(x) - f_2(x)||f_1(x) - y + f_2(x) - y| \leq 2M \|f_1 - f_2\|_\infty
\]
and the claim follows from this inequality.
Definition A.4. The space is called centralizable if in it, for any open set \(U \) of diameter \(2d \), there exists a point \(x_0 \) from which any point \(x \) is at a distance no greater than \(d \).

Theorem A.4. [Kolmogorov and Tikhomirov, 21] Let \(S \) be a connected totally bounded set which is contained in a centralizable space and let \(\text{Lip}_1(S) \) be a set of bounded 1-Lipschitz continuous functions on \(S \). If all functions from \(\text{Lip}_1(S) \) are bounded by a constant \(C > 0 \), then it holds

\[
\mathcal{N}(\text{Lip}_1(S), \epsilon, \|\cdot\|_\infty) \leq 2^{\mathcal{N}(S, \frac{\epsilon}{2}, \|\cdot\|_2) \left(2 \left\lceil \frac{2C}{\epsilon} \right\rceil + 1 \right)}.
\]

Proof. As the set \(S \) is totally bounded, then for all \(\epsilon > 0 \) there exists a finite \(\epsilon \)-cover of \(S \). Let \(\{ U_i \}_{i=1}^N \) denote the \(\frac{\epsilon}{2} \)-cover of the set \(S \) and let \(x_i \) be the center of the set \(U_i \). Let \(f \in \text{Lip}_1(S) \) and \(\hat{f} \) be an approximation of \(f \). Define \(\hat{f} \) over the set \(U_i \) as the number \(\left\lceil \frac{2f(x_i)}{\epsilon} \right\rceil \frac{\epsilon}{2} \). Then, for all \(x \in U_i \)

\[
\left| f(x) - \hat{f}(x) \right| = \left| f(x) - \hat{f}(x_i) \right| \leq \left| f(x) - f(x_i) \right| + \frac{\epsilon}{2} \leq \epsilon.
\]

Setting \(x = x_1 \) we see that \(\left| f(x_1) - \hat{f}(x_1) \right| \leq \frac{\epsilon}{2} \).

On the other hand, for the center of the set \(U_i \) that is adjacent to \(U_1 \), \(U_i \cap U_1 \neq \emptyset \), it holds

\[
\left| f(x_i) - \hat{f}(x_i) \right| \leq \left| f(x_i) - f(x_1) \right| + \left| f(x_1) - \hat{f}(x) \right| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

This means that knowing the value at the center of \(U_i \) with precision \(\frac{\epsilon}{2} \) suffices to approximate with precision \(\epsilon \) the value at the centers of neighboring sets in the cover. From here it follows that by taking \(\hat{f}(x) = \hat{f}(x_i) \pm \frac{\epsilon}{2} \) for all \(x \in U_i \), such that \(U_1 \) and \(U_i \) are adjacent, we can approximate \(\left| f(x_i) - \hat{f}(x_i) \right| \) with precision \(\frac{\epsilon}{2} \). As the space \(S \) is connected it is possible to connect any two non-adjacent sets \(U_i \) and \(U_j \) by a sequence of intersecting sets \(U_k \). Hence, we can construct the entire functional \(\hat{f} \) in this way and approximate the function \(f \) such that \(\| f - \hat{f} \|_\infty \leq \epsilon \).

Now, covering the range of these functions, \([-C, C]\), with \(\epsilon \)-intervals we see that it is sufficient to take \(2 \left\lceil \frac{2C}{\epsilon} \right\rceil + 1 \) numbers as the center-values at \(x_1 \). For each of the sets in the \(\frac{\epsilon}{2} \)-cover we have two choices and thus the \(\epsilon \)-covering number of \(\text{Lip}_1(S) \) is not greater than \(2^{\mathcal{N}(S, \frac{\epsilon}{2}, \|\cdot\|_2) \left(2 \left\lceil \frac{2C}{\epsilon} \right\rceil + 1 \right)} \).

Theorem A.5. [Cucker and Smale, 9] Let \(K \) be a compact and convex subset of \(C(X) \) and let \(M > 0 \) be a finite constant such that for all \(f \in K \), \(|f(x) - y| \leq M \) almost everywhere. Then, for all \(\epsilon > 0 \),

\[
\mathbb{P}_{x \in Z^m} \{ \mathcal{E}_\rho(f_x) - \mathcal{E}_\rho(f_K) \leq \epsilon \} \geq 1 - 2 \mathcal{N}(K, \frac{\epsilon}{24M}, \|\cdot\|_\infty) \exp \left(-\frac{me}{288M^2} \right),
\]

where \(f_x \) and \(f_K \) are the minimizers of \(\mathcal{E}_\rho \) and \(\mathcal{E}_\rho \) over \(K \).

On the other hand, for the approximation over a compact space only, the following theorem holds.

Theorem A.6. [Cucker and Smale, 9] Let \(K \) be a compact subset of \(C(X) \) and let \(M > 0 \) be a finite constant such that, for all \(f \in K \), \(|f(x) - y| \leq M \) almost everywhere. Then, for all \(\epsilon > 0 \),

\[
\mathbb{P}_{x \in Z^m} \left[\sup_{f \in K} \| \mathcal{E}_\rho(f) - \mathcal{E}_\rho(f) \|_\infty \leq \epsilon \right] \geq 1 - 2 \mathcal{N}(K, \frac{\epsilon}{8M}, \|\cdot\|_\infty) \exp \left(-\frac{me^2}{4(2\sigma^2 + \frac{\epsilon}{3}M^2\epsilon)} \right),
\]

where \(\sigma^2 = \text{Var}_{x \in K} \left[(f(x) - y)^2 \right] \).

