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Abstract

The main topic of this thesis is a key point in testing the viability of the EPRL/FK
spin foam model as a quantum theory of gravity. While it is common knowledge that
there are fundamental mathematical inconsistencies between Einstein's General Rela-
tivity and Quantum Mechanics, pointing, among other reasons, towards the necessity of
such a theory, our current inability to observe the extremely high energies and/or small
wavelengths at which quantum e�ects are expected to appear leaves us with mathemat-
ical consistency tests as the only, albeit incomplete, way of separating possibly viable
models from incorrect ones. One of the most basic tests available is the study of the
model's asymptotics in a semiclassical regime. Indeed, any quantum theory of gravity
must be able to reproduce Einstein's model when quantum e�ects are negligible. With
that in mind, we will discuss the asymptotics of spin foam models, in particular the
EPRL/FK prescription, and note the non-trivial issues that arise in the course of that
study.

In order to provide context to the discussion, �rst we will brie�y introduce spin foam
models as a state sum formulation of Loop Quantum Gravity, the canonical quantiza-
tion program of Einstein's theory, giving a short review of the LQG formalism and the
issues that led to the construction of spin foams. We will then brie�y refer to some
historical aspects of this line of study, starting with the original discussion based on BF
theory that resulted in the Ponzano-Regge model for 3-dimensional gravity, and proceed
to 4-dimensional models and the issues that led to the crafting of the EPRL/FK model.
We will then review the calculation of the EPRL vertex amplitude in more detail, be-
fore moving on to the topic of asymptotics, the de�nition of an adequate semiclassical
limit to work in, and existing results, with emphasis on the so-called ��atness problem�
originally enunciated by Bonzom, as well as a critique of the reasonings that led to it,
namely the concept of varying the EPRL action with respect to a discrete variable -
the face areas in a given triangulation of spacetime geometry.

With the above in mind, and introducing our practical approach to the variation of
the face areas, we move on to the main original work presented, a detailed calculation
of the zero-order �classical� equations of motion and their solutions for a concrete tri-
angulation of three 4-simplices, which has been named ∆3. The goal of said calculation
is to assess whether the �atness problem exists or not in a practical example, and ulti-
mately check if the results obtained satisfy what is expected from Einstein gravity. A
negative result would, in plain terms, �kill� the model, or at the very least show it needs
modi�cations, while a positive result, though only a particular case, would be a small
step towards the understanding of spin foam asymptotics and possibly hint towards
more general properties of the model.
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1 Introduction: Spin FoamModels for Quantum Grav-

ity

1.1 Why Quantum Gravity?

The early 20th century saw the development of two extremely successful theories of
physics. On one hand, General Relativity (GR), by and large the work of one man,
Albert Einstein, which solved a number of known issues with the centuries-old New-
tonian theory of gravity, introduced a radical shift in human understanding of such
essential concepts as space, time, matter and energy, and made successful predictions
that shaped the development of cosmology, astronomy and space travel ever since. At
the time of writing of this thesis, LIGO's �rst scienti�cally reliable observation of grav-
itational waves is still recent news, and comes in as another resounding success of the
theory.

On the other hand, Quantum Mechanics (QM), a work of a number of notable physi-
cists throughout decades, which aimed to introduce a mathematical formalism capable
of explaining the deeply puzzling phenomena involving elementary particles, such as
the wave-particle duality, quantization of energy, and the inherent uncertainty to mi-
croscopic level measurements. From the Copenhagen interpretation and names such as
Schrödinger, Heisenberg, Planck and Bohr at the helm, the community was led into the
intricate world of subatomic particles and the strong and weak nuclear forces. They
would eventually be uni�ed with electromagnetism thanks to the development of quan-
tum �eld theory - e�ectively a formulation of �classical� QM compatible with Special
Relativity, where names such as Feynman, Weinberg, Salam and Glashow appear as
some of the many contributors. The �nal result, dubbed the Standard Model, has
been extensively tested and developed thanks to particle accelerators and colliders, and
between the resulting mapping of subatomic particles and their possible interactions
and the various other phenomena explained by QM in such diverse fronts as chemistry,
condensed matter, optics, informatics, atomic and nuclear physics, it is a theory that,
no matter how puzzling it may be at its mathematical and philosophical foundations,
has accomplished immense feats for physics.

These theories are based on apparently contradictory mathematical views of space-
time and energy. QM has originally been enunciated, if we take the Heisenberg picture
for the sake of clarity, with an equation of motion that describes the evolution of a
unitary operator, the Hamiltonian, whose eigenvalues are the possible energies of the
system, with time. This formulation assumed a Newtonian picture of spacetime, where
time appears as an independent variable with no geometrical signi�cance, while also
introducing quantization of all dynamical �elds involved, where a lot of the relevant
physical quantities are discretized in terms of quanta and all of them are expressed in
a probabilistic, rather than deterministic, fashion. This paradigm drastically contrasts
with GR's concept of spacetime as a smooth, di�erentiable Lorentzian manifold, with
time appearing simply as one of its dimensions rather than an independent variable,
and its dynamics being purely deterministic, the spacetime metric gab(x) being entirely
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speci�ed by solutions of the Einstein equations. How can two theories with such seem-
ingly incompatible basic principles both produce so many invaluable empiric results?

The problem is not that QM (or rather QFT) and GR contradict each other: they
are simply valid in di�erent regimes. GR's required assumption of continuity poses
no issue in most situations of macroscopic systems. At the same time, QFT and its
assumption of a Minkowski background (which can be extended to a �xed curved space-
time under certain conditions [1]) are not problematic as long as gravity's e�ects are
negligible on the system being studied, which for the case of any subatomic particle
interaction that could happen in a setup on Earth is easily veri�ed. Indeed, since the
gravitational �force� between two elementary particles with opposite electrical charge is
around 40 orders of magnitude weaker than the corresponding electric �force�1, the only
situations in which gravity is relevant involve electrically neutral macroscopic bodies,
which usually do not require any quantum considerations in their study.

It all boils down to a matter of scales, gravity being commonly relevant on the macro-
scopic level and quantum mechanics on the microscopic level. However, at su�ciently
high energies or short wavelengths, it is expected that both quantum and relativistic
e�ects are signi�cant. The threshold is speculated to be (of the order of magnitude

of) the Planck length[2] lP =
√

~G
c3
. There are at least two important instances from a

cosmological point of view in which gravity at Planck scales or below comes into play.
One is black holes, whose modelling according to GR involves a singularity at their cen-
ter. This fact on its own is often cited [3] as a shortcoming of GR, since mathematical
singularities imply that the assumption of smoothness is not veri�ed in a black hole.
The other is, of course, perhaps the most signi�cant singularity of all, the Big Bang, for
which there is plausible cosmological evidence but very little mathematical understand-
ing. The generally accepted view is that GR should break down su�ciently close to
these anomalous points, as quantum e�ects become signi�cant within the Planck length
radius. These scales are not, however, relevant in the particle interactions classi�ed by
the Standard Model, the size of elementary particles such as electrons and quarks being
around 20 orders of magnitude larger than the Planck length.

Due to all of these observations, it has become plausible to the physics community
that the incompatibilities between GR and QM are a symptom that the knowledge
provided by the two, while not necessarily wrong, is incomplete, and there must exist
a theory that reproduces their current results while describing the behaviour of gravity
in systems with signi�cant quantum e�ects. This is called quantum gravity (QG).

There is a vast number of more or less radical approaches to quantum gravity. Many of
them, including the extensively studied and relatively successful string theory, attempt
to write down a �Theory of Everything�, which would be a �eld theory unifying gravity
with the other fundamental forces under the same formalism. Others simply try to �t
GR into a consistent QFT formulation, while others make more drastic departures from

1Term used loosely, as it implies the outdated Newtonian de�nition of force.
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the existing theories. The research conducive to this thesis was made under a spin foam

model, which is a line of study branched out from Loop Quantum Gravity (LQG). In
the following subsection we will brie�y discuss its main principles and the issues that
inspired the inception of spin foams.

1.2 Loop Quantum Gravity and Spin Foams

1.2.1 Motivation for LQG

Loop Quantum Gravity (LQG) is an approach focused on �nding a picture of quantum
mechanics, and in particular QFT, that is compatible with the principles of general
relativity. The intuitive prescription to carrying such a task would be to proceed as
one does with the other interactions: de�ne the �eld to be quantized, which for gravity
would be the metric gab(x), and perform quantization via perturbative theory, by de�n-
ing the corresponding Fock space and ladder operators and expanding over Feynman
diagrams. However, this method does not work for several reasons. While it is possible
to partially circumvent QFT's original de�nition in Minkowski space and adapt it to
curved spaces, Poincaré invariance, a well-de�ned notion of energy, and a time evolu-
tion generated by a non-vanishing unitary Hamiltonian operator need to be satis�ed in
order to even be able to de�ne Fock space in the �rst place (for example, the vacuum
state is de�ned as the lowest energy eigenvalue of the Hamiltonian). None of those
conditions are satis�ed in a general GR spacetime. Indeed, even without any quantum
considerations, there isn't a local de�nition of gravitational energy in GR, for example
[3]. Perhaps even more puzzling is the fact that even the notion of particle used by
QFT seems to break down in general gravitational situations - it is known from QFT in
curved spacetime that a change of coordinates can shift the vacuum state and therefore
lead to creation or destruction of particles, with the Unruh e�ect [5], which predicts
that the vacuum state for an inertial observer would be shifted to a thermodynamic
equilibrium at a �nite temperature for an observer subject to uniform acceleration,
standing as a notorious example.

A tentative way of solving those di�culties would be to consider spacetimes that can
be broken down in two parts,

g(x) = gbackground(x) + h(x) (1)

where gbackground de�nes a locally Poincaré-invariant spacetime consistent with the re-
quirements of curved-space QFT, and h(x) is a perturbation �eld around said back-
ground. There are two problems with this approach, once conceptual and one practical.
Intuitively, de�ning a background spacetime for gravity to begin with seems to be at
odds with the equivalence principle of GR, and it implies an (at least partial) separa-
tion of the gravitational �eld from spacetime, which does not agree with the picture
painted by Einstein theory. More practically, attempts of carrying out perturbation the-
ory under this method lead to manifest UV divergences that are non-renormalizable [4].

Motivated by these issues, the main principle of LQG is, in addition to all the basic
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principles of QM and GR, that it should be a background-independent theory, keeping
with the spirit of the equivalence principle. In particular, this leads to doing away with
the ladder operators a, a† as the ones being quantized in the canonical quantization
procedure, since they require the de�nition of positive and negative frequency modes,
and in particular the vacuum state, which eventually lead to the necessity of a back-
ground. The idea of �loops� (which in LQG are holonomies of the spin connection) is
inspired on the concept of Wilson loops in quantum electrodynamics, and, as will be
succinctly described in the following section, gives rise to the usage of spin networks,
which are a key tool in both LQG and spin foams.

1.2.2 Construction of LQG

Loop quantum gravity is constructed from the �rst order formalism of general relativity
[6], since it lends itself more easily to a Hamiltonian formulation. This formalism is
constructed from the action principle of GR, which states that the Einstein equations
of motion can be derived from the Einstein-Hilbert action2

S =
1

2

ˆ
R
√
−g(x)dx, (2)

where g = det [gab] and R is the Ricci scalar. The Einstein equations are second-
order di�erential equations on the metric. The goal of the reformulation is to write an
equivalent set of �rst-order equations, much like what happens when passing from a
Lagrangian to a Hamiltonian description of a classical mechanics system. To accomplish
this, instead of using the metric gab as fundamental variables of geometry, we use the
tetrad (colloquially referred to as a �square root� of the metric) de�ned in terms of g
by

gab(x) = eia(x)ejb(x)ηij. (3)

Geometrically, if space-time is a di�erential manifold M, then the tetrad is a 1-form
e(x) : M → TxM mapping the coordinate system in M (explicitly de�ned by the
metric) to the coordinate system in its tangent bundle TM(whose metric at each point
x is the Minkowski metric ηij), so that {eia(x)}a∈{0,...,3} can be interpreted as a basis of
the tangent space TxM. In this notation the indices i, j, ... are called internal indices,
while a, b, ... are external indices. The tetrad alone isn't enough to de�ne the phase
space of gravity, though: the spin connection ωija is also needed. This is the unique
connection that de�nes a consistent covariant derivative, or in geometrical terms, the
parallel transport of the frame �elds de�ned by the tetrad across the manifold. With
the new variables the action used in LQG, the Palatini-Holst action, is:

S[e, ω] =

ˆ
M

(
1

2
εijkle

i ∧ ej ∧ F kl(ω) +
1

γ
ei ∧ ej ∧ Fij(ω)

)
(4)

where F (ω) = dω+ω∧ω is the curvature tensor. Rigorously, only the �rst term of this
action is equivalent to the Einstein-Hilbert action, and the equations of motion it gener-
ates, εijkl∧ej∧F kl = 0, are �rst-order and equivalent to the Einstein equations provided

2From now on all notation assumes c = 1, ~ = 1, G = 1/(8π), and unless otherwise speci�ed, the

results stated are for vacuum: T
(matter)
ab = 0.
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there is no torsion. The second one is called the Holst term and is purely topological,
making no change to the classical equations of motion if the tetrad (equivalently, the
metric) is non-degenerate. It becomes relevant at the quantum level, though, as will
become clearer below. γ is a dimensionless constant called the Immirzi parameter.

The next step is to perform a 3+1 ADM decomposition of spacetime [7], under the
assumption thatM's topology admits a decompositionM≈ R×Σ where Σ is a three-
dimensional hypersurface representing space, and the remaining R represents time.
However, instead of sticking to the original ADM fundamental variables, the induced
metric in 3-space hab(x) and the extrinsic curvature Kab(x), the decomposition for
LQG uses the Ashtekar variables, the triad Ea

i (x) and the Ashtekar-Barbero connec-

tion Ajb(x), which play similar roles to the �rst-order variables but reduced to 3-space:
the triad satis�es Ea

i (x)Eb
j (x)hab(x) = δij, where δij is the Cartesian metric of the

tangent space TxΣ, and the connection A is derived from the 3-space spin connection
Γ(E),

Aia = Γia(E) + γω0i
a . (5)

In Hamiltonian terminology, A is a conjugate momentum of the triad, i.e. the following
Poisson bracket is satis�ed:{

Ajb(~x), Ea
i (~y)

}
= γδji δ

a
b δ

(3)(~x− ~y) (6)

Note the explicit dependency on the Immirzi parameter. It should be noted that a
similar Poisson bracket that does not depend on said parameter could be obtained by
taking the extrinsic curvature Ki

a = ω0i
a as the conjugate momentum, but a particularly

useful symmetry occurs with the Ashtekar-Barbero choice. When the ADM decompo-
sition is performed using the time gauge, meaning that the time dimension normal to Σ
is assigned to nt = (1, 0, 0, 0), the action's Lorentz symmetry under SO(3,1) translates
to a simple SU(2) symmetry in Σ. It turns out that E and A are valued in SU(2)'s Lie
algebra su(2)3, which means that under these speci�c choices of �eld and connection,
gravity is expressed as a SU(2) gauge �eld theory. Rewritten in the new variables, the
action admits a Hamiltonian form

S[E,A, λ,N ] =

ˆ
dt

ˆ
Σ

d~x
1

γ
Aia
dEa

i

dt
−H (7)

where the Hamiltonian is entirely made of constraints,

H = λiGi +NaVa +NS (8)

and therefore vanishes when the classical equations of motion are satis�ed. The SU(2)
gauge transformations in particular are generated by the Gi = DaE

a
i (covariant deriva-

tive of the triad), which are called the Gauss law constraints, and take the form
Ea → g(~x)Eag−1(~x),Aa → g(~x)Aag

−1(~x) + g(~x)∂ag
−1(~x), where g : Σ→ SU(2) param-

eterizes the gauge transformation. The remaining constraints are the vector constraints

3Since there is a double cover SU(2)→SO(3) and their Lie algebras are isomorphic, it is convenient
to use SU(2) in this context.
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Va and the scalar constraint S, whose Lagrange multipliers are simply the ADM lapse
and shift.

To summarise, the classical setup of LQG is �rst-order general relativity, using the
Holst-Palatini action rewritten in the Ashtekar-Barbero variables E, A. Note the anal-
ogy to Maxwell �eld theory, a gauge theory where E as the electric �eld and A as the
magnetic vector potential have similar roles as the triad and Ashtekar-Barbero connec-
tion in this context. The next step is the quantization programme. The wavefunctions
to consider are ψ(A), while E will be a di�erential operator acting on the wavefunctions.
The �loops� are introduced with the de�nition of observables for this quantum theory:
said observables are holonomies of the connection around paths C ≡ {c(s), s ∈ [0, 1]}
in the 3-spatial slice Σ,

UC [A] ≡ P exp

(ˆ
C

dsAiaJi
d

ds
ca
)
, (9)

where P exp is the path-ordered exponential (i.e. the matrix exponential of the brack-
eted content with the series terms ordered over s), and the �ux observables

ES[f ] ≡
ˆ
S

Eif
i (10)

where the �ux is that of a test function f : S → su(2) through a 2-dimensional surface
S. The de�nition of a working Hilbert space for LQG is somewhat more mathematically
involved. Essentially, it consists in de�ning a set of wavefunctions, called cylindrical

wavefunctions, based on the holonomy observables. If Γ is a graph, understood in this
context as a set of edges e, then a generic cylindrical wavefunction is

ψ(A) ≡ fΓ

(
{Ue[A]}e=1,...,L

)
. (11)

where L is a �nite number. Remembering that the wavefunctions of interest are ones
that solve the constraints in the Hamiltonian (8), one can immediately do away with
the Gauss law constraints if fΓ are picked to be invariant under SU(2)-gauge transfor-
mations, which act on the holonomies in the usual way,

Ue → hs(e)Ueh
−1
t(e), (12)

where the orientation of the edge in question is from the source s(e) to the target t(e).
This set of functions admits a scalar product, which is a generalization of the following
scalar product between functions de�ned on the same graph:

〈fΓ| gΓ〉 =

ˆ
dLU f ∗ ({Ue∈Γ}) g ({Ue∈Γ}) . (13)

where the measure dU is the Haar measure for SU(2). The scalar product is readily
generalized for functions de�ned in di�erent graphs. Note that if Γ′ is a graph that
shares no edges with Γ, a functional fΓ can be de�ned as f̃Γ∪Γ′ by setting f̃ ({Ue∈Γ∪Γ′}) =
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f ({Ue∈Γ}). It is straightforward to use this fact to prove that any two functionals fΓ, gΓ′

can be written as functionals of the same graph, by simply considering the union Γ∪Γ′

(with the appropriate exceptions for when the two graphs share one or more edges).
Then the scalar product can in general be represented by

〈fΓ| gΓ′〉 =
〈
f̃Γ∪Γ′ | g̃Γ∪Γ′

〉
(14)

There is also a measure in the set of cylindrical wavefunctions. Refer to [11, 12, 13]
for the mathematical details; for the purposes of this work it is enough to note that
there exist a measure and scalar product that allow for the de�nition of a Hilbert space
HΓ, which is the space of square-integrable cylindrical functions over the graph Γ. The
kinematical Hilbert space of LQG is then a �direct sum� of the ones obtained from this
de�nition, over all possible graphs:

Hkin ≡ ”
⊕

Γ

”HΓ (15)

where the quotes signal that we're not strictly performing a direct sum; indeed, as sug-
gested by the scalar product above, a function fΓ ∈ HΓ is identi�ed with the functions
of the same mathematical form constructed over graphs that contain Γ as a subset:
{fΓ′ ∈ HΓ′ , Γ ⊂ Γ′}. This is called a projective limit, and the measure in the resultant
space is called the Ashtekar-Lewandowski measure. A �nal important result, called
the LOST theorem after Lewandowski, Okolow, Sahlmann and Thiemann, is a proof
of uniqueness for the representations of the holonomy-�ux algebra in Hkin, assuming
di�eomorphism invariance of the vacuum state. The theorem is more general than just
LQG, applying to any gauge theory with a compact group over a manifold with a spin
connection, and is considered one of the most fundamental ones in the theory.

With the Hilbert space constructed and the gauge symmetry explicitly included in
that construction, �solving LQG� requires solving the vector constraints Va and the
scalar constraint S. While the Gauss law constraints generated SU(2) gauge transfor-
mations, the vector and scalar ones have clear geometrical signi�cance: Va generates
di�eomorphisms in the spatial slice Σ, while S generates di�eomorphisms in the time
slice T ∼ R, amounting to time reparameterizations. Due to its relation to time evolu-
tion in the theory, S is called the Hamiltonian constraint.

The vector constraints are, at face-value, relatively easy to deal with, since a spa-
tial di�eomorphism φ acts on a cylindrical wavefunction fΓ ({Ue}) by simply shifting Γ
to φ(Γ). Since the corresponding Hilbert spaces HΓ and Hφ(Γ) are isomorphic, one can
consider a di�eomorphism-invariant Hilbert space by taking the quotient of Hkin with
respect to the equivalence relation

Γ ∼ Γ′ ⇔ Γ′ = φ(Γ) for some di�eomorphism φ, (16)

and taking the same projective limit over the equivalence classes [Γ] (signalled by the
direct sum between quotes as before):

Hdiff ≡ ”
⊕
[Γ]

”HΓ. (17)
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While there are some more technical issues with the topology of Hdiff (namely separa-
bility), those issues can be solved by considering an appropriate choice of �basis� graphs
Γ and class of di�eomorphisms to consider (maps di�erentiable everywhere but a �nite
number of points) for which Hdiff is separable.

Solving the Hamiltonian constraint S is, however, one of the main di�culties in LQG,
remaining at the moment as an open problem. The issue with it is two-fold. On one
hand, there are issues with properly de�ning a meaningful dynamics, with time evolu-
tion, of a quantum system that is manifestly invariant under time reparameterizations
(which is in some literature called the �problem of time� [53]). Indeed, at the classical

level, within the scope of GR, one can de�ne time according to what ADM decomposi-
tion T ×Σ is suitable, mark that time variable as independent and calculate evolution
like that. Di�eomorphism invariance means that the theory is equally expressible in
terms of a di�erent time variable, and said variable is only locally meaningful rather
than globally, but no matter what is the choice made, there is a clear notion of space-
time for the solutions and the dynamics is well-de�ned. In a quantum formulation
of GR, however, �spacetime� as a solution of the quantum equations of motion does
not exist, since said solutions determine probabilities of di�erent spacetimes occurring.
This problem is similar to what happens to the notion of particle trajectory in ordinary
quantum mechanics: the wavefunction description of a particle implying a minimum
uncertainty of position and momentum means that said trajectory is not well-de�ned,
and solving the Schrödinger equation for the particle only provides us with a probabilis-
tic map for its positions and momenta over time. It is conceptually di�cult to de�ne
a time variable and time evolution when spacetime is quantized. There are ways of
avoiding this problem, though, usually by introducing matter in the theory and using
it to identify space points, as well as a working notion of �proper time� upon which
evolution can be studied [14].

On the other hand, a much more serious problem is writing down the quantum Hamil-
tonian operator associated with the respective constraint. It turns out that there is a
number of ambiguities in quantizing the Hamiltonian constraint, and while there are
proposals for it, such as Thiemann's [15], it is a highly non-trivial problem to determine
whether a proposal is correct, by verifying consistency and solving its asymptotics in
the semi-classical regime to check that Einstein gravity can be recovered from it - a
theme that would prove dominant in spin foam models as well. One of the motiva-
tions for the development of spin foam models is to circumvent these di�culties and
introduce a LQG-inspired framework that lends itself to a simpler dynamical treatment.

Another, more conceptual, issue with the construction of the Hilbert space has to do
with the graphs themselves. Indeed, having a structure of gravitational Hilbert space
depending on graphs that are embedded on a spatial hypersurface of the manifold in
question, even if di�eomorphism invariance is manifestly included in the model, can
be somewhat uncomfortable for a theory that aims to be background-independent, and
it raises some interest in working on an alternative formalism of the theory that com-
pletely does away with the 3+1 embedding, representing the topology of the spacelike
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3-slice using only abstract graphs. This is another key idea that leads to the develop-
ment of spin foam models, in addition to the basis of spin network states for the Hilbert
space over a graph HΓ, which gives a nice geometric interpretation to those graphs and
will be brie�y described in the next subsection.

1.2.3 Spin Network States and the Area Spectrum

Consider an oriented graph Γ with edges e = 1, ..., E and vertices v = 1, ..., V , and the
SU(2) holonomies Ue[A]. Then the cylindrical wavefunctions ψΓ ({Ue}) can be de�ned
by requiring SU(2) gauge invariance. With the de�nitions of scalar product and measure
given in the previous subsection, the gravitational Hilbert space over the graph Γ is the
space of square-integrable cylindrical wavefunctions with respect to the given measure,

HΓ = L2
(
SU(2)E/SU(2)V

)
(18)

which only depends on the combinatorics of the graph and is therefore isomorphic to
any space Hφ(Γ) for a di�eomorphism in the spatial slice φ. The goal is to determine a
basis of HΓ. According to the Peter-Weyl theorem [16], any L2 function with domain
SU(2) admits a decomposition over the irreducible representations of SU(2), of the form

f(g) =
∑
j∈N/2

Tr
[
f jab 〈j, a| g |j, b〉ab

]
≡
∑
j∈N/2

Tr
[
f jDj(g)

]
(19)

where j is the spin and |j, b〉 are basis vectors of the j-th irreducible representation of
SU(2), living in the corresponding vector space V j. Dj(g) are the Wigner matrices that
represent a group element g ∈SU(2) in the irreducible representation of spin j and f jab
are analogous to Fourier components of f under this decomposition.

Using this theorem it can be shown that a basis of HΓ can be constructed using spin
network states ψje,ivΓ where the labels are spins je ∈ N/2 associated to each edge of Γ
and intertwiners iv de�ned on each vertex

iv :
⊗
s(e)=v

V je →
⊗
t(e)=v

V je , (20)

which are SU(2)-invariant maps (i.e. commuting with SU(2) action ivg |φ〉 = giv |φ〉 for
all states |φ〉) that can be thought of as connector maps between the representations
lying on all the edges that connect to the vertex v, mapping the edges that end at v to
the ones that start from it. As a small example, if we consider a vertex with one edge
coming in and two coming out, as in the �gure below,
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(where orientation is, by convention, assumed to be from the bottom to the top) the
intertwiner map is given by the Clebsch-Gordan coe�cients Cj2,j3

j1
, where j1 = j2 + j3,

and in fact more general intertwiners can always be decomposed into simple 3-valent
ones such as the one above, that can then be expressed in terms of Clebsch-Gordan
coe�cients. A big advantage of spin network states is that they admit a very elegant
and well-studied graphical calculus, that was studied originally by Penrose [17] in the
context of ordinary quantum mechanics. We will discuss it further in the section about
spin foams, since it is essential to their de�nition. The concrete expression for a spin
network state ψje,ivΓ is

ψje,ivΓ ({ge}) ≡ Tr
⊗
v

iv
⊗
e

Dje (ge) , (21)

and under a suitable basis of intertwiner states (essentially the ones de�ned from
Clebsch-Gordan coe�cients) they form a basis of the Hilbert space in question. The
other key point towards the importance of spin network states is that they diagonalize
geometric operators, most notably the areas and volumes. Classically, under the ADM
formalism, the area of a parameterized surface S ⊂ Σ with coordinates σ1, σ2 such that
x ≡ xa(σ) ∈ S is

AS =

ˆ
d2σ

(
εabc∂1x

a∂2x
bEc

i (x) · ε fde∂1x
d∂2x

eEi
f (x)

)1/2

, (22)

while the volume of a 3-dimensional region R is

VR =

ˆ
d3x

(
1

3!
εabcε

ijkEa
i (x)Eb

j (x)Ec
k(x)

)1/2

. (23)

The process of quantization of these expressions as operators is somewhat technically
involved [8], but the gist of it is �rst of all to quantize the triad as a derivative operator
with respect to its conjugate momentum, the connection A, as expected from their
Poisson bracket, Êa

i ≡ iγ ∂
∂Aia

, and then to quantize the integral by taking it as the limit
of a Riemann sum while regularizing the operator products within it. The eigenvalues
of the resulting operator ÂS can be studied by taking a particular spin network state
ψΓ. The action of Â in such a state gives non-zero contributions for the points at which
the graph Γ intersects the surface S, and it turns out that, as the triad operators act
very simply on spin network states by just introducing the Ji generators of the Lie
algebra su(2), the area operator is diagonalized by the spin network states. If Γonly
crosses S at a single point, the action of ÂS on ψje,ivΓ is

ÂSψ
je,iv
Γ = γ

√
Jei J

e
i ψ

je,iv
Γ (24)

and therefore the corresponding eigenvalues, using correct dimensional notation, are

AS = γl2P
√
je (je + 1), je ∈

N
2

(25)

where lP is the Planck length. The full area spectrum amounts to sums of the eigen-
values above, for each point where the surface S is intersected by a general graph Γ.

14



This result demonstrates the discretization of geometry in LQG, with the appearance
of quanta of area that fully determine the possible results of a measurement. The ex-
plicit dependence of this spectrum on the Immirzi parameter is suspect, manifesting
itself in the famous LQG calculation of the black hole surface area �xing a concrete
value for γ to �t the Bekenstein-Hawking entropy, which is a motive of controversy in
the theory [18]. Although the derivation is a bit more complex, it is also possible to
obtain a spectrum for the volume operator: The area spectrum and general concept of
discretized geometry are also important motivation to the introduction of spin foams,
where the spin network states take a more fundamental role of de�ning the dynamics of
a triangulated geometry, instead of just surfacing as a convenient basis for the Hilbert
space. In the following section we will discuss spin foam models and how they address
some of LQG's issues.

1.3 Spin Foam Models as a dynamical realization of LQG

The concept of spin foam appeared as a response to the open problems and shortcomings
found within loop quantum gravity, with its main motivation being to provide a clear
picture of the quantum geometry of spacetime as a unit. Indeed, while the structure of
quantum space in LQG is fairly well described thanks to the ADM decomposition and
the structure that arises from it, the aforementioned problems with the Hamiltonian
constraint and the associated lack of understanding of the time evolution of said space
slice make it di�cult to back to a proper general-relativistic vision of spacetime. The
line of thought that leads to the development of spin foam models is the attempt to
enunciate a path integral formalism for LQG. This is analogous to the path integral ap-
proach in quantum �eld theory, which leads to the expansion over Feynman diagrams:
spin foams in this context are the equivalent of Feynman diagrams for quantum grav-
ity, and can be thought of as representing the evolution over time of a spin network state.

A generic de�nition

Consider a spin network state ψΓ ({gl}) over an arbitrary graph Γ embedded in a man-
ifoldM (more precisely, in its spatial slice if an space + time decomposition is made,
although this is not necessary for the de�nition), with gl ∈ G for a Lie group G, which
is the gauge group of the theory. In gravity G is the relativistic symmetry group of the
manifold, but an array of models can be considered with di�erent de�nitions. The edges
l of Γ have spins jl associated to them, corresponding to irreducible representations of
G, while the graph's vertices v are labelled by intertwiners iv. Now if we picture the
extra time dimension and imagine the graph evolving into it, it will form a so-called
2-complex, where the edges are foliated into faces f and the vertices into new edges
e. The graph can change topologically with time, and there will be new vertices v,
signalling points in spacetime where one edge breaks into several, or vice-versa with
two or more edges joining into one. The �time-evolved� graph is a spin foam. Inspired
by this construction, the ingredients to de�ne a general spin foam are

• an arbitrary 2-complex;
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• representation spins jf for each face f of the 2-complex;

• intertwiners ie for each edge e.

When a spin foam under this de�nition is spatially sliced, each slice de�nes a spin
network state. Having spin foams de�ned in this fashion, they serve as states for the
spin foam model, which is de�ned as a weighted sum over them: for a given set of
2-complexes to be summed over, the model is speci�ed by a partition function of the
form

Z =
∑

2-complexes

∑
jf ,ie

∏
f

Wf (jf )
∏
e

We(ie, jf |e∈f )
∏
v

Wv(i e|v∈e, jf |v∈f ). (26)

where Wf , We, Wv are the face, edge and vertex amplitudes of each con�guration, and
it is considered that the amplitudes for each element depend only on the colourings
(spins and intertwiners) that relate directly to them, i.e. Wf depends only on jf , We

depends on the associated intertwiner ie but also on the spins of each face that edge
belongs to, and Wv depends on the intertwiners and spins of edges and faces to which v
belongs. There are some technicalities with the de�nition of the sum over 2-complexes,
though - the sum often diverges and needs to be regularized, The di�culties are usually
dealt with in a model by model basis, but in particular for the 4-dimensional models
there are still some issues being discussed. Since a sum over 2-complexes in these
models is computationally di�cult to handle, most studies are made over a single one,
associated to a triangulation of spacetime - but triangulation independence is manifestly
not present, including in the more recent EPRL prescription.

Spin foams in BF theory and the Ponzano-Regge model

The �rst considerable success of spin foams in quantum gravity was the Ponzano-Regge
model [10], which provides a consistent quantum theory of 3-dimensional Einstein grav-
ity. It was a result of studying the application of the formalism to BF theory, a simpler
version of Einstein theory that happens to coincide with it on 3 dimensions. In fact, as
will be seen later, 4-dimensional Einstein gravity can also be described as a BF theory
with constraints, which was essential to the development of 4-dimensional spin foam
models for gravity.

