Non-parametric directionality analysis: extension for removal of a single common predictor and application to time series

Halliday, David M. and Senik, Mohd Harizal and Stevenson, Carl W. and Mason, Robert (2016) Non-parametric directionality analysis: extension for removal of a single common predictor and application to time series. Journal of Neuroscience Methods, 268 . pp. 87-97. ISSN 1872-678X

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (321kB) | Preview

Abstract

BACKGROUND: The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity.

NEW METHOD: We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor.

RESULTS: The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats.

COMPARISON WITH EXISTING METHOD(S): The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data.

CONCLUSIONS: The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data.

Item Type: Article
Keywords: Directionality, Partial Coherence, Non parametric, Time series, Point process, Conditional independence, Granger causality
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Biosciences > Division of Animal Sciences
University of Nottingham, UK > Faculty of Medicine and Health Sciences > School of Life Sciences
Identification Number: 10.1016/j.jneumeth.2016.05.008
Depositing User: Stevenson, Dr Carl
Date Deposited: 04 Nov 2016 14:11
Last Modified: 09 May 2017 15:03
URI: http://eprints.nottingham.ac.uk/id/eprint/38489

Actions (Archive Staff Only)

Edit View Edit View