Proposition A.7. [Carl and Stephani, 8] Let \(\mathbb{E} \) be a finite dimensional Banach space and let \(B_R \) be the ball of radius \(R \) centered at the origin. Then, for \(d = \text{dim}(\mathbb{E}) \)

\[
\mathcal{N}(B_R, \epsilon, \|\cdot\|) \leq \left(\frac{4R}{\epsilon} \right)^d.
\]
B Proofs

Theorem 1. Let \mathcal{H}_k be a reproducing kernel Hilbert space corresponding to a continuous shift-invariant and positive definite kernel k defined on a compact set X. Let μ be the positive and bounded spectral measure whose Fourier transform is the kernel k. For any probability measure ρ defined on X, it is possible to approximate any bounded function $f \in \mathcal{H}_k$ using a convex combination of n ridge-wave functions from \mathcal{F}_{cos} such that the approximation error in $\| \cdot \|_{\rho}$ decays with rate $O(1/\sqrt{n})$.

Proof. Let $f \in \mathcal{H}_k$ be any bounded function. From the definition of \mathcal{H}_k it follows that the set $\mathcal{H}_0 = \text{span}\{k(x, \cdot) \mid x \in X\}$ is a dense subset of \mathcal{H}_k. In other words, for every $\epsilon > 0$ there is a bounded function $g \in \mathcal{H}_0$ such that $\|f - g\|_{\mathcal{H}_k} < \epsilon$.

As feature functions $k(x, \cdot)$ are continuous and defined on the compact set X, they are also bounded. Thus, we can assume that there exists a constant $B > 0$ such that $\sup_{x,y \in X} |k(x,y)| < B$. From here it follows

$$\|f - g\|_{\infty} = \sup_{x \in X} |(f - g, k(x, \cdot))_{\mathcal{H}_k}| \leq \sqrt{B} \|f - g\|_{\mathcal{H}_k}.$$

This means that convergence in $\| \cdot \|_{\mathcal{H}_k}$ implies the uniform convergence. The uniform convergence, on the other hand, implies the convergence in $L^2(\rho)$ norm, i.e., for any probability measure ρ on the set X, for any $\epsilon > 0$, and for any $f \in \mathcal{H}_k$ there exists $g \in \mathcal{H}_0$ such that

$$\|f - g\|_{\rho} < \epsilon. \quad (1)$$

The function g is by definition a finite linear combination of feature functions $k(x, \cdot)$ [see, e.g., Chapter 1 in 6] and by Theorem A.1 it can be written as

$$g(x) = \sum_{i=1}^{l} \alpha_i k(x_i, x) = 2 \int \left(\sum_{i=1}^{l} \alpha_i \cos(w^\top x_i + b) \right) \cos(w^\top x + b) \, d\tilde{\mu}(w, b)$$

$$= 2\mu(0) \int u(w, b) \cos(w^\top x + b) \, d\tilde{\mu}(w, b),$$

where $\tilde{\mu}$ is a probability measure on $\mathbb{R}^d \times [-\pi, \pi]$, $u(w, b) = \sum_{i=1}^{l} \alpha_i \cos(w^\top x_i + b)$, and $\int d\tilde{\mu}(w, b) = \mu(0) < \infty$. From the boundedness of g, it follows that the function u is bounded for all w and b from the support of $\tilde{\mu}$, i.e., $|u(w, b)| \leq \sum_{i=1}^{l} |\alpha_i| < \infty$. Denoting with $\gamma(w, b) = 2\mu(0) u(w, b)$, we see that it is sufficient to prove that

$$\mathbb{E}_{\tilde{\mu}(w, b)}[\gamma(w, b) \cos(w^\top x + b)] \in \text{co}(\mathcal{F}_{\text{cos}}),$$

where the closure is taken with respect to the norm in $L^2(\rho)(X)$. In particular, for a sample $(w, b) = \{(w_i, b_i)\}_{i=1}^{s}$ drawn independently from $\tilde{\mu}$ we have

$$\mathbb{E}_{(w, b)} \left[\left(g(x) - \frac{1}{s} \sum_{i=1}^{s} \gamma(w_i, b_i) \cos(w_i^\top x + b_i) \right)^2 \, d\rho \right] =$$

$$\frac{1}{s^2} \int \mathbb{E}_{(w, b)} \left[\left(\sum_{i=1}^{s} \gamma(w_i, b_i) \cos(w_i^\top x + b_i) \right)^2 \right] \, d\rho =$$

$$\frac{1}{s^2} \int \mathbb{E}_{(w, b)} \left[\left(\sum_{i=1}^{s} \xi(x; w_i, b_i) \right)^2 \right] \, d\rho = \frac{1}{s} \int \mathbb{E}_{\tilde{\mu}}[\xi(x; w, b)^2] \, d\rho =$$

$$\frac{1}{s} \int \text{Var}_{\tilde{\mu}}[g(x) - \gamma(w, b) \cos(w^\top x + b)] \, d\rho = \frac{1}{s} \int \text{Var}_{\tilde{\mu}}[\gamma(w, b) \cos(w^\top x + b)] \, d\rho.$$

Note that the third equation follows from the fact that $\xi(x; w_i, b_i)$ are independent and identically distributed random variables and $\mathbb{E}[\xi(x; w_i, b_i) \xi(x; w_j, b_j)] = 0$. As established earlier, coefficients $\gamma(w, b)$ are bounded and, therefore, random variable $\eta_{x}(w, b) = \gamma(w, b) \cos(w^\top x + b)$ is
Moreover, the elements of this hypothesis space are Lipschitz continuous functions.

As the equality is attained for \(v \parallel g - g_s \parallel_\rho \), we get

\[
\mathbb{E}_{g_s} \left[\| g - g_s \|_\rho^2 \right] \leq \frac{D^2}{s}.
\]

(2)

As the expected value of the norm \(\| g - g_s \|_\rho \) is bounded by a constant, it follows that there exists a function \(g_s \) which can be represented as a convex combination of \(s \) ridge-wave functions from \(\mathcal{F}_{\cos} \) and for which it holds \(\| g - g_s \|_\rho \in O \left(\frac{1}{\sqrt{s}} \right) \). Moreover, there exists a sequence of functions \(\{ g_n \}_{n \geq 1} \) converging to \(g \) in \(\| \cdot \|_\rho \) such that each \(g_n \) is a convex combination of \(n \) elements from \(\mathcal{F}_{\cos} \) and \(\| g - g_n \|_\rho \in O \left(\frac{1}{\sqrt{n}} \right) \).