In the classical setup, BF theory can be generally de�ned with a gauge (Lie) group
G whose Lie algebra g admits an invariant nondegenerate bilinear form 〈·, ·〉, which is
used to de�ne the trace. Taking a smooth orientable manifoldM with dimension n, a
(n-2)-form �eld B a connection ω both valued in g, the action of the theory is given by

S[B,ω] =

ˆ
M
Tr (B ∧ F [ω]) , (27)

where the curvature tensor is, like in the similar de�nition for the Holst-Palatini action,
F = dω+ω∧ω. Classically this is an extremely simple theory, since varying the action
leads to the equations of motion

F = 0

dωB = 0, (28)
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which mean that the connection is �at and the parallel transport of the B �eld is
trivial. More than that, BF theory is a topological �eld theory, meaning that it has no
local degrees of freedom and all solutions are related by gauge transformations. This
is self-evident for the curvature equation since all �at connections are identical up to
transformations under the gauge group G, but for the parallel transport equation the
gauge symmetry in question is actually a property of the theory, where transforming B
and ω via

ω → ω

B → B + dωη, (29)

where η is a (n-3)-form �eld, leaves the action unchanged. This extra symmetry comes
as a result of the structure of the phase space of the model, where it is straightforward
to check that, if a ADM-like decomposition is done separatingM = R × Σ where the
dimension of the spatial slice Σ is (n− 1), and the time gauge is �xed (as was done in
the LQG discussion), B is the conjugate momentum of ω,

∂L
∂ω̇

= B (30)

and the equations of motion are constraints to the phase space which generate gauge
transformations. In the symplectic geometry formalism for this theory it can be shown
that indeed, while dωB = 0 generates the G-gauge transformations, F = 0 gener-
ates transformations of the type (29) proving that they are also a gauge symmetry.
Topological �eld theories, for their classical simplicity, are a good playground to study
quantization tools. To see that 3-dimensional Einstein gravity is a BF theory, we can
take n = 3, G be either SO(2,1) for Lorentzian gravity or SO(3) for Riemannian gravity
(a lot of literature on spin foam models focuses on Riemannian spacetimes, both in 3
and 4 dimensions, since the corresponding representation theory is simpler) and the
bilinear form 〈·, ·〉 be minus the Killing form. If the �eld B is a one-to-one (n-2)-form,
the spacetime metric can be de�ned as

g(v1, v2) = 〈Ev1, Ev2〉 . (31)

The spin connection ω can also be pulled back to an a�ne connection Γ in the tangent
bundle TM, and with these de�nitions the equations of motion are equivalent to the
statements that Γ is the Levi-Civita connection for the metric g on M (i.e. torsion
vanishes) and the metric is �at. These are precisely the solutions of the Einstein
equations in 3-dimensional gravity. In order to write BF theory as a spin foam theory,
one must discretize the corresponding path integral4

Z =

ˆ
dB dω eiSBF (32)

as a weighted sum over spin foams. The equations of motion imply that this integral
can be rewritten simply as

Z =

ˆ
dω δ(3)

(
F i[ω]

)
(33)

4Working in Riemannian theory from now on. This means the gauge group in the following is
SU(2).
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which is a statement of connection �atness. To de�ne the spin foams to sum over,
consider 2-complexes that are dual to triangulations ∆ of 3-space. Then triangles t∆
are dual to edges e and edges l∆ are dual to faces f . The natural discretization of B
and ω over the triangulation is to consider discrete B-�elds on each face, Bf ∈ su(2)
and group elements associated with the spin connection on each edge, Ue(ω) ∈SU(2).
Due to the enforcing of �atness in 3-dimensional gravity, the discretization of the path
integral (33) is readily written as

Z =

ˆ
SU(2)

∏
e

dUe
∏
f

δ

(
~∏
e∈f

Ue

)
, (34)

where the oriented product ~∏ is used to represent a holonomy around a certain 2-
complex face f , multiplying all the edge group elements in order. The path integral
written in this form indicates that only con�gurations in which the holonomy equals
identity are selected, which is geometrically related to �atness, since the holonomy can
be associated with a de�cit angle on the triangulated geometry. Note that there are
some redundancies in the delta functions in the way that they are de�ned, leading to
the divergence of the integral. However, those divergences have been regulated [19]
by identifying the symmetry which causes the redundancies (it is actually related to
a discrete version of di�eomorphism invariance), which allows one to eliminate the
redundant deltas and make the integral converge. To write the partition function in
spin foam formal it is then necessary to expand the delta functions over representations
of SU(2). Once again the expansion uses the Peter-Weyl theorem,

δ(g) =
∑
j

djTr
[
Dj(g)

]
(35)

so that the integral (34) can be done explicitly. dj = 2j+1 is as before the dimension of
the representation j, and Dj are the Wigner matrices. For a given triangulation there
are three matrices in each holonomy, so the integrals will be of the form

ˆ
SU(2)

dg Dj1
a1b1

(g)Dj2
a2b2

(g)Dj3
a3b3

(g) =

{
j1 j2 j3
a1 a2 a3

}{
j1 j2 j3

b1 b2 b3

}
(36)

where the quantities in brackets are called Wigner 3j symbols, sometimes called nor-
malized Clebsch-Gordan coe�cients. This expression related directly to the discussion
of intertwiners in LQG since, when using a triangulation rather than a more complex
cell decomposition for the spin foam discretization, all vertices are 3-valent and there-
fore the corresponding intertwiners are directly built from Clebsch-Gordan maps.

The above serves as a heuristic motivation for the discrete partition function of the
Ponzano-Regge model, which is (for a speci�c triangulation)

Z =
∑
{jf}

∏
f

(−1)2j(2jf + 1)
∏
e

(−1)j1+j2+j3
∏
v

{
j1 j2 j3

j4 j5 j6

}
(37)
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where the sum is performed over all possible values of jf over the triangulation, and
the bracketed quantity is called a Wigner 6j symbol, with the j's inside being the
representations associated to the 6 edges of the tetrahedron dual to v. Explicitly, the
6j symbol is computed using 3j symbols as{

j1 j2 j3
j4 j5 j6

}
=
∑
{ai}

{
j1 j2 j3
a1 a2 a3

}{
j3 j4 j5
a3 a4 a5

}{
j5 j2 j6
a5 a2 a6

}{
j6 j4 j1
a6 a4 a1

}
,

(38)

and appears as a result of grouping the integral results (36) over each tetrahedron T
(dual to a vertex v in the 2-complex). The sign factors are sometimes omitted but they
are necessary to ensure that the state sum is triangulation-independent, a remarkable
property of the model that unfortunately does not carry over to most 4-dimensional
applications of this quantization programme. Study of triangulation independence uses
Pachner's work [20], which demonstrated that any two triangulations of the same man-
ifold M can be related by a �nite number of elementary transformations called the
Pachner moves. Proving the partition function's invariance under all Pachner moves is
su�cient to prove triangulation independence.

It was also proven [21] that the Ponzano-Regge model has the adequate asymptotics
to replicate Einstein 3d gravity in the zero-order semiclassical limit, making it into a
full-�edged quantum theory of 3d gravity and one of the main successes of the spin
foam formalism to date. Of course, asymptotics of this theory poses less of a problem
than the analogous situation in 4 dimensions since it is a theory of �at space where
�atness is immediately enforced in the path integral, whereas 4-dimensional gravity
admits non-�at solutions. It is also possible to formulate a version of this model which
includes the cosmological constant, the Turaev-Viro model [22].

The Barrett-Crane model

The Barrett-Crane model [46, 47] was the �rst widely studied attempt at extending the
spin foam framework to 4-dimensional gravity, building on the work of Crane and Yetter
[30] and Ooguri [29] among others. It was originally enunciated for Riemannian theory
with the gauge group SO(4)≈SU(2)×SU(2), where the double-covering group is used
for its simpler and vastly studied representation theory. As was previously mentioned,
this and other 4-dimensional spin foam models are based on the idea that Einstein
gravity is a modi�ed BF theory with constraints, so the basic principles of quantizing
the spin foam version of BF theory still apply. Indeed, one can see that if B is de�ned
in terms of the tetrad e by

B = ?(e ∧ e) +
1

γ
e ∧ e, (39)

where ? is the Hodge dual, and the gauge group is G = SU(2)×SU(2) for Riemannian
theory or G = SL(2,C) for Lorentzian theory (using the double cover of the restricted
Lorentz group SO*(3,1) by SL(2,C)), the Holst-Palatini action can be written in a BF
form, although modi�ed by constraints. This BF formulation of gravity was introduced
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originally by Plebanski [23] but later generalized in [24] to be

S =

ˆ
M

(
Bij ∧ Fij(ω)− 1

2
φijklB

ij ∧Bkl

)
+ µ

(
a1φ

ij
ij + a2φijklε

ijkl
)
, (40)

where all indices are internal, φijkl is a scalar �eld of Lagrange multipliers obeying the
symmetries φijkl = −φjikl = −φijlk = φklij , µ is a 4-form Lagrange multiplier which
enforces an additional constraint of the vanishing of the term it pre-factors, and a1, a2

are constants. The second term in (40) is directly related to the introduction of the
Holst term and therefore the Immirzi parameter, but the Barrett-Crane approach con-
sidered the original Plebanski action, without said term, and therefore with a �eld B
given simply by ? (e ∧ e).

The geometrical picture of 4-dimensional spin foam gravity can be intuitively under-
stood by the duality between 2-complexes and triangulations of a 4-dimensional man-
ifold. Indeed, if a simplicial complex ∆ composed of 4-simplices σv, tetrahedra τe and
triangles δf is a triangulation, its dual spin foam 2-complex is established by the fol-
lowing correspondence:

simplicial complex dual 2-complex

σv vertex v
τe edge e
δf face f

This is particularly interesting because if the 2-complex is de�ned so that its faces are
triangles, then those faces' duals in the 4-dimensional picture are also triangles with
spins jf corresponding to irreducible representations of SU(2)×SU(2) (or SL(2,C)),
which allows us to establish a clear analogy between the model and Regge calculus [43],
a formalism for (non-quantum) GR originally designed with numeric applications in
mind, which showed that a solution to the Einstein equations can be approximated by
a su�ciently �ne triangulation of 4d spacetime with the fundamental quantities in tri-
angulated geometry being the face areas (which can also be expressed in terms of edge
lengths) Af and de�cit angles Θf which encode curvature, with the LQG area spectrum
establishing a direct correspondence between jf and Af . As will be seen below, Regge
calculus is used extensively in asymptotics as a term of comparison for the semiclassical
approximations of 4d spin foam models.

The essential idea behind the Barrett-Crane model is that when discretizing the in-
tegral in the Plebanski action over a triangulated geometry in 4d, the result is a sum of
integrals over triangles f , and assuming that the tetrad e used in de�ning the B �eld
gives a linear embedding of the triangle in R4, the integral of B over the given triangle
is a simple bivector, i.e. ˆ

f

e ∧ e = f ∧ g (41)
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for some f, g ∈ R4 ∧ R4. The geometrical picture associated with it is then usually
built over a single vertex (i.e. 4-simplex) v. This 4-simplex has 10 triangles dual to
faces f of the spin foam, and each of them is assigned a simple bivector bf . It can
be shown that, in the classical setup, the set of bivectors {bf} uniquely speci�es a
geometric 4-simplex up to parallel translations and inversions through the origin (and
conversely, every geometric 4-simplex determines a set of bivectors) provided that bf
have the following properties:

• If the triangle f 's orientation is changed, bf changes sign.

• If f1 and f2 share a common edge, the sum bf1 + bf2 is also a simple bivector.

• For a given tetrahedron e, the sum of its face bivectors vanishes,
∑

f∈e bf = 0.
This is called the closure condition.

• Non-degeneracy: a vertex in the tetrahedron is shared by 6 triangles. Their
corresponding set of face bivectors must be linearly independent.

• Regarding bf as linear operators using the Euclidean metric in R4, if 3 tri-
angles share a certain vertex of the tetrahedron, their bivectors must satisfy
Tr (b1 [b2, b3]) > 0. This sign condition is orientation-related and associates the
correct order of the bivectors in the formula with the orientation of the boundary
of the tetrahedron, from which the orientation of the interior elements is derived.5

In the quantum setup it is necessary to slightly relax these conditions to allow for de-
generate geometries and vanishing volumes so that the fourth condition is dropped and
in the �fth the > is replaced by ≥. Apart from that the quantization procedure is at its
core analogous to Ponzano-Regge, but the additional constraints generated by the La-
grange multipliers in (40) (which are the simplicity constraints, necessary to enforce the
geometric conditions on the bivectors above) change the structure of the phase space
and therefore the path integral. The bivectors bf relate directly to the discretized B
�eld in this model, and the group elements Ue[ω] ∈SU(2) are now de�ned on 2-complex
edges, which are dual to tetrahedra.

The spin foam colourings in the BC model in Riemannian signature are sets of spins(
j+
f , j

−
f

)
corresponding to the SU(2)×SU(2) representations and intertwiners ie on

the tetrahedra, whose main �ingredients� are 15j symbols, which arise from the 4-
dimensional equivalent of the integrals (36). Indeed, in the 4-dimensional setup, since a
tetrahedron has 4 triangles, the intertwiners are 4-valent and application of the Peter-
Weyl decomposition leads to integrals of the form

ˆ
SU(2)

dg
4∏
i=1

Dji
aibi

(g) =
∑
J

{
j1 j2 j3 j4

a1 a2 a3 a4

}J {
j1 j2 j3 j4

b1 b2 b3 b4

}J
(42)

where J is an internal index labelling the basis of 4-valent intertwiners between the
representations of spins j1, ..., j4 (they can be rewritten in terms of 3-valent intertwiners

5Indeed, with the correct orientations in place, we have Tr (b1 [b2, b3]) = 9
8V

2 where V is the
tetrahedron volume, so it is required to have a stable sign.
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and therefore Clebsch-Gordan coe�cients using the properties of SU(2) representation
theory). Grouping up these integrals over a 4-simplex leads to the 15j symbols. The
true di�culty in quantizing the BC model in comparison to BF theory is discretizing the
simplicity constraints, and indeed that's where the problems in this particular approach
surge. Such problems would lead to the inception of the EPRL/FK model, which is the
topic of the next section.

2 The EPRL/FK model

2.1 Motivation

The EPRL model was created as a joint work by Engle, Perera, Rovelli and Livine
[32, 34] as an attempt to improve on the results obtained by the BC model and correct
some of its known issues at the time, the most signi�cant one being the overspeci�ca-
tion of its bivector constraints at the quantum level, and the issues with the graviton
propagator from linearized gravity [25], which the new model claimed to solve. An
independent work by Freidel and Krasnov [33] was developed in parallel to it, and it
was eventually shown that under certain conditions on the Immirzi parameter the two
groups' approaches were equivalent, which led to the model being dubbed EPRL/FK in
subsequent literature. For the gist of our work it is only important to know the vertex
amplitude of the model whose asymptotics we will be studying, but it is worth noting
that, in conceptual terms, that the main step taken from the BC model was, instead of
implementing the simplicity constraints strongly at the classical level, doing so only on
the quantum level under a suitable de�nition of expectation value.

2.2 The EPRL vertex amplitude

We will now state the prescriptions for the di�erent amplitudes in the EPRL/FK
model[32],[33] in Riemannian signature.

Vertex amplitude Wv

We follow the construction of Wv given in [38]. The colourings for the Euclidean
EPRL/FK model are SU(2) quantum numbers jf for each face and SU(2) intertwiners
ι̂e for each edge, given by

ι̂e (kef , nef ) =

ˆ
SU(2)

dhe
⊗
f∈e

he |kef , nef〉 (43)

where |k, n〉 ≡ |k, ~n, θn〉 are the Livine-Speziale coherent states[34] in the spin-k rep-

resentation of SU(2)6. They minimize the uncertainty ∆(J2) =

∣∣∣∣〈 ~J2
〉
−
〈
~J
〉2
∣∣∣∣ in the

direction of angular momentum ~n, and their de�nition is

|k, n〉 ≡ G(~n) |k, k〉~z (44)

6Note that a priori kf 6= jf .
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where |k, k〉~z is the maximum7 angular momentum eigenstate of Ĵz and G(~n) ∈ SU(2)
rotates ~z into ~n. There is a phase ambiguity in this de�nition that cannot be resolved
in a canonical way, since the information about it is lost in the projection of the state
vector |n〉 ∈ S3 ⊂ C2 to S2 to obtain the rotation axis ~n. It will become apparent in a
later section that this ambiguity is not re�ected in any calculations, as all related phase
factors cancel out.

For the intertwiner de�nition to make sense there must be an ordering of the faces in a
tetrahedron[35]. Setting an ordering for the points in a 4-simplex, σv = (p1, p2, p3, p4, p5) ≡
(1, 2, 3, 4, 5), is equivalent to doing the same for the tetrahedra in it, since the tetrahe-
dron tei can be de�ned as the one that does not contain the point i. The operation

∂i(v1, ..., vn) ≡ (−1)i(v1, ..., v̂i, ..., vn)

∂n+1(v1, ..., vn) ≡ ∂n(v1, ..., vn) (45)

induces an ordering in a (n − 1)-simplex from that of a n-simplex. Using it, we can
establish a coherent ordering of tetrahedra and triangles starting from what was de-
�ned for the 4-simplex. We can also de�ne the orientation of a simplex - (v1, ..., vn)
is positively oriented if it is an even permutation of (1, ..., n), and negatively oriented
otherwise. Since ∂ satis�es ∂i∂j = −∂j∂i, a consequence of the de�nition is that if
f = te1 ∩ te2 , then the orientations of f induced by te1 and te2 are opposite. This has
an intuitive explanation if one considers the normal vectors to each tetrahedron.

The construction of the 4-vertex amplitude is based on the spin network basis states of
Loop Quantum Gravity[37], and it relies on de�ning a Spin(4) (that is, the Euclidean
isometry group SO(4)) intertwiner ιe from ι̂e, using the decomposition SU(2)×SU(2) =
Spin(4). First note that

ι̂e ∈ HomSU(2)

(
C,
⊗
f∈e

Vkef

)
, (46)

since it is a SU(2)-invariant vector of
⊗

f∈e Vkef , where Vkef is the vector space associated
with the kef -spin (irreducible unitary) representation of SU(2). One can construct an
injection

φ : HomSU(2)

(
C,
⊗
f∈e

Vkef

)
→ HomSpin(4)

(
C,
⊗
f∈e

Vj−f ,j
+
f

)
(47)

such that φ(ι̂e) = ιe is the Spin(4) intertwiner. This is done by using the Clebsch-

Gordan maps C
j−f ,j

+
f

kef
: Vkef → V j−f

⊗Vj+f ≈ Vj−f ,j
+
f
and constraining the values of j±f via

the Immirzi parameter: j±f = 1
2
|1± γ| jf relates them to the original SU(2) quantum

number (which is itself constrained by this relation, since j±f ∈ N
2
).

ιe(jf , nef ) ≡
∑
kef

ˆ
Spin(4)

dg(πj−f
⊗ πj+f )(g) ◦

⊗
f∈e

C
j−f ,j

+
f

kef
◦ ι̂e(kef , nef ), (48)

7Assuming we've �xed the orientation of the z axis for convenience. The maximum angular mo-
mentum state for z would be the minimum one for −z.
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where g = (g+, g−), g± ∈ SU(2) and πj±f
: Spin(4) → Vj±f

, such that (πj−f
⊗ πj+f )(g) :

Vj−f
⊗ Vj+f → Vj−f ,j

+
f
. The integration over Spin(4) is there, once again, to ensure group

invariance of the intertwiner.8

The vertex amplitude Wv is then a closed spin network (more details on graphical
calculus in [40] for the Lorentzian case) constructed by taking

⊗5
e=1 ιe and �joining

the extremities�, for each face, of the two edges that share it, as illustrated in the
�gure below (each face corresponds to 2×2 of the extremities, for a total of 40, since a
4-simplex has 10 tetrahedra) by using the so-called ε-inner product

εk : Vk ⊗ Vk → C. (49)

The inner product is constructed by linearity from the ε1/2, given in our convention by

the matrix εab =

[
0 i
−i 0

]
. The spin network diagram can now be evaluated using the

Kaufmann bracket[39] with parameter A = −1. In practice this means that each pair
of crossing lines with spins k1, k2 adds a sign (−1)4k1k2 . These signs result in an overall
sign (−1)χ in the amplitude.

Finally, Wv takes the form (now introducing the dependence in v)

Wv = (−1)χ
∑
{kef}

ˆ
Spin(4)5

∏
e∈v

dg+
vedg

−
ve

ˆ
(S3)20

∏
ef

dnef

(⊗
f

Kvf

)
◦

(⊗
e

ι̂e

)
(50)

where

Kvf =

(
ε
j−
f
⊗ ε

j+
f

)
◦
[((

π
j−
f

(g−vef )⊗ π
j+
f

(g+vef )

)
◦ C

j−
f
,j+

f

kef

)
⊗
((

π
j−
f

(g−
ve′

f
)⊗ π

j+
f

(g+
ve′

f
)

)
◦ C

j−
f
,j+

f

ke′f

)]
. (51)

In this expression, e, e′ are the edges that share the face f .

Edge amplitude We

The edge amplitude is taken in modern models to be a selection rule for the values of
kef , and is the only di�erence between the EPRL and FK models. Its choice depends
on the value of the Immirzi parameter.

8The sum over kef is there because the edge amplitude has the practical e�ect of selecting these
numbers. For a general We, they are summed over (as happens in the FK model for γ > 1)
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• for γ < 1, both EPRL and FK select the choice kef = jf = j+
f + j−f :

W γ<1
e = dι̂e

∏
f∈e

δkef , j+f +j−f
(52)

• for γ > 1, EPRL select kef = jf = j+
f − j

−
f ,

WEPRL, γ<1
e = dι̂e

∏
f∈e

δkef , j+f −j
−
f

(53)

while FK's amplitude is a weighed sum over all possible values of kef , peaking at
kef = jf = j+

f − j
−
f (the expression in brackets is a squared 3j-symbol):

WEPRL, γ<1
e = dι̂e

∏
f∈e

∑
kef

dkef

[(
j+
f j−f kef
j+
f −j−f j−f − j

+
f

)]2

. (54)

Face amplitude Wf

Fixing the face amplitude has been an open problem since the inception of spin foam
models, since the structure of Loop Quantum Gravity does not seem to impose any
particular choice for it. It is often associated with the quantized area of a triangle (see
for example [13]). While several choices have been proposed in the literature, the most
common being simply the dimension of the SU(2) representation associated to the face,
Wf = 2jf+1 (indeed, in [41] it is argued it is the correct choice), in the following we shall
keep it as general as possible depending only on the face quantum numbers,Wf ≡ µ(jf ).

For the rest of this study we will use the EPRL prescription, so that the partition
function is (considering a manifold with boundary and �xed boundary data satisfying
Regge-like conditions[38])

Z(jfB , gveB , nefB ) = (−1)χ
∑
jf

∏
f

µ(jf )

ˆ ∏
ve

dg+
vedg

−
ve

ˆ ∏
ef

dnef

ˆ ∏
e

dhe · (55)

·

⊗
f

Kf

 ◦(⊗
e

ι̂e(j
+
f ± j

−
f , nef )

)

It can now be established that the de facto variables of the model are the face SU(2)
quantum numbers, Spin(4) elements for each half-edge (ve) and the coherent state
vectors

∣∣j+
f ± j

−
f , nef

〉
for each edge connected to the vertex containing f , for each f .

2.3 Path integral formalism

In order to study the asymptotics of the model, we use the partition function written
in a path integral form,

Z =
∑
c

eS[c]. (56)
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We will review the derivation of this form for the EPRL/FK model[44], but it is worth
noting that Bonzom[42] has extended the process for any SFM under some general as-
sumptions.

Introducing in (55) the expressions for ι̂e and Kf , ε-inner products of coherent states
appear. They can be written in terms of the standard Hilbert inner product by intro-
ducing the antilinear structure map J : Vk → Vk de�ned by

εk(vk, v
′
k) = 〈J vk| v′k〉 . (57)

J has several properties: it commutes with SU(2) group elements, satis�es J 2 = (−1)2k

and, since J (~n · ~J) = −(~n · ~J)J , it takes a coherent state for the vector ~n to one for
−~n. We should also notice that the orientation requirements described above (45) are
the basis for a supplementary requirement on the nef , which we will call here the weak
gluing condition,

|nef〉v = J |nef〉v′ (58)

for a tetrahedron that is shared by two vertices. Using this notation the partition
function becomes

Z = (−1)χ
′∑
jf

∏
f

µ(jf )

ˆ ∏
ve

dg+
vedg

−
ve

ˆ ∏
ef

dnef
∏
e

dhe
∏
vf

Pvf (59)

where

Pvf = 〈kef ,J nef |πkef (h−1
e )C

kef

j−f j
+
f

πj−f
(g−evg

−
ve′)πj+f

(g+
evg

+
ve′)C

j−f j
+
f

ke′f
πke′f (he′) |ke′f , ne′f〉

(60)
can be interpreted as a propagator between two coherent states in the two edges shar-
ing the face f . Now the Clebsch-Gordan maps are SU(2)-invariant, which means that
the he can be commuted with the C's into the Spin(4) terms, which take the form
πj±f

(h−1
e g±evg

±
ve′he′). The he can then be eliminated by a change of variables g̃±ve = g±vehe,

and the corresponding integrations over them add up to a prefactor Vol(SU(2))#.

The action of the Clebsch-Gordan maps is simple in the EPRL prescription. In par-
ticular for γ < 1 (the case γ > 1 is slightly more complicated in analysis but similar
in result), we have kef = ke′f = j−f + j+

f : the C-G maps project to the highest spin
subspace of Vj−f

⊗ Vj+f . Remembering the property of coherent states that

|k, n〉 ∼ ⊗2k

∣∣∣∣12 , n
〉
≡ ⊗2k |n〉 , (61)

which is a fully symmetric state and that the highest spin subspace is precisely the one
obtained by full symmetrization, we conclude that

C
j−f j

+
f

kef
|kef , nef〉 = |kef , nef〉 = ⊗2k |nef〉 . (62)
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Therefore the propagator simpli�es to

Pvf = 〈J nef | g−evg−ve′ |ne′f〉
2j−f 〈J nef | g+

evg
+
ve′ |ne′f〉

2j+f , (63)

and with some simple algebra we can now write

Z = (−1)χ
′∑
jf

µ(jf )

ˆ ∏
ve

dg+
vedg

−
ve

ˆ ∏
ef

dnefe
S, (64)

where the �action� is

S =
∑
f

∑
v∈f

2j±f log 〈J nef | g±evg±ve′ |ne′f〉

≡
∑
f

Sf (65)

Since, by the discussion above, the boundary data are considered to be �xed for the
�path-integral� approach, while only the interior data are dynamical, it is important to
separate the action into its boundary and interior parts, S=SI+SB =

∑
fI
Sf +

∑
fB
Sf .

In section 3 we will see how the action here written can be related to that of Regge
calculus in the large-j regime, the base point of the asymptotics discussion.

3 Asymptotics: general considerations and past work

The semiclassical limit in quantum gravity is commonly taken in the literature as the
limit of large areas, since the discrete area spectrum of LQG is asymptotically indis-
tinguishable from the continuous classical spectrum when the corresponding quantum
number jf is large (i.e. ∆j

j
→
j→∞

0) . Mathematically this is imposed by making the

transformation jf → λjf , ∀f in the regime λ → ∞. For the EPRL model this means
that its action is proportional to λ, so that the partition function is (roughly) of the
form

Iλ =

ˆ
dnz g(z)eλF (z), λ→∞. (66)

This suggests the use of the stationary phase method to derive an approximation of Iλ
in the large λ limit.

3.1 The stationary phase method

The main principle of the stationary phase method is that due to the large argument of
the exponential in the integrand, the contributions to the integral near certain critical

points are much larger than everywhere else, and the integral can be estimated by con-
sidering the function only near those points. Critical points are given by the following
conditions:

• <(F (z)) is at its absolute maximum, so that
∣∣eλF (z)

∣∣ is maximized;
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• the oscillation is minimized, i.e. the variation of arg
(
eλF (z)

)
in a neighbourhood

of the point in question is the slowest. At a �rst order level this is obtained by
extremizing the action, i.e. ∂if(z) = 0, ∀i., so that the variation of =(F (z)) near
a critical point z0 is at least second order in z − z0, rather than �rst.

While not a rigorous proof (see [48, 49] for more detailed mathematical treatment),
the essentials of the method can be understood with the following argument. That we
need to maximize the real part of F (z) should be obvious in the large λ regime, so
assume in the following that F (z) = if(z), f ∈ R, and for simplicity g(z) ≡ 1 (the
only condition on g is that it allows for convergence of the integral, which won't be a
problem in the cases we are interested in considering). Take a Taylor expansion of f
around an arbitrary point z0:

f(z) ≈ f(z0) +
∂f

∂zi

∣∣∣∣
z0

(z − z0)i +
1

2

∂2f

∂zi∂zj

∣∣∣∣
z0

(z − z0)i(z − z0)j

+
1

3!

∂3f

∂zi∂zj∂zk

∣∣∣∣
z0

(z − z0)i(z − z0)j(z − z0)k +O(z4)

≡ f(z0) +Di(z0)(z − z0)i +Hij(z0)(z − z0)i(z − z0)j

+ Tijk(z0)(z − z0)i(z − z0)j(z − z0)k +O(z4) (67)

The stationary phase method assumes that when z0 are critical points, the integral (66)
is estimated by the formula

Iλ ≈
ˆ
dz0

ˆ
U(z0)

dnz eiλf(z) (68)

where U(z0) is a neighbourhood of z0. Now suppose we only took the �rst order term
in the Taylor expansion of f . Then

I1
λ ≈

ˆ
dz0

ˆ
U(z0)

dnz exp[iλ(f(z0) +Di(z0)(z − z0)i)]

=

ˆ
dz0 exp[iλ(f(z0) +Di(z0)zi0)]

ˆ
U(z0)

dnz eiλDi(z0)zi (69)

If we further assume that the contribution away from a critical point is (after taking the
Taylor approximation) so small that the integral above can be extended to the whole
z-space, the integral over z is directly related to the delta �function�:

ˆ
dnz eiλDi(z0)zi =

1

2πλ
δ(Di(z0)) (70)

in this extremely crude approximation, divergences show up when Di(z0) = 0. While
this points to the necessity of re�ning the method, which happens by taking the Taylor
expansion to second order (enough in most applications), it also serves as a very simple
justi�cation that the contributions of points z0 satisfying Di(z0) = 0 are dominant,
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justifying the de�nition of critical point above. Taking the second order expansion of
f , then, we get the more accurate formula

I2
λ =

ˆ
dnz0 exp[iλ(f(z0) +Di(z0)zi0)] ·

·
ˆ
dnz exp[iλ(Di(z0)zi) +Hij(z0)(z − z0)i(z − z0)j]

∏
i

δ(Di(z0))

=

ˆ
ΣC

dnz0e
iλf(z0)

ˆ
dnz eiλHij(z0)(z−z0)i(z−z0)j (71)

where ΣC , the critical surface, is the hypersurface9 of z-space formed by all critical

points. Using analytic continuation of the standard formula
´
dnx e−

1
2
Aαβx

αxβ =
√

(2π)n

detA

to complex A, we can solve the integral over z:

ˆ
dnz eiλHij(z0)(z−z0)i(z−z0)j =

(
2π

iλ

)n/2
1√

detHr(z0)
(72)

where Hr is the restriction of H to the orthogonal complement of its null space, as the
conditions imposed on the z0 constrain some degrees of freedom of H.

3.2 EPRL asymptotics: the reconstruction theorem

In the context of state sum models the critical point equations can be interpreted
as classical equations of motion for the interior variables of the simplicial complex
(boundary data is �xed). Considering the action (65) for the Euclidean EPRL model
with 0 < γ < 1, the equations of motion are

<(SI) = Rmax (73)

δgveSI = 0 (74)

δnefSI = 0 (75)

δjfISI = 0 (76)

Or are they? (76) in particular has rarely been considered in existing literature. The
main reason is simple - unlike the other spin foam variables in play, the jf ∈ N

2
are

discrete, and it is unclear whether there is an extension of the stationary phase method
applying to sums over general discrete variables. The only work in this direction that
we are aware of is Lachaud's[50] results for sums over �nite �elds, which is in general
not the case of the jf sums.

The other equations of motion can be written explicitly, and are as follows:

• (73) gives the gluing condition: R(g±ve)~nef = −R(g±ve′)~ne′f , where R(g) is the
rotation matrix associated to g by the 2-1 surjective homomorphism SU(2) →
SO(3);

9The critical surface is in fact a submanifold of z-space i� detHr(z0) 6= 0∀z0 ∈ ΣC .

29



• (74) gives the closure condition:
∑

f∈e
∑
± 2j±f εef (v)R(g±ve)~nef = 0, where εef (v)

is de�ned to be 1 if the orientation of f agrees with the one induced from e
according to (45), and -1 otherwise. εef (v) are also subject to the orientation
conditions, εef (v

′) = −εef (v) = −εe′f (v′).

• if the previous two conditions are met, (75) is automatically satis�ed.