Hence, we have proved that \(g \in \text{co} (\mathcal{F}_{\cos}) \), where the closure is taken with respect to \(\| \cdot \|_\rho \). It is then possible to approximate any bounded function \(f \in \mathcal{H}_k \) using a convex combination of \(n \) ridge-wave functions from \(\mathcal{F}_{\cos} \) with the rate \(O \left(\frac{1}{\sqrt{n}} \right) \), i.e., for all \(n \in \mathbb{N} \)

\[
\| f - g_n \|_\rho \leq \| f - g \|_\rho + \| g - g_n \|_\rho \in O \left(\frac{1}{\sqrt{n}} \right).
\]

\(\square \)

Proposition 2. For any Hilbert space the modulus of smoothness is equal to \(\tau (r) = \sqrt{1 + r^2} - 1 \).

Proof. Expanding norms using the dot product we get

\[
2 (\tau (r) + 1) = \sup_{\| f \| = \| g \| = 1} (\sqrt{1 + r^2 + 2r \langle f, g \rangle} + \sqrt{1 + r^2 - 2r \langle f, g \rangle})
\]

Denoting with \(u = 1 + r^2 \) and \(v = 2r \langle f, g \rangle \) and using the inequality between arithmetic and quadratic mean we get

\[
\sqrt{u + v} + \sqrt{u - v} \leq 2 \sqrt{\frac{u + v + u - v}{2}} = 2 \sqrt{u}.
\]

As the equality is attained for \(v = 0 \) it follows that the modulus of smoothness of a Hilbert space is given by

\[
\tau (r) = \sqrt{1 + r^2} - 1.
\]

\(\square \)

Corollary 4. Let \(\{ f_n \}_{n \geq 1} \subset \text{co} (\mathcal{F}_\Theta) \) be an \(\epsilon \)-greedy incremental sequence of functions constructed according to the procedure described in Theorem 3 with respect to a function \(f \in \text{co} (\mathcal{F}_\Theta) \). Then, it holds

\[
\| f_n - f \|_\rho \leq \frac{(K + r)\sqrt{2 \log_2 n / 2n}}{\sqrt{n}}.
\]

Proof. As \(L^2_p (X) \) is a Hilbert space, it follows from Proposition 2 that the modulus of smoothness of this space is \(\tau (r) = \sqrt{1 + r^2} - 1 \). While it is straightforward to show that \(\sqrt{1 + r^2} \leq 1 + r \) for \(r \in \mathbb{R}_0^+ \), this bound is not tight enough as \(r \to 0 \). A tighter upper bound for this modulus of smoothness can be derived from the inequality \(\sqrt{1 + r^2} \leq 1 + \frac{r^2}{2} \). To see that this is a better bound for the case when \(r \to 0 \), it is sufficient to check that \(1 + \frac{r^2}{2} \leq 1 + r \) for all \(0 \leq r \leq 2 \).

Hence, all conditions of Theorem 3 are satisfied and the claim follows by taking \(t = 2 \) and \(\gamma = \frac{1}{2} \). \(\square \)

Proposition 5. The hypothesis space \(\mathcal{F} \) is a convex and compact subset of the metric space \(\mathcal{C}(X) \). Moreover, the elements of this hypothesis space are Lipschitz continuous functions.

Proof. Let \(f, g \in \mathcal{F} \). As the hypothesis space \(\mathcal{F} \) is the closure of the convex hull, \(\text{co} (\mathcal{F}_\Theta) \), it follows that there are sequences of functions \(\{ f_n \}_{n \geq 1}, \{ g_n \}_{n \geq 1} \in \text{co} (\mathcal{F}_\Theta) \) such that for every \(\epsilon > 0 \) and
sufficiently large \(n \) it holds \(\| f - f_n \|_\infty < \epsilon \) and \(\| g - g_n \|_\infty < \epsilon \). Then, for a convex combination of functions \(f \) and \(g \) and sufficiently large \(n \) we have
\[
\| \alpha f + (1 - \alpha) g - \alpha f_n + (1 - \alpha) g_n \|_\infty \leq \alpha \| f - f_n \|_\infty + (1 - \alpha) \| g - g_n \|_\infty < \epsilon.
\]
From here it follows that for every \(0 \leq \alpha \leq 1 \) and \(f, g \in \mathcal{F} \) it holds \(\alpha f + (1 - \alpha) g \in \mathcal{F} \). Thus, we have showed that the hypothesis space \(\mathcal{F} \) is a convex set.

As a convex combination of Lipschitz continuous functions is again a Lipschitz continuous function, we have that all functions \(f \in \text{co}(\mathcal{F}_\phi) \) are Lipschitz continuous. It remains to prove that all functions from the closure are Lipschitz continuous, as well. Let \(f \) and \(\{ f_n \}_{n \geq 1} \) be defined as above and let \(\Lambda \) be the Lipschitz constant of the function \(\phi \). We have that it holds
\[
\left| f(x) - f(y) \right| \leq \frac{1}{2} \left(| f(x) - f_n(x) | + | f_n(x) - f_n(y) | + | f_n(y) - f(y) | \right) < 2 \left(\| f - f_n \|_\infty + rL \right) \| x - y \|.
\]
Taking the limit of both sides as \(n \to \infty \), we deduce that function \(f \) is Lipschitz continuous with a Lipschitz constant bounded by \(rL \).

Depending on the choice of the basis function \(\phi \), the hypothesis space can be a space of infinite dimension and the fact that it is bounded and complete does not imply that it is compact, as well. The metric space \((\mathcal{F}, \| \cdot \|_\infty) \) is compact if and only if it is complete and totally bounded [27], i.e., for all \(\epsilon > 0 \) there exists a finite \(\epsilon \)-net of \(\mathcal{F} \). As the hypothesis space \(\mathcal{F} \) is complete by definition, it is sufficient to show that for all \(\epsilon > 0 \) there exists a finite \(\epsilon \)-net of \(\mathcal{F} \) in \(C(X) \). The set \(X \) is a compact subset of finite dimensional Euclidean space and as such it is totally bounded and contained in a centralizable space (see Definition A.4 for details). Then, from Theorem A.4 it follows that
\[
\mathcal{N}(\text{Lip}_1(X), \epsilon, \| \cdot \|_\infty) \leq 2^{\mathcal{N}(X, \frac{1}{2}, \| \cdot \|_2)} \left(\frac{2C}{\epsilon} + 1 \right),
\]
where \(\text{Lip}_1(X) \) denotes the set of 1-Lipschitz functions defined on a set \(X \), \(\mathcal{N}(X, \epsilon, \| \cdot \|) \) denotes the minimal number of points in an \(\epsilon \)-net of the set \(X \) with respect to the metric \(\| \cdot \| \), and \(C > 0 \) is the upper bound on all functions in \(\text{Lip}_1(X) \). This result allows us to bound the covering number of the space of Lipschitz continuous functions on the compact set \(X \). Namely, from the assumptions about \(\mathcal{F} \) we conclude that all functions in \(\mathcal{F} \) have Lipschitz constant bounded by \(L_F = rL_\phi \), where \(L_\phi \) denotes the Lipschitz constant of the function \(\phi \). Then, the upper bound on the covering number of the space \(\text{Lip}_{L,F}(X) \) is given by
\[
2^{\mathcal{N}(X, \frac{1}{2rL,F} \| \cdot \|_2)} \left(\frac{2r}{\epsilon} + 1 \right).
\]
Since \(\mathcal{F} \subset \text{Lip}_{L,F}(X) \) and \(\mathcal{N}(\text{Lip}_{L,F}(X), \epsilon, \| \cdot \|_\infty) \) is finite, the result follows.

Theorem 6. Let \(M > 0 \) such that, for all \(f \in \mathcal{F} \), \(| f(x) - y | \leq M \) almost surely. Then, for all \(\epsilon > 0 \)
\[
P(\mathcal{E}_\rho(f_x) - \mathcal{E}_\rho(f^*) \leq \epsilon) \geq 1 - \mathcal{N}(\mathcal{F}, \epsilon/24M, \| \cdot \|_\infty) \exp \left(-\frac{\epsilon M}{288M^2} \right),
\]
where \(f_x \) and \(f^* \) are the minimizers of \(\mathcal{E}_\rho \) and \(\mathcal{E}_\rho \) on the set \(\mathcal{F}, z \in Z^m \), and \(\mathcal{N}(\mathcal{F}, \epsilon, \| \cdot \|_\infty) \) denotes the \(\epsilon \)-covering number of \(\mathcal{F} \) w.r.t. \(C(X) \).

Proof. The claim follows from Proposition 5 and Theorem A.5.

Corollary 7. For all \(\epsilon > 0 \) and all \(\delta > 0 \), with probability \(1 - \delta \), a minimizer of the empirical squared error on the hypothesis space \(\mathcal{F} \) is \((\epsilon, \delta) \)-consistent when the number of samples \(m \) is
\[
\Omega \left(\frac{1}{\epsilon^2} \left(R^2 + \frac{1}{2} \ln \frac{1}{\delta} \right) \right).
\]
Here, \(R \) is the radius of a ball containing the set of instances \(X \) in its interior, \(L_\phi \) is the Lipschitz constant of a function \(\phi \), and \(r, s, \) and \(t \) are hyperparameters of \(\mathcal{F}_\phi \).

Proof. To derive a sample complexity bound from the corollary we need a tighter bound on the covering number of our hypothesis space than the one provided in Proposition 5. We first give one such bound and then prove the corollary.

The set of instances \(X \) is a compact subset of Euclidean space and we can, without the loss of generality, assume that there exists a ball of radius \(R \) centered at the origin and containing the set \(X \)
in its interior. From the definition of the hypothesis space \(F \) we see that the argument of the ridge function \(\phi \) is bounded, i.e.,

\[
|\langle w, x \rangle + b| \leq \|w\| \|x\| + t \leq Rs + t.
\]

From here we conclude that the hypothesis space \(F \) is a subset of the space of 1-dimensional Lipschitz continuous functions on the compact interval \([- (Rs + t), Rs + t]\). Then, the covering number of \(F \) is upper bounded by the covering number of the space of \(L^\infty \)-Lipschitz continuous one dimensional functions defined on the segment \([- (Rs + t), Rs + t]\).

From Proposition A.7 it follows that the \(\epsilon \)-covering number of the segment \([- (Rs + t), Rs + t]\) is upper bounded by \(\frac{4(Rs + t)}{\epsilon} \). This, together with Theorem A.4 implies that the upper bound on the \(\epsilon \)-covering number of the hypothesis space \(F \) is given by

\[
N(F, \epsilon, \|\cdot\|_\infty) \leq 2 \frac{8r(Rs + t)M\phi}{\epsilon} \left(2 \left\lceil \frac{2r}{\epsilon} \right\rceil + 1 \right),
\]

(3)

On the other hand, from Theorem 6 we get that for all \(\delta > 0 \) with probability \(1 - \delta \) the empirical estimator is \((\epsilon, \delta)\)-consistent when

\[
2^\frac{192r(Rs + t)ML\phi}{\epsilon} \left(2 \left\lceil \frac{48Mr}{\epsilon} \right\rceil + 1 \right) \exp \left(-\frac{m\epsilon}{288M^2} \right) \leq \delta, \text{ or} \]

\[
\frac{192r(Rs + t)ML\phi}{\epsilon} \ln 2 + \ln \left(2 \left\lceil \frac{48Mr}{\epsilon} \right\rceil + 1 \right) \leq \frac{m\epsilon}{288M^2} - \frac{\ln 1}{\delta}.
\]

Hence, for all \(\epsilon, \delta > 0 \) and

\[
m \geq \frac{288M^2}{\epsilon} \left[\frac{192r (Rs + t) ML\phi}{\epsilon} \ln 2 + \ln \left(2 \left\lceil \frac{48Mr}{\epsilon} \right\rceil + 1 \right) + \frac{\ln 1}{\delta} \right]
\]

(4)

with probability \(1 - \delta \) the empirical estimator is \((\epsilon, \delta)\)-consistent.