The main existing result for EPRL asymptotics is the reconstruction theorem, proven
originally by JWB et al[38] for the case of one single 4-simplex, and more recently
extended by Han and Zhang10[35, 36] for a general simplicial complex with boundary.
Essentially, the reconstruction theorem states that given a set of boundary data satis-
fying a number of conditions guaranteeing their geometricity, called �Regge-like�, and
non-degenerate interior spin foam variables jf , gve, nef satisfying the equations of mo-
tion, then it is possible to construct a classical, non-degenerate geometry which matches
them and is unique up to global symmetries. The proof is constructive and involves
de�ning bivectors Xef (jf , nef ) which are interpreted as area bivectors of the discrete
geometry, while the gve are identi�ed with the spin connection (in both cases up to sign
factors). Additionally, the Regge de�cit angles Θf can be identi�ed within the bivector
formalism, such that the semiclassical action is found to be

S =
∑
f

iε [jfNfπ − γjfsign(V4)Θf ] (77)

where Nf ∈ N and V4 is the 4-volume of the connected component of the discrete
manifold that contains f , its sign depending on the orientation induced from spin
foam variables. Since the �rst term is a half-integer times iπ and only gives a ± sign
when exponentiated, it is mostly ignored, so this �classical� form for S bears an uncanny
resemblance to the discrete Einstein-Hilbert action in Regge calculus[43]:

SRegge =
∑
f

AfΘf (78)

where Af is the area of the triangle f , which coincides with γjf in the reconstructed
geometry.

3.3 The j-equation and the Flatness Problem

Given (77), it is readily seen how the j-equation (76) was the original motivation to the
��atness problem� mentioned by Freidel and Conrady[45] and later Bonzom[42]. The
result shows that the EPRL action (65) can be written as

S =
∑
fI

jf Θ̃f (gve, nef )

where Θ̃f is a quantity that is proportional, in the semiclassical limit, to the Regge-like
de�cit angle, Θ̃f →

λ→∞
±γΘf . If we were to ignore the discreteness of the jf and carry

10Han and Zhang developed their results for both the Euclidean and Lorentzian signature versions
of the EPRL model. We will focus on Euclidean signature for this paper.
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out the derivation as if it were continuous, the j-equation would be simply Θ̃f = 0, ∀f ,
therefore showing that the classical geometries reproduced by the model are restricted
to be �at - a result that puts the model in question, since GR in four dimensions admits
curved spacetime solutions. However, the applicability of this equation is questionable,
not only because of the issues with the discreteness of jf , but due to an ambiguity in
the way the semiclassical limit is taken - taking the limit of large jf , while at the same
time summing over them. In the following we consider a slight reformulation.

Assume that in the semiclassical limit the boundary face quantum numbers are given
by jfB = λj'fB , ∀fB where j′fB ∈

N
2
and λ → ∞. Then, de�ne new interior variables

xfI =
jfI
λ
∈ N

2λ
(and x±fI accordingly). The partition function then takes the form

Z(λj'fB , gveB , nefB) =
∑
xfI

ˆ ∏
ve

dgve

ˆ ∏
ef

dnefe
iλ(SI+SB) (79)

with

SI = −i
∑
fI

∑
v∈f

∑
±

2x±f log 〈J nef | g±evg±ve′ |ne′f〉 ≡
∑
fI

xfI Θ̃fI (gve, nef )

SB = −i
∑
fB

∑
v∈f

∑
±

2j
′±
f log 〈J nef | g±evg±ve′ |ne′f〉 (80)

(we factor out i to explicit the fact that the argument of the exponential becomes pure
imaginary when the gluing condition is satis�ed). With this prescription, we don't
have to assume anything about the xfI 's, eliminating ambiguities, and the dependence
of the partition function on λ is completely explicit. Additionally, we can propose a
workaround to the discreteness issue, consisting of a continuum approximation for the
xf . Since the ∆xfI = 1

2λ
tend to zero for large λ, it makes sense to consider replacing

the sum over xf by an integral:

1

∆xfI

∑
xfI

f(xfI )∆xfI ≈
1

∆xfI

ˆ ∞
0

f(xfI )dxfI (81)

and therefore the �semiclassical� partition function would be

ZSC(λj'fB) = (2λ)#fI

ˆ ∏
fI

dxf

ˆ ∏
(ve)I

dgve

ˆ ∏
(ef)I

dnefe
iλ(SI+SB) (82)

Of course, one must be careful with the errors incurring from this approximation, which
is essentially the rectangle method of numerical integration �done backwards�. It can
be shown11 that the di�erence between the sum and the integral is of order 1

λ
, making

11Consider the di�erence
´ x0+∆x

x0
f(x)dx−f(x0)∆x. For ∆x = 1/2λ the di�erence is of order 1/λ2. In

practical semiclassical calculations the integral will not extend to in�nity because triangle inequalities
limit the maximum value of j. The cuto� will be of order λ, so the error in approximating the sum by
an integral is of order 1/λ.
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the continuum approximation unreliable to compute any quantum corrections to the
zero-order, λ = ∞ results. It could still be argued that that it can be used safely in
the zero-order situation, but we will try to progress as much as possible without using
it. The problem is to estimate the integral∑

jf

µ(jf )

ˆ
dY e

∑
f iλxf Θ̃f (Y ) (83)

where we used Y as short for the set of gve, nef integration variables. Using the sta-
tionary phase method for the integral over Y , we obtain
ˆ
dY e

∑
f iλxf Θ̃f (Y ) ≈

ˆ
ΣC(xf )

dYC
∏
f

eiλxf Θ̃f (YC)

(
−2πi

λ

)#YC/2 1√
det
[∑

f xfH
f
r (YC)

]
(84)

where YC are the critical points that solve the equations of motion, and ΣC the subman-
ifold of Y -space they form. Ideally, if we use the continuum approximation, we could
think of reversing order of integration and doing the x integral �rst, but this is not pos-
sible for the general case because not only there is an x dependence on the determinant
factor, which is a priori arbitrary, but due to the closure condition the critical surface
ΣC also depends on x. This makes the integral seemingly intractable without further
assumptions. There are some heuristic considerations that can be made on this form
of Z that lead to something suggestive of the �atness problem, but the apparent �dead
end� we reach here leads us to consider a concrete example in which a full calculation
is possible, the ∆3 manifold studied in section 4.

More recently, a di�erent approach to asymptotics devised by Hellmann and Kaminski
[27] derived a result similar to the �atness problem. Their main idea is to introduce
the concept of wavefront sets for a distribution, which are designed with asymptotics in
mind and represent the subspace of phase space where the distribution is peaked in the
limit of large λ. The wavefront sets of partition functions of various models like BC and
EPRL can be written using the holonomy (or operator) representation of spin foams
[26] and their main result regarding asymptotics is an accidental curvature constraint
acting on the de�cit angles Θf ,

γΘf = 0 mod 2π, (85)

which is not strictly �atness (the dependence on the Immirzi parameter is somewhat
puzzling) but still a worrying result in terms of the accuracy of the theory's asymptotics
in respect to Einstein theory. It is noteworthy that for the BC model, which can
essentially be obtained form EPRL by taking the limit γ →∞, the wavefront approach
leads to an exact �atness constraint.

4 An example: ∆3

In the following we will attempt to compute the asymptotic EPRL partition function
for the case of the three 4-simplex manifold ∆3, which is represented in the �gure
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below together with its 2-complex dual. This particular manifold is chosen as a simple
example of a semiclassical calculation, since it has only one interior face fI . Therefore,
assuming the boundary data are �xed, Regge-like, and non-degenerate, the classical
Euclidean geometry of ∆3 is completely determined by the area j = λx and the de�cit
angle Θ of fI , two quantities that are easily seen to be completely determined by the
boundary geometry. We will now de�ne the EPRL model in this triangulation.

Boundary faces are notated f vij, i, j ∈ {1, ..., 5} where f vij is the triangle that does not
contain the points i, j of the 4-simplex v it belongs to, and has the area variable xvij.
Edges are labelled evk, k ∈ {1, ..., 5} and evk is the tetrahedron that does not contain
the point k of v. We will call the nef as |ne,f〉v , v ∈ {A,B,C} for clarity, while
the interior gve are labelled gA5, gA6, gB5, gB6, gC5, gC6 according to the �gure. The
partition function is (proportional to, with extra pre-factors not being of importance
in the analysis)

Z =
∑
x=j/λ

µ(λx)

x#YC

ˆ
ΣC(x)

dYc
eiλxΘ̃(YC)√
detHr(YC)

(86)

noting that the dimension #Y of Y -space is that of 12 copies of S3 associated to the
interior gve and other 6 copies associated to the interior nef . The dimension #YC of
the critical surface is the number of degrees of freedom unconstrained by the equations
of motion.

4.1 Solving the equations of motion

We will now study the equations of motion for ∆3. For starters, n
v
ef and n

v′

ef are related
by the weak gluing equations (58):

|n6,56〉A = J |n4,45〉C
|n5,45〉C = J |n6,46〉B
|n4,46〉B = J |n5,56〉A (87)

We can choose a simpler notation for the interior nef so that (87) reads

|nAC〉 = J |nCA〉
|nCB〉 = J |nBC〉
|nBA〉 = J |nAB〉 (88)
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Stationary phase computation on the g, n integrals results in 6 interior gluing condi-
tions,

R(g±C4) . ~nCA = −R(g±C5) . ~nCB

R(g±B6) . ~nBC = −R(g±B4) . ~nBA

R(g±A5) . ~nAB = −R(g±A6) . ~nAC (89)

36 interior-boundary gluing conditions,

R(g±A5) . ~nA5,i5 = −R(g±Ai) . ~n
A
i,i5

R(g±A6) . ~nA6,i6 = −R(g±Ai) . ~n
A
i,i6

R(g±B6) . ~nB6,i6 = −R(g±Bi) . ~n
B
i,i6

R(g±B4) . ~nB4,i4 = −R(g±Bi) . ~n
B
i,i4

R(g±C4) . ~nC4,i4 = −R(g±Ci) . ~n
C
i,i4

R(g±C5) . ~nC5,i5 = −R(g±Ci) . ~n
C
i,i5, i ∈ {1, 2, 3} (90)

and 6 closure conditions,

x
[
(1 + γ)R(g+

C4) + (1− γ)R(g−C4)
]
. ~nCA + b.t.(C+) = 0

x
[
(1 + γ)R(g+

A6) + (1− γ)R(g−A6)
]
. ~nAC + b.t.(A+) = 0

x
[
(1 + γ)R(g+

B6) + (1− γ)R(g−B6)
]
. ~nBC + b.t.(B+) = 0 (91)

−x
[
(1 + γ)R(g+

C5) + (1− γ)R(g−C5)
]
. ~nCB + b.t.(C−) = 0

−x
[
(1 + γ)R(g+

A5) + (1− γ)R(g−A5)
]
. ~nAB + b.t.(A−) = 0

−x
[
(1 + γ)R(g+

B4) + (1− γ)R(g−B4)
]
. ~nBA + b.t.(B−) = 0 (92)

where the b.t. represents terms depending exclusively on boundary variables. Indeed,
the closure conditions contain sums over edges in each vertex, so each of them contains
exactly one term corresponding to the interior edge, and the rest of the sum depends
on the boundary edge variables. The boundary terms are labelled by the edges they
pertain to.

First o�, we will note that Eqs. (90) determine all the interior gve uniquely in terms
of boundary data. Indeed, consider the �rst equation referring to g±A5. The only term
in this equation that is not a boundary variable is R(g±A5), and the indices 1,2,3 can be
grouped in a matrix form equation:

R(g±A5) .
[
~nA5,15 ~nA5,25 ~nA5,35

]︸ ︷︷ ︸
≡NA5

= −
[
R(g±A1) . ~nA1,15 R(g±A2) . ~nA2,25 R(g±A2) . ~nA2,25

]︸ ︷︷ ︸
≡V ±A5

(93)
Note that the non-degeneracy assumption on the boundary data implies that, since
all tetrahedra are non-degenerate, any set of three out of the four ~nef that de�ne a
tetrahedron must be linearly independent. This means that NA5 is invertible in the
equation above, which can then immediately be solved:

R(g±A5) = −N−1
A5V

±
A5 (94)
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and similar solutions are derived for the remaining gve. This result means that the
purely interior gluing conditions (89), if consistent (consistency should be guaranteed
by the boundary data being Regge-like), are redundant, however we will analyse them
together with the closure conditions in the following, as they have valuable physical
content for the problem.

It is possible to eliminate three of the closure equations by using the gluing ones:
indeed, substituting (89) on (92), we obtain (91) while being forced to impose that
b.t.(A+) = −b.t.(A−) (and similar for the B± and C± boundary terms). Conditions
on boundary variables are not problematic if they can be related to the equations for
Regge-like data. To elaborate on this and to properly solve the closure conditions we
need to specify the boundary data. The equations (91) in their full form are[

(1 + γ)R(g+
C4) + (1− γ)R(g−C4)

]
.
(
x~nCA + xC41~n

C
4,41 + xC42~n

C
4,42 + xC43~n

C
4,43

)
= 0[

(1 + γ)R(g+
B6) + (1− γ)R(g−B6)

]
.
(
x~nBC + xB61~n

B
6,61 + xB62~n

B
6,62 + xB63~n

B
6,63

)
= 0[

(1 + γ)R(g+
A5) + (1− γ)R(g−A5)

]
.
(
x~nAB + xA51~n

A
5,51 + xA52~n

A
5,52 + xA53~n

A
5,53

)
= 0(95)

The solution of these equations is simple to obtain, noting that they are of the form
M .~v = 0, a condition satis�ed if and only if ~v = 0 or M has a vanishing determinant.
The second possibility can be ruled out, though, by proving thatM = (1+γ)G+(1−γ)H
has nonzero determinant for all G,H ∈ SO(3) and 0 < γ < 1. Proof starts with noting
that (detM)2 = det(M tM). It is possible to get a general expression for det(M tM):

M tM =
[
(1 + γ)Gt + (1− γ)H t

]
[(1 + γ)G+ (1− γ)H]

= 2(1 + γ2)1 + (1− γ2)(GtH +H tG)

= 2(1 + γ2)1 + (1− γ2)(A+ At) (96)

de�ning A ≡ GtH ∈ SO(3). We can compute the determinant in a basis where A+At

is diagonal - note that the identity matrix is basis-invariant and A+At is a symmetric
real matrix, hence diagonalizable. To do so we need its eigenvalues, which can be
found using one of the several possible parameterizations of SO(3). Here we use a
parameterization by Janaki and Rangarajan[51]:

A =

 cos θ1 cos θ2 sin θ1 cos θ3 − cos θ1 sin θ2 sin θ3 sin θ1 sin θ3 + cos θ1 sin θ2 cos θ3

− sin θ1 cos θ2 cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3 cos θ1 sin θ3 − sin θ1 sin θ2 cos θ3

− sin θ2 − cos θ2 sin θ3 cos θ2 cos θ3


(97)

where θi ∈ [0, 2π] are angles for simple rotations. A + At can then be diagonalized,

being a symmetric real matrix. There is a basis in which A+At =

 a
b
c

 , where
a = 2

b = c = sin θ1 sin θ2 sin θ3 + cos θ1(cos θ2 + cos θ3) + cos θ2 cos θ3 − 1 (98)
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are its eigenvalues. In this basis,

M tM = 2(1 + γ2)

 1
1

1

+ (1− γ2)

 2
b
b


=

 4
2(1 + γ2) + b(1− γ2)

2(1 + γ2) + b(1− γ2)

 (99)

so that (detM)2 = 4 [2(1 + γ2) + b(1− γ2)]
2
. Therefore,

detM = 0⇔ b = −2
1 + γ2

1− γ2
(100)

It is straightforward to verify that −2 ≤ b ≤ 2 for all values of θi, which makes the above
condition impossible in the 0 < γ < 1 range we are working on. Hence, M is always
invertible in the conditions of our study, and the closure conditions are simpli�ed:

x~nCA + xC41~n
C
4,41 + xC42~n

C
4,42 + xC43~n

C
4,43 = 0

x~nBC + xB61~n
B
6,61 + xB62~n

B
6,62 + xB63~n

B
6,63 = 0

x~nAB + xA51~n
A
5,51 + xA52~n

A
5,52 + xA53~n

A
5,53 = 0 (101)

Notice that these are precisely the necessary and su�cient conditions for the 3 tetra-
hedra of ∆3 that contain the interior face f to be geometrical in the Euclidean sense,
which shows that the large areas limit for this manifold imposes a discrete classical
geometry on it. Also, the partition function is considerably simpli�ed, since it is im-
mediately veri�ed that there exists only one value of x that makes solving the closure
equations possible,

x =
∣∣xC41~n

C
4,41 + xC42~n

C
4,42 + xC43~n

C
4,43

∣∣ , (102)

and all the interior ~nef are �xed:

~nBA = −
xC41~n

C
4,41 + xC42~n

C
4,42 + xC43~n

C
4,43∣∣xC41~n

C
4,41 + xC42~n

C
4,42 + xC43~n

C
4,43

∣∣ (103)

with similar expressions for ~nAC and ~nCB. In particular, note that the j-equation
(76) seems not to apply in this example: x is �xed in terms of boundary data by the
gluing/closure conditions, without need of an extra equation for it. This is to say that
if there is an issue with the distribution of the action over x, it does not appear in the
determination of critical points that we are doing here, but at most it can appear in
the partition function's behaviour in a neighbourhood of the critical points. Note that
the other two closure conditions also give expressions for x at critical points, leading to
additional constraints on boundary data:∣∣xA13~n

A
1,13 + xA14~n

A
1,14 + xA15~n

A
1,15

∣∣ =
∣∣xB13~n

B
1,13 + xB14~n

B
1,14 + xB15~n

B
1,15

∣∣ =
∣∣xC13~n

C
1,13 + xC14~n

C
1,14 + xC15~n

C
1,15

∣∣ .
(104)

Additionally, the relations between (91) and (92) make it so that

~nCA = −~nCB
~nBC = −~nBA
~nAC = −~nAB (105)
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and together with weak gluing, we obtain that ~nAB = ~nBC = ~nCA ≡ ~n. Considering
only for the moment the term of the sum over x that includes the critical surface, its
corresponding partition function is now reduced to

Z =
µ(λx)

x5

ˆ
ΣC

dYc
eiλxΘ̃(YC)√
detHr(YC)

(106)

where, with x and ~nef �xed, the only integrations remaining are over group elements
and the phases αef , and the face amplitude µ becomes no more than a pre-factor.
The critical surface ΣC in this new expression is S2 × U(1)3, corresponding to the one
free vector ~n ∈ S2 and the three free phases αAB, αBC , αCA necessary to de�ne the
respective coherent states.

4.2 Geometric interpretation

We will attempt to �nd a compact expression for the de�cit angle Θ̃ using the new
data. The �quantum de�cit angle� for ∆3 is

Θ̃ = ±2i
∑
±

(1± γ)

[
log 〈JnCA|

(
g±C4

)†
g±C5 |nCB〉+ log 〈JnBC |

(
g±B6

)†
g±B4 |nBA〉+ log 〈JnAB |

(
g±A5

)†
g±A6 |nAC〉

]

= ±2i
∑
±

(1± γ)

[
log 〈nAC |

(
g±C4

)†
g±C5 |nCB〉+ log 〈nCB |

(
g±B6

)†
g±B4 |nBA〉+ log 〈nBA|

(
g±A5

)†
g±A6 |nAC〉

]
(107)

We will focus on the �rst of the three matrix elements in the above expression. The
results for the other two can be easily extrapolated by symmetry. In order to perform
the necessary computations, we will use the following parameterizations of SU(2) and
the Hilbert space H1/2 of spin 1

2
states:

• For the SU(2) variables, we use the decomposition

∀g ∈ SU(2), g = zαΣα,
(
z0
)2

+
(
z1
)2

+
(
z2
)2

+
(
z3
)2

= 1 (108)

where Σ0 = 1 and Σi = iσi for i = 1, 2, 3 (σi are the Pauli matrices). SU(2) is
therefore di�eomorphic to S3, and considering the change of variables

z0 = cos γ cos β1

z3 = cos γ sin β1

z1 = sin γ cos β2

z2 = sin γ sin β2, (109)

with Jacobian sin(2γ)
2

, where 0 < βi < 2π and 0 < γ < π
2
, it follows that a general

SU(2) matrix can be written as

g =

[
cos γeiβ

1
i sin γe−iβ

2

i sin γeiβ
2

cos γe−iβ
1

]
. (110)
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• For the H1/2 variables, naively, one could parametrize them as follows:

∀ |n〉 ∈ H1/2, |n〉 =

[
w0 + iw1

w2 + iw3

]
,
(
w0
)2

+
(
w1
)2

+
(
w2
)2

+
(
w3
)2

= 1 (111)

obtaining
´
H1/2 dn =

´
S3 dw. However, it is advantageous to consider a change of

variables that re�ects the construction of a coherent state. Recall that

|n〉 = eiαG(~n) |+〉 (112)

where ~n ∈ S2, α is an undetermined phase and |+〉 = (1, 0) is the eigenstate
of Jz with eigenvalue +1

2
. The SU(2) element G(~n) is the rotation that takes ~z

to ~n and is readily calculated. Consider the parameterization of S2 in spherical
coordinates

~n = (sin θ cosφ, sin θ sinφ, cos θ) (113)

To go from ~z to ~n we perform a rotation of angle θ around the axis ~n⊥ =
(− sinφ, cosφ, 0). From this we get

G(~n) = exp

(
iθ

2
~σ · ~n⊥

)
= exp

(
iθ

2
(cosφσy − sinφσx)

)
=

[
cos θ

2
e−iφ sin θ

2

−eiφ sin θ
2

cos θ
2

]
. (114)

and therefore

|n〉 = eiα
[

cos θ
2

−eiφ sin θ
2

]
. (115)

The Jacobian of the change of coordinates from ~w to (θ, φ, α) is sin(θ)
2

.

Since the matrix element 〈nAC |
(
g±C4

)†
g±C5 |nCB〉 is a scalar, it does not depend on the

choice of basis inH1/2. Since the vector part for each of the coherent states present is the
same, we will choose a basis in which ~nAB = ~n = (0, 0, 1) to carry out computations12.
This translates to

|ni〉 = eiαi
[

1
0

]
, (116)

for i ∈ {BA,CB,AC}. Notice that due to each of the coherent states appearing exactly
once as a bra and a ket in (122), the contribution of the phases αi will cancel out and

we can just consider |n〉 =

[
1
0

]
from now on. With the coherent states taken care

of, we can move on to g±C4 and g±C5. We need to use the gluing conditions (89) to
relate the two in order to exhaust the constraints incurring from them, so we will also

12There appears to be an ambiguity with this choice, coming from the parameterization of S2 in
spherical coordinates - ~n = (0, 0, 1) is obtained when θ = 0, which makes φ unde�ned. But it is evident
from (114) that G(0, 0, 1) = 1.
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need an expression for R(g) for g ∈ SU(2). Westra13 gives us a parameterization for

g =

[
x y
−ȳ x̄

]
, |x|2 + |y|2 = 1:

R(g) =

 <(x2 − y2) =(x2 + y2) −2<(xy)
−=(x2 − y2) <(x2 + y2) 2=(xy)

2<(xȳ) 2=(xȳ) |x|2 − |y|2

 (117)

In our set of coordinates for SU(2), x = cos γeiβ
1
and y = i sin γe−iβ

2
, hence we can

write

R(g) =

 cos2 γ cos(2β1) + sin2 γ cos(2β2) cos2 γ sin(2β1) + sin2 γ sin(2β2) sin(2γ) sin(β1 − β2)
− cos2 γ sin(2β1) + sin2 γ sin(2β2) cos2 γ cos(2β1)− sin2 γ cos(2β2) sin(2γ) cos(β1 − β2)

sin(2γ) sin(β1 + β2) − sin(2γ) cos(β1 + β2) cos(2γ)

 (118)

While daunting at �rst, this expression becomes more tractable within the context of
the gluing condition and the basis choice we made for ~nAB. The gluing condition is
reduced to  sin(2γA) sin(β1

A − β2
A)

sin(2γA) cos(β1
A − β2

A)
cos(2γA)

 =

 sin(2γB) sin(β1
B − β2

B)
sin(2γB) cos(β1

B − β2
B)

cos(2γB)

 (119)

where the variables labelled A pertain to gA2 and the ones labelled B pertain to gB1,
and we omit the ± index for simplicity. It is clear that the gluing condition does not �x
gA2 completely given gB1, since they only depend on the di�erences β1

A,B−β2
A,B ≡ δA,B.

Analysing the equations,

• the third equation implies γA = γB = γ, since 2γA,B ∈ [0, π] and the cosine
function is injective in this domain;

• given that γA = γB, the �rst and second equations read sin δA = sin δB and
cos δA = cos δB, which for δA,B ∈ [0, 2π] is enough to infer δA = δB.

Hence, we have that, in our chosen basis for H1/2, if g±C4 is given by the coordinates
(γ±, β

1
±, β

2
±), then g±C5 must have the form (γ±, β

1
±+ ε±, β

2
±+ ε±) where ε± ∈ [0, 2π[. We

can now compute 〈n|
(
g±C4

)†
g±C5 |n〉:

〈n|
(
g±C4

)†
g±C5 |n〉 =

[
1 0

] [ cos γe−iβ
1 −i sin γe−iβ

2

−i sin γeiβ
2

cos γeiβ
1

]
·

·

[
cos γei(β

1+ε) i sin γe−i(β
2+ε)

i sin γei(β
2+ε) cos γe−i(β

1+ε)

] [
1
0

]
. (120)

=
[

cos γe−iβ
1

sin γe−iβ
2
] [ cos γei(β

1+ε)

sin γei(β
2+ε)

]
= eiε (121)

13http://www.mat.univie.ac.at/~westra/so3su2.pdf
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Taking logarithms, we get simply iε, and substituting (with proper labels) on the ex-
pression for Θ̃ and repeating the process for the other two inner products in Θ̃ (we shall
identify the variables pertaining to each of these terms with an index i ∈ {1, 2, 3}), we
obtain

Θ̃ = ±2
∑
±

(1± γ)
3∑
i=1

ε±i . (122)

Remember that all gve have been determined earlier using the interior-boundary condi-
tions. Therefore, the ε±i can be expressed in terms of the boundary data through some
simple algebra. We give an example. R(g±A5) and R(g±A6) are known. Let's call them
A, B for simplicity. Using the parameterization (118), we want to �nd either β1 or β2

for each matrix, and take their di�erence to obtain ε. Step by step:

• γ is obtained through cos(2γ) = A33. Since 2γ ∈ [0, π], the cosine function is
injective in this domain and we can write γ = 1

2
cos−1(A33). There will be three

cases to consider due to the possibility of sin(2γ) being zero.

• If 0 < γ < π/2, it's easy to extract the sine and cosine of β1 ± β2 through
A31, A32 and A12, A13 respectively. The angles can then be obtained using the

angle function A1(x, y) ≡ 2 tan−1
(

x
1+y

)
. The result for β1 is

β1 =
1

2

[
A1

(
A13√

1− A2
33

,
A23√

1− A2
33

)
+A1

(
A31√

1− A2
33

,
A32√

1− A2
33

)]
(123)

• If γ = 0, it is readily seen that R(g) does not depend on β2 but β1 has a simple
expression

β1 =
1

2
A1 (A12, A11) (124)

• If γ = π/2, R(g) does not depend on β1 instead. β2 is found to be

β2 =
1

2
A1 (A12, A11) (125)

so we can combine the two extremal cases into one, as they give the same formal
expression for ε.

Why the emphasis on determining the ε±i ? As seen in (122), the de�cit angle Θ̃ has
a very simple expression in terms of them, and they can be interpreted geometrically.
Indeed, note that the expression for Θ̃f in a general face can be written as a sum over
vertices, Θ̃f =

∑
v∈f Θ̃vf . We know from Han/Zhang's work (among others) that the

action is interpreted as a holonomy around a certain face, going through all the vertices
it belongs to. And in the expression for Θ̃vf ,

Θ̃vf =
∑
±

2(1± γ) log 〈J nef | g±evg±ve′ |ne′f〉 (126)

∼
∑
±

2(1± γ)ε±i (127)
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the inner product clearly illustrates the parallel transport between the two tetrahedra
in v which contain f . Therefore Θ̃vf can be associated to the internal angle ∠(e, e′)vf ,
as illustrated by the �gure below, a two dimensional sketch of the geometric structure
around a vertex.

The sum of all internal angles is equal to 2π minus the de�cit angle ΘRegge, while the
sum of all the Θ̃vf should tend asymptotically to a sign factor times iγΘRegge. Hence,
the correct identi�cation which relates the ε to the internal angles is

± i
γ

Θ̃vf = ±2i

γ

∑
±

∑
i

(1± γ)ε±i ∼ ∠(e, e′)vf (128)

The results obtained in this section seem positive towards the consistency of EPRL/FK
asymptotics with Regge calculus, in contradiction with the �atness problem, since we
are able to obtain geometrically consistent values for the key quantities in this problem,
the area γj and the de�cit angle Θ of the only interior triangle in the manifold. In
fact, a similar result has been claimed by Perini and Magliaro[52], although the paper
in question does not treat the problem in detail and fails to address one important
di�culty which we will now mention: the behaviour of the state contributions when j
is varied. This is a problem because j is discrete, and while we get equations of motion
that guarantee the nonexistence of a critical point when j is di�erent from the unique
value j0 found above, it has not been properly justi�ed that the contribution from this
point is dominant over certain non-critical con�gurations with di�erent values of j,
since it is unclear how to vary the action over it. Additionally, the value of j that solves
exactly the closure conditions will in general be a non-integer, therefore there is some
uncertainty in this calculation which is important to address. The closure conditions
will, in general, not be exactly satis�ed, because of the discreteness feature.

4.3 Variation over j

To address the issue, we will use results from Chapter 7 of [49] related to the station-
ary phase method. In particular we are interested in the following theorem about the
study of the stationary phase integral when the functions that de�ne it depend on free
parameters.

Theorem: Let f(x, y) be a complex valued C∞ function in a neighbourhood K of (0, 0) ∈
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Rn+m, such that =(f) ≥ 0, =(f(0, 0)) = 0, Dxf(0, 0) = 0 and det D2
xf(0, 0) 6= 0. Let u

be a C∞ function with compact support in K. Then

ˆ
u(x, y)eiλf(x,y)dx ∼

λ→∞
eiλf

0

(
2πi

λ

)n/2√
1

detD2
xf(0, y)0

(129)

where the superscript 0 in front of the determinant signals that the corresponding func-

tion is speci�ed modulo the ideal I of functions generated by the derivatives Dxf(x, y).

Essentially, what the theorem states is that if x = 0 is a critical point of f when
the free parameter y is zero, then when y is non-zero the point is �moved�, and is in
general not a critical point any more, but its contribution to the full integral is approx-
imated by the formula above. The key point is that if f 0 has an imaginary part, this
contribution is suppressed by a factor e−λ=(f0). We are interested in this suppression
factor for the integral we are studying, where the free parameter y is taken to be x−x0,
x0 being the critical value of x. But what is f 0? The proof of the theorem above
uses the Malgrange preparation theorem, also explained in Chapter 7 of [49]. Basically,
one can choose a set of functions X i(y) satisfying X i(0) = 0 such that the ideal I of
functions generated by ∂f

∂xi
is also generated by {xi−X i(y)}i, and using the Malgrange

preparation theorem it is possible to write the following expansion for f(x, y) near the
critical point:

f(x, y) ≈
∑
|α|<N

fα(y)

α!
(x−X(y))αmod IN , ∀N (130)

f 0 is the term independent of x in this expansion. It is also noted that the f 1
i (y) belong

to IN for any N , so that they can be chosen to vanish - which is an intuitive result when
compared to a Taylor expansion around a critical point. Since we are only looking for
the leading term of f 0 to be able to obtain the suppression factor, we will consider an
expansion to second order (N = 2), and to compute the di�erent functions in play we
will use the well-known Taylor series for f :

f(x, y) ≈ f(0, 0) +
∂f

∂xi

∣∣∣∣
(0,0)︸ ︷︷ ︸

=0

xi +
∂f

∂y

∣∣∣∣
(0,0)︸ ︷︷ ︸

≡δ1

y (131)

+
1

2

∂2f

∂y∂xi

∣∣∣∣
(0,0)︸ ︷︷ ︸

≡Ki

yxi +
1

2

∂2f

∂y2

∣∣∣∣
(0,0)︸ ︷︷ ︸

≡δ2

y2 +
1

2

∂2f

∂xi∂xj

∣∣∣∣
(0,0)︸ ︷︷ ︸

≡Hij

xixj (132)

The second order Malgrange expansion for f(x, y) is (setting f 1 = 0)

f(x, y) ≈ f 0(y) +
1

2
f 2
ij(y)(xi −X i(y))(xj −Xj(y)) (133)
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Equating both expansions and gathering terms independent, linear and quadratic in x,
we get

f(0, 0) + δ1y +
1

2
δ2y

2 = f 0 +
1

2
f 2
ijX

iXj

1

2
Kix

iy = −1

2

(
f 2
ij + f 2

ji

)
xiXj

1

2
Hijx

ixj =
1

2
f 2
ijx

ixj (134)

which we solve to obtain (H ij is the inverse matrix of Hij. Remember we assumed
detH 6= 0)

f 0 = f(0, 0) + δ1y +
1

2
δ2y

2 − 1

2
KiH

ijKjy
2

−H ijKiy = Xj

f 2
ij = Hij (135)

Applying to the ∆3 case, remembering that we chose y = x− x0, we see that f(0, 0) is
the action at the critical point SC , δ1 = −iΘ̃C ∼ ±γΘRegge and δ2 = 0. Note that δ1 is
real. We are only interested in the imaginary part of f 0, which is quadratic in (x−x0),
and gives us the suppressing factor as

exp

(
λ

2
=
(
KiH

ijKj

)
(x− x0)2

)
(136)

Note that the variation of x has to be discrete. We would set j = j0 + n
2
, n ∈ Z, so that

x− x0 = n
2λ
. This allows us to write the partition function as a sum over n in terms of

the term corresponding to n = 0, the critical term:

Z = ZC
∑
n

exp

(
− A

4λ
n2

)
(137)

where A = −= (KiH
ijKj). If x is thought of as an approximately continuous variable,

the distribution of x values follows a Gaussian curve with standard deviation σ =
√

1
λA
.