Remark 1. The concentration inequality is tighter by a factor of \(\frac{1}{\epsilon^2} \) for convex and compact compared to compact only hypothesis spaces. For instance, this can be seen by comparing the bounds from Theorems A.5 and A.6. In our case with convex and compact hypothesis space \(F \), the final sample complexity bound is still \(\Omega \left(\frac{1}{\epsilon^2}\right) \) due to the \(\frac{1}{\epsilon} \) factor coming from the \(\epsilon \)-covering number of \(F \).

Remark 2. A detailed study of the approximation properties of ridge functions in high dimensional Euclidean spaces is out of the scope for this paper (e.g., Mayer et al. [24] provide one such study).
C Implementation Details

In this appendix, we provide implementation details for all the considered algorithms – greedy feature construction, á la carte method [31], and random Fourier features approach [26]. As already stated in Section 2.5, the corresponding linear ridge regression optimization problems are solved by casting them as hyperparameter optimization problems [20]. To be as objective as possible to the best performing competing method [31], we have followed the experimental setting outlined there and optimized the hyperparameters with the L-BFGS-B solver from SciPy.

C.1 Greedy Feature Construction

We have implemented a distributed version of Algorithm 2 using a python package mpi4py. For the experiments with 100 spectral features the algorithm is simulated using 5 cores on a single physical machine – each core corresponds to one instance of greedy functional descent. The remaining parameters are: the number of data passes \(T = 1 \), the maximum number of greedy descent steps \(p = 20 \), precision parameter \(\epsilon = 0.01 \) that stops the greedy descent when the successive improvement in the accuracy is less than 1\%, and feature cut-off \(\eta \) that is set to 0.0001\% of the range of the output variable. For the experiments with 500 spectral features the algorithm is simulated using 5 physical machines. To communicate features more efficiently 5 cores on each of the physical machines is used giving the total number of 25 cores corresponding to 25 instances of greedy functional descent. The remaining parameters for this setting are identical to the ones used in the experiments with 100 features. As the greedy functional descent is stopped when the successive improvement in the accuracy is below 1\%, the approach terminates sooner than the alternative approaches (w.r.t. the number of constructed features) for simple hypotheses (see Appendix D). In contrast to á la carte [31], we did not engineer a heuristic for the initial solution of the hyper-parameter optimization problem. Instead, we have initialized the spectral features by sampling from the standard normal distribution and dividing the entries of the sampled vector with the square root of its dimension.

Having specified the parameter settings for Algorithm 2, we proceed to a discussion regarding the regularization term from the optimization problem defined at line 3 of Algorithm 1. The section concludes with hyperparameter gradients for the cosine-wave feature space introduced in Section 2.2.

Regularization. It is frequently the case that generalization properties and the capacity of a hypothesis space are controlled by penalizing the objective function with the squared \(l_2 \) norm of a parameter vector. For instance, this is the case for the majority of standard activation functions in neural networks literature. The reason behind this choice of the regularizer lies in the fact that these activation functions are monotone and the variation of any such basis function corresponds with the variation in its ridge argument. Assuming that the data is centered, the variation of the ridge argument can be expressed as

\[
\int w^\top x x^\top w \rho(x) = w^\top \left(\int x x^\top \rho(x) \right) w = \|w\|^2.
\]

However, if we opt for cosine ridge functions as in Sections 2.2 and 3, then it is not straightforward to relate the smoothness of the basis function to its argument (considered over a given finite sample of the data). Namely, cosine is a periodic function and while spectral parameters with large norms can cause significant variation in the ridge argument, this does not necessarily imply a large variation of the basis function over a finite sample. It is also possible for a parameter vector with the smaller norm to cause more variation in the basis function over a finite sample than the one with the larger norm. We, therefore, opt to regularize the spectrum of the cosine ridge function by penalizing the objective with its squared \(\mathcal{L}_2^2 (X) \) norm. Before we give the regularization term, we first note that the bias term from the cosine-wave features can be eliminated using the trigonometric additive formulas and then the cosine-wave basis function takes the form

\[
\phi_{w,a} (x) = a_1 \sin (w^\top x) + a_2 \cos (w^\top x).
\]

Now, taking the squared \(\mathcal{L}_2^2 (X) \) norm of this function we get

\[
\|\phi_{w,a}\|_\rho^2 = a_1^2 \int \sin^2 (w^\top x) \rho(x) + a_2^2 \int \cos^2 (w^\top x) \rho(x) + a_1 a_2 \int \sin (2w^\top x) \rho(x) = \frac{a_1^2 + a_2^2}{2} + \frac{a_2^2 - a_1^2}{2} \int \cos (2r) \mu_w (r) + a_1 a_2 \int \sin (2r) \mu_w (r),
\]

where \(\mu_w \) denotes the Fourier spectrum of \(\phi_{w,a} \), and the integral is with respect to the measure \(\mu_w \) induced from the cosine-wave feature space introduced in Section 2.2.
where \(\mu_w (r) = \int \rho (x \mid w^\top x = r) \). If we assume that the probability measure \(\rho \) is symmetric, then we have that \(\mu_w (r) = \mu_w (-r) \) and using the fact that \(\sin (2r) \) is an odd function, we obtain \(\int \sin (2w^\top x) \rho (x) = 0 \). In the absence of the marginal distribution \(\rho \), the integral \(\int \cos (2r) \mu_w (r) \) can be estimated from the training sample with \(\frac{1}{m} \sum_{i=1}^{m} \cos (2w^\top x_i) \), where \(x_i \) are i.i.d. or \(\rho (x) \).

Hyper-parameter optimization. We now formulate the optimization problem (line 3, Algorithm 1) for the setting with cosine-wave features and provide the gradients for all the hyperparameters. The optimization problem can be specified as

\[
\min \quad \frac{1}{m} \sum_{i=1}^{m} \left(\sigma_0 + \sigma_1 \frac{1}{2} \sum_{i=1}^{m} \sin \left(w^\top x_i \right) \right)^2 + \\
\lambda \left(\frac{c_0}{m} \sum_{i=1}^{m} f_{0, i}^2 + \frac{c_1 + c_2}{2} + \frac{c_2 - c_1}{2m} \sum_{i=1}^{m} \cos \left(2w^\top x_i \right) \right) + \\
\sum_{i=1}^{m} \cos \left(2w^\top x_i \right) f_{0, i} + \frac{1}{m} \sum_{i=1}^{m} \sin \left(2w^\top x_i \right)
\]

where \(w \) and \(\lambda \) are optimized as hyperparameters and amplitude vector \(c \) as a regressor. As the \(\lambda \) is completely determined by the choice of \(\lambda \), it is sufficient to optimize this problem only by the hyperparameters \(w \) and \(\lambda \). We want to choose these parameters via \(k \)-fold cross-validation and in order to achieve this we follow the procedure proposed by Keerthi et al. [20]. Let us denote the above described 3-dimensional feature representation of the data with \(Z_w \in \mathbb{R}^{m \times 3} \) and set \(\sigma_0 = \frac{1}{m} \sum_{i=1}^{m} f_{0, i}^2, \sigma_1 = \frac{1}{m} \sum_{i=1}^{m} \sin \left(w^\top x_i \right), \sigma_2 = \frac{1}{m} \sum_{i=1}^{m} \cos \left(w^\top x_i \right), \sigma_3 = \frac{1}{m} \sum_{i=1}^{m} \cos \left(2w^\top x_i \right) \). Now, in the place of the identity matrix in the derivative of the ridge regression objective function we have the matrix

\[
D = \begin{bmatrix}
\sigma_0 & \sigma_1 & \sigma_2 \\
\sigma_1 & 0.5 \left(1 - \sigma_4\right) & 0.5\sigma_3 \\
\sigma_2 & 0.5\sigma_3 & 0.5 \left(1 + \sigma_4\right)
\end{bmatrix}
\]

At this point our derivation follows closely the derivation by Keerthi et al. [20]. Taking the derivatives with respect to \(c \) and setting the gradient of the loss to zero we get

\[
Z_w^\top Z_w c - Z_w^\top y + m\lambda D c = 0,
\]

\[
\left(Z_w^\top Z_w + m\lambda D\right) c = Z_w^\top y.
\]

Let us now denote with \(P = Z_w^\top Z_w + m\lambda D, \quad q = Z_w^\top y, \) and \(\theta = (w, \lambda) \). We note here that \(P \) and \(q \) are defined over the training instances \(x \) and their labels \(y \). We now take the implicit derivative of this equation to obtain the derivative of the regressor \(c \) with respect to the hyperparameters, i.e.,

\[
\frac{\partial c}{\partial \theta} = P^{-1} \left(\frac{\partial q}{\partial \theta} - \frac{\partial P}{\partial \theta} c \right).
\]

As already stated, the choice of \(\lambda \) directly determines the coefficients \(c \) and to obtain these we need to perform the hyperparameter selection which is done over the validation samples. In other words,

\[
\theta^* = \arg \min_{\theta} \frac{1}{k} \sum_{i=1}^{k} \frac{1}{|F_i|} \sum_{(x, y) \in F_i} \left(c^\top z_w (x) - y\right)^2,
\]

where \(F_i \) denotes one of \(k \) validation folds in the \(k \)-fold cross-validation and \(z_w (x) \) is the 3-dimensional representation of an instance \(x \in X \). Let us now consider only the sample from one validation fold and denote it with \(F \). At the same time let \(F^c \) denotes its complement or the training sample when \(F \) is used as the validation fold. Here, we note that \((x, y) \in F \) are different from samples participating in the definitions of \(P \) and \(q \) when taking \(F \) as the validation fold. Taking derivatives with respect to \(\theta \) we get the hyperparameter gradient

\[
\frac{2}{|F|} \sum_{(x, y) \in F} \left(c^\top z_w (x) - y\right) \left(\frac{\partial z_w (x)}{\partial \theta} c + z_w (x) P^{-1} \left(\frac{\partial q}{\partial \theta} - \frac{\partial P}{\partial \theta} c \right) \right).
\]
Let us introduce a vector \(t = (t_0, t_1, t_2) \) as a solution to the following 3-dimensional linear system

\[
Pt = \frac{1}{|F|} \sum_{(x,y) \in F} \left(c^\top z_w(x) - y \right) z_w(x).
\]

We then write the derivative of each term in the hyperparameter gradient separately as

\[
\frac{\partial}{\partial w} (c^\top z_w(x)) = (c_1 \cos (w^\top x) - c_2 \sin (w^\top x)) x
\]

\[
\frac{\partial}{\partial w} (t^\top q) = \sum_{(x,y) \in F^c} (t_1 \cos (w^\top x) - t_2 \sin (w^\top x)) xy
\]

\[
\frac{\partial}{\partial w} (t^\top Pc) = (1 + \lambda) (t_0 c_1 + t_1 c_0) \sum_{i=1}^{|F^c|} f_{0,i} \cos (w^\top x_i) x_i -
\]

\[
(1 + \lambda) (t_0 c_2 + t_2 c_0) \sum_{i=1}^{|F^c|} f_{0,i} \sin (w^\top x_i) x_i + (1 + \lambda) (t_1 c_2 + t_2 c_1) \sum_{x \in F^c} \cos (2w^\top x) x +
\]

\[
(1 + \lambda) (t_1 c_1 - t_2 c_2) \sum_{x \in F^c} \sin (2w^\top x) x
\]

\[
\frac{\partial}{\partial \lambda} = m \, t^\top D c
\]

Performing the gradient descent using these hyperparameter gradients we obtain both the spectrum \(w \) and the amplitudes \(c \). The spectrum regularization term which is defined using the empirical estimates of the sine and cosine integrals affects the gradient with respect to \(w \) via the \(\lambda \) factor in the third expression. In our experiments, we have observed that the capacity parameter \(\lambda \) usually takes the value below \(10^{-4} \). Thus, the influence of the spectrum regularization term is less significant than the amplitude regularization term. For this reason, in our implementation we only penalize the empirical squared error objective with the squared norm of the amplitude vector, i.e., \(\Omega (c, w) = \| c \|^2_2 \).