This is a su�ciently small deviation, assuming A �nite, to conclude that the distribution
of the (jf , gve, nef ) variables is su�ciently peaked around the critical surface. Since A
does not have any λ dependence, the positive result should be guaranteed simply by
A 6= 0. However, the most rigorous approach to this problem is to compute the sum of
the series in (137) and obtain the statistics of the discrete variable n (note, in particular,
that j0 as given by the closure equations might not be a semi-integer, so the dominant
contribution would come from the semi-integer closest to it). The EPRL/FK action

S = −2i
∑
f

∑
v∈f

∑
±

jf (1± γ) log 〈J nef |
(
g±ve
)†
g±ve′ |ne′f〉 (138)

can be interpreted in terms of this stationary phase method by setting jf ≡ y as the
free parameter, and xi ≡

(
{gve}a , {nef}b

)
as the dependent variables, where a, b signal
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an appropriate coordinate system in which to express the interior gve, nef (which can
be, for example, the parameterizations of SU(2) and H1/2 speci�ed in section 4.2). The
quantities necessary to compute the approximate partition function (137) are

Ki =
∂2S

∂jf∂xi

∣∣∣∣
critical

=
∂Θ̃f

∂xi

∣∣∣∣∣
critical

(139)

Hij =
∂2S

∂xi∂xj

∣∣∣∣
critical

(140)

where �critical� means the derivatives are computed at the unique critical point for ∆3

determined in section 4.1, and Ki is simpli�ed due to the action being linear in j, being
reduced to �rst derivatives of the quantum de�cit angle of the interior face Θ̃f . The
conditions of theorem (129) require that det H 6= 0 for the stationary phase method to
be applicable. However, explicit computation of this determinant, even using algebraic
computation software, proves to be a bit too cumbersome (refer to appendix 1 for some
notes on this) because of the dependence of the derivatives in question on a high num-
ber of a priori arbitrary boundary variables, {gve, nef}B - even though it is possible
to compute detH explicitly in terms of them, and obtain a numeric answer if numeric
data are introduced for the EPRL variables, it is not clear at the moment whether, for
example, it is nonzero for all their possible values. For that reason, we will analyse
the determination of EPRL boundary data from geometric constructions, in order to
obtain values for H in concrete cases.

While showing consistency of the EPRL behaviour with Einstein theory in such ex-
amples is in no way a proof for the general case even within ∆3, it would nevertheless
be an interesting result, and on the �ipside, an inconsistency would be a signi�cant
result on its own, albeit a negative one. To summarize the possible outcomes:

• detH = 0: then the stationary phase method is not valid (in particular the
quantity A is not de�ned), and we must �nd a di�erent method to evaluate the
asymptotics;

• detH 6= 0 and A = 0: in that case the Gaussian distribution (137) has in�nite
standard deviation and as such will not specify the semiclassical value of x, failing
to reproduce the expected classical result;

• detH 6= 0 and A 6= 0: the Gaussian distribution around the semiclassical value of
x should guarantee reproduction of the expected geometric values. In particular,
if one can verify this to happen for a certain boundary con�guration, continuity
conditions assure that the EPRL asymptotics match the expected classic solutions
in a certain open neighbourhood of that con�guration, which would give us some
con�dence that the semiclassical limit is correct for a signi�cant range of boundary
data. It does not, however, discard the possibility of there existing isolated points
in the critical surface for which one of the two situations above happen, and it is
unclear how this would a�ect the overall statistics.
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4.4 Constructing EPRL spin foam variables from geometrical

data

Obtaining the spins jf and the Livine-Speziale coherent states |nef〉 for a triangulated
geometry ∆ explicitly de�ned by its coordinates is straightforward. Indeed, it has al-
ready been established that jf are directly related to the triangle areas via Af = γjf ,
while the |nef〉 are expressed in terms of ~nef ∈ S2, the normal vectors to the tetrahe-
dron faces' Euclidean images in the tangent spaces Te∆ ≈ R3 and phases αef ∈ U(1)
which can be consistently de�ned by imposing Regge boundary conditions but are of
no consequence to the dynamics of the model, and can therefore safely be ignored.
Obtaining the gve is somewhat less trivial, though. The �rst step is to identify what
they represent geometrically. Indeed, gve are SO(4) group elements related to the tri-
angulated equivalent of the spin connection, which in the geometrical setup translates
to mapping the geometrical tetrahedron e ∈ v to its image in the tangent space Te∆.
We have to de�ne what this means, though.

Consider a 4-simplex v ∈ ∆ and a tetrahedron e ∈ v de�ned by points p1, ..., p4. Note
that for a general triangulation each 4-simplex lives on its own copy of R4: if the entire
triangulation can be embedded isometrically in R4 that implies all the de�cit angles are
zero and the triangulation is �at. We will de�ne the tetrahedron's geometric matrix
Mve and projected matrix M

(3)
ve :

• to construct Mve, consider an oriented trivector τve = {τ 1
ve, τ

2
ve, τ

3
ve} consisting of

the three edge vectors coming out of a previously de�ned pivot point. For example,
if p1 is chosen as the pivot, a possible trivector is {p2 − p1, p3 − p1, p4 − p1}. If
e is non-degenerate, the trivector de�nes a (non-orthonormal) basis of the 3-
dimensional hyperplane e lives on, which can be equated to Te∆. Compute the
normal to this hyperplane, Nve, which is the normal to the tetrahedron. Note
that there are two possible orientations for this normal, so we will establish as a
convention that the orientation to choose is the one that makes det Mve > 0. The
full matrix is then

Mve =
{
Nve, τ

1
ve, τ

2
ve, τ

3
ve

}
. (141)

Note that this matrix is, by construction, invertible, since its 4 columns are lin-
early independent.

• for M
(3)
ve , write down an orthonormal basis of Te∆ as de�ned above, for example

using the Gram-Schmidt orthonormalization algorithm, and determine the coor-
dinates of the vectors in τve on that basis. Call them τ

(3)
ve . We will regard Te∆

as a subspace of R4 normal to (1, 0, 0, 0), since it will help with decomposing gve
into its SU(2) components g±ve. The projected tetrahedron matrix is then

M (3)
ve =


1 0 0 0
0

0 (τ 1
ve)

(3)
(τ 2
ve)

(3)
(τ 3
ve)

(3)

0

 (142)

which is also invertible by the same reasons as above.
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Note that Mve is not unique to a tetrahedron, but the gve rotation will be well de�ned
provided that the orientations of both are consistent with respect to the considerations
of section 2, that is, deriving the orientation of each tetrahedron from the 4-simplex v
by (45) and permuting the edge vectors in τve to guarantee the same sign for all Mve

associated with v. With these de�nitions in place, gve is the SO(4) matrix that rotates
the projected matrix into the geometric matrix, i.e.

gve ·M (3)
ve = Mve

⇔ gve = Mve

(
M (3)

ve

)−1
(143)

Next step is to �nd gve's SU(2) components. To do this we will use a result of van
Elfrinkhof [54] which gives an algorithm for decomposition of a SO(4) rotation into
left- and right-isoclinic rotations, which can each be associated to SU(2) elements.
Given a matrix g ∈ SO(4), de�ne the associate matrix

Asc(g) =
1

4


g00 + g11 + g22 + g33 g10 − g01 − g32 + g23 g20 + g31 − g02 − g13 g30 − g21 + g12 − g03
g10 − g01 + g32 − g23 −g00 − g11 + g22 + g33 g30 − g21 − g12 + g03 −g20 − g31 − g02 − g13
g20 − g31 − g02 + g13 −g30 − g21 − g12 − g03 −g00 + g11 − g22 + g33 g10 + g01 − g32 − g23
g30 + g21 − g12 − g03 g20 − g31 + g02 − g13 −g10 − g01 − g32 − g23 −g00 + g11 + g22 − g33

 .
(144)

van Elfrinkhof's theorem states that Asc(g) has rank one and is normalized under the
Euclidean norm,

∑
ij (Asc(g)ij)

2 = 1, and that there exists a duo of vectors (a, b, c, d)

and (p, q, r, s) in S3 × S3 such that

Asc(g) =


ap aq ar as
bp bq br bs
cp cq cr cs
dp dq dr ds

 . (145)

More precisely, there are exactly two vector pairs in S3×S3 that satisfy this, since for a
given {(a, b, c, d), (p, q, r, s)}, their opposites {(−a,−b,−c,−d), (−p,−q,−r,−s)} also
constitute a solution. Since there is a group isomorphism between S3 and SU(2) given
by

φ : S3 → SU(2)

(a, b, c, d) → a1 + i (bσ1 + cσ2 + dσ3) , (146)

where σi are the Pauli matrices and 1 is the identity matrix in SU(2), the aforementioned
vector duos are directly mapped to SU(2) group elements. The decomposition is made
explicit within SO(4) by the formula

g =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

p −q −r −s
q p s −r
r −s p q
s r −q p

 . (147)

where the left and right matrices are left-isoclinic and right-isoclinic, respectively. (147)
can also be speci�ed neatly in quaternion notation. Consider the set of quaternions
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H ≈ R4 with the basis vectors 1, I, J, K. H can also be de�ned in C2×2 by extending
the domain of the map φ in (146) to all of R4. Using the latter formulation, the
SU(2)×SU(2) action on a vector v ∈ H is neatly written as

(g+, g−) · v = g+v
(
g−
)−1

(148)

and translates to the action of the SO(4) matrix with (g+, g−) as its left and right
isoclinic components according to the van Elfrinkhof formula. We will use these results
to establish the correspondence

g+
ve = φ(a, b, c, d)

g−ve = [φ(p, q, r, s)]−1 . (149)

Now there is an issue with this de�nition, which is the ambiguity between which of the
two vector pairs that solve the van Elfrinkhof theorem to choose for each gve in order
to maintain consistency, since SU(2)×SU(2) double covers SO(4). We will address this
problem by establishing an algorithm. For notation simplicity write M ≡ Asc(g). First
analyze cases where M11 6= 0 (resulting that a, p 6= 0). De�ne

K =
√
M2

11 +M2
12 +M2

13 +M2
14 (150)

Since, using (145),

p =
M11

a
; q =

M12

a
; r =

M13

a
; s =

M14

a
(151)

and p2 + q2 + r2 + s2 = 1, it follows that a = ±
√
M2

11 +M2
12 +M2

13 +M2
14 = ±K.

For the sake of consistency we will always take the positive root a = K. It is then
straightforward to obtain

p =
M11

K
; q =

M12

K
; r =

M13

K
; s =

M14

K

a = K; b = K
M21

M11

; c =
M31

M11

; d =
M41

M11

(152)

Whenever M11 6= 0 this algorithm provides a consistent de�nition of the g+ and g−,
but when M11 = 0 a similar process can be carried out by choosing a non-zero entry
Mij (it exists since both parameter vectors are non-zero) and de�ning

K =

√√√√ 4∑
l=1

M2
il. (153)

If we use the notation (a, b, c, d) ≡ (x1, x2, x3, x4) and (p, q, r, s) = (y1, y2, y3, y4) then
we can de�ne a solution for them as follows:

xi = K

yl =
Mil

K
, l ∈ {1, 2, 3, 4}

xl = K
Mlj

Mij

, l 6= i. (154)
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To �nalize this section we will mention the two geometrical examples that are being
worked on. Given the circumstances of the �atness problem, it was deemed appropriate
to consider a �at and a non-�at version of ∆3 in calculations. As mentioned above,
a �at triangulation is easily de�ned by considering an embedding of it in R4, but it's
somewhat less trivial to de�ne a non-�at one. For the latter we will consider a �gure
analogous to a triangulation of S4 by taking an embedding of ∆3 into R5 given by an
equilateral 5-simplex centered at the origin. This embedding is de�ned by assigning the
6 points of ∆3 into the 6 points of the 5-simplex. Refer to appendix 2 for the current
status and notes on this.

Let us de�ne the equilateral 5-simplex by building it �from the ground up� from an
equilateral triangle centered at the origin. A triangle in R2 with the desired character-
istics is given by

{A2, B2, C2} =

{(
−1

2
,− 1

2
√

3

)
,

(
1

2
,− 1

2
√

3

)
,

(
0,

1√
3

)}
. (155)

Adding the third axis x2 we see that if a fourth point is D3 = (0, 0, a3), then the
tetrahedron formed by

{A3, B3, C3, D3} =

{(
−

1

2
,−

1

2
√

3
,−

a3

3

)
,

(
1

2
,−

1

2
√

3
,−

a3

3

)
,

(
0,

1
√

3
,−

a3

3

)
, (0, 0, a3)

}
(156)

is centered in the origin and a3 can be �xed to make it equilateral by forcing C3D3 = 1.
(Note that if O3 is the centre of the triangle A3B3C3 then O3D3 is normal to said tri-

angle and therefore A3D3 = B3D3 = C3D3.) Solving that constraint gives a3 =
√

3
8
.

Similarly, we construct a 4-simplex under the same conditions by adding the axis x3,
de�ning the point E4 = (0, 0, 0, a4) and considering the 4-simplex

{A4, B4, C4, D4, E4} =

{(
−

1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

a4

4

)
,

(
1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

a4

4

)
,(

0,
1
√

3
,−

1

3

√
3

8
,−

a4

4

)
,

(
0, 0,

√
3

8
,−

a4

4

)
,

(0, 0, 0, a4)} . (157)

By analogous argument to what we used for the tetrahedron, this 4-simplex is centered

in the origin and will be equilateral if D4E4 = 1, which is solved to give a4 =
√

2
5
.

Finally, we add the axis x4, de�ne F5 = (0, 0, 0, 0, a5) and consider the 5-simplex

{A5, B5, C5, D5, E5, F5} =

{(
−

1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

a5

5

)
,

(
1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

a5

5

)
,(

0,
1
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

a5

5

)
,

(
0, 0,

√
3

8
,−

1

4

√
2

5
,−

a5

5

)
,(

0, 0, 0,

√
2

5
,−

a5

5

)
, (0, 0, 0, 0, a5)

}
. (158)
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The 5-simplex has the characteristics we need if E5F5 = 1, which is satis�ed when

a5 =
√

5
12
. The coordinates of the equilateral 5-simplex to be used are therefore

{A5, B5, C5, D5, E5, F5} =

{(
−

1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

1

5

√
5

12

)
,

(
1

2
,−

1

2
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

1

5

√
5

12

)
,(

0,
1
√

3
,−

1

3

√
3

8
,−

1

4

√
2

5
,−

1

5

√
5

12

)
,

(
0, 0,

√
3

8
,−

1

4

√
2

5
,−

1

5

√
5

12

)
,(

0, 0, 0,

√
2

5
,−

1

5

√
5

12

)
,

(
0, 0, 0, 0,

√
5

12

)}
. (159)

This example is particularly simple in numeric terms since the construction implies
that all triangles have the same area Af =

√
3/4, and the normal vectors ~nef can all be

derived from the same equilateral tetrahedron in R3, taking only care to match their
orientations correctly.

Conclusions and future work

Presently the main un�nished work of this research is the example calculations of EPRL
variables and stationary phase-approximated partition function for two∆3-like con�gu-
rations, a curved one based o� an equilateral 5-simplex and a �at one with its 6 points
embedded in R4, methods used to carry them out having been detailed in Section 4.4.
However, there are already a few remarks that we would like to convey with this work.

The �rst one is that varying the asymptotic EPRL action with respect to jf , with
these being discrete, is a delicate issue, and one that we do not believe can be tackled
by simply ignoring discreteness and taking some ad hoc continuum approximation to
be able to di�erentiate with respect to those spins. Although that line of thought was
what originally lead to the enunciation of the �atness problem, Hellmann/Kaminski
seem to have recovered it under a more rigorous approach with their holonomy spin
foam formalism. In this work we attempted to explicitly acknowledge the discreteness
of j and study its e�ects on the statistics of the partition function, by using the Mal-
grange preparation theorem and its corollaries to apply the stationary phase method,
and explicit the distribution with respect to j in a neighbourhood of the critical point.
However, the validity of this method is dependent on the A quantity de�ned in sec-
tion 4.3 being �nite and mathematically meaningful, which essentially comes down to
whether the Hessian determinant of the action is non-zero at the (singular) critical
point for any possible boundary con�guration. It is a highly non-trivial task from a
computational point of view to verify this, so for the time being we would settle with
�nishing the calculation for the example cases proposed.

At the time of �nal submission of this thesis, we were indeed able to numerically com-
pute the Hessian of the action and the quantity A for the example of a con�guration
embedded in an equilateral 5-simplex, and we assert they are both non-zero for this
con�guration. This is a positive, albeit incomplete, sign of consistency of the spin foam
model in this example, since it allows us to assert by continuity arguments that the
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same is valid in a neighbourhood of the critical point considered. It would be helpful to
conduct a more detailed statistical analysis of the behaviour of this example's partition
function for values of j near the geometric one, and that is a question to be considered
in subsequent work.

The second remark is the positive result that, for this ∆3 con�guration, containing
only one interior face whose data are entirely speci�ed at the classical level by bound-
ary data, it is possible to recover the expected critical point of the action, corresponding
to the values of area and de�cit angle for the interior triangle that ensure proper ge-
ometric gluing. Incidentally, this result also allows us to perform the converse of the
reconstruction theorem and recover EPRL variables from geometric variables in con-
crete realizations of the triangulation. The assertion that the critical point for a given
boundary con�guration is unique and corresponds to the expected classical geometry
had already been veri�ed by Perini and Magliaro in [52], but the subtleties regarding
the statistics of the partition function's distribution over j are not addressed in their
work (it is just assumed that non-critical con�gurations are exponentially suppressed),
in particular the fact that the classical j0 may not be an integer, and in general the
range of j near j0 that contributes signi�cantly to the partition function (even in the
circumstances where stationary phase applies correctly with A 6= 0) is dictated by a
Gaussian distribution whose width increases with λ, although the relative uncertainty
∆j/j ≈ ∆j/λ is suppressed for large λ. We hope that our analysis (with the work that
is yet to be done) will bring some more clarity to those issues.
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Appendix 1 - Sketching the Hessian determinant calculation

The following is a Mathematica script for computing the relevant derivatives of the ∆3

EPRL action to determine the asymptotic distribution,

Ki =
∂2S

∂jf∂xi

∣∣∣∣
critical

=
∂Θ̃f

∂xi

∣∣∣∣∣
critical

Hij =
∂2S

∂xi∂xj

∣∣∣∣
critical

for a given set of boundary data. The action can be separated into the following
components

S = jf Θ̃f + Scoupling + Spure boundary (160)

where Θ̃f is the �quantum de�cit angle� on the interior face f and the �rst term de�nes
the interior action SI . The other two terms make up the boundary action, but Scoupling
groups up the terms depending in interior gve by matrix elements of the form

〈J neBf |
(
g±veB

)−1 (
g±veI
)
|neIf〉 , (161)

corresponding to faces f shared by one interior edge eI and one boundary edge eB.
These terms also contribute towards the Hessian matrix via the second derivatives

∂2S

∂ (gve)i ∂ (gve)j

∣∣∣∣∣
critical

. (162)

In the Mathematica �le the contributions from SI and Scoupling are computed separately,
using these facts. Some results are not shown because they are cumbersome and add
little to the discussion.
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 Computing the Hessian matrix and its determinant for geometrical
constructions of 3. First we introduce some definitions. 

 Our parameterization of SU2 by angles 0    Pi2, 0  1, 2  2 Pi 

In[3157]:= g_, 1_, 2_  Cos ExpI 1, I Sin ExpI 2,
I Sin ExpI 2, Cos ExpI 1; g, 1, 2  MatrixForm

Out[3157]//MatrixForm=

 1 Cos   2 Sin
  2 Sin  1 Cos

In[3158]:=  Definition of a coherent state
n depending on the spherical coordinates of the vector n , 

 and an arbitrary phase  

n_, _, _  ExpI  Cos  2, ExpI  Sin  2; n, ,   MatrixForm

Out[3158]//MatrixForm=

  Cos 

2


   Sin 

2


In[3159]:=  Using the definition for the antilinear operator J in the 2 qubit space,
Ja,b  I b, I a 
 we obtain an expression for Jn based on the parameterization above 
Jn_, _, _  ExpI  I ExpI  Sin  2, I Cos  2; Jn, ,   MatrixForm

Out[3159]//MatrixForm=

    Sin 

2


   Cos 

2




In[3160]:=  the cartesian formulation is also useful 
Jn2n1_, n2_  I n2, I n1

Out[3160]=  n2,  n1

In[3161]:=  The Hessian comes in the form H  Hpure  Hcoupling, 
 where Hpure comes from derivatives of the interior action and 
 Hcoupling comes from the dependency of
the boundary action on the interior group elements 

 We start with computing Hpure. The interior action will be called Spure here. 
spure 

Simplify2 I 1   LogConjugateTransposenBA, BA, BA.ConjugateTransposeg
A5P, 1A5P, 2A5P.gA6P, 1A6P, 2A6P.nAC, AC, AC 

LogConjugateTransposenCB, CB, CB.ConjugateTranspose
gB6P, 1B6P, 2B6P.gB4P, 1B4P, 2B4P.nBA, BA, BA 

LogConjugateTransposenAC, AC, AC.ConjugateTranspose
gC4P, 1C4P, 2C4P.gC5P, 1C5P, 2C5P.nCB, CB, CB 

2 I 1   LogConjugateTransposenBA, BA, BA.ConjugateTranspose
gA5M, 1A5M, 2A5M.gA6M, 1A6M, 2A6M.nAC, AC, AC 

LogConjugateTransposenCB, CB, CB.ConjugateTranspose
gB6M, 1B6M, 2B6M.gB4M, 1B4M, 2B4M.nBA, BA, BA 

LogConjugateTransposenAC, AC, AC.ConjugateTranspose
gC4M, 1C4M, 2C4M.gC5M, 1C5M, 2C5M.nCB, CB, CB,

Assumptions  Element, BA, BA, BA, CB, CB, CB, AC, AC, AC, A5P,
1A5P, 2A5P, A6P, 1A6P, 2A6P, B6P, 1B6P, 2B6P, B4P,
1B4P, 2B4P, C4P, 1C4P, 2C4P, C5P, 1C5P, 2C5P, A5M,
1A5M, 2A5M, A6M, 1A6M, 2A6M, B6M, 1B6M, 2B6M, B4M,
1B4M, 2B4M, C4M, 1C4M, 2C4M, C5M, 1C5M, 2C5M, Reals;

In[3162]:= Spure  spure1, 1;

In[3163]:=  Define the list of variables we will differentiate with respect to 
var  BA, BA, CB, CB, AC, AC, A5P, 1A5P, 2A5P, A6P,

1A6P, 2A6P, B6P, 1B6P, 2B6P, B4P, 1B4P, 2B4P, C4P, 1C4P, 2C4P,
C5P, 1C5P, 2C5P, A5M, 1A5M, 2A5M, A6M, 1A6M, 2A6M, B6M, 1B6M,
2B6M, B4M, 1B4M, 2B4M, C4M, 1C4M, 2C4M, C5M, 1C5M, 2C5M;

 The phases  don't contribute to the action and need not be considered. 
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Lengthvar

42

In[3207]:=  Hpure is a 42 x 42 matrix which will
be defined by explicit differentiation now. 

Hpure  Table0, i, 42, j, 42;
i  1; j  1;
Whilej  43, Whilei  43, Hpurei, j  DSpure, vari, varj; i; j; i  1;

 The derivatives are computed at the critical point,
which we will define by inputting spin foam
data g, n derived from geometric configurations. 

 Resulting matrix is very large and not shown in this printout,
but inputting numeric values for the given variables
at a critical point will produce a numeric matrix. 

 we will also need K, which is a list of first derivatives of the pure action,
as specified on the paper. 

In[3168]:= K  Table0, i, 42;

In[3169]:= i  1; Whilei  43, Ki  DSpure, vari; i;

 Now we need to compute the derivatives for the interior
boundary coupling of the action. 

 We will compute them explicitly for a portion of the coupling
depending on just one of the elements, namely GA5. This is a 3x3 matrix,

and all the other portions will have similar forms by symmetry of the problem. 

In[3173]:= SA5 

Simplify2 xa15  I 1   Log a11P, a12P.gA5P, 1A5P, 2A5P.n0, A15, A15 

I 1   Log a11M, a12M.gA5M, 1A5M, 2A5M.n0, A15, A15  
xa25 I 1   Loga21P, a22P .gA5P, 1A5P, 2A5P.n0, A25, A25 

I 1   Loga21M, a22M .gA5M, 1A5M, 2A5M.n0, A25, A25  
xa35 I 1   Log a31P, a32P.gA5P, 1A5P, 2A5P.n0, A35, A35 

I 1   Log a31M, a32M.gA5M, 1A5M, 2A5M.n0, A35, A35 ,
Assumptions  Element, A5P, 1A5P, 2A5P, A6P, 1A6P, 2A6P,

A15, A15, A25, A25, A35, A35, a11P, a11M, a12P, a12M,
a21P, a21M, a22P, a22M, a31P, a31M, a32P, a32M, Reals1;

 where a_iP  Jn_ii5 gAiP^1 and a_iM 

Jn_ii5 gAiM^1 depend only on boundary data that we fill in later 

In[3195]:= varSA5P  A5P, 1A5P, 2A5P;

In[3196]:= HSA5P  Table0, i, 3, j, 3;

In[3197]:= i  1; j  1; Whilej  4,
Whilei  4, HSA5Pi, j  DSA5, varSA5Pi, varSA5Pj; i; j; i  1;

 HSA5P is a matrix of second derivatives of
the coupling action with respect to the element gA5 

 Note that the boundary terms on the left have been put together into the "a"
quantities, which can be computed for a given choice of boundary data later. 

 Again the resulting matrix is very large and the output is omitted,
but inputting numeric values at a critical point will produce a numeric matrix. 
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 Preparing to plug in numeric data. Since we calculated the normals in 3
space we will find the corresponding coherent states in terms of them 

Ncoherentn1_, n2_, n3_ 

Sqrt1  n3  2, Sqrt1  n3  2 n1  I n2  Sqrtn1^2  n2^2
 this formula doesn't work for the extreme cases of n 

0,0,1 corresponding to 1,0 and n  0,0,1 corresponding to 0,1 
 but we can deal with those individually 

Out[3181]= 
1  n3

2
, 

n1   n2 1  n3

2 n12  n22


 In particular for the GA5 normals, nA551,
nA552, nA553 don't include the exception case. 

 filling out the boundary data of HSA5P 

In[3237]:= aA51P  Jn2NcoherentnA1151, nA1152, nA11531,
NcoherentnA1151, nA1152, nA11532.

ConjugateTransposeGA1P  FullSimplify

Out[3237]= 
1

6
Root150 544  88464 1  28060 12  4260 13  21 14  138 15  7 16  6 17  18 &, 2,

1

6
Root10000  1400 12  609 14  14 16  18 &, 6

In[3238]:= aA51M  Jn2NcoherentnA1151, nA1152, nA11531,
NcoherentnA1151, nA1152, nA11532.

ConjugateTransposeGA1M  FullSimplify

Out[3238]= 
1

6
Root38416  2156 12  141 14  11 16  18 &, 5,

1

6
Root234 256  6776 12  63 14  14 16  18 &, 1

In[3239]:= aA52P  Jn2NcoherentnA2251, nA2252, nA22531,
NcoherentnA2251, nA2252, nA22532.

ConjugateTransposeGA2P  FullSimplify

Out[3239]= 
1

6
Root38416  2156 12  141 14  11 16  18 &, 4,

1

6
Root234 256  6776 12  63 14  14 16  18 &, 8

In[3240]:= aA52M  Jn2NcoherentnA2251, nA2252, nA22531,
NcoherentnA2251, nA2252, nA22532.

ConjugateTransposeGA2M  FullSimplify

Out[3240]= 
1

6
Root150 544  88464 1  28060 12  4260 13  21 14  138 15  7 16  6 17  18 &, 7,

1

6
Root10000  1400 12  609 14  14 16  18 &, 3

In[3241]:= aA53P  Jn2NcoherentnA3351, nA3352, nA33531,
NcoherentnA3351, nA3352, nA33532.

ConjugateTransposeGA3P  FullSimplify

Out[3241]= 
1

6
Root4  12  14 &, 2,

1

6
Root1 336336  2312 12  2007 14  2 16  18 &, 4
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In[3242]:= aA53M  Jn2NcoherentnA3351, nA3352, nA33531,
NcoherentnA3351, nA3352, nA33532.

ConjugateTransposeGA3M  FullSimplify

Out[3242]= 
1

6

1

2
  12 2    15  , Root1  9 12  324 14 &, 4

 next step is to grab the S^2 coordinates for the n's attached to gA5P 

In[3188]:= Thetan_ : ArcCosn3  FullSimplify

Phin_ :

2 ArcTann2  Sqrtn1^2  n2^2  1  n1  Sqrtn1^2  n2^2 
FullSimplify

 again these formulas don't work for n 

0,0,1 but those cases are dealt with separately 

 the final step is to grab SU2 angle parameters from the GA5P,
GA5M matrices. The formula below works for  different from 0,Pi2. The
case of it being zero can be treated separately when it comes up. 

In[3190]:= Gamag_ : ArcCosSqrtg1, 1 g2, 2  FullSimplify;

Beta1g_ : I  2 Logg1, 1  g2, 2  FullSimplify;

Beta2g_ : I  2 Logg2, 1  g1, 2  FullSimplify;

 So now we can plug it all into the derivative matrix 

In[3243]:= HSA5Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aA51P1, a12P  aA51P2, a21P  aA52P1, a22P  aA52P2,
a31P  aA53P1, a32P  aA53P2, a11M  aA51M1, a12M  aA51M2,
a21M  aA52M1, a22M  aA52M2, a31M  aA53M1, a32M  aA53M2,
A15  ThetanA551, A15  PhinA551, A25  ThetanA552, A25  PhinA552,
A35  ThetanA553, A35  PhinA553, A5P  GamaGA5P, 1A5P  Beta1GA5P,
2A5P  Beta2GA5P, A5M  GamaGA5M, 1A5M  Beta1GA5M, 2A5M  Beta2GA5M;
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In[3244]:= HSA5Pn  N

Out[3244]= 
10.4595  50.0885  1.  


,


16.3368  20.6955  1.  


, 

25.4995  1.26999  1.  


,


16.3368  20.6955  1.  


, 

13.3757  2.06307  1.  


,


10.1514  15.3504  1.  


, 

25.4995  1.26999  1.  


,


10.1514  15.3504  1.  


,
8.14589  20.3831  1.  




 expressing result numerically just as a
check. the Immirzi parameter is the only unspecified one. 

 we can now add this contribution in the proper place in the total Hessian matrix
H  Hpure  Hcoupling. For example looking at the variables list of Spure,

the HA5Pn matrix should be added to the 7,7 to 9,9
matrix block in the pure Hessian. 

In[3385]:= Hfinal  Hpure;
i  1; j  1;
Whilej  4, Whilei  4, Hfinal6  i, 6  j  HSA5Pni, j; i; j; i  1;

 In the following we compute the remaining
HS matrices for the remaining contributions. 

 They are easy to compute because the form of the corresponding
action terms is the same as HSA5P and HSA5M to be computed below,

and it is only necessary to replace boundary terms in the appropriate places. 
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 HSA5M  terms depending on gA5 

In[3387]:= varSA5M  A5M, 1A5M, 2A5M;

In[3388]:= HSA5M  Table0, i, 3, j, 3;
 computing derivatives with respect to the gA5 parameters 
i  1; j  1; Whilej  4,
Whilei  4, HSA5Mi, j  DSA5, varSA5Mi, varSA5Mj; i; j; i  1;

In[3389]:= HSA5Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aA51P1, a12P  aA51P2, a21P  aA52P1, a22P  aA52P2,
a31P  aA53P1, a32P  aA53P2, a11M  aA51M1, a12M  aA51M2,
a21M  aA52M1, a22M  aA52M2, a31M  aA53M1, a32M  aA53M2,
A15  ThetanA551, A15  PhinA551, A25  ThetanA552, A25  PhinA552,
A35  ThetanA553, A35  PhinA553, A5P  GamaGA5P, 1A5P  Beta1GA5P,
2A5P  Beta2GA5P, A5M  GamaGA5M, 1A5M  Beta1GA5M, 2A5M  Beta2GA5M;

In[3390]:= HSA5Mn  N

Out[3390]= 
0.0360505  1.51782  1.  


,

0.925819  0.798833  1.  


,
0.234327  1.18223  1.  


,


0.925819  0.798833  1.  


, 

1.07089  1.74089  1.  


,

0.736023  0.861773  1.  


, 

0.234327  1.18223  1.  


,

0.736023  0.861773  1.  


,
1.08891  0.0982808  1.  




 the position for this matrix to be summed is 25,25 to 27,27 

In[3391]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal24  i, 24  j  HSA5Mni, j; i; j; i  1;
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 HSA6P  terms depending on gA6 

 as said earlier we can use the same derivatives we computed earlier,
just recalculating boundarydependent terms 

In[3252]:= nA116
nA226
nA336

Out[3252]= 0, 0, 1

Out[3253]= 0, 0, 1

Out[3254]= 0, 0, 1

 The necessary n's for this section are all equal to
one of the Ncoherent formula's exceptions. 0,0,1 corresponds
to the coherent state 0,1 which we replace manually 

In[3256]:= aA61P  Jn20, 1.ConjugateTransposeGA1P  FullSimplify
aA62P  Jn20, 1.ConjugateTransposeGA2P  FullSimplify
aA63P  Jn20, 1.ConjugateTransposeGA3P  FullSimplify

Out[3256]= 
1

24
3  3 5  2 30   6 19  3 5  2 6 3  5  ,

1

24
3  3 5  2 30   6 19  3 5  2 6 3  5  

Out[3257]= Root
1  2 1  201 12  82 13  13849 14  14088 15  26352 16  17280 17  20736 18 &, 5,

Root1  2 1  201 12  82 13  13849 14  14088 15  26352 16  17280 17  20736 18 &,
2

Out[3258]= Root9  6 12  47 14  24 16  144 18 &, 5, Root9  6 12  47 14  24 16  144 18 &, 8

In[3259]:= aA61M  Jn20, 1.ConjugateTransposeGA1M  FullSimplify
aA62M  Jn20, 1.ConjugateTransposeGA2M  FullSimplify
aA63M  Jn20, 1.ConjugateTransposeGA3M  FullSimplify

Out[3259]= Root1  2 12  201 14  82 16  13849 18  14088 110  26352 112  17280 114  20736 116 &,

6,
6  2  2  3  6 5  5 6  3  10

12 19  3 5  2 6 3  5 



Out[3260]= Root1  6 1  17 12  66 13  151 14  60 15  12 16  144 17  144 18 &, 6,
Root1  6 1  17 12  66 13  151 14  60 15  12 16  144 17  144 18 &, 1

Out[3261]= Root3  6 1  5 12  12 13  12 14 &, 3, Root3  6 1  5 12  12 13  12 14 &, 1
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In[3262]:= nA661
nA662
nA663

Out[3262]= 
2

3
,

2

3
,
1

3


Out[3263]= 
2

3
,

2

3
,
1

3


Out[3264]= 0, 
2 2

3
,
1

3


In[3265]:= GA6P
GA6M

Out[3265]= 


2
,



2
, 



2
, 



2


Out[3266]= 
1

2
,

1

2
, 

1

2
, 

1

2


 these are not 0,0, 1 so the formulas for theta and phi work 

In[3394]:= HSA6Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aA61P1, a12P  aA61P2, a21P  aA62P1, a22P  aA62P2,
a31P  aA63P1, a32P  aA63P2, a11M  aA61M1, a12M  aA61M2,
a21M  aA62M1, a22M  aA62M2, a31M  aA63M1, a32M  aA63M2,
A15  ThetanA661, A15  PhinA661, A25  ThetanA662, A25  PhinA662,
A35  ThetanA663, A35  PhinA663, A5P  GamaGA6P, 1A5P  Beta1GA6P,
2A5P  Beta2GA6P, A5M  GamaGA6M, 1A5M  Beta1GA6M, 2A5M  Beta2GA6M;

HSA6Pn 
N

Out[3395]= 
3.58707  10.2585  1.  


,


7.40026  1.44089  1.  


, 

2.61285  3.54453  1.  


,


7.40026  1.44089  1.  


, 

2.20041  3.35849  1.  


,

1.05247  4.15464  1.  


, 

2.61285  3.54453  1.  


,

1.05247  4.15464  1.  


,
3.99395  0.827336  1.  




 this matrix goes in the positions 10,10 to 12,12 

In[3396]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal9  i, 9  j  HSA6Pni, j; i; j; i  1;
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In[3272]:=  HSA6M  terms depending on gA6 

HSA6Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aA61P1, a12P  aA61P2, a21P  aA62P1, a22P  aA62P2,
a31P  aA63P1, a32P  aA63P2, a11M  aA61M1, a12M  aA61M2,
a21M  aA62M1, a22M  aA62M2, a31M  aA63M1, a32M  aA63M2,
A15  ThetanA661, A15  PhinA661, A25  ThetanA662, A25  PhinA662,
A35  ThetanA663, A35  PhinA663, A5P  GamaGA6P, 1A5P  Beta1GA6P,
2A5P  Beta2GA6P, A5M  GamaGA6M, 1A5M  Beta1GA6M, 2A5M  Beta2GA6M;

HSA6Mn 
N

Out[3273]= 
1.02762  5.73053  1.  


,

3.38073  1.77939  1.  


,
0.996288  0.184347  1.  


,


3.38073  1.77939  1.  


,
1.58325  1.0477  1.  


,

0.153278  1.73469  1.  


, 

0.996288  0.184347  1.  


,

0.153278  1.73469  1.  


, 

1.06944  0.780515  1.  




 this matrix goes in the positions 28,28 to 30,30 

In[3397]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal27  i, 27  j  HSA6Mni, j; i; j; i  1;
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 HSB4P  terms depending on gB4 

In[3275]:= nB114
nB224
nB334
nB441
nB442
nB443  tracking exceptions 

Out[3275]= 0, 
2 2

3
,
1

3


Out[3276]= 
2

3
,

2

3
,
1

3


Out[3277]= 0, 
2 2

3
,
1

3


Out[3278]= 
2

3
,

2

3
,
1

3


Out[3279]= 0, 
2 2

3
,
1

3


Out[3280]= 
2

3
,

2

3
,
1

3


In[3295]:= aB41P  Jn2NcoherentnB1141, nB1142, nB11431,
NcoherentnB1141, nB1142, nB11432.

ConjugateTransposeGB1P  Simplify;

In[3296]:= aB42P  Jn2NcoherentnB2241, nB2242, nB22431,
NcoherentnB2241, nB2242, nB22432.

ConjugateTransposeGB2P  Simplify;

In[3297]:= aB43P  Jn2NcoherentnB3341, nB3342, nB33431,
NcoherentnB3341, nB3342, nB33432.

ConjugateTransposeGB3P  FullSimplify;

In[3298]:= aB41M  Jn2NcoherentnB1141, nB1142, nB11431,
NcoherentnB1141, nB1142, nB11432.

ConjugateTransposeGB1M  FullSimplify;

In[3299]:= aB42M  Jn2NcoherentnB2241, nB2242, nB22431,
NcoherentnB2241, nB2242, nB22432.

ConjugateTransposeGB2M  FullSimplify;

In[3300]:= aB43M  Jn2NcoherentnB3341, nB3342, nB33431,
NcoherentnB3341, nB3342, nB33432.

ConjugateTransposeGB3M  FullSimplify;
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GB4P
GB4M  tracking exceptions 

Out[3301]= Root1  3 1  5 12  6 13  4 14 &, 4, Root1  3 1  5 12  6 13  4 14 &, 1,
Root1  3 1  5 12  6 13  4 14 &, 3, Root1  3 1  5 12  6 13  4 14 &, 3

Out[3302]= 
1

8
 3  5   6 3  5  ,

  2 3  15

6  2 5
,


  2 3  15

2 3  5 
,
1

8
 3  5   6 3  5  

In[3308]:= HSB4Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aB41P1, a12P  aB41P2, a21P  aB42P1, a22P  aB42P2,
a31P  aB43P1, a32P  aB43P2, a11M  aB41M1, a12M  aB41M2,
a21M  aB42M1, a22M  aB42M2, a31M  aB43M1, a32M  aB43M2,
A15  ThetanB441, A15  PhinB441, A25  ThetanB442, A25  PhinB442,
A35  ThetanB443, A35  PhinB443, A5P  GamaGB4P, 1A5P  Beta1GB4P,
2A5P  Beta2GB4P, A5M  GamaGB4M, 1A5M  Beta1GB4M, 2A5M  Beta2GB4M;

In[3309]:= HSB4Pn  N

Out[3309]= 
11.6472  45.8324  1.  


,


17.5169  19.9046  1.  


, 

28.5474  0.0456836  1.  


,


17.5169  19.9046  1.  


, 

13.2085  1.92642  1.  


,


10.0986  13.7563  1.  


, 

28.5474  0.0456836  1.  


,


10.0986  13.7563  1.  


,
7.38487  18.3917  1.  




 this matrix goes in the positions 16,16 to 18,18 

In[3398]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal15  i, 15  j  HSB4Pni, j; i; j; i  1;
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 HSB4M  terms depending on gB4 

In[3310]:= HSB4Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aB41P1, a12P  aB41P2, a21P  aB42P1, a22P  aB42P2,
a31P  aB43P1, a32P  aB43P2, a11M  aB41M1, a12M  aB41M2,
a21M  aB42M1, a22M  aB42M2, a31M  aB43M1, a32M  aB43M2,
A15  ThetanB441, A15  PhinB441, A25  ThetanB442, A25  PhinB442,
A35  ThetanB443, A35  PhinB443, A5P  GamaGB4P, 1A5P  Beta1GB4P,
2A5P  Beta2GB4P, A5M  GamaGB4M, 1A5M  Beta1GB4M, 2A5M  Beta2GB4M;

In[3311]:= HSB4Mn  N

Out[3311]= 
0.184765  1.57391  1.  


,

0.496794  0.434657  1.  


,
0.574416  0.0935196  1.  


,


0.496794  0.434657  1.  


,
0.107499  1.08858  1.  


,

0.0852812  0.437964  1.  


, 

0.574416  0.0935196  1.  


,

0.0852812  0.437964  1.  


, 

0.0151166  0.722535  1.  




 this matrix goes in the positions 34,34 to 36,36 

In[3399]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal33  i, 33  j  HSB4Mni, j; i; j; i  1;
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 HSB6P  terms depending on gB6 

In[3313]:= nB116
nB226
nB336
nB661
nB662
nB663  tracking exceptions 

Out[3313]= 0, 0, 1

Out[3314]= 0, 0, 1

Out[3315]= 0, 0, 1

Out[3316]= 
2

3
,

2

3
,
1

3


Out[3317]= 0, 
2 2

3
,
1

3


Out[3318]= 
2

3
,

2

3
,
1

3


In[3319]:= aB61P  Jn20, 1.ConjugateTransposeGB1P  Simplify;

In[3323]:= aB62P  Jn20, 1.ConjugateTransposeGB2P  Simplify;

In[3321]:= aB63P  Jn20, 1.ConjugateTransposeGB3P  FullSimplify;

In[3324]:= aB61M  Jn20, 1.ConjugateTransposeGB1M  Simplify;

In[3325]:= aB62M  Jn20, 1.ConjugateTransposeGB2M  Simplify;

In[3326]:= aB63M  Jn20, 1.ConjugateTransposeGB3M  FullSimplify;

In[3327]:= GB6P
GB6M  tracking exceptions 

Out[3327]= 
1

4
 2   6 , 

   3 

2 2
, 

1

4
 2   6 ,

1

4
 2   6 

Out[3328]= 
  3

2 2
,
  3

2 2
, 

  3

2 2
,
  3

2 2


In[3329]:= HSB6Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aB61P1, a12P  aB61P2, a21P  aB62P1, a22P  aB62P2,
a31P  aB63P1, a32P  aB63P2, a11M  aB61M1, a12M  aB61M2,
a21M  aB62M1, a22M  aB62M2, a31M  aB63M1, a32M  aB63M2,
A15  ThetanB661, A15  PhinB661, A25  ThetanB662, A25  PhinB662,
A35  ThetanB663, A35  PhinB663, A5P  GamaGB6P, 1A5P  Beta1GB6P,
2A5P  Beta2GB6P, A5M  GamaGB6M, 1A5M  Beta1GB6M, 2A5M  Beta2GB6M;
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In[3330]:= HSB6Pn  N

Out[3330]= 
3.41651  2.44059  1.  


,


0.265756  1.07703  1.  


, 

1.77634  0.984371  1.  


,


0.265756  1.07703  1.  


,
0.309891  2.28359  1.  


,


0.224269  0.252841  1.  


, 

1.77634  0.984371  1.  


,


0.224269  0.252841  1.  


,
1.39836  0.90581  1.  




 this matrix goes in the positions 13,13 to 15,15 

In[3400]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal12  i, 12  j  HSB6Pni, j; i; j; i  1;
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 HSB6M  terms depending on gB6 

In[3332]:= HSB6Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aB61P1, a12P  aB61P2, a21P  aB62P1, a22P  aB62P2,
a31P  aB63P1, a32P  aB63P2, a11M  aB61M1, a12M  aB61M2,
a21M  aB62M1, a22M  aB62M2, a31M  aB63M1, a32M  aB63M2,
A15  ThetanB661, A15  PhinB661, A25  ThetanB662, A25  PhinB662,
A35  ThetanB663, A35  PhinB663, A5P  GamaGB6P, 1A5P  Beta1GB6P,
2A5P  Beta2GB6P, A5M  GamaGB6M, 1A5M  Beta1GB6M, 2A5M  Beta2GB6M;

In[3333]:= HSB6Mn  N

Out[3333]= 
0.204865  1.92141  1.  


,

0.233356  0.212422  1.  


, 

1.60235  0.658294  1.  


,


0.233356  0.212422  1.  


,
0.146157  1.76052  1.  


,


0.552981  0.134742  1.  


, 

1.60235  0.658294  1.  


,


0.552981  0.134742  1.  


, 

0.0437244  0.12315  1.  




 this matrix goes in the positions 31,31 to 33,33 

In[3401]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal30  i, 30  j  HSB6Mni, j; i; j; i  1;
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 HSC5P  terms depending on gC5 

In[3335]:= nC115
nC225
nC335
nC551
nC552
nC553  tracking exceptions 

Out[3335]= 0, 0, 1

Out[3336]= 0, 0, 1

Out[3337]= 0, 0, 1

Out[3338]= 
2

3
,

2

3
,
1

3


Out[3339]= 0, 
2 2

3
,
1

3


Out[3340]= 
2

3
,

2

3
,
1

3


In[3343]:= aC51P  Jn20, 1.ConjugateTransposeGC1P  Simplify;

In[3344]:= aC52P  Jn20, 1.ConjugateTransposeGC2P  Simplify;

In[3345]:= aC53P  Jn20, 1.ConjugateTransposeGC3P  FullSimplify;

In[3346]:= aC51M  Jn20, 1.ConjugateTransposeGC1M  Simplify;

In[3347]:= aC52M  Jn20, 1.ConjugateTransposeGC2M  Simplify;

In[3349]:= aC53M  Jn20, 1.ConjugateTransposeGC3M  Simplify;

In[3350]:= GC5P
GC5M  tracking exceptions 

Out[3350]= 
1

4
 2   6 , 

   3 

2 2
, 

1

4
 2   6 ,

1

4
 2   6 

Out[3351]= 
  3

2 2
,
  3

2 2
, 

  3

2 2
,
  3

2 2


In[3352]:= HSC5Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aC51P1, a12P  aC51P2, a21P  aC52P1, a22P  aC52P2,
a31P  aC53P1, a32P  aC53P2, a11M  aC51M1, a12M  aC51M2,
a21M  aC52M1, a22M  aC52M2, a31M  aC53M1, a32M  aC53M2,
A15  ThetanC551, A15  PhinC551, A25  ThetanC552, A25  PhinC552,
A35  ThetanC553, A35  PhinC553, A5P  GamaGC5P, 1A5P  Beta1GC5P,
2A5P  Beta2GC5P, A5M  GamaGC5M, 1A5M  Beta1GC5M, 2A5M  Beta2GC5M;
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In[3353]:= HSC5Pn  N

Out[3353]= 
0.0549911  1.04997  1.  


,


1.40984  1.29333  1.  


,
0.646454  0.970998  1.  


,


1.40984  1.29333  1.  


,
0.857259  0.145612  1.  


,

0.955005  0.662343  1.  


, 

0.646454  0.970998  1.  


,

0.955005  0.662343  1.  


, 

0.829763  1.92748  1.  




 this matrix goes in the positions 22,22 to 24,24 

In[3402]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal21  i, 21  j  HSC5Pni, j; i; j; i  1;
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 HSC5M  terms depending on gC5 

In[3355]:= HSC5Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aC51P1, a12P  aC51P2, a21P  aC52P1, a22P  aC52P2,
a31P  aC53P1, a32P  aC53P2, a11M  aC51M1, a12M  aC51M2,
a21M  aC52M1, a22M  aC52M2, a31M  aC53M1, a32M  aC53M2,
A15  ThetanC551, A15  PhinC551, A25  ThetanC552, A25  PhinC552,
A35  ThetanC553, A35  PhinC553, A5P  GamaGC5P, 1A5P  Beta1GC5P,
2A5P  Beta2GC5P, A5M  GamaGC5M, 1A5M  Beta1GC5M, 2A5M  Beta2GC5M;

In[3356]:= HSC5Mn  N

Out[3356]= 
0.145624  2.87475  1.  


,

0.0188819  0.623814  1.  


, 

3.31999  2.91133  1.  


,


0.0188819  0.623814  1.  


, 

0.00337522  2.39695  1.  


,


0.903533  1.05053  1.  


, 

3.31999  2.91133  1.  


,


0.903533  1.05053  1.  


, 

0.0694368  1.63851  1.  




 this matrix goes in the positions 40,40 to 42,42 

In[3403]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal39  i, 39  j  HSC5Mni, j; i; j; i  1;
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 HSC4P  terms depending on gC4 

In[3358]:= nC114
nC224
nC334
nC441
nC442
nC443  tracking exceptions 

Out[3358]= 
2

3
,

2

3
,
1

3


Out[3359]= 0, 
2 2

3
,
1

3


Out[3360]= 
2

3
,

2

3
,
1

3


Out[3361]= 
2

3
,

2

3
,
1

3


Out[3362]= 
2

3
,

2

3
,
1

3


Out[3363]= 0, 
2 2

3
,
1

3


In[3364]:= aC41P  Jn2NcoherentnC1141, nC1142, nC11431,
NcoherentnC1141, nC1142, nC11432.

ConjugateTransposeGC1P  Simplify;

In[3365]:= aC42P  Jn2NcoherentnC2241, nC2242, nC22431,
NcoherentnC2241, nC2242, nC22432.

ConjugateTransposeGC2P  Simplify;

In[3366]:= aC43P  Jn2NcoherentnC3341, nC3342, nC33431,
NcoherentnC3341, nC3342, nC33432.

ConjugateTransposeGC3P  FullSimplify;

In[3367]:= aC41M  Jn2NcoherentnC1141, nC1142, nC11431,
NcoherentnC1141, nC1142, nC11432.

ConjugateTransposeGC1M  FullSimplify;

In[3368]:= aC42M  Jn2NcoherentnC2241, nC2242, nC22431,
NcoherentnC2241, nC2242, nC22432.

ConjugateTransposeGC2M  FullSimplify;

In[3369]:= aC43M  Jn2NcoherentnC3341, nC3342, nC33431,
NcoherentnC3341, nC3342, nC33432.

ConjugateTransposeGC3M  FullSimplify;
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In[3370]:= GC4P
GC4M  tracking exceptions 

Out[3370]= Root1  12  4 14 &, 3, Root1  12  4 14 &, 3,
Root1  12  4 14 &, 1, Root1  12  4 14 &, 4

Out[3371]= Root1  12  4 14 &, 3, Root1  12  4 14 &, 2,
Root1  12  4 14 &, 4, Root1  12  4 14 &, 4

In[3372]:= HSC4Pn  HSA5P . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aC41P1, a12P  aC41P2, a21P  aC42P1, a22P  aC42P2,
a31P  aC43P1, a32P  aC43P2, a11M  aC41M1, a12M  aC41M2,
a21M  aC42M1, a22M  aC42M2, a31M  aC43M1, a32M  aC43M2,
A15  ThetanC441, A15  PhinC441, A25  ThetanC442, A25  PhinC442,
A35  ThetanC443, A35  PhinC443, A5P  GamaGC4P, 1A5P  Beta1GC4P,
2A5P  Beta2GC4P, A5M  GamaGC4M, 1A5M  Beta1GC4M, 2A5M  Beta2GC4M;

In[3373]:= HSC4Pn  N

Out[3373]= 
0.201729  2.46202  1.  


,

0.221534  0.486315  1.  


,
0.371758  0.612978  1.  


,


0.221534  0.486315  1.  


, 

0.668128  0.0920215  1.  


,


0.351444  0.0259157  1.  


, 

0.371758  0.612978  1.  


,


0.351444  0.0259157  1.  


,
0.768992  1.27505  1.  




 this matrix goes in the positions 19,19 to 21,21 

In[3404]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal18  i, 18  j  HSC4Pni, j; i; j; i  1;
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 HSC4M  terms depending on gC4 

In[3375]:= HSC4Mn  HSA5M . xa15  Sqrt3  4 , xa25  Sqrt3  4 , xa35  Sqrt3  4 ,
a11P  aC41P1, a12P  aC41P2, a21P  aC42P1, a22P  aC42P2,
a31P  aC43P1, a32P  aC43P2, a11M  aC41M1, a12M  aC41M2,
a21M  aC42M1, a22M  aC42M2, a31M  aC43M1, a32M  aC43M2,
A15  ThetanC441, A15  PhinC441, A25  ThetanC442, A25  PhinC442,
A35  ThetanC443, A35  PhinC443, A5P  GamaGC4P, 1A5P  Beta1GC4P,
2A5P  Beta2GC4P, A5M  GamaGC4M, 1A5M  Beta1GC4M, 2A5M  Beta2GC4M;

In[3376]:= HSC4Mn  N

Out[3376]= 
2.63152  4.25579  1.  


,


0.506432  2.20533  1.  


, 

0.721224  0.931728  1.  


,


0.506432  2.20533  1.  


, 

0.393506  2.19287  1.  


,

0.0300262  1.83665  1.  


, 

0.721224  0.931728  1.  


,

0.0300262  1.83665  1.  


, 

0.922256  2.66305  1.  




 this matrix goes in the positions 37,37 to 39,39 

In[3405]:= i  1; j  1;
Whilej  4, Whilei  4, Hfinal36  i, 36  j  HSC4Mni, j; i; j; i  1;

22   Delta3hessian20.10.2016.nb



 While the considerations about possible simplifications to the Hessian
at the critical point done upon defining it could prove useful later on,

for the strict purpose of computing a numeric determinant we
have used plainly Hpure rather than the simplified version. 

 We now need to substitute the G, n values in the "pure" part of
this Hessian matrix to compute the determinant with the geometric G,

n data. For simplicity the phases  can be taken as zero. 

In[3409]:= nB446
nC554
nA665  consistency check for the interior n's 

Out[3409]= 0, 0, 1

Out[3410]= 0, 0, 1

Out[3411]= 0, 0, 1

 as expected from the main text,
the three relevant interior n's are all equal. Fixing the basis to make them equal
to 0,0,1 rather than 0,0,1 is not necessary at this point because we are
not using the simplifications that were derived from that basis choice. 

 the spherical coordinates for 0,0,1 are Theta  Pi , Phi  0 

In[3442]:= Hfinal1 

Hfinal . BA  0, BA  Pi, BA  0, CB  0, CB  Pi, CB  0, AC  0, AC  Pi, AC  0,
A6P  GamaGA6P, A5P  GamaGA5P, 1A6P  Beta1GA6P, 1A5P  Beta1GA5P,
2A6P  Beta2GA6P, 2A5P  Beta2GA5P, B4P  GamaGB4P, B6P  GamaGB6P,
1B4P  Beta1GB4P, 1B6P  Beta1GB6P, 2B4P  Beta2GB4P , 2B6P  Beta2GB6P ,
C5P  GamaGC5P, C4P  GamaGC4P, 1C5P  Beta1GC5P, 1C4P  Beta1GC4P ,
2C5P  Beta2GC5P, 2C4P  Beta2GC4P, A6M  GamaGA6M, A5M  GamaGA5M,
1A6M  Beta1GA6M, 1A5M  Beta1GA5M, 2A6M  Beta2GA6M, 2A5M  Beta2GA5M,
B4M  GamaGB4M, B6M  GamaGB6M, 1B4M  Beta1GB4M, 1B6M  Beta1GB6M,
2B4M  Beta2GB4M , 2B6M  Beta2GB6M , C5M  GamaGC5M, C4M  GamaGC4M,
1C5M  Beta1GC5M, 1C4M  Beta1GC4M , 2C5M  Beta2GC5M, 2C4M  Beta2GC4M;
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In[3443]:= Hfinal1  N

Out[3443]=

A very large output was generated. Here is a sample of it:

0.  2. 

0.0786893  1.32884  1016  1.    1.14536  3.95558  1015  1.  ,
0.  2.  0.57735  1.12429  1016  1.    1.61015  1.58797  1015  1.  ,
38, 0., 0., 1, 38, 1,

0., 40, 2.77556  1017  0.509288  1.    20191 11




Show Less Show More Show Full Output Set Size Limit...

 Printing out a sample of the output to show that the resulting Hessian matrix
for this configuration depends only on the unspecified Immirzi parameter. 

In[3469]:= Hfinaltest  Hfinal1 .   Sqrt3  2;

 Using a numeric value for the Immirzi parameter for testing purposes,
since the 42x42 matrix is too large for the
determinant to be computed algebraically. As per the main text,

the acceptable values are Sqrt34j where j is a semiinteger. 

In[3491]:= HfinaltestN  NHfinaltest;

 Large numeric result omitted. 

In[3492]:= DetHfinaltestN

Out[3492]= 9.86934  1013  1.69985  1014 

 Testing with different levels of numeric precision on Mathematica
seems to indicate a robust result. Hessian determinant is nonzero. 

 We will now compute the K derivatives using the same prescription used in
Hfinaltest, including the same test value for the Immirzi parameter. 

 We need this to compute the constant A referred to in the main text. 

In[3477]:= Kfinaltest 

K . BA  0, BA  Pi, BA  0, CB  0, CB  Pi, CB  0, AC  0, AC  Pi, AC  0,
A6P  GamaGA6P, A5P  GamaGA5P, 1A6P  Beta1GA6P, 1A5P  Beta1GA5P,
2A6P  Beta2GA6P, 2A5P  Beta2GA5P, B4P  GamaGB4P, B6P  GamaGB6P,
1B4P  Beta1GB4P, 1B6P  Beta1GB6P, 2B4P  Beta2GB4P ,
2B6P  Beta2GB6P , C5P  GamaGC5P, C4P  GamaGC4P, 1C5P  Beta1GC5P,
1C4P  Beta1GC4P , 2C5P  Beta2GC5P, 2C4P  Beta2GC4P,
A6M  GamaGA6M, A5M  GamaGA5M, 1A6M  Beta1GA6M, 1A5M  Beta1GA5M,
2A6M  Beta2GA6M, 2A5M  Beta2GA5M, B4M  GamaGB4M, B6M  GamaGB6M,
1B4M  Beta1GB4M, 1B6M  Beta1GB6M, 2B4M  Beta2GB4M ,
2B6M  Beta2GB6M , C5M  GamaGC5M, C4M  GamaGC4M, 1C5M  Beta1GC5M,
1C4M  Beta1GC4M , 2C5M  Beta2GC5M, 2C4M  Beta2GC4M,   Sqrt3  2;

In[3493]:= KfinaltestN  NKfinaltest;

 Large numeric result omitted. 

 Now we can numerically compute the constant A via
the expression given in the main text inline, after eq. 137 
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In[3494]:= A  ImKfinaltestN.InverseHfinaltestN.KfinaltestN

Out[3494]= 6.62021

 Testing with different levels of numeric precision on Mathematica seems to
indicate a robust result as far as order of magnitude goes  not shown here,

but can be reproduced by running the code. 
 A is nonzero for this configuration. 
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Appendix 2 - Sketching EPRL variable calculation for a geomet-

ric ∆3 based on equilateral 5-simplex

The following is the Mathematica script used for carrying out the calculation speci�ed
in section 4.4 for the ∆3 built from the equilateral 5-simplex centered at the origin, with
the goal of obtaining numeric data to test the Hessian of the previous appendix.. The
�gluing matrices� referred to in the script are a consistency check for the geometricity
of the variables found. Indeed, considering a gluing equation

R(g±ve)~nef = −R(g±ve′)~ne′f , (163)

notice that the + and − equations contained in it can both be manipulated to give the
value of ~ne′f , and therefore(

R−1(g+
ve′)R(g+

ve)−R−1(g−ve′)R(g−ve)
)
~nef = 0. (164)

De�ning the matrix in brackets as the gluing matrix between two tetrahedra, Ree′ , ~nef
must lie in its null space.

80



In[2392]:=  Determining 4d coordinates for each of the 4
simplices in the equilateral 5simplex Delta3 

a  1  2, 1  2 Sqrt3, 1  3 Sqrt3  8, 1  4 Sqrt2  5, 1  5 Sqrt5  12;
b  1  2, 1  2 Sqrt3, 1  3 Sqrt3  8, 1  4 Sqrt2  5, 1  5 Sqrt5  12;
c  0, 1  Sqrt3, 1  3 Sqrt3  8, 1  4 Sqrt2  5, 1  5 Sqrt5  12;
d  0, 0, Sqrt3  8, 1  4 Sqrt2  5, 1  5 Sqrt5  12;
e  0, 0, 0, Sqrt2  5, 1  5 Sqrt5  12;
f  0, 0, 0, 0, Sqrt5  12;

In[2398]:=  Out of these 6 points the 4simplices we are interested in are: A  abcef,
B  abcdf, C  abcde 

In[2399]:=  We want to find the 4d hyperplane in which each of them lives, and obtain a
sensible orthonormal basis for that plane in order to get our coordinates 

In[2400]:=  Since the vectors connecting one point of the 4
simplex to the other 4 are necessarily linearly independent,

for a nondegenerate figure, we can use them to form a nonorthonormal basis. 
vb  b  a;
vc  c  a;
vd  d  a;
ve  e  a;
vf  f  a;

In[2405]:=  To obtain an orthonormal basis we use the Orthogonalize command in
Mathematica. Transpose is necessary so the basis vectors will show as columns.

BasisD  TransposeOrthogonalizevb, vc, ve, vf  FullSimplify;
BasisE  TransposeOrthogonalizevb, vc, vd, vf  FullSimplify;
BasisF  TransposeOrthogonalizevb, vc, vd, ve  FullSimplify;

In[2408]:=  Solving the equation BasisMatrix . X  Coordinates in R^5 gives
you the coordinates in the chosen basis, so we use LinearSolve 

In[2409]:=  we also need the R3 tetrahedron matrix continued to
R4. For the equilateral case it's a "standard tetrahedron" 

In[2410]:=

 For the equilateral 5simplex the tetrahedra's images in R^3 are all equal,

which means for all of these matrices we can just consider the one given below. 