C.2 Random Fourier features

As already pointed out in Theorem A.1 and Appendix A, any shift-invariant positive definite kernel can be represented as a Fourier transform of a positive measure. Thus, in order to generate a kernel feature map it is sufficient to sample spectral frequencies from this measure. Genton [17] and Rahimi and Recht [26] have provided the parameterized spectral density functions corresponding to Gaussian, Laplace, and Cauchy kernels. We use these parameterizations to generate spectral features and then train a linear ridge regression model in the constructed feature space. To choose the most suitable parameterization, we cross-validate 10 parameters from the log-space of \([-3, 2]\).

C.3 A la carte

The random Fourier features approach [26] is an efficient method for the approximation of functions from shift-invariant reproducing kernel Hilbert spaces. However, this method requires an \textit{a priori} specification of a suitable spectral measure which is often not feasible. To address this shortcoming, Yang et al. [31] estimate a data-dependent spectral distribution using a mixture of Gaussians and represent the regression estimator as

\[
f(x) = \sum_{j=1}^n \alpha_j \sin (w_j^\top x) + \alpha_j' \cos (w_j^\top x),
\]

where \(n \) denotes the number of spectral features, and

\[
w \sim \sum_{k=1}^Q \frac{\gamma_k}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp \left(-\frac{(x - \mu_k)^\top \Sigma_k^{-1} (x - \mu_k)}{2} \right)
\]
with Σ_k diagonal, $\gamma \geq 0$, and $\sum_{k=1}^Q \gamma_k = 1$. The proposed algorithm finds a feature representation together with a linear model by optimizing the marginal likelihood of a Gaussian process. As we have chosen to compare all the feature construction approaches using the standard linear regression, we provide an equivalent implementation of this approach based on the hyper-parameter optimization method proposed by Keerthi et al. [20]. To make the comparison as objective as possible, we have parallelized the implementation of this algorithm and simulated it by following the ARD-heuristic for choosing the initial solution [31, Supplementary material]. In all the experimental settings (with 100 and 500 features), we have run this algorithm using $Q = 1, Q = 2,$ and $Q = 5$ mixture components.

Optimization problem. We first give the optimization objective for the non-Gaussian process case,

\[
\min_{} \frac{1}{m} \sum_{i=1}^{m} \left[\sum_{q=1}^{Q} \nu_q^2 \sum_{j=1}^{s} \alpha_{qj} \sin \left(u_{qj} \Sigma_q^{1/2} x_i + \mu_q^T x_i \right) + \beta_{qj} \cos \left(u_{qj} \Sigma_q^{1/2} x_i + \mu_q^T x_i \right) - y_i \right]^2 + \\
\lambda \left(\| \alpha \|^2 + \| \beta \|^2 \right),
\]

where α and β are optimized as regressors and μ_q, Σ_q (diagonal covariance matrix), and λ as hyper-parameters. The u-vectors are random vectors sampled from the multivariate standard normal distribution. These vectors act as a regularization term on the spectrum of the cosine features forcing the frequencies to stay in the pre-specified number of clusters/components.

Hyper-parameter optimization. Let us denote $\Sigma_q^{1/2}$ with D_q, parameterized features with $Z_\theta \in \mathbb{R}^{m \times Q \times s}$, hyperparameters with $\theta = (\mu, D, \nu)$, and regressors with $c = (\alpha, \beta)$. Similar to the previous section set $P = Z_\theta^T Z_\theta + m \lambda I$ and $q = Z_\theta^T y$. Following the same principles for the implicit derivation, we obtain the gradient terms of the hyper-parameter objective function:

\[
\frac{\partial}{\partial \mu_q} (c^T z_\theta (x)) = \nu_q^2 \left(\alpha_q^T \cos \left(U_q D_q x \mp \mu_q^T x \right) - \beta_q^T \sin \left(U_q D_q x \mp \mu_q^T x \right) \right) x,
\]

\[
\frac{\partial}{\partial D_q} (c^T z_\theta (x)) = \nu_q^2 \left(\left(\alpha_q \mp U_q \right)^T \cos \left(U_q D_q x \mp \mu_q^T x \right) \right) \otimes x,
\]

\[
\frac{\partial}{\partial \nu_q} (c^T z_\theta (x)) = 2 \nu_q \left(\alpha_q^T \sin \left(U_q D_q x \mp \mu_q^T x \right) + \beta_q^T \cos \left(U_q D_q x \mp \mu_q^T x \right) \right),
\]

\[
\frac{\partial}{\partial \mu_q} (t^T q) = \sum_{(x, y) \in F^c} y q^2 \left(t_{q_\alpha}^T \cos \left(U_q D_q x \mp \mu_q^T x \right) \right) x,
\]

\[
\frac{\partial}{\partial D_q} (t^T q) = \sum_{(x, y) \in F^c} y q^2 \left(t_{q_\alpha} \cos \left(U_q D_q x \mp \mu_q^T x \right) \right) \otimes x,
\]

\[
\frac{\partial}{\partial \nu_q} (t^T q) = 2 \nu_q \sum_{(x, y) \in F^c} t_{q_\alpha} \sin \left(U_q D_q x \mp \mu_q^T x \right) + t_{q_\beta} \cos \left(U_q D_q x \mp \mu_q^T x \right),
\]

\[
\frac{\partial}{\partial \mu_q} (t^T P c) = \sum_{(x, y) \in F^c} \nu_q^4 \left\{ \left[t_{q_\alpha} \sin \left(U D x \mp \mu^T x \right) + t_{q_\beta} \cos \left(U D x \mp \mu^T x \right) \right] \cdot \left[\alpha_q \cos \left(U_q D_q x \mp \mu_q^T x \right) - \beta_q \sin \left(U_q D_q x \mp \mu_q^T x \right) \right] + \\
\left[\alpha^T \sin \left(U D x \mp \mu^T x \right) + \beta^T \cos \left(U D x \mp \mu^T x \right) \right] \cdot \left[t_{q_\alpha} \cos \left(U_q D_q x \mp \mu_q^T x \right) - t_{q_\beta} \sin \left(U_q D_q x \mp \mu_q^T x \right) \right] \right\} x,
\]
\[
\frac{\partial}{\partial \nu} (t^\top P_c) = 2 \sum_{(x,y) \in F_c} \nu^3_q \left\{ \begin{array}{c}
\begin{bmatrix} t_x \sin (UDx \oplus \mu^\top x) + t_\alpha \cos (UDx \oplus \mu^\top x) \\ t_y \sin (UDx \oplus \mu^\top x) + t_\beta \cos (UDx \oplus \mu^\top x) \end{bmatrix} \cdot \begin{bmatrix} \alpha^\top \sin (UDx \oplus \mu^\top x) + \beta^\top \cos (UDx \oplus \mu^\top x) \end{bmatrix} \end{array} \right\}
\]