In[2411]:= A3  1  2, 1  2 Sqrt3, 1  3 Sqrt3  8;
B3  1  2, 1  2 Sqrt3, 1  3 Sqrt3  8;
C3  0, 1  Sqrt3, 1  3 Sqrt3  8;
D3  0, 0, Sqrt3  8;  points for standard tetrahedron in R3 



In[2415]:= vB3  Join0, B3  A3;
vC3  Join0, C3  A3;
vD3  Join0, D3  A3;
M3  1, 0, 0, 0, vB3, vC3, vD3  Transpose;
M3minus  1, 0, 0, 0, vB3, vC3, vD3  Transpose;
M3  MatrixForm
 use either M3 or M3minus to have consistent determinants 

Out[2420]//MatrixForm=

1 0 0 0

0 1 1

2

1

2

0 0 3

2

1

2 3

0 0 0

3

2

2


1

2 6

In[2421]:=  compute normals of standard tetrahedron 

In[2422]:= ND  CrossB3  A3, C3  A3  Normalize  Simplify

Out[2422]= 0, 0, 1

In[2423]:= NC  CrossB3  A3, D3  A3  Normalize  Simplify

Out[2423]= 0, 
2 2

3
,
1

3


In[2424]:= NB  CrossC3  A3, D3  A3  Normalize  Simplify

Out[2424]= 
2

3
,

2

3
,
1

3


In[2425]:= NA  CrossC3  B3, D3  B3  Normalize  Simplify

Out[2425]= 
2

3
,

2

3
,
1

3


In[2426]:= M3  FullSimplify  MatrixForm
DetM3

Out[2426]//MatrixForm=

1 0 0 0

0 1 1

2

1

2

0 0 3

2

1

2 3

0 0 0 2

3

Out[2427]=
1

2
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In[2428]:=  The test is to determine g_ve for vertex A,

the corresponding n_ef and verify consistency. 
 g_A6 
MA6  LinearSolveBasisD, vb, LinearSolveBasisD, vc, LinearSolveBasisD, ve ;
MA6  MatrixForm
MA6N  NormalizeNullSpaceMA61
MA6final 

TransposeMA6N, NormalizeMA61, NormalizeMA62, NormalizeMA63;
MA6final  MatrixForm
DetMA6final

Out[2428]//MatrixForm=

1 0 0 0

1

2

3

2
0 0

1

2

1

2 3

2

3
0

Out[2429]= 0, 0, 0, 1

Out[2430]//MatrixForm=

0 1 1

2

1

2

0 0 3

2

1

2 3

0 0 0 2

3

1 0 0 0

Out[2431]=
1

2

In[2432]:= GA6  MA6final.InverseM3  FullSimplify; GA6  MatrixForm
GA6.TransposeGA6  FullSimplify  MatrixForm
DetGA6  FullSimplify

Out[2432]//MatrixForm=

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

Out[2433]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2434]= 1
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In[2435]:=  gA5 

In[2436]:=  Determining GA5 for tetrahedron ABCF : pivot triangle is ABC 

In[2437]:= MA5  LinearSolveBasisD, vc, LinearSolveBasisD, vb, LinearSolveBasisD, vf ;
MA5  MatrixForm

Out[2437]//MatrixForm=

1

2

3

2
0 0

1 0 0 0

1

2

1

2 3

1

2 6

5

2

2

In[2438]:= MA5N  NormalizeNullSpaceMA51;
MA5final 

TransposeMA5N, NormalizeMA51, NormalizeMA52, NormalizeMA53;
MA5final  MatrixForm
DetMA5final

Out[2439]//MatrixForm=

0 1

2
1 1

2

0 3

2
0 1

2 3


15

4
0 0 1

2 6

1

4
0 0

5

2

2

Out[2440]=
1

2

In[2441]:= GA5  MA5final.InverseM3  FullSimplify; GA5  MatrixForm
GA5.TransposeGA5  FullSimplify  MatrixForm
DetGA5  FullSimplify

Out[2441]//MatrixForm=

0 1

2

3

2
0

0 3

2


1

2
0


15

4
0 0 1

4

1

4
0 0 15

4

Out[2442]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2443]= 1
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In[2444]:=  gA3 

In[2445]:= MA3  LinearSolveBasisD, vb, LinearSolveBasisD, ve, LinearSolveBasisD, vf ;
MA3  MatrixForm

Out[2445]//MatrixForm=

1 0 0 0

1

2

1

2 3

2

3
0

1

2

1

2 3

1

2 6

5

2

2

In[2446]:= MA3N  NormalizeNullSpaceMA31;
MA3final 

TransposeMA3N, NormalizeMA31, NormalizeMA32, NormalizeMA33;
MA3final  MatrixForm
DetMA3final

Out[2447]//MatrixForm=

0 1 1

2

1

2


5

6
0 1

2 3

1

2 3

5

3

4
0 2

3

1

2 6

1

4
0 0

5

2

2

Out[2448]=
1

2

In[2449]:= GA3  MA3final.InverseM3  FullSimplify; GA3  MatrixForm
GA3.TransposeGA3  FullSimplify  MatrixForm
DetGA3  FullSimplify

Out[2449]//MatrixForm=

0 1 0 0


5

6
0 1

3

1

3 2

5

3

4
0 2 2

3


1

12

1

4
0 0 15

4

Out[2450]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2451]= 1
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In[2452]:=  gA2 

In[2453]:= MA2  LinearSolveBasisD, ve, LinearSolveBasisD, vc, LinearSolveBasisD, vf ;
MA2  MatrixForm

Out[2453]//MatrixForm=

1

2

1

2 3

2

3
0

1

2

3

2
0 0

1

2

1

2 3

1

2 6

5

2

2

In[2454]:= MA2N  NormalizeNullSpaceMA21;
MA2final 

TransposeMA2N, NormalizeMA21, NormalizeMA22, NormalizeMA23;
MA2final  MatrixForm
DetMA2final

Out[2455]//MatrixForm=



5

2

2

1

2

1

2

1

2

5

6

2

1

2 3

3

2

1

2 3

5

3

4

2

3
0 1

2 6

1

4
0 0

5

2

2

Out[2456]=
1

2

In[2457]:= GA2  MA2final.InverseM3  FullSimplify; GA2  MatrixForm
GA2.TransposeGA2  FullSimplify  MatrixForm
DetGA2  FullSimplify

Out[2457]//MatrixForm=



5

2

2

1

2

1

2 3

1

2 6

5

6

2

1

2 3

5

6


1

6 2

5

3

4

2

3


2

3


1

12

1

4
0 0 15

4

Out[2458]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2459]= 1
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In[2460]:=  gA1 

In[2461]:= MA1  LinearSolveBasisD, e  b, LinearSolveBasisD, c  b, LinearSolveBasisD, f  b ;
MA1  MatrixForm

Out[2461]//MatrixForm=


1

2

1

2 3

2

3
0


1

2

3

2
0 0


1

2

1

2 3

1

2 6

5

2

2

In[2462]:= MA1N  NormalizeNullSpaceMA11;
MA1final 

TransposeMA1N, NormalizeMA11, NormalizeMA12, NormalizeMA13;
MA1final  MatrixForm
DetMA1final  Simplify

Out[2463]//MatrixForm=



5

2

2


1

2


1

2


1

2



5

6

2

1

2 3

3

2

1

2 3



5

3

4

2

3
0 1

2 6


1

4
0 0

5

2

2

Out[2464]=
1

2

In[2465]:= GA1  MA1final.InverseM3  FullSimplify; GA1  MatrixForm
GA1.TransposeGA1  FullSimplify  MatrixForm
DetGA1  FullSimplify

Out[2465]//MatrixForm=



5

2

2


1

2


1

2 3


1

2 6



5

6

2

1

2 3

5

6


1

6 2



5

3

4

2

3


2

3


1

12


1

4
0 0 15

4

Out[2466]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2467]= 1
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In[2468]:=  now we have to get the SU2 components out of this. For that
purpose we need to find the left and rightisoclinic rotation components
of the SO4 matrix as described in Van Elfrinkhof's formula. 

 First define the associate matrix. 

In[2469]:= AscM_ :

1  4 M1, 1  M2, 2  M3, 3  M4, 4, M2, 1  M1, 2  M4, 3 
M3, 4, M3, 1  M4, 2  M1, 3  M2, 4, M4, 1  M3, 2 
M2, 3  M1, 4, M2, 1  M1, 2  M4, 3  M3, 4,

M1, 1  M2, 2  M3, 3  M4, 4, M4, 1  M1, 4 
M2, 3  M3, 2, M3, 1  M4, 2  M1, 3  M2, 4,

M3, 1  M1, 3  M2, 4  M4, 2, M4, 1  M3, 2 
M2, 3  M1, 4, M1, 1  M2, 2  M3, 3  M4, 4,

M2, 1  M1, 2  M4, 3  M3, 4,
M4, 1  M1, 4  M3, 2  M2, 3,
M3, 1  M1, 3  M4, 2  M2, 4, M2, 1  M1, 2 
M4, 3  M3, 4, M1, 1  M2, 2  M3, 3  M4, 4

In[2470]:=  gA6 

In[2471]:= AGA6  AscGA6  FullSimplify; AGA6  MatrixForm

Out[2471]//MatrixForm=

0 0 0 0


1

2
0 

1

2
0

0 0 0 0


1

2
0 

1

2
0

In[2472]:=  use the exception algorithm from eqs. 151152 of the thesis, with i2, j1 
KGA6  SqrtAGA62, 1^2  AGA62, 2^2  AGA62, 3^2  AGA62, 4^2  Simplify

Out[2472]=
1

2

In[2473]:= pGA6  AGA62, 1  KGA6  Simplify;
qGA6  AGA62, 2  KGA6  Simplify;
rGA6  AGA62, 3  KGA6  Simplify;
sGA6  AGA62, 4  KGA6  FullSimplify;
aGA6  KGA6 AGA61, 1  AGA62, 1  FullSimplify;
bGA6  KGA6;
cGA6  KGA6 AGA63, 1  AGA62, 1  FullSimplify;
dGA6  KGA6 AGA64, 1  AGA62, 1  FullSimplify;

In[2481]:=  operations to figure out if we're doing everything right 

aGA6^2  bGA6^2  cGA6^2  dGA6^2  FullSimplify

Out[2481]= 1

In[2482]:= pGA6^2  qGA6^2  rGA6^2  sGA6^2  FullSimplify

Out[2482]= 1
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In[2483]:= aGA5 pGA5, aGA5 qGA5, aGA5 rGA5, aGA5 sGA5, bGA5 pGA5, bGA5 qGA5, bGA5 rGA5, bGA5 sGA5,
cGA5 pGA5 , cGA5 qGA5, cGA5 rGA5, cGA5 sGA5,
dGA5 pGA5, dGA5 qGA5, dGA5 rGA5, dGA5 sGA5  AGA5  FullSimplify  MatrixForm

Out[2483]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2484]:=  a,b,c,d and p,q,r,s are S^3 vectors representing
the left and right SU2 components of the rotation, 

 which we can compose now. Attribute  to a,b,c,d and  to p,q,r,s 

In[2485]:= GA6P  aGA6 IdentityMatrix2  I bGA6 PauliMatrix1 
I cGA6 PauliMatrix2  I dGA6 PauliMatrix3  Simplify; GA6P  MatrixForm

GA6M  pGA6 IdentityMatrix2  I qGA6 PauliMatrix1  I rGA6 PauliMatrix2 
I sGA6 PauliMatrix3  Conjugate  Transpose  Simplify; GA6M  MatrixForm

Out[2485]//MatrixForm=



2



2


2




2

Out[2486]//MatrixForm=


1

2

1

2


1

2


1

2
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In[2487]:=  gA5 

In[2488]:= AGA5  AscGA5  FullSimplify; AGA5  MatrixForm

Out[2488]//MatrixForm=

1

16
3 2  5  

1

16


1

16
3 2  5  

1

16


3

16

1

16
3 2  5  3

16

1

16
3 2  5 


1

16
3 2  5  1

16

1

16
3 2  5  1

16

3

16


1

16
3 2  5  

3

16


1

16
3 2  5 

In[2489]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2490]:= KGA5  SqrtAGA51, 1^2  AGA51, 2^2  AGA51, 3^2  AGA51, 4^2  Simplify;

In[2491]:= pGA5  AGA51, 1  KGA5  Simplify;
qGA5  AGA51, 2  KGA5  Simplify;
rGA5  AGA51, 3  KGA5  Simplify;
sGA5  AGA51, 4  KGA5  FullSimplify;
aGA5  KGA5;
bGA5  KGA5 AGA52, 1  AGA51, 1  FullSimplify;
cGA5  KGA5 AGA53, 1  AGA51, 1  FullSimplify;
dGA5  KGA5 AGA54, 1  AGA51, 1  FullSimplify;

In[2499]:=  operations to figure out if we're doing everything right 

In[2500]:= aGA5^2  bGA5^2  cGA5^2  dGA5^2  FullSimplify

Out[2500]= 1

In[2501]:= pGA5^2  qGA5^2  rGA5^2  sGA5^2  FullSimplify

Out[2501]= 1

In[2502]:= aGA5 pGA5, aGA5 qGA5, aGA5 rGA5, aGA5 sGA5, bGA5 pGA5, bGA5 qGA5, bGA5 rGA5, bGA5 sGA5,
cGA5 pGA5 , cGA5 qGA5, cGA5 rGA5, cGA5 sGA5,
dGA5 pGA5, dGA5 qGA5, dGA5 rGA5, dGA5 sGA5  AGA5  FullSimplify  MatrixForm

Out[2502]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2503]:= GA5P  aGA5 IdentityMatrix2  I bGA5 PauliMatrix1 
I cGA5 PauliMatrix2  I dGA5 PauliMatrix3  Simplify; GA5P  MatrixForm

GA5M  pGA5 IdentityMatrix2  I qGA5 PauliMatrix1  I rGA5 PauliMatrix2 
I sGA5 PauliMatrix3  Conjugate  Transpose  Simplify; GA5M  MatrixForm

Out[2503]//MatrixForm=

1

8
14  6 5  2  Root9  9 12  14 &, 3 1

8
3  5  2  Root9  9 12  14 &, 2

1

8
3  5  2  Root9  9 12  14 &, 2 1

8
14  6 5  2  Root9  9 12  14 &, 3

Out[2504]//MatrixForm=

1

8
 3  5   6 7  3 5  2  5  2 3  15

2 146 5


2 3  15

2 146 5

1

8
 3  5   6 7  3 5  2  5 

10   equilateral5simplex9.7.2016.nb



In[2505]:=  gA3 

In[2506]:= AGA3  AscGA3  FullSimplify; AGA3  MatrixForm

Out[2506]//MatrixForm=

1

48
8 2  3 15  1

48
13  2 30  1

48
2 2  15  7

48

1

48
11  2 30  1

48
8 2  3 15  

1

48


1

48
23  4 30

1

48
2 2  15  

7

48

1

48
8 2  3 15  1

48
13  2 30 


1

48

1

48
2 2  15  1

48
11  2 30  1

48
8 2  3 15 

In[2507]:= KGA3  SqrtAGA31, 1^2  AGA31, 2^2  AGA31, 3^2  AGA31, 4^2  Simplify

Out[2507]=
1

4

1

3
13  2 30 

In[2508]:= pGA3  AGA31, 1  KGA3  Simplify;
qGA3  AGA31, 2  KGA3  Simplify;
rGA3  AGA31, 3  KGA3  Simplify;
sGA3  AGA31, 4  KGA3  Simplify;
aGA3  KGA3;
bGA3  KGA3 AGA32, 1  AGA31, 1  Simplify;
cGA3  KGA3 AGA33, 1  AGA31, 1  Simplify;
dGA3  KGA3 AGA34, 1  AGA31, 1  Simplify;

In[2516]:= aGA3^2  bGA3^2  cGA3^2  dGA3^2  FullSimplify

Out[2516]= 1

In[2517]:= pGA3^2  qGA3^2  rGA3^2  sGA3^2  FullSimplify

Out[2517]= 1

In[2518]:= aGA3 pGA3, aGA3 qGA3, aGA3 rGA3, aGA3 sGA3, bGA3 pGA3, bGA3 qGA3, bGA3 rGA3, bGA3 sGA3,
cGA3 pGA3 , cGA3 qGA3, cGA3 rGA3, cGA3 sGA3,
dGA3 pGA3, dGA3 qGA3, dGA3 rGA3, dGA3 sGA3  AGA3  FullSimplify  MatrixForm

Out[2518]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2519]:= GA3P  aGA3 IdentityMatrix2  I bGA3 PauliMatrix1 
I cGA3 PauliMatrix2  I dGA3 PauliMatrix3  Simplify; GA3P  MatrixForm

GA3M  pGA3 IdentityMatrix2  I qGA3 PauliMatrix1  I rGA3 PauliMatrix2 
I sGA3 PauliMatrix3  Conjugate  Transpose  Simplify; GA3M  MatrixForm

Out[2519]//MatrixForm=

 3 9 5 8 6  132 30

96 2 36 15

11  3 3 5 2 6 6  10  132 30

96 2 36 15


11  3 3 5 2 6 6  10  132 30

96 2 36 15

 3 9 5 8 6  132 30

96 2 36 15

Out[2520]//MatrixForm=

7  3 9 5 8 6

12 132 30

13  3 3 5 2 6 6  10

12 132 30

13  3 3 5 2 6 6  10

12 132 30

7  3 9 5 8 6

12 132 30
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In[2521]:= GA3M.ConjugateTransposeGA3M  FullSimplify  MatrixForm
GA3P.ConjugateTransposeGA3P  FullSimplify  MatrixForm

Out[2521]//MatrixForm=

 1 0
0 1



Out[2522]//MatrixForm=

 1 0
0 1


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In[2523]:=  gA2 

In[2524]:= AGA2  AscGA2  FullSimplify; AGA2  MatrixForm

Out[2524]//MatrixForm=
1

48
4 2  2 3  3 10  3 15 

1

48
7  30 

1

48
 2  2 3  15 

1

48
13  5 6 

1

48
5  30 

1

48
4 2  2 3  3 10  3 15 

1

48
7  3 6 

1

48
 2  2 3  15 

1

48
 2  2 3  15 

1

48
13  5 6 

1

48
4 2  2 3  3 10  3 15 

1

48
7  30 

1

48
7  3 6 

1

48
 2  2 3  15 

1

48
5  30 

1

48
4 2  2 3  3 10  3 15 

In[2525]:= KGA2  SqrtAGA21, 1^2  AGA21, 2^2  AGA21, 3^2  AGA21, 4^2  Simplify

Out[2525]=
1

4

1

6
29  3 5  10 6  2 30 

In[2526]:= pGA2  AGA21, 1  KGA2  Simplify;
qGA2  AGA21, 2  KGA2  Simplify;
rGA2  AGA21, 3  KGA2  Simplify;
sGA2  AGA21, 4  KGA2  Simplify;
aGA2  KGA2;
bGA2  KGA2 AGA22, 1  AGA21, 1  Simplify;
cGA2  KGA2 AGA23, 1  AGA21, 1  Simplify;
dGA2  KGA2 AGA24, 1  AGA21, 1  Simplify;

In[2534]:= aGA2^2  bGA2^2  cGA2^2  dGA2^2  FullSimplify

Out[2534]= 1

In[2535]:= pGA2^2  qGA2^2  rGA2^2  sGA2^2  FullSimplify

Out[2535]= 1

In[2536]:= aGA2 pGA2, aGA2 qGA2, aGA2 rGA2, aGA2 sGA2, bGA2 pGA2, bGA2 qGA2, bGA2 rGA2, bGA2 sGA2,
cGA2 pGA2 , cGA2 qGA2, cGA2 rGA2, cGA2 sGA2,
dGA2 pGA2, dGA2 qGA2, dGA2 rGA2, dGA2 sGA2  AGA2  FullSimplify  MatrixForm

Out[2536]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2537]:= GA2P  aGA2 IdentityMatrix2  I bGA2 PauliMatrix1 
I cGA2 PauliMatrix2  I dGA2 PauliMatrix3  Simplify; GA2P  MatrixForm

GA2M  pGA2 IdentityMatrix2  I qGA2 PauliMatrix1  I rGA2 PauliMatrix2 
I sGA2 PauliMatrix3  Conjugate  Transpose  Simplify; GA2M  MatrixForm

Out[2537]//MatrixForm=

1

4

1

6
293 5  10 6  2 30  1

 73 6

4 2 2 3 3 10 3 15

6 2 2 3 6  5 5  6 3 10 293 5 10 6 2 30

24 4 2 2 3 3 10 3 15

6 2 2 3 6  5 5  6 3 10 293 5 10 6 2 30

24 4 2 2 3 3 10 3 15

1

4

1

6
293 5  10 6  2 30  1

 73 6

4 2 2 3 3 10 3 15

Out[2538]//MatrixForm=

30 6 2 8 3 13  6 9 10 6 15

12 293 5 10 6 2 30

6 2 2 3 6  5 7  6 3 10

12 293 5 10 6 2 30

6 2 2 3 6  5 7  6 3 10

12 293 5 10 6 2 30

30 6 2 8 3 13  6 9 10 6 15

12 293 5 10 6 2 30
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In[2539]:= GA2M.ConjugateTransposeGA2M  FullSimplify  MatrixForm

Out[2539]//MatrixForm=

 1 0
0 1


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In[2540]:=  gA1 

In[2541]:= AGA1  AscGA1  FullSimplify; AGA1  MatrixForm

Out[2541]//MatrixForm=
1

48
4 2  2 3  3 10  3 15 

1

48
5  30 

1

48
 2  2 3  15 

1

48
7  3 6 

1

48
7  30 

1

48
4 2  2 3  3 10  3 15 

1

48
13  5 6 

1

48
 2  2 3  15 

1

48
 2  2 3  15 

1

48
7  3 6 

1

48
4 2  2 3  3 10  3 15 

1

48
5  30 

1

48
13  5 6 

1

48
 2  2 3  15 

1

48
7  30 

1

48
4 2  2 3  3 10  3 15 

In[2542]:= KGA1 

SqrtAGA11, 1^2  AGA11, 2^2  AGA11, 3^2  AGA11, 4^2  FullSimplify

Out[2542]=
1

4

1

6
19  3 5  2 6 3  5 

In[2543]:= pGA1  AGA11, 1  KGA1  Simplify;
qGA1  AGA11, 2  KGA1  Simplify;
rGA1  AGA11, 3  KGA1  Simplify;
sGA1  AGA11, 4  KGA1  Simplify;
aGA1  KGA1;
bGA1  KGA1 AGA12, 1  AGA11, 1  FullSimplify;
cGA1  KGA1 AGA13, 1  AGA11, 1  FullSimplify;
dGA1  KGA1 AGA14, 1  AGA11, 1  FullSimplify;

In[2551]:= aGA1^2  bGA1^2  cGA1^2  dGA1^2  FullSimplify

Out[2551]= 1

In[2552]:= pGA1^2  qGA1^2  rGA1^2  sGA1^2  FullSimplify

Out[2552]= 1

In[2553]:= aGA1 pGA1, aGA1 qGA1, aGA1 rGA1, aGA1 sGA1, bGA1 pGA1, bGA1 qGA1, bGA1 rGA1, bGA1 sGA1,
cGA1 pGA1 , cGA1 qGA1, cGA1 rGA1, cGA1 sGA1,
dGA1 pGA1, dGA1 qGA1, dGA1 rGA1, dGA1 sGA1  AGA1  FullSimplify  MatrixForm

Out[2553]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2554]:= GA1P  aGA1 IdentityMatrix2  I bGA1 PauliMatrix1 
I cGA1 PauliMatrix2  I dGA1 PauliMatrix3  Simplify; GA1P  MatrixForm

GA1M  pGA1 IdentityMatrix2  I qGA1 PauliMatrix1  I rGA1 PauliMatrix2 
I sGA1 PauliMatrix3  Conjugate  Transpose  Simplify; GA1M  MatrixForm

Out[2554]//MatrixForm=

1

24
6 19  3 5  6 6  2 30    3  3 5  2 30 

1

24
 3  3 5  2 30   6 19  3 5  6 6  2 30 


1

24
 3  3 5  2 30   6 19  3 5  6 6  2 30 

1

24
6 19  3 5  6 6  2 30    3  3 5  2 30 

Out[2555]//MatrixForm=

18 6 2 8 3 7  6 9 10 6 15

12 193 5 6 6 2 30

6 2 2 3 6  5 5  6 3 10

12 193 5 6 6 2 30

6 2 2 3 6  5 5  6 3 10

12 193 5 6 6 2 30

18 6 2 8 3 7  6 9 10 6 15

12 193 5 6 6 2 30
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In[2556]:=  Now we need the SO3 matrices Rg to do
consistency checks and find n's from gluing equations. 

In[2557]:= su2x_, y_  x, y, Conjugatey, Conjugatex ; su2x, y  MatrixForm

 general SU2 matrix 
Out[2557]//MatrixForm=


x y

Conjugatey Conjugatex 

In[2558]:= Rx_, y_ 

Rex^2  y^2, Imx^2  y^2, 2 Rex y, Imx^2  y^2, Rex^2  y^2, 2 Imx y,
2 Rex Conjugatey, 2 Imx Conjugatey, x Conjugatex  y Conjugatey;

Rx, y  MatrixForm  SO3 image of the general SU2 matrix defined as above 

Out[2558]//MatrixForm=

Rex2  y2 Imx2  y2 2 Rex y
Imx2  y2 Rex2  y2 2 Imx y

2 Rex Conjugatey 2 Imx Conjugatey x Conjugatex  y Conjugatey

 step needed to fix an inconsistency between
two different conventions used for these matrices 

In[2560]:= Rx_, y_  Rx, y . x  Conjugatex

Out[2560]= Rey2  Conjugatex2, Imy2  Conjugatex2, 2 Rey Conjugatex,
Imy2  Conjugatex2, Rey2  Conjugatex2, 2 Imy Conjugatex,
2 ReConjugatex Conjugatey,
2 ImConjugatex Conjugatey, x Conjugatex  y Conjugatey
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In[2561]:=  gA6 

In[2562]:= RA6P  RGA6P1, 1, GA6P1, 2  FullSimplify; RA6P  MatrixForm
RA6P.TransposeRA6P  FullSimplify  MatrixForm
DetRA6P  FullSimplify

Out[2562]//MatrixForm=

0 0 1
0 1 0
1 0 0

Out[2563]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2564]= 1

In[2565]:= RA6M  RGA6M1, 1, GA6M1, 2  Simplify; RA6M  MatrixForm
RA6M.TransposeRA6M  FullSimplify  MatrixForm
DetRA6M  FullSimplify

Out[2565]//MatrixForm=

0 0 1
0 1 0
1 0 0

Out[2566]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2567]= 1

In[2568]:=  gA5 

In[2569]:= RA5P  RGA5P1, 1, GA5P1, 2  FullSimplify; RA5P  MatrixForm
RA5P.TransposeRA5P  FullSimplify  MatrixForm
DetRA5P  FullSimplify

Out[2569]//MatrixForm=

0 0 1

1

4

3

2
3  5  1

8
1  3 5  0

1

8
1  3 5  

1

4

3

2
3  5  0

Out[2570]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2571]= 1

In[2572]:= RA5M  RGA5M1, 1, GA5M1, 2  Simplify; RA5M  MatrixForm
RA5M.TransposeRA5M  FullSimplify  MatrixForm
DetRA5M  FullSimplify
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Out[2572]//MatrixForm=

0

3 84 5 5 7030 5 11 146 5

16 73 5

54 73 5 24 5 73 5  2 3 5

16 73 5

3 84 5 5 7030 5 11 146 5

16 73 5

1

8
1 3 5 

6  30 4 219 5 2 15 73 5

16 73 5

54 73 5 24 5 73 5  2 3 5

16 73 5

6  30 4 219 5 2 15 73 5

16 73 5

0

Out[2573]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2574]= 1
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In[2575]:=  gA3 

In[2576]:= RA3P  RGA3P1, 1, GA3P1, 2  FullSimplify; RA3P  MatrixForm
RA3P.TransposeRA3P  FullSimplify  MatrixForm
DetRA3P  FullSimplify

Out[2576]//MatrixForm=

5

6


1

3 2

1

3



5

3

4

1

12

2 2

3


1

4


15

4
0

Out[2577]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2578]= 1

In[2579]:=
1

4
Root9  9 12  14 &, 2  N

Out[2579]= 0.267617

In[2580]:=

In[2581]:= RA3M  RGA3M1, 1, GA3M1, 2  FullSimplify; RA3M  MatrixForm
RA3M.TransposeRA3M  FullSimplify  MatrixForm
DetRA3M  FullSimplify

Out[2581]//MatrixForm=

5

6

1

3 2


1

3



5

3

4


1

12


2 2

3


1

4

15

4
0

Out[2582]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2583]= 1
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In[2584]:=  gA2 

In[2585]:= RA2P  RGA2P1, 1, GA2P1, 2  FullSimplify; RA2P  MatrixForm
RA2P.TransposeRA2P  FullSimplify  MatrixForm
DetRA2P  FullSimplify

Out[2585]//MatrixForm=


1

2

1

3
3  5  

1

6
23  3 5 1

3


1

4

1

6
63  5 5  1

24
5  3 5  

2

3

1

8
1  5  

1

4

1

6
23  3 5  

2

3

Out[2586]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2587]= 1

In[2588]:= RA2M  RGA2M1, 1, GA2M1, 2  FullSimplify; RA2M  MatrixForm
RA2M.TransposeRA2M  FullSimplify  MatrixForm
DetRA2M  FullSimplify

Out[2588]//MatrixForm=

Root1  18 12  36 14 &, 2 
1

6
23  3 5 

1

3


1

4

1

6
63  5 5  1

24
5  3 5  2

3

1

8
1  5  1

4

1

6
23  3 5  

2

3

Out[2589]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2590]= 1
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In[2591]:=  gA1 

In[2592]:= RA1P  RGA1P1, 1, GA1P1, 2  FullSimplify; RA1P  MatrixForm
RA1P.TransposeRA1P  FullSimplify  MatrixForm
DetRA1P  FullSimplify

Out[2592]//MatrixForm=

1

12
 6  30  

1

6
23  3 5 

1

3


15 5

8 3

1

24
5  3 5  2

3

1

8
1  5  13 5

8 3


2

3

Out[2593]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2594]= 1

In[2595]:= RA1M  RGA1M1, 1, GA1M1, 2  FullSimplify; RA1M  MatrixForm
RA1M.TransposeRA1M  FullSimplify  MatrixForm
DetRA1M  FullSimplify

Out[2595]//MatrixForm=


1

2

1

3
3  5  

1

6
23  3 5 1

3


1

4

1

6
63  5 5  1

24
5  3 5  

2

3

1

8
1  5   1

4

1

6
23  3 5   2

3

Out[2596]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2597]= 1
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In[2598]:= RAP  RA1P, RA2P, RA3P, RA4P, RA5P, RA6P;
RAM  RA1M, RA2M, RA3M, RA4M, RA5M, RA6M;

In[2600]:= RAi_, j_ : TransposeRAPj.RAPi  TransposeRAMj.RAMi
 gluing matrices. The null space of these define the normal vectors n_ef. 

In[2601]:=  define the normal vectors tetrahedron by tetrahedron 

In[2602]:=  due to our basis choices they coincide with the
normals of the standard tetrahedron up to permutation 

In[2603]:= NA
NB
NC
ND

Out[2603]= 
2

3
,

2

3
,
1

3


Out[2604]= 
2

3
,

2

3
,
1

3


Out[2605]= 0, 
2 2

3
,
1

3


Out[2606]= 0, 0, 1

In[2607]:=  Tetrahedron 1235 or abce 

In[2608]:= NullSpaceRA6, 5  FullSimplify
NullSpaceRA6, 51  FullSimplify  Normalize

Out[2608]= 0, 0, 1

Out[2609]= 0, 0, 1

In[2610]:= nA665  ND

Out[2610]= 0, 0, 1

In[2611]:= NullSpaceRA6, 3  FullSimplify
NullSpaceRA6, 31  FullSimplify  Normalize

Out[2611]= 0, 2 2 , 1

Out[2612]= 0, 
2 2

3
,
1

3


In[2613]:= nA663  NC

Out[2613]= 0, 
2 2

3
,
1

3

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In[2614]:= NullSpaceRA6, 2  FullSimplify
NullSpaceRA6, 21  FullSimplify  Normalize

Out[2614]=  6 , 2 , 1

Out[2615]= 
2

3
,

2

3
,
1

3


In[2616]:= nA662  NB

Out[2616]= 
2

3
,

2

3
,
1

3


In[2617]:= NullSpaceRA6, 1  FullSimplify
NullSpaceRA6, 11  FullSimplify  Normalize

Out[2617]=  6 , 2 , 1

Out[2618]= 
2

3
,

2

3
,
1

3


In[2619]:= nA661  NA

Out[2619]= 
2

3
,

2

3
,
1

3


In[2620]:=  Tetrahedron 1236 or abcf 

In[2621]:= NullSpaceRA5, 6  FullSimplify
NullSpaceRA5, 61  FullSimplify  Normalize

Out[2621]= 0, 0, 1

Out[2622]= 0, 0, 1

In[2623]:= nA556  ND

Out[2623]= 0, 0, 1

In[2624]:= NullSpaceRA5, 3  FullSimplify
NullSpaceRA5, 31  FullSimplify  Normalize

Out[2624]=  6 , 2 , 1

Out[2625]= 
2

3
,

2

3
,
1

3


In[2626]:= nA553  NB

Out[2626]= 
2

3
,

2

3
,
1

3

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In[2627]:= RA52  RA5, 2  FullSimplify

Out[2627]= 
5

4
,

5

3

4
,

5

6
, 

5

3

4
,

5

4
,

5

2
, 

10

3
, 0, 0

In[2628]:= NullSpaceRA52  FullSimplify
NullSpaceRA521  FullSimplify  Normalize

Out[2628]= 0, 2 2 , 1

Out[2629]= 0, 
2 2

3
,
1

3


In[2630]:= nA552  NC

Out[2630]= 0, 
2 2

3
,
1

3


In[2631]:= NullSpaceRA5, 1  FullSimplify
NullSpaceRA5, 11  FullSimplify  Normalize

Out[2631]=  6 , 2 , 1

Out[2632]= 
2

3
,

2

3
,
1

3


In[2633]:= nA551  NA

Out[2633]= 
2

3
,

2

3
,
1

3


In[2634]:=  Tetrahedron 1256 or abef 

In[2635]:= NullSpaceRA3, 6  FullSimplify
NullSpaceRA3, 61  FullSimplify  Normalize

Out[2635]= 0, 0, 1

Out[2636]= 0, 0, 1

In[2637]:= nA336  ND

Out[2637]= 0, 0, 1

In[2638]:= NullSpaceRA3, 5  FullSimplify
NullSpaceRA3, 51  FullSimplify  Normalize

Out[2638]= 0, 2 2 , 1

Out[2639]= 0, 
2 2

3
,
1

3


In[2640]:= nA335  NC

Out[2640]= 0, 
2 2

3
,
1

3

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In[2641]:= NullSpaceRA3, 2  FullSimplify
NullSpaceRA3, 21  FullSimplify  Normalize

Out[2641]=  6 , 2 , 1

Out[2642]= 
2

3
,

2

3
,
1

3


In[2643]:= nA332  NB

Out[2643]= 
2

3
,

2

3
,
1

3


In[2644]:= NullSpaceRA3, 1  FullSimplify
NullSpaceRA3, 11  FullSimplify  Normalize

Out[2644]=  6 , 2 , 1

Out[2645]= 
2

3
,

2

3
,
1

3


In[2646]:= nA331  NA

Out[2646]= 
2

3
,

2

3
,
1

3


In[2647]:=  Tetrahedron 1356 or acef 

In[2648]:= NullSpaceRA2, 6  FullSimplify
NullSpaceRA2, 61  FullSimplify  Normalize

Out[2648]= 0, 0, 1

Out[2649]= 0, 0, 1

In[2650]:= nA226  ND

Out[2650]= 0, 0, 1

In[2651]:= RA25  RA2, 5  FullSimplify
NullSpaceRA251  FullSimplify  Normalize

Out[2651]= 
5

4
,

5

3

4
, 

10

3
, 

5

3

4
,

5

4
, 0, 

5

6
,

5

2
, 0

Out[2652]= 
2

3
,

2

3
,
1

3


In[2653]:= nA225  NB

Out[2653]= 
2

3
,

2

3
,
1

3

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In[2654]:= NullSpaceRA2, 3  FullSimplify
NullSpaceRA2, 31  FullSimplify  Normalize

Out[2654]= 0, 2 2 , 1

Out[2655]= 0, 
2 2

3
,
1

3


In[2656]:= nA223  NC

Out[2656]= 0, 
2 2

3
,
1

3


In[2657]:= NullSpaceRA2, 1  FullSimplify
NullSpaceRA2, 11  FullSimplify  Normalize

Out[2657]=  6 , 2 , 1

Out[2658]= 
2

3
,

2

3
,
1

3


In[2659]:= nA221  NA

Out[2659]= 
2

3
,

2

3
,
1

3


In[2660]:=  Tetrahedron 2356 or bcef 

In[2661]:= NullSpaceRA1, 6  FullSimplify
NullSpaceRA1, 61  FullSimplify  Normalize

Out[2661]= 0, 0, 1

Out[2662]= 0, 0, 1

In[2663]:= nA116  ND

Out[2663]= 0, 0, 1

In[2664]:= NullSpaceRA1, 5  FullSimplify
NullSpaceRA1, 51  FullSimplify  Normalize

Out[2664]=  6 , 2 , 1

Out[2665]= 
2

3
,

2

3
,
1

3


In[2666]:= nA115  NB

Out[2666]= 
2

3
,

2

3
,
1

3


In[2667]:= NullSpaceRA1, 3  FullSimplify
NullSpaceRA1, 31  FullSimplify  Normalize

Out[2667]= 0, 2 2 , 1

Out[2668]= 0, 
2 2

3
,
1

3

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In[2669]:= nA113  NC

Out[2669]= 0, 
2 2

3
,
1

3


In[2670]:= NullSpaceRA1, 2  FullSimplify
NullSpaceRA1, 21  FullSimplify  Normalize

Out[2670]=  6 , 2 , 1

Out[2671]= 
2

3
,

2

3
,
1

3


In[2672]:= nA112  NA

Out[2672]= 
2

3
,

2

3
,
1

3

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In[2673]:=  Time to move on to vertex B abcdf. 

In[2674]:=  Computing g's first. 
 g_B6 
MB6  LinearSolveBasisE, vc, LinearSolveBasisE, vb, LinearSolveBasisE, vd ;
MB6  MatrixForm
MB6N  NormalizeNullSpaceMB61
MB6final 

TransposeMB6N, NormalizeMB61, NormalizeMB62, NormalizeMB63;
MB6final  MatrixForm
DetMB6final

Out[2674]//MatrixForm=

1

2

3

2
0 0

1 0 0 0

1

2

1

2 3

2

3
0

Out[2675]= 0, 0, 0, 1

Out[2676]//MatrixForm=

0 1

2
1 1

2

0 3

2
0 1

2 3

0 0 0 2

3

1 0 0 0

Out[2677]=
1

2

In[2678]:= GB6  MB6final.InverseM3  FullSimplify; GB6  MatrixForm
GB6.TransposeGB6  FullSimplify  MatrixForm
DetGB6  FullSimplify

Out[2678]//MatrixForm=

0 1

2

3

2
0

0 3

2
 1

2
0

0 0 0 1
1 0 0 0

Out[2679]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2680]= 1
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In[2681]:=  g_B4 
MB4  LinearSolveBasisE, vc, LinearSolveBasisE, vb, LinearSolveBasisE, vf ;
MB4  MatrixForm
MB4N  NormalizeNullSpaceMB41
MB4final 

TransposeMB4N, NormalizeMB41, NormalizeMB42, NormalizeMB43;
MB4final  MatrixForm
DetMB4final
GB4  MB4final.InverseM3  FullSimplify; GB4  MatrixForm
GB4.TransposeGB4  FullSimplify  MatrixForm
DetGB4  FullSimplify

Out[2681]//MatrixForm=

1

2

3

2
0 0

1 0 0 0

1

2

1

2 3

1

2 6

5

2

2

Out[2682]= 0, 0, 
15

4
,
1

4


Out[2683]//MatrixForm=

0 1

2
1 1

2

0 3

2
0 1

2 3


15

4
0 0 1

2 6

1

4
0 0

5

2

2

Out[2684]=
1

2

Out[2685]//MatrixForm=

0 1

2

3

2
0

0 3

2


1

2
0


15

4
0 0 1

4

1

4
0 0 15

4

Out[2686]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2687]= 1
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In[2688]:=  g_B3 
MB3  LinearSolveBasisE, vb, LinearSolveBasisE, vd, LinearSolveBasisE, vf ;
MB3  MatrixForm
MB3N  NormalizeNullSpaceMB31
MB3final 

TransposeMB3N, NormalizeMB31, NormalizeMB32, NormalizeMB33;
MB3final  MatrixForm
DetMB3final
GB3  MB3final.InverseM3  FullSimplify; GB3  MatrixForm
GB3.TransposeGB3  FullSimplify  MatrixForm
DetGB3  FullSimplify

Out[2688]//MatrixForm=

1 0 0 0

1

2

1

2 3

2

3
0

1

2

1

2 3

1

2 6

5

2

2

Out[2689]= 0, 
5

6
,

5

3

4
,
1

4


Out[2690]//MatrixForm=

0 1 1

2

1

2


5

6
0 1

2 3

1

2 3

5

3

4
0 2

3

1

2 6

1

4
0 0

5

2

2

Out[2691]=
1

2

Out[2692]//MatrixForm=

0 1 0 0


5

6
0 1

3

1

3 2

5

3

4
0 2 2

3


1

12

1

4
0 0 15

4

Out[2693]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2694]= 1
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In[2695]:=  g_B2 
MB2  LinearSolveBasisE, vd, LinearSolveBasisE, vc, LinearSolveBasisE, vf ;
MB2  MatrixForm
MB2N  NormalizeNullSpaceMB21
MB2final 

TransposeMB2N, NormalizeMB21, NormalizeMB22, NormalizeMB23;
MB2final  MatrixForm
DetMB2final
GB2  MB2final.InverseM3  FullSimplify; GB2  MatrixForm
GB2.TransposeGB2  FullSimplify  MatrixForm
DetGB2  FullSimplify

Out[2695]//MatrixForm=

1

2

1

2 3

2

3
0

1

2

3

2
0 0

1

2

1

2 3

1

2 6

5

2

2

Out[2696]= 

5

2

2
,

5

6

2
,

5

3

4
,
1

4


Out[2697]//MatrixForm=



5

2

2

1

2

1

2

1

2

5

6

2

1

2 3

3

2

1

2 3

5

3

4

2

3
0 1

2 6

1

4
0 0

5

2

2

Out[2698]=
1

2

Out[2699]//MatrixForm=



5

2

2

1

2

1

2 3

1

2 6

5

6

2

1

2 3

5

6


1

6 2

5

3

4

2

3


2

3


1

12

1

4
0 0 15

4

Out[2700]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2701]= 1
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In[2702]:=  g_B1 
MB1  LinearSolveBasisE, c  b, LinearSolveBasisE, d  b, LinearSolveBasisE, f  b ;
MB1  MatrixForm
MB1N  NormalizeNullSpaceMB11
MB1final 

TransposeMB1N, NormalizeMB11, NormalizeMB12, NormalizeMB13;
MB1final  MatrixForm
DetMB1final
GB1  MB1final.InverseM3  FullSimplify; GB1  MatrixForm
GB1.TransposeGB1  FullSimplify  MatrixForm
DetGB1  FullSimplify

Out[2702]//MatrixForm=


1

2

3

2
0 0


1

2

1

2 3

2

3
0


1

2

1

2 3

1

2 6

5

2

2

Out[2703]= 

5

2

2
,

5

6

2
,

5

3

4
,
1

4


Out[2704]//MatrixForm=

5

2

2


1

2


1

2


1

2

5

6

2

3

2

1

2 3

1

2 3

5

3

4
0 2

3

1

2 6

1

4
0 0

5

2

2

Out[2705]=
1

2

Out[2706]//MatrixForm=

5

2

2


1

2


1

2 3


1

2 6

5

6

2

3

2


1

6


1

6 2

5

3

4
0 2 2

3


1

12

1

4
0 0 15

4

Out[2707]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2708]= 1
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In[2709]:=  determining the SU2 components via Van Elfrinkhof's formula 

 gB6 
AGB6  AscGB6  FullSimplify; AGB6  MatrixForm  associate matrix 

Out[2709]//MatrixForm=

3

8

1

8
 3

8

1

8


3

8


3

8

3

8


3

8


3

8


1

8

3

8


1

8

3

8

3

8


3

8

3

8

In[2710]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2711]:= KGB6  SqrtAGB61, 1^2  AGB61, 2^2  AGB61, 3^2  AGB61, 4^2  Simplify;

In[2712]:= pGB6  AGB61, 1  KGB6  Simplify;
qGB6  AGB61, 2  KGB6  Simplify;
rGB6  AGB61, 3  KGB6  Simplify;
sGB6  AGB61, 4  KGB6  FullSimplify;
aGB6  KGB6;
bGB6  KGB6 AGB62, 1  AGB61, 1  FullSimplify;
cGB6  KGB6 AGB63, 1  AGB61, 1  FullSimplify;
dGB6  KGB6 AGB64, 1  AGB61, 1  FullSimplify;

In[2720]:=  operations to figure out if we're doing everything right 

In[2721]:= aGB6^2  bGB6^2  cGB6^2  dGB6^2  FullSimplify

Out[2721]= 1

In[2722]:= pGB6^2  qGB6^2  rGB6^2  sGB6^2  FullSimplify

Out[2722]= 1

In[2723]:= aGB6 pGB6, aGB6 qGB6, aGB6 rGB6, aGB6 sGB6, bGB6 pGB6, bGB6 qGB6, bGB6 rGB6, bGB6 sGB6,
cGB6 pGB6 , cGB6 qGB6, cGB6 rGB6, cGB6 sGB6,
dGB6 pGB6, dGB6 qGB6, dGB6 rGB6, dGB6 sGB6  AGB6  FullSimplify  MatrixForm

Out[2723]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2724]:= GB6P  aGB6 IdentityMatrix2  I bGB6 PauliMatrix1 
I cGB6 PauliMatrix2  I dGB6 PauliMatrix3  Simplify; GB6P  MatrixForm

GB6M  pGB6 IdentityMatrix2  I qGB6 PauliMatrix1  I rGB6 PauliMatrix2 
I sGB6 PauliMatrix3  Conjugate  Transpose  Simplify; GB6M  MatrixForm

Out[2724]//MatrixForm=

1

4
 2   6  

  3 

2 2

1

4
 2   6  1

4
 2   6 

Out[2725]//MatrixForm=

 3

2 2

 3

2 2


 3

2 2

 3

2 2
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In[2726]:=  gB4 
AGB4  AscGB4  FullSimplify; AGB4  MatrixForm

Out[2726]//MatrixForm=

1

16
3 2  5   1

16
 1

16
3 2  5   1

16


3

16

1

16
3 2  5  3

16

1

16
3 2  5 


1

16
3 2  5  1

16

1

16
3 2  5  1

16

3

16


1

16
3 2  5  

3

16


1

16
3 2  5 

In[2727]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2728]:= KGB4  SqrtAGB41, 1^2  AGB41, 2^2  AGB41, 3^2  AGB41, 4^2  Simplify;

In[2729]:= pGB4  AGB41, 1  KGB4  Simplify;
qGB4  AGB41, 2  KGB4  Simplify;
rGB4  AGB41, 3  KGB4  Simplify;
sGB4  AGB41, 4  KGB4  FullSimplify;
aGB4  KGB4;
bGB4  KGB4 AGB42, 1  AGB41, 1  FullSimplify;
cGB4  KGB4 AGB43, 1  AGB41, 1  FullSimplify;
dGB4  KGB4 AGB44, 1  AGB41, 1  FullSimplify;

In[2737]:=  operations to figure out if we're doing everything right 

In[2738]:= aGB4^2  bGB4^2  cGB4^2  dGB4^2  FullSimplify
pGB4^2  qGB4^2  rGB4^2  sGB4^2  FullSimplify

Out[2738]= 1

Out[2739]= 1

In[2740]:= aGB4 pGB4, aGB4 qGB4, aGB4 rGB4, aGB4 sGB4, bGB4 pGB4, bGB4 qGB4, bGB4 rGB4, bGB4 sGB4,
cGB4 pGB4 , cGB4 qGB4, cGB4 rGB4, cGB4 sGB4,
dGB4 pGB4, dGB4 qGB4, dGB4 rGB4, dGB4 sGB4  AGB4  FullSimplify  MatrixForm

Out[2740]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2741]:= GB4P  aGB4 IdentityMatrix2  I bGB4 PauliMatrix1 
I cGB4 PauliMatrix2  I dGB4 PauliMatrix3  FullSimplify; GB4P  MatrixForm

GB4M  pGB4 IdentityMatrix2  I qGB4 PauliMatrix1  I rGB4 PauliMatrix2 
I sGB4 PauliMatrix3  Conjugate  Transpose  FullSimplify; GB4M  MatrixForm

Out[2741]//MatrixForm=

Root1  3 1  5 12  6 13  4 14 &, 4 Root1  3 1  5 12  6 13  4 14 &, 1
Root1  3 1  5 12  6 13  4 14 &, 3 Root1  3 1  5 12  6 13  4 14 &, 3

Out[2742]//MatrixForm=

1

8
 3  5   6 3  5  2 3  15

62 5


2 3  15

2 3 5 

1

8
 3  5   6 3  5 
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In[2743]:=  gB3 
AGB3  AscGB3  FullSimplify; AGB3  MatrixForm

Out[2743]//MatrixForm=

1

48
8 2  3 15  1

48
13  2 30  1

48
2 2  15  7

48

1

48
11  2 30  1

48
8 2  3 15  

1

48


1

48
23  4 30

1

48
2 2  15  

7

48

1

48
8 2  3 15  1

48
13  2 30 


1

48

1

48
2 2  15  1

48
11  2 30  1

48
8 2  3 15 

In[2744]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2745]:= KGB3  SqrtAGB31, 1^2  AGB31, 2^2  AGB31, 3^2  AGB31, 4^2  Simplify;

In[2746]:= pGB3  AGB31, 1  KGB3  Simplify;
qGB3  AGB31, 2  KGB3  Simplify;
rGB3  AGB31, 3  KGB3  Simplify;
sGB3  AGB31, 4  KGB3  FullSimplify;
aGB3  KGB3;
bGB3  KGB3 AGB32, 1  AGB31, 1  FullSimplify;
cGB3  KGB3 AGB33, 1  AGB31, 1  FullSimplify;
dGB3  KGB3 AGB34, 1  AGB31, 1  FullSimplify;

In[2754]:=  operations to figure out if we're doing everything right 

In[2755]:= aGB3^2  bGB3^2  cGB3^2  dGB3^2  FullSimplify
pGB3^2  qGB3^2  rGB3^2  sGB3^2  FullSimplify

Out[2755]= 1

Out[2756]= 1

In[2757]:= aGB3 pGB3, aGB3 qGB3, aGB3 rGB3, aGB3 sGB3, bGB3 pGB3, bGB3 qGB3, bGB3 rGB3, bGB3 sGB3,
cGB3 pGB3 , cGB3 qGB3, cGB3 rGB3, cGB3 sGB3,
dGB3 pGB3, dGB3 qGB3, dGB3 rGB3, dGB3 sGB3  AGB3  FullSimplify  MatrixForm

Out[2757]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2758]:= GB3P  aGB3 IdentityMatrix2  I bGB3 PauliMatrix1 
I cGB3 PauliMatrix2  I dGB3 PauliMatrix3  Simplify; GB3P  MatrixForm

GB3M  pGB3 IdentityMatrix2  I qGB3 PauliMatrix1  I rGB3 PauliMatrix2 
I sGB3 PauliMatrix3  Conjugate  Transpose  Simplify; GB3M  MatrixForm

Out[2758]//MatrixForm=

 26348 30

4 336 30

1

12
3  30   Root9  66 12  14 &, 1

1

12
3  30   Root9  66 12  14 &, 1

 26348 30

4 336 30

Out[2759]//MatrixForm=


1

12
 3  30   8 2 3 15

4 396 30

13  3 3 5 2 6 6  10

12 132 30

13  3 3 5 2 6 6  10

12 132 30

1

12
 3  30   8 2 3 15

4 396 30
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In[2760]:=  gB2 
AGB2  AscGB2  FullSimplify; AGB2  MatrixForm

Out[2760]//MatrixForm=
1

48
4 2  2 3  3 10  3 15 

1

48
7  30 

1

48
 2  2 3  15 

1

48
13  5 6 

1

48
5  30 

1

48
4 2  2 3  3 10  3 15 

1

48
7  3 6 

1

48
 2  2 3  15 

1

48
 2  2 3  15 

1

48
13  5 6 

1

48
4 2  2 3  3 10  3 15 

1

48
7  30 

1

48
7  3 6 

1

48
 2  2 3  15 

1

48
5  30 

1

48
4 2  2 3  3 10  3 15 

In[2761]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2762]:= KGB2  SqrtAGB21, 1^2  AGB21, 2^2  AGB21, 3^2  AGB21, 4^2  Simplify;

In[2763]:= pGB2  AGB21, 1  KGB2  Simplify;
qGB2  AGB21, 2  KGB2  Simplify;
rGB2  AGB21, 3  KGB2  Simplify;
sGB2  AGB21, 4  KGB2  FullSimplify;
aGB2  KGB2;
bGB2  KGB2 AGB22, 1  AGB21, 1  FullSimplify;
cGB2  KGB2 AGB23, 1  AGB21, 1  FullSimplify;
dGB2  KGB2 AGB24, 1  AGB21, 1  FullSimplify;

In[2771]:=  operations to figure out if we're doing everything right 

In[2772]:= aGB2^2  bGB2^2  cGB2^2  dGB2^2  FullSimplify
pGB2^2  qGB2^2  rGB2^2  sGB2^2  FullSimplify

Out[2772]= 1

Out[2773]= 1

In[2774]:= aGB2 pGB2, aGB2 qGB2, aGB2 rGB2, aGB2 sGB2, bGB2 pGB2, bGB2 qGB2, bGB2 rGB2, bGB2 sGB2,
cGB2 pGB2 , cGB2 qGB2, cGB2 rGB2, cGB2 sGB2,
dGB2 pGB2, dGB2 qGB2, dGB2 rGB2, dGB2 sGB2  AGB2  FullSimplify  MatrixForm

Out[2774]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2775]:= GB2P  aGB2 IdentityMatrix2  I bGB2 PauliMatrix1 
I cGB2 PauliMatrix2  I dGB2 PauliMatrix3  Simplify; GB2P  MatrixForm

GB2M  pGB2 IdentityMatrix2  I qGB2 PauliMatrix1  I rGB2 PauliMatrix2 
I sGB2 PauliMatrix3  Conjugate  Transpose  Simplify; GB2M  MatrixForm

Out[2775]//MatrixForm=

1

24
6 29  3 5  10 6  2 30    6 19  3 5  6 6  2 30 

1

24
3  3 5  2 30   6 19  3 5  6 6  2 30 

1

24
3  3 5  2 30   6 19  3 5  6 6  2 30 

1

24
6 29  3 5  10 6  2 30    6 19  3 5  6 6  2 30 

Out[2776]//MatrixForm=

4 2 2 3 3 10 3 15

2 6 293 5 10 6 2 30


1

24
 3 3 5 2 30 

6 2 2 3 6  5 7  6 3 10

12 293 5 10 6 2 30

6 2 2 3 6  5 7  6 3 10

12 293 5 10 6 2 30

4 2 2 3 3 10 3 15

2 6 293 5 10 6 2 30


1

24
 33 5  2 30 
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In[2777]:=  gB1 
AGB1  AscGB1  FullSimplify; AGB1  MatrixForm

Out[2777]//MatrixForm=
1

48
8 2 6 3  3 10  3 15 

1

48
5 30 

1

48
 2 2 3  15 

1

48
1  6 

1

48
7 30 

1

48
8 2 6 3 3 10 3 15 

1

48
5 6 

1

48
 2  2 3  15 

1

48
 2 2 3  15 

1

48
1 6 

1

48
8 2 6 3  3 10  3 15 

1

48
5  30 

1

48
5 6 

1

48
 2 2 3  15 

1

48
7 30 

1

48
8 2  6 3 3 10 3 15 

In[2778]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2779]:= KGB1  SqrtAGB11, 1^2  AGB11, 2^2  AGB11, 3^2  AGB11, 4^2  Simplify;

In[2780]:= pGB1  AGB11, 1  KGB1  Simplify;
qGB1  AGB11, 2  KGB1  Simplify;
rGB1  AGB11, 3  KGB1  Simplify;
sGB1  AGB11, 4  KGB1  FullSimplify;
aGB1  KGB1;
bGB1  KGB1 AGB12, 1  AGB11, 1  FullSimplify;
cGB1  KGB1 AGB13, 1  AGB11, 1  FullSimplify;
dGB1  KGB1 AGB14, 1  AGB11, 1  FullSimplify;

In[2788]:=  operations to figure out if we're doing everything right 

In[2789]:= aGB1^2  bGB1^2  cGB1^2  dGB1^2  FullSimplify
pGB1^2  qGB1^2  rGB1^2  sGB1^2  FullSimplify

Out[2789]= 1

Out[2790]= 1

In[2791]:= aGB1 pGB1, aGB1 qGB1, aGB1 rGB1, aGB1 sGB1, bGB1 pGB1, bGB1 qGB1, bGB1 rGB1, bGB1 sGB1,
cGB1 pGB1 , cGB1 qGB1, cGB1 rGB1, cGB1 sGB1,
dGB1 pGB1, dGB1 qGB1, dGB1 rGB1, dGB1 sGB1  AGB1  FullSimplify  MatrixForm

Out[2791]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2792]:= GB1P  aGB1 IdentityMatrix2  I bGB1 PauliMatrix1 
I cGB1 PauliMatrix2  I dGB1 PauliMatrix3  Simplify; GB1P  MatrixForm

GB1M  pGB1 IdentityMatrix2  I qGB1 PauliMatrix1  I rGB1 PauliMatrix2 
I sGB1 PauliMatrix3  Conjugate  Transpose  Simplify; GB1M  MatrixForm

Out[2792]//MatrixForm=

1

24
 6 25  9 5  8 6  4 30   6 23  9 5  8 6  4 30 

1

24
3  3 5  3 6  30   6 25  9 5  8 6  4 30 

1

24
3  3 5  3 6  30   6 25  9 5  8 6  4 30 

1

24
 6 25  9 5  8 6  4 30   6 23  9 5  8 6  4 30 

Out[2793]//MatrixForm=


1

24
 33 5 3 6  30  

8 2 6 3 3 10 3 15

2 6 239 5 8 6 4 30

6 2 2 3 6  5 5  6 3 10

12 239 5 8 6 4 30

6 2 2 3 6  5 5  6 3 10

12 239 5 8 6 4 30

1

24
 3 3 5 3 6  30 

8 2 6 3 3 10 3 15

2 6 239 5 8 6 4 30
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In[2794]:=  Computing the SO3 matrices Rg for the g_Bi 

In[2795]:=  gB6 

In[2796]:= RB6P  RGB6P1, 1, GB6P1, 2  FullSimplify; RB6P  MatrixForm
RB6P.TransposeRB6P  FullSimplify  MatrixForm
DetRB6P  FullSimplify
RB6M  RGB6M1, 1, GB6M1, 2  FullSimplify; RB6M  MatrixForm
RB6M.TransposeRB6M  FullSimplify  MatrixForm
DetRB6M  FullSimplify

Out[2796]//MatrixForm=

0 0 1

3

2


1

2
0


1

2


3

2
0

Out[2797]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2798]= 1

Out[2799]//MatrixForm=

0 0 1


3

2

1

2
0


1

2


3

2
0

Out[2800]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2801]= 1

In[2802]:=  gB4 
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In[2803]:= RB4P  RGB4P1, 1, GB4P1, 2  FullSimplify; RB4P  MatrixForm
RB4P.TransposeRB4P  FullSimplify  MatrixForm
DetRB4P  FullSimplify
RB4M  RGB4M1, 1, GB4M1, 2  FullSimplify; RB4M  MatrixForm
RB4M.TransposeRB4M  FullSimplify  MatrixForm
DetRB4M  FullSimplify

Out[2803]//MatrixForm=

0 0 1

1

4

3

2
3  5  1

8
1  3 5  0

1

8
1  3 5  

1

4

3

2
3  5  0

Out[2804]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2805]= 1

Out[2806]//MatrixForm=

0 0 1
1

4
Root9  9 12  14 &, 3 1

8
1  3 5  0

1

8
1  3 5  1

4
Root9  9 12  14 &, 3 0

Out[2807]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2808]= 1

In[2809]:=  gB3 
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In[2810]:= RB3P  RGB3P1, 1, GB3P1, 2  FullSimplify; RB3P  MatrixForm
RB3P.TransposeRB3P  FullSimplify  MatrixForm
DetRB3P  FullSimplify
RB3M  RGB3M1, 1, GB3M1, 2  FullSimplify; RB3M  MatrixForm
RB3M.TransposeRB3M  FullSimplify  MatrixForm
DetRB3M  FullSimplify

Out[2810]//MatrixForm=

5

6


1

3 2

1

3



5

3

4

1

12

2 2

3


1

4


15

4
0

Out[2811]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2812]= 1

Out[2813]//MatrixForm=

5

6

1

3 2


1

3



5

3

4


1

12


2 2

3


1

4

15

4
0

Out[2814]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2815]= 1

In[2816]:=  gB2 
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In[2817]:= RB2P  RGB2P1, 1, GB2P1, 2  FullSimplify; RB2P  MatrixForm
RB2P.TransposeRB2P  FullSimplify  MatrixForm
DetRB2P  FullSimplify
RB2M  RGB2M1, 1, GB2M1, 2  FullSimplify; RB2M  MatrixForm
RB2M.TransposeRB2M  FullSimplify  MatrixForm
DetRB2M  FullSimplify

Out[2817]//MatrixForm=

 1 5

2 6

13 5

6 2

1

3

 1

4

1

6
63  5 5  1

24
5  3 5   2

3

1

8
1  5  

1

4

1

6
23  3 5  

2

3

Out[2818]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2819]= 1

Out[2820]//MatrixForm=

Root1  18 12  36 14 &, 2 
1

6
23  3 5 

1

3


1

4

1

6
63  5 5  1

24
5  3 5  2

3

1

8
1  5  1

4

1

6
23  3 5  

2

3

Out[2821]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2822]= 1

In[2823]:=  gB1 
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In[2824]:= RB1P  RGB1P1, 1, GB1P1, 2  FullSimplify; RB1P  MatrixForm
RB1P.TransposeRB1P  FullSimplify  MatrixForm
DetRB1P  FullSimplify
RB1M  RGB1M1, 1, GB1M1, 2  FullSimplify; RB1M  MatrixForm
RB1M.TransposeRB1M  FullSimplify  MatrixForm
DetRB1M  FullSimplify

Out[2824]//MatrixForm=

5

6


1

3 2

1

3

3 5

8 3

1

24
1  9 5  

2

3

1

8
1  5  23

96


5

32

2

3

Out[2825]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2826]= 1

Out[2827]//MatrixForm=

5

6

1

3 2


1

3

1

12
Root9  21 12  14 &, 2 1

24
1  9 5  2

3

1

8
1  5  

1

4

1

6
23  3 5  2

3

Out[2828]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[2829]= 1
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In[2830]:=  gluing matrices for vertex B. The null

space of these define the normal vectors n_ef. 

In[2831]:= RBP  RB1P, RB2P, RB3P, RB4P, RB5P, RB6P;
RBM  RB1M, RB2M, RB3M, RB4M, RB5M, RB6M;
RBi_, j_ : TransposeRBPj.RBPi  TransposeRBMj.RBMi ;

In[2834]:=  standard tetrahedron normals for reference 

In[2835]:= NA
NB
NC
ND

Out[2835]= 
2

3
,

2

3
,
1

3


Out[2836]= 
2

3
,

2

3
,
1

3


Out[2837]= 0, 
2 2

3
,
1

3


Out[2838]= 0, 0, 1

In[2839]:=  Tetrahedron 1234 or abcd 

NullSpaceRB6, 4  FullSimplify
NullSpaceRB6, 41  FullSimplify  Normalize
NullSpaceRB6, 3  FullSimplify
NullSpaceRB6, 31  FullSimplify  Normalize
NullSpaceRB6, 2  FullSimplify
NullSpaceRB6, 21  FullSimplify  Normalize
NullSpaceRB6, 1  FullSimplify
NullSpaceRB6, 11  FullSimplify  Normalize

Out[2839]= 0, 0, 1

Out[2840]= 0, 0, 1

Out[2841]=  6 , 2 , 1

Out[2842]= 
2

3
,

2

3
,
1

3


Out[2843]= 0, 2 2 , 1

Out[2844]= 0, 
2 2

3
,
1

3


Out[2845]=  6 , 2 , 1

Out[2846]= 
2

3
,

2

3
,
1

3

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In[2847]:= nB664  ND
nB663  NB
nB662  NC
nB661  NA

Out[2847]= 0, 0, 1

Out[2848]= 
2

3
,

2

3
,
1

3


Out[2849]= 0, 
2 2

3
,
1

3


Out[2850]= 
2

3
,

2

3
,
1

3

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In[2851]:=  Tetrahedron 1236 or abcf 

NullSpaceRB4, 6  FullSimplify
NullSpaceRB4, 61  FullSimplify  Normalize
NullSpaceRB4, 3  FullSimplify
NullSpaceRB4, 31  FullSimplify  Normalize
NullSpaceRB4, 2  FullSimplify
NullSpaceRB4, 21  FullSimplify  Normalize
NullSpaceRB4, 1  FullSimplify
NullSpaceRB4, 11  FullSimplify  Normalize

Out[2851]= 0, 0, 1

Out[2852]= 0, 0, 1

Out[2853]=  6 , 2 , 1

Out[2854]= 
2

3
,

2

3
,
1

3


Out[2855]= 0, 2 2 , 1

Out[2856]= 0, 
2 2

3
,
1

3


Out[2857]=  6 , 2 , 1

Out[2858]= 
2

3
,

2

3
,
1

3


In[2883]:= nB446  ND
nB443  NB
nB442  NC
nB441  NA

Out[2883]= 0, 0, 1

Out[2884]= 
2

3
,

2

3
,
1

3


Out[2885]= 0, 
2 2

3
,
1

3


Out[2886]= 
2

3
,

2

3
,
1

3

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In[2859]:=  Tetrahedron 1246 or abdf 

NullSpaceRB3, 6  FullSimplify
NullSpaceRB3, 61  FullSimplify  Normalize
NullSpaceRB3, 4  FullSimplify
NullSpaceRB3, 41  FullSimplify  Normalize
NullSpaceRB3, 2  FullSimplify
NullSpaceRB3, 21  FullSimplify  Normalize
NullSpaceRB3, 1  FullSimplify
NullSpaceRB3, 11  FullSimplify  Normalize

Out[2859]= 0, 0, 1

Out[2860]= 0, 0, 1

Out[2861]= 0, 2 2 , 1

Out[2862]= 0, 
2 2

3
,
1

3


Out[2863]=  6 , 2 , 1

Out[2864]= 
2

3
,

2

3
,
1

3


Out[2865]=  6 , 2 , 1

Out[2866]= 
2

3
,

2

3
,
1

3


In[2891]:= nB336  ND
nB334  NC
nB332  NB
nB331  NA

Out[2891]= 0, 0, 1

Out[2892]= 0, 
2 2

3
,
1

3


Out[2893]= 
2

3
,

2

3
,
1

3


Out[2894]= 
2

3
,

2

3
,
1

3

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In[2867]:=  Tetrahedron 1346 or acdf 

NullSpaceRB2, 6  FullSimplify
NullSpaceRB2, 61  FullSimplify  Normalize
NullSpaceRB2, 4  FullSimplify
NullSpaceRB2, 41  FullSimplify  Normalize
NullSpaceRB2, 3  FullSimplify
NullSpaceRB2, 31  FullSimplify  Normalize
NullSpaceRB2, 1  FullSimplify
NullSpaceRB2, 11  FullSimplify  Normalize

Out[2867]= 0, 0, 1

Out[2868]= 0, 0, 1

Out[2869]=  6 , 2 , 1

Out[2870]= 
2

3
,

2

3
,
1

3


Out[2871]= 0, 2 2 , 1

Out[2872]= 0, 
2 2

3
,
1

3


Out[2873]=  6 , 2 , 1

Out[2874]= 
2

3
,

2

3
,
1

3


In[2895]:= nB226  ND
nB224  NB
nB223  NC
nB221  NA

Out[2895]= 0, 0, 1

Out[2896]= 
2

3
,

2

3
,
1

3


Out[2897]= 0, 
2 2

3
,
1

3


Out[2898]= 
2

3
,

2

3
,
1

3

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In[2875]:=  Tetrahedron 2346 or bcdf 

NullSpaceRB1, 6  FullSimplify
NullSpaceRB1, 61  FullSimplify  Normalize
NullSpaceRB1, 4  FullSimplify
NullSpaceRB1, 41  FullSimplify  Normalize
NullSpaceRB1, 3  FullSimplify
NullSpaceRB1, 31  FullSimplify  Normalize
NullSpaceRB1, 2  FullSimplify
NullSpaceRB1, 21  FullSimplify  Normalize

Out[2875]= 0, 0, 1

Out[2876]= 0, 0, 1

Out[2877]= 0, 2 2 , 1

Out[2878]= 0, 
2 2

3
,
1

3


Out[2879]=  6 , 2 , 1

Out[2880]= 
2

3
,

2

3
,
1

3


Out[2881]=  6 , 2 , 1

Out[2882]= 
2

3
,

2

3
,
1

3


In[2907]:= nB116  ND
nB114  NC
nB113  NB
nB112  NA

Out[2907]= 0, 0, 1

Out[2908]= 0, 
2 2

3
,
1

3


Out[2909]= 
2

3
,

2

3
,
1

3


Out[2910]= 
2

3
,

2

3
,
1

3

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 Time to move on to vertex C abcde. 