\[
\frac{\partial}{\partial D_q} (t^\top P_c) = \sum_{(x,y) \in F_c} \nu^4_q \left\{ \begin{array}{c}
\begin{bmatrix} t_x \sin (UDx \oplus \mu^\top x) + t_\alpha \cos (UDx \oplus \mu^\top x) \\ t_y \sin (UDx \oplus \mu^\top x) + t_\beta \cos (UDx \oplus \mu^\top x) \end{bmatrix} \cdot \begin{bmatrix} \alpha \oplus U_q)^\top \cos (U_q D_q x \oplus \mu_q^\top x) \\ \beta \oplus U_q)^\top \sin (U_q D_q x \oplus \mu_q^\top x) \end{bmatrix} \end{array} \right\} \odot x
\]

\[
\frac{\partial}{\partial \lambda} = m t^\top c,
\]

where \(\oplus \) and \(\odot \) denote element-wise addition and multiplication, \(U \in \mathbb{R}^{Q \times d} \) and it consists of blocks \(U_q \in \mathbb{R}^{s \times d} \) such that each block contains row vectors sampled from a multivariate standard normal distribution.

The cost of computing the gradient of hyperparameters for à la carte involves solving an \(n = Qs \) dimensional linear system. This system needs to be solved for each validation fold in the \(k \)-fold splitting, required for the optimization of the hyperparameters over the validation samples. As this can be computationally intensive on a single core, we have parallelized our implementation of à la carte by computing the parts of hyperparameter gradient that correspond to different validation folds on different cores. For the inner cross-validation performed with 5-fold splitting this has resulted in a speed up of approximately 4-5 times compared to a single core implementation. In Section 3 and Appendix D.1 we report the walltimes of the parallelized implementation of à la carte.

Initial solution. As already stated, we follow the instructions from the supplementary material of Yang et al. [31] and initialize the means to vectors that are close to zero. The \(\nu \) parameters are initialized by setting their values to the standard deviation of outputs divided by the number of components \(Q \). The diagonal covariance matrices are initialized by following the ARD-heuristic. As reported in [31], we simulate the algorithm with 10 random restarts such that for each initial solution the algorithm makes 20 iterations of L-BFGS-B minimization and then continues with the best hyperparameter vector for another 200 iterations.
D Results

D.1 À la Carte

Table 2: The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-validation. The fold splitting is done such that all algorithms train and predict over identical samples. The reported walltime is the average time it takes a method to cross-validate one fold.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>m</th>
<th>a</th>
<th>n = 100</th>
<th>Q = 2 x 10³</th>
<th>RECALL</th>
<th>PRECISION</th>
<th>F1</th>
<th>WALLTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>penguins-im (total)</td>
<td>5875.21</td>
<td>1.03</td>
<td>2.0</td>
<td>1.5</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>smartdorkee (total)</td>
<td>2048.21</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ct-slice</td>
<td>1536.02</td>
<td>0.03</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Year Prediction</td>
<td>51253.40</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-airports</td>
<td>9517.52</td>
<td>0.04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-elevators</td>
<td>13750.40</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>pole-telemetry</td>
<td>15000.26</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>elevators</td>
<td>15059.28</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>cal-housing</td>
<td>40640.60</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>bracman</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fiddlers</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 3: The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-validation. The fold splitting is done such that all algorithms train and predict over identical samples. The reported walltime is the average time it takes a method to cross-validate one fold.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>m</th>
<th>a</th>
<th>n = 500</th>
<th>Q = 2 x 10³</th>
<th>RECALL</th>
<th>PRECISION</th>
<th>F1</th>
<th>WALLTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>penguins-im (total)</td>
<td>5875.21</td>
<td>1.03</td>
<td>2.0</td>
<td>1.5</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>smartdorkee (total)</td>
<td>2048.21</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ct-slice</td>
<td>1536.02</td>
<td>0.03</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Year Prediction</td>
<td>51253.40</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-airports</td>
<td>9517.52</td>
<td>0.04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-elevators</td>
<td>13750.40</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>pole-telemetry</td>
<td>15000.26</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>elevators</td>
<td>15059.28</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>cal-housing</td>
<td>40640.60</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>bracman</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fiddlers</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

D.2 Random Fourier Features

Table 4: The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-validation. The fold splitting is done such that all algorithms train and predict over identical samples. The reported walltime is the average time it takes a method to cross-validate one fold.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>m</th>
<th>a</th>
<th>n = 100</th>
<th>Q = 2 x 10³</th>
<th>GAUSS</th>
<th>CALCHR</th>
<th>LAPLACE</th>
<th>WALLTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>penguins-im (total)</td>
<td>5875.21</td>
<td>1.03</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>smartdorkee (total)</td>
<td>2048.21</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ct-slice</td>
<td>1536.02</td>
<td>0.03</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Year Prediction</td>
<td>51253.40</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-airports</td>
<td>9517.52</td>
<td>0.04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>delta-elevators</td>
<td>13750.40</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>pole-telemetry</td>
<td>15000.26</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>elevators</td>
<td>15059.28</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>cal-housing</td>
<td>40640.60</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>bracman</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fiddlers</td>
<td>40768.10</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

D.2 Random Fourier Features

Table 4: The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-validation. The fold splitting is done such that all algorithms train and predict over identical samples. The reported walltime is the average time it takes a method to cross-validate one fold.