In[2911]:=  Computing g's first. 
 g_C5 
MC5  LinearSolveBasisF, vc, LinearSolveBasisF, vb, LinearSolveBasisF, vd ;
MC5  MatrixForm
MC5N  NormalizeNullSpaceMC51
MC5final 

TransposeMC5N, NormalizeMC51, NormalizeMC52, NormalizeMC53;
MC5final  MatrixForm
DetMC5final

Out[2911]//MatrixForm=

1

2

3

2
0 0

1 0 0 0

1

2

1

2 3

2

3
0

Out[2912]= 0, 0, 0, 1

Out[2913]//MatrixForm=

0 1

2
1 1

2

0 3

2
0 1

2 3

0 0 0 2

3

1 0 0 0

Out[2914]=
1

2

In[2915]:= GC5  MC5final.InverseM3  FullSimplify; GC5  MatrixForm
GC5.TransposeGC5  FullSimplify  MatrixForm
DetGC5  FullSimplify

Out[2915]//MatrixForm=

0 1

2

3

2
0

0 3

2
 1

2
0

0 0 0 1
1 0 0 0

Out[2916]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2917]= 1
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In[2925]:=  g_C4 
MC4  LinearSolveBasisF, vb, LinearSolveBasisF, vc, LinearSolveBasisF, ve ;
MC4  MatrixForm
MC4N  NormalizeNullSpaceMC41
MC4final 

TransposeMC4N, NormalizeMC41, NormalizeMC42, NormalizeMC43;
MC4final  MatrixForm
DetMC4final
GC4  MC4final.InverseM3  FullSimplify; GC4  MatrixForm
GC4.TransposeGC4  FullSimplify  MatrixForm
DetGC4  FullSimplify

Out[2925]//MatrixForm=

1 0 0 0

1

2

3

2
0 0

1

2

1

2 3

1

2 6

5

2

2

Out[2926]= 0, 0, 
15

4
,
1

4


Out[2927]//MatrixForm=

0 1 1

2

1

2

0 0 3

2

1

2 3

15

4
0 0 1

2 6


1

4
0 0

5

2

2

Out[2928]=
1

2

Out[2929]//MatrixForm=

0 1 0 0
0 0 1 0

15

4
0 0 1

4


1

4
0 0 15

4

Out[2930]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2931]= 1
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In[2932]:=  g_C3 
MC3  LinearSolveBasisF, vd, LinearSolveBasisF, vb, LinearSolveBasisF, ve ;
MC3  MatrixForm
MC3N  NormalizeNullSpaceMC31
MC3final 

TransposeMC3N, NormalizeMC31, NormalizeMC32, NormalizeMC33;
MC3final  MatrixForm
DetMC3final
GC3  MC3final.InverseM3  FullSimplify; GC3  MatrixForm
GC3.TransposeGC3  FullSimplify  MatrixForm
DetGC3  FullSimplify

Out[2932]//MatrixForm=

1

2

1

2 3

2

3
0

1 0 0 0

1

2

1

2 3

1

2 6

5

2

2

Out[2933]= 0, 
5

6
,

5

3

4
,
1

4


Out[2934]//MatrixForm=

0 1

2
1 1

2

5

6

1

2 3
0 1

2 3



5

3

4

2

3
0 1

2 6

 1

4
0 0

5

2

2

Out[2935]=
1

2

Out[2936]//MatrixForm=

0 1

2

3

2
0

5

6

1

2 3


1

6

1

3 2



5

3

4

2

3


2

3


1

12


1

4
0 0 15

4

Out[2937]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2938]= 1
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In[2939]:=  g_C2 
MC2  LinearSolveBasisF, vc, LinearSolveBasisF, vd, LinearSolveBasisF, ve ;
MC2  MatrixForm
MC2N  NormalizeNullSpaceMC21
MC2final 

TransposeMC2N, NormalizeMC21, NormalizeMC22, NormalizeMC23;
MC2final  MatrixForm
DetMC2final
GC2  MC2final.InverseM3  FullSimplify; GC2  MatrixForm
GC2.TransposeGC2  FullSimplify  MatrixForm
DetGC2  FullSimplify

Out[2939]//MatrixForm=

1

2

3

2
0 0

1

2

1

2 3

2

3
0

1

2

1

2 3

1

2 6

5

2

2

Out[2940]= 

5

2

2
,

5

6

2
,

5

3

4
,
1

4


Out[2941]//MatrixForm=

5

2

2

1

2

1

2

1

2



5

6

2

3

2

1

2 3

1

2 3



5

3

4
0 2

3

1

2 6


1

4
0 0

5

2

2

Out[2942]=
1

2

Out[2943]//MatrixForm=

5

2

2

1

2

1

2 3

1

2 6



5

6

2

3

2


1

6


1

6 2



5

3

4
0 2 2

3


1

12


1

4
0 0 15

4

Out[2944]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2945]= 1

52   equilateral5simplex9.7.2016.nb



In[2946]:=  g_C1 
MC1  LinearSolveBasisF, d  b, LinearSolveBasisF, c  b, LinearSolveBasisF, e  b ;
MC1  MatrixForm
MC1N  NormalizeNullSpaceMC11
MC1final 

TransposeMC1N, NormalizeMC11, NormalizeMC12, NormalizeMC13;
MC1final  MatrixForm
DetMC1final
GC1  MC1final.InverseM3  FullSimplify; GC1  MatrixForm
GC1.TransposeGC1  FullSimplify  MatrixForm
DetGC1  FullSimplify

Out[2946]//MatrixForm=


1

2

1

2 3

2

3
0


1

2

3

2
0 0


1

2

1

2 3

1

2 6

5

2

2

Out[2947]= 

5

2

2
,

5

6

2
,

5

3

4
,
1

4


Out[2948]//MatrixForm=



5

2

2


1

2


1

2


1

2



5

6

2

1

2 3

3

2

1

2 3



5

3

4

2

3
0 1

2 6


1

4
0 0

5

2

2

Out[2949]=
1

2

Out[2950]//MatrixForm=



5

2

2


1

2


1

2 3


1

2 6



5

6

2

1

2 3

5

6


1

6 2



5

3

4

2

3


2

3


1

12


1

4
0 0 15

4

Out[2951]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Out[2952]= 1
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In[2953]:=  determining the SU2 components via Van Elfrinkhof's formula 

 gC5 
AGC5  AscGC5  FullSimplify; AGC5  MatrixForm  associate matrix 

Out[2953]//MatrixForm=

3

8

1

8
 3

8

1

8


3

8


3

8

3

8


3

8


3

8


1

8

3

8


1

8

3

8

3

8


3

8

3

8

In[2710]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2962]:= KGC5  SqrtAGC51, 1^2  AGC51, 2^2  AGC51, 3^2  AGC51, 4^2  Simplify;

In[2963]:= pGC5  AGC51, 1  KGC5  Simplify;
qGC5  AGC51, 2  KGC5  Simplify;
rGC5  AGC51, 3  KGC5  Simplify;
sGC5  AGC51, 4  KGC5  FullSimplify;
aGC5  KGC5;
bGC5  KGC5 AGC52, 1  AGC51, 1  FullSimplify;
cGC5  KGC5 AGC53, 1  AGC51, 1  FullSimplify;
dGC5  KGC5 AGC54, 1  AGC51, 1  FullSimplify;

In[2720]:=  operations to figure out if we're doing everything right 

In[2971]:= aGC5^2  bGC5^2  cGC5^2  dGC5^2  FullSimplify

Out[2971]= 1

In[2972]:= pGC5^2  qGC5^2  rGC5^2  sGC5^2  FullSimplify

Out[2972]= 1

In[2973]:= aGC5 pGC5, aGC5 qGC5, aGC5 rGC5, aGC5 sGC5, bGC5 pGC5, bGC5 qGC5, bGC5 rGC5, bGC5 sGC5,
cGC5 pGC5 , cGC5 qGC5, cGC5 rGC5, cGC5 sGC5,
dGC5 pGC5, dGC5 qGC5, dGC5 rGC5, dGC5 sGC5  AGC5  FullSimplify  MatrixForm

Out[2973]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2974]:= GC5P  aGC5 IdentityMatrix2  I bGC5 PauliMatrix1 
I cGC5 PauliMatrix2  I dGC5 PauliMatrix3  Simplify; GC5P  MatrixForm

GC5M  pGC5 IdentityMatrix2  I qGC5 PauliMatrix1  I rGC5 PauliMatrix2 
I sGC5 PauliMatrix3  Conjugate  Transpose  Simplify; GC5M  MatrixForm

Out[2974]//MatrixForm=

1

4
 2   6  

  3 

2 2

1

4
 2   6  1

4
 2   6 

Out[2975]//MatrixForm=

 3

2 2

 3

2 2


 3

2 2

 3

2 2
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In[2976]:=  gC4 
AGC4  AscGC4  FullSimplify; AGC4  MatrixForm

Out[2976]//MatrixForm=

15

16


3

16

15

16

3

16


5

16

15

16


5

16


15

16

15

16


3

16

15

16

3

16


5

16

15

16


5

16


15

16

In[2727]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2977]:= KGC4  SqrtAGC41, 1^2  AGC41, 2^2  AGC41, 3^2  AGC41, 4^2  Simplify;

In[2978]:= pGC4  AGC41, 1  KGC4  Simplify;
qGC4  AGC41, 2  KGC4  Simplify;
rGC4  AGC41, 3  KGC4  Simplify;
sGC4  AGC41, 4  KGC4  FullSimplify;
aGC4  KGC4;
bGC4  KGC4 AGC42, 1  AGC41, 1  FullSimplify;
cGC4  KGC4 AGC43, 1  AGC41, 1  FullSimplify;
dGC4  KGC4 AGC44, 1  AGC41, 1  FullSimplify;

In[2737]:=  operations to figure out if we're doing everything right 

In[2986]:= aGC4^2  bGC4^2  cGC4^2  dGC4^2  FullSimplify
pGC4^2  qGC4^2  rGC4^2  sGC4^2  FullSimplify

Out[2986]= 1

Out[2987]= 1

In[2988]:= aGC4 pGC4, aGC4 qGC4, aGC4 rGC4, aGC4 sGC4, bGC4 pGC4, bGC4 qGC4, bGC4 rGC4, bGC4 sGC4,
cGC4 pGC4 , cGC4 qGC4, cGC4 rGC4, cGC4 sGC4,
dGC4 pGC4, dGC4 qGC4, dGC4 rGC4, dGC4 sGC4  AGC4  FullSimplify  MatrixForm

Out[2988]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[2989]:= GC4P  aGC4 IdentityMatrix2  I bGC4 PauliMatrix1 
I cGC4 PauliMatrix2  I dGC4 PauliMatrix3  FullSimplify; GC4P  MatrixForm

GC4M  pGC4 IdentityMatrix2  I qGC4 PauliMatrix1  I rGC4 PauliMatrix2 
I sGC4 PauliMatrix3  Conjugate  Transpose  FullSimplify; GC4M  MatrixForm

Out[2989]//MatrixForm=

Root1  12  4 14 &, 3 Root1  12  4 14 &, 3
Root1  12  4 14 &, 1 Root1  12  4 14 &, 4

Out[2990]//MatrixForm=

Root1  12  4 14 &, 3 Root1  12  4 14 &, 2
Root1  12  4 14 &, 4 Root1  12  4 14 &, 4
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In[2991]:=  gC3 
AGC3  AscGC3  FullSimplify; AGC3  MatrixForm

Out[2991]//MatrixForm=

1

48
4 2  2 3  3 15

1

48
7  2 30

1

48
2 2  6 3  15

1

48
5  4 6

1

48
5  2 30

1

48
4 2  2 3  3 15

1

48
1  4 6

1

48
2 2  6 3  15

1

48
2 2  6 3  15

1

48
5  4 6

1

48
4 2  2 3  3 15

1

48
7  2 30

1

48
1  4 6

1

48
2 2  6 3  15

1

48
5  2 30

1

48
4 2  2 3  3 15

In[2744]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[2992]:= KGC3  SqrtAGC31, 1^2  AGC31, 2^2  AGC31, 3^2  AGC31, 4^2  Simplify;

In[2993]:= pGC3  AGC31, 1  KGC3  Simplify;
qGC3  AGC31, 2  KGC3  Simplify;
rGC3  AGC31, 3  KGC3  Simplify;
sGC3  AGC31, 4  KGC3  FullSimplify;
aGC3  KGC3;
bGC3  KGC3 AGC32, 1  AGC31, 1  FullSimplify;
cGC3  KGC3 AGC33, 1  AGC31, 1  FullSimplify;
dGC3  KGC3 AGC34, 1  AGC31, 1  FullSimplify;

In[2754]:=  operations to figure out if we're doing everything right 

In[3001]:= aGC3^2  bGC3^2  cGC3^2  dGC3^2  FullSimplify
pGC3^2  qGC3^2  rGC3^2  sGC3^2  FullSimplify

Out[3001]= 1

Out[3002]= 1

In[3003]:= aGC3 pGC3, aGC3 qGC3, aGC3 rGC3, aGC3 sGC3, bGC3 pGC3, bGC3 qGC3, bGC3 rGC3, bGC3 sGC3,
cGC3 pGC3 , cGC3 qGC3, cGC3 rGC3, cGC3 sGC3,
dGC3 pGC3, dGC3 qGC3, dGC3 rGC3, dGC3 sGC3  AGC3  FullSimplify  MatrixForm

Out[3003]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[3004]:= GC3P  aGC3 IdentityMatrix2  I bGC3 PauliMatrix1 
I cGC3 PauliMatrix2  I dGC3 PauliMatrix3  Simplify; GC3P  MatrixForm

GC3M  pGC3 IdentityMatrix2  I qGC3 PauliMatrix1  I rGC3 PauliMatrix2 
I sGC3 PauliMatrix3  Conjugate  Transpose  Simplify; GC3M  MatrixForm

Out[3004]//MatrixForm=

1

24
6 25 3 5 2 6 2 30   3 3 5  3 6  30 

1

24
 33 5 3 6  30  6 25 3 5 2 6 2 30 

1

24
 3 3 5  3 6  30  6 253 5  2 6  2 30 

1

24
6 25 3 5 2 6 2 30    33 5 3 6  30 

Out[3005]//MatrixForm=

6 2 8 3 9 10  726240 6

12 253 5 2 6 2 30

18 2 4 3 12  5 7  6 3 10

12 253 5 2 6 2 30

18 2 4 3 12  5 7  6 3 10

12 253 5 2 6 2 30

6 2 8 3 9 10  726240 6

12 253 5 2 6 2 30
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In[3006]:=  gC2 
AGC2  AscGC2  FullSimplify; AGC2  MatrixForm

Out[3006]//MatrixForm=
1

48
8 2 6 3  3 10  3 15 

1

48
7 30 

1

48
 2 2 3  15 

1

48
5  6 

1

48
5 30 

1

48
8 2 6 3 3 10 3 15 

1

48
1 6 

1

48
 2  2 3  15 

1

48
 2 2 3  15 

1

48
5 6 

1

48
8 2 6 3  3 10  3 15 

1

48
7  30 

1

48
1 6 

1

48
 2 2 3  15 

1

48
5 30 

1

48
8 2  6 3 3 10 3 15 

In[2761]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[3007]:= KGC2  SqrtAGC21, 1^2  AGC21, 2^2  AGC21, 3^2  AGC21, 4^2  Simplify;

In[3008]:= pGC2  AGC21, 1  KGC2  Simplify;
qGC2  AGC21, 2  KGC2  Simplify;
rGC2  AGC21, 3  KGC2  Simplify;
sGC2  AGC21, 4  KGC2  FullSimplify;
aGC2  KGC2;
bGC2  KGC2 AGC22, 1  AGC21, 1  FullSimplify;
cGC2  KGC2 AGC23, 1  AGC21, 1  FullSimplify;
dGC2  KGC2 AGC24, 1  AGC21, 1  FullSimplify;

In[2771]:=  operations to figure out if we're doing everything right 

In[3016]:= aGC2^2  bGC2^2  cGC2^2  dGC2^2  FullSimplify
pGC2^2  qGC2^2  rGC2^2  sGC2^2  FullSimplify

Out[3016]= 1

Out[3017]= 1

In[3018]:= aGC2 pGC2, aGC2 qGC2, aGC2 rGC2, aGC2 sGC2, bGC2 pGC2, bGC2 qGC2, bGC2 rGC2, bGC2 sGC2,
cGC2 pGC2 , cGC2 qGC2, cGC2 rGC2, cGC2 sGC2,
dGC2 pGC2, dGC2 qGC2, dGC2 rGC2, dGC2 sGC2  AGC2  FullSimplify  MatrixForm

Out[3018]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[3497]:= GC2P  aGC2 IdentityMatrix2  I bGC2 PauliMatrix1 
I cGC2 PauliMatrix2  I dGC2 PauliMatrix3  Simplify; GC2P  MatrixForm

GC2M  pGC2 IdentityMatrix2  I qGC2 PauliMatrix1  I rGC2 PauliMatrix2 
I sGC2 PauliMatrix3  Conjugate  Transpose  Simplify; GC2M  MatrixForm

Out[3497]//MatrixForm=

1

24
 3  3 5  3 6  30  6 25  9 5  8 6  4 30

1

24
 3  3 5  3 6  30   6 25  9 5  8 6  4 30

1

24
6 25  9 5  8 6  4 30   3  3 5  3 6  30

1

24
 3  3 5  3 6  30  6 25  9 5  8 6  4 30

Out[3498]//MatrixForm=

6 18 2 16 3 5  6 9 10 6 15

12 259 5 8 6 4 30

6 2 2 3 6  5 7  6 3 10

12 259 5 8 6 4 30

6 2 2 3 6  5 7  6 3 10

12 259 5 8 6 4 30

6 18 2 16 3 5  6 9 10 6 15

12 259 5 8 6 4 30
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In[3021]:=  gC1 
AGC1  AscGC1  FullSimplify; AGC1  MatrixForm

Out[3021]//MatrixForm=
1

48
4 2  2 3  3 10  3 15

1

48
5  30

1

48
2  2 3  15

1

48
7  3 6

1

48
7  30

1

48
4 2  2 3  3 10  3 15

1

48
13  5 6

1

48
2  2 3  15

1

48
 2  2 3  15

1

48
7  3 6

1

48
4 2  2 3  3 10  3 15

1

48
5  30

1

48
13  5 6

1

48
2  2 3  15

1

48
7  30

1

48
4 2  2 3  3 10  3 15

In[2778]:=  As long as the first line of this matrix has a non
zero entry we can copypaste the algorithm from the main text. 

In[3022]:= KGC1  SqrtAGC11, 1^2  AGC11, 2^2  AGC11, 3^2  AGC11, 4^2  Simplify;

In[3023]:= pGC1  AGC11, 1  KGC1  Simplify;
qGC1  AGC11, 2  KGC1  Simplify;
rGC1  AGC11, 3  KGC1  Simplify;
sGC1  AGC11, 4  KGC1  FullSimplify;
aGC1  KGC1;
bGC1  KGC1 AGC12, 1  AGC11, 1  FullSimplify;
cGC1  KGC1 AGC13, 1  AGC11, 1  FullSimplify;
dGC1  KGC1 AGC14, 1  AGC11, 1  FullSimplify;

In[2788]:=  operations to figure out if we're doing everything right 

In[3031]:= aGC1^2  bGC1^2  cGC1^2  dGC1^2  FullSimplify
pGC1^2  qGC1^2  rGC1^2  sGC1^2  FullSimplify

Out[3031]= 1

Out[3032]= 1

In[3033]:= aGC1 pGC1, aGC1 qGC1, aGC1 rGC1, aGC1 sGC1, bGC1 pGC1, bGC1 qGC1, bGC1 rGC1, bGC1 sGC1,
cGC1 pGC1 , cGC1 qGC1, cGC1 rGC1, cGC1 sGC1,
dGC1 pGC1, dGC1 qGC1, dGC1 rGC1, dGC1 sGC1  AGC1  FullSimplify  MatrixForm

Out[3033]//MatrixForm=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In[3034]:= GC1P  aGC1 IdentityMatrix2  I bGC1 PauliMatrix1 
I cGC1 PauliMatrix2  I dGC1 PauliMatrix3  Simplify; GC1P  MatrixForm

GC1M  pGC1 IdentityMatrix2  I qGC1 PauliMatrix1  I rGC1 PauliMatrix2 
I sGC1 PauliMatrix3  Conjugate  Transpose  Simplify; GC1M  MatrixForm

Out[3034]//MatrixForm=

1

24
6 193 5 6 6  2 30   3 3 5 2 30 

1

24
 33 5 2 30  6 19 3 5 6 6 2 30 


1

24
 3 3 5 2 30  6 193 5  6 6  2 30 

1

24
6 19 3 5  6 6 2 30   3 3 5 2 30 

Out[3035]//MatrixForm=

6 2 8 3 9 10 6 15  618252 6

12 193 5 6 6 2 30

6 2 2 3 6  5 5  6 3 10

12 193 5 6 6 2 30

6 2 2 3 6  5 5  6 3 10

12 193 5 6 6 2 30

6 2 8 3 9 10 6 15  618252 6

12 193 5 6 6 2 30
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 Computing the SO3 matrices Rg for the g_Ci 

 gC5 

In[3036]:= RC5P  RGC5P1, 1, GC5P1, 2  FullSimplify; RC5P  MatrixForm
RC5P.TransposeRC5P  FullSimplify  MatrixForm
DetRC5P  FullSimplify
RC5M  RGC5M1, 1, GC5M1, 2  FullSimplify; RC5M  MatrixForm
RC5M.TransposeRC5M  FullSimplify  MatrixForm
DetRC5M  FullSimplify

Out[3036]//MatrixForm=

0 0 1

3

2


1

2
0


1

2


3

2
0

Out[3037]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3038]= 1

Out[3039]//MatrixForm=

0 0 1


3

2

1

2
0


1

2


3

2
0

Out[3040]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3041]= 1
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 gC4 

In[3042]:= RC4P  RGC4P1, 1, GC4P1, 2  FullSimplify; RC4P  MatrixForm
RC4P.TransposeRC4P  FullSimplify  MatrixForm
DetRC4P  FullSimplify
RC4M  RGC4M1, 1, GC4M1, 2  FullSimplify; RC4M  MatrixForm
RC4M.TransposeRC4M  FullSimplify  MatrixForm
DetRC4M  FullSimplify

Out[3042]//MatrixForm=

0 0 1


15

4


1

4
0

1

4


15

4
0

Out[3043]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3044]= 1

Out[3045]//MatrixForm=

0 0 1

 15

4

1

4
0

1

4

15

4
0

Out[3046]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3047]= 1
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 gC3 

In[3048]:= RC3P  RGC3P1, 1, GC3P1, 2  FullSimplify; RC3P  MatrixForm
RC3P.TransposeRC3P  FullSimplify  MatrixForm
DetRC3P  FullSimplify
RC3M  RGC3M1, 1, GC3M1, 2  FullSimplify; RC3M  MatrixForm
RC3M.TransposeRC3M  FullSimplify  MatrixForm
DetRC3M  FullSimplify

Out[3048]//MatrixForm=

1

12
 6  30  

1

6
23  3 5 

1

3

1 5

8 3

1

24
1  3 5  

2 2

3

1

8
1  3 5  

1

8
3 1  5  0

Out[3049]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3050]= 1

Out[3051]//MatrixForm=


1

2

1

3
3  5  

1

6
23  3 5 1

3

1

4

1

6
3  5  1

24
1  3 5  2 2

3

1

8
1  3 5  1

4

3

2
3  5  0

Out[3052]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3053]= 1
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 gC2 

In[3054]:= RC2P  RGC2P1, 1, GC2P1, 2  FullSimplify; RC2P  MatrixForm
RC2P.TransposeRC2P  FullSimplify  MatrixForm
DetRC2P  FullSimplify
RC2M  RGC2M1, 1, GC2M1, 2  FullSimplify; RC2M  MatrixForm
RC2M.TransposeRC2M  FullSimplify  MatrixForm
DetRC2M  FullSimplify

Out[3054]//MatrixForm=

5
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1

3 2
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1

3
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1

24
1  9 5  2
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1

8
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2
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Out[3055]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3056]= 1

Out[3057]//MatrixForm=

5
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Out[3058]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3059]= 1
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 gC1 

In[3060]:= RC1P  RGC1P1, 1, GC1P1, 2  FullSimplify; RC1P  MatrixForm
RC1P.TransposeRC1P  FullSimplify  MatrixForm
DetRC1P  FullSimplify
RC1M  RGC1M1, 1, GC1M1, 2  FullSimplify; RC1M  MatrixForm
RC1M.TransposeRC1M  FullSimplify  MatrixForm
DetRC1M  FullSimplify

Out[3060]//MatrixForm=

1

12
 6  30  

1

6
23  3 5 

1

3


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8
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Out[3061]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3062]= 1

Out[3063]//MatrixForm=
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Out[3064]//MatrixForm=

1 0 0
0 1 0
0 0 1

Out[3065]= 1
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 gluing matrices for vertex C. The null

space of these define the normal vectors n_ef. 

In[3066]:= RCP  RC1P, RC2P, RC3P, RC4P, RC5P, RC6P;
RCM  RC1M, RC2M, RC3M, RC4M, RC5M, RC6M;
RCi_, j_ : TransposeRCPj.RCPi  TransposeRCMj.RCMi ;

In[2834]:=  standard tetrahedron normals for reference 

In[3069]:= NA
NB
NC
ND

Out[3069]= 
2

3
,

2

3
,
1

3


Out[3070]= 
2

3
,

2

3
,
1

3


Out[3071]= 0, 
2 2

3
,
1

3


Out[3072]= 0, 0, 1

In[3073]:=  Tetrahedron 1234 or abcd 

NullSpaceRC5, 4  FullSimplify
NullSpaceRC5, 41  FullSimplify  Normalize
NullSpaceRC5, 3  FullSimplify
NullSpaceRC5, 31  FullSimplify  Normalize
NullSpaceRC5, 2  FullSimplify
NullSpaceRC5, 21  FullSimplify  Normalize
NullSpaceRC5, 1  FullSimplify
NullSpaceRC5, 11  FullSimplify  Normalize

Out[3073]= 0, 0, 1

Out[3074]= 0, 0, 1

Out[3075]=  6 , 2 , 1

Out[3076]= 
2

3
,

2

3
,
1

3


Out[3077]= 0, 2 2 , 1

Out[3078]= 0, 
2 2

3
,
1

3


Out[3079]=  6 , 2 , 1

Out[3080]= 
2

3
,

2

3
,
1

3

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In[3081]:= nC554  ND
nC553  NB
nC552  NC
nC551  NA

Out[3081]= 0, 0, 1

Out[3082]= 
2

3
,

2

3
,
1

3


Out[3083]= 0, 
2 2

3
,
1

3


Out[3084]= 
2

3
,

2

3
,
1

3

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In[3093]:=  Tetrahedron 1235 or abce 

NullSpaceRC4, 5  FullSimplify
NullSpaceRC4, 51  FullSimplify  Normalize
NullSpaceRC4, 3  FullSimplify
NullSpaceRC4, 31  FullSimplify  Normalize
NullSpaceRC4, 2  FullSimplify
NullSpaceRC4, 21  FullSimplify  Normalize
NullSpaceRC4, 1  FullSimplify
NullSpaceRC4, 11  FullSimplify  Normalize

Out[3093]= 0, 0, 1

Out[3094]= 0, 0, 1

Out[3095]= 0, 2 2 , 1

Out[3096]= 0, 
2 2

3
,
1

3


Out[3097]=  6 , 2 , 1

Out[3098]= 
2

3
,

2

3
,
1

3


Out[3099]=  6 , 2 , 1

Out[3100]= 
2

3
,

2

3
,
1

3


In[3105]:= nC445  ND
nC443  NC
nC442  NB
nC441  NA

Out[3105]= 0, 0, 1

Out[3106]= 0, 
2 2

3
,
1

3


Out[3107]= 
2

3
,

2

3
,
1

3


Out[3108]= 
2

3
,

2

3
,
1

3

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In[3109]:=  Tetrahedron 1245 or abde 

NullSpaceRC3, 5  FullSimplify
NullSpaceRC3, 51  FullSimplify  Normalize
NullSpaceRC3, 4  FullSimplify
NullSpaceRC3, 41  FullSimplify  Normalize
NullSpaceRC3, 2  FullSimplify
NullSpaceRC3, 21  FullSimplify  Normalize
NullSpaceRC3, 1  FullSimplify
NullSpaceRC3, 11  FullSimplify  Normalize

Out[3109]= 0, 0, 1

Out[3110]= 0, 0, 1

Out[3111]=  6 , 2 , 1

Out[3112]= 
2

3
,

2

3
,
1

3


Out[3113]= 0, 2 2 , 1

Out[3114]= 0, 
2 2

3
,
1

3


Out[3115]=  6 , 2 , 1

Out[3116]= 
2

3
,

2

3
,
1

3


In[3121]:= nC335  ND
nC334  NB
nC332  NC
nC331  NA

Out[3121]= 0, 0, 1

Out[3122]= 
2

3
,

2

3
,
1

3


Out[3123]= 0, 
2 2

3
,
1

3


Out[3124]= 
2

3
,

2

3
,
1

3

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In[3125]:=  Tetrahedron 1345 or acde 

NullSpaceRC2, 5  FullSimplify
NullSpaceRC2, 51  FullSimplify  Normalize
NullSpaceRC2, 4  FullSimplify
NullSpaceRC2, 41  FullSimplify  Normalize
NullSpaceRC2, 3  FullSimplify
NullSpaceRC2, 31  FullSimplify  Normalize
NullSpaceRC2, 1  FullSimplify
NullSpaceRC2, 11  FullSimplify  Normalize

Out[3125]= 0, 0, 1

Out[3126]= 0, 0, 1

Out[3127]= 0, 2 2 , 1

Out[3128]= 0, 
2 2

3
,
1

3


Out[3129]=  6 , 2 , 1

Out[3130]= 
2

3
,

2

3
,
1

3


Out[3131]=  6 , 2 , 1

Out[3132]= 
2

3
,

2

3
,
1

3


In[3137]:= nC225  ND
nC224  NC
nC223  NB
nC221  NA

Out[3137]= 0, 0, 1

Out[3138]= 0, 
2 2

3
,
1

3


Out[3139]= 
2

3
,

2

3
,
1

3


Out[3140]= 
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,

2
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,
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3

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In[3141]:=  Tetrahedron 2345 or bcde 

NullSpaceRC1, 5  FullSimplify
NullSpaceRC1, 51  FullSimplify  Normalize
NullSpaceRC1, 4  FullSimplify
NullSpaceRC1, 41  FullSimplify  Normalize
NullSpaceRC1, 3  FullSimplify
NullSpaceRC1, 31  FullSimplify  Normalize
NullSpaceRC1, 2  FullSimplify
NullSpaceRC1, 21  FullSimplify  Normalize

Out[3141]= 0, 0, 1

Out[3142]= 0, 0, 1

Out[3143]=  6 , 2 , 1

Out[3144]= 
2

3
,

2

3
,
1

3


Out[3145]= 0, 2 2 , 1

Out[3146]= 0, 
2 2

3
,
1

3


Out[3147]=  6 , 2 , 1

Out[3148]= 
2

3
,

2

3
,
1

3


In[3153]:= nC115  ND
nC114  NB
nC113  NC
nC112  NA

Out[3153]= 0, 0, 1

Out[3154]= 
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3


Out[3155]= 0, 
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3


Out[3156]= 
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3

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